MANOEL THEODORO FAGUNDES CUNHA

A PRACTICAL APPROACH IN THE DEVELOPMENT OF ENGINEERING

APPLICATIONS TO THE INTERNET USING OBJECT ORIENTED
PROGRAMMING

Dissertagdo apresentada como requisito parcial &
obtencéo do grau de Mesire em Ciéncias.
Programa de Pés-Graduagdo em Métodos
Numéricos em Engenharia. Setor de Tecnologia

Universidade Federal do Parani.

Orientadores : Prof. Dr. Sérgio Scheer
Prof. Dr. Waldyr de Lima e Silva Jr.

CURITIBA
1989

MANOEL THEODORO FAGUNDES CUNHA

A PRACTICAL APPROACH IN THE DEVELOPMENT OF ENGINEERING
APPLICATIONS TO THE INTERNET USING OBJECT ORIENTED
PROGRAMMING

Dissertagdo apresentada como requisito parcial a
obtencdo do grau de Mestre em Ciéncias.
Programa de Poé6s-Graduacdo em Métodos
Numéricos em Engenharia. Setor de Tecnologia,
Universidade Federal do Parana

Orientadores : Prof. Dr. Sérgio Scheer

Prof. Dr. Waldyr de Lima e Silva Jr.

CURITIBA

1999

MANOEL THEODORO FAGUNDES CUNHA

A PRACTICAL APPROACH IN THE DEVELOPMENT OF ENGINEERING
APPLICATIONS TO THE INTERNET USING OBJECT ORIENTED
PROGRAMMING

Dissertation presented as partial fulfilment for
obtaining the degree of Master of Science. Post
Graduate Programme in Numerical Methods in
Engineering. Sector of Technology, Federal
University of Parand, Brazil.

Advisors : Prof. Dr. Sérgio Scheer

Prof. Dr. Waldyr de Lima e Silva Jr.

CURITIBA

1999

MANOEL THEODORO FAGUNDES CUNHA

A PRACTICAL APPROACH IN THE DEVELOPMENT OF ENGINEERING
APPLICATIONS TO THE INTERNET USING OBJECT ORIENTED

PROGRAMMING

Dissertagdo aprovada como requisito parcial a obtencao do grau de Mestre em Ciéncias no Curso de
Poés Graduagdo em Métodos Numéricos em Engenharia da Universidade Federal do Parana pela

comissao formada pelos professores :

Orientador : Prof. Dr. Sérgio Scheer
Setor de Tecnologia, UFPR

Orientador : Prof. Dr. Waldyr de Lima e Silva Jr.

Setor de Tecnologia, UFPR

Prof. Dr. Bruno Feijé

Departamento de informatica, PUC-Rio

Prof. Dr. Ricardo Mendes Jr.

Setor de Tecnologia, UFPR

Curitiba, 4 de outubro de 1999

Ultimately, it comes down to taste. It comes down
to expose yourself to the best things that humans
have done and then try to bring those things to
what you do.

Steve Jobs

Essencialmente, trata-se de experimentar. Trata-
se de expor a si mesmo as meihores coisas que
os homens fizeram e tentar trazer estas coisas
para o que vocé esta fazendo.

Steve Jobs

To my daughters Carolina and Cecilia,

my love and maybe a bearing

ACKNOWLEDGEMENTS

To the family for the support.
To the teachers for the incentive.

To the friends for the joy.

Vi

1.1

1.2

1.3

21

211

2.2

23

24

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.8.1

3.8.2

3.8.3

3.84

CONTENTS

LISTOF FIGURES ... ix
RESUMO ...ttt e e e e e e e e e s e s e e e e e e s e s Xi
AB S TR A C T e e xii
INTRODUGCGTION ..ottt e e e 1
MOTIVATION et ettt et et e e et e e e st e e 2
HISTORICAL ASPECTS ...ttt ettt sttt e 3
ORGANIZATION ..o et e 4
OBJECT ORIENTED PROGRAMMING CONCEPTScoooiiiiiiiiiiiee e, 5
OBUE T S ettt e ettt 5
CLASSES ..o ettt a e 6
CONSTRUCTORS AND DESTRUCTORS ...ttt 7
POLYMORPHISM ...ttt ettt et e b e amnee e 9
INHERITANCE ettt e et e e e as 10
ADVANCES FEATURES OF OBJECT ORIENTED PROGRAMMINGcccooeeeinnieenn. 11
OBJECT ORIENTED PROGRAMMING IMPLEMENTATIONccocccciiiiiiiiiniee 13
POTENTIAL PROBLEMS USING CONSTANT ELEMENTSccoooiiiiiiiie e 14
POTENTIAL PROBLEMS USING LINEAR ELEMENTScociiiiiiiieir e 16
ELASTOSTATICS PROBLEMS USING CONSTANT ELEMENTSooiiiiiieiiiieeee, 17
SOME FIRST PRACTICAL REMARKSo 18
APPLYING POLYMORPHISM ...t e 19
APPLYING INHERITANCEoiiiiiiiiiiieit ettt 20
MULTIBOUNDARY POTENTIAL PROBLEMS USING CONSTANT ELEMENTS 21
BOUNDARY ELEMENTS GENERIC CLASSESccccooiiiiiiiei e 22
THE BASE CLASS ...ttt e et e e et e 23
FIRST DERIVATION ..ottt ettt e ettt e e et e e e enbeeeenneeans 24
SECOND DERIVATION ..ottt ettt ettt e e st e e e e e enaeeeeeeaes 25
THIRD DERIVATION ..ottt ettt 27

Vii

4.1

4.2

421

422

423

4231

4.3

431

43.2

433

434

4.4

4.41

442

443

4.5

451

5.1

5.11

5.2

53

5.4

5.4.1

5.5

5.6

56.1

INTERNET ESSENTIALSooiiiiiiiiiiiiii e 28

THE INTERNET AND THE CLIENT / SERVER MODELccccvviiiiiiiiiiiiiiiee 28
INTERNET PROTOGCOLS ...coiiiiiiiiiiieiiteee et 29
THE TRANSMISSION CONTROL / INTERNET PROTOCOL (TCP/IP)ccccvvvveeeniens 30
THE FILE TRANSFER PROTOCOL (FTP) ettt 32
THE HIPERTEXT TRANSFER PROTOCOL (HTTP) ..cocviiiiiiiiiiiiciieec e 33
THE HIPERTEXT MARKUP LANGUAGE (HTML) ...oooviiiiiiiiiiiiiiiic e, 33
THE COMMON GATEWAY INTERFACE (CGI) ..o 34
EXECUTING A CGI PROGRAM FROM A WEB BROWSERocociiiiiis 35
INPUT FROM AWEB BROWSER ...t 36
OUTPUT TO AN WEB BROWSERoooiiiiiiiiiiiii e 37
THE HTTP GET AND POST METHODSoooiiiiiiiiiiiicic e 38
THE JAVA PROGRAMMING LANGUAGEcoccoiiiiiiiiiiiiiicic e 39
JAVA APPLETS .ot 39
JAVASCRIPT e et 42
JAVA AND CGI PROGRAMS ...t 42
DEVELOPING WINDOWS INTERNET APPLICATIONS ..., 43
THET WINDOWS INTERNET API (WININET) .ooiiiiiiiieiieee et 43
INTERNET APPLICATIONS ... e 45
POTENTIAL PROBLEMS USING CONSTANT ELEMENTScccooiiiiii, 46
INPUT DATA FROM A WEB BROWSERcooiiiiiiiiiiiiiee e 47
OUTPUT RESULTS TO AWEB BROWSERccooiiiiiiiiiiiie e 49
POTENTIAL PROBLEMS USING LINEAR ELEMENTScooiiiiiiiiiiiccieccee, 51
ELASTOSTATICS PROBLEMS USING CONSTANT ELEMENTScccccccoiiiiiiiinnnnn 51
USING IMAGES ...ttt e e e e 51
THE POTENTIAL APPLICATION ...ttt 52
USING JAVA APPLETS ...ttt ettt 54
DEVELOPMENT OF WINDOWS CLIENT APPLICATIONSccccoiiiiiiiiiie e 56
THE WINDOWS INTERNET API (WININET) ...ooiiiiiiiiieiee e 56

viii

6.1

CONCLUSIONS ... e e e e e e e e e e e

RECOMMENDATIONS AND DIRECTIONS FOR FUTURE WORKSccceviiiiinnne

REFERENCES

10

11

12

13

14

LIST OF FIGURES

BOUNDARY ELEMENTS GENERAL CLASSEScooiiiiiiiiiiiieeee e 23
THE CLIENT / SERVER MODEL ...t 29
THE INTERNET PROTOCOLS LAYERING ... 29
EXECUTING A CGl PROGRAM FROM A WEB BROWSERccccociiiiiie 35
EXECUTING A CGI PROGRAM FROMAWEB PAGE ... 35
INPUT FROM AWEB PAGE ... 36
THE HELLO APPLET ..o 40
A WEB INTERFACE TO CGI PROGRAMS ... 48
AN OUTPUT FROM A CGI PROGRAM ... 50
THE POTENTIAL APPLICATION ..o 52
THE POTENTIAL APPLICATION GIF FILESccoiiiiiiiiii e 53
THE POTENTIAL APPLET L. 55
A GRAPHIC VISUALIZATION CLIENT APPLICATION, 57
THE FTP FILE OPEN DIALOG BOX.....ooiiiiiiiiiii e 57

RESUMO

Este trabalho é um tutorial pratico para apresentar os conceitos basicos da Programacéo
Orientada a Objetos e 0 seu uso no desenvolvimento de aplicacdes de Engenharia para a Internet.
Durante décadas, técnicas e ferramentas de programacdo tém mudado para acompanhar a evolugéo
do hardware. O avango do conhecimento humano também traz complexidade para as aplicagdes e
exige 0 mesmo avango nos recursos e técnicas de software. Entretanto, muitos estudantes e
pesquisadores envolvidos com programacdo de computadores ainda utilizam ferramentas e técnicas
muito antigos. Ainda que estes programadores estejam tratando de teorias matematicas e de
engenharia muito avangadas, boa parte deste avanco é perdido pelo o uso de técnicas de
programacdo desenvolvidas décadas atrds. A simplicidade obtida com o uso de uma abordagem
tradicional ja ndo é mais compativel com a complexidade dos problemas em estudo. A solucio de
problemas de engenharia é o objetivo priméario do estudante ou pesquisador. Entretanto, depois da
solugéo do problema, o programador deve enfrentar a tarefa de criar uma interface para o usuario.
Este trabalho também aborda o problema de dar a aplicagdo uma interface de usuario padrdo sem o
conhecimento profundo de programagéo. A Internet é o ambiente proposto neste trabalho como uma
opcédo para o programador de engenharia. O Ultimo beneficio da abordagem proposta aqui é a

portabilidade de plataforma, ndo apenas para o cédigo mas também para o programador.

Xi

ABSTRACT

This work is a practical tutorial to present the basic concepts of Object Oriented
Programming and its use in the development of engineering applications to the Internet. During
decades, programming tools and techniques have changed or created to follow hardware evolution.
The development of human knowledge also brings complexity to applications and demands the same
increase in software resources and techniques. However, many students and researches involved with
computer programming still use very old tools and techniques. Despite those programmers are dealing
with advanced mathematical and engineering theories, a great deal of their advance is lost by using
programming techniques developed decades ago. The simplicity obtained when using a traditional
approach is no longer compatible with the complexity of the problems in study. The solution of
engineering problems is the primary goal of the student or researcher. However, after the solution of
the problem, the programmer must face the job of creating a user interface. This work also addresses
the problem of giving to scientific and engineering applications a standard user interface without deep
programming knowledge. Internet is the environment proposed in this work as an option to the
scientific and engineering programmer. The last benefit of the approach proposed here is the platform

portability, not only for the code but also for the programmer.

Xii

1. INTRODUCTION

1.1 MOTIVATION

Over the last decades, since the invention of the first computers, programming
techniques have been changed to follow hardware evolution. Computers with high processing
capabilities and equipped with accessories like scanners, CD-ROM writers and laser printers can be
found in supermarkets and are intended for office and home usage. High-resolution graphics boards
and monitors are used to produce special effects, many of them seen in the movie industry. Users can
interact with computers with a simple mouse or even with voice commands.

However, all hardware improvements are closely followed by software evolution. Event-
driven programming is one of the new paradigms created to accommodate the hardware evolution.
Many common tasks performed by a user today simply could not be implemented using old
programming techniques. New programming approaches allow the use of simultaneous input devices,
like a keyboard and a mouse, and the user - not the programmer - decides how to use the computer.

The hardware improvement is not the only reason for the software evolution. While the
first computers were created for scientific purposes, like ballistic path calculations, the new computers
are used in simulations like nuclear reactions, DNA chains and genetic research, among others. Many
mathematical theories developed in the last century can be implemented, tested and proved only with
the use of computers. The development of human knowledge also brings complexity to applications
and demands the same increase in software resources and techniques.

However, many students and researches involved with computer programming still use
very old tools and techniques. Despite those programmers are dealing with advanced mathematical
and engineering issues, a great deal of their advance are lost by using of a computer technique
developed decades ago. The simplicity obtained when using a half-dozen instructions are no longer
compatible with the complexity of the problems in study. Even newer languages, created to teach
programming, are not fitted to numeric-intensive programming, image processing, scientific

visualization and real-world applications.

This work is addressed to graduate and post-graduate students who want to learn Object
Oriented Programming. This programming technique is a well-established paradigm of the software
engineering discipline and founded in many Application Programming Interfaces (API). Java, one of
the most recent programming languages, has been created under this new approach. Some of new
compiling environments commonly used today create object-oriented code. Object Oriented
Programming aims the development of complex applications and allows the user to write code more
efficiently, going along with hardware evolution.

The solution of engineering problems is the primary goal of the student or researcher.
However, after the solution of the problem, the programmer must face with the job of creating a user
interface. Graphic User Interfaces (GUI) like Windows provide standards for data input and output
operations. Well-known widgets like push button, check boxes, radio buttons, edit boxes, scroll bars,
icons, among others, are used in a daily basis and become familiar to all users, without regard to their
level of expertise. However, the Windows environment has about 2500 functions to deal with its
graphic interface and other features. Network capabilities is another example of feature embedded in
many recent applications that demand additional knowledge from the programmer.

This work also addresses the problem of giving to the engineering application a standard
user interface without deep programming experience or knowledge of large libraries. Another goal of
this work is to provide the programmer with tools to develop networked applications. The last benefit of
the approach proposed here is the platform portability, not only for the code but also for the
programmer. Internet is the environment proposed in this work as an option to the scientific and
engineering programmer.

The Internet has become an integral part of the computing community. From its beginning
as ARPANET™, it has grown into a global means of communicating and conducting business.
Currently, the Internet is projected to be central to the future of both academic and business
computing. Many people, even the most occasional of the computer users, already have electronic
mail (e-mail) and many World Wide Web users who have not got a home page yet are trying to learn
how to build one. The current growth of the Internet - and in particular the Word Wide Web - is
influencing everything in the computing industry. A significant number of software and hardware

companies are working to build Internet capabilities into their current offerings.

Combining the two topics, Object Oriented Programming and Internet, a programmer can
develop applications of any level of complexity and give it a standard interface. The Internet also
allows easy access to the application by the academic community. Internet allows easy dissemination

of research results as well as later contributions to the improvement of the applications.

1.2 HISTORICAL ASPECTS

Object Oriented Programming™'* is a very well known programming technique and has
been studied by a large number of students and researchers over the last years. Many scientific and
engineering works have been written on this theme. However, in previous works on this subject, the
engineering authors have focused on the solution of specific problems, mainly in the fields of
Computer Graphics™®, Finite Elements®®*' and Boundary Elements Methods. In most of those works,
the main concern was the creation of a class hierarchy that addressed the data structures of the
applications. This work approaches the implementation of the program itself using Object Oriented
Programming.

The dissemination of the Internet in the academic, business and personal environments
attracts many students in the investigation of its potential. Many educational applications have been
developed and used by much the academic community around the world. Daily, countless pages are
made available to teach a large range of disciplines using resources like Java, Virtual Reality
Modeling, among others. Engineering commercial applications, however, have not taken advantage of
Internet capabilities yet. The actual versions of those programs are still running only as desktop or
local network applications.

The best classical and practical references to Object Oriented Programming are books,
availabie through Internet bookshops. The sample codes reviewed in the present work are originally
presented as Fortran codes by Brebbia and Dominguez in Boundary Elements, An Introductory

Course'. This book is the foundation upon which this work was built.

1.3 ORGANIZATION

This work has two main subjects : Object Oriented Programming and Internet. Each topic
is also presented in two parts : theory and practice. The theory of each issue are introduced and then
applied with engineering examples. The second chapter presents the basic concepts of Object
Oriented Programming. The introduction of each new feature is followed by an example using the new
approach and compared with the same code, written in the traditional technique. The presented theory
is applied in Chapter 3 to review some computer codes, written in a traditional programming language
with a very conservative technique, and to rewrite them using the of Object Oriented Programming
approach. The reviewed programs were presented by Brebbia and Dominguez' to solve potential and
elastostatics problem using the Boundary Elements Method. In Chapter 4, Internet essentials are
introduced and placed in perspective. Each development tool is considered under the objective of
giving to the applications client-side or server-side capabilities. Chapter 5 combines the two
paradigms, Object Oriented Programming and Internet in order to give to the applications presented in
Chapter 3 a user interface easy to develop. The last chapter contains the conclusions and
recommendations. Limitations of each programming method are discussed and directions for future

research are suggested.

2, OBJECT ORIENTED PROGRAMMING CONCEPTS

Object Oriented Programming® is a programming technique created to allow the
development of large and complex programs.

Since the invention of the first computers, approaches to programming have changed in
order to accommodate the increasing compiexity of the programs. First programs were just a few
hundred binary instructions. As programs grew, assembly language was invented to deal with larger,
increasingly complex programs using symbolic representations of the machine instructions. High-level
languages as Fortran have been introduced to give the programmer better tools to handle complexity.
With the appearance of structured languages, like Pascal and C, it was possible to write moderately
complex programs more easily. However, even using structured programming methods, once a project
reaches a certain size, its complexity becomes too difficulty for a programmer to handle.

Object Oriented Programming takes the best features of structured programming,
combines them with new concepts, and allows to easily decomposing a problem into subgroups of
related parts. Then, one can translate these subgroups into self-contained units called objects.

All Object Oriented Programming languages have three features in common : objects,

polymorphism and inheritance.

21 OBJECTS

The single most important feature of an object-oriented language is the object. In a simple
manner, an object is a logical entity containing variables and functions that manipulate those
variables.

Within an object, some of the variables or functions may be private to the object and
inaccessible by the rest of the program. In this way, an object provides a significant level of protection
against modification or incorrect use. This linkage of code and data is often referred to as

encapsulation.

Consider a simple C program :

#include <iostream.h>
void main(void) {

int n;

n = 10;

cout << n << '\n';

}

In this code, an integer variable is created and its content is defined and displayed
directly with simple assignment and output statements.

The object-oriented version of the same program would be :

#include <iostream.h>
class number {
int n;
public:
void setnum(int a) { n = a; }
int getnum(void) { return n; }
}i
void main (void) {
number obj;
obj.setnum(10) ;
cout << obj.getnum() << '\n';
}

The new code begins with a block that declares an object with one private variable, n,
and two public functions, setnum and getnum. in the program body, the object is created and the
variable is accessed through the functions. The variable is private and cannot be accessed directly by

the program. The functions of the object are used to define and display the content of that variable.

2.1.1 CLASSES

To create an object one needs first to define its general form using the keyword class :

class classname {
//private variables

public:

//public functions

}i

A class can contain private as well as public members. By default, all members defined in
the class are private. Private variables cannot be accessed by any function that is not a member of the
class. One can also define private functions, which can only be called by other functions of the class.

To make parts of a class accessible to other parts of the program, one must declare them
after the keyword public. All variables and functions defined after public are accessible by all other
functions in the program. Generally, the rest of the program accesses an object through its public
functions. Although one can have public variables, their use should be avoided or eliminated. instead,
one should make all data private and control access to it and through public functions. This will help
preserve encapsulation.

To code a function that is member of a class, one must inform the compiler to which class

the functions belong using the scope resolution operator (::).

class number {
int n;

public:
void setnum(int) ;
int getnum(void) ;

}i

void number::setnum(int a) {
n = a;

}

int number::getnum(void) {
return n;

}

Several different classes can use the same function names. The compiler knows which
function belong to which class because of the scope resolution operator and the class name.

Simple class functions can also be coded within the class declaration :

class number
int n;

public:
void setnum(int a) { n = a; }
int getnum(void) { return n; }

}i

Once the class is declared, one can create an object in the same way a variable is
created but using the class name instead of the variable type. For all intents and purposes, an object

is a variable of an user-defined type.

#include <iostream.h>
class number {

int n;

public:
void setnum(int a) { n = a; }
int getnum(void) { return n; }

}i
void main (void) {

number obj;

obj.setnum(10) ;

cout << obj.getnum() << '\n';
}

To call a member function from a part of the program that is not part of the class one

must use the object name and the dot operator. Only when a member function is called by code that

does not belong to the class the object name and the dot operator must be used. Otherwise, one

member function can call another member function directly, without using the dot operator.

2.1.2 CONSTRUCTORS AND DESTRUCTORS

As it is usual to initialize a variable at the time it is declared, it is very common for some

part of an object to require initialization before it can be used. Because the requirement for initialization

is so common, Object Oriented Programming allows objects to initialize themselves when they are

created.

This automatic initialization is performed with a constructor function. A constructor

function is a special function that is a member of the class and has the same name of that class.

is declared.

Consider the simple program :

#include <iostream.h>
void main (void) {

int n = 10;

cout << n << '\n"';

In the code above, the integer variable n is created and its content is defined at the time it

The object-oriented version of the same program would be :

#include <iostream.h>

class number {
int n;

public:
number (void) {
int getnum(void

}i

void main (void) {
number obij;
cout << obj.getnum() << '\n';

}

10;)

n:
) { return n; }

The new code declares the class number with a constructor function that initializes the
content of the private variable when the object is created. The constructor function has the same name
of the class, number, and it is called when time the object is created.

The complement of the constructor is the destructor. In many circumstances, an object
needs to perform some action or actions when it is destroyed. There are many reasons why a
destructor function may be needed; for example, to set free memory previously allocated. The

destructor has the same name as the constructor but is preceded by a tilde (~).

2.2 POLYMORPHISM

Object Oriented Programming languages support polymorphism, which allows a name to
be used for several related but slightly different purposes. The purpose of polymorphism is to let a
name to specify a general class of action. Depending upon what type of data it is dealing with, a
specific instance of the general case is executed.

The way Object Oriented Programming achieves polymorphism is trough the function
overloading. In Object Oriented Programming two or more functions can share the same name as long
as their parameter declarations are different. In this situation, the functions sharing the same name are
said to be overloaded. The main advantage of using overloaded functions it that they allow related
sets of functions to be accessed using a common name. In a sense, function overloading lets one
create a generic name for an operation. The compiler knows which function to use in each case

because the type of the argument.

10

For example, consider the sample code :

#include <iostream.h>
class rectangle {
double area;

public:
void setarea(double x) { area = x; }
void setarea(double a, double b) { area = a * b; }

double getarea(void) { return area; }
i
void main (void) {

rectangle obj;

obj.setarea(12);

cout << obj.getarea() << '\n';

obj.setarea(3,4);

cout << obj.getarea() << '\n';

In the above code, the value of area is defined by the function setarea. By using
polymorphism, the class can be improved with a new function to define the value of area. Notice the
use of two related functions with the same name, setarea. The compiler selects the correct function

depending on the parameters with which it is called.

2.3 INHERITANCE

Inheritance is the process by which an object can acquire the properties of another
object. Without the use of inherifance, each object would have to define all of its characteristics
explicitly. Using inheritance, an object needs only to define those qualities that make it unique within
its class.

In Object Oriented Programming, inheritance is supported by allowing a class to

incorporate another class in its declaration :

class parent ({

//private variables
protected :

// protected members
public:

//public functions
}i

11

class child : public parent {
//private variables

public:
//public functions

}i

A class that is inherited by another class is called the base class. The class that does the
inheriting is called the derived class.

It must be noticed that a public member of a class can be accessed by any other function
in the program. A private element can be accessed only by member functions.

When a class inherits another class, all private elements of the base class are
inaccessible to the derived class. The elements of the derived class can access public functions of the
parent but cannot access its private variables.

A base class can grant access of its private elements to a derived class by making them
protected. The protected members of the class can be accessed by a derived class although they are
still inaccessible to the rest of the program. Making an element protected restricts its access only to
the member functions of the class but allows this access to be inherited.

When an element is private, access is not inherited. All protected and public elements of

the base class become protected and public elements of the derived class, respectively.

2.4 ADVANCED FEATURES OF OBJECT ORIENTED PROGRAMMING

The basic concepts presented up to now are enough to allow the programmer without
great computing skills to develop object-oriented applications. However, Object Oriented Programming
is featured with advanced resources, commonly used by more experienced programmers. Those
advanced features are not used in this work but need to be presented to give an overview of how
much complex applications can be developed.

The most important of these features are :

12

e Parameterized constructors : Often when an object is created it is necessary, or desirable, to
initialize various data elements with specific values. Using parameterized constructor functions it is
possible to initialize objects using values known only when the object is created.

e Friend functions : It is possible for a nonmember function of a class to have access to the private
parts of that class by declaring it as a friend function of the class.

o Multiple inheritance : It is allowed to a class to inherit attributes from more than one class.

¢ Run-time polymorphism . Pointers to objects are similar to pointers to variables. A base class
pointer may point to an object of a class derived from that base. A virtual function is a function that
is declared as virfual in a base class and redefined in one or more derived classes. Virtual
functions are special because when one of them is accessed using a pointer, the compiler
determines which function to call at run-time based on the type of object pointed to. Because of
the restrictions and differences between overioading normal functions and overfoading virtual
functions, the term overriding is used to describe virtual function redefinition.

e Pure virtual functions and abstract types : When a virtual function that is not overridden in a
derived class is called from an object of that derived class, the version as defined in the base
class is used. A pure virtual function is a function declared in a base class that has no definition to
the base. Any derived class must define its own implementation of the function. If a class has at
least one pure virtual function, that class is said to be abstract. Abstract classes have an important
feature : they cannot be used to declare an object. Instead, an abstract class must be used only
as a base that other classes will inherit.

Many other advanced features are available to the experienced programmer, but a

complete list of them is beyond the scope of this work.

13

3. OBJECT ORIENTED PROGRAMMING IMPLEMENTATION

In this chapter, the basic concepts of classes and constructors will be applied to review
some computer codes written in a traditional programming language with a very conservative
technique and rewrite them using the Object Oriented Programming approach. The programs
reviewed here are presented by Brebbia and Dominguez' and solve potential and elastostatics

problems using the Boundary Elements Method :

POCONBE : Potential Problems using Constant Elements
POLINBE : Potential Problems using Linear Elements
ELCONBE : Elastostatics Code using Constant Elements

Each program defines some global variables and the functions shown below :

POCONBE POLINBE ELCONBE

INPUTPC INPUTPL INPUTEC
GHMATPC GHMATPL GHMATEC
EXTINPC EXTINPL EXTINEC
LOCINPC LOCINPL LOCINEC
SLNPD SLNPD SLNPD
INTERPC INTERPL INTEREC
OUTPUTPC OUTPUTPL OUTPUTEC
SIGMAEC

Despite their different names, all the functions at the same row in the table above have

the same purpose :

INPUTxx :reads all the input data required by each program
GHMATxx :computes the G and H matrices

EXTINxx : called by GHMATxx and INTERxx

LOCINxx : called by GHMATxx

SLNPD : solution of linear systems of equations

INTERxx : performs some calculations at internai points
SIGMAXxx : called by INTERxx in elastostatics problems

By using Object Oriented Programming techniques one can create a class to each
program, where global variables are encapsulated as private members and the functions with equal

purposes can be declared with the same name, as shown in the samples ahead.

14

3.1 POTENTIAL PROBLEMS USING CONSTANT ELEMENTS

The first code reviewed is a simple computer code for solving Laplace type problems. The
main program defines general integer variables, an integer one-dimensional array and some real

arrays to store data and results, as shown below :

PROGRAM POCONBE
DIMENSION X (101),Y(101),XM(100),¥YM(100),FI(100),DFI(100)
DIMENSION KODE (100),CX(20),CY(20),POT(20),FLUX1(20),FLUX(2)
COMMON/MATG/ G(100,100)
COMMON/MATH/ H(100,100)
COMMON N, L

C READ DATA
CALL INPUTPC(CX,CY,X,Y,KODE,FI)

C COMPUTE THE H AND G MATRICES AND FORM SYSTEM (A X = F)
CALL GHMATPC (G,DFI,D,100)

C SOLVE SYSTEM OF EQUATIONS
CALL SLNPD(G,DFI,D,100)

C COMPUTE THE POTENTIAL AND FLUXES AT INTERNAL POINTS
CALL INTERPC(FI,DFI,KODE,CX,CY,X,Y,POT,FLUX1,FLUX2)

C PRINT RESULTS AT BOUNDARY NODES AND INTERNAL POINTS
CALL OUTPUTPC (XM, YM, FI, DFI,CX,CY, POT, FLUX1, FLUX2)
STOP
END

In order to compute the coefficients of G and H matrices the GHMATPC subroutine calls

two additional subroutines, EXTINPC and LOCINPC, as shown in the fragment of code below :

SUBROUTINE GHMATPC (X,Y,XM,¥YM,G,H, FI,DFI, KODE)

C COMPUTE THE COEFFICIENTS OF G AND H MATRICES
DO 30 I=1,N
DO 30 J=1,N
KK=J+1
IF(I-J)20,25,20

20 CALL EXTINPC (XM (I),YM(I),X(J),Y(J),X(KK),Y(KK),
1G6(1,J),H(I,J),DQ1l,DQ2,DUl,DU2,0)
GOTO 30

25 CALL LOCINPC (X(J),Y(J),X(KK),Y(KK),G(I,J))
H(I,J) = 3.1415926

30 CONTINUE
RETURN
END

The EXTINPC subroutine is also called by the INTERPC subroutine to compute the

potential and the fluxes at internal points.

15

The code presented defines some global variables and seven functions. Those variables

and functions can be gathered in a class, as shown below :

class poconbe {
int N,L;
double X[101],Y[101],XM[100],YM[100];
int KODE[100];
double FI[100],DFI[100];
double G[100][100],H[100][100];
double CX[20],CY[20],POT[20],FLUX1[20],FLUX[20];

void Extin (double, ...,int);
void Locin(double, ...,double&) ;
public:

poconbe (void) ;
void Input (void);
void GHmat (void) ;
void SLNPD(void) ;
void Inter (void);
void Output (void) ;

Notice the functions Extin and Locin declared as private members of the class. These
functions are called only by other member functions and can be encapsulated.

The main body of the program would be :

void main (void) {
poconbe object;
object.Input();
object.GHmat () ;
object.SLNPD() ;
object.Inter():;
object.Output () ;

The class constructor must be defined using the scope resolution operator (::) :

poconbe: :poconbe (void) {
N =1L = 0;

for (int i=0;i<100;i++)

{ X[i] = Y[i] = FI[i]

= 0.0
for (i=0;i<20;i++) CX[i] =

CY[1i

All other member functions of the class can be defined in the same fashion. The simple

translation of the code inside of the functions is beyond of the scope of this work.

16

3.2 POTENTIAL PROBLEMS USING LINEAR ELEMENTS

The second code reviewed solves potential problems using linear elements. The size of
some matrices are different from the previous case, the XM and YM arrays are no longer needed and

the role of the FI and DFI arrays are changed, as shown :

PROGRAM POLINBE
DIMENSION X (81),Y(81),FI(80),DFI(160)
DIMENSION KODE(160),CX(20),CY(20),POT(20),FLUX1(20), FLUX (2)
COMMON/MATG/ G(80,160)
COMMON/MATH/ H(80,80)
COMMON N, L

C READ DATA
CALL INPUTPL(CX,CY,X,Y,KODE,DFI)

C COMPUTE THE H AND G MATRICES AND FORM SYSTEM (A X = F)
CALL GHMATPL(H,FI,D,160)

C SOLVE SYSTEM OF EQUATIONS
CALL SLNPD(H,FI,D,80)

C COMPUTE THE POTENTIAL AND FLUXES AT INTERNAL POINTS
CALL INTERPL(FI,DFI,KODE,CX,CY,X,Y,POT,FLUX1, FLUX2)

C PRINT RESULTS AT BOUNDARY NODES AND INTERNAL POINTS
CALL OUTPUTPL(X,Y,FI,DFI,CX,CY,POT, FLUX1, FLUX2)
STOP
END

Again, the program variables and functions can be gathered in a class, as shown :

class polinbe {

int N,L;
double X[81],Y[81];
int KODE[160] ;

double FI[80],DFI[160];
double G[80][160],H[80][80];
double CX[20],CY[20],POT[20],FLUX1[20],FLUX[20];

void Extin (double,...,int);
void Locin (double, ...,double&) ;
public:

polinbe (void) ;
bool Input (void);
void GHmat (void) ;
bool SLNPD (void) ;
void Inter (void)

void Output (void) ;

Notice the naming of the functions in the class above and in the class poconbe, shown in

the previous section : related purpose functions have the same name.

17

3.3 ELASTOSTATICS PROBLEMS USING CONSTANT ELEMENTS

This section reviews a computer code for the solution of two-dimensional isotropic

elastostatics problems without body forces. The code has a similar organization as those described

previously and the variables and functions used in the program are listed below :

PROGRAM ELCONBE
DIMENSION X (51),Y(51),XM(50),¥YM(50),FI(100),DFI(100)
DIMENSION KODE(100),CX(20),CY(20),SSOL(60),DSOL(40)
COMMON/MATG/ G(100,100)
COMMON/MATH/ H(100,100)
COMMON N,L,M,GE,XNU,NC(5)

C READ DATA
CALL INPUTEC(CX,CY,X,Y,KODE,FI)

C COMPUTE THE H AND G MATRICES AND FORM SYSTEM (A X = F)
CALL GHMATEC (X,Y,XM,YM,G,H,FI,DFI,KODE, 100)

C SOLVE SYSTEM OF EQUATIONS
CALL SLNPD(G,DFI,D,2*N,200)

C COMPUTE STRESS AND DISPLACEMENTS AT INTERNAL POINTS
CALL INTEREC (FI,DFI,KODE,CX,CY,X,Y,SSOL,DSOL)

C PRINT RESULTS AT BOUNDARY NODES AND INTERNAL POINTS
CALL OUTPUTEC (XM, YM, FI,DFI,CX,CY, SSOL,DSOL)
STOP
END

As in the previous codes, additional subroutines are called from another part of the

program and a new class can be declared for the new case :

class elconbe {
int N,L,M;
double X[51],Y[51], XM[50],YM[50];
int KODE[100],NC[5];
double FI[100],DFI[100];
double GE,XNU;
double G[100][100],H[100][100]:;
double CX[20],CY[20],DSOL[20],SS0OL[20]:;
void Extin (double, ...,double&) ;

void Locin (double, ...,double&) ;
void Sigma (double, ...,double&) ;
public:

elconbe (void) ;
bool Input (void);
void GHmat (void) ;
bool SLNPD(void) ;
void Inter (void);
void Output (void) ;

18

3.4 SOME FIRST PRACTICAL REMARKS

Every code previously presented defines some global variables and functions. In each
program, those variables and functions can be gathered in classes, specific to each problem but

similar in its declarations, as shown below :

class boundary {
// private variables

void Extin(...);
void Locin(...):;
public:

boundary (void) ;

bool Input (void);
void GHmat (void) ;
bool SLNPD(void) ;
void Inter (void);
void Output (void) ;

It must be pointed out that the elastostatics code declares an additional function, Sigma.
The main body of the program is the same in all cases and the only change refers to the

type of the object :

void main (void) {
classname object;

if (object.Input()) return;
object.GHmat () ;
if (object.SLNPD()) return;

object.Inter();
object.Output () ;

By simply applying the basic concepts of this programming technique, different codes
with increasing complexity can be written in the same fashion.

The use of classes allows the programmer to use the same name to declare related
functions and to avoid using global variables and its accidental modification or incorrect use.

Besides the safety factor, creating a generic programming ‘“interface” to different

applications by itself justifies the use of Object Oriented Programming.

3.5 APPLYING POLYMORPHISM

The concept of polymorphism can be applied to improve the first code presented,

Potential Problems using Constant Elements. The input function defined in the class can be

overloaded to allow data input from the keyboard or from a text file. The output function can also be

overloaded to allow result output to the screen or into a text file, as shown below :

class poconbe {

int N, L
double X[101],Y[101], XM[100],YM[100];
int KODE[1007] ;

double FI[100],DFI[100];
double G[100][100],H[100][100];
double CX[20],CY[20],POT[20],FLUX1([20],FLUX[20];

void Extin (double,...,int);
void Locin (double, ...,doubles) ;
public:

poconbe (void) ;

bool Input(void); // keyboard
bool Input(char*); // text file
void GHmat (void) ;

bool SLNPD(void) ;

void Inter (void);

void Output (void); // screen
void Output (char*);// text file

The overloaded functions are defined in the same way as any member function :

poconbe: : Input (void) {
// code to read the data from keyboard

}

poconbe: :Input (char *filename) {
// code to read data from the text file

}
poconbe: :Output (void) {

// code to display results on screen

}

poconbe: :Output (char *filename) {

// code to write resuls to the text file

20

The main body of the program developed to use the keyboard and the screen is the same

already presented :

void main (void) {
poconbe object;

if (object.Input()) return;
object.GHmat () ;
if (object.SLNPD()) return;

object.Inter () ;
object.Output () ;

The text file version of the same program would be :

void main (void) {
char inputfile[1l2],outputfile[12];
cout << "Input file name : ";
cin >> inputfile;
cout << "Output file name : ";
cin >> outputfile;
pocohbe object;
if (object.Input(inputfile)) return;

object.GHmat () ;
if (object.SLNPD()) return;

object.Inter();
object.Output (outputfile) ;

The compiler selects the correct function depending on the type of data by which it is

called.

3.6 APPLYING INHERITANCE

The concept of inheritance can be applied here to create a new class from an already
defined one, declaring only what is specific to the new class.

Consider the class poconbe already presented in Potential Problems using Constant
Elements. The class presented previously is applicable to problems with only one surface but by using
the inheritance mechanism it can be used as a base class to create a new one to solve multiboundary

problems.

21

class poconbe {
protected:
int N,L;
double X[101],Y[101], XM[100],YM[100];
int KODE[100] ;
double FI[100],DFI[100];
double G[100][100],H[100][100];
double CX[20],CY[20],POT[20],FLUX1[20],FLUX[20];

void Extin(double,...,int);
void Locin(double, ...,double&);
public:

poconbe (void) ;

bool Input (void);
void GHmat (void) ;
bool SLNPD(void) ;
void Inter(void):;
void Output (void) ;

Notice the change of declaration of variables from private to protected. This change

allows its access by derived classes while they remain inaccessible to the rest of the program.

3.7 MULTIBOUNDARY POTENTIAL PROBLEMS USING CONSTANT ELEMENTS

The next code reviewed solves multiboundary potential problems and is based on the
constant element code. The program defines an additional variable to hold the number of different
surfaces and an array to store the last node of each different surface. To take into account the

different surfaces, three functions are declared :

INPUMPC : same input required by inputpc plus the surface data
GHMAMPC : expanded from ghmatpc to differentiate the points on each of the surfaces
INTEMPC : varies from a few statements from interpc to compute the different surfaces

All other variables and functions are the same as declared in Potential Problems using
Constant Elements.
This new class is derived from the class poconbe, having in its declaration only what

differs one class from the other, as follows :

22

class pomcobe : public poconbe {
int M;
int NC[5];
public:
pomconbe (void) ;
bool Input (void);
void GHmat (void) ;
void Inter (void);

The constructor of the class initializes only its own input variables :

pomcobe: :pomcobe (void) {
M = 0;
for (int i=0;i<5;i++) NC[i] = 0;

The main body of the program is similar to the previous codes :

void main (void) {
pomcobe object;

if (object.Input()) return;
object.GHmat () ;
if (object.SLNPD()) return;

object.Inter () ;
object.Output () ;

When this code is executed, the compiler selects the functions defined in the new class.
Only when they are not redefined in the derived class, the functions in the base class are

executed.

3.8 BOUNDARY ELEMENTS GENERIC CLASSES

The knowledge of function overloading and inheritance allows a revision of the classes

previously presented, as follows :

23

FIG.1 BOUNDARY ELEMENTS GENERIC CLASSES

BOUNDELEM
NL
X,Y,KODE,FI,DF,GH,CX,CY
SLNPD
|
I I
POTENBE ELASTBE
POT,FLUX1,FLUX2 M,NC(5)
I
[|
POCONBE POLINBE ELCONBE
XM, YM EXTIN,LOCIN XM, YM
EXTINC LOCIN INPUT,GHMAT,INTER,OUTPUT EXTIN,LOCIN,SIGMA
INPUT,GHMAT,INTER,OUTPUT INPUT,GHMAT,INTER,OUTPUT

POMCOBE
M,NC(5)
INPUT,GHMAT,INTER

3.8.1 THE BASE CLASS

The class boundelem is a general base class to all applications already shown and holds
all common variables used in those programs. This class also declares a constructor, a destructor and

a function to solve the system of equations, common to all derived classes.

class boundelem ({
protected:
int N, L;
double *X,*Y;
int *KODE;
double *FI,*DFI;
double *G,*H;
double CX[20],CY[20];
public:
boundelem(void) ;
~boundelem(void) ;
bool SLNPD(void) ;
}

The constructor and destructor functions of the class would be :

24

boundelem: :boundelem(void) {
N =1L = 0;
X =Y =FI = DFI = G = H = NULL;
KODE = NULL;
for (int i=0;i<20;i++)
CX[i] = CY[i] = 0.0;
}
boundelem: : ~boundelem(void) {
if (X) delete []1X;
if (Y) delete []Y;
if (KODE) delete []KODE;
if (FI) delete []FI;
if (DFI) delete []DFI:
if (G) delete []1G;
if (H) delete []H;
X =Y = FI = DFI =G = H = NULL;
KODE = NULL;

The constructor of the class initializes the variables and pointers to matrices while the

destructor is used to free the memory allocated to those matrices.

3.8.2 FIRST DERIVATION

The class boundelem can be used to derive two new general base classes, each one

with specific elements to solve potential and elastostatics problems :

class potenbe : public boundelem {
protected :

double POT[20],FLUX1[20],FLUX2[20];
public

potenbe (void) ;

}

class elastbe : public boundelem {
protected:

int M;

int NC[5];

double DSOL[20], SSOL[20];
public

elastbe (void) ;

}

25

The classes potenbe and elastbe are derived from the class boundelem and inherit all
variables as well as the function already declared in the base class. Each new class also declares

some common variables and its own constructors :

potenbe: :potenbe (void) {

for (int i=0;i<20;i++)

POT[i] = FLUX1[i] = FLUX2[i] = 0.0;
}
elastbe: :elastbe (void) {

M = 0;

for (int i=0;i<5;i++) NC = 0;

for (i=0;i<20;i++)

DSOL[i] = SSOL[i] = 0.0;

There is no need for a destructor function once the matrices in those classes are not

dynamic allocated.

3.8.3 SECOND DERIVATION

The boundary problems can be solved using different types of elements. The classes
potenbe and elastbe can be used to derive specific classes to deal with each one of those cases.

Potential classes :

In those classes are declared all the functions and variables specific to solve potential

problems using constant and linear elements.

class poconbe : public potenbe {

protected
double *XM, *YM;
void Extin(...);
void Locin(...):;
public:

poconbe (void) ;
~poconbe (void) ;
bool Input(void);
void GHmat (void) ;
void Inter (void) ;
void Output (void) ;

26

class polinbe : public potenbe {

void Extin(...):
void Locin(...):
public:

bool Input(void);
void GHmat (void) ;
void Inter (void) ;

void Output (void

)

The two classes above are derived from the class potenbe and inherit the variables
declared in the base class potenbe and its parent class boundelem. Only the class poconbe has

constructor and destructor functions :

poconbe: :poconbe (void) {
XM = YM = NULL;
}

poconbe: : ~poconbe (void) {
if (XM) delete []XM; XM = NULL;
if (YM) delete []YM; YM = NULL;

Elastostatics class :

In this class are declared all the functions and variables specific to solve elastostatic

problems using constant elements.

class elconbe : public elastbe {
double *XM, *YM;

void Extin(...):;

void Locin(...):

void Sigma(...);
public:

elconbe (void) ;
~elconbe (void) ;
bool Input(void):;
void GHmat (void) ;
void Inter (void) ;
void Output (void) ;

The class elconbe is derived from the class elastbe. It declares an extra private function,

Sigma, additional variables and has constructor and destructor functions, shown ahead :

27

elconbe: :elconbe (void) {
XM = YM = NULL;

}

elconbe: :~elconbe (void) {
if (XM) delete []XM; XM NULL;
if (YM) delete []YM; ¥YM = NULL;

1

3.8.4 THIRD DERIVATION

Successive derivations can be applied in order to create classes with specific behavior.
The class poconbe has all the implementation necessary to solve Potential Problems using Constant
Elements but despite the fact of being a complete class from which an object can be created, it can be

used to derive a new class that implements the extra code required to solve multiboundary problems :

class pomcobe : public poconbe {
int M;
int NC[5];
public:
pomcobe (void) ;
~pomcobe (void) ;
bool Input(void);
void GHmat (void) ;
void Inter (void):;

This class declares only the variables not present in its parent classes and the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>