Universidade Federal do

Y

arana
Programa de P&s-Gradu

uagéo em
Métodos Numéricos em Engenharia

-
= OERMRAR R OITTERANREAS RE
Booem  ZwefRaSC D £ HE™ SEEmFStE C/RE 2 Bmialy
S m.?%% U LT i bl WRPELYS A 68
Q OAREDIITACINALIAL
" ﬁ! = El g E
UU&) "‘t‘f'&;\?g.ui “%{3-& ﬂWEWﬁ&a':L

CURITIBA
2002




MARCIO ANDRE MARTINS

ESTIMATIVA DE ERROS DE ITERACAO EM
DINAMICA DOS FLUIDOS COMPUTACIONAL

Dissertagdo apresentada como requisito parcial
a obtengdo do grau de Mestre em Ciéncias,
Programa de Pods-Graduagdo em Meétodos
Numéricos em Engenharia, Setor de Ciéncias
Exatas e Tecnologia, Universidade Federal do
Parana.

Orientador: Prof. Carlos Henrique Marchi.

CURITIBA
2002



MARCIO ANDRE MARTINS

ESTIMATIVA DE ERROS DE ITERACAO EM
DINAMICA DOS FLUIDOS COMPUTACIONAL

Dissertag@o aprovada como requisito parcial para obtengdo do grau de Mestre em
Ciéncias, M. Sc. — Area de concentrago: Programacio Matematica — Programa de Pos-
Graduacdo em Métodos Numéricos em Engenharia da Universidade Federal do Parana, pela

banca examinadora formada pelos professores:

Orientador: ////[ % /% W /&/

Prof Carlos Hennque Marchi, Dr. Eng.
DEMEC/TC/UFPR.

Prof. Anténio Fabio Carvalho da Silva, Dr. Eng.
SINMEC/EMC/CTC/UFSC.

Maﬂedone Machado, Dr. M

DCC/TC/UFPR.

Curitiba, 13 de dezembro de 2002.



il

A Deus.

A minha familia.



AGRADECIMENTOS

Agradeco a Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)

pelo financiamento deste trabalho.

Ao meu orientador Prof. Carlos Henrique Marchi Dr. Eng., pela orientagio, apoio, e

ensinamentos no transcorrer deste trabalho.

Aos professores, funcionarios e cole gas do CESEC, pela amizade e dedicagéo.
Meus sinceros agradecimentos a todos os familiares ¢ aos amigos que direta ou

indiretamente colaboraram na elaboragao desta dissertagao.

Aos membros da banca examinadora pelas criticas e sugestdes apresentadas na defesa da

dissertacdo.

Em especial, a minha esposa Danyelle pelo incentivo, apoio, compreensdo € muito amor.

v



SUMARIO

LISTA DE TABELAS ...ttt ettt et sne s aesaesns e
LISTA DEFIGURAS. ...ttt sttt ste et s st easesae e st esase st snessnnens
LISTA DE SIMBOLOS........ccmriiiiriineineeseiiseesas e sisessse s sessesesssssssenes
RESUMO......oiictiieetteteeit ettt et e sse st e e saasbesbeste e sbeeneesasesaeenbeeaseeneeesaeessnesnnesanen
ABSTRACT ...ttt ete e st e e e e st e e st eeaaeaesteerabeessee e et e smeeeaneeeanean
1. INTRODUGAO.........ooooeeeeeeeeeeeeeeteeeee et e ts e eaeasaesssssasesenassasnens
1.1 O Problema.......cceiiiiiieieiieeieee et
1.2 L0 103 15 7 4 7o T O OSSP P U R P OPPP
1.3 EXTO NUMETICO. .. vtieeeeiiiieiieecieteesree st e ste st e e siaesessesssrreessaseeesseaessmensesane
1.4 Organizagdo da DisSSertago.........coeeeererreereerieeirrenireneeneeeeee e
2. REVISAO BIBLIOGRAFICA...........ooooeevomeerrerereeersnesesessesesessesessssssenes
2.1 COMVETZEINCIA. c..veeeeieruiiereerireeeesenreessesteeesreeesseentteseeraeeeessennseesesenbraesesssnns

2.1.1 Critérios de CONVETZENCIA.....eerurerrierirreeerieeeee e e seeeeeeeaessss s enees
2.2 Critérios para medir o desempenho de uma estimativa de erro....................
2.3 Estimadores de Erro de Iteragao.......coccveeeeeeeeereeeeciiieceieeeeiceseeceeeieee e

2.3.1 O Estimador Delta........cccuureirieciniiieeieeeeeeeee e

2.3.2 O Estimador de Ferziger € Peric.........ccceccieriiiiiiiiienniiieciiieneeeeninnens

2.3.3 O Estimador de Kim, Anand € Rode...........ccoocemiiiiiiiienniiiiieenieeeeene

2.3.4 O Estimador de Roy € Blottner..........cccccerveeniinieininenieniceecsne e
2.4 SiStemas de EQUAGOES.....o.eeveeieriieierrereeretenr e st s ettt se s sb e
2.5 Resolugdo de sistemas de eqUuagOes.......ccccerveeeriieeiriiiniineeeereecene e
2.6 Resumo do capitilo.........occeiieiiiiieiiiincciiceccierre e
3.  OESTIMADOR EMPIRICO.........c.cocoommiiirneinntieeiecrererenirenese e
3.1 Caracteristicas do Erro de Iteracfo........c.ccoeeeeiiiiiiiiirineiiiienniin e

3.1.1 A ordem efetiva.......ccceeeiieiienieeieieee e
3.2 Estimativa do Erro de Iteragao.........cocceecieieciiieeiniiiiie e ceiireeeceeeneeenne

3.2.1 Ordem aparente.........c.ceeecveiiieriiiinieenireniie e s

3.2.2 Deducao do estimador emMpPiriCo........ccevuervueerereriirircniniine e
3.3 O estimador empirico € 0 estimador FP.........cccocvieeviiiiiiinieniieinne e,
3.4 O estimador empirico € 0 estimador Delfa...........ccovveeveerneenieenieeniecrinins
35 O estimador empirico € 0 estimador RB..........ccccecereiereieinreenieecicenieeiiens
3.6 Previsdo da confiabilidade do resultado obtido pelo estimador de erro.......

3.6.1 Intervalo L..coooeiieiiieeceece e

3.6.2 Intervalo IL.......couviiiiiiieeee s

3.6.3 Intervalo ITL......coooiiiiiiieiieerccieecn s
3.7 Consideragies FINais......ovvevuiirureiinieeniereeee st
4. TESTES INICIAIS ..ottt sne e s

vii

viil

xi

Xiil

N W W — e

~N 3

11
12
12
12
17
21
25
26
26

27
27
29
29
30
31
32
32
33
34
35
36
36
38

39



4.1
4.2
4.3
4.4
4.5

5.1
52
53
54

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4

8.1
8.2
8.3

CASO 5: EQUACAO DE POISSON.........c.oooiiieeerieeieeeereereereseneeseaeennane
Modelo matematico € solugdo analitiCa..........cceecveererviveeeriiernineesirreernereenens
JLY £ 6 1= (o3 11014 11<) o o1 o T RSO URRNE
Resultados € AISCUSSOES. ....eeiiierrrrrirereeeerieceairarierrierrerrereereesseeraeerseaaanannnnnnens
CONCIUSAO. ..ot eeeeeeiieeeeiiiereeeteeeeeereerirretreeeaee e eesee s ssensassaerreeseaeeeeeseeeananannnnnnnens

CASO 6: EQUACAO DEILAPLACE. ...,
Modelo matematico € Solugao analitiCa..........ceeeeeeereeeecrrieceieeeeiee e e
MOAELO NUIMETICO. . uuveriieieiieeeitieeee e eeee e e e eeeser et et et e e eeesesesessssssresnsseneseees
Resultados € AISCUSSOES......ccouuriiiiirrieeeiirieieeeeitrteeeeeeeeeirteeeeeeeeeeraesesssareneeenas
CONCIUSTO. ..coveeieeiieiietiieeteeeeee v rrreeee e s eeese et ssr s assbaresasseeeasaeeeesanesnnnnsnns

CASO 7: EQUACOES DE NAVIER-STOKES.........cccococooeiierreeereernn.
Modelo matematico € Solugao analitiCa.........cceeecuveeeeeceiiieeceecreeeereee e,
1% (o6 IS (e 3R 111 117 (o7 o TN
Resultados € diSCUSSOES. ... .uuuriirieeeiieeeeiiiiireeieeeeeeeeeeeeeesesrnnsranseanrreeeesessenaennnns
COMCIUSAOD. ...evtitttiitticiieriircieeceereeeeeeiieeesaeteaeeseaeseasseessssssssssiseeseaasaesesanaseessnnes

CONCLUSAQ.........oooiieiiteries s nssssnes
CONSTALAGOES. .. .evveeeerieirieiee et e et rte et e e iab e e et e e e e reeeessaeesesineesneeeeenneeas
Resumo das CONtIIDUIGOES. ......cccuvieverieeieeciiieeeiteeeeereeeeerae e e rneeeereeeeeneeaeeens
Trabalhos fULUIOS........cviiiiiiiie et ree e e e st e e e e e e ennees

REFERENCIAS BIBLIOGRAFICAS.........cc.ooooooiiuireeeeeeeeeeeeeiee s,

vi



Figura 2.1

Figura 3.1
Figura 3.2

Figura 3.3

Figura 3.4

Figura 3.5

Figura 4.1

Figura 4.2

Figura 4.3

Figura 4.4

Figura 4.5

Figura 4.6

Figura 4.7

Figura 4.8

Figura4.9 -

LISTA DE FIGURAS

Comportamento apresentado pelo critério absoluto para alguns

procedimentos iterativos (Roache, 1998).........ccccevveeeiiiviiiiecieeeieciee,
Erro da solu¢do numérica da Eq. (3.1), causado pelos erros de iterag@o.

Comportamento de ¢, com relagdoa ¢, para o Intervalo L.................
Comportamento de ¢, comrelagdo a ¢, para o Intervalo IL.................

Comportamento de ¢, com relagdo a ¢, para o Intervalo IL................

Gréfico de confiabilidade do método de previsdo.........ccevveereevrreereeenen.

Erro (F) e Incerteza (U) envolvidos no calculo da variavel x do subcaso
L (CASO 1)ttt st st e
Erro (E) e Incerteza (U) envolvidos no calculo da varidvel y do subcaso
L (CASO 1)ttt ettt st
Erro (E) e Incerteza (U) envolvidos no calculo da varidvel x do subcaso
2 (CAS0 1) ueeeieieeeeee ettt bn e e
Erro (E) e Incerteza (U) envolvidos no calculo da variavel y do subcaso
2 (CASO 1)ttt ae et e s eaaaesneean
Erro (E) e Incerteza (U) para a variavel x dos subcasos 1 e 3 (caso 2)....
Erro (E) e Incerteza (U) para a variavel x dos subcasos 2 e 4 (caso 2)....
Gréafico de confiabilidade para o subcaso 1 (caso 2).......cceceeevveereeereennen.
Grafico de confiabilidade para o subcaso 2 (caS0 2).....ccceverreerrerervennnen.

Erro (E) e Incerteza (U) para a variavel x do subcaso 1 (caso 3).............

Figura 4.10 — Erro (E) e Incerteza (U) para a variavel y do subcaso 1 (caso 3).............

viil

28

35

36

37

37

40

41

41

42

44

44

45

45

47

47



Figura 4.11

Figura 4.12 —

Figura 4.13
Figura 4.14
Figura 4.15
Figura 5.1

Figura 5.2

Figura 5.3

Figura 5.4

Figura 6.1

Figura 6.2
Figura 6.3
Figura 6.4
Figura 6.5
Figura 6.6
Figura 6.7
Figura 6.8
Figura 6.9

Figura 7.1

Figura 7.2

I

!

|

Erro (E) e Incerteza (U)
Erro (E) e Incerteza (U)

Erro (E) e Incerteza (U)

para as variavel x do subcaso 1 (caso 4)............
para a variavel x do subcaso 2 (caso 4).............

a partir da Fig. 4.11 iteragdes 150 a 190...........

Grafico de confiabilidade subcaso 1 (caso 4)......cccoeeirveiiiiininicnincinnnns

Grafico de confiabilidade subcaso 2 (caso 4)

Malha unidimensional UNIfOTINE. ......oouveieeeeeeeeeeee et eeeee et eee e e eeeeaans

Ordem efetiva (pg) do erro e ordem aparente (py) da incerteza de A(%()

para o subcaso 1.............

..........................................................................

Erro e incerteza de A(L{) para 0 subcaso l.........ccccovcvmnniiciiiecccennnnns

Grafico de confiabilidade para A(L{) do subcaso l..........ccceceviiinicnnenns

Malha bidimensional Uniforme........cccoovviviiveviiieeeiiiieeeeeeeeeeeece e

Ordem aparente p, daincertezade A(%4,%2,) para o subcaso 1..........

Ordem aparente p,, daincerteza de A, para o subcaso l........ccoc.c.....

Erro e incerteza de A(%4,%%4) para 0 subcaso L........cccceeeveveiereeerueuennens

Erro e incerteza de A, para 0 subcaso l........ccoviiiiiiiinnniniinininnenn

Grafico de confiabilidade para A(%4,%4) do subcaso 1.......ccceeueveeeece.

Grafico de confiabilidade para A, do subcaso 1.........cccovreiririrurnnne.

Razdo de convergéncia para A(%4,%24) do subcaso 4........ccceeverruernenn.

Erro de iteragdo para A(*4,%4) do SubCaso 4.......cc.cuvverurverrvriernererrennns

Razio de convergéncia (v) parav(%4,%4), subcaso 2, caso 7................

Ordem efetiva (pr) do erro e ordem aparente (py) da incerteza de M

para o subcaso 3, caso 7

...........................................................................

X

49

49

51

51

54

59

60

60

64

67

68

68

69

69

70

71

72

78

79



Figura 7.3 —

Figura 7.4 -

Erro e incerteza de M para 0 subcaso 3, Caso 7...ccevveeeeeniieniiennieeeneenn

Gréfico de confiabilidade de M para o subcaso 3, €aso 7..ueeeeeerueeennnne.



LISTA DE SIMBOLOS

A matriz do processo iterativo

Cap. capitulo

CDS Central Differencing Scheme

CFD Dinamica dos Fluidos Computacional (Computational Fluid Dynamics)
E@®,) erro de iteragdo na iteragdo »

E, erro de programagao

E. erro de arredondamento

E; erro de truncamento

Eq. equagao

Fig. figura

FP Estimador de Ferziger e Peric

h tamanho de um elemento da malha, que é igual a distincia entre dois nos

consecutivos da malha (m)

@) coordenada de um né em uma malha bidimensional

j coordenada do n6 em uma malha unidimensional

k coeficientes da equacdo da incerteza de uma solugdo numérica
P quadrado da magnitude do autovalor dominante de 4

L comprimento do dominio de calculo (m)

N nimero de nés da malha unidimensional

N? niimero de nés da malha bidimensional

PE ordem efetiva do erro (adimensional)

pL ordem assintética do erro (adimensional)

X1



PU ordem aparente da incerteza (adimensional)

r raio espectral de 4

R, residuo na n-ésima iteragao

R* residuo adimensionalizado

RB Estimador de Roy ¢ Blottner

Tab. tabela

TDMA TriDiagonal Matrix Algorithm

U incerteza ou erro estimado da solugdo numérica
Zn pardmetro envolvido na formulacdo de FP

Letras Gregas

£ tolerancia

¢ solugdo numérica de uma variavel genérica

o solugdo analitica exata de uma variavel genérica

O estimativa da solugdo analitica exata (@) obtida por extrapolagdo

75, autovalor dominante de 4

Jiis k-ésimo autovalor de 4

¥, k-ésimo autovetor de 4

6 efetividade de um estimador de erro: razdo entre incerteza (U) e erro (E)
(0] amplitude de uma fungo iterativa

razao de convergéncia

o pardmetro envolvido na formulacdo de RB
T taxa de convergéncia de um processo iterativo
A variavel dependente (escalar difundido)

xii



RESUMO

A principal motivagdo para o desenvolvimento deste trabalho consiste no aperfeicoamento dos
critérios adotados para interromper a execugao de um processo iterativo. Com este fim,

analisa-se o desempenho do estimador empirico. Este estimador fornece uma estimativa do erro
de iteracdo, também denominada de incerteza (U), com base na taxa de convergéncia da variavel
de interesse. O erro (£) de iteragdo pode ser definido pela diferenga entre a solugdo numérica
exata e a solugdo numérica em uma determinada iteragdo. Através da efetividade do estimador de
erro, isto ¢, da razdo entre incerteza e erro, analisa-se a eficiéncia do estimador empirico quanto a
sua acuracia (U/E =1) e confiabilidade (U/E = 1). Para tanto, sdo resolvidos sistemas de equagdes
gerados a partir da aplicacio dos métodos de diferengas finitas e volumes finitos sobre malhas
unidimensionais e bidimensionais uniformes, de problemas de transferéncia de calor e de
mecénica dos fluidos. Estes sistemas de equagdes foram resolvidos com a utilizagdo de varios
métodos iterativos. O desempenho do estimador empirico pode ser dividido em trés intervalos:
nas iteragdes iniciais, em geral a acuracia é baixa; quando o numero de iteragdes & muito
elevado, os erros de arredondamento predominam sobre os erros de iteracdo mas, mesmo assim,
a acuracia ¢ relativamente boa; no intervalo entre esses dois extremos, a acuracia tende a
melhorar 8 medida que se aumenta o nimero de iteragdes. Nao se recomenda o uso do estimador
empirico em processos iterativos que envolvem a aplicagdo da técnica multigrid pois, em geral,
sua acuracia ¢ baixa. Constatou-se que existem relacdes diretas entre o estimador empirico e

alguns estimadores disponiveis na literatura.

Palavras-chave: simulacdo numérica, erros numéricos, erros de iteracdo, estimador de erro,

dindmica dos fluidos, verificagio.
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ABSTRACT

The main motivation to develop this work consists in improve the rules or approaches adopted to
interrupt the execution of an iterative process. It's proposed to calculate the uncertainty (U) of
numerical solutions, where the uncertainty is defined as an estimated iterative error €). To a
variable of any interest, this error is the difference between the exact numerical solution and the
calculated numerical solution. It is analyzed the efficiency of an empirical error estimator to
iterative processes. This estimator calculates the numerical uncertainty (/) on basis on the
convergence rate of the interest variable. Through the effectiveness of the error estimator, that is,
of the reason between uncertainty and error, the error estimator efficiency is verified on its
accuracy (U/E ) and reliability (U/E ). Therefore, are resolved linear systems generated from the
application of finite differences and finite volume methods, on uniform unidimensional and
bidimensional meshes, in heat transfer problems and and fluid mechanics. These systems of
equations were resolved with the use of iterative methods. The performance of the empirical
estimator can be divided in three intervals: In the "initial" iterations the accuracy is low, in
general; when the number of iterations is very high, the round-off affect the accuracy, that is
good; in the interval among those two limits, the accuracy tends to be big as it increases the
iteration number. It was verified that, in iterative processes that involve the application of the
multigrid method, the empirical estimator behavior doesn't seems to be good; because in the
accomplished simulations it was obtained results with low accuracy and not very reliable. It was
also verified that there are direct relations between the studied error estimator and some existent

estimators 1n the literature.

Keywords: Numerical simulation, numerical errors, iteration errors, error estimator, fluid

dynamics, verification.
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Capitulo 1.

INTRODUCAO

Este capitulo descreve o problema tratado neste trabalho, que se constitui no estudo de
um estimador de erro para processos iterativos. Sdo apresentadas as principais razdes para
utilizagdo de um estimador. Em seguida, é feita uma breve apresentagdo sobre as principais

fontes de erros envolvidos em processos numéricos. Por fim, tem-se o escopo do trabalho.

1.1 O PROBLEMA

Em engenharia, problemas que possuem solugdo analitica sdo aqueles que envolvem
equagdes, geometrias e condigdes de contorno e iniciais muito simples, ou seja, sdo as excecoes.
Para os demais problemas utilizamse métodos numéricos cujas solugdes sdo obtidas com o
emprego de computadores. A tarefa de um método numérico € resolver uma ou mais equagoes
diferenciais, substituindo as derivadas existentes na equagdo por expressdes algébricas que
envolvem a fungdo incognita. A maneira de obter essas equagdes algébricas € que caracteriza o
tipo de método numérico. Para tratar modelos computacionalmente ¢ necessario expressar de
forma adequada as equagdes e a regido (dominio) em que elas sdo validas. Como ndo se pode
obter solugdes numéricas sobre uma regido continua, devido aos infinitos pontos da mesma,
inicialmente o dominio deve ser discretizado, ou seja, dividido em pontos, elementos ou
volumes. Somente nestes pontos € que as solugdes serdo obtidas.

Os resultados numéricos obtidos devem ser, entretanto, confidveis e este € um ponto de
extrema importancia a ser observado. A diferenca entre a solugdo analitica exata de uma variavel
de interesse e a sua solugdo numérica é denominada por Ferziger e Peric (1999) de erro da
solu¢io numeérica, ou simplesmente, erro numeérico. O erro numérico € causado por diversas
fontes de erro, que podem ser classificados em (Marchi, 2001): erros de truncamento, erros de
iteragdo, erros de arredondamento e erros de programacao. Estas fontes de erro sdo explicadas na

secdo 1.3. O processo que quantifica o erro numérico tem sido denominado recentemente de
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verificacdo (Blottner, 1990; Mehta, 1996; Oberkampf ¢ Blottner, 1998; Roache, 1998; AIAA,
1998; Jameson e Martinelli, 1998; Rizzi e Voss, 1998; Fortuna, 2000) ou validagio numérica
(Maliska, 1995). A verificagdo da-se através da utilizagdo de estimadores de erro. A estimativa
fornecida por um estimador de erro pode também ser chamada de incerteza numérica.

O problema tratado neste trabalho é a estimativa do erro de iteracdo de solucdes
numéricas em Dindmica dos Fluidos Computacional (CFD), sendo que os calculos envolvidos
nesta area requerem grande acuracia. A area de conhecimento denominada CFD estuda métodos
computacionais para simulagdo de fendmenos que envolvem fluidos em movimento com ou sem
troca de calor. No geral, CFD apresenta um versatil conjunto de algoritmos para solugdo
numérica dos problemas de escoamento (Fortuna, 2000). A primeira solugdo numérica para um
escoamento viscoso foi proposta por Thom (1933), envolvendo o método de diferengas finitas e
o uso de um processo iterativo.

Em CFD, o uso de métodos iterativos € comum, devido a existéncia de modelos
matematicos constituidos por sistemas de equagdes ndo-lineares acoplados, equagdes de Navier-
Stokes, etc. As descrigdes matematicas do comportamento dos fluidos s6 ganharam forga no
século XIX, na forma das equagGes de Navier-Stokes. Ainda hoje, apesar de todos os progressos
da matematica, ndo € possivel resolver analiticamente estas equagdes para problemas reais de
engenharia, os quais possuem dominios e condi¢cdes de contorno complexas. Utilizam-se entéo
métodos numéricos, os mais comuns sdo: diferengas finitas, volumes finitos e elementos finitos.
Em CFD uma particularidade dos sistemas lineares provenientes da discretizagdo de equagdes
diferenciais € que eles sdo, em geral, muito grandes e as matrizes que surgem da aplicagdo destes
métodos numéricos sdo normalmente esparsas, ou seja, com muitos elementos nulos. A aplicacao
de um método direto para solugdo de um sistema cuja matriz possui estas caracteristicas, ndo ¢
recomendavel, pois pode-se ao longo do processo preencher com valores os elementos nulos, e
pelo fato de se ter que armazenar toda a matriz na memoria do computador, apesar da maior
parte destes espagos estar sendo preenchida com zeros. Os métodos iterativos nao sofrem este
problema, requerem somente o resultado da multiplicagdo da matriz coeficiente por um vetor e,
portanto, o padrdo de zeros da matriz ndo sofre qualquer modificagdo ao longo do processo.

Processos iterativos consistem em se repetir a aplicagdo de um algoritmo, em geral
simples, que a partir de uma aproximagdo conhecida constréi uma nova, mais proxima da
solugdo exata. Fornece desta maneira, uma resposta exata somente como limite de uma
seqiiéncia infinita. Em geral, métodos iterativos sdo faceis de serem programados porque os

calculos envolvidos sdo os mesmos em todas as iteracdes (Kreiszig, 1999).
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1.2 OBJETIVO

Este trabalho tem como objetivo o aperfeigoamento das técnicas existentes para estimar
erros cometidos nos procedimentos iterativos aplicados em CFD. Propde-se, entdo, analisar o
desempenho de um novo estimador para o erro de iteragdo, o estimador empirico. Analisa-se

também, um método de previsdo da confiabilidade do resultado obtido pelo estimador de erro.

1.3 ERRO NUMERICO

O erro numérico ¢ causado por diversas fontes, que sdo (Marchi, 2001): erros de
truncamento (Er), erros de arredondamento (£7), erros de programacéo (E,) e erros de iteragdo
(En); segundo Ferziger e Peric (1999), Oberkampf e Blottner (1998), Roache (1998), Tannehill et
al. (1997), Celik e Zhang (1995) e Demuren e Wilson (1994). Simbolicamente, tem-se

E(¢) = E(Er, Eg, Ep, Ey) (1.1)

onde (@) ¢ a varidvel de interesse podendo ser local ou global, primaria ou secundaria;
dependendo do problema. Essas quatro fontes de erro podem ter magnitudes e sinais diferentes, o
que pode acarretar em cancelamentos parciais ou totais entre esses erros. A definigdo, o efeito e a
origem de cada uma destas quatro fontes de erro sdo explicados a seguir de forma isolada.
¢ Erros de Truncamento

Como ¢ mencionado anteriormente, dado um modelo matematico, ¢ comum substitui-lo
por um modelo numérico. A maioria dos modelos numéricos envolve o truncamento, que nada
mais ¢ do que o modelo original definido de tal forma que todas suas partes possam ser
calculadas em um numero finito de passos. O erro que ocorre aos se truncar um processo infinito
¢ chamado erro de truncamento (£7), ou seja, € proveniente do fato de se aproximar um problema
continuo com informagdo num conjunto infinito por um problema discreto com informacdo num
conjunto finito.

Tannehill et al. (1997), Ferziger e Peric (1999) e Roache (1998) sdo exemplos de
trabalhos que discutem sobre erros de truncamento e de discretizag@o. Quando o erro E(¢) da
solucdo numérica ¢ gerado apenas por erros de truncamento (E7), ele é denominado de erro de

discretizacdo (Ferziger e Peric, 1999). Questdes sobre este tipo de erro podem ser encontradas no

texto de Marchi (2001).
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¢ Erros de Arredondamento

Um nimero pode admitir varias representagdes, mas normalmente adota-se uma sucessdo
de racionais que sdo multiplos de uma poténcia de 10 (base decimal), ou seja, utiliza-se notagio
cientifica. No caso da notagdo cientifica, um niimero representa-se através do sinal, da mantissa e
do expoente, na base decimal. Os digitos variam entre 0 € 9, mas o primeiro digito da mantissa
deve ser diferente de zero (o numero zero ¢ representado a parte). Mas, a menos que se esteja de
posse de uma maquina com memoria infinita, a representagdo de um nimero deve ser finita, pelo
que, conseqiie ntemente somos obrigados a considerar um nimero finito de digitos na mantissa e
uma limita¢do nos valores dos expoentes admitidos.

Dorn € McCracken (1981) e Hamming (1973) sdo exemplos de trabalhos que discutem
sobre erros de arredondamento. Os erros de aredondamento ;) sdo os erros que ocorrem
principalmente devido a representagdo finita dos niimeros reais nas computagdes. Eles dependem
do compilador (software) usado para gerar o codigo computacional e do computador (hardware)
empregado em sua execugdo. Na linguagem Fortran 90, por exemplo, pode-se usar precisio
simples com quatro bytes, precisdo dupla com oito bytes ou precisdo quadrupla com 16 bytes por
variavel do tipo real. Quanto maior € a precisdo usada para representar as variaveis, menores sao
os erros de arredondamento; entretanto, maior ¢ a memoria computacional necessaria para o
armazenamento destas varidveis.

e Erros de Programacio

Néo basta desenvolver o programa para resolver um dado problema, deve-se analisar se a
soluc@o estd correta. Muitos erros podem ocorrer durante o desenvolvimento de um programa.
Esses erros podem ocorrer por um mau entendimento dos elementos da linguagem utilizada ou
até mesmo por descuido. Uma maneira de se evitar esse tipo de erro é efetuar testes para detectar
erros no programa. Shih (1985), Maliska (1995) e Roache (1998) sdo exemplos de trabalhos que
apresentam procedimentos para se detectar erros de programagdo. Na categoria de erros de
programacao (£,) incluemse basicamente (Roache, 1998):

1) os erros resultantes do uso incorreto de um modelo numérico na aproximacdo de um modelo
matematico;

2) os erros gerados na implementacdo do modelo numérico num programa computacional;

3) os erros cometidos no uso do programa computacional durante a obtengdo da solugdo
numeérica; €

4) qualquer outra eventual fonte de erro.
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e Erros de Iteracao
Roy e Blottner (2001), Ferziger e Peric (1999), Roache (1998), Kim et al. (1998) e
Demuren e Wilson (1994) sdo exemplos de trabalhos que discutem sobre erros de iteragio. De

acordo com Ferziger e Peric (1999), considerando-se uma determinada variavel de interesse (¢ ),
o erro de iteragdo (£,) ¢ a diferenca entre a solugio exata (@) das equagdes discretizadas e a
solugdo numérica em uma determinada iteragdo (¢, ), admitindo-se que a solugdo exata seja
unica. As equagdes discretizadas resultam da aplicagdo de um modelo numérico sobre um
modelo matematico. Tem-se, entdo, que:

E =0-¢, (1.2)
onde 7 representa o numero da iteragdo corrente no processo de solugdo do sistema de equagdes
algébricas, gerado pelas equagdes discretizadas do modelo matematico. Entre outros, alguns
fatores que geram erros de iteragdo sdo:

1) o emprego de métodos iterativos para resolver as equagdes discretizadas, ou o sistema de
equagoes algébricas;
2) o uso de métodos segregados na obtengdo da solugdo de modelos matematicos constituidos

por mais de uma equagdo diferencial;

3) a existéncia de ndo-linearidades no modelo matematico;

1.4 ORGANIZACAO DA DISSERTACAO

Esta dissertag@o esta organizada em 8 capitulos, e apresenta-se da seguinte forma:

e O Capitulo 1 apresentou uma breve abordagem do problema tratado durante este trabalho e
o objetivo desta dissertagao.

e No Capitulo 2 discute-se sobre a convergéncia de processos iterativos e sobre os estimadores
de erro de iteragdo disponiveis na literatura. Discute-se, também, sobre a estrutura e resolugdo de
sistemas de equagdes encontrados em problemas de engenharia.

e O Capitulo 3 trata das relagGes entre os estimadores ja existentes e uma nova proposta de
estimativa do erro de iteracdo, o estimador empirico. Também trata sobre um novo método de

previsao da confiabilidade do resultado obtido pelo estimador de erro.
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e No Capitulo 4 sio considerados quatro testes iniciais com a finalidade de verificar o
desempenho do estimador empirico e do método de previsdo da confiabilidade em alguns
procedimentos iterativos simples.

e O Capitulo 5 envolve a resolugdo numérica de um problema difusivo unidimensional com
absorg¢do de calor.

e No Capitulo 6 ¢ abordado um problema de difusdo bidimensional, em regime permanente,
sem geragdo de calor e com condutividade térmica constante.

e O Capitulo 7 trata de um problema de escoamento bidimensional isotérmico de fluido
incompressivel, representado pelas equagdes de Navier-Stokes.

e O Capitulo 8 ¢ dedicado a conclusdo da dissertagdo e sugestdes para trabalhos futuros.



Capitulo 2.

REVISAO BIBLIOGRAFICA

2.1 CONVERGENCIA

O termo “convergéncia” ¢ usado em dois diferentes contextos, que sdo: convergéncia de
truncamento e convergéncia iterativa (Fletcher, 1997). A convergéncia de truncamento esta
relacionada ao fato de que a solugéo do sistema de equagdes algébricas obtidas pela discretizagdo
pode coincidir com a solugdo exata da equag@o diferencial em determinadas circunstancias. O
processo de discretizagdo pode ser invertido, ou seja, através da expansdo da série de Taylor
pode-se recuperar a equagdo diferencial governante do problema. Ou entio pode-se obter a
solucdo exata da equacdo diferencial ao considerarse um nimero infinito de pontos na malha.
Num outro contexto, convergéncia iterativa que sera considerada neste trabalho somente como
“convergéncia” refere-se ao alcance da solugdo exata do sistema de equagles algébricas
discretizadas. A taxa, ou razdo, de convergéncia pode ser vista como uma medida de quéo rapido
a solugdo fornecida pelo método iterativo se aproxima da solugdo do sistema linear (Fortuna,

2000).

Considerando a solugdo de uma variavel de interesse em duas iteragGes consecutivas, @,

e ¢,_,, € a solugdo exata do sistema P, supondo que existe um numero real 1, =0, tal que:
|6 — @ <[ — P @1

Se 1, <1, para todo %, o erro da solugdo numérica € reduzido de um fator de 1, a cada iteragéo.

Considerando-se k — oo :

-0
lm 1, =lm M=l 2.2)
ST o -]
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Segundo Fortuna (2000), a taxa de convergéncia de um processo iterativo pode ser dada

por:

T=—. 1 2.3)

Temrse entdo que, se 1 <1 o esquema iterativo converge, se t >1 diverge e se 1t =1 nada pode se
afirmar. Quanto menor o valor de 1 melhor é a convergéncia, ou seja necessita -se de menos
iteragdes para se obter @ para uma mesma condico inicial. Segundo Ferziger e Peric (1999), a

convergéncia rapida é a chave da efetividade de um procedimento iterativo.

2.1.1 Critérios de Convergéncia

Critérios de convergéncia iterativa, ou somente “critérios de convergéncia”, sdo critérios
adotados para interromper a execugdo de um processo iterativo, o que ndo é uma decisfo facil.
Existem problemas que possuem convergéncia lenta e, caso a execugio seja interrompida por um
critério mal escolhido, pode-se ainda estar longe da solugdo convergida, ou seja, da solugdo exata
do sistema de equagdes. Por outro lado, ao se utilizar um critério muito severo, ¢ manter o
processo iterando sem necessidade, pode-se ter desperdicio de recursos como o tempo
computacional.

Quando a ordem de grandeza da varidvel de interesse € conhecida, neste caso, um
critério absoluto pode ser eficiente, ou seja, baseado na diferenga entre duas iteragdes
sucessivas. O procedimento ¢ interrompido quando esta diferenga, medida por alguma norma, é

menor que um valor pré-estabelecido, normalmente denominado “tolerdncia” (€).

0,0 — 0] <€ (24)

Segundo Roache (1998), ao se utilizar este critério deve-se cuidar com a escolha de &, pois este
pode possibilitar a suspensdo das iteragdes com uma solugdo prematura, tal como mostrado na
Fig. 2.1. Segundo citagdo feita por Roache (1998), este comportamento nao é incomum (Ingham,
1968). Pode-se evitar esta parada prematura da computagédo, analisando-se a “segunda variacdo”,

ou seja, definindo-se os critérios:
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||¢n+l - ¢n

T

n

Figura 2.1 Comportamento apresentado pelo critério absoluto para alguns procedimentos

iterativos (Roache, 1998).

A, =|e. -al<e (2.5)

AnAn = I|An+l _An

<e, 2.6)

Ou ainda testando passos maiores de iteragao:
|l¢n+10 - ¢n " <& (27)

onde @,,,, ¢ a décima iteracdo obtida apés a iteracdo n. Mas nenhum destes critérios pode
substituir o exame do comportamento iterativo, Fig. 2.1, (Roache, 1998).
Se a ordem de grandeza da variavel de interesse ndo € conhecida, a tarefa ¢ mais dificil.

Um critério freqiientemente empregado na literatura € o critério relativo, ou seja:

¢n+1 - ¢n

2.8
Y <eg 2.8)

Este critério € normalmente mais significativo, mas ¢ obviamente mais perigoso, pois se
¢, estiver proximo de zero, pode-se ter “indeterminac¢do”. Um outro aspecto importante do uso

do critério relativo ressaltado por Maliska (1995), é que este pode manter um processo iterativo
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sendo executado, quando tudo o que interessa do ponto de vista fisico ja estd sem variagdo. Para
exemplificar, considera-se o campo de variagdo da varidvel ¢ com o valor minimo 0,0010 e o
valor maximo 1000. Sendo que da iteragdo () para iteragdo (n + 1), observa-se a variagdo de
0,0018 para 0,0020 na magnitude da variavel. Ao se aplicar o critério dado pela Eq. (2.8) o valor
encontrado ¢ 0,1, ao passo que a variagdo de uma iteracdo para outra € de 0,0002. O resultado
disto ¢ que dependendo do valor adotado para &£, pode-se gastar um grande tempo de
computagdo sem necessidade.

Um critério que evita este problema consiste em determinar a faixa de variagdo da
variavel de interesse através dos valores maximo e minimo fornecidos pela fungio iterativa no

dominio de calculo. Isto é, define-se:

o= ¢max - ¢min (29)

E aplicando-se ¢ como referencial para o “critério relativo”, ou seja:
) ]

¢n+l - ¢n

<g (2.10)
c

Com a utilizagdo deste critério no exemplo descrito anteriormente, obtém-se o valor 0,0000002,
fazendo com que o critério de parada seja satisfeito antecipadamente.

Diminuindo-se a tolerdncia do critério de convergéncia, pode-se reduzir os erros de
convergéncia ou de iteragdo com um aumento do custo computacional No entanto, deve-se ter
cuidado, pois estes critérios prestam informagdes relativas a convergéncia, ndo fornecendo a
magnitude do erro cometido no processo iterativo, sendo esta uma tarefa destinada aos
estimadores de erro.

Além destes critérios existem outros disponiveis na literatura, como por exemplo: norma
L, do residuo (Fortuna, 2000) e norma [, do residuo (Patankar, 1980).

Roache (1998) faz algumas sugestGes sobre o estabelecimento da convergéncia de um
processo iterativo:

e Nao basta somente examinar o comportamento iterativo (Fig. 2.1), deve-se ter

também critérios quantitativos.



Capitulo 2. Revisio Bibliografica. 11

e Diferentes variaveis envolvidas em um mesmo processo iterativo podem apresentar
diferentes taxas de convergéncia. Se a variavel de convergéncia mais lenta €

conhecida, ela pode ser testada; caso contrario todas as variaveis devem ser testadas.

2.2 CRITERIOS PARA MEDIR O DESEMPENHO DE UMA ESTIMATIVA DE
ERRO

Conforme descrito anteriormente, faz-se necessario em CFD a utilizagdo de estimadores
de erro, devido a grande precisdo exigida nos calculos. A qualidade de uma estimativa de erro
pode ser avaliada através da sua efetividade (0), que ¢ definida pela razdo entre a incerteza (U)

e o erro (E£') (Zhu e Zienkiewicz, 1990):

== @2.11)

Uma estimativa de erro ideal ¢ aquela cuja efetividade é igual a unidade (0 =1), isto é,
quando a incerteza € igual ao erro ( U = E'). Quando a magnitude da incerteza ¢ maior do que a
magnitude do erro de iteragdo e ambas tem o mesmo sinal, pode-se dizer que a estimativa do erro

¢ confiavel (Marchi, 2001). Matematicamente, diz-se que a estimativa do erro ¢ confiavel

quando:
02>1 (2.12)
Se a magnitude da incerteza ¢ aproximadamente igual a magnitude do erro de iteragio,
diz-se que a estimativa do erro é acurada (Chapra e Canale, 1994). Matematicamente, uma
estimativa de erro com acuracia elevada significa que:

6 =1 (2.13)

A definigdo quantitativa do que € uma estimativa de erro acurada € o quio proximo da unidade

deve estar a efetividade.
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2.3 ESTIMADORES DE ERRO DE ITERACAO

Sdo apresentados aqui alguns estimadores do erro de iteragdo disponiveis na literatura.

2.3.1 O Estimador Delta

Roache (1982) ndo considera adequado se decidir sobre a convergéncia de um processo
iterativo utilizando-se “critérios elativos”, ou seja, envolvendo a razio entre dois ndimeros.
Adota como critério de convergéncia de um processo iterativo a diferenca entre os valores

obtidos para a variavel de interesse em duas iteragdes, ou seja, um “critério absoluto”, dado em :

G, =, |<€ (2.14)

Com n, >n, ¢ € sendo um numero pequeno variando de acordo com o problema. Se € ¢

considerado como sendo a tolerancia, ou seja, o erro admitido, entdo o primeiro membro da Eq.
(2.14) nos fornece o erro da solugdo numérica na iteragdo corrente. A estimativa do erro

utilizando este fato € calculada pelo “estimador delta”, denominagio adotada por Marchi (2001).

2.3.2 O Estimador de Ferziger e Peric

Qualquer esquema iterativo para resolucdo de um sistema linear pode ser escrito como:

¢, =49, +q (2.16)

onde:
¢, = vetor solugdo na n-ésima iteragao
A = matriz iterativa (depende do esquema de iteragao)

g = fator de atualizagdo (depende do problema)

Considerando-se o valor absoluto do erro e a Eq. (1.2):

¢, =D +E@,) (2.17)

onde:
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® = solugdo convergida ou exata
E(¢,) = erro de iteragdo de ¢,
A convergéncia de um processo iterativo pode ser analisada com auxilio dos autovalores

HU, e autovetores ¥, da matriz 4 (Golub, 1990):
AY, =¥, ; k=123.N (2.18)

com N sendo o nimero de equagdes. O erro inicial E(¢,) pode ser escrito como a combinagdo

linear destes autovetores.

E(@) =) a,'¥, (2.19)

com ax sendo uma generalizacdo dos coeficientes de Fourier (Ferziger e Peric, 1996).

Na n-ésima iteragéo, tem-se:
N

E@) =2 a,(4)"¥, (2.20)
k=1

O estimador do erro de iteracdo proposto por Ferziger e Peric (1996), que serd
mencionado neste trabalho como estimador FP, abrange problemas em que a malha obtida no
processo de discretizagdo pode ser ndo-uniforme ¢ também casos em que os auvalores associados
as matrizes do processo iterativo sejam numeros complexos. Com relagcdo aos autovalores
associados, tem-se dois casos:

e Autovalores reais

Se o autovalor dominante y;, que € o autovalor de maior magnitude (Golub, 1996), ¢ real,
entdo ao final de muitas iteragdes, ou seja, quando n — oo, 0 erro dominante ¢ o primeiro termo
do somatorio apresentado na Eq. (2.20). Deste fato e pela combinagio das Egs. (2.17) e (2.20),

tenrse:

¢, =@ + a; ()", 221
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Uma expressdo para o erro de iteracdo pode ser obtida pela diferenga entre duas iteragoes

sucessivas. Da Eq. (2.17),

Gy =9, =@ +E@,,) (P + E@,)) (222

Assim, com a Eq. (2.20),

X =0 — 0, =a, (U — D)"Y, (2.23)

Segundo Ferziger e Peric (1996), o autovalor dominante y, pode ser estimado por:

= 224)
X ni
onde || = norma L, (Golub, 1996). Tendo-se o autovalor, ndo é dificil estimar o erro de
iteracédo, através de:
E(@) =00, ~a,(14)" ¥, ~——2— (229)

(=1

e Autovalores complexos
Meétodos iterativos freqiientemente apresentam matrizes que possuem autovalores

complexos. Se o autovalor de maior magnitude ( £4) é complexo, entdo considera-se também o
seu conjugado, pois se um nimero complexo ¢ autovalor de uma matriz, conseqiientemente seu
conjugado também o sera (Golub, 1996). A equagdo (2.21) fica entdo representada por:

@, =D +a,(u)"Y, +a ()", (2.26)

com o simbolo #* indicando “conjugado”.
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Com base na Eq. (2.22), tem-se:

Xn=0pq =0, = (/J 1)n (,LL 1 l)aI‘Pl + (lu 1*)"(/‘ | _1)a;lP1* (2.27)

Xo=(,yo+r(u;)o (2.28)
onde:

o :(:u 1 _1)a1T1

o = (,u 1* —1)af‘l’1*

A magnitude do autovalor p, pode ser representada por (Golub, 1996):

U, =1le” (2.29)
Definindo-se:
2y = Yo Xon = XnaZna = 217"2J00] [cos209) - 1] (2.30)

Segundo Ferziger e Peric (1996), estima-se o quadrado da magnitude do autovalor por:

@.31)

Desta forma, quando se tem autovalores complexos, a estimativa do erro requer um grande
numero de aproximagdes implicando muitas vezes em oscilagGes e os resultados contém termos
proporcionais ao cosseno do angulo fase ¥ (argumento do niimero complexo). Lembrando que

se tem interesse somente no valor absoluto, obtémse:

An

17 +1

|E@,)| = (2.32)
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Nos casos em que héa oscilagdes na estimativa do erro por FP, esta ndo deve ser acurada
em algumas iteragOes particulares, mas deve ser uma boa aproximagdo para o todo (Ferziger e
Peric, 1996). No entanto deve-se cuidar com o numero de iterages onde ocorre este problema e
analisar em quais iteragdes esta estimativa ndo ¢ adequada. Algumas vezes, para se remover o
efeito da oscilagdo considera-se um valor médio para o autovalor estimado sobre um certo
nimero de iteragdes. Dependendo do problema este niimero de iteragdes varia de 1 a 50 (cerca
de 1% do numero total de iteragoes).

Finalmente tem-se um caso que se pode tratar de autovalores reais e complexos. Para

23

determinar se o autovalor dominante g4 € real ou complexo, usa-se a expressdo “raio”.

Zn

Xn

r= (2.33)

2

Ser € “pequeno”, entdo U, € real, caso contrario é complexo. Foi adotado por Ferziger e Peric

(1996) r = 0,1 como um indicador do tipo de autovalor, para entdo se aplicar a expressdo

apropriada para o estimador de erro.

Algoritmo para estimar erros de iteracdo, segundo Ferziger e Peric (1996):

Para aplicac@o do estimador FP necessita-se de alguns parimetros, que sdo:

l) Zn :¢n+1 _¢n
)2, = XnoXn = XniXnt
zn[
i) r=—"=
|

Tem-se entdo uma condicional:
Ser >0, = autovalor complexo
Ser £0,1 = autovalorreal

o Autovalor Complexo

U = ¢n+l _(pn‘

(2.34)
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o Autovalor real

- (¢n B ¢n+l)
! (,u 1Ln 1) (2 35)
/J — (¢n+l _(pn) .
@, -9,

onde a incerteza (U, ) corresponde a estimativa do erro (E(¢,)).

Para processos iterativos com muitas iteragdes (n — o), a estimativa do erro obtida pelo
estimador FP apresenta problemas. Estes problemas ocorrem devido ao grande nimero de
operagdes envolvidas no calculo da incerteza, ocasionando erros de arredondamento. Por
exemplo, as operagdes de subtragdo acarretam muitas vezes o problema do cancelamento
subtrativo.

Se a matriz iterativa (4) apresentar autovalores complexos, a estimativa do erro envolve
um numero bem maior de aproximagdes que para o caso de autovalores reais. Com isso, tem-se
um grande nimero de oscilagdes nos resultados numéricos para incerteza. Para contornar este
problema, os autores sugerem a utilizagdo de um valor médio para o pardmetro / sobre um certo
nimero de iteragdes, mas a utilizagdo deste critério requer uma avaliagdo rigorosa sobre a
quantidade e localizagio das oscilagdes.

Para o caso de autovalores reais, se o pardmetro 1 assumir valores muito proximos de 1
tem-se “indeterminagdo”, pois o denominador da Eq. (2.35) se torna proximo de zero. Desta
forma, ndo ¢ possivel se estimar o erro. Serd mostrado no capitulo 3 que este pardmetro esta
diretamente relacionado com a ordem de convergéncia do processo iterativo. Portanto, pode-se
dizer que o estimador FP ndo ¢ adequado para se estimar erros de processos iterativos que tém

convergéncia “muito lenta”.

2.3.3 O Estimador de Kim, Anand e Rhode

Sdo avaliadas por Kim, Anand e Rhode (1998) duas grandezas que sdo comumente
usadas para decidir sobre a convergéncia iterativa de problemas numéricos. Uma alternativa € a
utilizagdo do residuo das equagdes lineares algébricas discretizadas, que ¢ bastante usado no
método de volumes finitos (Patankar, 1980). Segundo Kim, Anand ¢ Rhode, a aproximagéo do
erro iterativo pelo residuo ¢ mais apropriada conceitualmente que a utilizagdo de “critérios
absolutos”, envolvidos na aproximagao dada pelo estimador Delta, pois o residuo expressa a

diferenga entre a solugdo encontrada e a solugdo exata das equagdes discretizadas. Além disso,
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um importante papel do residuo ¢ enfatizado por Buzzi-Ferraris ¢ Tronconi (1993) na solucdo de

equagoes algébricas nio-lineares.

Para um dominio inteiro, o sistema de equagdes resultante de um processo de

discretizagdo pode ser escrito como:
Ap=C (2.36)

Meétodos iterativos iniciam com uma estimativa inicial para solu¢do em uma iteragéo »

(¢, ), entdo calcula -se o valor de ¢ para a iteragio (n+1) e assim sucessivamente até que @,,.,
satisfaga a Eq. (2.36), quando isso ocorrer o processo iterativo ¢ finalizado. No entanto, a Eq.
(2.36) é produto da discretizagdo, ou seja, aproximagdes para as equagdes diferenciais parciais e
ordinarias. Mesmo que ndo se tenha erro de arredondamento, @, ., satisfazendo a Eq. (2.36) ndo
¢ a solugdo exata para equagdo diferencial que rege o problema.

Kim, Anand e Rhode (1998) questionam sobre a garantia de que os “critérios de
convergéncia absoluto e relativo” assegurem que ¢,,, ¢ certamente solugdo para Eq. (2.36). Por
esta razdo sugerem o monitoramento do somatério do erro residual em cada né da malha. Uma
opecao ¢ declarar a convergéncia quando este somatério for menor que €, com £ sendo um valor
pequeno. O principal objetivo do trabalho de Kim, Anand ¢ Rhode (1998) ¢ avaliar o uso do
crittrio de convergéncia absoluto e propor um estimador de erro baseado no residuo

adimensionalizado ( R *).

Considerando a Eq (2.36), o residuo ( R, ) para n-ésima iteragdo é dado por:
Rn = A¢n —-Cn 2.37)
Define-se R * como sendo a soma do residuo local adimensionalizado:

R

n

2

R¥= 238
> [46,] 239
2%}
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Na Eq. 2.37) a matriz coeficiente 4 pode ser particionada (Hirsch, 1988) em uma soma
de matrizes: L contendo os elementos abaixo da diagonal de 4, D contendo os elementos ao

longo da diagonal de 4, e U contendo os elementos acima da diagonal de 4, ou seja:
A=L+D+U (2.39)

De acordo com o processo iterativo de Jacobi, temse:

D¢n+1 = Cn - L¢n - U¢n (240)

Subtraindo D¢, de ambos os lados na Eq. (2.40), vem:

D¢n+] - D¢n = Cn ~L¢n _U¢n _D¢n (2'41)

Substituindo a Eq. (2.5) em (2.41), obtém-se:

D@,)=C, - Ly, -U¢, — D9, (242)
D@A,)=C, - (L+D+U)¢, (243)
DA,)=C, ~ 49, 244
D(A,)=-R, (2.45)

Assim mostra-se que a troca em ¢ de uma iteragio n para uma iteragio @+1) é

proporcional ao residuo R na iteragdo n. A principal suposi¢do nesta analise € que A4 €

estaciondria; no entanto, 4 muda de iteracdo para iteragdo para o caso de equagdes nio-lineares.
Considerando-se @ como sendo a solugdo exata para Eq. (2.36), se E(¢,) >0 quando n— oo,

entdo o método € convergente ¢ pode-se escrever:
R=49d-C=0 (2.46)

Também, por definigdo, (Kim, Anand e Rhode, 1998):
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n G (A7)

Subtraindo a Eq. (2.47) da Eq.(2.46), tem-se:

R-R,=A® — 49, - C+C, (2.48)

Assumindo que C € invariante com », com o progresso da solugdo, a equagdo (2.48) pode ser

reduzida para:
-R,=A4A(P-9¢,) (2.49)
~R, =A4E(9,) (2.50)

Comparando a Eq. (2.46) e a Eq. (2.50), vem:

D(A¢,) = AE($,) @51

O erro originado ao se considerar as matrizes 4 ¢ C como sendo invariantes, decresce
nitidamente quando a convergéncia é alcancada, em fungdo de ¢ (Kim, Anand e Rhode, 1998).
Entdo, quando o processo esta convergido, as matrizes 4 e C s3o essencialmente invariantes, isto
¢, quando o numero de iteragdes tende a infinito a Eq. (2.37) tende ao valor exato do erro.

Conseqiientemente, monitorar a troca em ¢} de iteragdo para iteracdo ou monitorar o residuo na

discretizagdo das equagdes € equivalente a monitorar o erro E(@, ).

Os experimentos numéricos realizados por Kim, Anand ¢ Rhode (1998) envolveram um
modelo computacional de volumes finitos que é comumente usado para escoamento (equagdes
de Navier-Stokes). Na analise de alguns “casos teste”, que sdo representativos de uma grande
quantidade de problemas bidimensionais de fluido incompressivel envolvendo a convecgdo e
difusdo de calor, concluiram que, exceto com o uso de um fator de relaxamento menor que 0,2, o
uso do “critério absoluto” € surpreendentemente mais proximo de E(¢,).

- * I3 . y .
Os resultados obtidos para R foram sempre menores, porém menos oscilatorios que os

apresentados pelo “critério absoluto”. Desta forma pode-se dizer que a estimativa obtida por R



Capitulo 2. Revisdo Bibliografica. 21

subestima a magnitude de E(¢,), e com isso, ndo demonstrando ser confidvel. Contudo, R

apresentou um comportamento semelhante a E(¢, ), com relagio as oscilagdes.

2.3.4 O Estimador de Roy ¢ Blottner

A varidvel de interesse (@) considerada por Roy e Blottner (2001) para o
desenvolvimento deste estimador de erro foi o fluxo de calor em regime permanente. Neste
problema tem-se muita atengdo com os resultados numéricos, pois este requer grande precisdo. E
realizada uma analise sobre a convergéncia iterativa de malhas e propde-se empiricamente um
estimador para a magnitude do erro de iteracdo, baseado no fato deste apresentar um
comportamento exponencial com as iteragdes. No presente trabalho o estimador de erro de
iteragdo proposto por Roy e Blottner (2001) serd denotado por RB. Neste estimador, o erro de

iteragdo ¢ definido por

E@,)=9¢,—9. (2.52)

onde:

¢, = solugdo numérica da variavel de interesse na iteragéo .

0= solugdo exata extrapolada de ¢, sem erros de arredondamento ou programagao.

Visando uma uniformidade, considera-se aqui a mesma expressdo para o erro iterativo

proposta no capitulo 1, ou seja:

E(@)=0.-¢, (2.53)

Tem-se, entdo:

6, =0, +E(,) (2.54)

Foi observado por Roy e Blottner (2001) que o erro de iteragéo para o codigo SACCARA
(codigo computacional utilizado em seus experimentos), apresentou comportamento exponencial

do tipo:
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E@) aem” (2.55)

onde & ¢ um coeficiente que se admite ter valor constante, portanto independente de n, que € o
numero de iteragdes € p correspondendo a ordem do erro de iteragdo. No entanto, a equagdo geral
do erro de iteracdo é composta por um Unico termo somente em problemas muito simples. Na

maioria dos casos esta expressdo tem varios termos, embora para n — oo, o valor do erro tende
ao valor do primeiro termo.

Substituindo a Eq. (2.53) em (2.55), temse:
¢.—¢,=ae™’ (2.56)

Considerando a Eq. (2.56) para iteragdes (n -1) e (n), pode-se deduzir a expressdo de o :

0. -0, =oe"D? (2.57)
9.9, =axe™” (2.58)

Da Egq. (2.57), tem-se:

¢. =90, +oe " (2.59)
Com a substitui¢ao da Eq. (2.59) na Eq. (2.58):

¢, +ae "V —¢ =ae? (2.60)

Com isso pode-se escrever:

UL/ s 2.61)

-n -np+
P )

Analogamente considerando a Eq. (2.56) para duas iteragGes quaisquer »; € nz, com n; < ny,

temrse a seguinte expressao:
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¢n1 - ¢nz

Do ponto de vista pratico, considerar n — e ndo ¢ factivel, ou seja, ndo é possivel se
obter um numero infinito de iteragdes. Deste fato pode -se concluir que adotar o constante, ou
seja independente de n, conforme admitido na Eq. (2.55) ¢ incorreto; maiores detalhes sobre este
fato sdo apresentados no capitulo 3.

Considerando entdo, a Eq. (2.62) em (2.59), obtém-se a seguinte expressdo para a

estimativa da solucdo exata extrapolada:

0. =0, + (‘bl_“"’] (2.63)

e? -1

Cuja expressdo semelhante para iteragdes n; e nz, é dada por:

¢, — 9.,
9.=9, +(———e_(,,2_,,1),, _1 (2.64)
Aplicando o logaritmo neperiano na Eq. (2.55), tem-se:

In(E(¢,)) =In(cxe™?) (2.65)
n(E(p,)) =lnoc—np (2.66)

Substituindo a Eq. (2.53) em (2.66):

In(¢. —¢,)=ha-np (2.67)
np=ha-np, -9,) (2.68)

Considerando a Eq. (2.68) para iteragdes (n-1) ¢ (n), tem-se:
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{W*Dpzma—mafwﬂ) (2.69)
(mWp=ha-n(¢, -9,) (2.70)

Subtraindo a Eq. (2.70) de (2.69):

p=h@.-¢,,)-h(o.-9,) 2.71)

Tem-se entdo:

P = rey
=h n 2.72
p (%_%J 272)

De maneira analoga para iteragdes #; e #;, tenrse:

¢°=_¢n
=h| —F2 2.73
p (q)“ _¢n2] (2.73)

Com base nas expressdes anteriores, com n, >n, >n,, ¢ proposto por Roy e Blottner,

estimar o erro de iterac8o na iteragdo n;, através da expressao:

9,, =9,

s T 2.74
Y 1-o ¢
onde:
¢, —9¢
O=—r " 2.75
5. <0, (2.75)

Estes resultados estdo relacionados aos apresentados por Ferziger e Peric (1996) para se
estimar o erro de iteragdo, mas estes autores empregam outras aproximagdes. Se os autovalores

sdo complexos, entdo esta aproximagdo nao € apropriada, deve -se entdo utilizar o estimador FP.



Capitulo 2. Revisdo Bibliografica. 25

2.4 SISTEMAS DE EQUACOES

Um problema de grande interesse que aparece ao se utilizar modelos numéricos, € o da

resolucdo de um sistema linear S, dern equagdes com # incognitas,

a, X, +a,x, +..+a, x, =b,

Ay X+ Ay X, +.ta, x, =b

S, = 2 (2.76)

a,x +a,x, +..+a,x,=b,

Sob a forma matricial S, pode ser escrito como

AX =B @.77)

onde A é uma matriz quadrada de ordem n, B ¢ X sdo matrizes n X 1, isto é, com 7 linhas € uma

coluna, g, ¢ chamado coeficiente da incégnita x, e os b, sdo chamados termos independentes,

com i, j=1, 2, .., n. Amatriz 4 é chamada matriz dos coeficientes ou matriz associada ao
sistema.

Tanto sob o ponto de vista das propriedades matematicas como o da resolugdo de
problemas através do computador, ¢ importante levar em conta a estrutura das matrizes dos
problemas aplicados. Um desses aspectos estruturais € a distribuicdo dos elementos nulos das
matrizes (isso, por exemplo, permite diminuir as exigéncias de memoéria de computador). Nos
problemas de engenharia, uma estrutura muito comum ¢ a das matrizes banda, que sdo matrizes
cujos Unicos elementos ndonulos estdo na diagonal principal e suas vizinhas.

E comum no estudo de equagdes diferenciais de segunda ordem com condigdes de
contorno, a resolugao de sistemas de equagdes cuja matriz associada € tridiagonal, ou seja, € uma
matriz cujos unicos elementos nio-nulos estdo em trés diagonais. De maneira mais formal, uma

matriz € tridiagonal se a,; =0 sempre que 1<|i - j|.
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2.5 RESOLUCAO DE SISTEMAS DE EQUACOES

A resolug@o numérica de um sistema linear ¢ feita, em geral, por dois caminhos (Barroso,
1987): os métodos diretos e os métodos iterativos. Sdo exemplos de métodos diretos: eliminagdo
de Gauss, fatoracdo LU, fatoracdo de Cholesky, método de Crout ¢ método de Doolittle
(Kreyszig, 1999). Em sistemas cujas matrizes associadas sdo esparsas, ou seja, possuem muitos
elementos nulos, a utilizagdo de métodos diretos ndo ¢ adequada, pois a sua esparsidade pode ser
destruida. Os métodos diretos sdo processo finitos, e, portanto, teoricamente, obtém a solugdo de
qualquer sistema ndo singular de equagles com um numero de operagdes pré-estabelecido
(Ruggiero e Lopes, 1998).

Em contraste, os métodos iterativos ou indiretos apresentam um nimero de operagdes
variavel, ou seja, ndo conhecido a priori. Neste caso, o numero de operagdes varia de acordo
com o critério de parada adotado. Um método iterativo consiste em uma aproximagio inicial
para as varidveis de interesse e entdo, através da repeti¢do de um ciclo computacional se obtém
solugdes sucessivas até que se alcance a acuracia exigida (Kreyszig, 1999). O uso de métodos
iterativos ¢ ideal em problemas que apresentam matrizes esparsas, nio havendo assim

necessidade de se armazenar os elementos nulos da matriz.

2.6 RESUMO DO CAPITULO

Neste capitulo foram apresentados o conceito e critérios de convergéncia para um
processo iterativo. Foram definidos os conceitos de efetividade, confiabilidade e acuracia de uma
estimativa de erro ou incerteza. Foram descritos quatro estimadores de erro de iteragéo que estdo
disponiveis na literatura: o estimador delta, estimador de Ferziger e Peric (FP), estimador de
Kim, Anand e Rhode, e o estimador de Roy e Blottner (RB). Discutiu-se também sobre a

estrutura e resolugdo de sistemas de equagdes encontrados em problemas de engenharia.
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Capitulo 3.

O ESTIMADOR EMPIRICO

Com base no comportamento apresentado pelo erro de iteragdo, é introduzido neste
capitulo um novo estimador de erro: o estimador empirico. Para tanto, inicialmente sdo
apresentadas as caracteristicas do erro iterativo e as defini¢cGes de ordem assintética e efetiva. Em
seguida discute-se sobre a estimativa do erro de iteragdo, onde sdo apresentados o conceito e

expressdes para o calculo da ordem aparente da incerteza de solugdes numéricas ¢ a formulagéo

do estimador.

3.1 CARACTERISTICAS DO ERRO DE ITERACAO

Para exemplificar o efeito dos erros de iteragdo sobre o erro da solu¢do numérica,

considere-se 0 uso do método da iteragdo linear (MIL) (Barroso, 1987) na resolugdo da equagdo
x> -5x+6=0 (3.1

A solugdo numeérica iterativa da Eq. (3.1) ¢ tratada detalhadamente no capitulo 4. Este exemplo
mostra a caracteristica principal dos erros de iteragdo quando se aumenta o numero de iteragoes:

em geral, seu valor diminui em escala logaritmica e tende a uma inclinagdo constante. Isso pode

ser observado na Fig. 3.1.
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Logaritmo do madulo do erro iterativo

T T T T T L T T T T T T 1
0 20 40 60 80 100 120 140 160

Iteragao

Figura 3.1 — Erro da solucdo numérica da Eq. (3.1),

causado pe los erros de iteragdo.

Com base no fato de que o erro de iteragdo (E(¢,)) apresenta comportamento

exponencial (Roy e Blottner, 2001), conforme ilustrado na Fig. 3.1, na base decimal, tem-se:

E(p,)=C10™™ (32)

onde p;, € a ordem assintética do erro, ou seja, € a inclinagdo assintética para a qual tende a curva
do erro iterativo quando n — . Quanto maior ¢ esta inclina¢8o, maior € o valor da ordem e
maior ¢ a taxa de reducdo de E(¢,) com o aumento de ». E ainda, para um mesmo nimero de
iteragdes, menor € o erro.

Roy e Blottner (2001) consideram, por simplificag@o, que para n —> oo, isto €, para um
nimero infinito de iteragdes, o valor do coeficiente C na Eq. (3.2) é constante. Porém, para um
caso pratico qualquer, deve-se admitir que a forma geral do erro de iteragdo ¢ dada pela Eq.
(2.20). No entanto, quando o nimero de iteragdes () ¢ muito grande, o primeiro termo desta
expressdo ¢ o principal componente, ja que f,¢ o autovalor dominante da matriz iterativa, ou

seja, o autovalor de maior magnitude (Ferziger e Peric, 1996). Isso possibilita uma aproximagio

para expressdo geral do erro formada por um tnico termo.
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3.1.1 Ordem efetiva

A ordem efetiva (pg) do erro de iteragdo ¢ definida como a inclinagdo local da curva de
E(¢,) versus n num grafico logaritmico. Matematicamente, a ordem efetiva (pz) é obtida a partir
da Eq. (3.2), onde C ¢ admitido ser independente de n. Considerando-se duas iteragbes n; € ny,

com n; <mp, tenrse:

E($,)=C10™"*
E($,)=C10™= @-3)
Do sistema (3.3), tem-se que:
E(9,)
8| Z6,.)
P o9

3.2 ESTIMATIVA DO ERRO DE ITERACAO

Pela Eq. (1.2), o valor do erro de iteragdo s6 pode ser calculado quando se conhece a
solucdo exata do sistema de equagdes resultante da discretizagdo. Mas em termos praticos isso
nao ¢ possivel. Conseqiientemente ¢ necessario estimar qual é o valor da solugdo exata. A
solugdo exata para o sistema de equagGes nd3o ¢ a solugdo analitica para a equagdo que rege o
problema, pois o sistema € produto da discretizag@o, ou seja, aproximagdes.

A incerteza iterativa (U(¢,)) de uma solu¢do numeérica é calculada pela diferenga entre a

solugdo exata estimada (¢h,) para a variavel de interesse € a sua solugdo numérica em uma

iteragdon (¢, ):

U@,)=9. -9, (3.5)
Com base na Eq. (3.2), admite-se que

U@g,)=k10™ (3.6)
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com k& sendo constante € py indicando a ordem aparente, cujo valor explicito pode ser obtido pela

Eq. (3.9).

3.2.1 Ordem aparente

A ordem aparente (py) € definida como a inclinagdo local da curva de incerteza (U,) da
solucdo numérica (¢,) versus o numero de iteragdes (n) num grafico logaritmico.
O valor para o qual as ordens efetiva e aparente tendem, quando se aumenta o ntimero de
iteragdes, € a ordem assintdtica do erro iterativo (pr). Ela ndo € um resultado conhecido a priori,
ou seja, € obtida somente através de experimentos numéricos.

Considerando-se as iteragdes n; n, € n3 , com n; <n, <n,, ¢ as Egs. (3.5) ¢ (3.6),

podemos €scCrever:

9. —¢,, =k107%
o. -0, =k107"» (3.7)
9. —9, =k107""

Supondo que:

An=n, —n,=n;—n, (3.8)

Do sistema de equagdes (3.7), temr-se:

_ log(v) 3.9)

Py An

onde:

¢ —
_ 9 7O (3.10)
4 ¢n3 - ¢n¢
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3.2.2 Dedugao do estimador empirico

Do sistema de equagdes (3.7), temrse que:

(¢n ¢n2)
= 42 TR 3.11
9. ¢,,3 ( 0 ( )

Substituindo este resultado na Eq. (3.5):

©,, =9,,)

ve)= Ty

(3.12)

Sendo esta a expressdo fornecida para a estimativa do erro de iteragdo na iteragdo ns,
através do estimador empirico. Marchi e Silva (2002) demonstraram que estimativas de erro

baseadas em equagdes smelhantes a Eq. (3.6) ou (3.12) sdo validas apenas para y >1 ou

Py >0. Quando a ordem aparente (py) apresenta valores negativos a utilizagdo do estimador
empirico ndo faz sentido, pois o principio deste estimador estd no comportamento exponencial
apresentado pelo erro de iteragdo, Eq. (3.6), € ao se considerar py < 0, a magnitude da estimativa
do erro aumenta com o nimero de iteragdes. Isto ¢, este estimador ¢ valido apenas para valores
das ordens assintética (p;) e aparente (py) maiores do que zero, ou seja, (pr, py) > 0. O
argumento para justificar o uso de ordens positivas é o seguinte: considere-se py < 0 sobre a Eq.

(3.6), isto implica que

U(@,)=k10"7! (3.13)

A partir da Eq. (3.13), verifica-se que ao se aumentar o numero de iteragdes (1), a incerteza
aumenta. Este resultado € oposto ao esperado para o comportamento do erro de iteragdo.

Ao se considerar £ como sendo um coeficiente constante na Eq. (3.6), ou scja,
independente de », tem-se algumas implicagGes, pois k& desempenha o mesmo papel de C na Eq.
(3.2). Este fato faz com que na maioria das aplicagdes, a incerteza obtida através desta estimativa
seja diferente do erro de iteragdo; o quio diferente vai depender da complexidade de cada

problema e do numero de iteragdes (1) a ser utilizada.
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3.3 0 ESTIMADOR EMPIRICO E O ESTIMADOR FP

Para os casos em que 4 possui autovalor dominante real, temse algumas relagdes entre

este estimador e o estimador de Ferziger e Peric (FP), apresentado na se¢do 2.3.2. Pelo estimador

FP, para autovalor dominante real e iteragdes n, , ,€ M3, COM p, <p, <n,, temrse:

(¢n2 - ¢n3 )

3.14
(/,l 1,1, _l) ( )

U@, )=

onde, y,, indica o autovalor dominante para matriz iterativa 4 na iteragéo n2, que é dado por:

@, —¢.,)
uL=F;—L (3.15)
" 1@, —¢,)
Comparando as Egs. (3.15) e (3.10), pode-se concluir que:
1
v, = (3.16)
au'l,n2

Ou seja, o parametro y , adotado na formulagdo do estimador empirico, ¢ o inverso do autovalor
dominante (g4) considerado por Ferziger e Peric (1996) no calculo da estimativa do erro de
iteragdo; no entanto, ndo considerados em uma mesma iteragéo. Isto €, como estes pardmetros

sdo atualizados a cada iteragdo, ¥ ¢€ o inverso de i, em uma iteragdo anterior.

3.4 O ESTIMADOR EMPIRICO E O ESTIMADOR DELTA

Para as iteragdes n, € n3 , com nz < n3, a variagdo do erro (AE) pode ser analisada através

do valor absoluto da diferenca entre os erros em cada iteragcdo (Roache, 1982):

AE =|E@®, )~ E(9,,) (3.17)
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Conforme definido no capitulo 1, Eq. (1.2), o erro iterativo é dado pela diferenca entre a solugio

exata .. . ¢ a solugdo numérica na iteragdo corrente (¢,). Portanto, a Eq. (3.17) pode ser

reescrita por

=[@-9¢,)-@-9,)| (3.18)
0 que resulta em

AE = (3.19)

¢n2 - ¢n3

Portanto, analisar a variagdo do erro ¢ equivalente a se analisar a variagdo da solu¢do numeérica
nas respectivas iteragdes. Entdo, a incerteza calculada através do estimador Delta, Eq. (2.14),
esta diretamente relacionada a variag¢do do erro entre duas iteragdes.

O célculo da incerteza numérica utilizando o estimador Delta (U, ) usa solucdes
numéricas obtidas em duas iteragdes, ndo levando em conta a razdo de convergéncia (Y )

envolvida na formulacéo do estimador empirico. Uma relagdo facilmente verificavel é que a

magnitude do estimador empirico coincide com o resultado do estimador Delta para o caso em

que y =2, ou seja:

(3.20)

o=

3.5 O ESTIMADOR EMPIRICO E O ESTIMADOR RB

Na seg@o 2.3.4 foi apresentado o estimador de Roy e Blottner (RB). Considerando-se

n, <n, <n,, a incerteza de iteracdo na iteragdo nz, (U(9, ) ), obtida através do estimador RB ¢

dada por:

9, =4, 9, -9,

1-o, @, -1

(3.21)

U@, )=-
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onde:

¢n _¢n

Para se obter uma estimativa de erro utilizando-se o estimador RB, necessita-se da

solugdo numeérica da variavel de interesse em trés iteragdes sucessivas. Sendo que, somente ¢
possivel obter a incerteza na iteragdo intermedidria, ou seja, obtém-se U(¢, ) a partir dos
resultados de ¢, ,¢, € @, .

Através do estimador empirico a estimativa do erro, dada pela Eq. (3.12), também
necessita da solugdo numérica da varidvel de interesse em trés iteragdes sucessivas. Portanto,
U(¢,,) através do estimador RB € equivalente a U(¢,, ) pelo estimador empirico, a menos dos
pardmetros envolvidos: W e .

Com relagdo a @ e y, comparando as equagdes (3.10) e (3.22), pode-se concluir que:

]// n, = (3 23)

1
w"z
Ou seja, o parametro Y, adotado na formulagdo do estimador empirico, € o inverso de

@considerado por Roy e Blottner no célculo da estimativa do erro de iterag@o; no entanto, ndo
considerados em uma mesma iteragéo. Isto ¢, como estes pardmetros sdo atualizados a cada

iteragdo, y € o inverso de & em uma iteragdo anterior.

3.6 PREVISAO DA CONFIABILIDADE DO RESULTADO OBTIDO PELO
ESTIMADOR DE ERRO

Propde-se, aqui, prever as caracteristicas da estimativa de erro na iteragdo #, através dos

resultados numéricos de ¢, .9, .9, ,¢, ¢ pela solucdo extrapolada ¢, , onde:
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o, = (¢, —9,,) ‘o, 620
v
¢n _¢n
O O 3.25
4 o 9. (3.25)

com n, <n, <ny;<nmn,.
A principal hipétese adotada € que o comportamento de ¢, com relagdo a ¢, se repete

a cada nova extrapolagdo até o limite de n — oo, onde n representa o ntimero de iteragdes. Sao

considerados trés intervalos:

3.6.1 Intervalo I

Conforme a Fig. 3.2, se a solu¢do numérica ¢, estiver entre a solugdo numérica ¢, ea

solugdo extrapolada ¢, , entdo espera-se que a estimativa de erro na iteragdo n; seja confiavel,

isto é,
oo 70 |1 o vlo. )>1 (3.26)
¢, —9, Eg,,
1 vG,) .
|
S A S S o
E@©,,)

Figura 3.2 Comportamento de ¢, com relagdo a ¢, para o Intervalo I.
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3.6.2 Intervalo I1

Conforme a Fig. 3.3, se a solu¢@o extrapolada ¢, estiver entre a solugdo numérica 9, ¢
a solucdo numérica ¢, , entdo espera-se que a estimativa de erro na iteragdo 7, ndo seja

confijvel, isto &,

9, —9, U, )
0< v N P | 0 : 1 3.27
[%_% } = <——(-—5E¢n3 < (3.27)
U@,) P
o 4, 9., 6, 0., ®
E@,)

Figura 3.3 Comportamento de ¢, com relagdoa ¢, para o Intervalo IL

3.6.3 Intervalo II1

Conforme Fig. 3.4, se a solugdo numérica ¢,, estiver entre a solugdo numerica ¢, ea
solugdo extrapolada ¢, , entdo espera-se que a estimativa de erro na iteracdo n, tenha sinal

oposto ao erro; constitutse na pior previsdo de erro:

L0 2% PN U(¢nz)<0 (3.28)
¢n4 _¢n3 E ¢”3
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U@,) 9.

E@,,)

Figura 3.4 Comportamento de ¢, comrelagdoa ¢, para o Intervalo IIL.

Este método de previsdo (intervalos I a III) s6 pode ser aplicado se a razdo de
convergéncia () for maior do que 1, o que implica no fato de (p, ) existir e assumir valores

positivos. A analise dos resultados ao se aplicar este método ¢ feita através de um grafico de

confiabilidade (Fig. 3.5), utilizando-se os seguintes critérios:

e 0= o método nio se aplica ( p, ndo existe ou p, <0).

e 1= ométodo se aplica e sua previsao € correta, conforme os intervalos I, II e III.

e -1 = o método se aplica e s previsdo ¢ incorreta.

Confiabilidade

Figura 3.5 Grafico de confiabilidade do método de previsdo.

Aplicagdes de graficos de confiabilidade séo apresentadas nos préximos capitulos.
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3.7 CONSIDERACOES FINAIS

Conforme visto neste capitulo, existem relagdes dretas entre os estimadores de erro de
iteracdo empirico, delta, Ferziger e Peric,e Roy e Blotner. Portanto, as analises feitas neste

trabalho se concentram apenas no estimador empirico.



Capitulo 4.

TESTES INICIAIS

Neste capitulo s@o considerados quatros testes iniciais com a finalidade de verificar o
desempenho do estimador empirico em alguns procedimentos iterativos simples. Todos os
calculos foram realizados com a utilizagdo do programa Microsoft Excel 2000 e precisdo de 15

algarismos significativos.
4.1 CASO1

O modelo matematico do caso 1 ¢ dado por

x—y=1
{ Y @.1)
—-x+2y=0

ou seja, um sistema de equagdes lineares de ordem 2 cuja solugdo analitica é: x=2 ¢ y=1. O
modelo numérico adotado foi o procedimento iterativo de Gauss-Seidel (Barroso, 1987) para
resolucdo de sistemas de equagdes lineares. Este método iterativo pertence a classe dos métodos

“ponto a ponto”, ou seja, consiste na resoluc@o do sistema linear visitando equagdo por equagio,
iterativamente, usando os valores das variaveis ja calculadas no nivel iterativo anterior e no atual.

Para o sistema (4.1),

X, =y,4+1

42)

=

Y =7



Capitulo 4. Testes iniciais 40

onde o subindice » indica a n-ésima iteragdo. Foram adotados dois tipos de condi¢Ges iniciais.

Subcaso 1: x, = y, =0. Subcaso 2: x, =10 e y, =5.

Como se pode observar nas Figs. 4.1 a 4.4, para ambos os subcasos a estimativa do erro
iterativo obtida pelo estimador empirico apresentou concordincia perfeita com o erro. Isto €, as
estimativas sdo acuradas e confidveis pois os valores apresentados por suas efetividades sdo
iguais a unidade (6 =1). A mudanga das condi¢des iniciais ndo ocasionou alteragdo no valor da
ordem assintética (valor para o qual as ordens efetiva () e aparente (py) se aproximam com o
aumento do numero de iteragdes) para ambas as variaveis. Ou seja, nos dois subcasos
p, =log2=0,30103 . Portanto, a razdo de convergéncia ¢ y = 2. Neste caso, tem-se ainda que,
pu=pEe=pL em todas as iteragdes. A incerteza numérica obtida através do estimador empirico
pode ser considerada “ideal”, ndo havendo necessidade da aplicagdo do método de previsdo da
confiabilidade da estimativa do erro, se¢do 3.6. A discordancia entre incerteza e erro ao final do
processo iterativo, Figs. 4.1 a 4.4, deve-se ao efeito dos erros de arredondamento no calculo da

incerteza (U) provocados pelo cancelamento subtrativo (Ruggiero, 1988).

2 erro
1 —o— incerteza
0_
S |
o -2
w i
8 -
9 -
ERES
uo |
€
o 87
kel J
o
£ -10-
=
= i
& 12
o
9 4
-14 o N
-16 T T T T T T T T L T 1
0 10 20 30 40 50
lteragao

Figura 4.1 — Erro (E) ¢ Incerteza (U) envolvidos no calculo da variavel x do subcaso 1 (caso 1).
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0 erro
—o—— incerteza

-6

-8

-10

-12 4

Logaritmo do modulo de Ee U

14

-16 —

lteragédo

Figura 4.2 — Erro (E) e Incerteza (U) envolvidos no calculo da variavel y do subcaso 1 (caso 1).

erro
incerteza

Logaritmo do médulo deE e U

=}
N
IS)
N
S
[
S
IS
o
<)}
=}

lteragao

Figura 4.3 — Erro (E) e Incerteza (U) envolvidos no calculo da variavel x do subcaso 2 (caso 1).
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0 - erro
1 % —o— incerteza

Logaritmo do médulo de Ee U
|

Iteragao

Figura 4.4 — Erro (E) e Incerteza (U) envolvidos no célculo da variavel y do subcaso 2 (caso 1).

4.2 CASO 2

O caso 2 consiste na resolugdo da equag@o quadratica

x* =5x+6=0 4.3)

cuja solugdo analitica considerada foi x=2. O modelo numérico adotado foi o método da
iteragdo linear (MIL) (Ruggiero, 1998). Este método consiste em transformar a equagdo,
isolando-se a varidvel de interesse para obter uma fungdo iteragdo.

A partir da Eq. (4.3) foram analisados dois tipos de fungdo iteragdo com duas condigdes
iniciais, 0 que gerou quatro subcasos. Para os subcasos 1 e 2 as condigdes iniciais usadas foram

x, =0 e x, =29, respectivamente, ¢ a fun¢do iteragdo adotada foi
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MG

" 5 (4.4)

Para os subcasos 3 e 4 também foram usadas as condi¢des iniciais x, =0 e x, =29,

respectivamente, para a seguinte fungdo itera¢do
Xy =g 4.5)

Para os subcasos 2 ¢ 4, a estimativa do erro iterativo obtida pelo estimador empirico nio
apresentou bons resultados nas iteragdes iniciais, o que pode ser observado na Fig. 4.6. Além
disso, pode-se notar nas Figs. 4.5 ¢ 4.6 que o comportamento apresentado nas itera¢des iniciais é
totalmente diferente, ou seja, se altera com a mudanga das condigdes iniciais. Mas nas demais

iteragdes, a concordédncia entre a estimativa do erro U) e o erro verdadeiro (E) é otima. Para o
subcaso 2, até a iteragdo 11 a ordem aparente (py) apresenta valores negativos, portanto o
estimador empirico nao ¢ aplicavel nestas iteragdes, conforme explicado na se¢do 3.2.2; (Fig.
4.6). Nota-se entdo que para o mesmo modelo numérico, a mudanca das condi¢es iniciais
provocou alteragdes no comportamento do estimador empirico nas iteragdes iniciais. No entanto,
ndo houve alteragdo no valor da ordem assintdtica p, =log1,25=0,0969 e da razio de
convergéncia que para os subcasos 1 ¢ 2 foi y =1,25. A menos das “iteragdes iniciais” que
correspondem a, no maximo, 13% do nuimero total & iteragdes, e dos erros de arredondamento

envolvidos no final do processo iterativo devido ao cancelamento subtrativo, pode-se notar a

6tima concordancia entre U e E nas Figs. 4.5 ¢ 4.6.

Para os subcasos 3 e 4 os resultados foram analogos aos subcasos 1 ¢ 2 (Figs. 4.5 ¢ 4.6).

No entanto, houve mudanga no valor da ordem assintética, p;=log(1,5) =0,1760 e da razdo de
convergéncia y =1,5. Para o subcaso 4, até a iteragdo 6 a ordem aparente (p ) apresenta valores
negativos, o que nao possibilita a eficiéncia do estimador empirico nestas iteragdes (Fig. 4.6).
Com a utilizagdo da condigdo inicial x, =0, subcasos 1 e 3, o estimador empirico pdde
ser aplicado em todo processo iterativo, pois p, >0 em todas as iteragdes. Isso ndo ocorre para

condi¢do inicial x, =2,9, subcasos 2 e 4, pois p,, <0 até as iteragdes 11 e 6, respectivamente.
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erro do subcaso 3
—=—incerteza do subcaso 3
e erro do subcaso 1

% ] —o—jncerteza do subcaso 1
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Figura 4.5 — Erro (E) e Incerteza (U) para a variavel x dos subcasos 1 e 3 (caso 2).

47 erro do subcaso 4
2 ——08—incerteza do subcaso 4
1., ——incerteza do subcaso 2
?J 0 1t —----— erro do subcaso 2
w o,
) i
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o)
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=
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Figura 4.6 — Erro (E) e Incerteza (U) para a variavel x dos subcasos 2 e 4 (caso 2).

44



Capitulo 4. Testes iniciais 45

Para este caso o método de previsdo da confiabilidade da estimativa do erro, descrito na
se¢do 3.6, mostrou-se eficiente em todo processo iterativo o que pode ser constatado nas Figs.
4.7 e 4.8. Sendo que, os subcasos 1 € 3 se enquadram no intervalo II e os subcasos 2 € 4 se

enquadram no intervalo I do método de previsao.

Confiabilidade

T T v LI T T T T T T
] 20 40 60 80 100 120 140

Iteragao

Figura 4.7 — Gréfico de confiabilidade para o subcaso 1 (caso 2).

Confiabilidade

1 ’ H T T v ¥ T 1 M 1 T T 7

0 20 40 60 80 100 120 140

lteragao

Figura 4.8 — Grafico de confiabilidade para o subcaso 2 (caso 2).
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4.3 CASO3

Andlogo ao caso 1, este caso consiste na resolugdo de um sistema linear de ordem 2 com

autilizagdo do método Gauss-Seidel. O modelo matemdtico considerado é:
x—y=1
Y 4.6)
2x-3y=0

cuja solugdo analitica é: x=3 e y=2. O modelo numérico adotado é

x, =y, +t1
2x, 4.7
yn - 3

Da mesma maneira, foram adotados dois tipos de condi¢des iniciais. Subcaso 1: x, = y, =0.

Subcaso 2: x, =10 ¢ y, =5.

Para os dois subcasos a estimativa do erro de iteragdo obtida pelo estimador empirico, em
ambas as varidveis, apresentou concordincia perfeita com o erro conforme mostrado nas Figs.
4.9 e 4.10. Isto ¢, as estimativas sdo acuradas e confidveis pois os valores apresentados por suas
efetividades s@o iguais a unidade (8 =1). Em ambos os subcasos pr = log(1,5)=0,17609 e

y =15 . O método de previsio (se¢do 3.6) ndo € aplicado neste caso, pois a ordem aparente py é

constante em todas as iteragoes.



Capitulo 4. Testes iniciais

—— incerteza
erro

2

-8

-10 -
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Figura 4.9 - Erro (E) e Incerteza (U) para a variavel x do subcaso 1 (caso 3).

—¢— incerteza
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lteragdo

Figura 4.10 - Erro (E) e Incerteza (U) para a variavel y do subcaso 1 (caso 3).
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4.4 CASO 4

Andlogo ao caso 2, este consiste na resolugdo da equagio

x?—Tx+12=0 4.8)

cuja solugdo analitica considerada foi x=3. O modelo numérico utilizado foi o método da

iteragdo linear (MIL), cuja fungdo itera¢do adotada foi

L= 4.9)

Foram analisados dois tipos de condi¢des iniciais, o que gerou dois subcasos. Subcaso 1: x, =0.
Subcaso 2: x, =3,9.

Para ambos os subcasos, o estimador ndo se mostrou eficiente nas iteragdes iniciais.
Conforme as Figs. 4.11 e 4.12, o comportamento do estimador empirico se altera com a mudanca
das condi¢des iniciais. Em ambos os subcasos, a incerteza apresenta oscilagdes a partir da
iteragdo 150 devido aos erros de arredondamento. Para o subcaso 1 tem-se p, >0 em todas as
iteragdes, portanto o estimador empirico pdde ser aplicado em todo processo iterativo. Para o
subcaso 2, até a iteragdo 17 a ordem aparente (py) apresenta valores negativos, portanto o
estimador empirico ndo ¢€ aplicavel nestas iteragdes, conforme explicado na se¢do 3.2.2. Nota -se
que para o mesmo modelo numérico, a mudanca das condi¢des iniciais provocou alteragbes no
comportamento do estimador empirico nas iteragdes iniciais. No entanto, ndo houve alteragdo no
valor da ordem assintdtica p, =logl,167=0,0669 ¢ da razio de convergéncia que para os
subcasos 1 ¢ 2 foi w =1,167. A menos das iteragdes iniciais ¢ do efeito dos erros de
arredondamento ao final do processo iterativo, pode-se notar a 6tima concordancia entre o erro
(E) e a incerteza (U) nas Figs. 4.11 e 4.12. Pode-se notar também, Fig. 4.13, a redugdo do efeito

causado pelos erros de arredondamento ao se aumentar a precisdo dos calculos de 15 para 30

algarismos significativos.
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Figura 4.12 - Erro (E) e Incerteza (U) para a variavel x do subcaso 2 (caso 4).
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Figura4.11 - Erro (E) e Incerteza (U) para as variavel x do subcaso 1
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| ~—w--- U (15 algarismos)
erro
—O0— U (30 algarismos)

Logaritmo do médulo deE e U

~14

L L L A LA B B AL |
160 155 160 165 170 175 180 185 190

iteragao

Figura 4.13 — Erro (£) ¢ Incerteza (U) a partir da Fig. 4.11 para as iteragdes 150 a 190.

Para este caso o método de previsdo da confiabilidade da estimativa do erro, descrito na
secdo 3.6, mostrou-se eficiente o que pode ser constatado nas Figs. 4.14 e 4.15. O subcaso 1 se
enquadra no intervalo II do método de previsdo, sendo que, houve falha na previsdo em 2
iteragdes, Fig. 4.14, devido ao efeito dos erros de arredondamento. O subcaso 2 se enquadra no
intervalo I do método de previsdo; existe ocorréncia de falha somente em 1 iteragdo, Fig. 4.15,

também devido ao efeito dos erros de arredondamento.
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Confiabilidade
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Figura 4.14 — Grafico de confiabilidade subcaso 1 (caso 4).
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Figura 4.15 — Grafico de confiabilidade subcaso 2 (caso 4).
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4.5 CONCLUSAO

Os casos 1 e 3 sdo formados por sistemas lineares de ordem 2, do tipo

by =
{“”y P (4.10)

cx+dy=gq

gerados a partir da variagdo dos coeficientes ¢ e d da segunda equagdo, sendo que, a primeira
equacdo € mantida em ambos os casos. A variagdo das condigdes iniciais ndo causou alteragdo no
valor de p;, Tab. 4.1. Mas, a alteragdo dos coeficientes em uma equagdo do sistema altera o valor
dep; para o mesmo solver (Gauss-Seidel).

Os casos 2 e 4 sio formados pela resolugdo de equagdes quadraticas (ax” +bx+c =0)
através do método MIL (método da iteragdo linear). Sendo que, variowse o valor dos
coeficientes b e ¢ nos casos 2 e 4. Em ambos os casos, a variagdo das condigdes iniciais nao
causou altera¢do no valor de p;, Tab. 4.1. A mudanga da fungdo iteragdo, no caso 2, causou
influéncia sobre o valor de p;. A variagdo dos coeficentes da equagdo quadratica (casos 2 e 4),
também trouxe alteracdo sobre o valor de pr.

O método de previsdo da confiabilidade da estimativa do erro, se¢do 3.6, mostrou-se

eficiente nos casos 1 a 4, de forma geral.

Tabela 4.1 Ordem assintética e razdo de convergéncia para os testes iniciais.

Caso Subcaso y 2

1 2,0000 0,3010...
: 2 2,0000 0,3010...
1,2500 0,0960...
2 1,2500 0,0969...
2 3 1,5000 0,1760...
4 1,5000 0,1760...
1 1,5000 0,1760...
3 2 1,5000 0,1760...
1 1,1670 0,06609...

4

2 1,1670 0,06609...
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Capitulo 5.

CASO 5: EQUACAO DE POISSON

No presente capitulo, ¢ abordado um problema difusivo unidimensional com absor¢do de
calor (Incropera e DeWitt, 1992), o que resulta numa equagdo de Poisson, que é uma equagio
diferencial linear. O modelo numérico ¢ constituido pelo método de diferengas finitas, com

aproximagdes numéricas de 2 ordem através de diferenca central e malha uniforme.
5.1 MODELO MATEMATICO E SOLUCAO ANALITICA

O modelo matematico do caso 5 € definido por

d’A )
—=12x (5.1)

dx

com as seguintes condi¢des de contorno de Dirichlet:
A(0)=0 (5.2)
A(L)=1 (5.3)
onde L ¢ o comprimento do dominio de célculo, considerado L=1, A ¢ a variavel dependente do

problema, que é um escalar difundido, e x € a variavel independente, a diregdo coordenada.

A solugd@o analitica exata do modelo matematico definido pelas Eqgs. (5.1) a (5.3), para a

variavel dependente (A ), é

(5.4)



Capitulo 5. Caso 5 54

Definindo-se a média da variavel dependente ao longo do dominio de calculo por
l L
A, =—|Adx 5.5
=1] (55)

sua solucdo analitica exata é

L4
A == 5.
m = (5.6)
5.2 MODELO NUMERICO

A solugdo numeérica do modelo matematico definido pelas Eqgs. (5.1) a (5.3) é obtida
considerando-se (Ferziger e Peric, 1999): método de diferengas finitas, aproximagéo numérica da

derivada de 2 ordem da equagdo diferencial com diferenca central € malha uniforme, Fig. 5.1.

Desta forma, para a Eq. (5.1), tem-se

(ﬂ’jﬂ +;Lj—1 ’2/1]')

. =12x] (5.7)
ou
= +2h, Ay, =-1220K%,  j=2..(N-1) (5.8)

onde x; € a coordenada do no j, Fig. 5.1, & ¢ a distdncia entre os nés j e j—1,ouentre je j+1,

também denominado de tamanho dos elementos da malha, ¢ 4 ¢ a incdgnita do problema, ou a
variavel dependente. O sistema de equagOes representado pela Eq. (5.8) foi resolvido com o

método de Gauss-Seidel (Kreyszig, 1999).

no X
[ )

Figura 5.1 Malha unidimensional uniforme.
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A soluc¢@o numérica exata da Eq. (5.7) resulta em (Marchi, 2001):
4 2
A =x;+x,(1-x,)h (5.9

A média (A, ) da variavel dependente (A ;) 2o longo do dominio de calculo, pode ser

obtida pela regra do trapézio (Barroso, 1987) por
h N
A, =Zz(/1j_1 +1,) (5.10)

cyja solu¢do numeérica exata resulta em (Marchi, 2001)

2 4
Am=§+f'2——h? (5.11)

Com a solugdo numérica exata pode-se obter o ermro de iteragdo (E(¢,)), conforme

explicado na seggo 1.3.

5.3 RESULTADOS E DISCUSSOES

Foram definidas, neste caso, 4 variaveis de interesse, que sdo: os resultados numéricos

em trés nos especificos da malha, isto €, A(%), A(°Y,), A(%%) e a média aritmética dos
resultados numéricos obtidos em todos os nés da malha 4,,. Sendo que, em cada subcaso, Tab.
5.1, e para cada variavel de interesse, foram analisados o resultado numérico (¢,), seu erro de
iteragdo (E(¢,)), estimativa do erro de iteragdo (U(¢,)), a razdo de convergéncia (y), a ordem
efetiva (p), a ordem aparente (p,,) e a efetividade () . As solugdes numéricas foram obtidas
para mathas com N =11, 101 e 201 nos, o que equivale, a A=Y, ¥y, € S50, Foram utilizados 3
tipos de condi¢bes iniciais, C, :lj =0, C, :),j =1, C, :lj =x;, j=1..N, onde N indica o

nimero de nds da malha. Com a variagdo das condi¢des iniciais € do numero de nos da malha,

foram obtidos 9 subcasos que sdo mostrados na Tab. 5.1.
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Tabela 5.1 Subcasos do Caso 5.

Subcaso  Condigdo inicial N°de nds N° de iteragdes  Tempo de CPU (s)

1 G 11 150 0,33

2 G 11 117 0,29

3 G 11 121 0,30
4 G 101 15933 111,20
5 G 101 11813 67,74
6 G 101 12001 70,55
7 G 201 63688 1024,68
8 G 201 47274 542,59
9 G 201 47963 554,34

Os célculos foram realizados em um computador Pentium III 800 MHz com 256 MB de
memodria RAM. O numero de iteragdes em cada subcaso foi obtido de acordo com o seguinte
critério de parada: queda minima de 5 ordens de grandezas na magnitude do erro de iteragdo para
todas as varidveis de interesse. Adotou-se como pardmetro a razdo entre o erro cometido na
iteragdo corrente € o erro obtido na iteragdo inicial, isto é:

£@,)
E(¢)

Se maximo <10~ = Pare.

onde ¢ representa todas as variaveis. Observa-se na Tab. 5.1 que o numero de iteracGes n esta

diretamente relacionado ao numero de ndés da malha N, ou seja, com a ordem do sistema de
equagdes. Além disso, pode-se ainda relacionar o nimero de iteragdes em um determinado caso

com o nimero de nos utilizados e com o ntiimero de iteragdes envolvidas no caso anterior:

A
n, =nl(FJ (5.12)

Por exemplo: para o subcaso 1, N, =11¢e n, =150. Para o subcaso 4, N, =101, procura-se

estimar o nimero de iteragdes necessarias #,, que resulta em 12646. Este valor estd proximo do

resultado real 15933, mostrado na Tab. 5.1.



Capitulo 5. Caso 5 57

Nas Tabs. 52 a 5.5 s@o mostrados os resultados numéricos obtidos para as quatro

varidveis de interesse ao final do processo iterativo, em todos os subcasos.

Tabela 5.2 Resultados numéricos para A(%) .

Subcaso exato numérico(q, ) E@,) U@@,)

E@,)
1 6,500000000E-02  6,499991826E-02 8,173684648E-08  9,999999900E-01
2 6,500000000E-02  6,500825375E-02 -8,253753822E-06  1,000000000E+00
3 6,500000000E-02  6,500270750E-02 -2,707506822E-06  9,999999998E-01
4 6,252500000E-02  6,252497218E-02 2,781041393E-08  1,000309149E+00
5 6,252500000E-02  6,253436278E-02 -9,362782036E-06  1,000000477E+00
6  6,252500000E-02  6,252832452E-02 -3,324527953E-06  1,000000514E+00
7 6,250625000E-02  6,250622272E-02 2,727936301E-08  9,975962018E-01
8 6,250625000E-02  6,251562281E-02 -9,372817957E-06  9,999827414E-01
9 6,250625000E-02  6,250959948E-02 -3,349483624E-06  9,999140260E-01

Analogo a A(%), podemos ver os resultados numéricos para A(°,), ao final do processo

iterativo na Tab. 5.3.

Tabela 5.3 Resultados numeéricos para A(°% ).

Subcaso

exato numérico (¢,) E@,) u@,)

E®,)
1 6,570000000E-01 6,569999793E-01 2,066453064E-08  9,099999916E-01
2 6,570000000E-01 6,570020866F-01 2,086695971E-06  9.999999968E-01
3 6,570000000E-01 6,570007567E-01 -6,845059472E-07  1,000000018E+00
4 6,561090000E-01  6,561089915E-01 8,425888431E-09 1,028138584E+00
5 6,561090000E-01 6,561118366E-01 -2,836698882E-06  9,999797841E-01
6 6,561090000E-01 6,561100072E-01 -1,007252406E-06  9,998984841E-01
7 6,561022500E-01 6,5610224165E-01 8,346999758E-09  9,197849756E-01
8 6,561022500E-01 6,5610511791E-01 2,867913539E-06  1,000114064E+00
9 6,561022500E-01 6,5610327488E-01 -1,024881678E-06  1,000344446E+00
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Da mesma maneira, para A (%), os resultados sdo apresentados na Tab. 5.4.

Tabela 5.4 Resultados numéricos para A(%) .

Subcaso

exato

numerico (¢,)

E@,)

v@,)
E@,)

fu—

N R R )Y L - VS R\

3,200000000E-03
3,200000000E-03
3,200000000E-03
1,616000000E-03
1,616000000E-03
1,616000000E-03
1,604000000E-03
1,604000000E-03
1,604000000E-03

3,199944150E-03
3,205639637E-03
3,201849989E-03
1,615983409E-03
1,621585398E-03
1,617983257E-03
1,603983846E-03
1,609550137E-03
1,605983405E-03

5,584928102E-08
-5,639637895E-06
-1,849989520E-06
1,659039341E-08
-5,585398042E-06
-1,983257950E-06
1,615354220E-08
-5,550137412E-06
-1,983405040E-06

9,999999987E-01
1,000000000E+00
9,999999998E-01
1,000007572E+00
9,999999402E-01
9,999998479E-01
9,997361203E-01
9,999998180E-01
9,999985224E-01

Para média da variavel dependente (A,,) pode-se ver os resultados na Tab. 5.5.

Tabela 5.5 Resultados numéricos para A _ .

Subcaso

exato numérico (9,) E@,) U@,)

E@,)
1 2,049800000E-01 2,049799480E-02 5,488429211E-08  9,456997136E-01
2 2,049800000E-01 2,049852412E-02 -5,238270816E-06  1,000568932E+00
3 2,049800000E-01 2,049817193EF-02 -6,845059472E-06  1,001736405E+00
4 2,000499980E-01 2,000499802E-02 2,068445592E-08  9,201120367E-01
5 2,000499980E-01 2,000559583E-02 -5,957405369E-06  1,000505892E+00
6 2,000499980E-01 2,000521144E-02 -1,007252406E-06  1,001381251E+00
7 2,000124999E-01 2,000124825E-02 2,034670901E-08 9,042253064E-01
8 2,000124999E-01 2,000184967E-02 -5,963904326E-06  1,001143486E+00
9 2,000124999E-01 2,000146322E-02 2,012935416E-06  1,000698918E+00
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Nas Tabs. 5.2 a 5.5, pode-se notar que para todas as variaveis de interesse a ordem de
grandeza do médulo do erro de iteracdo ¢ menor para os subcasos que envolvem a condigdo C.
Notou-se ambém que, a partir de um determinado ntimero de iteragdes iniciais as ordens efetiva
(pe) e aparente fpu) tendem monotonicamente a ordem assintdtica (pr), com o aumento do
numero de iteragdes. Nas iteracdes iniciais nota-se a ocorréncia de oscilagdes, inclusive com
valores negativos para a ordem aparente pr). Isso pode ser observado na Fig. 5.2. Para as
demais variaveis ¢ subcasos o comportamento ¢ semelhante.

Para este caso o método de previsdo da confiabilidade da estimativa do erro, descrito na
se¢do 3.6, mostrou-se eficiente a menos dos erros de arredondamento. Considerando como
exemplo a variavel v3 do subcaso 1 (Fig. 5.4), esta se enquadra no intervalo I do método de

previsdo. Neste exemplo o método de previsdo ndo pode ser aplicado nas iteragdes de 3 a 7 e de

11 a 15, pois nestas iteragdes p, <0 (Fig. 5.2). Na iteracdo 8 a previsdo falha devido a oscilagio
apresentada em p,, . A partir da iteragdo 16 o método de previsdo mostra-se eficiente, sendo que,

a partir de sta iteracdo p,, apresenta comportamento subconvergente.

0.1 - - , ~ '

0.05 .

ordem

-0.05

40 60 80 100 120 140
lteragcao

-0.1

Figura 5.2 Ordem efetiva (pz) do erro e ordem aparente (py) da incerteza de  A(%) para o

subcaso 1.
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Para este caso, nas iteragOes iniciais a ordem aparente (py) oscila de -1 ,23 a 1,45.

y incerteza ---—- 1
\ erro ——

Logaritmo do médulo de Ee U

-8 : : . ; : : -
0 20 40 60 80 100 120 140
Iteragao
Figura 5.3 Erro e incerteza de A (%) para o subcaso 1.
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Figura 5.4 — Grafico de confiabilidade para A(%;) do subcaso 1.
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Nota-se também que, para este caso a razio de convergéncia ,, . e a ordem assintotica

(pp) variam somente com o nimero de nos da malha, Tab 5.6. Portanto, ndo sofrem alteracdo

com a mudanga das condic¢Ges iniciais ou da variavel de interesse.

Tabela 5.6 Razio de convergéncia ¢ ordem assmtotica para caso 5.

N Subcaso U4 pL

11 1,2,3 1,1055728 0,0435873

101 4,5.6 1,0009873 0,0004285

201 7,8,9 1,0002473 0,0001073
5.4 CONCLUSAO

Existe discordincia entre incerteza e erro somente nas iteragdes iniciais, Fig. 5.3
Principalmente onde foi constatado que as ordens efetiva py) e aparente (py) apresentaram
valores negativos, Fig. 5.2. Para as demais varidveis e subcasos, constatou-se comportamento
semelhante, sendo que, estas “iteragdes iniciais” correspondem a uma faixa de, no maximo, 13%
do numero total de iteragbes envolvidas no calculo. Salvo estas iteragdes, verificowrse a
eficiéncia do estimador de erro para este caso quanto a sua acuracia e confiabilidade através de
sua efetividade (6). O método de previsdo da confiabilidade, se¢do 3.6, apresentou bons
resultados em todos os subcasos, sendo que, a ocorréncia de falha na previsdo deuse pela
influéncia dos erros de arredondamento.

Nos testes realizados com a equagdo de Poisson, verificou-se, entdo, dois tipos de
comportamento. Nas iteragdes iniciais, as estimativas de erro sdo inacuradas e sem
confiabilidade, de forma geral. Apds estas iteragdes iniciais, as estimativas sdo cada vez mais

acuradas.
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Capitulo 6.

CASO 6: EQUACAO DE LAPLACE

Em todos os casos anteriores, Caps. 4 ¢ 5, os problemas possuiam apenas um tratamento
unidimensional. Neste capitulo, é abordado um problema de difusdo bidimensional, em regime
permanente, sem geragdo de calor e com condutividade térmica constante (Incropera ¢ DeWitt,
1992), o que resulta na equagdo de Laplace. O modelo numérico é constituido pelo método de

diferengas finitas, com aproximag¢des numéricas de 2° ordem através de diferenga central ¢ maltha

uniforme.

6.1 MODELO MATEMATICO E SOLUCAO ANALITICA

O modelo matematico do caso 6 ¢ dado por

= 6.1
>z T > 0 (6.1)

com as seguintes condigdes de contorno de Dirichlet:

A0, ) =0 (62)
A(x0)=0 (6.3)
AL,y)=y (6.4)

Ax,L,)=x (6.5)
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com o dominio de calculo D={0<x< L;0< y<L,}. Considera-se um dominio quadrado, ou
seja, L, =L, =1. A ¢ a variavel dependente do problema, que ¢ um escalar difundido, x e y sdo

as variaveis independentes, as diregdes coordenadas. A solug@o analitica exata do modelo

matematico definido pelas Eqgs. (6.1) a (6.5), para a varidvel dependente (A ), ¢

A(x,y)=xy (6.6)
Definindo-se a média da varidvel dependente ao longo do dominio de calculo por

1

! LfoAdd 6.7)
A, =— xay .
L L33

sua solucdo analitica exata &

L,L
A, =12 6.8
A (6.8)
6.2 MODELO NUMERICO

A solugdo numérica do modelo matematico definido pelas Egs. (6.1) a (6.5) ¢ obtida
considerando-se: nétodo de diferengas finitas, aproximagédo numérica da derivada de 2 ordem
da equacdo diferencial com diferenca central e malha uniforme, Fig. 6.1. Desta forma, ndo se tem
erro de discretizacdo (Ferziger e Peric, 1996), e

A

=24+ Ay, . Aija =24, + A,

(Ax)* (Ay)2

i+, j i,j-1

=0 (6.9)

Ao se utilizar malha uniforme, Fig. 6.1, temse Ax = Ay = k. Portanto, a Eq. (6.9) pode ser

reescrita como

Ay = 2h  + Ay, Agn =24+ A,
’ L+

M =0 (6.10)

i+, 7
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ou

A=A

1,7

+4A . - A

i-1,j i.j i+lj

A

i, j+1

=0, i=2,.,(N-1), j=2,..(N-1) (6.11)

onde N ¢é o numero de nds da malha em cada direcdo, ~ ¢ a distdncia entre os nés (i, j) €
(i, j—1),ouentre (i—1,5) ¢ (i,j) ,também denominado de tamanho dos elementos da malha,

Fig. 6.1,e A & a incOgnita do problema, ou a variavel dependente.

y
Erro! h
(i,j+1)
h
p
» ® [ ]
L J
(iaj' l)

Figura 6.1 Malha bidimensional uniforme.

Neste caso; o erro de truncamento € nulo, pois apresenta somente aproximagdes

numéricas de 2* ordem com diferenca central. A expressdo para o erro de truncamento ¢r)

envolvido nas aproximagdes apresentadas pela Eq. 6.10 para o n6 (i, j) ¢ dada por:

9*A *A d°A 9°A 9*A 9°A
g, =28 1224 _ - _ - — (612
' {Bx“ Jw‘ (ay4 l] (ax ‘ l,f (ay i 1,1 (ax : Jw (ay ’ l,f ©2

que envolve apenas derivadas da variavel dependente (A ), com ordem 4 e superiores. Pode -se

entdo observar através da Eq. (6.6) que estas derivadas sdo nulas. Portanto com a resolugdo do
sistema de equagdes (6.11) e com a Eq. (6.6) pode-se obter o valor numérico do erro iterativo. O
sistema de equagdes (6.11) foi resolvido através do método iterativo de Gauss-Seidel, e também

com a utilizagdo de uma técnica multigrid para problemas lineares, denominado esquema de
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armazenamento de correcdo, conforme o algoritmo descrito nas paginas 169 e 170 do livro de
Tannehill et. al. (1997).

6.3 RESULTADOS E DISCUSSOES

Neste caso, considerou-se duas variaveis de interesse: o resultado numérico no ponto
central da malha, isto é, . ("4, 24) e a média aritmética dos resultados numéricos obtidos em
todos os nés da malha A . As solugdes numéricas foram obtidas para malhas com
N?=17% 33%¢ 65> nos,oqueequivalea h=Y,, % ¢ %,.

Em cada subcaso, Tab. 6.1, e para cada variavel de interesse, foram analisados o
resultado numérico (¢,), seu erro iterativo (E(@,)), estimativa do erro iterativo (U(9,)), a
razio de convergéncia (y), a ordem efetiva (p.), a ordem aparente (p,) e a efetividade (6).
Com a variagdo do numero de nés da malha, e com ou sem a utilizagdo do método multigrid
(Tannehill er al., 1997) foram obtidos 6 subcasos que sdo mostrados na Tab. 6.1. A técnica
multigrid pode ser aplicada usando qualquer esquema iterativo, embora 0o mais comum seja o
método de Gauss-Seidel (Tannehill ef al., 1997), que € utilizado neste casa O objetivo da técnica
multigrid ¢ acelerar a convergéncia de um processo iterativo. Para isso, fazse uso de varios
niveis de malha para fornecer uma soluggo, ou seja, 0 mesmo problema diferencial ¢ aproximado
em diversas malhas cujos tamanhos de malha sdo geralmente multiplos de dois.

Em todos os subcasos utilizou-se a condigdo inicial: 4, ; =0, i =1,...,N, j=1..,N ,isto
¢, nula em todos os nés da malha. O nimero de iteragdes em cada subcaso foi obtido de acordo

com o seguinte critério de parada: queda minima de 7 ordens de grandeza na magnitude do erro

iterativo para as duas variaveis de interesse.

Tabela 6.1 Subcasos do Caso 6.

Subcaso Meétodo Malha Numero de iteragdes Tempo de CPU (s)
1 Sem multigrid 17x17 397 1,48
2 Sem multigrid 33x33 1586 9,86
3 Sem multigrid 65%65 6331 135,61
4 Com multigrid 17 x17 22 0,13
5 Com multigrid 33%x33 29 1,08
6 Com multigrid 65 %65 35 2,17
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Nas Tabs. 6.2 ¢ 6.3 sdo mostrados os resultados numéricos obtidos para as duas variaveis de

interesse ao final do processo iterativo, em todos os subcasos.

Tabela 6.2 Resultados numéricos para . (‘}4, %), Caso 6.

Subcaso exato numérico (9, ) E(@,) U,)
E@©,)

1 2,500000000E-01 2,499999019E-01 9,800085901E-08  1,000001584E+00

2 2,500000000E-01 2,499999007E-01 9,922623200E-08  1,000025961E+00

3 2,500000000E-01 2,499999001E-01 9,987822099E-08  1,001350588E+00

4 2,500000000E-01 2,500000534E-01 -5,349941700E-08  1,718844805E+00

5 2,500000000E-01 2,500000768E-01 -7,687705899E-08  2,775431056E+00

6 2,500000000E-01 2,499999729E-01 2,700025700E-08  1,543202394E+01

Tabela 6.3 Resultados numéricos para A, , Caso 6.

Subcaso exato numérico(¢, ) E@,) U@,)
E©,)

1 2,500000000E-01 2,499999603E-01 3,964124800E-08  1,000008338E+00

2 2,500000000E-01 2,499999598E-01 4,019552299E-08  9,998567758E-01

3 2,500000000E-01 2,499999595E-01 4,047425700E-08  1,007464542E+00

4 2,500000000E-01 2,499999126E-01 8,737835599E-08  -3,456950907E-02

5 2,500000000E-01 2,499999972E-01 2,705836998E-09  -3,247324112E+01

6 2,500000000E-01 2,500000205E-01 -2,052561898E-08 -1,228276055E+00

Considerando-se primeiramente os subcasos 1 a 3, notou-se como nos casos anteriores

que a partir de um determinado numero de iteragdes iniciais a ordem aparente (pu) tende

monotonicamente a ordem assintdtica (p;), com o aumento do nimero de iteragdes, Figs. 6.2 ¢

6.3. Constatou-se também a ocorréncia de valores negativos para a ordem aparente (py) somente

no calculo de A(%4,%4), Fig. 6.2.

Pode-se notar na Fig. 6.4 o comportamento obtido ao se aplicar o estimador empirico

com ordem aparente p) negativa nas iteracdes niciais: a magnitude da estimativa do erro
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aumenta com o numero de iteragdes, conforme explicado na se¢do 3.2.2. Para A, a estimativa do
erro ndo apresenta oscilacdes nas iteragdes iniciais, Fig. 6.5.

Para o subcaso 1 o resultado obtido pela aplicagio do método de previsdo da
confiabilidade da estimativa do erro, descrito na se¢do 3.6, pode ser observado através dos
graficos de confiabilidade mostrados nas Figs. 6.6 ¢ 6.7, sendo que para os subcasos 2 € 3 os
resultados sdo semelhantes. Pode-se notar na Fig. 6.6 que para A(“4,%4) o método de previsio
ndo pbdde ser aplicado até a iteragdo 23, valor (0) no grafico de confiabilidade, pois nestas
iteragdes p,, <0 (Fig. 6.2). O mesmo ndo ocorre para 4, , sendo que o método de previsdo pode
ser aplicado em todo processo iterativo. Notou-se que em ambas as variaveis de interesse a
primeira iteragdo onde ocorre falha (-1) no método de previsdo € a mesma iteragdo onde ocorre

oscilagdo na magnitude da estimativa do erro, devido ao efeito dos erros de arredondamento.

0,06
0,05 H
0,04 -

0,03
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0,01 +
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-0,01 4

Ordem aparente
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-0,05—-
-0,06—-
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Figura 6.2 Ordem aparente p, da incerteza de A(%4,%4) para o subcaso 1.
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Figura 6.3 Ordem aparente p, da incerteza de A, para o subcaso 1.
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Figura 6.4 Erro e incerteza de A(%4,%) para o subcaso 1.
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erro
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Figura 6.5 Erro e incerteza de A para o subcaso 1.
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Figura 6.6 — Grafico de confiabilidade para A(“4,%4) do subcaso 1.
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Confiabilidade

N I D R R L T
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Iteragéo

Figura 6.7 — Grafico de confiabilidade para A, do subcaso 1.

Pode-se ver na Tab. 6.4 que a razdo de convergéncia (y) ¢ a ordem assintotica (pr)
variam com o niimero de nds da malha. No subcaso 3 existe uma pequena diferenca entre a razao
de convergéncia de A(%4,%4) e A,, provavelmente devido ao efeito dos erros de

arredondamento. Apesar de que segundo Roache (1998), diferentes variaveis envolvidas em um

mesmo processo iterativo podem apresentar diferentes taxas de convergéncia.

Tabela 6.4 Razdo de convergéncia e ordem assintotica para o caso 6.

Subcaso Malha Variavel 14 pL
1 17 x17 G AR 1,03956 0,01685
1 17x17 . 1,03956 0,01685
2 33%x33 ML =) 1,00970 0,00419
2 33%x33 A, 1,00970 0,00419
3 65 %65 A 24 1,00241 0,00104

3 65 %65 A 1,00238 0,00103

m
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Nos subcasos 4 a 6, notou-se que ao se utilizar a técnica multigrid (Tannehill ef al., 1997)

a razdo de convergéncia ., , apresentou comportamento oscilatério (Fig. 6.8), ou seja, ndo
possui convergéncia monotonica como nos casos anteriores. Além disso, temse w <1 em
algumas iteragdes, o que acarreta em valores negativos para ordem aparente (p, ). Pode-se,

entdo, observar na Fig. 6.9 que o erro de iteragdo nfo apresenta comportamento monotdnico,

conforme explicado na segdo 3.1. Para estes subcasos, pode se também constatar nas Tabs. 6.2 €

6.3 os resultados obtidos ao se aplicar o estimador empirico através de sua efetividade (0) . Para

M%; ,24) , os resultados sdo inacurados e para A,,, ndo sio confidveis. Portanto nos subcasos

que envolvem a aplicag@o da técnica multigrid o estimador empirico ndo é recomendavel; pois
apresenta acurdcia baixa e ¢ pouco confiavel. Pode-se também observar na Fig. 69 o

comportamento apresentado pelos estimadores RB e FP ao se utilizar a técnica multigrid.

: N L e

Razéo de Convergéncia
A
]

lteragao

Figura 6.8 — Razdo de convergéncia para A(%4,%4) do subcaso 4.
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iy —<O— Ferziger & Peric
Erro

—X— Empirico

1 ox\\ —e— Roy & Blottner

Logaritmo do médulode Ee U
1

iteragdo

Figura 6.9 — Erro de iteragdo para A(%4 ,%4) do subcaso 6.

6.4 CONCLUSAO

Quanto 2 eficiéncia do estimador empirico, para os subcasos 1 a 3 constatou-se
comportamento semelhante aos casos anteriores, abordados nos Caps. 4 ¢ 5. Ou seja, existe
discordincia entre incerteza e erro somente nas iteragdes iniciais, Figs. 6.4 e 6.5. Sendo que, para
estes subcasos as “iteragGes iniciais” correspondem a uma faixa de no méximo 9% do numero
total de iteragGes envolvidas no célculo. Para as demais iteragdes, verificou-se a eficiéncia do

estimador de erro quanto a sua acuracia e confiabilidade através de sua efetividade (6). O

método de previsdo da confiabilidade, seg¢do 3.6, apresentou bons resultados nestes subcasos. A
ocorréncia de faha na previsdo dewse pela influéncia dos erros de arredondamento.

Nos subcasos 4 a 6 o erro de iteragdo ndo apresentou comportamento monotoénico. Além
disso, apresentou valores negativos para ordem aparente (p,) ndo somente nas “iteracdes

Iniciais”. Portanto, ndo se recomenda usar o estimador empirico em processos iterativos que

empreguem métodos multigrid.
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Capitulo 7.

CASO 7: EQUACOES DE NAVIER-STOKES

Este capitulo trata de um problema de escoamento bidimensional isotérmico de fluido
incompressivel (Shih er al., 1989), governado pelas equacGes de Navier-Stokes. O modelo

numérico ¢ constituido pelo método de volumes finitos, com aproximagdes numéricas de 2°

ordem através de diferenca central e malha uniforme.

7.1 MODELO MATEMATICO E SOLUCAO ANALITICA

O modelo matematico do caso 7 € dado por

d d

2 = =0 7.1
LG ay(pu) (7.1
i( u) + —a—( u) = - P + 1 _8__2_1,_1_ + —8—21-4— (7.2)
ax P T P = Ty o | 9y '
i( uv) + —a~( w) = - —a—‘z-’— + 1 éiz + E)—ZX— + B (7.3)
ox P oy P dy x> oy’ '

onde B¢ um termo fonte imposto para obtengdo da solucdo analitica; definido no trabalho de

Shih et al. (1989). As condi¢Ges de contorno usadas sdo do tipo Dirichlet:

u(0, y)=0 (7.4)

u(x,0)=0 (7.5)
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u(L;,y)=0

u(x, L) =16(x* —2x* +x%)

v(x,0)=0

v(0,y)=0

W(L;,y) =0

v(x,L,)=0

74

(7.6)

1.7)

(7.8)

(1.9)

(7.10)

(7.11)

com o dominio de cilculo D={0<x<L;;0< y<L,}, onde; neste caso considera-se um

dominio quadrado, ou seja, L, =L, =1; p e p sdo constantes; u, ve p sdo as incognitas do

problema, sendo que, u e v representam as componentes do vetor velocidade nas dire¢des x e y,

p € apressdo, x € y sdo as variaveis independentes, as dire¢cdes coordenadas.

A solugdo analitica exata do modelo matematico definido pelas Egs. (7.1) a (7.11), para

as variaveis dependentes (,v e p) e numero de Reynolds Re =1, ¢ dada por (Shih et al., 1989)

u(x,y)=8(x" —2x*> + x*)(@y* -2y)

v(x,y) =-8(4x’ —6x* + 2x)(»* — y%)

1
p(x,y)=192 (0,2x5 ~ 05" + §x3)y + 8(4x® —6x2+2x) 4y —2y) +

+ 32(x4 - 2x* + x° )2 (—4y6+2y4 -2y’ )

Definindo-se a média da variavel dependente vem 0<x < % e y =) por

4
M= jv(x,y)dx
0

(7.12)

(7.13)

(7.14)

(7.15)
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sua solucdo analitica exata é

-3
M == 7.16
= (7.16)

7.2 MODELO NUMERICO

A solugdo numérica do modelo matematico definido pelas Egs. (7.1) a (7.11) é obtida
considerando-se (Malisca, 1995): método de volumes finitos, com aproxima¢des numéricas de 2
ordem através de diferenga central, malha uniforme e arranjo co-localizado de varidveis. Neste
caso existe erro de discretizagdo. Portanto, para andlise dos erros de iteragdo ndo sdo
consideradas as solugdes analiticas, Eqs. (7.12) a (7.16). Considera-se, entdo, a solugdo iterativa
“exata” no limite do “erro de maquina”, ou seja, a solugdo numérica obtida ao longo do processo

iterativo quando ndo se tem mais erros de iteragdo mas, apenas, erros de arredondamento.

Algoritmo do modelo numérico utilizado:
1) Estimativa dos campos das variaveis dependentes.
2) Calcular coeficiente ¢ termos fonte da variavel u.
3) Resolver o sistema de equagdes para variavel u com o método MSI.
4) Repetir os itens 2 e 3 para varidvel v.
5) Calcular as varidveis u e v nas faces dos volumes de controle.
6) Calcular os cocficientes e termos fonte para a variavel p.
7) Resolver o sistema de equagdes para variavel p com o método MSI.
8) Corrigir as variaveis u, ve p com a solugdo de p obtida no item 7.
9) Voltar ao item 2 até que algum critério de convergéncia seja satisfeito.
Observagdes:
i) Nos itens 3 e 4 sdo feitas no maximo 5 iteragdes ou itera-se até a queda de uma ordem na
magnitude do residuo.
il) No item 7 utiliza-se no maximo 10 iteracGes ou itera-se at¢ a queda de duas ordens na
magnitude do residuo inicial.
iii) Considera-se uma iteragdo externa a seqiiéncia dos itens 2 a 9.
iv) Para cada iteragdo externa repete-se uma vez os itens 6 a 8.
Em todas as simulages utilizou-se 0 método iterativo MSI (Schneider e Zedan, 1981) c a

condi¢do inicial nula. O método MSI é um método quase direto, ou seja, aquele em que com
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poucas iteragdes se obtém a convergéncia. Por outro lado, o esfor¢o computacional por iteragdo,
¢ bem superior aos demais métodos iterativos (Maliska, 1995). O numero de iteracdes externas

(n) para obtencdo da solugdo numérica “exata” ¢ mostrado na Tab. 7.1.
7.3 RESULTADOS E DISCUSSOES

Neste caso, considerou-se quatro variaveis de interesse: os resultados numéricos de u, ve

p no ponto central da malha, isto &, . (4, %), W%4,24), p(%4,%4) e a média da variavel

dependente v dada pela Eq. (7.15), M . As solugdes numéricas foram obtidas para malhas com
N?* =162, 32 ¢64> volumes. Analogamente aos casos anteriores, em cada subcaso, Tab. 7.1, e

para cada variavel de interesse, foram analisados o resultado numérico (¢,), seu erro de iteragéo
(E£(9,)), estimativa do erro de iteragdo (U(@,)), a razdo de convergéncia (y), a ordem efetiva

(pr), a ordem aparente (p,) ¢ a efetividade (). Com a variagdo do numero de volumes da
malha, foram determinados 3 subcasos que sdo mostrados na Tab. 7.1. O numero de iteragdes
externas (n) em que se analisou o erro de iteragdo e a incerteza numérica foi obtido de acordo
com o seguinte critério de parada: queda minima de 7 ordens de grandeza na magnitude do

residuo adimensionalizado (R *) (Kim et al, 1998), conforme descrito na se¢do 2.3.3. O tempo

de CPU mostrado na Tab. 7.1 refere-se a estas iteragdes.

Tabela 7.1 Subcasos do Caso 7.

Subcaso Malha Iteragdes externas para Iteragdes externas para Tempo de CPU
queda de 7 ordensem R* obtengdo da solugdo “exata” (s
1 16 x16 728 1889 11,01
2 32x32 1171 3999 53,20
3 64 x64 2160 5998 498,41

Nas Tabs. 7.2 a 7.5 sdo mostrados os resultados numeéricos obtidos para as quatro

variaveis de interesse ao final do processo iterativo, em todos os subcasos.
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Tabela 7.2 Resultados numéricos para . ('}4, %4), Caso 7.

Subcaso exato numérico(9, ) E(,) U@,
E@,)

1 -2,436442230E-01  -2,436442229E-01 -9,368000820E-11  1,004184820E+00

2 -2,483636535E-01  -2,483636524E-01 -1,118037996E-09  1,000277942E+00

3 -2,495877767E-01  -2,495877765E-01 -2,180909897E-10  1,041038090E+00

Tabela 7.3 Resultados numéricos para v(%4 ,%4), Caso 7.

Subcaso exato numérico(9, ) E@®,) U@,)
E(9,)

1 9,264290573E-05  9,264292595E-05  -2,021014950E-11  9,881418986E-01

2 2,728542177E-05  2,728540782E-05 1,395702310E-11 9,994393343E-01

3 7,097000028E-06  7,096996659E-06  3,369877301E-12  1,203608957E+00

Tabela 7.4 Resultados numéricos para p(“4 ,%4), Caso 7.

Subcaso exato numeérico(¢, ) E(@,) U@@,)
E(¢,)

1 1,545591915E+00  1,545591916E+00  -7,184399742E-10 1,013978569E+00

2 1,545434988E+00  1,545434985E+00  2,130740029E-09  1,026254886E+00

3 1,545337016E+00  1,545337015E+00  1,082719914E-09  1,096937015E+00

Tabela 7.5 Resultados numéricos para M , Caso 7.

Subcaso exato numérico(9, ) E(9,) U@,)
E@,)

1 9,406575851E-02 9,406575885E-02 -3,372797042E-10  9,932319883E-01

2 9,382148287E-02  9,382148268E-02 1,828833890E-10  1,001629684E+00

3 9,376739441E-02  9,376739437E-02 4,250080843E-11  1,006611077E+00
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Nas Tabs. 7.2 a 7.5, pode-se notar que para o subcaso 3, subcaso que envolve um maior

nimero de iteragdes externas, em todas as variaveis de interesse o estimador empirico apresentou
resultados confidveis, isto €, 8 >1 ao final do processo iterativo. Pode-se constatar também que
para as variaveis u(“4,%4) e p(%4 ,%4), Tabs. 7.2 e 7.4 respectivamente, a estimativa do erro &

confidvel em todos os subcasos.
Para a variavel v(“4,%4) a estimativa do erro niio é confiavel nos subcasos 1 e 2, Tab.

7.3. Observouse que nestes subcasos a razio de convergéncia (v) para v(“4,"4) apresenta
oscilagdes nas iteragdes externas finais, Fig. 7.1, inclusive com y <1 em algumas dessas

iteracGes externas. Sendo que, para o subcaso 1 o comportamento ¢ semelhante.

Assim como nos casos anteriores, em todos os subcasos, Tab. 7.1, temrse que a partir de
um determinado nimero de iteragGes externas iniciais as ordens efetiva @g) e aparente py)
tendem monotonicamente a ordem assintética (pz), com o aumento do numero de iteragdes
externas, Fig. 7.2 ¢ Tab. 7.6. No entanto, constatou-se neste caso a ocorréncia de oscilagdes na
magnitude do erro numérico. Pode-se, entdo, notar na Fig. 7.3 o comportamento obtido para o
erro numérico € para sua estimativa. Para as demais variaveis e subcasos o comportamento ¢

semelhante.
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Figura 7.1 — Razio de convergéncia (y) para v(“4,“4) , subcaso 2, caso 7.
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Figura 7.2 — Ordem efetiva (pg) do erro e ordem aparente (py) da incerteza de M parao

subcaso 3, caso 7.
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Figura 7.3 — Erro ¢ incerteza de M para o subcaso 3, caso 7.
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Para o subcaso 3 o resultado obtido pela aplicagio do método de previsio da

confiabilidade da estimativa do erro, descrito na segdo 3.6, pode ser observado através do grafico

de confiabilidade mostrado na Fig. 7.4. Pode-se notar que para M o método de previsio néo
pode ser aplicado em todas as iteragdes externas, walor (0) no grafico de confiabilidade, pois
nestas iteragdes externas p,, <0 (Fig. 7.2). Constatou-se também que em todos os subcasos para
todas as variaveis de interesse a primeira iteragdo externa onde ocorre falha (-1) no método de
previsdo ¢ a mesma iteracdo externa onde ocorre oscilagdo na magnitude da estimativa do erro,

devido ao efeito dos erros de arredondamento.

Confiabilidade

T T T T T T T T T T T T T T T
0 300 600 900 1200 1500 1800 2100

lteracdo externa

Figura 7.4 — Grafico de confiabilidade de A/ para o subcaso 3, caso 7.

Observa-se na Tab. 7.6 que a razdo de convergéncia (y) € a ordem aparente (py) variam
com o numero de volumes da malha. Nao se pode afirmar com certeza se hd mudanca nos
valores de ¥ e p, para todas as variaveis de interesse, pois pode-se ter influéncia dos erros de

arredondamento.
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Tabela 7.6 Razio de convergéncia e ordem assintdtica para caso 7.

81

Subcaso Variavel

14

Py

1 u(4,"4)
1 A
1 (M. 4)

1 -

1,036120005E+00

1,016553170E+00

1,015802199E+00

1,541005888E-02

7,130099206E-03

6,809148522E-03

M 1,014395257E+00 6,207209922E-03
2 u(%,L%) 1,008815762E+00 3,811859153E-03
2 v(%4 . 4) 1,009482381E+00 4,098743285E-03
2 r(%%4,74) 1,009284504E+00 4,013605391E-03
2 M 1,008817479E+00 3,812598191E-03
3 u(4 ,24) 1,004591013E+00 1,989288579E-03
3 v(s Lz/ ) 1,005054655E+00 2,189679241E-03

2572
3 p(% 9] 1,004469947E+00 1,936947299E-03
3 M 1,004600572E+00 1,993420959E-03
7.4 CONCLUSAO

Com a utilizagdo do método iterativo MSI constatou-se que, para este caso, a magnitude
do erro de iteragdo apresentou oscilagdes nas iteragdes iniciais, 0 que ndo havia ocorrido nos
casos anteriores.

O estimador empirico apresentou comportamento semelhante aos casos anteriores, ou
seja, existe discordincia entre incerteza e erro somente nas iteragdes iniciais, Fig. 7.3. Contudo, a
amplitude destas oscilagdes € mais significativa que a obtida nos casos anteriores. Para este caso
as “iteragdes externas iniciais” correspondem a uma faixa de no maximo 17% do ntiimero total de
iteragdes externas envolvidas no célculo. Para as demais iteragdes, verificou-se a eficiéncia do
estimador de erro quanto a sua acuracia, no entanto ndo se mostrou confiavel para todas as

variaveis de interesse ¢ em todos & subcasos. Quanto & aplicagdo do método de previsdo da
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confiabilidade, se¢do 3.6, foi constatado que a iteragdo externa em que ocorre a primeira falha na

previsdo (-1) coincide com a iteragdo em que ocorre oscilagdo na magnitude da estimativa do

erro de iteracdo devido aos erros de arredondamento.
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CONCLUSAO

Este capitulo apresenta as principais constatagdes deste trabalho, um resumo das

contribui¢des desta dissertag@o e sugestOes para trabalhos futuros.

8.1 CONSTATACOES

Conforme apresentado inicialmente, este trabalho tinha como proposta o aperfeigoamento
das técnicas existentes para se estimar erros envolvidos em processos iterativos em CFD. Diante
dos estudos sobre os estimadores de erro ja existentes na literatura, dos testes realizados e dos
resultados obtidos podemos dizer que os objetivos foram alcangados.

O estimador de erro de iteragdo estudado neste trabalho, o estimador empirico, calcula a
incerteza numérica (estimativa do erro numeérico) com base na taxa de convergéncia da variavel
de interesse. Foi constatado que este estimador apresenta relagdes diretas com os estimadores
delta, FP ¢ RB. Através da efetividade do estimador de erro, isto é, da razdo entre incerteza e
erro verificou-se a eficiéncia do estimador empirico quanto a sua acuracia e confiabilidade.

Nos testes numéricos realizados, inicialmente foram analisados procedimentos iterativos
para resolucdo de equagdes quadraticas e sistemas lineares de ordem 2. Nestes casos o estimador
mostrou-se eficiente. Em seguida foram realizados testes com a equag@o de Poisson, equacdo de
Lapalce e equagdes de Navier-Stokes. Em todos os testes realizados, analisou-se também a
eficiéncia do método de previsdo da confiabilidade do resultado obtido pelo estimador de erro.

Nos testes com a equagdo de Poisson verificouse dois tipos de comportamento. Nas
iteracGes iniciais, no maximo 13% do ntmero total de iteragbes, as estimativas de erro sdo
inacuradas e sem confiabilidade, de forma geral. Apos estas iteragdes iniciais, as estimativas sdo
cada vez mais acuradas. Nestes testes o0 método de previsdo da confiabilidade, apresentou bons
resultados, sendo que, a ocorréncia de falha na previsdo dewse pela influéncia dos erros de

arredondamento.
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Nos testes realizados com a equagdo de Laplace sem a utilizagdo da técnica multigrid
constatou-se comportamento semelhante ao obtido com a equacdo de Poisson, ou seja, existe
discordancia entre incerteza e erro somente nas iteragdes iniciais. No entanto, nestes testes as
“iteragdes iniciais” correspondem a, no maximo, 9% do numero total de iteragdes, sendo esta
uma faixa percentual é menor que para a equacdo de Poisson. Para os testes envolvendo a
aplicacdo da técnica multigrid o estimador empirico ndo mostrou-se eficiente; pois apresentou
acuracia baixa e resultados pouco confiaveis.

Ao se analisar o comportamento do erro de iteragdo envolvido na resolugiao numérica das
equacgdes de Navier-Stokes constatowrse que neste caso o erro de iteragdo também apresentou
oscilagdes nas “iteragOes externas iniciais”, o que ndo havia ocorrido nos casos anteriores.
Quanto a eficiéncia do estimador de erro e do método de previsdo obteve-se resultados
semelhantes aos casos anteriores. Neste caso as “iteragdes externas iniciais™ correspondem a no
maximo 17 % do numero total de iteragdes externas envolvidas no célculo, sendo que esta faixa
percentual ¢ maior que nos casos anteriores.

O desempenho do estimador empirico pode ser dividido em trés intervalos: nas “iteracoes
iniciais” a acuracia é baixa, em geral; quando o niimero de iteragdes ¢ muito elevado, os erros de
arredondamento afetam a acuricia, que é boa; no intervalo entre esses dois extremos, a acuracia
tende a ser grande a medida que se aumenta o nimero de iteragcGes. Nao se recomenda usar o
estimador empirico em processos iterativos que empreguem métodos multigrid, pois nestes casos
o erro de iteragdo ndo apresenta comportamento monotonico.

O método de previsdo da confiabilidade apresentou bons resultados em todos os testes
realizados, com excegdo dos testes envolvendo a técnica multigrid. A ocorréncia de falhas na
previsdo deu-se pela influéncia dos erros de arredondamento, pois quando o niimero de iteragdes

¢é muito elevado, os erros de arredondamento prevalecem sobre os erros de iteragao.

8.2 RESUMO DAS CONTRIBUICOES

As contribuigdes do presente trabalho podem ser resumidas nos seguintes pontos:
e Verificou-se a existéncia de relagdes diretas entre os estimadores de erro de iteragdo
empirico, delta, Ferziger e Peric,e Roy e Blotner.

e O estimador empirico foi aplicado e teve seu desempenho analisado nos seguintes

casos: resolugdo numérica de equagbes quadraticas, sistemas lineares de ordem 2, equagdo de

Poisson, equacdo de Laplace e equagdes de Navier- Stokes.
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e Foi proposto um método de previsdo da confiabilidade do resultado obtido pelo
estimador de erro empirico através dos resultados numéricos em trés iteragdes consecutivas e de
uma solug@o extrapolada.

e Verificou-se que a aplicagdo do estimador empirico ndo € adequada para processos

iterativos que empregam métodos multigrid.

8.3 TRABALHOS FUTUROS

Com o objetivo de aperfeigoar os resultados obtidos neste trabalho, sio propostas
algumas sugestdes para novos trabalhos:

a) Investigacdo sobre a eficiéncia do estimador de erro em outros processos iterativos que
apresentem razdo de convergéncia de comportamento convergente. Analisar também, o
comportamento da estimativa do erro para métodos iterativos com razdo de convergéncia
oscilatéria.

b) Formalizagdo matematica do método de previsdo da confiabilidade do estimador de
erro.

c) Aperfeicoamento do estimador de erro onde a ordem aparente apresenta
comportamento oscilatorio.

d) Investigac@o dos efeitos causado pelos erros de arredondamento devido aos célculos
envolvidos na estimativa do erro de iteragio.

e) Analise das “iteragdes iniciais”, ou seja, a partir de que iteragdo o estimador empirico €
recomendavel.

f) Estudo da estimativa do erro envolvido em processos iterativos que empreguem a

técnica multigrid.
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