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RESUMO

A principal motivação para o desenvolvimento deste trabalho consiste no aperfeiçoamento dos 

critérios adotados para interromper a execução de um processo iterativo. Com este fim, 

analisa-se o desempenho do estimador empírico. Este estimador fornece uma estimativa do erro 

de iteração, também denominada de incerteza (U), com base na taxa de convergência da variável 

de interesse. O erro (E) de iteração pode ser definido pela diferença entre a solução numérica 

exata e a solução numérica em uma determinada iteração. Através da efetividade do estimador de 

erro, isto é, da razão entre incerteza e erro, analisa-se a eficiência do estimador empírico quanto à 

sua acurácia (U/E ~1) e confiabilidade (U/E >1). Para tanto, são resolvidos sistemas de equações 

gerados a partir da aplicação dos métodos de diferenças finitas e volumes finitos sobre malhas 

unidimensionais e bidimensionais uniformes, de problemas de transferência de calor e de 

mecânica dos fluidos. Estes sistemas de equações foram resolvidos com a utilização de vários 

métodos iterativos. O desempenho do estimador empírico pode ser dividido em três intervalos: 

nas iterações iniciais, em geral a acurácia é baixa; quando o número de iterações é muito 

elevado, os erros de arredondamento predominam sobre os erros de iteração mas, mesmo assim, 

a acurácia é relativamente boa; no intervalo entre esses dois extremos, a acurácia tende a 

melhorar à medida que se aumenta o número de iterações. Não se recomenda o uso do estimador 

empírico em processos iterativos que envolvem a aplicação da técnica multigrid pois, em geral, 

sua acurácia é baixa. Constatou-se que existem relações diretas entre o estimador empírico e 

alguns estimadores disponíveis na literatura.

Palavras-chave: simulação numérica, erros numéricos, erros de iteração, estimador de erro, 

dinâmica dos fluidos, verificação.



ABSTRACT

The main motivation to develop this work consists in improve the rales or approaches adopted to 

interrapt the execution of an iterative process. It's proposed to calculate the uncertainty (U) of 

numerical Solutions, where the uncertainty is defined as an estimated iterative error (E). To a 

variable of any interest, this error is the difference between the exact numerical solution and the 

calculated numerical solution. It is analyzed the efficiency of an empirical error estimator to 

iterative processes. This estimator calculates the numerical uncertainty (£/) on basis on the 

convergence rate of the interest variable. Through the effectiveness of the error estimator, that is, 

of the reason between uncertainty and error, the error estimator efficiency is verified on its 

accuracy (U/E ) and reliability (U/E ). Therefore, are resolved linear systems generated from the 

application of finite differences and finite volume methods, on uniform unidimensional and 

bidimensional meshes, in heat transfer problems and and fluid mechanics. These systems of 

equations were resolved with the use of iterative methods. The performance of the empirical 

estimator can be divided in ihree intervals: In the "initial" iterations the accuracy is low, in 

general; when the number of iterations is very high, the round-off affect the accuracy, that is 

good; in the interval among those two limits, the accuracy tends to be big as it increases the 

iteration number. It was verified that, in iterative processes that involve the application of the 

multigrid method, the empirical estimator behavior doesn't seems to be good; because in the 

accomplished simulations it was obtained results with low accuracy and not very reliable. It was 

also verified that there are direct relations between the studied error estimator and some existent 

estimators in the literature.

Keywords: Numerical simulation, numerical errors, iteration errors, error estimator, fluid 

dynamics, verification.
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Capítulo 1.

INTRODUÇÃO

Este capítulo descreve o problema tratado neste trabalho, que se constitui no estudo de 

um estimador de erro para processos iterativos. São apresentadas as principais razões para 

utilização de um estimador. Em seguida, é feita uma breve apresentação sobre as principais 

fontes de erros envolvidos em processos numéricos. Por fim, tem-se o escopo do trabalho.

1.1 O PROBLEMA

Em engenharia, problemas que possuem solução analítica são aqueles que envolvem 

equações, geometrias e condições de contorno e iniciais muito simples, ou seja, são as exceções. 

Para os demais problemas utilizam se métodos numéricos cujas soluções são obtidas com o 

emprego de computadores. A tarefa de um método numérico é resolver uma ou mais equações 

diferenciais, substituindo as derivadas existentes na equação por expressões algébricas que 

envolvem a função incógnita. A maneira de obter essas equações algébricas é que caracteriza o 

tipo de método numérico. Para tratar modelos computacionalmente é necessário expressar de 

forma adequada as equações e a região (domínio) em que elas são válidas. Como não se pode 

obter soluções numéricas sobre uma região contínua, devido aos infinitos pontos da mesma, 

inicialmente o domínio deve ser discretizado, ou seja, dividido em pontos, elementos ou 

volumes. Somente nestes pontos é que as soluções serão obtidas.

Os resultados numéricos obtidos devem ser, entretanto, confiáveis e este é um ponto de 

extrema importância a ser observado. A diferença entre a solução analítica exata de uma variável 

de interesse e a sua solução numérica é denominada por Ferziger e Peric (1999) de erro da 

solução numérica, ou simplesmente, erro numérico. O erro numérico é causado por diversas 

fontes de erro, que podem ser classificados em (Marchi, 2001): erros de truncamento, erros de 

iteração, erros de arredondamento e erros de programação. Estas fontes de erro são explicadas na 

seção 1.3. O processo que quantifica o erro numérico tem sido denominado recentemente de
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verificação (Blottner, 1990; Mehta, 1996; Oberkampf e Blottner, 1998; Roache, 1998; AIAA, 

1998; Jameson e Martinelli, 1998; Rizzi e Voss, 1998; Fortuna, 2000) ou validação numérica 

(Maliska, 1995). A verificação dá-se através da utilização de estimadores de erro. A estimativa 

fornecida por um estimador de erro pode também ser chamada de incerteza numérica.

O problema tratado neste trabalho é a estimativa do erro de iteração de soluções 

numéricas em Dinâmica dos Fluidos Computacional (CFD), sendo que os cálculos envolvidos 

nesta área requerem grande acurácia. A área de conhecimento denominada CFD estuda métodos 

computacionais para simulação de fenômenos que envolvem fluidos em movimento com ou sem 

troca de calor. No geral, CFD apresenta um versátil conjunto de algoritmos para solução 

numérica dos problemas de escoamento (Fortuna, 2000). A primeira solução numérica para um 

escoamento viscoso foi proposta por Thom (1933), envolvendo o método de diferenças finitas e 

o uso de um processo iterativo.

Em CFD, o uso de métodos iterativos é comum, devido à existência de modelos 

matemáticos constituídos por sistemas de equações não-lineares acoplados, equações de Navier- 

Stokes, etc. As descrições matemáticas do comportamento dos fluidos só ganharam força no 

século XIX, na forma das equações de Navier-Stokes. Ainda hoje, apesar de todos os progressos 

da matemática, não é possível resolver analiticamente estas equações para problemas reais de 

engenharia, os quais possuem domínios e condições de contorno complexas. Utilizam-se então 

métodos numéricos, os mais comuns são: diferenças finitas, volumes finitos e elementos finitos. 

Em CFD uma particularidade dos sistemas lineares provenientes da discretização de equações 

diferenciais é que eles são, em geral, muito grandes e as matrizes que surgem da aplicação destes 

métodos numéricos são normalmente esparsas, ou seja, com muitos elementos nulos. A aplicação 

de um método direto para solução de um sistema cuja matriz possui estas características, não é 

recomendável, pois pode-se ao longo do processo preencher com valores os elementos nulos, e 

pelo fato de se ter que armazenar toda a matriz na memória do computador, apesar da maior 

parte destes espaços estar sendo preenchida com zeros. Os métodos iterativos não sofrem este 

problema, requerem somente o resultado da multiplicação da matriz coeficiente por um vetor e, 

portanto, o padrão de zeros da matriz não sofre qualquer modificação ao longo do processo.

Processos iterativos consistem em se repetir a aplicação de um algoritmo, em geral 

simples, que a partir de uma aproximação conhecida constrói uma nova, mais próxima da 

solução exata. Fornece desta maneira, uma resposta exata somente como limite de uma 

seqüência infinita. Em geral, métodos iterativos são fáceis de serem programados porque os 

cálculos envolvidos são os mesmos em todas as iterações (Kreiszig, 1999).
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1.2 OBJETIVO

Este trabalho tem como objetivo o aperfeiçoamento das técnicas existentes para estimar 

erros cometidos nos procedimentos iterativos aplicados em CFD. Propõe-se, então, analisar o 

desempenho de um novo estimador para o erro de iteração, o estimador empírico. Analisa-se 

também, um método de previsão da confiabilidade do resultado obtido pelo estimador de erro.

1.3 ERRO NUMÉRICO

O erro numérico é causado por diversas fontes, que são (Marchi, 2001): erros de 

truneamento (Et), erros de arredondamento (Zŝ ), erros de programação (Ep) e erros de iteração 

(En); segundo Ferziger e Peric (1999), Oberkampf e Blottner (1998), Roache (1998), Tannehill et 

al. (1997), Celik e Zhang (1995) e Demuren e Wilson (1994). Simbolicamente, tem-se

E((f>) = E (E T, E n,E p ,E n) (1.1)

onde (0) é a variável de interesse podendo ser local ou global, primária ou secundária; 

dependendo do problema. Essas quatro fontes de erro podem ter magnitudes e sinais diferentes, o 

que pode acarretar em cancelamentos parciais ou totais entre esses erros. A definição, o efeito e a 

origem de cada uma destas quatro fontes de erro são explicados a seguir de forma isolada.

• Erros de Truneamento

Como é mencionado anteriormente, dado um modelo matemático, é comum substituí-lo 

por um modelo numérico. A maioria dos modelos numéricos envolve o truneamento, que nada 

mais é do que o modelo original definido de tal forma que todas suas partes possam ser 

calculadas em um número finito de passos. O erro que ocorre aos se truncar um processo infinito 

é chamado erro de truneamento ( E t) ,  o u  seja, é proveniente do fato de se aproximar um problema 

contínuo com informação num conjunto infinito por um problema discreto eom informação num 

conjunto finito.

Tannehill et al. (1997), Ferziger e Peric (1999) e Roache (1998) são exemplos de 

trabalhos que discutem sobre erros de truneamento e de discretização. Quando o erro E((j)) da 

solução numérica é gerado apenas por erros de truneamento ( E t), ele é denominado de erro de 

discretização (Ferziger e Peric, 1999). Questões sobre este tipo de erro podem ser encontradas no 

texto de Marchi (2001).
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• Erros de Arredondamento

Um número pode admitir várias representações, mas normalmente adota-se uma sucessão 

de racionais que são múltiplos de uma potência de 10 (base decimal), ou seja, utiliza-se notação 

científica. No caso da notação científica, um número representa-se através do sinal, da mantissa e 

do expoente, na base decimal. Os dígitos variam entre 0 e 9, mas o primeiro dígito da mantissa 

deve ser diferente de zero (o número zero é representado à parte). Mas, a menos que se esteja de 

posse de uma máquina com memória infinita, a representação de um número deve ser finita, pelo 

que, conseqüentemente somos obrigados a considerar um número finito de dígitos na mantissa e 

uma limitação nos valores dos expoentes admitidos.

Dom e McCracken (1981) e Hamming (1973) são exemplos de trabalhos que discutem 

sobre erros de arredondamento. Os erros de arredondamento (pn) são os erros que ocorrem 

principalmente devido à representação finita dos números reais nas computações. Eles dependem 

do compilador (software) usado para gerar o código computacional e do computador (hardware) 

empregado em sua execução. Na linguagem Fortran 90, por exemplo, pode-se usar precisão 

simples com quatro bytes, precisão dupla com oito bytes ou precisão quádmpla com 16 bytes por 

variável do tipo real. Quanto maior é a precisão usada para representar as variáveis, menores são 

os erros de arredondamento; entretanto, maior é a memória computacional necessária para o 

armazenamento destas variáveis.

• Erros de Programação

Não basta desenvolver o programa para resolver um dado problema, deve-se analisar se a 

solução está correta. Muitos erros podem ocorrer durante o desenvolvimento de um programa. 

Esses erros podem ocorrer por um mau entendimento dos elementos da linguagem utilizada ou 

até mesmo por descuido. Uma maneira de se evitar esse tipo de erro é efetuar testes para detectar 

erros no programa. Shih (1985), Maliska (1995) e Roache (1998) são exemplos de trabalhos que 

apresentam procedimentos para se detectar erros de programação. Na categoria de erros de 

programação (Ep) incluem-se basicamente (Roache, 1998):

1) os erros resultantes do uso incorreto de um modelo numérico na aproximação de um modelo 

matemático;

2) os erros gerados na implementação do modelo numérico num programa computacional;

3) os erros cometidos no uso do programa computacional durante a obtenção da solução 

numérica; e

4) qualquer outra eventual fonte de erro.
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• Erros de Iteração

Roy e Blottner (2001), Ferziger e Peric (1999), Roache (1998), Kim et a l  (1998) e 

Demuren e Wilson (1994) são exemplos de trabalhos que discutem sobre erros de iteração. De 

acordo com Ferziger e Peric (1999), considerando-se uma determinada variável de interesse ((/)), 

o erro de iteração (En) é a diferença entre a solução exata (<D) das equações discretizadas e a 

solução numérica em uma determinada iteração (<pn), admitindo-se que a solução exata seja 

única. As equações discretizadas resultam da aplicação de um modelo numérico sobre um 

modelo matemático. Tem-se, então, que:

E n =®-<t>n (1-2)

onde n representa o número da iteração corrente no processo de solução do sistema de equações 

algébricas, gerado pelas equações discretizadas do modelo matemático. Entre outros, alguns 

fatores que geram erros de iteração são:

1) o emprego de métodos iterativos para resolver as equações discretizadas, ou o sistema de 

equações algébricas;

2) o uso de métodos segregados na obtenção da solução de modelos matemáticos constituídos 

por mais de uma equação diferencial;

3) a existência de não-linearidades no modelo matemático;

1.4 ORGANIZAÇÃO DA DISSERTAÇÃO

Esta dissertação está organizada em 8 capítulos, e apresenta-se da seguinte forma:

• O Capítulo 1 apresentou uma breve abordagem do problema tratado durante este trabalho e 

o objetivo desta dissertação.

• No Capítulo 2 discute-se sobre a convergência de processos iterativos e sobre os estimadores 

de erro de iteração disponíveis na literatura. Discute-se, também, sobre a estrutura e resolução de 

sistemas de equações encontrados em problemas de engenharia.

• O Capítulo 3 trata das relações entre os estimadores já existentes e uma nova proposta de 

estimativa do erro de iteração, o estimador empírico. Também trata sobre um novo método de 

previsão da confiabilidade do resultado obtido pelo estimador de erro.
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• No Capítulo 4 são considerados quatro testes iniciais com a finalidade de verificar o 

desempenho do estimador empírico e do método de previsão da confiabilidade em alguns 

procedimentos iterativos simples.

• O Capítulo 5 envolve a resolução numérica de um problema difusivo unidimensional com 

absorção de calor.

• No Capítulo 6 é abordado um problema de difusão bidimensional, em regime permanente, 

sem geração de calor e com condutividade térmica constante.

• O Capítulo 7 trata de um problema de escoamento bidimensional isotérmico de fluido 

incompressível, representado pelas equações de Navier-Stokes.

• O Capítulo 8 é dedicado à conclusão da dissertação e sugestões para trabalhos futuros.



Capítulo 2

REVISÃO BIBLIOGRÁFICA

2.1 CONVERGÊNCIA

O termo “convergência” é usado em dois diferentes contextos, que são: convergência de 

truncamento e convergência iterativa (Fletcher, 1997). A convergência de truncamento está 
relacionada ao fato de que a solução do sistema de equações algébricas obtidas pela discretização 
pode coincidir com a solução exata da equação diferencial em determinadas circunstâncias. O 

processo de discretização pode ser invertido, ou seja, através da expansão da série de Taylor 

pode-se recuperar a equação diferencial governante do problema. Ou então pode-se obter a 
solução exata da equação diferencial ao considerar-se um número infinito de pontos na malha. 

Num outro contexto, convergência iterativa que será considerada neste trabalho somente como 

“convergência” refere-se ao alcance da solução exata do sistema de equações algébricas 
discretizadas. A taxa, ou razão, de convergência pode ser vista como uma medida de quão rápido 

a solução fornecida pelo método iterativo se aproxima da solução do sistema linear (Fortuna,

Considerando a solução de uma variável de interesse em duas iterações consecutivas, (j)k 

e </>*_!, e a solução exata do sistema <E>, supondo que existe um número real ik > 0, tal que:

Se ik < 1, para todo k, o erro da solução numérica é reduzido de um fator de ik a cada iteração. 

Considerando-se k —y °°:

2000).

(2.1)

1 A.£_»oo
lim 1, =u v „ K (2.2)
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Segundo Fortuna (2000), a taxa de convergência de um processo iterativo pode ser dada
por:

Tem-se então que, se i < 1 o esquema iterativo converge, se i > 1 diverge e se i = 1 nada pode se 

afirmar. Quanto menor o valor de i melhor é a convergência, ou seja necessita-se de menos 

iterações para se obter O para uma mesma condição inicial. Segundo Ferziger e Peric (1999), a 

convergência rápida é a chave da efetividade de um procedimento iterativo.

2.1.1 Critérios de Convergência

Critérios de convergência iterativa, ou somente “critérios de convergência”, são critérios 
adotados para interromper a execução de um processo iterativo, o que não é uma decisão fácil. 
Existem problemas que possuem convergência lenta e, caso a execução seja interrompida por um 

critério mal escolhido, pode-se ainda estar longe da solução convergida, ou seja, da solução exata 
do sistema de equações. Por outro lado, ao se utilizar um critério muito severo, e manter o 

processo iterando sem necessidade, pode-se ter desperdício de recursos como o tempo 
computacional.

Quando a ordem de grandeza da variável de interesse é conhecida, neste caso, um 

critério absoluto pode ser eficiente, ou seja, baseado na diferença entre duas iterações 
sucessivas. O procedimento é interrompido quando esta diferença, medida por alguma norma, é 

menor que um valor pré-estabelecido, normalmente denominado “tolerância” (e).

Segundo Roache (1998), ao se utilizar este critério deve-se cuidar com a escolha de e , pois este 
pode possibilitar a suspensão das iterações com uma solução prematura, tal como mostrado na 

Fig. 2.1. Segundo citação feita por Roache (1998), este comportamento não é incomum (Ingham, 
1968). Pode-se evitar esta parada prematura da computação, analisando-se a “segunda variação”, 

ou seja, definindo-se os critérios:

T = — (2.3)

fn +1 - 0» I <£ (2.4)
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Figura 2.1 Comportamento apresentado pelo critério absoluto para alguns procedimentos
iterativos (Roache, 1998).

A A =||A -A  ||<e,n ti II /i+1 n || 2

Ou ainda testando passos maiores de iteração:

| | ^ n + 1 0  _  0 n | |  ^  £

(2.5)

(2.6)

(2.7)

onde (j)n+l0 é a décima iteração obtida após a iteração n. Mas nenhum destes critérios pode

substituir o exame do comportamento iterativo, Fig. 2.1, (Roache, 1998).
Se a ordem de grandeza da variável de interesse não é conhecida, a tarefa é mais difícil. 

Um critério feqüentemente empregado na literatura é o critério relativo, ou seja:

0„+i -<t>. < £ (2.8)

Este critério é normalmente mais significativo, mas é obviamente mais perigoso, pois se 

(j)n estiver próximo de zero, pode-se ter “indeterminação”. Um outro aspecto importante do uso 

do critério relativo ressaltado por Maliska (1995), é que este pode manter um processo iterativo
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sendo executado, quando tudo o que interessa do ponto de vista físico já está sem variação. Para 
exemplificar, considera-se o campo de variação da variável 0 com o valor mínimo 0,0010 e o 

valor máximo 1000. Sendo que da iteração (?) para iteração (n + 1), observa-se a variação de 

0,0018 para 0,0020 na magnitude da variável. Ao se aplicar o critério dado pela Eq. (2.8) o valor 

encontrado é 0,1, ao passo que a variação de uma iteração para outra é de 0,0002. O resultado 
disto é que dependendo do valor adotado para e, pode-se gastar um grande tempo de 
computação sem necessidade.

Um critério que evita este problema consiste em determinar a faixa de variação da 
variável de interesse através dos valores máximo e mínimo fornecidos pela função iterativa no 

domínio de cálculo. Isto é, define-se:

0-=0max-0min (2.9)

E aplicando-se o  como referencial para o “critério relativo”, ou seja:

0„+i -
CT

<£  (2.10)

Com a utilização deste critério no exemplo descrito anteriormente, obtém-se o valor 0,0000002, 
fazendo com que o critério de parada seja satisfeito antecipadamente.

Diminuindo-se a tolerância do critério de convergência, pode-se reduzir os erros de 
convergência ou de iteração com um aumento do custo computacional No entanto, deve-se ter 

cuidado, pois estes critérios prestam informações relativas à convergência, não fornecendo a 

magnitude do erro cometido no processo iterativo, sendo esta uma tarefa destinada aos 
estimadores de erro.

Além destes critérios existem outros disponíveis na literatura, como por exemplo: norma 

L2 do resíduo (Fortuna, 2000) e norma do resíduo (Patankar, 1980).

Roache (1998) faz algumas sugestões sobre o estabelecimento da convergência de um 

processo iterativo:

• Não basta somente examinar o comportamento iterativo (Fig. 2.1), deve-se ter 

também critérios quantitativos.
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• Diferentes variáveis envolvidas em um mesmo processo iterativo podem apresentar 

diferentes taxas de convergência. Se a variável de convergência mais lenta é 
conhecida, ela pode ser testada; caso contrário todas as variáveis devem ser testadas.

2.2 CRITÉRIOS PARA MEDIR O DESEMPENHO DE UMA ESTIMATIVA DE 
ERRO

Conforme descrito anteriormente, faz-se necessário em CFD a utilização de estimadores 

de erro, devido à grande precisão exigida nos cálculos. A qualidade de uma estimativa de erro 

pode ser avaliada através da sua efetividade (0 ), que é definida pela razão entre a incerteza ( U) 

e o erro (E ) (Zhu e Zienkiewicz, 1990):

6= — (2.11) 
E

Uma estimativa de erro ideal é aquela cuja efetividade é igual à unidade (6 = 1), isto é, 
quando a incerteza é igual ao erro ( U = E). Quando a magnitude da incerteza é maior do que a 

magnitude do erro de iteração e ambas tem o mesmo sinal, pode-se dizer que a estimativa do erro 

é confiável (Marchi, 2001). Matematicamente, diz-se que a estimativa do erro é confiável 
quando:

6>\  (2.12)

Se a magnitude da incerteza é aproximadamente igual à magnitude do erro de iteração,

diz-se que a estimativa do erro é acurada (Chapra e Canale, 1994). Matematicamente, uma
estimativa de erro com acurácia elevada significa que:

0 -1  (2.13)

A definição quantitativa do que é uma estimativa de erro acurada é o quão próximo da unidade 

deve estar a efetividade.
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2.3 ESTIMADORES DE ERRO DE ITERAÇÃO

São apresentados aqui alguns estimadores do erro de iteração disponíveis na literatura.

2.3.1 O Estimador Delta

Roache (1982) não considera adequado se decidir sobre a convergência de um processo 

iterativo utilizando-se “critérios lelativos”, ou seja, envolvendo a razão entre dois números. 
Adota como critério de convergência de um processo iterativo a diferença entre os valores 

obtidos para a variável de interesse em duas iterações, ou seja, um “critério absoluto”, dado em :

Com n2 > nx e £ sendo um número pequeno variando de acordo com o problema. Se £ é 

considerado como sendo a tolerância, ou seja, o erro admitido, então o primeiro membro da Eq.

(2.14) nos fornece o erro da solução numérica na iteração corrente. A estimativa do erro 
utilizando este fato é calculada pelo “estimador delta”, denominação adotada por Marchi (2001).

2.3.2 O Estimador de Ferziger e Peric
Qualquer esquema iterativo para resolução de um sistema linear pode ser escrito como:

onde:

(f)n = vetor solução na n-ésima iteração

A = matriz iterativa (depende do esquema de iteração) 
q — fator de atualização (depende do problema)

Considerando-se o valor absoluto do erro e a Eq. (1.2):

(2.14)

<l>n+l = A(l>n+<l (2.16)

0 » = *  + £ ( « (2.17)

onde:
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O = solução convergida ou exata 

E((f)n) = erro de iteração de (j)n

A convergência de um processo iterativo pode ser analisada com auxílio dos autovalores 

jik e autovetores *¥ k da matriz A (Golub, 1990):

com N  sendo o número de equações. O erro inicial E((f) 0) pode ser escrito como a combinação 

linear destes autovetores.

O estimador do erro de iteração proposto por Ferziger e Peric (1996), que será 

mencionado neste trabalho como estimador FP, abrange problemas em que a malha obtida no 
processo de discretização pode ser não-uniforme e também casos em que os auvalores associados 

às matrizes do processo iterativo sejam números complexos. Com relação aos autovalores 

associados, temse dois casos:

• Autovalores reais

Se o autovalor dominante fii, que é o autovalor de maior magnitude (Golub, 1996), é real, 

então ao final de muitas iterações, ou seja, quando n —> , o erro dominante é o primeiro termo
do somatório apresentado na Eq. (2.20). Deste fato e pela combinação das Eqs. (2.17) e (2.20), 

tem-se:

A ^ k = ^ t ; k = 1,2,3 ... N (2.18)

N

(2.19)

com ãk sendo uma generalização dos coeficientes de Fourier (Ferziger e Peric, 1996). 
Na.n-ésima iteração, tem-se:

N

(2.20)
k=1

</>„ = < D  +  a . G u , ) " ' ! ' , (2.21)
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Uma expressão para o erro de iteração pode ser obtida pela diferença entre duas iterações 

sucessivas. Da Eq. (2.17),

0„+, -*„ =«> +£(0„,)-(«J> + E(<j>J) (2.22)

Assim, com a Eq. (2.20),

X , = </>»« -  <t>n = <h ( «  -  1)(M f  'Pl (2.23)

Segundo Ferziger e Peric (1996), o autovalor dominante jiY pode ser estimado por:

*n . . . r (2-24)
\ X n - l \

onde | | = norma L2 (Golub, 1996). Tendo-se o autovalor, não é difícil estimar o erro de 

iteração, através de:

£(</> ) = <D -  </> -  a, (U Y %  = (2.25)
( M - l )

• Autovalores complexos

Métodos iterativos freqüentemente apresentam matrizes que possuem autovalores 

complexos. Se o autovalor de maior magnitude ( jl̂ ) é complexo, então considera-se também o 

seu conjugado, pois se um número complexo é autovalor de uma matriz, conseqüentemente seu 

conjugado também o será (Golub, 1996). A equação (2.21) fica então representada por:

com o símbolo * indicando “conjugado”.

</> + + « , '( « ) " ¥ ;  (2.26)
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Com base na Eq. (2.22), tem-se:

X n  “  0 „ +l -<P n  “  (/*  1 )" ( H  , -  I k ' ? !  +  ( / i  ( 2 '2 ? )

=(/í 1 + i ) V  (2.28)

onde:

0) = (n ! — l)a1'F1

A magnitude do autovalor jix pode ser representada por (Golub, 1996):

= lew (2.29)

Definindo-se:

Z» =  X „ - i X n  -  X n - i X , - i  =  2 /2 ”“2 H 2 [c o s (2 t? )  - 1] (2.30)

Segundo Ferziger e Peric (1996), estima-se o quadrado da magnitude do autovalor por:

V  =■
' n—1

(2.31)

Desta forma, quando se tem autovalores complexos, a estimativa do erro requer um grande 

número de aproximações implicando muitas vezes em oscilações e os resultados contêm termos 

proporcionais ao cosseno do ângulo fase ú  (argumento do número complexo). Lembrando que 

se tem interesse somente no valor absoluto, obtém-se:
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Nos casos em que há oscilações na estimativa do erro por FP, esta não deve ser acurada 

em algumas iterações particulares, mas deve ser uma boa aproximação para o todo (Ferziger e 

Peric, 1996). No entanto deve-se cuidar com o número de iterações onde ocorre este problema e 

analisar em quais iterações esta estimativa não é adequada. Algumas vezes, para se remover o 
efeito da oscilação considera-se um valor médio para o autovalor estimado sobre um certo 

número de iterações. Dependendo do problema este número de iterações varia de 1 a 50 (cerca 

de 1% do número total de iterações).
Finalmente tem-se um caso que se pode tratar de auto valores reais e complexos. Para 

determinar se o autovalor dominante jlĵ é real ou complexo, usa-se a expressão “raio”.

Se r é “pequeno”, então /i, é real, caso contrário é complexo. Foi adotado por Ferziger e Peric 

(1996) r = 0,1 como um indicador do tipo de autovalor, para então se aplicar a expressão 

apropriada para o estimador de erro.

Algoritmo para estimar erros de iteração, segundo Ferziger e Peric (1996):

Para aplicação do estimador FP necessita-se de alguns parâmetros, que são:

z.n (2.33)

0  X n  =  0„+l

= X n - l X n  - X n - l X n - 1

Tem-se então uma condicional:

Ser >0,1 => autovalor complexo 

Ser < 0,1 => autovalor real 

o Autovalor Complexo
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o Autovalor real

(0» - t+ i )u.

M u  =

(Mu - 1)

(0„+i - 0»)
(2.35)

onde a incerteza ( £/„ ) corresponde à estimativa do erro (E((pn)).

Para processos iterativos com muitas iterações (n —» °o), a estimativa do erro obtida pelo 

estimador AP apresenta problemas. Estes problemas ocorrem devido ao grande número de 

operações envolvidas no cálculo da incerteza, ocasionando erros de arredondamento. Por 
exemplo, as operações de subtração acarretam muitas vezes o problema do cancelamento 

subtrativo.
Se a matriz iterativa (A) apresentar autovalores complexos, a estimativa do erro envolve 

um número bem maior de aproximações que para o caso de autovalores reais. Com isso, tem-se 

um grande número de oscilações nos resultados numéricos para incerteza. Para contornar este 

problema, os autores sugerem a utilização de um valor médio para o parâmetro / sobre um certo 

número de iterações, mas a utilização deste critério requer uma avaliação rigorosa sobre a 
quantidade e localização das oscilações.

Para o caso de autovalores reais, se o parâmetro /i assumir valores muito próximos de 1

tem-se “indeterminação”, pois o denominador da Eq. (2.35) se toma próximo de zero. Desta 
forma, não é possível se estimar o erro. Será mostrado no capítulo 3 que este parâmetro está 

diretamente relacionado com a ordem de convergência do processo iterativo. Portanto, pode-se 

dizer que o estimador FP não é adequado para se estimar erros de processos iterativos que têm 

convergência “muito lenta”.

2.3.3 O Estimador de Kim, Anand e Rhode
São avaliadas por Kim, Anand e Rhode (1998) duas grandezas que são comumente 

usadas para decidir sobre a convergência iterativa de problemas numéricos. Uma alternativa é a 
utilização do resíduo das equações lineares algébricas discretizadas, que é bastante usado no 

método de volumes finitos (Patankar, 1980). Segundo Kim, Anand e Rhode, a aproximação do 

erro iterativo pelo resíduo é mais apropriada conceitualmente que a utilização de “critérios 

absolutos”, envolvidos na aproximação dada pelo estimador Delta, pois o resíduo expressa a 

diferença entre a solução encontrada e a solução exata das equações discretizadas. Além disso,
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um importante papel do resíduo é enfatizado por Buzzi-Ferraris e Tronconi (1993) na solução de

equações algébricas não-lineares.

Para um domínio inteiro, o sistema de equações resultante de um processo de 

discretização pode ser escrito como:

Métodos iterativos iniciam com uma estimativa inicial para solução em uma iteração n

satisfaça a Eq. (2.36), quando isso ocorrer o processo iterativo é finalizado. No entanto, a Eq. 

(2.36) é produto da discretização, ou seja, aproximações para as equações diferenciais parciais e

ordinárias. Mesmo que não se tenha erro de arredondamento, 0M+1 satisfazendo a Eq. (2.36) não 

é a solução exata para equação diferencial que rege o problema.

Kim, Anand e Rhode (1998) questionam sobre a garantia de que os “critérios de 

convergência absoluto e relativo” assegurem que (pn+l é certamente solução para Eq. (2.36). Por 

esta razão sugerem o monitoramento do somatório do erro residual em cada nó da malha. Uma 

opção é declarar a convergência quando este somatório for menor que £, com £  sendo um valor 
pequeno. O principal objetivo do trabalho de Kim, Anand e Rhode (1998) é avaliar o uso do 

critério de convergência absoluto e propor um estimador de erro baseado no resíduo 

adimensionalizado (R  *).

Considerando a Eq (2.36), o resíduo (R n)para w-ésima iteração é dado por:

A(/)=C (2.36)

(0„), então calcula -se o valor de (j) para a iteração (n + 1) e assim sucessivamente até que 0M+1

R n = A ^n~C „ (2.37)

Define-se R  * como sendo a soma do resíduo local adimensionalizado:

(2.38)
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Na Eq. (2.37) a matriz coeficiente A pode ser particionada (Hirsch, 1988) em uma soma 

de matrizes: L contendo os elementos abaixo da diagonal de A, D contendo os elementos ao 

longo da diagonal de A, e U contendo os elementos acima da diagonal de A, ou seja:

A = L + D + U (2.39)

De acordo com o processo iterativo de Jacobi, tem se:

D^n+l=Cn - L ^ n -U ^n (2.40)

Subtraindo D(j)n de ambos os lados na Eq. (2.40), vem:

D0„+1 -  D(/>n =Cn -  L(j)n -  U(/)n -  D(j>n (2.41)

Substituindo a Eq. (2.5) em (2.41), obtém-se:

D(A„) = Cn -  L(j)n -  U$n -  D<j)n (2.42)

D(An)= C n - (L  + D + U)(l>n (2.43)

D(A„)=C„-A<I>„ (2.44)

D (AJ = ~R„ (2.45)

Assim mostra-se que a troca em (j) de uma iteração n para uma iteração (h+l) é

proporcional ao resíduo R na iteração n. A  principal suposição nesta análise é que A é 
estacionária; no entanto, A muda de iteração para iteração para o caso de equações não-lineares. 

Considerando-se O como sendo a solução exata para Eq. (2.36), se E((j)n) —>0 quando n —> , 

então o método é convergente e pode-se escrever:

R=A<&-C = Q (2.46)

Também, por definição, (Kim, Anand e Rhode, 1998):
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Subtraindo a Eq. (2.47) da Eq.(2.46), tem-se:

R - R n =A<S> —A(/)n — C + C n (2.48)

Assumindo que C é invariante com n, com o progresso da solução, a equação (2.48) pode ser 
reduzida para:

- R n =A(®-</>„) (2.49)

- R n = A E  (<U (2.50)

Comparando a Eq. (2.46) e a Eq. (2.50), vem:

= A E ^„ )  (2.51)

Rn A  n Cn (2.47)

O erro originado ao se considerar as matrizes A e C como sendo invariantes, decresce

nitidamente quando a convergência é alcançada, em função de (j) (Kim, Anand e Rhode, 1998).

Então, quando o processo está convergido, as matrizes A e C são essencialmente invariantes, isto 
é, quando o número de iterações tende a infinito a Eq. (2.37) tende ao valor exato do erro.

Conseqüentemente, monitorar a troca em (f> de iteração para iteração ou monitorar o resíduo na 

discretização das equações é equivalente a monitorar o erro E((pn) .

Os experimentos numéricos realizados por Kim, Anand e Rhode (1998) envolveram um 
modelo computacional de volumes finitos que é comumente usado para escoamento (equações 

de Navier-Stokes). Na análise de alguns “casos teste”, que são representativos de uma grande 
quantidade de problemas bidimensionais de fluido incompressível envolvendo a convecção e 

difusão de calor, concluíram que, exceto com o uso de um fator de relaxamento menor que 0,2, o 

uso do “critério absoluto” é surpreendentemente mais próximo de E(<pn) .

Os resultados obtidos para R foram sempre menores, porém menos oscilatórios que os 
apresentados pelo “critério absoluto”. Desta forma pode -se dizer que a estimativa obtida por R*
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subestima a magnitude de E((j)n), e com isso, não demonstrando ser confiável. Contudo, R* 

apresentou um comportamento semelhante a E((j)n), com relação às oscilações.

2.3.4 O Estimador de Roy e Blottner
A variável de interesse (0) considerada por Roy e Blottner (2001) para o 

desenvolvimento deste estimador de erro foi o fluxo de calor em regime permanente. Neste 

problema tem-se muita atenção com os resultados numéricos, pois este requer grande precisão. E 
realizada uma análise sobre a convergência iterativa de malhas e propõe-se empiricamente um 

estimador para a magnitude do erro de iteração, baseado no fato deste apresentar um 

comportamento exponencial com as iterações. No presente trabalho o estimador de erro de 

iteração proposto por Roy e Blottner (2001) será denotado por RB. Neste estimador, o erro de 

iteração é definido por

Ê (<U = 0 „ -0 »  (2-52)

onde:

(j)n = solução numérica da variável de interesse na iteração n.

(J)oo= solução exata extrapolada de (j), sem erros de arredondamento ou programação.

Visando uma uniformidade, considera-se aqui a mesma expressão para o erro iterativo 

proposta no capítulo 1, ou seja:

E{<j>„) = (2.53)

Tem-se, então:

4>n= ^ + E (</>„) (2.54)

Foi observado por Roy e Blottner (2001) que o erro de iteração para o código SACCARA 
(código computacional utilizado em seus experimentos), apresentou comportamento exponencial 

do tipo:
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a e (2.55)

onde a  é um coeficiente que se admite ter valor constante, portanto independente de n, que é o 

número de iterações e p  correspondendo à ordem do erro de iteração. No entanto, a equação geral 

do erro de iteração é composta por um único termo somente em problemas muito simples. Na 

maioria dos casos esta expressão tem vários termos, embora para n —> oo, o valor do erro tende 
ao valor do primeiro termo.

Substituindo a Eq. (2.53) em (2.55), tem-se:

Considerando a Eq. (2.56) para iterações (n -1) e («), pode-se deduzir a expressão de </>„:

- 0 n =ae~np (2.56)

(2.57)
(2.58)

Da Eq. (2.57), tem-se:

(j>„ =0„_1 + a e  {n x)p (2.59)

Com a substituição da Eq. (2.59) na Eq. (2.58):

(j)n_j + a e  (n 1)p ~(j)n = a e  np (2.60)

Com isso pode-se escrever:

(2.61)
—n p  - n p + p

e — e

Analogamente considerando a Eq. (2.56) para duas iterações quaisquer m e n2, com nj < n2, 

tem se a seguinte expressão:
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(2.62)

Do ponto de vista prático, considerar n não é factível, ou seja, não é possível se 

obter um número infinito de iterações. Deste fato pode -se concluir que adotar a  constante, ou 
seja independente de n, conforme admitido na Eq. (2.55) é incorreto; maiores detalhes sobre este 

fato são apresentados no capítulo 3.
Considerando então, a Eq. (2.62) em (2.59), obtém-se a seguinte expressão para a 

estimativa da solução exata extrapolada:

(2.63)

Cuja expressão semelhante para iterações m e n.2 , é dada por:

V /
(2.64)

Aplicando o logaritmo neperiano na Eq. (2.55), tem-se:

ln( E(<pn)) = In oc-n  p

(2.65)

(2.66)

Substituindo a Eq. (2.53) em (2.66):

- 0n) = ln a  - n p  

n p=  In a  - I n ^  -  ) (2 .68)

(2.67)

Considerando a Eq. (2.68) para iterações (n-1) e (n), tem-se:
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(n -  l)p = In a  -  ln(</L -  0„_i) 
(n)p = ]na — ln(0^ -  )

(2.69)
(2.70)

Subtraindo a Eq. (2.70) de (2.69):

jp = h ( ^  I n ^  - 0 n) (2.71)

Tem-se então:

p -  h
0» -0 „

(2.72)

De maneira análoga para iterações nj q n2, tem-se:

/? = ln
<t>- - K

(2.73)

Com base nas expressões anteriores, com «3 > n2 >nx, é proposto por Roy e Blottner, 

estimar o erro de iteração na iteração n2, através da expressão:

u , =
«3 T >h
i - m

(2.74)

onde:

GJ 0», - 0 „  
0», -0»,

(2.75)

Estes resultados estão relacionados aos apresentados por Ferziger e Peric (1996) para se 

estimar o erro de iteração, mas estes autores empregam outras aproximações. Se os autovalores 
são complexos, então esta aproximação não é apropriada, deve -se então utilizar o estimador FP.
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2.4 SISTEMAS DE EQUAÇÕES

Um problema de grande interesse que aparece ao se utilizar modelos numéricos, é o da 

resolução de um sistema linear Sn de n equações com n incógnitas,

onde A é uma matriz quadrada de ordem n, B q X  são matrizes n x 1, isto é, com n linhas e uma 

coluna, é chamado coeficiente da incógnita jc . e os bt são chamados termos independentes,

com i, j  = 1, 2, ..., n. A matriz A é chamada matriz dos coeficientes ou matriz associada ao 

sistema.

Tanto sob o ponto de vista das propriedades matemáticas como o da resolução de 
problemas através do computador, é importante levar em conta a estrutura das matrizes dos 
problemas aplicados. Um desses aspectos estruturais é a distribuição dos elementos nulos das 

matrizes (isso, por exemplo, permite diminuir as exigências de memória de computador). Nos 
problemas de engenharia, uma estrutura muito comum é a das matrizes banda, que são matrizes 

cujos únicos elementos não-nulos estão na diagonal principal e suas vizinhas.

E comum no estudo de equações diferenciais de segunda ordem com condições de 

contorno, a resolução de sistemas de equações cuja matriz associada é tridiagonal, ou seja, é uma 

matriz cujos únicos elementos não-nulos estão em três diagonais. De maneira mais formal, uma 

matriz é tridiagonal se a = 0 sempre que 1 < |z — j \ .

(2.76)

Sob a forma matricial Sn pode ser escrito como

AX = B (2.77)
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2.5 RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES

A resolução numérica de um sistema linear é feita, em geral, por dois caminhos (Barroso, 

1987): os métodos diretos e os métodos iterativos. São exemplos de métodos diretos: eliminação 
de Gauss, fatoração LU, fatoração de Cholesky, método de Crout e método de Doolittle 

(Kreyszig, 1999). Em sistemas cujas matrizes associadas são esparsas, ou seja, possuem muitos 

elementos nulos, a utilização de métodos diretos não é adequada, pois a sua esparsidade pode ser 
destruída. Os métodos diretos são processo finitos, e, portanto, teoricamente, obtêm a solução de 

qualquer sistema não singular de equações com um numero de operações pré-estabelecido 
(Ruggiero e Lopes, 1998).

Em contraste, os métodos iterativos ou indiretos apresentam um número de operações 

variável, ou seja, não conhecido a priori. Neste caso, o número de operações varia de acordo 
com o critério de parada adotado. Um método iterativo consiste em uma aproximação inicial 

para as variáveis de interesse e então, através da repetição de um ciclo computacional se obtém 
soluções sucessivas até que se alcance a acurácia exigida (Kreyszig, 1999). O uso de métodos 

iterativos é ideal em problemas que apresentam matrizes esparsas, não havendo assim 
necessidade de se armazenar os elementos nulos da matriz.

2.6 RESUMO DO CAPÍTULO

Neste capítulo foram apresentados o conceito e critérios de convergência para um 

processo iterativo. Foram definidos os conceitos de efetividade, confiabilidade e acurácia de uma 

estimativa de erro ou incerteza. Foram descritos quatro estimadores de erro de iteração que estão 

disponíveis na literatura: o estimador delta, estimador de Ferziger e Peric (FP), estimador de 

Kim, Anand e Rhode, e o estimador de Roy e Blottner (RB). Discutiu-se também sobre a 

estrutura e resolução de sistemas de equações encontrados em problemas de engenharia.
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Capítulo 3.

O ESTIMADOR EMPÍRICO

Com base no comportamento apresentado pelo erro de iteração, é introduzido neste 
capítulo um novo estimador de erro: o estimador empírico. Para tanto, inicialmente são 
apresentadas as características do erro iterativo e as definições de ordem assintótica e efetiva. Em 

seguida discute-se sobre a estimativa do erro de iteração, onde são apresentados o conceito e 
expressões para o cálculo da ordem aparente da incerteza de soluções numéricas e a formulação 

do estimador.

3.1 CARACTERÍSTICAS DO ERRO DE ITERAÇÃO

Para exemplificar o efeito dos erros de iteração sobre o erro da solução numérica, 

considere-se o uso do método da iteração linear (MIL) (Barroso, 1987) na resolução da equação

x 2 — 5x + 6 = 0 (3.1)

A solução numérica iterativa da Eq. (3.1) é tratada detalhadamente no capítulo 4. Este exemplo 

mostra a característica principal dos erros de iteração quando se aumenta o número de iterações: 
em geral, seu valor diminui em escala logarítmica e tende a uma inclinação constante. Isso pode 
ser observado na Fig. 3.1.
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I teração

Figura 3.1 -  Erro da solução numérica da Eq. (3.1), 

causado pe los erros de iteração.

Com base no fato de que o erro de iteração (E(<pn)) apresenta comportamento 

exponencial (Roy e Blottner, 2001), conforme ilustrado na Fig. 3.1, na base decimal, tem-se:

E((j)n) = C 10 ^  (3.2)

ondeplq  a ordem assintótica do erro, ou seja, é a inclinação assintótica para a qual tende a curva 

do erro iterativo quando n —> °o. Quanto maior é esta inclinação, maior é o valor da órdem e 

maior é a taxa de redução de E((/)„) com o aumento de n. E ainda, para um mesmo número de 

iterações, menor é o erro.

Roy e Blottner (2001) consideram, por simplificação, que para n — isto é, para um 
número infinito de iterações, o valor do coeficiente C na Eq. (3.2) é constante. Porém, para um 

caso prático qualquer, deve-se admitir que a forma geral do erro de iteração é dada pela Eq.

(2.20). No entanto, quando o número de iterações (n) é muito grande, o primeiro termo desta 

expressão é o principal componente, já que j i xé o autovalor dominante da matriz iterativa, ou

seja, o autovalor de maior magnitude (Ferziger e Peric, 1996). Isso possibilita uma aproximação 
para expressão geral do erro formada por um único termo.
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3.1.1 Ordem efetiva
A ordem efetiva (pE) do erro de iteração é definida como a inclinação local da curva de 

E{(pn) versusn num gráfico logarítmico. Matematicamente, a ordem efetiva é obtida a partir 

da Eq. (3.2), onde C é admitido ser independente de n. Considerando-se duas iterações n\ e n2, 

comm <m, tem-se:

E{(j)ni) = C\Q~nxPE 
E ( è )  = C 1 0 - ^ (3.3)

Do sistema (3.3), tem-se que:

log

P e  =

m j
m«.) (3.4)

3.2 ESTIMATIVA DO ERRO DE ITERAÇÃO

Pela Eq. (1.2), o valor do erro de iteração só pode ser calculado quando se conhece a 

solução exata do sistema de equações resultante da discretização. Mas em termos práticos isso 

não é possível. Conseqüentemente é necessário estimar qual é o valor da solução exata. A 

solução exata para o sistema de equações não é a solução analítica para a equação que rege o 

problema, pois o sistema é produto da discretização, ou seja, aproximações.

A incerteza iterativa ( U((f>n) ) de uma solução numérica é calculada pela diferença entre a 

solução exata estimada (0^) para a variável de interesse e a sua solução numérica em uma 

iteração n ( (f)n):

(3.5)

Com base na Eq. (3.2), admite-se que

U((j)n) = k I0~np" (3.6)
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com k sendo constante e pu  indicando a ordem aparente, cujo valor explícito pode ser obtido pela

3.2.1 Ordem aparente
A ordem aparente (pu) é definida como a inclinação local da curva de incerteza (Un) da 

solução numérica ((j)n ) versus o número de iterações (n) num gráfico logarítmico. 

O valor para o qual as ordens efetiva e aparente tendem, quando se aumenta o número de 

iterações, é a ordem assintótica do erro iterativo (pi). Ela não é um resultado conhecido a priori, 
ou seja, é obtida somente através de experimentos numéricos.

Considerando-se as iterações n ^ n 2 z n3 , com nx <n2 <n3, e as Eqs. (3.5) e (3.6), 

podemos escrever:

Eq. (3.9).

_ 0n =klO~niPv 

^ - < ^ = £ 1 0 - ^
(3.7)

Supondo que:

An = n2 — nx — n3 — n2 (3.8)

Do sistema de equações (3.7), tem-se:

(3.9)

onde:

(3.10)
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3.2.2 Dedução do estimador empírico
Do sistema de equações (3.7), tem-se que:

(0*3
(ç r-1)

Substituindo este resultado na Eq. (3.5):

(0 —  0 ) 

( v - i )

Sendo esta a expressão fornecida para a estimativa do erro de iteração na iteração «5, 

através do estimador empírico. Marchi e Silva (2002) demonstraram que estimativas de erro 
baseadas em equações semelhantes à Eq. (3.6) ou (3.12) são válidas apenas para \j/> 1 ou

Pjj >0 . Quando a ordem aparente (pu) apresenta valores negativos a utilização do estimador 

empírico não faz sentido, pois o princípio deste estimador está no comportamento exponencial 

apresentado pelo erro de iteração, Eq. (3.6), e ao se considerarp  u < 0, a magnitude da estimativa 

do erro aumenta com o número de iterações. Isto é, este estimador é válido apenas para valores 
das ordens assintótica fa) e aparente (pu) maiores do que zero, ou seja, (pi, Pu) > 0. O 

argumento para justificar o uso de ordens positivas é o seguinte: considere-se p u  < 0 sobre a Eq.
(3.6), isto implica que

t/(0„) = i:io"|ív| (3.13)

A partir da Eq. (3.13), verifica-se que ao se aumentar o número de iterações («), a incerteza 

aumenta. Este resultado é oposto ao esperado para o comportamento do erro de iteração.

Ao se considerar k como sendo um coeficiente constante na Eq. (3.6), ou seja, 
independente de n, tem-se algumas implicações, pois k desempenha o mesmo papel de C na Eq. 

(3.2). Este fato faz com que na maioria das aplicações, a incerteza obtida através desta estimativa 

seja diferente do erro de iteração; o quão diferente vai depender da complexidade de cada 

problema e do número de iterações (n) a ser utilizada.
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Para os casos em que A possui autovalor dominante real, tem-se algumas relações entre 

este estimador e o estimador de Ferziger e Peric (FP), apresentado na seção 2.3.2. Pelo estimador 

FP, para autovalor dominante real e iterações nu n2Q n3, com nx <n2 <n3, tem-se:

(è —é )
(3.14)

(Mm, - 1)

onde, fil n indica o autovalor dominante para matriz iterativa A na iteração n.2, que é dado por:

(3.15)

Comparando as Eqs. (3.15) e (3.10), pode-se concluir que:

n, =■
Mi  ,„2

(3.16)

Ou seja, o parâmetro yz, adotado na formulação do estimador empírico, é o inverso do autovalor 

dominante (jj^) consideiado por Ferziger e Peric (1996) no cálculo da estimativa do erro de 

iteração; no entanto, não considerados em uma mesma iteração. Isto é, como estes parâmetros 

são atualizados a cada iteração, yz é o inverso de fix em uma iteração anterior.

3.4 O ESTIMADOR EMPÍRICO E O ESTIMADOR DELTA

Para as iterações n2 e «3 , com n2 < «3, a variação do erro (AE) pode ser analisada através 

do valor absoluto da diferença entre os erros em cada iteração (Roache, 1982):

A E = \E ( ^ ) - E ( ^ 2)\ (3.17)
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Conforme definido no capítulo 1, Eq. (1.2), o erro iterativo é dado pela diferença entre a solução

exata , , , e a solução numérica na iteração corrente (<fin) . Portanto, a Eq. (3.17) pode ser 

reescrita por

Portanto, analisar a variação do erro é equivalente a se analisar a variação da solução numérica 

nas respectivas iterações. Então, a incerteza calculada através do estimador Delta, Eq. (2.14), 
está diretamente relacionada à variação do erro entre duas iterações.

O cálculo da incerteza numérica utilizando o estimador Delta ( UA) usa soluções 

numéricas obtidas em duas iterações, não levando em conta a razão de convergência (yr)

envolvida na formulação do estimador empírico. Uma relação facilmente verificável é que a 
magnitude do estimador empírico coincide com o resultado do estimador Delta para o caso em 

que if/ = 2 , ou seja:

(3.18)

o que resulta em

(3.19)

(3.20)

3.5 O ESTIMADOR EMPÍRICO E O ESTIMADOR RB

Na seção 2.3.4 foi apresentado o estimador de Roy e Blottner (RB). Considerando-se 

nx < n2 < «3 5 a incerteza de iteração na iteração m, ( U(0„2 ) ), obtida através do estimador RB é
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onde:

Ü5n = --------2 K  -0,
(3.22)

Para se obter uma estimativa de erro utilizando-se o estimador RB, necessita-se da 
solução numérica da variável de interesse em três iterações sucessivas. Sendo que, somente é 

possível obter a incerteza na iteração intermediária, ou seja, obtém-se U(0 ) a partir dos 

resultados de 0^ ,0^ e .

Através do estimador empírico a estimativa do erro, dada pela Eq. (3.12), também 
necessita da solução numérica da variável de interesse em três iterações sucessivas. Portanto, 

U((f>„2) através do estimador RB é equivalente a U(<j> ) pelo estimador empírico, a menos dos 

parâmetros envolvidos: ü5 e yr.

Com relação a (D e y/ , comparando as equações (3.10) e (3.22), pode-se concluir que:

Ou seja, o parâmetro \f/ , adotado na formulação do estimador empírico, é o inverso de 

Ü5considerado por Roy e Blottner no cálculo da estimativa do erro de iteração; no entanto, não 

considerados em uma mesma iteração. Isto é, como estes parâmetros são atualizados a cada 
iteração, y/ é o inverso de W em uma iteração anterior.

3.6 PREVISÃO DA CONFIABILIDADE DO RESULTADO OBTIDO PELO 
ESTIMADOR DE ERRO

1 (3.23)
«2

Propõe-se, aqui, prever as características da estimativa de erro na iteração n3 através dos 

resultados numéricos de <j) , <pn̂ , (p̂ , e pela solução extrapolada (pPu, onde:
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(3-24)

¥ =
ó —óin2 i «j (3.25)

com Kj < n2 < «3 < nA.

A principal hipótese adotada é que o comportamento de com relação a (j)Pu se repete

a cada nova extrapolação até o limite de n —> <*>, onde n representa o número de iterações. São 
considerados três intervalos:

3.6.1 Intervalo I

Conforme a Fig. 3.2, se a solução numérica (j)n4 estiver entre a solução numérica e a 

solução extrapolada (j)p u , então espera-se que a estimativa de erro na iteração n3 seja confiável, 

isto é,

(3.26)

m .)

Pu

Figura 3.2 Comportamento de (j)„A com relação a (f)Pu para o Intervalo I.
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3.6.2 Intervalo II
Conforme a Fig. 3.3, se a solução extrapolada 0^ estiver entre a solução numérica (j)n̂ e

a solução numérica (f>n4, então espera-se que a estimativa de erro na iteração n3 não seja 

confiável, isto é,

Figura 3.3 Comportamento de (f)n4 com relação a (f)Pu para o Intervalo II.

3.6.3 Intervalo III

Conforme Fig. 3.4, se a solução numérica estiver entre a solução numérica (j)̂  e a 

solução extrapolada (/)Pu, então espera-se que a estimativa de erro na iteração n3 tenha sinal 

oposto ao erro; constitui-se na pior previsão de erro:

(3.27)

Pu
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Este método de previsão (intervalos I a III) só pode ser aplicado se a razão de

convergência ( y / )  for maior do que 1, o que implica no fato de ( p v )  existir e assumir valores

positivos. A análise dos resultados ao se aplicar este método é feita através de um gráfico de 
confiabilidade (Fig. 3.5), utilizando-se os seguintes critérios:

• 0 => o método não se aplica ( p v não existe ou p v < 0 ).

• 1 =» o método se aplica e sua previsão é correta, conforme os intervalos I, II e III.

• -1 o método se aplica e sia previsão é incorreta.

Figura 3.5 Gráfico de confiabilidade do método de previsão. 

Aplicações de gráficos de confiabilidade são apresentadas nos próximos capítulos.
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3.7 CONSIDERAÇÕES FINAIS

Conforme visto neste capítulo, existem relações dretas entre os estimadores de erro de 

iteração empírico, delta, Ferziger e Peric, e Roy e Blotner. Portanto, as análises feitas neste 

trabalho se concentram apenas no estimador empírico.



Capítulo 4.

TESTES INICIAIS

Neste capítulo são considerados quatros testes iniciais com a finalidade de verificar o 
desempenho do estimador empírico em alguns procedimentos iterativos simples. Todos os 

cálculos foram realizados com a utilização do programa Microsoft Excel 2000 e precisão de 15 

algarismos significativos.

4.1 CASO 1

O modelo matemático do caso 1 é dado por

ou seja, um sistema de equações lineares de ordem 2 cuja solução analítica é: x = 2 q y —\. O

modelo numérico adotado foi o procedimento iterativo de Gauss-Seidel (Barroso, 1987) para 
resolução de sistemas de equações lineares. Este método iterativo pertence à classe dos métodos 

“ponto a ponto”, ou seja, consiste na resolução do sistema linear visitando equação por equação, 
iterativamente, usando os valores das variáveis já calculadas no nível iterativo anterior e no atual. 

Para o sistema (4.1),

(4.1)

Xn = yn-1+1
(4.2)
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onde o subíndice n indica a n-ésima iteração. Foram adotados dois tipos de condições iniciais. 

Subcaso 1: x0 = yQ = 0. Subcaso 2: x0 = 10 e y0 = 5 .

Como se pode observar nas Figs. 4.1 a 4.4, para ambos os subcasos a estimativa do erro 

iterativo obtida pelo estimador empírico apresentou concordância perfeita com o erro. Isto é, as 

estimativas são acuradas e confiáveis pois os valores apresentados por suas efetividades são 

iguais à unidade (0 = 1). A mudança das condições iniciais não ocasionou alteração no valor da 
ordem assintótica (valor para o qual as ordens efetiva £>#) e aparente (pu) se aproximam com o 

aumento do número de iterações) para ambas as variáveis. Ou seja, nos dois subcasos 

p L = log 2 ~ 0,30103 . Portanto, a razão de convergência é y/ -  2. Neste caso, tem-se ainda que, 

pu = p e ^ pl em todas as iterações. A incerteza numérica obtida através do estimador empírico 

pode ser considerada “ideal”, não havendo necessidade da aplicação do método de previsão da 

confiabilidade da estimativa do erro, seção 3.6. A discordância entre incerteza e erro ao final do 

processo iterativo, Figs. 4.1 a 4.4, deve -se ao efeito dos erros de arredondamento no cálculo da 
incerteza (U) provocados pelo cancelamento subtrativo (Ruggiera, 1988).

Iteração

Figura 4.1 -  Erro (E) e Incerteza (U) envolvidos no cálculo da variável x do subcaso 1 (caso 1).



Capítulo A. Testes iniciais 41

Iteração

Figura 4.2 -  Erro (E) e Incerteza (U) envolvidos no cálculo da variável y  do subcaso 1 (caso 1).

Iteração

Figura 4.3 -  Erro (E) e Incerteza (U) envolvidos no cálculo da variável x do subcaso 2 (caso 1).
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Iteração

Figura 4.4 -  Erro (E) e Incerteza (U) envolvidos no cálculo da variável y  do subcaso 2 (caso 1).

4.2 CASO 2

O caso 2 consiste na resolução da equação quadrática

x2 — 5x + 6 = 0 (4.3)

cuja solução analítica considerada foi x = 2. O modelo numérico adotado foi o método da 
iteração linear (MIL) (Ruggiero, 1998). Este método consiste em transformar a equação, 

isolando-se a variável de interesse para obter uma função iteração.
A partir da Eq. (4.3) foram analisados dois tipos de função iteração com duas condições 

iniciais, o que gerou quatro subcasos. Para os subcasos 1 e 2 as condições iniciais usadas foram 

x0 = 0 e x0 = 2,9, respectivamente, e a função iteração adotada foi



Capítulo A. Testes iniciais 43

( x l . + 6)
 gr~- (4.4)

Para os subcasos 3 e 4 também foram usadas as condições iniciais x0 = 0 e x0 = 2,9 

respectivamente, para a seguinte função iteração

6
*«=7-------- (4-5)

Para os subcasos 2 e 4, a estimativa do erro iterativo obtida pelo estimador empírico não 
apresentou bons resultados nas iterações iniciais, o que pode ser observado na Fig. 4.6. Além 

disso, pode-se notar nas Figs. 4.5 e 4.6 que o comportamento apresentado nas iterações iniciais é 

totalmente diferente, ou seja, se altera com a mudança das condições iniciais. Mas nas demais 
iterações, a concordância entre a estimativa do erro (U) e o erro verdadeiro (E) é ótima. Para o 

subcaso 2, até a iteração 1 1 a  ordem aparente (pu) apresenta valores negativos, portanto o 

estimador empírico não é aplicável nestas iterações, conforme explicado na seção 3.2.2; (Fig. 
4.6). Nota-se então que para o mesmo modelo numérico, a mudança das condições iniciais 

provocou alterações no comportamento do estimador empírico nas iterações iniciais. No entanto, 

não houve alteração no valor da ordem assintótica p L = log 1,25 ~ 0,0969 e da razão de 

convergência que para os subcasos 1 e 2 foi \j/ = 1,25. A menos das “iterações iniciais” que 

correspondem a, no máximo, 13% do número total cb iterações, e dos erros de arredondamento 

envolvidos no final do processo iterativo devido ao cancelamento subtrativo, pode-se notar a 
ótima concordância entre U e E nas Figs. 4.5 e 4.6.

Para os subcasos 3 e 4 os resultados foram análogos aos subcasos 1 e 2 (Figs. 4.5 e 4.6). 
No entanto, houve mudança no valor da ordem assintótica, p L = log(l,5) =0,1760 e da razão de

convergência y/ = 1,5 . Para o subcaso 4, até a iteração 6 a ordem aparente (pu) apresenta valores

negativos, o que não possibilita a eficiência do estimador empírico nestas iterações (Fig. 4.6).

Com a utilização da condição inicial x0 = 0, subcasos 1 e 3, o estimador empírico pôde 

ser aplicado em todo processo iterativo, pois p v > 0 em todas as iterações. Isso não ocorre para 

condição inicial x0 = 2,9, subcasos 2 e 4, pois p u <0 até as iterações 11 e 6, respectivamente.
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erro do subcaso  3 
incerteza do subcaso  3 
erro do subcaso  1 
incerteza do subcaso  1

Iteração

Figura 4.5 -  Erro (E) e Incerteza (U) para a variável x dos subcasos 1 e 3 (caso 2).

I teração

Figura 4.6 -  Erro (E) e Incerteza (U) para a variável x dos subcasos 2 e 4 (caso 2).
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Para este caso o método de previsão da confiabilidade da estimativa do erro, descrito na 
seção 3.6, mostrou-se eficiente em todo processo iterativo o que pode ser constatado nas Figs. 

4.7 e 4.8. Sendo que, os subcasos 1 e 3 se enquadram no intervalo II e os subcasos 2 e 4 se 
enquadram no intervalo I do método de previsão.

1 -

0)"O 
CD

~  o —u 
15
CD

c  
o  O

20  40

—i----■---- 1--- 1— i----1--1— 1---- r~
60  80  1 0 0  1 2 0  1 4 0

I te ração

Figura 4.7 -  Gráfico de confiabilidade para o subcaso 1 (caso 2).

Iteração

Figura 4.8 -  Gráfico de confiabilidade para o subcaso 2 (caso 2).
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4.3 CASO 3

Análogo ao caso 1, este caso consiste na resolução de um sistema linear de ordem 2 com 

a utilização do método Gauss-Seidel. O modelo matemático considerado é:

Da mesma maneira, foram adotados dois tipos de condições iniciais. Subcaso 1: x0 = y0 = 0. 

Subcaso 2: x0 = 10 e y0 = 5 .

Para os dois subcasos a estimativa do erro de iteração obtida pelo estimador empírico, em 

ambas as variáveis, apresentou concordância perfeita com o erro conforme mostrado nas Figs. 
4.9 e 4.10. Isto é, as estimativas são acuradas e confiáveis pois os valores apresentados por suas 

efetividades são iguais à unidade (0 = 1). Em ambos os subcasos pL = log(l,5) ~ 0,17609 e 

y/ = 1,5 . O método de previsão (seção 3.6) não é aplicado neste caso, pois a ordem aparente pu é 

constante em todas as iterações.

(4.6)

cuja solução analítica é: x = 3 e j; = 2 . O modelo numérico adotado é

Xn = y„-1 + 1
(4.7)
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iteração

Figura 4.9 - Erro (E) e Incerteza (U) para a variável x do subcaso 1 (caso 3).

Iteração

Figura 4.10 - Erro (E) e Incerteza (U) para a variável y  do subcaso 1 (caso 3).



Capítulo 4. Testes iniciais 48

4.4 CASO 4

Análogo ao caso 2, este consiste na resolução da equação

x2 -  7x +12 = 0 (4.8)

cuja solução analítica considerada foi x = 3. O modelo numérico utilizado foi o método da 
iteração linear (MIL), cuja função iteração adotada foi

* ;- i+12 X „  =  — 2-^---------- (4.9)

Foram analisados dois tipos de condições iniciais, o que gerou dois subcasos. Subcaso 1: x0 = 0. 

Subcaso 2: x0 = 3,9.

Para ambos os subcasos, o estimador não se mostrou eficiente nas iterações iniciais. 
Conforme as Figs. 4.11 e 4.12, o comportamento do estimador empírico se altera com a mudança 

das condições iniciais. Em ambos os subcasos, a incerteza apresenta oscilações a partir da 

iteração 150 devido aos erros de arredondamento. Para o subcaso 1 tem-se p v >0 em todas as

iterações, portanto o estimador empírico pôde ser aplicado em todo processo iterativo. Para o 
subcaso 2, até a iteração 17 a ordem aparente (pu) apresenta valores negativos, portanto o 

estimador empírico não é aplicável nestas iterações, conforme explicado na seção 3.2.2. Nota-se 

que para o mesmo modelo numérico, a mudança das condições iniciais provocou alterações no 

comportamento do estimador empírico nas iterações iniciais. No entanto, não houve alteração no 

valor da ordem assintótica p L slog 1,167 —0,0669 e da razão de convergência que para os 

subcasos 1 e 2 foi y/ = 1,167. A menos das iterações iniciais e do efeito dos erros de 

arredondamento ao final do processo iterativo, pode-se notar a ótima concordância entre o erro 

(E) e a incerteza (U) nas Figs. 4.11 e 4.12. Pode-se notar também, Fig. 4.13, a redução do efeito 

causado pelos erros de arredondamento ao se aumentar a precisão dos cálculos de 15 para 30 

algarismos significativos.
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iteração

Figura 4.11 - Erro (E) e Incerteza ( U) para as variável x do subcaso 1
(caso 4).

iteração

Figura 4.12 - Erro (E) e Incerteza (U) para a variável x do subcaso 2 (caso 4).
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Figura 4.13 -  Erro (E) e Incerteza (U) a partir da Fig. 4.11 para as iterações 150 a 190.

Para este caso o método de previsão da confiabilidade da estimativa do erro, descrito na 
seção 3.6, mostrou-se eficiente o que pode ser constatado nas Figs. 4.14 e 4.15. O subcaso 1 se 

enquadra no intervalo II do método de previsão, sendo que, houve falha na previsão em 2 

iterações, Fig. 4.14, devido ao efeito dos erros de arredondamento. O subcaso 2 se enquadra no 
intervalo I do método de previsão; existe ocorrência de falha somente em 1 iteração, Fig. 4.15, 

também devido ao efeito dos erros de arredondamento.
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Figura 4.14 -  Gráfico de confiabilidade subcaso 1 (caso 4).
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Figura 4.15 -  Gráfico de confiabilidade subcaso 2 (caso 4).
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4.5 CONCLUSÃO

Os casos 1 e 3 são formados por sistemas lineares de ordem 2, do tipo

Íax+by= p
y F (4.10)

cx + dy = q

gerados a partir da variação dos coeficientes c e d da segunda equação, sendo que, a primeira

equação é mantida em ambos os casos. A variação das condições iniciais não causou alteração no
valor dep L, Tab. 4.1. Mas, a alteração dos coeficientes em uma equação do sistema altera o valor 

âepL para o mesmo solver (Gauss-Seidel).

Os casos 2 e 4 são formados pela resolução de equações quadráticas (ax2 +bx+c = 0) 

através do método MIL (método da iteração linear). Sendo que, variou-se o valor dos 

coeficientes b e c nos casos 2 e 4. Em ambos os casos, a variação das condições iniciais não 

causou alteração no valor de pl, Tab. 4.1. A mudança da função iteração, no caso 2, causou 
influência sobre o valor de p L. A variação dos coeficèntes da equação quadrática (casos 2 e 4), 

também trouxe alteração sobre o valor de pl.

O método de previsão da confiabilidade da estimativa do erro, seção 3.6, mostrou-se
eficiente nos casos 1 a 4, de forma geral.

Tabela 4.1 Ordem assintótica e razão de convergência para os testes iniciais.
Caso Subcaso V P l

1 2,0000 0,3010...
1

2 2,0000 0,3010...

1 1,2500 0,0969...

2 1,2500 0,0969...
2 3 1,5000 0,1760...

4 1,5000 0,1760...

1 1,5000 0,1760...
3 2 1,5000 0,1760...

1 1,1670 0,0669...
4

2 1,1670 0,0669...
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CASO 5: EQUAÇÃO DE POISSON

No presente capítulo, é abordado um problema difusivo unidimensional com absorção de 
calor (Incropera e DeWitt, 1992), o que resulta numa equação de Poisson, que é uma equação 

diferencial linear. O modelo numérico é constituído pelo método de diferenças finitas, com 

aproximações numéricas de 2a ordem através de diferença central e malha uniforme.

5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA

O modelo matemático do caso 5 é definido por

^ ^  = 12x2 (5.1)
dx

com as seguintes condições de contorno de Dirichlet:

A(0) = 0 (5.2)

A(L) = 1 (5.3)

onde L ê  o comprimento do domínio de cálculo, considerado L = 1, A é a variável dependente do 

problema, que é um escalar difundido, e i é a  variável independente, a direção coordenada.
A solução analítica exata do modelo matemático definido pelas Eqs. (5.1) a (5.3), para a 

variável dependente (A ), é

A = x4 (5.4)
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Definindo-se a média da variável dependente ao longo do domínio de cálculo por

1 f
A m =—J Adx (5.5)

^ o

sua solução analítica exata é

a  m = ^ r  (5.6)

5.2 MODELO NUMÉRICO

A solução numérica do modelo matemático definido pelas Eqs. (5.1) a (5.3) é obtida 

considerando-se (Ferziger e Peric, 1999): método de diferenças finitas, aproximação numérica da 

derivada de T ordem da equação diferencial com diferença central e malha uniforme, Fig. 5.1. 
Desta forma, para a Eq. (5.1), tem-se

(A. , + A. , —2 A.)
A-e!  J-  = 12x, (5.7)

h J

ou

~ ^ j - i  + 227 ~ ^ j + 1 — —12x 2j h 2 . j  = 2...(A -1) (5.8)

onde Xj é a coordenada do nó j, Fig. 5.1, h é a distância entre os nós j  e j  -1 , ou entre j  e 7+1,

também denominado de tamanho dos elementos da malha, e A é a incógnita do problema, ou a 
variável dependente. O sistema de equações representado pela Eq. (5.8) foi resolvido com o 
método de Gauss-Seidel (Kreyszig, 1999).

no 7-1 7 + 1 7 + 2

h h h

Figura 5.1 Malha unidimensional uniforme.
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A solução numérica exata da Eq. (5.7) resulta em (Marchi, 2001):

Àj =X4J+ Xj (1 -  Xj )h2 (5.9)

A média (Xm ) da variável dependente (Xj) ao longo do domínio de cálculo, pode ser 

obtida pela regra do trapézio (Barroso, 1987) por

^ = ^ É ( V > + ^ )  (5-10)
j=l

cuja solução numérica exata resulta em (Marchi, 2001)

i 1 h1 hA /C11.X ——I- (5.11)
5 2 5

Com a solução numérica exata pode-se obter o erro de iteração (E(<pn) ), conforme 

explicado na seção 1.3.

5.3 RESULTADOS E DISCUSSÕES

Foram definidas, neste caso, 4 variáveis de interesse, que são: os resultados numéricos 

em três nós específicos da malha, isto é, X(%), X(9L/ l{(), X(L/ 5) e a média aritmética dos

resultados numéricos obtidos em todos os nós da malha Xm. Sendo que, em cada subcaso, Tab.

5.1, e para cada variável de interesse, foram analisados o resultado numérico ((j)n ) , seu erro de

iteração (E(<pn)), estimativa do erro de iteração (U ((j)n )) , a razão de convergência (y/ ) , a ordem

efetiva (pE) , a ordem aparente (pv ) e a  efetividade (0) . As soluções numéricas foram obtidas

para malhas com N  = 11, 101 e 201 nós, o que eqüivale, a h = l/ 0, Xoo e Xoo- Foram utilizados 3

tipos de condições iniciais, Cl : X} =0, C2 : X} = 1, C3 : Xj = Xj, j  = 1..N  , onde N  indica o

número de nós da malha. Com a variação das condições iniciais e do número de nós da malha, 
foram obtidos 9 subcasos que são mostrados na Tab. 5.1.
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Tabela 5.1 Subcasos do Caso 5.

Subcaso Condição inicial N° de nós N° de iterações Tempo de CPU (s)

1 Q 11 150 0,33

2 c2 11 117 0,29

3 c 3 11 121 0,30

4 Cl 101 15933 111,20

5 C2 101 11813 67,74

6 c 3 101 12001 70,55

7 Cl 201 63688 1024,68

8 c 2 201 47274 542,59

9 C3 201 47963 554,34

Os cálculos foram realizados em um computador Pentium III 800 MHz com 256 MB de 
memória RAM. O número de iterações em cada subcaso foi obtido de acordo com o seguinte 

critério de parada: queda mínima de 5 ordens de grandezas na magnitude do erro de iteração para 
todas as variáveis de interesse. Adotou-se como parâmetro a razão entre o erro cometido na 

iteração corrente e o erro obtido na iteração inicial, isto é:

m . )Se máximo <10' Pare.

ondeó representa todas as variáveis. Observa-se na Tab. 5.1 que o número de iterações n está 

diretamente relacionado ao número de nós da malha N , ou seja, com a ordem do sistema de 

equações. Além disso, pode-se ainda relacionar o número de iterações em um determinado caso 

com o número de nós utilizados e com o número de iterações envolvidas no caso anterior:

= n
/  \ 2 

N,
(5.12)

Por exemplo: para o subcaso 1, ^ = 1 1 6 ^ = 1 5 0 .  Para o subcaso 4, N2 =101, procura-se 

estimar o número de iterações necessárias n2, que resulta em 12646. Este valor está próximo do 

resultado rea( 15933, mostrado na Tab. 5.1.
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Nas Tabs. 5.2 a 5.5 são mostrados os resultados numéricos obtidos para as quatro 
variáveis de interesse ao final do processo iterativo, em todos os subcasos.

Tabela 5.2 Resultados numéricos para X{L/1)  .

Subcaso exato numérieo(0n) m n) U(Òn)
m n)

1 6,500000000E-Q2 6,499991826E-02 8,173684648E-08 9,999999900E-01

2 6,500000000E-02 6,500825375E-02 -8,253753822E-06 l,000000000E+00
3 6,500000000E-02 6,500270750E-02 -2,707506822E-06 9,999999998E-01
4 6,252500000E-02 6,252497218E-02 2,781041393E-08 1,000309149E+00
5 6,252500000E-02 6,253436278E-02 -9,362782036E-06 1,000000477E+00

6 6,252500000E-02 6,252832452E-02 -3,324527953E-06 1,000000514E+00

7 6,250625000E-02 6,250622272E-02 2,727936301^08 9,975962018E-01

8 6,250625000&02 6,251562281E-02 -9,372817957E-06 9,999827414&01
9 6,250625000E-02 6,250959948E-02 -3,349483624E-06 9,999140260^01

Análogo a X(L/ 2), podemos ver os resultados numéricos para X(9L/ U)), ao final do processo 

iterativo na Tab. 5.3.

Tabela 5.3 Resultados numéricos para X(9L/ l0) .

Subcaso exato numérico (<f)n) E(4>n)
m n)

1 6,570000000E-01 6,569999793E-01 2,066453064E-08 9,099999916E-01

2 6,570000000E-01 6,570020866E-01 -2,086695971E-06 9.999999968E-01
3 6,570000000^01 6,570007567^01 -6,845059472E-07 1,000000018E+00
4 6,561090000&01 6,561089915E-01 8,425888431E-09 l,028138584E+00

5 6,561090000&01 6,561118366E-01 -2,836698882E-06 9,999797841E-01
6 6,561090000E-01 6,561100072^01 -1,007252406E-06 9,998984841E-01

7 6,561022500E-01 6,5610224165E-01 8,346999758E-09 9,197849756E-01
8 6,561022500E-01 6,5610511791E-01 -2,867913539E-06 1,000114064E+00

9 6,561022500E-01 6,5610327488E-01 -1,024881678E-06 1,000344446E+00



Da mesma maneira, para X(/5), os resultados são apresentados na Tab. 5.4.
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Tabela 5.4 Resultados numéricos para X(//5) .

Subcaso exato numérico (0M) W n ) VQn)
E{<pn)

1 3,200000000E-03 3,199944150E-03 5,584928102E-08 9,999999987E-01

2 3,200000000E-03 3,205639637E-03 -5,639637895E-06 l,000000000E+00
3 3,200000000E-03 3,201849989E-03 -1,849989520E-06 9,999999998E-01
4 l,616000000E-03 l,615983409E-03 l,659039341E-08 1,000007572E+00
5 l,616000000E-03 l,621585398E-03 -5,585398042E-06 9,999999402E-01

6 l,616000000E-03 l,617983257E-03 -l,983257950E-06 9,999998479E-01

7 l,604000000E-03 1,603983846E-03 l,615354220E-08 9,997361203E-01
8 1,604000000E-03 l,609550137E-03 -5,550137412E-06 9,999998180E-01

9 l,604000000E-03 l,605983405E-03 -1,983405040E-06 9,999985224E-01

Para média da variável dependente (Xm) pode -se ver os resultados na Tab. 5.5.

Tabela 5.5 Resultados numéricos para Xm.

Subcaso exato numérico (0n) m n) m n)
E ^n)

1 2,049800000E-01 2,049799480E-02 5,488429211E-08 9,456997136E-01

2 2,049800000E-01 2,049852412E-02 -5,238270816E-06 1,000568932E+00

3 2,049800000E-01 2,049817193E-02 -6,845059472E-06 l,001736405E+00
4 2,000499980E-01 2,000499802E-02 2,068445592E-08 9,201120367E-01
5 2,000499980E-01 2,000559583E-02 -5,957405369E-06 l,000505892E+00

6 2,000499980E-01 2,000521144E-02 -1,007252406E-06 l,001381251E+00

7 2,000124999E-01 2,000124825E-02 2,034670901E-08 9,042253064E-01
8 2,000124999E-01 2,000184967E-02 -5,963904326E-06 1,001143486E+00

9 2,000124999E-01 2,000146322E-02 -2,012935416E-06 1,000698918E+00
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Nas Tabs. 5.2 a 5.5, pode-se notar que para todas as variáveis de interesse a ordem de 
grandeza do módulo do erro de iteração é menor para os subcasos que envolvem a condição C\. 

Notou-se também que, a partir de um determinado número de iterações iniciais as ordens efetiva 

(pi) e aparente (pu) tendem monotonicamente à ordem assintótica (pi), com o aumento do 

número de iterações. Nas iterações iniciais nota-se a ocorrência de oscilações, inclusive com 

valores negativos para a ordem aparente jpi). Isso pode ser observado na Fig. 5.2. Para as 

demais variáveis e subcasos o comportamento é semelhante.

Para este caso o método de previsão da confiabilidade da estimativa do erro, descrito na 
seção 3.6, mostrou-se eficiente a menos dos erros de arredondamento. Considerando como 

exemplo a variável v3 do subcaso 1 (Fig. 5.4), esta se enquadra no intervalo I do método de 

previsão. Neste exemplo o método de previsão não pôde ser aplicado nas iterações de 3 a 7 e de 

11 a 15, pois nestas iterações p v < 0 (Fig. 5.2). Na iteração 8 a previsão falha devido à oscilação 

apresentada em p v . A partir da iteração 16 o método de previsão mostra-se eficiente, sendo que, 

a partir de sta iteração pv apresenta comportamento subconvergente.

Iteração

Figura 5.2 Ordem efetiva (pi) do erro e ordem aparente (pu) da incerteza de X(L/5) para o

subcaso 1.
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Para este caso, nas iterações iniciais a ordem aparente (pu) oscila de -1 ,23 a 1,45.
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Iteração

Figura 5.3 Erro e incerteza de X(j/5) para o subcaso 1.
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Figura 5.4 -  Gráfico de confiabilidade para X{L/ S) do subcaso 1.
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Nota-se também que, para este caso a razão de convergpncia ,, , e a ordem assintótica 

(pL) variam somente com o número de nós da malha, Tab 5.6. Portanto, não sofrem alteração 

com a mudança das condições iniciais ou da variável de interesse.

Tabela 5.6 Razão de convergência e ordem assintótica para caso 5.

N Subcaso ¥ P l

11 1,2,3 1,1055728 0,0435873

101 4,5,6 1,0009873 0,0004285

201 7,8,9 1,0002473 0,0001073

5.4 CONCLUSÃO

Existe discordância entre incerteza e erro somente nas iterações iniciais, Fig. 5.3. 

Principalmente onde foi constatado que as ordens efetiva (pE) e aparente (pu) apresentaram 
valores negativos, Fig. 5.2. Para as demais variáveis e subcasos, constatou-se comportamento 

semelhante, sendo que, estas “iterações iniciais” correspondem à uma faixa de, no máximo, 13% 

do número total de iterações envolvidas no cálculo. Salvo estas iterações, verificou-se a 
eficiência do estimador de erro para este caso quanto à sua acurácia e confiabilidade através de 

sua efetividade (0 ). O método de previsão da confiabilidade, seção 3.6, apresentou bons 

resultados em todos os subcasos, sendo que, a ocorrência de falha na previsão deu-se pela 

influência dos erros de arredondamento.

Nos testes realizados com a equação de Poisson, verificou-se, então, dois tipos de 
comportamento. Nas iterações iniciais, as estimativas de erro são inacuradas e sem 

confiabilidade, de forma geral. Após estas iterações iniciais, as estimativas são cada vez mais 

acuradas.
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Capítulo 6.

CASO 6: EQUAÇÃO DE LAPLACE

Em todos os casos anteriores, Caps. 4 e 5, os problemas possuíam apenas um tratamento 
unidimensional. Neste capítulo, é abordado um problema de difusão bidimensional, em regime 

permanente, sem geração de calor e com condutividade térmica constante (Incropera e DeWitt, 

1992), o que resulta na equação de Laplace. O modelo numérico é constituído pelo método de 
diferenças finitas, com aproximações numéricas de 2a ordem através de diferença central e malha 

uniforme.

6.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA

O modelo matemático do caso 6 é dado por

d2Á d2A 
dx2

(6.1)

com as seguintes condições de contorno de Dirichlet:

A(0, y) = 0 

A(jc,0) = 0 

A (L1,y )= y

(6.2)

(6.3)

(6.4)

A ( x , L 2 )  =  x (6.5)
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com o domínio de cálculo D = {0 < x < Lx;0 < y < L2} . Considera-se um domínio quadrado, ou 

seja, Zj =L2 = 1. A é a variável dependente do problema, que é um escalar difundido, x q y  são 

as variáveis independentes, as direções coordenadas. A solução analítica exata do modelo 

matemático definido pelas Eqs. (6.1) a (6.5), para a variável dependente (A),é

6.2 MODELO NUMÉRICO

A solução numérica do modelo matemático definido pelas Eqs. (6.1) a (6.5) é obtida 

considerando-se: método de diferenças finitas, aproximação numérica da derivada de 2 ordem 

da equação diferencial com diferença central e malha uniforme, Fig. 6.1. Desta forma, não se tem 
erro de discretização (Ferziger e Peric, 1996), e

A  ( x , y ) = x y (6.6)

Definindo-se a média da variável dependente ao longo do domínio de cálculo por

'2 0 0

(6.7)

sua solução analítica exata é

(6.8)

(6.9)

Ao se utilizar malha uniforme, Fig. 6.1, tem-se Ax = Ay = h. Portanto, a Eq. (6.9) pode ser 

reescrita como
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ou

-A.,_1-A,_1J+4Aj J -A,+1J-Ã ,J+I = 0, i = 2,...,(N -1), j  = 2 ,...,(N -l)  (6.11)

onde N  é o número de nós da malha em cada direção, h é a distância entre os nós (i, j ) e 

( i,j — 1) j ou entre — e (/,/) , também denominado de tamanho dos elementos da malha, 

Fig. 6.1, e X é a incógnita do problema, ou a variável dependente.

Erro!

Neste caso; o erro de truncamento é nulo, pois apresenta somente aproximações 
numéricas de 2a ordem eom diferença central. A expressão para o erro de truncamento (Et)  

envolvido nas aproximações apresentadas pela Eq. 6.10 para o nó (i,j) é dada por:

ET - - r d4A ^
abc"

a4A r d6A '
dx(

r d6A ^

7fj dxl
J h j i,j

-  (6-12)

que envolve apenas derivadas da variável dependente (A), com ordem 4 e superiores. Pode-se 

então observar através da Eq. (6.6) que estas derivadas são nulas. Portanto com a resolução do 
sistema de equações (6.11) e com a Eq. (6.6) pode-se obter o valor numérico do erro iterativo. O 

sistema de equações (6.11) foi resolvido através do método iterativo de Gauss-Seidel, e também 

com a utilização de uma técnica multigrid para problemas lineares, denominado esquema de
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armazenamento de correção, conforme o algoritmo descrito nas páginas 169 e 170 do livro de 
Tannehill et. al. (1997).

6.3 RESULTADOS E DISCUSSÕES

Neste caso, considerou-se duas variáveis de interesse: o resultado numérico no ponto 

central da malha, isto é, , ( 'X ,'2/,)  e a média aritmética dos resultados numéricos obtidos em 

todos os nós da malha Xm. As soluções numéricas foram obtidas para malhas com

N 2 = 172, 332 e 652 nós, o que eqüivale a h -  X6, X2 e Vm •

Em cada subcaso, Tab. 6.1, e para cada variável de interesse, foram analisados o 

resultado numérico (0„), seu erro iterativo (E((f)n)), estimativa do erro iterativo (U((j)n) ) , a

razão de convergência (y/), a ordem efetiva (pE) , a ordem aparente (pu) e a  efetividade (0).

Com a variação do número de nós da malha, e com ou sem a utilização do método multigrid 
(Tannehill et al., 1997) foram obtidos 6 subcasos que são mostrados na Tab. 6.1. A técnica 

multigrid pode ser aplicada usando qualquer esquema iterativo, embora o mais comum seja o 
método de Gauss-Seidel (Tannehill et al. , 1997), que é utilizado neste casa O objetivo da técnica 

multigrid é acelerar a convergência de um processo iterativo. Para isso, faz-se uso de vários 

níveis de malha para fornecer uma solução, ou seja, o mesmo problema diferencial é aproximado 

em diversas malhas cujos tamanhos de malha são geralmente múltiplos de dois.

Em todos os subcasos utilizou-se a condição inicial: Xhj =0, i = 1,...,N, j  = 1,...,N , isto

é, nula em todos os nós da malha. O número de iterações em cada subcaso foi obtido de acordo 

com o seguinte critério de parada: queda mínima de 7 ordens de grandeza na magnitude do erro 
iterativo para as duas variáveis de interesse.

Tabela 6.1 Subcasos do Caso 6.

Subcaso Método Malha Número de iterações Tempo de CPU (s)

1 Sem multigrid 17x17 397 1,48
2 Sem multigrid 33x33 1586 9,86

3 Sem multigrid 65x65 6331 135,61
4 Com multigrid 17x17 22 0,13

5 Com multigrid 33x33 29 1,08

6 Com multigrid 65x65 35 2,17
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Nas Tabs. 6.2 e 6.3 são mostrados os resultados numéricos obtidos para as duas variáveis de 
interesse ao final do processo iterativo, em todos os subcasos.

Tabela 6.2 Resultados numéricos para , ( >2, 2/ i ) , Caso 6.

Subcaso exato numérico (0n) U{(pn)
m n)

1 2,500000000E-01 2,499999019E-01 9,800085901E-08 1,000001584E+00

2 2,500000000E-01 2,499999007E-01 9,922623200E-08 1,00002596lE+00

3 2,500000000E-01 2,49999900 lE-01 9,987822099E-08 l,001350588E+00
4 2,500000000E-01 2,500000534E-01 -5,349941700E-08 l,718844805E+00
5 2,500000000E-01 2,500000768E-01 -7,687705899E-08 2,775431056E+00

6 2,500000000E-01 2,499999729E-01 2,700025700E-08 1,543202394E+01

Tabela 6.3 Resultados numéricos para Xm, Caso 6.

Subcaso exato numérico (0„) W n ) m n)
m n)

1 2,500000000E-01 2,499999603E-01 3,964124800E-08 1,000008338E+00

2 2,500000000&01 2,499999598^01 4,019552299&08 9,998567758E-01
3 2,500000000E-01 2,499999595E-01 4,047425700E-08 1,007464542E+00
4 2,500000000&01 2,499999126E-01 8,737835599E-08 -3,456950907E-02
5 2,500000000E-01 2,499999972E-01 2,705836998E-09 -3,247324112E+01

6 2,500000000E-01 2,500000205E-01 -2,052561898E-08 -1,228276055E+00

Considerando-se primeiramente os subcasos 1 a 3, notou-se como nos casos anteriores 

que a partir de um determinado número de iterações iniciais a ordem aparente (pu) tende 
monotonicamente à ordem assintótica (pL), com o aumento do número de iterações, Figs. 6.2 e

6.3. Constatou-se também a ocorrência de valores negativos para a ordem aparente (pu) somente 

no cálculo de > Fig- 6.2.

Pode-se notar na Fig. 6.4 o comportamento obtido ao se aplicar o estimador empírico 
com ordem aparente fexj) negativa nas iterações hiciais: a magnitude da estimativa do erro



Capítulo 6. Caso 6 67

aumenta com o número de iterações, conforme explicado na seção 3.2.2. Para Xm a estimativa do

erro não apresenta oscilações nas iterações iniciais, Fig. 6.5.
Para o subcaso 1 o resultado obtido pela aplicação do método de previsão da 

confiabilidade da estimativa do erro, descrito na seção 3.6, pode ser observado através dos 

gráficos de confiabilidade mostrados nas Figs. 6.6 e 6.7, sendo que para os subcasos 2 e 3 os 

resultados são semelhantes. Pode-se notar na Fig. 6.6 que para ° método de previsão

não pôde ser aplicado até a iteração 23, valor (0) no gráfico de confiabilidade, pois nestas 

iterações p v < 0 (Fig. 6.2). O mesmo não ocorre para Xm, sendo que o método de previsão pôde 

ser aplicado em todo processo iterativo. Notou-se que em ambas as variáveis de interesse a 

primeira iteração onde ocorre falha (-1) no método de previsão é a mesma iteração onde ocorre 

oscilação na magnitude da estimativa do erro, devido ao efeito dos erros de arredondamento.

Iteração

Figura 6.2 Ordem aparente p v da incerteza de A (% ,% ) para o subcaso 1.
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Iteração

Figura 6.3 Ordem aparente p v da incerteza de Xm para o subcaso 1.

Iteração

Figura 6.4 Erro e incerteza de X(Lly { ,L/ )  para o subcaso 1.
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Iteração

Figura 6.5 Erro e incerteza de Xm para o subcaso 1.

Iteração

Figura 6.6 -  Gráfico de confiabilidade para X{Y2 ,Ll/ 2) do subcaso 1.
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Figura 6.7 -  Gráfico de confiabilidade para Xm do subcaso 1.

Pode-se ver na Tab. 6.4 que a razão de convergência (y/) e a ordem assintótica (pi) 

variam com o número de nós da malha. No subcaso 3 existe uma pequena diferença entre a razão 

de convergência de X (Y Y A )  e Ki > provavelmente devido ao efeito dos erros de 

arredondamento. Apesar de que segundo Roache (1998), diferentes variáveis envolvidas em um 

mesmo processo iterativo podem apresentar diferentes taxas de convergência.

Tabela 6.4 Razão de convergência e ordem assintótica para o caso 6.

Subcaso Malha Variável w PL

1 17x17 M fy íM ) 1,03956 0,01685

1 17x17 k m 1,03956 0,01685

2 33x33 K V i M ) 1,00970 0,00419

2 33x33 K 1,00970 0,00419

3 65x65 H Y i M ) 1,00241 0,00104

3 65x65 K 1,00238 0,00103
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Nos subcasos 4 a 6, notou-se que ao se utilizar a técnica multigrid (Tannehill et al. , 1997) 
a razão de convergência ,, , apresentou comportamento oscilatório (Fig. 6.8), ou seja, não

possui convergência monotônica como nos casos anteriores. Além disso, tem-se y/ < 1 em 

algumas iterações, o que acarreta em valores negativos para ordem aparente (pv ). Pode-se, 

então, observar na Fig. 6.9 que o erro de iteração não apresenta comportamento monotônico, 

conforme explicado na seção 3.1. Para estes subcasos, pode-se também constatar nas Tabs. 6.2 e
6.3 os resultados obtidos ao se aplicar o estimador empírico através de sua efetividade (6). Para

K V i,kA ) , os resultados são inacurados e para Xm, não são confiáveis. Portanto nos subcasos

que envolvem a aplicação da técnica multigrid o estimador empírico não é recomendável; pois 
apresenta acurácia baixa e é pouco confiável. Pode-se também observar na Fig. 6.9 o 

comportamento apresentado pelos estimadores RB e FP ao se utilizar a técnica multigrid.

Iteração

Figura 6.8 -  Razão de convergência para MLí/> ,L2A) do subcaso 4.
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iteração

Figura 6.9 -  Erro de iteração para X(% ,% ) do subcaso 6.

6.4 CONCLUSÃO

Quanto à eficiência do estimador empírico, para os subcasos 1 a 3 constatou-se 

comportamento semelhante aos casos anteriores, abordados nos Caps. 4 e 5. Ou seja, existe 
discordância entre incerteza e erro somente nas iterações iniciais, Figs. 6.4 e 6.5. Sendo que, para 

estes subcasos as “iterações iniciais” correspondem à uma faixa de no máximo 9% do número 
total de iterações envolvidas no cálculo. Para as demais iterações, verificou-se a eficiência do 

estimador de erro quanto à sua acurácia e confiabilidade através de sua efetividade (9 ). O 

método de previsão da confiabilidade, seção 3.6, apresentou bons resultados nestes subcasos. A 

ocorrência de faha na previsão deu-se pela influência dos erros de arredondamento.
Nos subcasos 4 a 6 o erro de iteração não apresentou comportamento monotônico. Além

disso, apresentou valores negativos para ordem aparente (pv ) não somente nas “iterações 

iniciais”. Portanto, não se recomenda usar o estimador empírico em processos iterativos que 

empreguem métodos multigrid.
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Capítulo 7.

CASO 7: EQUAÇÕES DE NAVIER-STOKES

Este capítulo trata de um problema de escoamento bidimensional isotérmico de fluido 
incompressível (Shih et al., 1989), governado pelas equações de Navier-Stokes. O modelo 

numérico é constituído pelo método de volumes finitos, com aproximações numéricas de 2a 

ordem através de diferença central e malha uniforme.

7.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA

O modelo matemático do caso 7 é dado por

onde B é um termo fonte imposto para obtenção da solução analítica; definido no trabalho de 

Shih et al (1989). As condições de contorno usadas são do tipo Dirichlet:

— ( p u )  +  —  ( p u )  -  0 (7.1)

(7.2)

(7.3)

w(0, j )  = 0 (7.4)

u(x, 0) = 0 (7.5)
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w(A, j )  = 0 (7.6)

w(x, L2) = 16(x4 — 2x3 + x2) (7.7)

v(x,0)=0 (7.8)

v(0, y) = 0 (7.9)

v(Ll,y) = 0 (7.10)

v(x ,L2) = 0 (7.11)

com o domínio de cálculo D = {0 < x < L^O < y < L2} , onde; neste caso considera-se um 

domínio quadrado, ou seja, Lx = L2 = 1; p e p  são constantes; u, v q p  são as incógnitas do 

problema, sendo que, « e v  representam as componentes do vetor velocidade nas direções x e y, 

p é  a.pressão, xej;são  as variáveis independentes, as direções coordenadas.

A solução analítica exata do modelo matemático definido pelas Eqs. (7.1) a (7.11), para 

as variáveis dependentes (w, v ep) e número de Reynolds Re = 1, é dada por (Shih et al. , 1989)

M(x,_y) = 8(x4 — 2x3 + x 2)(4j 3 -  2y) (7-12)

v(x,_y) = -8(4x3 - 6 x 2 + 2x)(_y4 -  y 2) (7.13)

p(x,y) = 192
(7-14)

+ 32 (x4 — 2x3 + x2 ) ( -  4y 6 + 2y 4 — 2y 2 )

Definindo-se a média da variável dependente v em 0 < x < / 2 e y = Y2 Por

M  = |v(x,_y)í/x (7.15)
o
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sua solução analítica exata é

M  = —  (7.16)
32

7.2 MODELO NUMÉRICO

A solução numérica do modelo matemático definido pelas Eqs. (7.1) a (7.11) é obtida 

considerando-se (Malisca, 1995): método de volumes finitos, com aproximações numéricas de 2a 

ordem através de diferença central, malha uniforme e arranjo co-localizado de variáveis. Neste 

caso existe erro de discretização. Portanto, para análise dos erros de iteração não são 

consideradas as soluções analíticas, Eqs. (7.12) a (7.16). Considera-se, então, a solução iterativa 

“exata” no limite do “erro de máquina”, ou seja, a solução numérica obtida ao longo do processo 

iterativo quando não se tem mais erros de iteração mas, apenas, erros de arredondamento. 
Algoritmo do modelo numérico utilizado:

1) Estimativa dos campos das variáveis dependentes.

2) Calcular coeficiente e termos fonte da variável u.

3) Resolver o sistema de equações para variável u com o método MSI.

4) Repetir os itens 2 e 3 para variável v.
5) Calcular as variáveis u e v nas faces dos volumes de controle.

6) Calcular os coeficientes e termos fonte para a variável p.
7) Resolver o sistema de equações para variável p  com o método MSI.

8) Corrigir as variáveis u,vQp com a solução de p  obtida no item 7.

9) Voltar ao item 2 até que algum critério de convergência seja satisfeito.

Observações:
i) Nos itens 3 e 4 são feitas no máximo 5 iterações ou itera-se até a queda de uma ordem na 
magnitude do resíduo.

ii) No item 7 utiliza-se no máximo 10 iterações ou itera-se até a queda de duas ordens na 

magnitude do resíduo inicial.
iii) Considera-se uma iteração externa a seqüência dos itens 2 a 9.

iv) Para cada iteração extema repete-se uma vez os itens 6 a 8.

Em todas as simulações utilizou-se o método iterativo MSI (Schneider e Zedan, 1981) e a 

condição inicial nula. O método MSI é um método quase direto, ou seja, aquele em que com
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poucas iterações se obtém a convergência. Por outro lado, o esforço computacional por iteração, 
é bem superior aos demais métodos iterativos (Maliska, 1995). O número de iterações externas 

(n) para obtenção da solução numérica “exata” é mostrado na Tab. 7.1.

7.3 RESULTADOS E DISCUSSÕES

Neste caso, considerou-se quatro variáveis de interesse: os resultados numéricos de u, v e 

p  no ponto central da malha, isto é, . ( >{, A)  > ^AAiAAi) > p AAi AAi ) e a média da variável

dependente v dada pela Eq. (7.15), M . As soluções numéricas foram obtidas para malhas com 

N 2 = 162, 322 e642 volumes. Analogamente aos casos anteriores, em cada subcaso, Tab. 7.1, e 

para cada variável de interesse, foram analisados o resultado numérico ((f>n), seu erro de iteração 

(E(<fin)) , estimativa do erro de iteração (U(<pn)) , a razão de convergência (y/), a ordem efetiva 

(pE), a ordem aparente (pv ) e a efetividade (0). Com a variação do número de volumes da 

malha, foram determinados 3 subcasos que são mostrados na Tab. 7.1. O número de iterações 
externas (n) em que se analisou o erro de iteração e a incerteza numérica foi obtido de acordo 

com o seguinte critério de parada: queda mínima de 7 ordens de grandeza na magnitude do 

resíduo adimensionalizado (R * )  (Kim et al, 1998), conforme descrito na seção 2.3.3. O tempo 
de CPU mostrado na Tab. 7.1 refere-se à estas iterações.

Tabela 7.1 Subcasos do Caso 7.

Subcaso Malha Iterações externas para 

queda de 7 ordens em R  *

Iterações externas para 

obtenção da solução “exata”

Tempo de CPU

(s)

1 16x16 728 1889 11,01

2 32x32 1171 3999 53,20
3 64x64 2160 5998 498,41

Nas Tabs. 7.2 a 7.5 são mostrados os resultados numéricos obtidos para as quatro 

variáveis de interesse ao final do processo iterativo, em todos os subcasos.
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Tabela 7.2 Resultados numéricos para . (‘X i A )  > Caso 7.

Subcaso exato numérico (0n) m n)
m n)

1 -2,436442230E- 01 -2,436442229^01 -9,368000820E-11 1,004184820E+00

2 -2,483 63 653 5E-01 -2,483636524E-01 -l,118037996E-09 1,000277942E+00
3 -2,495877767E-01 -2,495877765E-01 -2,180909897E-10 1,041038090E+00

Tabela 7.3 Resultados numéricos para vQy{X/ò > Caso 7.

Subcaso exato numérico (0n) m n) m n)
m n)

1 9,264290573E-05 9,264292595E-05 -2,021014950E-11 9,881418986E-01

2 2,728542177E-05 2,728540782E-05 1,395702310E-11 9,994393343E-01

3 7,097000028E-06 7,096996659E-06 3,369877301E-12 l,203608957E+00

Tabela 7.4 Resultados numéricos para p C A X A )’ Caso 7.

Subcaso exato numérico(0„) E{<Pn) m n)

1 l,545591915E+00 1,545591916E+00 -7,184399742E-10 l,013978569E+00

2 1,545434988E+00 1,545434985E+00 2,130740029E-09 1,026254886E+00

3 l,545337016E+00 l,545337015E+00 l,082719914E-09 1,096937015E+00

Tabela 7.5 Resultados numéricos para M , Caso 7.

Subcaso exato numérico (0n) E{<í>n) m n)
E(d>n)

1 9,406575851E-02 9,406575885E-02 -3,372797042E-10 9,932319883E-01

2 9,382148287E-02 9,382148268Er02 1,828833890E-10 l,001629684E+00

3 9,376739441&02 9,376739437E-02 4,250080843E-11 1,006611077E+00
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Nas Tabs. 7.2 a 7.5, pode-se notar que para o subcaso 3, subcaso que envolve um maior 
número de iterações externas, em todas as variáveis de interesse o estimador empírico apresentou 

resultados confiáveis, isto é, 6 > 1 ao final do processo iterativo. Pode-se constatar também que 

para as variáveis u(L/ 2,L2/ 2) e p Y /iY A ) » Tabs. 7.2 e 7.4 respectivamente, a estimativa do erro é 

confiável em todos os subcasos.

Para a variável víAAiAAi) a estimativa do erro não é confiável nos subcasos 1 e 2, Tab.

7.3. Observou-se que nestes subcasos a razão de convergência (y/) para v(% ,% ) apresenta 

oscilações nas iterações externas finais, Fig. 7.1, inclusive com yr < 1 em algumas dessas 

iterações externas. Sendo que, para o subcaso 1 o comportamento é semelhante.
Assim como nos casos anteriores, em todos os subcasos, Tab. 7.1, tem-se que a partir de 

um determinado número de iterações externas iniciais as ordens efetiva (pÈ) e aparente <pu) 

tendem monotonicamente à ordem assintótica jpz,), com o aumento do número de iterações 
externas, Fig. 7.2 e Tab. 7.6. No entanto, constatou-se neste caso a ocorrência de oscilações na 

magnitude do erro numérico. Pode-se, então, notar na Fig. 7.3 o comportamento obtido para o 

erro numérico e para sua estimativa. Para as demais variáveis e subcasos o comportamento é 

semelhante.

Iteração externa

Figura 7.1 -  Razão de convergência (y/) para viYAAAò ■> subcaso 2, caso 7.
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Figura 7.2 -  Ordem efetiva (pE) do erro e ordem aparente (pu) da incerteza de M  para o

subcaso 3, caso 7.

Iteração externa

Figura 7.3 -  Erro e incerteza de M  para o subcaso 3, caso 7.
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Para o subcaso 3 o resultado obtido pela aplicação do método de previsão da 
confiabilidade da estimativa do erro, descrito na seção 3.6, pode ser observado através do gráfico

de confiabilidade mostrado na Fig. 7.4. Pode-se notar que para M  o método de previsão não 

pôde ser aplicado em todas as iterações externas, âlor (0) no gráfico de confiabilidade, pois 

nestas iterações externas p v < 0 (Fig. 7.2). Constatou-se também que em todos os subcasos para 

todas as variáveis de interesse a primeira iteração externa onde ocorre falha (-1) no método de 

previsão é a mesma iteração extema onde ocorre oscilação na magnitude da estimativa do erro, 

devido ao efeito dos erros de arredondamento.

Iteração externa

Figura 7.4 -  Gráfico de confiabilidade de M  para o subcaso 3, caso 7.

Observa-se na Tab. 7.6 que a razão de convergência (yz) e a ordem aparente (pu) variam 

com o número de volumes da malha. Não se pode afirmar com certeza se há mudança nos 

valores de y/- e p v para todas as variáveis de interesse, pois pode-se ter influência dos erros de 

arredondamento.
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Tabela 7.6 Razão de convergência e ordem assintótica para caso 7.

Subcaso Variável ¥ Pu

1 u(y2,L2/2) 1,036120005 E+00 l,541005888E-02

1 v(y2,y2) 1,016553170E+00 7,130099206E-03

1 p í Y M ) l,015802199E+00 6,809148522E-03

1 M l,014395257E+00 6,207209922E-03

2 <y2,y2) 1,008815762E+00 3,811859153E-03

2 Ayy/i) 1,009482381E+00 4,098743285E-03

2 p{yyA) 1,009284504E+00 4,013605391E-03

2 M l,008817479E+00 3,812598191E-03

3 uiYYÁ) 1,004591013E+00 l,989288579E-03

3 AYiM) 1,005054655E+00 2,189679241E-03

3 p íY Y A ) 1,004469947E+00 l,936947299E-03

3 M 1,004600572E+00 l,993420959E-03

7.4 CONCLUSÃO

Com a utilização do método iterativo MSI constatou-se que, para este caso, a magnitude 
do erro de iteração apresentou oscilações nas iterações iniciais, o que não havia ocorrido nos 

casos anteriores.

O estimador empírico apresentou comportamento semelhante aos casos anteriores, ou 

seja, existe discordância entre incerteza e erro somente nas iterações iniciais, Fig. 7.3. Contudo, a 

amplitude destas oscilações é mais significativa que a obtida nos casos anteriores. Para este caso 

as “iterações externas iniciais” correspondem à uma faixa de no máximo 17% do número total de 

iterações externas envolvidas no cálculo. Para as demais iterações, verificou-se a eficiência do 
estimador de erro quanto à sua acurácia, no entanto não se mostrou confiável para todas as 

variáveis de interesse e em todos cs subcasos. Quanto à aplicação do método de previsão da
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confiabilidade, seção 3.6, foi constatado que a iteração externa em que ocorre a primeira falha na 
previsão (-1) coincide com a iteração em que ocorre oscilação na magnitude da estimativa do 

erro de iteração devido aos erros de arredondamento.
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CONCLUSÃO

Este capítulo apresenta as principais constatações deste trabalho, um resumo das 
contribuições desta dissertação e sugestões para trabalhos futuros.

8.1 CONSTATAÇÕES

Conforme apresentado inicialmente, este trabalho tinha como proposta o aperfeiçoamento 

das técnicas existentes para se estimar erros envolvidos em processos iterativos em CFD. Diante 

dos estudos sobre os estimadores de erro já existentes na literatura, dos testes realizados e dos 
resultados obtidos podemos dizer que os objetivos foram alcançados.

O estimador de erro de iteração estudado neste trabalho, o estimador empírico, calcula a 

incerteza numérica (estimativa do erro numérico) com base na taxa de convergência da variável 
de interesse. Foi constatado que este estimador apresenta relações diretas com os estimadores 

delta, FP e RB. Através da efetividade do estimador de erro, isto é, da razão entre incerteza e 

erro verificou-se a eficiência do estimador empírico quanto à sua acurácia e confiabilidade.

Nos testes numéricos realizados, inicialmente foram analisados procedimentos iterativos 

para resolução de equações quadráticas e sistemas lineares de ordem 2. Nestes casos o estimador 
mostrou-se eficiente. Em seguida foram realizados testes com a equação de Poisson, equação de 

Lapalce e equações de Navier-Stokes. Em todos os testes realizados, analisou-se também a 
eficiência do método de previsão da confiabilidade do resultado obtido pelo estimador de erro.

Nos testes com a equação de Poisson verificou-se dois tipos de comportamento. Nas 

iterações iniciais, no máximo 13% do número total de iterações, as estimativas de erro são 

inacuradas e sem confiabilidade, de forma geral. Após estas iterações iniciais, as estimativas são 

cada vez mais acuradas. Nestes testes o método de previsão da confiabilidade, apresentou bons 
resultados, sendo que, a ocorrência de falha na previsão deu-se pela influência dos erros de 

arredondamento.
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Nos testes realizados com a equação de Laplace sem a utilização da técnica multigrid 
constatou-se comportamento semelhante ao obtido com a equação de Poisson, ou seja, existe 

discordância entre incerteza e erro somente nas iterações iniciais. No entanto, nestes testes as 

“iterações iniciais” correspondem a, no máximo, 9% do número total de iterações, sendo esta 

uma faixa percentual é menor que para a equação de Poisson. Para os testes envolvendo a 
aplicação da técnica multigrid o estimador empírico não mostrou-se eficiente; pois apresentou 

acurácia baixa e resultados pouco confiáveis.

Ao se analisar o comportamento do erro de iteração envolvido na resolução numérica das 
equações de Navier-Stokes constatou-se que neste caso o erro de iteração também apresentou 

oscilações nas “iterações externas iniciais”, o que não havia ocorrido nos casos anteriores. 

Quanto à eficiência do estimador de erro e do método de previsão obteve-se resultados 
semelhantes aos casos anteriores. Neste caso as “iterações externas iniciais” correspondem a no 

máximo 17 % do número total de iterações externas envolvidas no cálculo, sendo que esta faixa 

percentual é maior que nos casos anteriores.

O desempenho do estimador empírico pode ser dividido em três intervalos: nas “iterações 

iniciais” a acurácia é baixa, em geral; quando o número de iterações é muito elevado, os erros de 
arredondamento afetam a acurácia, que é boa; no intervalo entre esses dois extremos, a acurácia 

tende a ser grande à medida que se aumenta o número de iterações. Não se recomenda usar o 
estimador empírico em processos iterativos que empreguem métodos multigrid, pois nestes casos 

o erro de iteração não apresenta comportamento monotônico.
O método de previsão da confiabilidade apresentou bons resultados em todos os testes 

realizados, com exceção dos testes envolvendo a técnica multigrid. A ocorrência de falhas na 

previsão deu-se pela influência dos erros de arredondamento, pois quando o número de iterações 
é muito elevado, os erros de arredondamento prevalecem sobre os erros de iteração.

8.2 RESUMO DAS CONTRIBUIÇÕES

As contribuições do presente trabalho podem ser resumidas nos seguintes pontos:

• Verificou-se a existência de relações diretas entre os estimadores de erro de iteração 

empírico, delta, Ferziger e Peric, e Roy e Blotner.

• O estimador empírico foi aplicado e teve seu desempenho analisado nos seguintes 
casos: resolução numérica de equações quadráticas, sistemas lineares de ordem 2, equação de 

Poisson, equação de Laplace e equações de Navier-Stokes.
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• Foi proposto um método de previsão da confiabilidade do resultado obtido pelo 
estimador de erro empírico através dos resultados numéricos em três iterações consecutivas e de 

uma solução extrapolada.

• Verificou-se que a aplicação do estimador empírico não é adequada para processos 
iterativos que empregam métodos multigrid.

8.3 TRABALHOS FUTUROS

Com o objetivo de aperfeiçoar os resultados obtidos neste trabalho, são propostas 
algumas sugestões para novos trabalhos:

a) Investigação sobre a eficiência do estimador de erro em outros processos iterativos que 
apresentem razão de convergência de comportamento convergente. Analisar também, o 

comportamento da estimativa do erro para métodos iterativos com razão de convergência 

oscilatória.

b) Formalização matemática do método de previsão da confiabilidade do estimador de

erro.
c) Aperfeiçoamento do estimador de erro onde a ordem aparente apresenta 

comportamento oscilatório.

d) Investigação dos efeitos causado pelos erros de arredondamento devido aos cálculos 
envolvidos na estimativa do erro de iteração.

e) Análise das “iterações iniciais”, ou seja, a partir de que iteração o estimador empírico é 

recomendável.

f) Estudo da estimativa do erro envolvido em processos iterativos que empreguem a 

técnica multigrid.
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