
MANOEL THEODORO FAGUNDES CUNHA

A PRACTICAL APPROACH IN THE DEVELOPMENT OF ENGINEERING 
APPLICATIONS TO THE INTERNET USING OBJECT ORIENTED

PROGRAMMING

Dissertação apresentada requisito parcial á
obtenção do grau de Mestre em Ciências. 
Programa de Pós-Graduação em Métodos
Numéricos em Engenharia. Setor de Tecnologia 
Universidade Federal do Paraná.

Orientadores : Prof. Dr. Sérgio Scheer
Prol. Dr. Waldyr de Lima a Silva Jr.



MANOEL THEODORO FAGUNDES CUNHA

A PRACTICAL APPROACH IN THE DEVELOPMENT OF ENGINEERING 
APPLICATIONS TO THE INTERNET USING OBJECT ORIENTED

PROGRAMMING

Dissertação apresentada como requisito parcial à 
obtenção do grau de Mestre em Ciências. 
Programa de Pós-Graduação em Métodos 
Numéricos em Engenharia. Setor de Tecnologia, 
Universidade Federal do Paraná

Orientadores : Prof. Dr. Sérgio Scheer

Prof. Dr. Waldyrde Lima e Silva Jr.

CURITIBA

1999



MANOEL THEODORO FAGUNDES CUNHA

A PRACTICAL APPROACH IN THE DEVELOPMENT OF ENGINEERING 
APPLICATIONS TO THE INTERNET USING OBJECT ORIENTED

PROGRAMMING

Dissertation presenteei as partial fulfillment for 
obtaining the degree of Master of Science. Post 
Graduate Programme in Numerical Methods in 
Engineering. Sector of Technology, Federal 
University of Paraná, Brazil.

Advisors : Prof. Dr. Sérgio Scheer

Prof. Dr. Waldyr de Lima e Silva Jr.

CURITIBA

1999



MANOEL THEODORO FAGUNDES CUNHA

A PRACTICAL APPROACH IN THE DEVELOPMENT OF ENGINEERING 

APPLICATIONS TO THE INTERNET USING OBJECT ORIENTED

PROGRAMMING

Dissertação aprovada como requisito parcial à obtenção do grau de Mestre em Ciências no Curso de 

Pós Graduação em Métodos Numéricos em Engenharia da Universidade Federal do Paraná pela 

comissão formada pelos professores :

í

Orientador: Prof. Dr. Sérgio Scheer

Setor de Tecnologia, UFPR 

Orientador: Prof. Dr. Waldyr de Lima e Silva Jr.

Setor de Tecnologia, UFPR 

Prof. Dr. Bruno Feijó 

Departamento de Informática, PUC-Rio 

Prof. Dr. Ricardo Mendes Jr.

Setor de Tecnologia, UFPR

Curitiba, 4 de outubro de 1999



Ultimately, it comes down to taste. It comes down 

to expose yourself to the best things that humans 

have done and then try to bring those things to 

what you do.

Steve Jobs

Essencialmente, trata-se de experimentar. Trata- 

se de expor a si mesmo às melhores coisas que 

os homens fizeram e tentar trazer estas coisas 

para o que você está fazendo.

Steve Jobs

iv



To my daughters Carolina and Cecilia, 

my love and maybe a bearing



ACKNOWLEDGEMENTS

To the family for the support.

To the teachers for the incentive. 

To the friends for the joy.



CONTENTS





6.1 RECOMMENDATIONS AND DIRECTIONS FOR FUTURE WORKS ................................. 59

REFERENCES .....................................................................................................................  61

6 CONCLUSIONS ....................................................................................................................  58

ix



LIST OF FIGURES

THE CLIENT / SERVER MODEL.........................................

THE INTERNET PROTOCOLS LAYERING ........................

EXECUTING A CGI PROGRAM FROM A WEB BROWSER

EXECUTING A CGI PROGRAM FROM A WEB PAGE ......

INPUT FROM A WEB PAGE ...............................................

THE HELLO APPLET ...........................................................

A WEB INTERFACE TO CGI PROGRAMS.........................

AN OUTPUT FROM A CGI PROGRAM ..............................

THE POTENTIAL APPLICATION ........................................

THE POTENTIAL APPLICATION GIF FILES ......................

THE POTENTIAL APPLET ..................................................

A GRAPHIC VISUALIZATION CLIENT APPLICATION ......

THE FTP FILE OPEN DIALOG BOX.....................................

BOUNDARY ELEMENTS GENERAL CLASSES.................

x



RESUMO

Este trabalho é um tutorial prático para apresentar os conceitos básicos da Programação 

Orientada a Objetos e o seu uso no desenvolvimento de aplicações de Engenharia para a Internet. 

Durante décadas, técnicas e ferramentas de programação têm mudado para acompanhar a evolução 

do hardware. O avanço do conhecimento humano também traz complexidade para as aplicações e 

exige o mesmo avanço nos recursos e técnicas de software. Entretanto, muitos estudantes e 

pesquisadores envolvidos com programação de computadores ainda utilizam ferramentas e técnicas 

muito antigos. Ainda que estes programadores estejam tratando de teorias matemáticas e de 

engenharia muito avançadas, boa parte deste avanço é perdido pelo o uso de técnicas de 

programação desenvolvidas décadas atrás. A simplicidade obtida com o uso de uma abordagem 

tradicional já não é mais compatível com a complexidade dos problemas em estudo. A solução de 

problemas de engenharia é o objetivo primário do estudante ou pesquisador. Entretanto, depois da 

solução do problema, o programador deve enfrentar a tarefa de criar uma interface para o usuário. 

Este trabalho também aborda o problema de dar à aplicação uma interface de usuário padrão sem o 

conhecimento profundo de programação. A Internet é o ambiente proposto neste trabalho como uma 

opção para o programador de engenharia. O último benefício da abordagem proposta aqui é a 

portabilidade de plataforma, não apenas para o código mas também para o programador.



ABSTRACT

This work is a practical tutorial to present the basic concepts of Object Oriented 

Programming and its use in the development of engineering applications to the Internet. During 

decades, programming tools and techniques have changed or created to follow hardware evolution. 

The development of human knowledge also brings complexity to applications and demands the same 

increase in software resources and techniques. However, many students and researches involved with 

Computer programming still use very old tools and techniques. Despite those programmers are dealing 

with advanced mathematical and engineering theories, a great deal of their advance is lost by using 

programming techniques developed decades ago. The simplicity obtained when using a traditional 

approach is no longer compatible with the complexity of the problems in study. The solution of 

engineering problems is the primary goal of the student or researcher. However, after the solution of 

the problem, the programmer must face the job of creating a user interface. This work also addresses 

the problem of giving to scientific and engineering applications a standard user interface without deep 

programming knowledge. Internet is the environment proposed in this work as an option to the 

scientific and engineering programmer. The last benefit of the approach proposed here is the platform 

portability, not only for the code but also for the programmer.

xii



1

1.1 MOTIVATION

Over the last decades, since the invention of the first computers, programming 

techniques have been changed to follow hardware evolution. Computers with high processing 

capabilities and equipped with accessories iike scanners, CD-ROM writers and laser printers can be 

found in supermarkets and are intended for Office and home usage. High-resolution graphics boards 

and monitors are used to produce special effects, many of them seen in the movie industry. Users can 

interact with computers with a simple mouse or even with voice commands.

However, ali hardware improvements are closely followed by software evolution. Event- 

driven programming is one of the new paradigms created to accommodate the hardware evolution. 

Many common tasks performed by a user today simply could not be implemented using old 

programming techniques. New programming approaches allow the use of simultaneous input devices, 

Iike a keyboard and a mouse, and the user - not the programmer - decides how to use the Computer.

The hardware improvement is not the only reason for the software evolution. While the 

first computers were created for scientific purposes, Iike ballistic path calculations, the new computers 

are used in simulations Iike nuclear reactions, DNA chains and genetic research, among others. Many 

mathematical theories developed in the last century can be implemented, tested and proved only with 

the use of computers. The development of human knowledge also brings complexity to applications 

and demands the same increase in software resources and techniques.

However, many students and researches involved with Computer programming still use 

very old tools and techniques. Despite those programmers are dealing with advanced mathematical 

and engineering issues, a great deal of their advance are lost by using of a Computer technique 

developed decades ago. The simplicity obtained when using a half-dozen instructions are no longer 

compatible with the complexity of the problems in study. Even newer languages, created to teach 

programming, are not fitted to numeric-intensive programming, image processing, scientific 

visualization and real-world applications.

1. INTRODUCTION



2

This work is addressed to graduate and post-graduate students who want to learn Object 

Oriented Programming. This programming technique is a well-established paradigm of the software 

engineering discipline and founded in many Application Programming Interfaces (API). Java, one of 

the most recent programming languages, has been created under this new approach. Some of new 

compiling environments commonly used today create object-oriented code. Object Oriented 

Programming aims the development of complex applications and allows the user to write code more 

efficiently, going along with hardware evolution.

The solution of engineering problems is the primary goal of the student or researcher. 

However, after the solution of the problem, the programmer must face with the job of creating a user 

interface. Graphic User Interfaces (GUI) like Windows provide standards for data input and output 

operations. Well-known widgets like push button, check boxes, radio buttons, edit boxes, scroll bars, 

icons, among others, are used in a daily basis and become familiar to ali users, without regard to their 

levei of expertise. However, the Windows environment has about 2500 functions to deal with its 

graphic interface and other features. NetWork capabilities is another example of feature embedded in 

many recent applications that demand additional knowledge from the programmer.

This work also addresses the problem of giving to the engineering application a standard 

user interface without deep programming experience or knowledge of large libraries. Another goal of 

this work is to provide the programmer with tools to develop networked applications. The last benefit of 

the approach proposed here is the platform portability, not only for the code but also for the 

programmer. Internet is the environment proposed in this work as an option to the scientific and 

engineering programmer.

The Internet has become an integral part of the computing community. From its beginning 

as ARPANETS, it has grown into a global means of communicating and conducting business. 

Currently, the Internet is projected to be central to the future of both academic and business 

computing. Many people, even the most occasional of the Computer users, already have electronic 

mail (e-mail) and many World Wide Web users who have not got a home page yet are trying to learn 

how to build one. The current growth of the Internet - and in particular the Word Wide Web - is 

influencing everything in the computing industry. A significant number of software and hardware 

companies are working to build Internet capabilities into their current offerings.



3

Combining the two topics, Object Oriented Programming and Internet, a programmer can 

develop applications of any levei of complexity and give it a standard interface. The Internet also 

allows easy access to the application by the academic community. Internet allows easy dissemination 

of research results as well as later contributions to the improvement of the applications.

1.2 HISTORICAL ASPECTS

Object Oriented Programming13 17 26 is a very well known programming technique and has 

been studied by a large number of students and researchers over the last years. Many scientific and 

engineering works have been written on this theme. However, in previous works on this subject, the 

engineering authors have focused on the solution of specific problems, mainly in the fields of 

Computer Graphics78, Finite Elements30'31 and Boundary Elements Methods. In most of those works, 

the main concern was the creation of a class hierarchy that addressed the data structures of the 

applications. This work approaches the implementation of the program itself using Object Oriented 

Programming.

The dissemination of the Internet in the academic, business and personal environments 

attracts many students in the investigation of its potential. Many educational applications have been 

developed and used by much the academic community around the world. Daily, countless pages are 

made available to teach a large range of disciplines using resources like Java, Virtual Reality 

Modeling, among others. Engineering commercial applications, however, have not taken advantage of 

Internet capabilities yet. The actual versions of those programs are still running only as desktop or 

local network applications.

The best classical and practical references to Object Oriented Programming are books, 

available through Internet bookshops. The sample codes reviewed in the present work are originally 

presented as Fortran codes by Brebbia and Dominguez in Boundary Elements, An Introductory 

Course1. This book is the foundation upon which this work was built.



4

1.3 ORGANIZATION

This work has two main subjects : Object Oriented Programming and Internet. Each topic 

is also presented in two parts : theory and practice. The theory of each issue are introduced and then 

applied with engineering examples. The second chapter presents the basic concepts of Object 

Oriented Programming. The introduction of each new feature is followed by an example using the new 

approach and compared with the same code, written in the traditional technique. The presented theory 

is applied in Chapter 3 to review some Computer codes, written in a traditional programming language 

with a very conservative technique, and to rewrite them using the of Object Oriented Programming 

approach. The reviewed programs were presented by Brebbia and Dominguez1 to solve potential and 

elastostatics problem using the Boundary Elements Method. In Chapter 4, Internet essentials are 

introduced and placed in perspective. Each development tool is considered under the objective of 

giving to the applications client-side or server-side capabilities. Chapter 5 combines the two 

paradigms, Object Oriented Programming and Internet in orderto give to the applications presented in 

Chapter 3 a user interface easy to develop. The last chapter contains the conclusions and 

recommendations. Limitations of each programming method are discussed and directions for future 

research are suggested.



5

Object Oriented Programming20 is a programming technique created to allow the 

development of large and complex programs.

Since the invention of the first computers, approaches to programming have changed in 

order to accommodate the increasing complexity of the programs. First programs were just a few 

hundred binary instructions. As programs grew, assembly language was invented to deal with larger, 

increasingly complex programs using symbolic representations of the machine instructions. High-level 

languages as Fortran have been introduced to give the programmer bettertools to handle complexity. 

With the appearance of structured languages, like Pascal and C, it was possible to write moderateiy 

complex programs more easily. However, even using structured programming methods, once a project 

reaches a certain size, its complexity becomes too difficulty for a programmer to handle.

Object Oriented Programming takes the best features of structured programming, 

combines them with new concepts, and allows to easily decomposing a problem into subgroups of 

related parts. Then, one can translate these subgroups into self-contained units called objects.

Ali Object Oriented Programming languages have three features in common : objects, 

polymorphism and inheritance.

2.1 OBJECTS

The single most important feature of an object-oriented language is the object. In a simple 

manner, an object is a logical entity containing variables and functions that manipulate those 

variables.

Within an object, some of the variables or functions may be private to the object and 

inaccessible by the rest of the program. In this way, an object provides a significant levei of protection 

against modification or incorrect use. This linkage of code and data is often referred to as 

encapsulation.

2. OBJECT ORIENTED PROGRAMMING CONCEPTS



6

Consider a simple C program :

#include <iostream.h> 
void main(void) { 

int n; 
n = 10;
cout «  n << 1\ n ';

}

In this code, an integer variable is created and its content is defined and displayed 

directly with simple assignment and output statements.

The object-oriented version of the same program would be :

#include <iostream.h> 
class number { 
int n; 
public:

void setnum(int a) { n = a; } 
int getnum(void) { return n; }

} ;
void main(void) { 

number obj; 
o bj.setnum(10); 
cout << obj.getnum() «  '\n';

}

The new code begins with a block that declares an object with one prívate variable, n, 

and two public functions, setnum and getnum. In the program body, the object is created and the 

variable is accessed through the functions. The variable is prívate and cannot be accessed directly by 

the program. The functions of the object are used to define and display the content of that variable.

2.1.1 CLASSES

To create an object one needs first to define its general form using the keyword class :

class classname {
//private variables 

public:
//public functions



7

A class can contain prívate as well as public members. By default, ali members defined in 

the class are prívate. Prívate variables cannot be accessed by any function that is not a member of the 

class. One can also define prívate functions, which can only be called by other functions of the class.

To make parts of a class accessible to other parts of the program, one must declare them 

after the keyword public. Ali variables and functions defined after public are accessible by ali other 

functions in the program. Generally, the rest of the program accesses an object through its public 

functions. Although one can have public variables, their use should be avoided or eliminated. Instead, 

one should make ali data prívate and control access to it and through public functions. This will help 

preserve encapsulation.

To code a function that is member of a class, one must inform the compiler to which class 

the functions belong using the scope resolution operator (::).

class number { 
int n;

public:
void setnum(int); 
int getnum(void);

} ;
void number::setnum(int a) { 

n = a;
}
int number::getnum(void) { 

return n;
}

Several different classes can use the same function names. The compiler knows which 

function belong to which class because of the scope resolution operator and the class name.

Simple class functions can also be coded within the class declaration :

class number { 
int n; 

public:
void setnum(int a) { n = a; } 
int getnum(void) { return n; }

Once the class is declared, one can create an object in the same way a variable is 

created but using the class name instead of the variable type. For ali intents and purposes, an object 

is a variable of an user-defined type.



8

#include <iostream.h> 
class number { 

int n; 
public:

void setnum(int a) { n = a; } 
int getnum(void) { return n; }

} ;
void main(void) { 

number obj; 
ob j .s etnum (10); 
cout «  obj.getnum() «  1\ n 1;

}

To call a member function from a part of the program that is not part of the class one 

must use the object name and the dot operator. Only when a member function is called by code that 

does not belong to the class the object name and the dot operator must be used. Otherwise, one 

member function can call another member function directly, without using the dot operator.

2.1.2 CONSTRUCTORS AND DESTRUCTORS

As it is usual to initialize a variable at the time it is declared, it is very common for some 

part of an object to require initialization before it can be used. Because the requirement for initialization 

is so common, Object Oriented Programming allows objects to initialize themselves when they are 

created.

This automatic initialization is performed with a constructor function. A constructor 

function is a special function that is a member of the class and has the same name of that class.

Consider the simple program :

#include <iostream.h> 
void main(void) { 

int n = 10; 
cout «  n «  '\ n 1;

}

In the code above, the integer variable n is created and its content is defined at the time it

is declared.

The object-oriented version of the same program would be :



9

#include <iostream.h>
class number { 

int n;
public:

number(void) { n = 10; }
int getnum(void) { return n; }

} ;
void main(void) { 

number obj;
cout << obj.getnum() << 1\ n ';

}

The new code declares the class number with a constructor function that initializes the 

content of the private variable when the object is created. The constructor function has the same name 

of the class, number, and it is called when time the object is created.

The complement of the constructor is the destructor. In many circumstances, an object 

needs to perform some action or actions when it is destroyed. There are many reasons why a 

destructor function may be needed; for example, to set free memory previously allocated. The 

destructor has the same name as the constructor but is preceded by a tilde (~).

2.2 POLYMORPHISM

Object Oriented Programming languages support polymorphism, which allows a name to 

be used for several related but slightly different purposes. The purpose of polymorphism is to let a 

name to specify a general class of action. Depending upon what type of data it is dealing with, a 

specific instance of the general case is executed.

The way Object Oriented Programming achieves polymorphism is trough the function 

overloading. In Object Oriented Programming two or more functions can share the same name as long 

as their parameter declarations are different. In this situation, the functions sharing the same name are 

said to be overloaded. The main advantage of using overloaded functions it that they allow related 

sets of functions to be accessed using a common name. In a sense, function overloading lets one 

create a generic name for an operation. The compiler knows which function to use in each case 

because the type of the argument.



10

For example, consider the sample code :

#include <iostream.h> 
class rectangle { 

double area; 
public:

void setarea(double x) { area = x; }
void setarea(double a, double b) { area = a * b; }
double getarea(void) { return area; }

} ;
void main(void) { 

rectangle obj; 
obj.setarea(1 2 ); 
cout «  obj.getarea() «  1\ n '; 
o bj.setarea(3 ,4 ); 
cout << obj.getarea() << '\nf;

}

In the above code, the value of area is defined by the function setarea. By using 

polymorphism, the class can be improved with a new function to define the value of area. Notice the 

use of two related functions with the same name, setarea. The compiler selects the correct function 

depending on the parameters with which it is called.

2.3 INHERITANCE

Inheritance is the process by which an object can acquire the properties of another 

object. Without the use of inheritance, each object would have to define ali of its characteristics 

explicitly. Using inheritance, an object needs only to define those qualities that make it unique within 

its class.

In Object Oriented Programming, inheritance is supported by allowing a class to 

incorporate another class in its declaration :

class parent {
//private variables 

protected :
// protected members 

public:
//public functions



11

class child : public parent {
//private variables

public:
//public functions

} ;

A class that is inherited by another class is called the base class. The class that does the 

inheriting is called the derived class.

It must be noticed that a public member of a class can be accessed by any other function 

in the program. A private element can be accessed only by member functions.

When a class inherits another class, ali private elements of the base class are 

inaccessible to the derived class. The elements of the derived class can access public functions of the 

parent but cannot access its private variables.

A base class can grant access of its private elements to a derived class by making them 

protected. The protected members of the class can be accessed by a derived class although they are 

still inaccessible to the rest of the program. Making an element protected restricts its access only to 

the member functions of the class but allows this access to be inherited.

When an element is private, access is not inherited. Ali protected and public elements of 

the base class become protected and public elements of the derived class, respectively.

2.4 ADVANCED FEATURES OF OBJECT ORIENTED PROGRAMMING

The basic concepts presented up to now are enough to allow the programmer without 

great computing skills to develop object-oriented applications. However, Object Oriented Programming 

is featured with advanced resources, commonly used by more experienced programmers. Those 

advanced features are not used in this work but need to be presented to give an overview of how 

much complex applications can be developed.

The most important of these features are :



12

• Parameterized constructors : Often when an object is created it is necessary, or desirable, to 

initialize various data elements with specific values. Using parameterized constructor functions it is 

possible to initialize objects using values known only when the object is created.

• Friend functions : It is possible for a nonmember function of a class to have access to the private 

parts of that class by declaring it as a friend function of the class.

• Multiple inheritance : It is allowed to a class to inherit attributes from more than one class.

• Run-time polymorphism : Pointers to objects are similar to pointers to variables. A base class 

pointer may point to an object of a class derived from that base. A virtual function is a function that 

is declared as virtual in a base class and redefined in one or more derived classes. Virtual 

functions are special because when one of them is accessed using a pointer, the compiler 

determines which function to call at run-time based on the type of object pointed to. Because of 

the restrictions and differences between overloading normal functions and overloading virtual 

functions, the term overriding is used to describe virtual function redefinition.

• Pure virtual functions and abstract types : When a virtual function that is not overridden in a 

derived class is called from an object of that derived class, the version as defined in the base 

class is used. A pure virtual function is a function declared in a base class that has no definition to 

the base. Any derived class must define its own implementation of the function. If a class has at 

least one pure virtual function, that class is said to be abstract. Abstract classes have an important 

feature : they cannot be used to declare an object. Instead, an abstract class must be used only 

as a base that other classes will inherit.

Many other advanced features are available to the experienced programmer, but a

complete list of them is beyond the scope of this work.



13

3. OBJECT ORIENTED PROGRAMMING IMPLEMENTATION

In this chapter, the basic concepts of classes and constructors will be applied to review 

some Computer codes written in a traditional programming language with a very conservative 

technique and rewrite them using the Object Oriented Programming approach. The programs 

reviewed here are presented by Brebbia and Dominguez1 and solve potential and elastostatics 

problems using the Boundary Elements Method :

POCONBE : Potential Problems using Constant Elements 
POLINBE : Potential Problems using Linear Elements 
ELCONBE : Elastostatics Code using Constant Elements

Each program defines some global variables and the functions shown below :

Despite their different names, ali the functions at the same row in the table above have 

the same purpose :

INPUTxx : reads ali the input data required by each program
GHMATxx : computes the G and H matrices
EXTINxx : called by GHMATxx and INTERxx
LOCINxx : called by GHMATxx
SLNPD : solution of linear systems of equations
INTERxx : performs some calculations at internai points
SIGMAxx : called by INTERxx in elastostatics problems

By using Object Oriented Programming techniques one can create a class to each 

program, where global variables are encapsulated as prívate members and the functions with equal 

purposes can be declared with the same name, as shown in the samples ahead.



14

3.1 POTENTIAL PROBLEMS USING CONSTANT ELEMENTS

The first code reviewed is a simple Computer code for solving Laplace type problems. The 

main program defines general integer variables, an integer one-dimensional array and some real 

arrays to store data and results, as shown below :

PROGRAM POCONBE
DIMENSION X(101),Y(101),X M (100),Y M (100),FI(100),DFI(100) 
DIMENSION KODE(100),CX(20),CY(20)fPOT(20),FLUX1(20),FLUX(2) 
COMMON/MATG/ G(100,100)
COMMON/MATH/ H (100,100)
COMMON N,L

C READ DATA
CALL INPUTPC(CX,CY,X,Y,KODE,FI)

C COMPUTE THE H AND G MATRICES AND FORM SYSTEM ( A X = F ) 
CALL GHMATPC(G, DFI, D, 100)

C SOLVE SYSTEM OF EQUATIONS 
CALL SLNPD(G,DFI,D,100)

C COMPUTE THE POTENTIAL AND FLUXES AT INTERNAL POINTS 
CALL INTERPC(FI,DFI,KODE,CX,CY,X,Y, POT, FLUX1, FLUX2)

C PRINT RESULTS AT BOUNDARY NODES AND INTERNAL POINTS 
CALL OUTPUTPC(XM,YM,FI,DFI,CX,CY,POT, FLUX1, FLUX2)
STOP
END

In order to compute the coefficients of G and H matrices the GHMATPC subroutine calls 

two additional subroutines, EXTINPC and LOCINPC, as shown in the fragment of code below :

SUBROUTINE GHMATPC(X,Y,XM,YM,G,H,FI,DFI,KODE)

C COMPUTE THE COEFFICIENTS OF G AND H MATRICES 
DO 30 1=1,N 
DO 30 J=1,N 
KK=J+1
IF(I-J)20,25,20 

20 CALL EXTINPC(XM(I),YM(I),X(J),Y(J),X(KK) , Y (KK), 
1G (I, J) , H (I, J) , DQ1, DQ2, DU1, DU2, 0 )
GOTO 30

25 CALL LOCINPC(X(J),Y(J),X(KK),Y(KK),G (I,J))
H (I,J) = 3.1415926 

30 CONTINUE

RETURN
END

The EXTINPC subroutine is also called by the INTERPC subroutine to compute the 

potential and the fluxes at internai points.



15

The code presented defines some global variables and seven functions. Those variables 

and functions can be gathered in a class, as shown below :

class poconbe { 
int N,L;
double X[101],Y[101],XM[100],YM[100] ; 
int KODE[100]; 
double F I [100],D F I [100]; 
double G[100] [100],H [100] [100];
double C X [20], C Y [20] ,POT[20] ,FLUX1[20],FLUX[20] ; 
void Extin(double,...,int); 
void Locin(double,. ..,double&); 

public:
poconbe(void); 
void Input(void); 
void GHmat(void); 
void SLNPD(void); 
void Inter(void); 
void Output(void);

Notice the functions Extin and Locin declared as private members of the class. These 

functions are called only by other member functions and can be encapsulated.

The main body of the program would be :

void main(void) { 
poconbe object; 
obj ect.Input() ; 
obj ect.GHmat() ; 
object.SLNPD(); 
obj ect.Inter() ; 
obj ect.Output();

}

The class constructor must be defined using the scope resolution operator ( : : )  :

poconbe::poconbe(void) {
N = L = 0 ;
for (int i= 0 ;i< 1 0 0 ;i++)
{ X[i] = Y [i ] = F I [i ] = 0 .0 ; KODE[i ] = 0 ; }

for (i=0 ;i<2 0 ;i++) CX[i] = CY[i] = 0 .0 ;

Ali other member functions of the class can be defined in the same fashion. The simple 

translation of the code inside of the functions is beyond of the scope of this work.



16

3.2 POTENTIAL PROBLEMS USING LINEAR ELEMENTS

The second code reviewed solves potential problems using linear elements. The size of 

some matrices are different from the previous case, the XM and YM arrays are no longer needed and 

the role of the Fl and DFI arrays are changed, as shown :

PROGRAM POLINBE
DIMENSION X(81),Y (81),FI(80),DFI(160)
DIMENSION KODE(160),CX(20),CY(20),POT(20),FLUX1(20),FLUX(2) 
COMMON/MATG/ G(80,160)
COMMON/MATH/ H(80,80)
COMMON N,L

C READ DATA
CALL INPUTPL(CX,CY,X,Y,KODE,DFI)

C COMPUTE THE H AND G MATRICES AND FORM SYSTEM ( A X = F ) 
CALL GHMATPL(H,FI,D,160)

C SOLVE SYSTEM OF EQUATIONS 
CALL SLNPD(H,FI,D,80)

C COMPUTE THE POTENTIAL AND FLUXES AT INTERNAL POINTS 
CALL INTERPL(FI,DFI,KODE,CX,CY,X,Y,POT,FLUX1,FLUX2)

C PRINT RESULTS AT BOUNDARY NODES AND INTERNAL POINTS 
CALL OUT PUT P L (X ,Y,FI,DFI,CX,CY,POT,FLUX1, FLUX2)
STOP
END

Again, the program variables and functions can be gathered in a class, as shown :

class polinbe { 
int N,L;
double X [81],Y[81]; 
int KODE[160]; 
double F I [80],D F I [160]; 
double G[80] [160],H[80] [80] ;
double C X [20],C Y [20],P OT[20],FLUX1[20],FLUX[20]; 
void Extin(double,...,int); 
void L o c i n ( d o u b l e , d o u b l e & ); 

public:
polinbe(void); 
bool Input(void); 
void GHmat(void); 
bool SLNPD(void); 
void Inter(void); 
void Output(void);

Notice the naming of the functions in the class above and in the class poconbe, shown in 

the previous section : related purpose functions have the same name.



17

3.3 ELASTOSTATICS PROBLEMS USING CONSTANT ELEMENTS

This section reviews a Computer code for the solution of two-dimensional isotropic 

elastostatics problems without body forces. The code has a similar organization as those described 

previously and the variables and functions used in the program are listed below :

PROGRAM ELCONBE
DIMENSION X(51),Y(51),XM(50),Y M (50),FI(100) , DFI(100) 
DIMENSION KODE(IOO),C X (20),C Y (20),SSOL(60),DSOL(40) 
COMMON/MATG/ G(100,100)
COMMON/MATH/ H (100,100)
COMMON N,L,M,GE,XNU,NC(5)

C READ DATA
CALL INPUTEC(CX,CY,X,Y,KODE,FI)

C COMPUTE THE H AND G MATRICES AND FORM SYSTEM (A X = F) 
CALL GHMATEC (X, Y, XM, YM, G, H, FI, DFI, KODE, 100)

C SOLVE SYSTEM OF EQUATIONS 
CALL SLNPD(G,DFI,D,2*N,200)

C COMPUTE STRESS AND DISPLACEMENTS AT INTERNAL POINTS 
CALL INTEREC(FI,DFI,KODE,CX,CY,X,Y,SSOL, DSOL)

C PRINT RESULTS AT BOUNDARY NODES AND INTERNAL POINTS 
CALL OUTPUTEC(XM,YM,FI,DFI,CX,CY,SSOL, DSOL)
STOP
END

As in the previous codes, additional subroutines are called from another part of the 

program and a new class can be declared for the new case :

class elconbe { 
int N,L,M;
double X [51],Y[51], XM[50],YM[50]; 
int KODE[100],NC[5]; 
double F I [100],D F I [100]; 
double GE,XNU;
double G[100][100],H[100][100]; 
double C X [20],CY[20],DSOL[20],SSOL[20]; 
void Extin(double,...,doubleS); 
void Locin(double,...,double&); 
void Sigma(double,...,double&); 

public:
elconbe(void); 
bool Input(void); 
void GHmat(void); 
bool SLNPD(void); 
void Inter(void); 
void Output(void);



18

3.4 SOME FIRST PRACTICAL REMARKS

Every code previously presented defines some global variables and functions. In each 

program, those variables and functions can be gathered in classes, specific to each problem but 

similar in its declarations, as shown below :

class boundary {

// private variables

void Extin(...); 
void Locin (...); 

public:
boundary(void) ; 
bool Input(void); 
void GHmat (void) ; 
bool SLNPD(void); 
void Inter(void); 
void Output(void);

}

It must be pointed outthatthe elastostatics code declares an additional function, Sigma. 

The main body of the program is the same in ali cases and the only change refers to the 

type of the object:

void main (void) { 
classname object; 
if (object.Input()) return; 
obj ect.GHmat(); 
if (object.SLNPD()) return; 
object.Inter(); 
obj ect.Output();

}

By simply applying the basic concepts of this programming technique, different codes 

with increasing complexity can be written in the same fashion.

The use of classes allows the programmer to use the same name to declare related 

functions and to avoid using global variables and its accidental modification or incorrect use.

Besides the safety factor, creating a generic programming “interface” to different 

applications by itself justifies the use of Object Oriented Programming.



19

3.5 APPLYING POLYMORPHISM

The concept of polymorphism can be applied to improve the first code presented, 

Potential Problems using Constant Elements. The input function defined in the class can be 

overloaded to allow data input from the keyboard or from a text file. The output function can also be 

overloaded to allow result output to the screen or into a text file, as shown below :

class poconbe { 
int N,L
double X[101],Y[101], X M [100],Y M [100]; 
int KODE[100]; 
double F I [100],D F I [100]; 
double G[100][100],H[100][100];
double C X [20],C Y [20],POT[20],FLUX1[20],FLUX[20]; 
void Extin(double,...,int); 
void Locin(double,...,double&); 

public:
poconbe(void);
bool Input(void); // keyboard
bool Input(char*); // text file
void GHmat(void);
bool SLNPD(void);
void Inter(void);
void Output(void); // screen
void Output(char*);// text file

}

The overloaded functions are defined in the same way as any member function

poconbe::Input(void) {

// code to read the data from keyboard

}
poconbe::Input(char *filename) {

// code to read data from the text file

}
poconbe::Output(void) {

// code to display results on screen

}
poconbe::Output(char *filename) {

// code to write resuls to the text file

}



20

The main body of the program developed to use the keyboard and the screen is the same 

already presented :

void main (void) { 
poconbe object; 
if (object.Input()) return; 
obj ect.GHmat(); 
if (object.SLNPD()) return; 
object.Inter(); 
obj ect.Output();

}

The text file version of the same program would be :

void main (void) {
char inputfile [ 1 2 ] , outputfile[12];
cout «  "Input file name : ";
cin »  inputfile;
cout «  "Output file name : ";
cin »  outputfile;
poconbe object;
if (object.Input(inputfile)) return;
obj ect.GHmat() ;
if (object.SLNPD()) return;
object.Inter();
object.Output(outputfile);

}

The compiler selects the correct function depending on the type of data by which it is

called.

3.6 APPLYING INHERITANCE

The concept of inheritance can be applied here to create a new class from an already 

defined one, declaring only what is specific to the new class.

Consider the class poconbe already presented in Potential Problems using Constant 

Elements. The class presented previously is applicable to problems with only one surface but by using 

the inheritance mechanism it can be used as a base class to create a new one to solve multiboundary 

problems.



21

class poconbe { 
protected: 

int N,L;
double X[101],Y[101], XM[100],YM[100]; 
int KODE[100]; 
double F I [100],DFI[100]; 
double G[100][100],H[100][100];
double C X [20],CY[20],POT[20],FLUX1[20],FLUX[20]; 
void Extin(double,. . .,int); 
void L o c i n ( d o u b l e , d o u b l e S ) ; 

public:
poconbe(void); 
bool Input(void); 
void GHmat(void); 
bool SLNPD(void); 
void Inter(void); 
void Output(void);

}

Notice the change of declaration of variables from private to protected. This change 

allows its access by derived classes while they remain inaccessible to the rest of the program.

3.7 MULTIBOUNDARY POTENTIAL PROBLEMS USING CONSTANT ELEMENTS

The next code reviewed solves multiboundary potential problems and is based on the 

constant element code. The program defines an additional variable to hold the number of different 

surfaces and an array to store the last node of each different surface. To take into account the 

different surfaces, three functions are declared :

INPUMPC : same input required by inputpc plus the surface data

GHMAMPC : expanded from ghmatpc to differentiate the points on each of the surfaces

INTEMPC : varies from a few statements from interpc to compute the different surfaces

Ali other variables and functions are the same as declared in Potential Problems using 

Constant Elements.

This new class is derived from the class poconbe, having in its declaration only what 

differs one class from the other, as follows :



22

class pomcobe : public poconbe { 
int M; 
int N C [5]; 

public:
pomconbe (void) ; 
bool Input(void); 
void GHmat(void); 
void Inter(void);

}

The constructor of the class initializes only its own input variables :

pomcobe::pomcobe(void) {
M = 0;
for (int i=0;i<5;i++) NC[i] = 0;

}

The main body of the program is similar to the previous codes :

void main (void) { 
pomcobe object; 
if (object.Input()) return; 
obj ect.GHmat() ; 
if (object.SLNPD()) return; 
obj ect.Inter(); 
obj ect.Output() ;

}

When this code is executed, the compiler selects the functions defined in the new class. 

Only when they are not redefined in the deríved class, the functions in the base class are

executed.

3.8 BOUNDARY ELEMENTS GENERIC CLASSES

The knowledge of function overloading and inheritance allows a revision of the classes 

previously presented, as follows :



23

FIG.1 BOUNDARY ELEMENTS GENERIC CLASSES

3.8.1 THE BASE CLASS

The class boundelem is a general base class to ali applications already shown and holds 

ali common variables used in those programs. This class also declares a constructor, a destructor and 

a function to solve the system of equations, common to ali deríved classes.

class boundelem { 
protected: 

int N, L; 
double *X,*Y; 
int *KODE; 
double *FI,*DFI; 
double *G,*H; 
double C X [20],CY[20]; 

public:
boundelem(void); 
-boundelem(void); 
bool SLNPD(void);

The constructor and destructor functions of the class would be



24

boundelem::boundelem(void) {
N = L = 0;
X = Y = FI = DFI = G = H = NULL;
KODE = NULL;
for (int i=0;i<20;i++)

C X [i ] = C Y [i ] = 0.0;
}
boundelem::^boundelem(void) { 

if (X) delete []X; 
if (Y) delete []Y; 
if (KODE) delete []KODE; 
if (FI) delete []FI; 
if (DFI) delete []DFI; 
if (G) delete []G; 
if (H) delete []H;
X = Y = FI = DFI =G = H = NULL; 
KODE = NULL;

}

The constructor of the class initializes the variables and pointers to matrices while the 

destructor is used to free the memory allocated to those matrices.

3.8.2 FIRST DERIVATION

The class boundelem can be used to derive two new general base classes, each one 

with specific elements to solve potential and elastostatics problems :

class potenbe : public boundelem { 
protected :

double P O T [20],FLUX1[20],FLUX2[20] ; 
public :

potenbe(void);
}

class elastbe : public boundelem { 
protected: 

int M; 
int N C [5];
double DSOL[20], SSOL[20]; 

public :
elastbe(void);

}



25

The classes potenbe and elastbe are derived from the class boundelem and inherit ali 

variables as well as the function already declared in the base class. Each new class also declares 

some common variables and its own constructors:

potenbe::potenbe(void) { 
for (int i=0;i<20;i++)
P O T [i ] = FLUX1[i ] = FLUX2[i ] = 0.0;

}
elastbe::elastbe(void) {

M = 0;
for (int i=0;i<5;i++) NC = 0; 
for (i=0;i<20;i++)

DSOL[i ] = SSOL[i] = 0.0;
}

There is no need for a destructor function once the matrices in those classes are not 

dynamic allocated.

3.8.3 SECOND DERIVATION

The boundary problems can be solved using different types of elements. The classes 

potenbe and elastbe can be used to derive specific classes to deal with each one of those cases. 

Potential classes :

In those classes are declared ali the functions and variables specific to solve potential 

problems using constant and linear elements.

class poconbe : public potenbe { 
protected :

double *XM,*YM; 
void Extin(...); 
void Locin(...); 

public:
poconbe(void);
~poconbe(void); 
bool Input(void); 
void GHmat(void); 
void Inter(void); 
void Output(void);



26

class polinbe : public potenbe { 
void Extin(...); 
void Locin(...); 

public:
bool Input(void); 
void GHmat(void); 
void Inter(void); 
void Output(void);

}

The two classes above are derived from the class potenbe and inherit the variables 

declared in the base class potenbe and its parent class boundelem. Only the class poconbe has 

constructor and destructor functions :

poconbe::poconbe(void) {
XM = YM = NULL;

}
poconbe::~poconbe(void) {

if (XM) delete []XM; XM = NULL; 
if (YM) delete []YM; YM = NULL;

Elastostatics class :

In this class are declared ali the functions and variables specific to solve elastostatic 

problems using constant elements.

class elconbe : public elastbe { 
double *XM,*YM; 
void Extin(...); 
void Locin(...); 
void Sigma (...); 

public:
elconbe(void);
~elconbe(void); 
bool Input(void); 
void GHmat(void); 
void Inter(void); 
void Output(void);

The class elconbe is derived from the class elastbe. It declares an extra private function, 

Sigma, additional variables and has constructor and destructor functions, shown ahead :



27

elconbe::elconbe(void) {
XM = YM = NULL;

)
elconbe::~elconbe(void) {

if (XM) delete []XM; XM = NULL; 
if (YM) delete []YM; YM = NULL;

}

3.8.4 THIRD DERIVATION

Successive derívations can be applied in order to create classes with specific behavior. 

The class poconbe has ali the implementation necessary to solve Potential Problems using Constant 

Elements but despite the fact of being a complete class from which an object can be created, it can be 

used to derive a new class that implements the extra code required to solve multiboundary problems :

class pomcobe : public poconbe { 
int M; 
int N C [5]; 

public:
pomcobe(void);
~pomcobe(void); 
bool Input(void); 
void GHmat(void); 
void Inter(void);

}

This class declares only the variables not present in its parent classes and the functions 

specific to multiboundary problems. When not redefined in the deríved class pomcobe, the functions 

declared in the base class poconbe will be executed.

The constructor and destructor functions of the class would be :

pomcobe::pomcobe(void) {
M = 0;
for (int i=0;i<5;i++) NC[i] = 0;

)
pomcobe::~pomcobe(void) {

if (NC) delete[]NC; NC = NULL;



28

This chapter provides an overview of the client/server communication model used in 

Internet applications and a basic understanding of the networking protocols. It also presents the 

Common Gateway Interface (CGIf and the Java15 programming language, which are used in the 

development of server and Client Internet applications. The last section introduces two programming 

options to the development of Client applications specific to the Windows environment.

4.1 THE INTERNET AND THE CLIENT/SERVER MODEL

The Internet is the platform on which the first widely distributed computing applications 

were developed and deployed. The communication models used in client/server computing model of 

today, where applications processing is distributed over two or more computers, were first developed 

to accommodate the Internet16.

The client/server model divides application programs into two parts : the Client program 

by which the user interacts and the server program that provides some kind of Services to the clients. 

In the simplest case, these two programs can run on the same Computer. More commonly, a local 

area network (LAN) or the Internet connects the Client and server computers and the application can 

run regardless the physical location of the hardware.

This communication model is quite elegant in its simplicity. First, the Client connects to the 

server. Next, the Client and the server hold a conversation in which the Client sends a request to the 

server and the server answers with the appropriate reply to the request. This conversation continues 

for as long as the Client has requests to make. After the Client and server finish their conversation, the 

Client disconnects from the server and the session ends.

Most of time, server programs run continuously and are typically started by the operating 

system at boot time and continue to provide Services while the machine is running. Client programs 

are launched at the request of the user.

4. INTERNET ESSENTIALS



29

Cliení/server applications are based on common specifications agreed in advance, known 

as protocola. Computers communicate through streams of data and protocols define the format of 

those streams of data.

FIG.2 THE CLIENT/SERVER MODEL

PROTOCOL 
< ------------------------------ SERVER J

Protocols are  n ecessary to ensure th at ali applications will know  how  to co m m unica te  

with each  other. If th e  Client ad h eres  to a given protocol w hile sending th e  d a ta , any server that 

understands th e  protocol is ab le  to rece ive  and interpret th e  s tream  of d ata . W h e n  every  application  

a d h ere s  strictly to defined  protocols, Com puter can com m un ica te  easily, regard less o f location, 

operational system  o r even  hardw are.

The open design of the protocol specifications gives Internet applications independence 

from the method used to carry data and thus enables a wide variety of clients to access a standard 

server. When ali programs use a common specification they can interoperate, although the programs 

are from different software developers. Client programs using different computers and operating 

systems can also connect to the same server if both the Client and server programs use the same 

protocol.

The Internet, like any network, is based on protocol layers. Each layer gathers related 

networking functions and performs specific tasks and Services. Each layer is responsible only for a 

limited set of functions and passes on any other required functions to other layers. As data passes 

down the protocol stack, each layer adds control information - a header - to ensure proper delivery.

FIG.3 THE INTERNET PROTOCOLS LAYERING

4.2 INTERNET PROTOCOLS

Application layer 

Transport layer 

Internet layer

FTP HTTP DNS

TCP UDP

IP



30

A lm o st any d a ta  Com m unications netw ork transm its sm all groups of d ata , usually referred  

to as packets. A  packet is s im ply a specific  n um ber o f bytes -  from  4 0  to 3 2 0 0 , usually under 1 5 00  

bytes - th a t a re  g rouped to g e th e r and sent at one tim e.

The Internet ProtocoP6 is the foundation of the Internet and provides the most basic levei 

of service, routing a packet across the network. Packet delivery is /Ps one and only job. The protocol 

simply throws packets in the network, trying its best to transmit data through the Internet. The Internet 

Protocol provides best effort delivery service but does not guarantee that the packet reaches its 

destinations. For instance, IP may lose the packet somewhere in the network. This event is usually 

caused by some sort of network fault. IP may also deliver the packet corrupted. Although IP never 

intentionally corrupts data en route, it does not check to ensure that the data is not corrupted. If 

corruption does occur, IP will not notice it and will deliver the data anyway. Given a set of packets, IP 

does not guarantee that they will arrive in the same order that they were sent. IP may choose to send 

different messages on different paths to the destination, sometimes for the purpose of load balancing 

and sometimes to avoid a network fault. Because the separate paths may have different delays 

associated with them, the messages can arrive out of order at the final destination. In ali of these 

cases, IP does not do anything to inform either the source or the destination of the packet that 

anything has gone wrong.

One of the key parameters given to IP along with a packet of data is the destination 

address for the packet. Every device connected to the Internet has a unique 32-bit identifier, its IP 

address. Before a packet is sent, IP prepends it with a header that contains both the source and 

destination addresses for the packet.

In summary, IP is an unreliable protocol and has no error detection or recovery. That 

does not mean that one cannot rely on IP to deliver data accurately but simply that the protocol does 

not check whether the data was correctly received. When reliable delivery is required other layers of 

the TCP/IP protocol provide it.

While IP carries a packet across the Internet, the Transmission Control Protocol (TCP) 

makes sure that the data inside the packet is delivered to its destination safely.

4.2.1 THE TRANSMISSION CONTROL PROTOCOL/INTERNET PROTOCOL ( TCP/IP )



31

The TCP protocol is responsible for error-free data transfer and provides error detection 

and recovery. While IP does not detect errors in the packet, TCP has a checksum to detect whether a 

packet has been garbled in transmission. If an error occurs, TCP provides reliability by resending data 

until it receives a positive acknowledgment from the remote system. Once IP does not guarantee that 

packets will arrive in the same order that they were sent, TCP uses a sequencing mechanism to 

ensure that it delivers data in the proper order. TCP automatically reassembles the packets into the 

correct order on the receiving end. If a packet fails to arrive because a transmission error, TCP 

resends the packet until it has been received.

TCP attaches a header to every packet. The information contained in the header is used 

primarily to detect any transmission error, to reassemble the packets on the order end and to deliver 

data to the correct application.

After routing data through the Internet and delivering the data to the proper destination, 

the transport protocol must pass the data to the correct application process. These application 

processes, also known as network Services, are tracked with port numbers -  16-bit values that 

uniquely identify each service. The source port number identifies the process that sent the data and 

the destination port number identifies the process that should receive the data. Without TCP ports two 

Internet-connected computers could only have a single conversation at a time. Well-known ports 

provide the consistency needed for a Client program to access the appropriate program on a server. 

Because the sender and receiver agree in advance which Services are offered on which ports, the 

well-known ports facilitate the process. With the unique combination of an IP address and a TCP port 

number, called a socket, a Client application can establish Communications with the exact server 

process.

The Internet protocol suite actually includes other protocols, such as the User Datagram 

Protocol (UDP) and the Internet Control Message Protocol (ICMP). The User Datagram Protocol is 

also an unreliable protocol. UDP is used to transmit small amounts of data, to transmit a query and to 

expect a response within a fixed time period and when a certain amount of packet corruption or loss 

can be accepted. The Domain Name Server (DNS) is built on top of UDP or TCP. The Internet Control 

Message Protocol relies on IP to provide diagnostic and control Services. The ping utility relies on this 

protocol to check if a host is operational.



32

The File Transfer Protocol (FTP) was one of the first Internet Services. FTP allows users 

to transfer files between computers. Part of the purpose for creating the FTP protocol was to allow the 

interchange of files from one system to another while shielding the user from any differences in the 

underlying file structure of the two ( or more) system involved and providing platform independence.2

The basic FTP communication model uses two communication connections between the 

Client and server system. The first communication connection passes command and replies between 

the Client and server. This command connection is open throughout the FTP session and passes 

messages both ways. The second communication connection transfers files and other data from one 

system to the other. It is open only when transferring data from one Computer to the other and passes 

data in one direction only.

The first connection, the command connection, is initiated by the FTP Client. The Client 

connects to the server on TCP port 21, gives the server a login and a password and then proceeds 

with the TCP session. Most of the simple Communications between the Client and the server take 

place on this first socket connection. If the Client issues a simple command that requires a single-line 

response for the server, this command connection transmits the reply. When the Client issues a 

command that requires more than a single, simple response, such as a directory listing or request to 

send or receive a file, the second communication connection is used. To establish this second 

connection, the server creates, by default, a socket on TCP port 20 and connects to a second socket 

on the Client using the same address and port as the first socket on the Client. The Client, however, can 

specify a different address and port to be used for the data transfer.

When transferring data between systems, one can use four data types. Of these, only two 

are commonly used today, although the other two should still be supported. The ASCII (American 

Standard Code for Information Interchange) is the default for ali FTP sessions. It is intended for use 

when transferring text files. The Image data type is the one most commonly used to transfer binary 

files such as images and application files. Ali FTP implementations should support this data type as 

well as the ASCII data type.

4.2.2 THE FILE TRANSFER PROTOCOL ( FTP )



33

4.2.3 THE HYPERTEXT TRANSFER PROTOCOL ( HTTP )

The Hypertext Transfer Protocol (HTTP) is the protocol that supports the most powerful 

service on the Internet, the World Wide Web. HTTP is based on the TCP/IP protocol. This means that 

HTTP uses TCP/IP to transmit data over the Internet. HTTP is a higher levei protocol that defines how 

the data transmitted by TCP/IP should be formatted.

4.2.3.1 THE HYPERTEXT MARKUP LANGUAGE ( HTML )

The HTTP protocol acts as a generic transport to carry many types of Information from 

the server to the Client. The most common type of data carried across HTTP is the Hypertext Markup 

Language ( HTML.)'4. HTTP is a description language on which the www documents are written. In 

addition to including basic text-formatting directives, HTML has also other directives that provide 

capabilities such as hypertext links and image loading. Although HTTP is used mostly to transmit 

HTML files over the Internet, it can be used to transmit several types of data.

The following example shows the basic structure of an HTML file :

<HTML>
<HEAD>

<TITLE>
Document title 

</TITLE>
</HEAD>
<BODY>

<Hl>Document heading</Hl>
<P>This is the <B>first</B> paragraph</P> 
<P>This is <I>another</I> paragraph</P> 
< P X A  HREF="http : //www. ufpr . br">UFPR</A></P> 
< P X I M G  SRC="image. gif "></P>

</BODY>
</HTML>

As this example illustrates, HTML relies on tags, special commands enclosed in angle 

brackets, to indicate the context and format of the text of a document. HTML offers several tags to 

format text and to display special characters. The linking to other documents is made by including a 

tag. In orderto reference images HTML provides a tag with several options for aligning or positioning.



34

4.3 THE COMMON GATEWAY INTERFACE ( CGI)

The COMMON GATEWAY INTERFACE (CGI)6 is a standard for interfacing applications 

with web-servers. CGI programs are applications placed in a special directory in the server and 

executed by a web-server, usually in response to a user request from an Internet browser.3

CGI programs can be developed in a variety of languages like C/C++, Delphi, Visual 

Basic and Perl. CGI also can be implemented on many different platforms, including Unix and 

Windows. This work emphasizes C/C++ because of their execution speed, small executable sizes and 

availability of compilers.

Considerthe simple code:

#include <iostream.h>
void main(void) {

cout << "Content-type: text/html\n\n"; 
cout «  "<HTML>\n"; 
cout «  "<BODY>\n";
cout «  "<P>Hello Internet World</P>\n"; 
cout << "</BODY>\n"; 
cout «  "</HTML>\n";

}

The code above shows a simple C++ program that displays strings on the screen. Like 

any other program, it can be started by the user and the result is simply a text output. However, the 

program can be placed in a special directory on a web -server and executed by the Client browser. In 

this case, the output is redirected by the web-server to the browser of the Client.

The first line of the code above is a message to the server. It says that what follows is 

HTML text. Since the output of the CGI program will pass through the server to the Client, the initial 

message is required to tell the server to forward the message on to the Client. This line will not be sent 

to the Client software. Only the lines that follow will go to the Client.

When this program is executed by a web-server, the HTML tags embedded are 

interpreted, formatted and then the string Hello Internet World is displayed on the browser as a 

standard HTML page.



35

CGI programs must reside in the cgi-bin directory on Unix systems or in the scripts 

directory on Windows systems. To execute a program in a CGI directory the user must type to the 

browser the address of the server name, the CGI directory and the name of the program to be started :

4.3.1. EXECUTING A CGI PROGRAM FROM A WEB PAGE

FIG.4 EXECUTING A CGI PROGRAM FROM A BROWSER

Although it is possible for starting a CGI application directly, the most common way to 

start a program in a server is from an HTML page. The standard form to start an application is asking 

the user to press a button on a Web page.

FIG.5 EXECUTING A CGI PROGRAM FROM A WEB PAGE

The HTML page just shown can be coded as follows



36

<HTML>
<BODY>

<FORM ACTION="www. cesec. ufpr. br/cgi-bin/hello . exe"> 
<P>Press the button to execute the program !</P> 
< P X I N P U T  TYPE="submit" VALUE="Execute"x/P> 

</FORM>
</BODY>

</HTML>

In the above code, the <FORM ACTION=”address"> tag informs the location of the 

program to be executed. A button that starts the process is created with the <INPUT TYPE=”submit”> 

tag. The text of the button is defined in the VALUE parameter.

4.3.2 INPUT FROM A WEB BROWSER

The next step to give a CGI application full capabilities to act as a standard application is 

to provide data input. Using the input types defined by the HTML specification, the Client browser can 

start a program placed in the serverand send to it the data entered by the user in the HTML form.

FIG.6 INPUT FROM A WEB PAGE



37

Considerthe following code :

<HTML>
<BODY>

<FORM ACTION="wwww.cesec.ufpr.br/cgi-bin/input.exe"> 
<P>Type your first name :</P>
< P X I N P U T  TYPE="text" NAME="firstname"x/P>
<P>Type your last name :</P>
< P X I N P U T  TYPE="text" NAME="lastname"x/P> 
< P X I N P U T  TYPE="submit" VALUE="Execute"X/P> 

</FORM>
</BODY>

</HTML>

The sample above is similar to the input forms found in many commercial sites like 

Amazon or search engines like AltaVista. At these sites, the user inputs data in an HTML form and 

presses a button to know more about a book or searching for a subject.

When the user pushes the button the application defined in the action line is started and 

the browser passes the data to it using the following format:

firstname=manoel&lastname=cunha

Ali variables are sent as a single and continuous string. Each variable includes a field 

name and the string value of the variable. There must be an equal sign (=) between the field name 

and the value entered by the user. The variables are separated with ampersands (&). The final 

variable ends with a carriage return character. Spaces can appear as a plus sign (+).

4.3.3 OUTPUT TO A WEB BROWSER

The output of a CGI program is very similar to the output to the screen. In fact, the web- 

server redirects the output from the screen to the Client browser.

Once the web browsers use the HTML specification to format data being displayed, the 

output of a CGI application must be appropriately modified. The programmer must include among the 

output commands, a set of standard HTML tags to allow the proper formatting of the data being sent to 

the Client browser.

http://www.cesec.ufpr.br/cgi-bin/input.exe


38

When the CGI program is run, environmental variables known to the server are provided. 

Certain environmental variables used by the server can provide valuable information to the CGI 

program. One of these environmental variables can be used by the CGI program to receive the string 

sent by the Client browser through the server, as shown below :

#include <iostream.h>
#include <stdlib.h>
void main(void) {

cout «  "Content-type: text/html\n\n"; 
cout «  "<HTML>\n";
cout «  "<BODY>\n";
cout «  "<P>" «  getenv("QUERY_STRING") «  ' \n';
cout «  "</BODY>\n";
cout «  /,</HTML>\n";

}

In the above code, the command getenv is used with the parameter “QUERY_STRING” 

to retrieve the data string sent by the Client. The data string is then simply returned to the browser that 

started the process. To use the information passed to it, the CGI program needs only a function to 

parse each variable of the string.

4.3.4 THE HTTP GET AND POST METHODS :

When the form is sent to the CGI program, it contains the user entered information.

Several methods are supported for sending data. The two primary methods are the Get 

and the Post ones. The Get option is the default if none is stated in the HTML document. The Get data 

arrives as a command line argument or as an environmental variable, as seen before. In the Unix 

system the Post method, data are sent as standard input (stdin) while in the Windows system, the user 

data are passed to a file. This file has a similar format to the initialization files ( .in i) used by Windows 

3.1x applications.

For portability reasons, ali applications presented in this work have been developed using 

the Get method.



39

While the CGI programs provide server-side capabilities, there are many situations where 

Client-side capabilities are needed. With the increasing power of the computers used as Client end, 

application processing can be distributed between Client and server to take advantage of the 

cumulative power. In a Graphic User Interface (GUI) world, Client-processing capabilities are needed 

to give to the user some interactive features not provided by the standard HTML specifications.

Java is an Object Oriented Programming language developed by Sun Microsystems in 

19911S. The first motivation for the development of Java was the necessity of a platform-independent 

language that could be used to create software for consumer electronics. However, with emergence of 

the Word Wide Web, Java was propelled to the forefront of Computer languages because the Web, 

too, demanded portable programs.25

Java can be used to create two types of programs : applications and applets. An 

application is a program that runs on a Computer, under the operating system of that Computer. An 

application created by Java is much as if one created using C or C++. When used to create 

applications, Java is not much different from any other Computer language. Rather, the ability of Java 

to create applets is what makes it important. An applet is an application designed to be transmitted 

over the Internet and executed by a Java-compatible browser. An applet is actually a tiny Java 

program, dynamically downloaded across the network, just like an image, sound file or video clip.

4.4.1 THE JAVA APPLETS :

Applets are small applications that are accessed on an Internet server, transported over 

the network, automatically installed and run as part of a Web document.

Considerthe simple code:

4.4 THE JAVA PROGRAMMING LANGUAGE :



40

import java.awt.*; 
import java.applet.*;
public class HelloApplet extends Applet { 

public void paint(Graphics g) {
g .drawstring("Hello Internet World",20,20);

}
}

The code above simply displays a message in the applet window, as shown

FIG.7 THE HELLOAPPLET

Java applets can be executed by a special program called viewer, with debug purpose.

To execute an applet in a Web browser, one needs to write a short HTML text file that 

contains the appropriate applet tag, as show below :

<HTML>
<BODY>
<APPLET CODE="HelloApplet.class" WIDTH=200 HEIGHT=100> 
</APPLET>
</BODY>
</HTML>

Ali applets are derived from the Applet class, which provides the necessary support and 

gives control over the execution of an applet. The Abstract Window Toolkit (AWT) class contains 

support for a window-based, graphical interface.

Applets are event driven, what means that an applet waits until an event occurs. The 

AWT notifies the applet about an event by calling an event handler. Once this happen, the applet must 

take appropriate action and return control to AWT. The most commonly handled events are those 

generated by the mouse, the keyboard and Controls such as a push button.



41

The AWT supports a rich assortment of graphics functions. Ali graphics are drawn relative 

to a window. This can be the main window or a child window of an applet. The Graphics class defines 

a number of drawing functions. Each shape can be drawn edge-only orfilled. Objects are drawn in the 

currently selected graphics color. When a graphics object that exceeds the dimensions of the window 

is drawn, output is automatically clipped. Java supports color in a portable, device-independent 

fashion. The AWT also supports multiple type fonts and the following types of control : labels, push 

buttons, check boxes, menus, lists, scroll bars and text editing. The Image class and the 

java.awt.image package together provide support for display and manipulation of graphical images. [6] 

Parameters can be passed to a Java applet with the use of HTML tags. The 

getParameter class function is used to retrieve a parameter in an applet, as shown below :

import java.awt.*; 
import java.a p p l e t ;
/ *
<applet code="InputApplet" width=200 height=100> 
<param name=firstname value=manoel>
<param name=lastname value=cunha>
</applet>
* /
public class InputApplet extends Applet {

String firstname;
String lastname; 
public void start() {

firstname = getParameter("firstname"); 
lastname = getParameter("lastname");

}
public void paint(Graphics g) {

g .drawString(firstname+" "+lastname,10,10);
}

>

Values returned from getParameter must be tested. If a parameter is not valid, 

getParameter will return null. In addition, conversions to numeric types must be attempted in a try 

statement, which catches NumberFormatException. Uncaught exceptions should never occur within 

an applet.



42

4.4.2 THE JAVASCRIPT

While Java is a programming language similar to C and C++, JavaScript16 is a script 

language similar to Unix shell or Perl'5. JavaScript, unlike Java, cannot be used except with a Web 

browser. However, unlike Java, JavaScript is not checked and is subject to bad coding and errors, 

usually detected by a compiler. In addition, JavaScript has none of the security mechanism found in 

Java. JavaScript also does not support advanced features like graphics capabilities. Despite these 

limitations, JavaScript can provide some HTML enhancement capabilities for Web pages developers.

4.4.3 JAVA AND CGI PROGRAMS

One of the most important gains for CGI programmers is the ability to preprocess the 

input of the user on the Client side before sending it to the server CGI program. The use of client-side 

preprocessing can allow such functions as range checking or data validation to take place before the 

data are sent to the server CGI program. Because error messages can be generated on the Client 

side, the user is given a quicker response to both a valid and an invalid entry. Corrections take place 

more quickly if data are entered incorrectly.

Although CGI and Java programming are distinct, these languages can interface in a 

several basic ways. CGI program can send Java applets as a part of the HTML sent from the server to 

the Client. In this instance, the CGI program can be used to change the parameters of an applet or 

even the applet itself. Since Java includes the capability of sending out a Universal Resource Locator 

(URL), it is possible to a Java applet to start up a CGI program.

The use of Java applets in combination with CGI programs may become a very complex 

project. To take full advantage of their capabilities, a programmer must have a deep knowledge of 

advanced programming techniques like sockets, multithreading and exception handling. Java is a 

language grounded in the needs of experienced programmers and demands great familiarity with 

Object Oriented Programming.



43

4.5 DEVELOPING WINDOWS INTERNET APPLICATIONS :

Microsoft provides two sets of Application Programming Interfaces (API) to assist in 

Windows application development. The first and most widely used in existing applications is known as 

the Winsock API™. Although Winsock takes care of most of TCP/IP details for the programmer, it is still 

complex and requires the implementation of ali functionality needed by an application. The second 

and much newer API is known as the Windows Internet API or Winlnef5. Winlnet is a much higher 

levei interface to the HTTP, FTP and Gopher protocols. Developers can use Winlnet to add powerful 

communication functionality without having to deal with the complexities of the underlying protocols.

While Winsock can be used to develop both Client and server applications and supports 

ali Internet protocols, Winlnet are used to develop only Client applications and supports only three 

protocols, one of them out-of-use.

Winsock and Winlnet allows the development of Client applications with full capabilities to 

download Web pages, execute server applications and transfer files between computers. Those 

capabilities can be combined with ali the features provided by the Windows environment, in special the 

graphical interface, to produce highly efficient distributed applications. Web servers can be used to 

provide network-centered processing capabilities as well as they can be used simply to hold shared 

information. In both cases, Client applications can be developed to give the user a graphical interface 

to a CGI program or a database. Client applications can also be used to preprocessing input data as 

well as postprocessing output results, going on-line only when data needs to be transmitted and/or 

processed by a remote server.

4.5.1 THE WINDOWS INTERNET API ( WININET)

The basic features of the Windows Internet API can be applied to develop a simple 

application to download an HTML file from a Web server or a text file from an FTP server. For the sake 

of simplicity, the sample presented is of console type but is implemented with the same capabilities of 

a conventional Windows application.



44

Consider the following code :

#include "windows.h"
#include "iostream.h"
#include "wininet.h"

void main(void) { 
char u r i [64]=""; 
cout «  "URL : ";
cin >> uri; 
if (!*url) return;
HINTERNET hSession =
InternetOpen("App/1.0",INTERNET_OPEN_TYPE_PRECONFIG,NULL,NULL,0); 
if (hSession) {

HINTERNET hFile = InternetOpenUrl(hSession,uri,NULL,0,0,0); 
if (hFile) {

char buffer[1024]="";
DWORD dwRead;
while (InternetReadFile(hFile,buffer,1023,&dwRead)) {

if (dwRead == 0) break; 
buffer[dwRead] = 0; 
cout «  buffer;

}
cout << *\ n ';
InternetCloseHandle(hFile);

}
else MessageBox(0,"InternetOpenUrl","Error",MB_OK); 
InternetCloseHandle(hSession);

}
else MessageBox(0,"InternetOpen","Error",MB_OK); 
cout << "End of program\n";
}

In the above code, the user is asked to input a Universal Resource Locator (URL), used 

to define the file to be downloaded and displayed on the screen. The Internet protocol used to transfer 

the data is defined by the user within the URL. For example, if the user type the address 

http://www.cesec.ufpr.br/~mcunha/hello.html, the program uses the HTTP protocol to 

transfer the hello.html file. The user can also type the address of a text file in an FTP server and the 

program will show the content of the chosen file in the screen.

The last code presented can easily be changed to redirect the output from the screen to a 

disk file or to an edit window. With minimum effort, a programmer can also change the application 

giving it uploading capabilities. The knowledge needed to accomplish the task of developing an 

Internet Windows application is only a few Wininet functions. However, the Windows API is very 

complex and its use is out of the scope of this work.

http://www.cesec.ufpr.br/~mcunha/hello.html


45

In Chapter 3 some Computer codes are reviewed and rewritten under the paradigm of 

Object Oriented Programming. At that chapter, the main goal is to present its basic concepts and how 

Computer codes written in a traditional and a very conservative fashion can be easily rewritten using 

this approach. Chapter 4 introduces the Common Gateway Interface ( CGI) and the Hypertext Markup 

Language ( HTML ). With the knowledge of these two programming techniques, a programmer can 

produce server-side applications and use Web browsers as the Client-side user interface.

This chapter combines ali concepts already presented in an engineering context. The 

Computer codes reviewed in Chapter 3 will now be improved using Object Oriented Programming 

mechanisms by making them CGI applications and giving them an HTML interface.

Each program defines input and output functions. The input function reads ali the input 

data required by each program. The output function is used to present results to the user. Usually the 

programmer implements first input and output tasks using files. In this way, the development of the 

application can be focused to the problem to be solved. After the implementation of the solution, the 

programmer can develop a more efficient or interactive interface to the user.

To transform those programs in CGI applications with HTML interface, one needs only to 

implement specific input and output functions. The input function must read the data string supplied by 

the Web server and must parse the information embedded in the string. The output function must use 

the HTML tags to format the results that will be displayed by the Client browser.

As shown before, the input function can be overloaded to allow data input from different 

sources like the keyboard or text file. The output function can also be overloaded to allow output 

results to the screen or text file. Using one of the most important features of Object Oriented 

Programming, the polymorphism, the programmer needs only to overload both functions to 

accommodate a new option like a browser input and output. Using polymorphism, the programmer 

only increases the capabilities of a program, without any lost of work and time.

5. INTERNET APPLICATIONS



46

5.1 POTENTIAL PROBLEMS USING CONSTANT ELEMENTS

The first code presented is the Computer code for solving Laplace type problems using 

Constant Boundary Elements. The POCONBE class created to the first program declares some 

private variables and public functions that manipulates that variables, as shown below :

class poconbe { 
int N,L;
double X[101],Y[101],XM[100],YM[100]; 
int KODE[100]; 
double F I [100],D F I [100]; 
double G[100][100],H[100][100];
double C X [20],C Y [20],POT[20],FLUX1[20],FLUX[20]; 
void Extin(double,...,int); 
void Locin(double,. ..,double&); 

public:
poconbe(void);
bool Input(ifstream); // text file 
bool Input(char); // web server
void GHmat(void); 
bool SLNPD(void); 
void Inter(void);
void Output(ofstream) ; // text file 
void Output(void); // web browser

}

The main body of the CGI version of the program could be :

void main (void) { 
poconbe object;
obj e ct.Input(getenv("QUERY_STRING") ) ;
obj ect.GHmat();
object.SLNPD();
obj ect.Inter();
obj ect.Output();

}

As shown before, when a CGI application is started by the Web server, the input data is 

sent as a string. In the above code, that data string is passed as a parameter to the Input function. The 

parse of the data string inside the function is a simple programming task, out of the scope of this work.

The output to a Web browser is very similar to an output to the screen. The only change 

is the inclusion of HTML tags to format text. Special care must be taken when declaring functions to 

the screen and to the Web browser once the screen output is redirected by the Web server.



47

5.1.1 INPUT DATA FROM A WEB BROWSER

A CGI application is a program placed in a special place on the server. This program is 

started by the Web server by request of a Client user using a browser like Netscape or Internet 

Explorer. Most of the time, the user starts an application and supplies data to that program using a 

standard form. Web forms are text files formatted accordingly the HTML specification. An HTML page 

can contain well known interface resources, like text boxes, push buttons, check boxes, radio buttons, 

among others. Images and sounds also can be used to enhance this user interface.

The Poconbe application must be compiled and placed in the cgi-bin directory on Unix 

systems or in the Scripts directory on Windows systems. The next step is to create an HTML page to 

be accessed by the user, using a web browser. It must be noticed that the HTML file is not placed in 

the same directory of the CGI program. The exact location of the HTML directory also depends of 

system being used.

Consider the HTML code below :

<HTML>
<HEADXTITLE>POCONBE</TITLEX/HEAD>
<BODY>
<H1>POCONBE - Potential Problems using Constant Elements</HlXHR> 
<FOKM ACTION="http://www.cesec.ufpr.br/cgi-bin/poconbe.exe">
<P>1. Number of boundary nodes :</P>
<INPUT TYPE="text" VALUE="" SIZE=8 NAME="numnodes">
<P>2. Coordinates of boundary nodes</P>
<P>Type : Node CoordX CoordY</P>
CTEXTAREA COLS=64 R0WS=8 VALUE="" NAME="nodecoords"></TEXTAREA> 
<P>3. Boundary conditions</P>
<P>Type : Element 0/1 Value</P>
<TEXTAREA COLS=64 ROWS=8 VALUE="" NAME="boundcond"x/TEXTAREA> 
<P>4. Number of internai points :</P>
< P X I N P U T  TYPE="text" VALUE="" SIZE=8 NAME="numintpts"></P>
<P>5. Coordinates of internai points</P>
<P>Type : Point CoordX CoordY</P>
<TEXTAREA COLS=64 R0WS=8 VALUE="" NAME="intncoords"></TEXTAREA> 
< P X I N P U T  TYPE="submit" VALUE="EXECUTE"</P>
</F0RM>
<B0DY>
</HTML>

The above code is a HTML page that provides an user interface to program Poconbe. It 

can be used to execute the application and pass data to it.

http://www.cesec.ufpr.br/cgi-bin/poconbe.exe


48

Besides the text used to guide the user in the data input process, this HTML code uses 

two types of Controls to allow that data input.

FIG.8 A WEB INTERFACE TO CGI PROGRAMS

The first type of control uses the <i n p u t  TYPE="text"> to display a single-line text 

box. The second type uses the <t e x t a r e a > tag to a multi-line text box. Both tags have parameters to 

define the size and the name of each control. The name of each control will be passed in the data 

string as the variable names. The data typed by the user in each control will be sent in the data string 

afterthe variable name and separated from it by the equal sign (=  ). Each variable is separated by an 

ampersand ( & ).

The HTML page has two single lines edit Controls, used to input the number of boundary 

nodes and the number of internai points : the N and L variables of the program. The three multi-line 

Controls are used to input boundary node coordinates, boundary conditions and internai points 

coordinates : the X, Y, KODE, FI, CX and CY arrays. It is a relative simple task to parse the string and 

convert it to appropriate variables of the application.



49

The last control used in the HTML page is the Execute button, defined with the < i n p u t  

TYPE=,/submit//> tag. This button must be pressed by the user to execute the CGI application. The 

program to be executed is defined in the <FORM ACTION=”address”> tag.

5.1.2 OUTPUT RESULTS TO A WEB BROWSER

To output results to a browser is an easy task, very similar to display results to the 

screen. The only changes are the inclusion of a command line to the server and HTML tags to format 

the data being presented on the browser.

As stated before, the first line of the code must be a message to the server. It says that 

what follows is an HTML text. Since the output of the CGI program will pass through the server to the 

Client, the initial message is required to tell the server to forward the message on to the Client. This line 

will not be sent to the Client software. Only the lines that follow will go to the client.

Considerthe following HTML code :

void Output(void) {
cout «  "Content-type:text/html\n\n"; 
cout «  "<HTML>\n";
cout «  "<HEAD><TITLE>POCONBE</TITLEX/HEAD>\n";
cout «  "<BODY>\n";
cout << "<Hl>POCONBE - Potential Problems using Constant Elements</Hl>\n";
cout «  "<TABLE BORDER=l CELLPADDING=2>\n"; 
cout «  "<CAPTION>Results</CAPTION>\n";
cout «  "<TRXTH>Node<TH>Potential<TH>P. Derivatives\n" ; 
for (int i=0;i<N;i++)

cout «  "<TRXTD>" «  i+1 «  "<TD>" «  FI[i] «  "<TD>" «  DFI[i] «  ' \n' ; 
cout «  "</TABLE>\n"; 
if (L) {

cout «  "<TABLE BORDER=l CELLPADDING=2>\n";
cout «  "<CAPTION>Internal Points</CAPTION>\n";
cout «  "<TRXTH>Point<TH>Potential<TH>Flux X<TH>Flux Y\n";
for (int k=0;k<L;k++) {

cout «  "<TRXTD>" «  k+1 «  "<TD>" «  POT[k];
cout «  "<TD>" «  FLUXl[k] «  "<TD>" «  FLUX2[k] «  '\n';

}
cout «  "</TABLE>\n";

}
cout «  "</BODY>"; 
cout «  "</HTML>";
}



50

In the code just presented, HTML tags are used to display arrays. The <TABLE> tag 

starts and finishes the output of an array. Each line of the array is defined by the <TR> tag and the 

<TD> tags separate each element in the line. One can notice that an HTML table can be used to 

display the elements of more than one array at the same time.

FIG.9 AN OUTPUT FROM A CGI PROGRAM

A good programming practice is to output the input data back to the user. Another good 

technique used by experienced programmers is to foresee error occurrence, allowing feedback 

messages about those errors.



51

5.2 POTENTIAL PROBLEMS USING LINEAR ELEMENTS

The second code presented solves potential problems using linear elements. The 

considerations about the declaration of the input and output functions are the same discussed in the 

previous case. The HTML code is almost the same presented before. The only change is the way that 

the information typed by the user in one of the Controls. Linear elements need more information about 

the element boundary conditions.

The job of parsing the data string and converting it to the program variables still is 

performed in the input function. The output function only needs to be redefined if the input data must 

be printed with the results.

5.3 ELASTOSTATICS PROBLEMS USING CONSTANT ELEMENTS

The Computer code for the solution of two-dimensional isotropic elastostatics problems 

without body forces has a similar organization as those described previously. No additional 

consideration is needed when turning the application presented previously into a CGI application. The 

creation of an HTML page to provide an interface to the user is the same presented before.

5.4 USING IMAGES

The < i n p u t  TYPE="text"> tag and the <t e x t a r e a > tag can be used to provide input 

Controls in an HTML page. However, the HTML capability of displaying images can be used to 

enhance an HTML page, giving to the user a better support in the input process. This feature can also 

be used to provide a graphic visualization ofthe results.

To reference images, HTML provides the <i m g  SRC="image. gif"> tag with several 

options for aligning and positioning. The HTML specifications define that the image files referenced by 

the tag must be of the GIF or JPG type.



52

This application was developed for educational purposes to reproduce one of the 

examples presented by Brebbia and Dominguez1. It illustrates how the first code can be used to 

analyze a simple potential problem. In this application, the user must define the size of a square 

domain, the number of elements of each side as well as the temperature at the left side of the domain.

5.4.1 THE POTENTIAL APPLICATION

FIG.10 THE POTENTIAL APPLICATION

The HTML code to allow the input of such data would be



53

<HTML>
<HEADXTITLE>POTENTIAL</TITLEX/HEAD>
<BODY>
<H1>P0TENTIAL -Heat Flow Example</Hl>
< P X I M G  SRC="potential. gif" WIDTH=227 HEIGHT=179x/P>
<FORM ACTION="http://www.cesec.ufpr.br/cgi-bin/potential.exe"> 
<P>1. Potential on the left side :</P>
<INPUT TYPE="text" VALUE="100" SIZE=8 NAME="leftpotential"> 
<P>2. Domain side :</P>
<INPUT TYPE="text" VALUE="2" SIZE=8 NAME="domainside">
<P>3. Number of boundary elements in each face :</P>
<INPUT TYPE="radio" NAME="numelements" VALUE="2"> 2 
<INPUT TYPE="radio" NAME="numelements" VALUE="4" CHECKED> 4 
<INPUT TYPE="radio" NAME="numelements" VALUE="8"> 8 
<INPUT TYPE="radio" NAME="numelements" VALUE="16"> 16 
< P X I N P U T  TYPE="submit" VALUE="EXECUTE"X/P>
</FORM>
</BODY>
</HTML>

In the above code, an image file is used to illustrate the definition of the problem. The 

side of the square domain and the temperature of the left side are given in single-line text boxes 

already known. However, the number of elements of each side is defined with a control known as 

radio-button. It allows to the user to choose one among some predefined options with the use a set of 

<i n p u t  TYPE="radio"> tags. Only the checked option is sent on the data string.

The Potential application can still be improved using the HTML capability of presenting 

images to provide a graphic output to the program. Once the options to the number of elements in 

each side of the square are predefined in the HTML file, the user can create in advance the same 

number of image files to illustrate each situation.

FIG.11 THE POTENTIAL APPLICATION GIF FILES

potential2.gif potential4.gif potential8.gif potential16.gif

A CGI output consists of an HTML file and as an HTML file can reference an image file, a 

program can send back to the user the appropriate predefined image file, accordingly to the option 

chosen in the input process.

http://www.cesec.ufpr.br/cgi-bin/potential.exe


54

Consider the following code :

void Output(void) {
cout «  "Content-type:text/html\n\n"; 
cout «  "<HTML>\n"; 
cout «  "<BODY>\n";

// output of numeric data

if (N == 8)
cout «  " < P X I M G  SRC=potential2 . gif></P>\n"; 
else if (N == 16)
cout «  " < P X I M G  SRC=potential4 . g i f x / P > \ n " ; 
else if (N == 32)
cout << " < P X I M G  SRC=potential8 . gifx/P>\n" ; 
else if (N == 64)
cout «  " < P X I M G  SRC=potentiall6 . gifx/P>\n" ; 
cout «  "</BODY>"; 
cout «  "</HTML>";
}

In the code above, the output results are sent to the user followed of an image chosen 

accordingly the number of elements of the problem being analyzed.

If the graphic precision is not the main issue, this little trick can be used to enhance the 

application. The images are used only to give an approximated idea about the behavior of the heat 

flow when the number of elements varies. This approach cannot be used when an accurate precision 

is needed by the program.

5.5 USING JAVA APPLETS

The use of predefined image files to provide graphic output is a very simple technique 

and, under some aspects, it can be considered very poor and limited. The Potential application 

presented in the previous section could take advantage of the use of a Java applet to present a better 

graphic output to the user.

As stated in the Chapter 4, a Java applet is a small application that is accessed on an 

Internet server, transported over the network, automatically installed and run as part of a Web 

document.



55

A Java applet supports graphics shapes that can be drawn edge-only or filled in a 

selected color. Multiple type fonts and Controls are also supported. Parameters can be passed to a 

Java applet with the use of HTML tags.

A better approach to the Potential application would send a Java applet to the Client web 

browser and pass to it the parameters needed to draw the output, as shown below :

FIG.12 THE POTENTIAL APPLET

Applet Viewei: PotentialÀppIet. class

WÍM

:

Solução aproximada

In this case, the HTML tags and the variables containing the values used to draw the 

graphic output must be combined within the output function. This approach may not be a good choice 

when transferring a large amount of data to the Java applet.

Another good opportunity to use a Java applet in the Potential application is in the input 

HTML form. The use of an applet allows the user to have a graphic definition of the problem before the 

data is sent to the server. This c//enf-side visualization associated with a pre-verification of data can 

reduce the processing load on the server side. Once the Java applets have the response capability to 

mouse and keyboard events, an interactive interface can be create



56

5.6 DEVELOPMENT OF WINDOWS CLIENT SIDE APPLICATIONS

The Common Gateway Interface ( CGI ) is the standard to create se/ver-side 

applications. Many scientific and engineering applications are fitted to act in the server side and used 

with a Web browser. However, even with the use of Java applets, some situations demand a more 

powerful interface for data input or graphic visualization.

This section presents the use of two Internet protocols to develop Client applications for 

the Windows operating system. As any standard Windows application, an Internet Client program can 

benefit itself of ali available resources of the environment like database access and 3D graphic 

visualization and animation. The HTTP protocol can be embedded in a Windows application, giving it 

the capability to start a CGI program, pass data to it and receive the results from the server. The FTP 

protocol is best suited for file-transfer applications. In some situations, data files must be shared by a 

group of users distributed in different locations and the server is used to hold these files. Using the 

FTP protocol, the application can access a file placed in a Web server in the same way it access a file 

located in the local hard disk.

5.6.1 THE WINDOWS INTERNET API ( WININET)

Windows Internet applications can be developed using one of two options : the Winsock 

or the Winlnet APIs. Winlnet is a high-level interface to the HTTP and FTP protocols. It used to add 

communication capabilities to a Window application. Complex tasks become simpler with this high- 

level programming interface.

To demonstrate the use of Winlnet API in the creation of Client applications, a Windows 

program was developed to access text files in an server using the FTP Internet protocol and provide 

an graphical output of the data embedded within those files. To accomplish it, those applications used 

the OpenGL529 API that allows graphic rendering in a whole set of computers and operating system.



57

FIG.13 A GRAPHIC VISUALIZATION CLIENT APPLICATION

FIG.14 THE FTP FILE OPEN DIALOG BOX

Although the information is used by that program only to give a graphic visualization, it 

could be easily improved to become preprocessors or postprocessor to existing engineering 

applications. The main goal of the application is to provide a good knowledge of how applications can 

take full advantage of Windows resources and, at the same time, to make good use of the Internet 

capabilities.



58

Most of the students and researchers involved in scientific and engineering applications 

development are dealing with the Windows based applications. The knowledge of two primary tools is 

needed to develop a Windows application. The first one is a Computer language, which is used to build 

the basic structure of the application. The second one is the Windows Application Programming 

Interface (API). The Windows API is a set of more than 2500 functions and its understanding demands 

experience and a large amount of time.2324

Science and engineering students and researchers can seldom spend theirs efforts in 

learning a complex environment like Windows with the only purpose of producing a user interface to 

the application. Instead, using a better approach, the programmer can focus on the problem being 

studied and make a good and efficient use of his time and skills. Another key point about academic 

research is that its result may or should benefit the community. Using the right environment, the 

knowledge can be disseminated with minimum effort and cost.

In this work, the Internet is proposed as the environment to the development of scientific 

and engineering applications. Once the HTML specification has most of the standard and well-known 

Controls provided by the Windows interface, a programmer can provide almost the same functionality 

with the knowledge of only a few HTML tags. The data input and output become a simpler task that 

does not demand advanced programming techniques.

Although the main reason for using of Object Oriented Programming is the increase of the 

complexity of applications, a practical problem faces the programmer. The dissemination of the visual 

environments had turned the development of Windows applications an easy task. However, the code 

of the applications created with those tools use Oriented Object Programming and the knowledge of 

this paradigm cannot be avoided. One example of Object Oriented Programming API is the Microsoft 

Foundation Classes (MFC)19, that replaces the original Windows API. Another example is the Java 

programming language that also demands a good knowledge of Object Oriented Programming.

6. CONCLUSIONS



59

By using the Object Oriented Programming paradigm, applications of any levei of 

complexity can be created. Despite the problem being studied, the use of this programming technique 

allows the development of a set of related applications with a standard approach. The code 

implementation can be done in a very efficient way. The program maintenance or improvement can 

also become easier tasks. The final remark about Object Oriented Programming is that this paradigm 

is fitted to be used by professional programmers as well as by less-experienced ones.

6.1 RECOMMENDATIONS AND DIRECTIONS FOR FUTURE WORKS

The future seems to point to an increase of Internet capabilities and applications. Internet 

is the environment in which ali recent efforts of the Computer industry are focused. Hardware and 

software together have been directed to the network capabilities provided by the Internet. Commercial 

sites and applications are coming to be landmarks in the business community. Daily routines have 

been changing with the necessity of adaptation to the new media. Academic research is intended to 

be ahead of the knowledge development and this is the ultimate reason for adopting this environment 

for the development of scientific and engineering applications.

Future developments and research can extend this work in many directions.

The advanced features of Object Oriented Programming can be used to enhance the 

Potential application, shown in Chapter 5 of this text. By using pointers to objects and the generic 

classes presented in Chapter 3, the application could give the choice between constant and linear 

elements. In this way, the program allows increasing the number of elements or to use a different 

interpolation function. Academic ones are some of the best for the application of the concepts 

presented in this work.

The Potential and Elastostatics codes can also be improved by giving them a graphical 

and interactive interface. To accomplish this the Java language must be studied in detail to a better 

understanding of its capabilities and limitations.

In the context of a numerical methods course, a set of applications to solve framed 

structures as well as plane strain, plane stress and plate problems could be easily implemented.



60

By using Object Oriented Programming, applications can be created or enhanced to 

support advanced analysis such as dynamic behavior, nonlinearities, plasticity and many others. This 

paradigm allows the impiementation of a large project growing accordingly to the availability of 

resources.

Internet resources are also another direction to research. There are a great number of 

products not mentioned in this work. A special care must to be taken with two main issues : portability 

and standardization. Once the Internet gathers a variety of Computer manufacturers, operating 

systems and software developers, the portability of the code and of the programmer is the most 

desirable feature of any product in study. Many resources are claimed to be standard by some 

recognized boards or by major hardware or software manufacturers. However, the future of any 

product or resource depends mainly in its accepting by the community and the market.

This work recommends the embedding of the Internet capabilities into any engineering 

program. As a result of the computational mechanics research, the applications developed here aimed 

the solution of engineering problems. However, the development of distributed applications can benefit 

the project area but can also be used by the field engineers. In the field of civil engineering, the status 

of a building project35, information from the construction site38, or just project plans can be shared 

through the Internet by engineers and contractors, workers and owners.4249

This work attempts to be a first step to students and researchers in the development of 

engineering applications to the Internet. It is a simple and practical tutorial to present basic concepts 

about a programming technique and a network environment. Much work has to be done and countless 

are the options for the use of the technology presented here.

Written by a programmer, this dissertation is addressed to programmers. Some previous 

experience and knowledge made this work. Recent knowledge and research were also needed and 

will be needed in its sequence. For the future, the final recommendation or direction is to read and to 

try. Any path chosen will bring good results with the combination of imagination and much work.

“The Science is on the books, not in the people’s mind!’’

Mildred Ballin Hecke, D.Sc.



61

REFERENCES

1. BREBBIA, Carlos Alberto; DOMINGUEZ. J. Boundary elements : an introductory course. 2. ed.
Computational Mechanics, 1992.

2. CHAPMAN, Davis. Building Internet applications with Delphi 2. QUE, 1996.

3. FELTON, Mark. CGI Internet Programming : with C++ and C. Prentice-Hall, 1997.

4. FOLEY, James D. et al. Computer graphics : principies and practice. 2. ed. Addison-Wesley,
1997.

5. FOSNER, Ron. OpenGL programming for Windows 95 and Windows NT. Addison-Wesley,
1996.

6. GUNDAVARAM, Shishir. CGI Scripting on the World Wide Web. 0 ’Reilly & Associates. 1996.

7. HEINY, Loren. Advanced graphics programming using C/C++. John Wiley, 1993.

8. HEINY, Loren. Windows graphics programming with Borland C++. 2. ed. John Wiley, 1994.

9. HUNT, Craig Estabrook. TCP/IP Network Administration. 2. ed. 0 ’Reilly & Associates, 1998.

10. LEAVENS, Alex. Designing GUI applications for Windows. M&T Books, 1994.

11. LEVINE, John. Programming for graphics files in C and C++. New York : John Wiley, 1994.

12. MEYER, Bertrand. Object oriented software construction. 2. ed. Prentice Hall, 1997.

13. MYERS, Roy E. Microcomputer graphics. Addison-Wesley, 1982.

14. MUSCIANO, Chuck; KENNEDY, Bill. HTML : the definitive guide. 0 ’Reilly & Associates, 1998.

15. NAUGTHON, Patrick; SCHILDT, Herbert. Java : the complete reference. McGraw-HilI, 1997.

16. ROBERTS, Dave. Developing for the Internet with Winsock. Coriolis, 1995.

17. RUMBAUGH, James et al. Object oriented modeling and design. Prentice-Hall, 1991.

18. SCHILDT, Herbert. Advanced Windows 95 programming in C and C++. McGraw-HilI, 1996.

19. SCHILDT, Herbert. MFC programming from the ground up. McGraw-HilI, 1996.

20. SCHILDT, Herbert. Turbo C/C++ : the complete reference. 2. ed. McGraw-HilI, 1992.

21. SCHILDT, Herbert. Windows 95 programming in C and C++. McGraw-HilI, 1995.

22. SCHILDT, Herbert. Windows 95 programming nuts & bolts : for experienced programmers.
McGraw-HilI, 1995.

23. SIMON, Richard. Windows 95 common Controls & messages API Bible. Waite, 1996.

24. SIMON, Richard. Windows 95 WIN32 programming API Bible. Waite, 1996.



62

25. SKONNARD, Aaron. Essential Winlnet. Addison Wesley, 1999.

26. STROUTUP, Bjarne. The C++ programming language. 3. ed. Addison-Wesley, 1997.

27. READINGS on Microsoft Windows and Wosa. Microsoft Press, 1995.

28. WALL, L.; SCHWARTZ, R. L. Programming Perl. 0 ’Reilly & Associates, 1991.

29. WRIGHT JR, Richard S.; SWEET, Michael. OpenGL superbible. Waite, 1996.

30. FAVELA, Jesus. An object oriented approach to the design of CAE systems. Boston, 1989.
Dissertation (Master of Science) -  Department of Civil Engineering, Massachusetts Institute 
of Technology.

31. GUIMARÃES, Luiz Gil Solon. Disciplina de programação orientada a objetos para análise e
visualização bidimensional de modelos de elementos finitos. Rio de Janeiro, 1992. 
Dissertação (Mestre em Ciências) -  Departamento de Engenharia Civil, Pontifícia 
Universidade Católica do Rio de Janeiro.

32. WORLD CONGRESS ON COMPUTATIONAL MECHANICS (4 : 1998 : Buenos Aires). Abstracts.
IACM, 1988.

33. AKIN, J. E. Object oriented programming via Fortran90. In: Engineering Computations. MCB, v.
16, n. 1, p. 26-48, 1999.

34. BAILEY, Simon F.; SMITH lan F. C. Case-based preliminary building design. In: Journal of
Computing in Civil Engineering. ASCE, v. 11, n. 4, p. 454-468,oct. 1994.

35. Dl FELICE, Paolino. Why engineering software is not reusable: empirical data from an experiment.
In: Advances in Engineering Software. Elsevier, v. 29, n. 2, p. 151-163, mar. 1998.

36. FEIJO’, Bruno; BENTO, J. A logic-based environment for reactive agents in intelligent CAD
systems. In: Advances in Engineering Software. Elsevier, v. 29, n. 10, p. 825-832, dec.
1998.

37. FRUCHTER, Renate et al. Interdisciplinary communication medium for collaborative conceptual
building design. In: Advances in Engineering Software. Elsevier, v. 25, n. 2/3, p. 89-101, 
mar./apr. 1996.

38. ISREB, M.; KHAN, A. I.; PARKER, B. A. Adaptative finite element mesh refinement: a call module
on the WWW. In: Computer and Structures. Pergamon, v. 65, n. 2, p. 169-175,1997.

39. JU, Jianing; HOSAIN, M. U. Finite-element graphic objects in C++. In: Journal of Computing in
Civil Engineering. ASCE, v. 10, n. 3, p. 258-260, jul. 1996

40. KHEDRO, Taha. A distributed problem-solving approach to collaborative facility engineering. In:
Advances in Engineering Software. Elsevier, v. 25, n. 2/3, p. 243-252, mar./apr. 1996.

41. KIWAN, M. S.; MUNNS, A. K. A neutral object data model for integrated building design and
construction environment. In: Advances in Engineering Software. Elsevier, v. 25, n. 2/3, p. 
131-140, mar./apr; 1996.

42. LAW, Kincho H.; BARSALOU, Thierry; WIEDERHOLD. Management of complex structural objects
in a relational framework. In: Engineering with Computers. Springer-Verlag, v. 6, n. 2, p. 81- 
92, spring 1990.

43. MACKIE, R. I. An object oriented approach to fully Interactive finite element software. In:
Advances in Engineering Software. Elsevier, v. 29, n. 2, p. 139-149, mar. 1998.



63

44. MACKIE, R. I. Using objects to handle complexity in Finite Element Software. In: Engineering
with computers. Springer-Verlag, v.13, n. 2, p. 99-111, 1997.

45. MONI, Sheloney; WHITE, Donald W. Frameview: object-oriented visualization for frame analysis.
In: Journal of Computing in Civil Engineering. ASCE, v. 10, n. 4, p. 276-285, oct. 1996

46. REMY, Philippe; DEVLOO, Bernard; ALVES FILHO, José Sergio Rodrigues. An object oriented
approach to finite element programming (phase I): a system independent windowing 
environment for developing interactive scientific programs. In: Advances in Engineering 
Software. Elsevier, v. 14, n. 1, p. 41-46, 1992.

47. RETIK, A.; KUMAR, B. Computer-aided integration of multidisciplinary design information. In:
Advances in Engineering Software. Elsevier, v. 25, n. 2/3, p. 111-122, 1996.

48. SUNIL, K. Evt; KHAYYAL. Sari; SANVIDO, Victor E. Representing building product information
using hypermedia. In: Journal of Computing in Civil Engineering. ASCE, v. 6, n. 1, p. 3-18, 
jan. 1992.

49. ZIGA, Turk; ISAKOVIC, Tatjana; FISCHINGER, Matej. Object-oriented modeling of design system
for RC buildings. In: Journal of Computing in Civil Engineering. ASCE, v. 8, n. 4, oct. 
1994.

50. HARDWICK, Martin; SPOONER, David L. Data protocols for the industrial virtual enterprise. In:
IEEE Internet Computing Online, <http://computer.org/internet/9701/hardwicki9701.html>, in 
09.06.1997.

51. REGLI, William C. Internet-enabled computer-aided design. In: IEEE Internet Computing Online.
<http://computer.org/internet/9701/regli9701 ,html>, in 27.03.1997.

52. SCHEER, Sergio; POMPEU, Renato Cesar. Virtual environments for the engineering teaching
and learning. CONGRESSO IBERO-LATINO AMERICANO DE MÉTODOS 
COMPUTATIONAIS EM ENGENHARIA - CILAMCE (XX : 1999 : São Paulo). 3-5 nov. 1999.

53. HTTP -  Hypertext Transfer Protocol. <www.w3.org/Protocols> In : 18.10.1999.

54. SCHWABE, Daniel; ROSSI, Gustavo. The Object-Oriented Hypermedia Design Model
(OOHDM). <www.inf.puc-rio.br>. In 15.10.1999

http://computer.org/internet/9701/hardwicki9701.html
http://computer.org/internet/9701/regli9701%20,html
http://www.w3.org/Protocols
http://www.inf.puc-rio.br


MINISTÉRIO DA EDUCAÇAO E DOOESPORTO  
UNIVERSIDADE FEDERAL DO PARANÁ
SETOR DE CIÊNCIAS EXATAS - Departamento,'de Matemática 
SETOR DE TECNOLOGIA - Departamento de Construção Civil
COORDENAÇÃO DO CURSO DE PÔS-GRADUAÇÂO EM MÉTODOS NUMÉRICOS EM ENGENHARIA

UFPR

RELATÓRIO DA DEFESA DE DISSERTAÇÃO DE MESTRADO

Aos 04 dias do mês de outubro de 1999, no Auditório do SIMEPAR, Universidade 
Federal do Paraná, foi instalada pelo Professor Waldyr de Lima e Silva Júnior, Coordenador do 
ppgMNE - Programa de Pós-Graduação em Métodos Numéricos em Engenharia, a Bãnca 
Examinadora para a décima primeira Dissertação de Mestrado em Métodos Numéricos em 
Engenharia, Área de Concentração em Mecânica Computacional. Estiveram presentes ao Ato, 
além do Coordenador do Programa de Pós-Graduação em Métodos Numéricos em 
Engenharia, professores, alunos e visitantes.

A banca examinadora, atendendo determinação do Colegiado do Programa de Pós- 
Graduação em Métodos Numéricos em Engenharia, ficou constituída pelos professores Bruno 
Feijó, Dr.,Departamento de Informática, da Pontifícia Universidade Católica do Rio de Janeiro; 
Waldyr de Lima e Silva Júnior, Ph.D., co-orientador, Centro de Estudos de Engenharia Civil 
Universidade Federal do Paraná; Ricardo Mendes Junior, D.Eng., Centro de Estudos de 
Engenharia Civil, da Universidade Federal do Paraná e Sérgio Scheer, D.Se., Centro de 
Estudos de Engenharia Civil, Universidade Federal do Paraná, orientador principal, a quem 
coube a presidência dos trabalhos.

Às quatorze horas, a banca iniciou seus trabalhos, convidando o candidato Manoel 
Theodoro Fagundes Cunha a fazer a apresentação do tema da dissertação intitulada “A 
Practical Approach in the Development of Engineering Applications for the Internet Using 
Object Oriented Programming”. Encerrada a apresentação, iniciou-se a fase de argüição pelos 
membros participantes.

Após a argüição, a banca reuniu-se para apreciação do desempenho do pós-graduando 
e definição de notas.

A banca considerou que o pós-graduando fez uma apresentação com a necessária 
concisão e que esclareceu os pontos necessários ao melhor entendimento da dissertação, 
respondendo as questões formuladas.

A Dissertação apresenta contribuição à área de estudos e não foram registrados 
problemas de estrutura e redação, resultando em plena e satisfatória compreensão dos 
objetivos pretendidos.

Tendo em vista a dissertação e a argüição, a banca atribuiu as seguintes notas:
Prof. Waldyr de Lima e Silva Júnior, nota 10,0 (dez); Prof. Bruno Feijó, nota 10,0 (dez), Prof. 
Ricardo Mendes Junior, nota 10,0 (dez) e Prof. Sergio Scheer, nota 10,0 (dez).

A média obtida 10,0 (dez), resulta na aprovação do candidato, (de acordo com 
determinação dos Artigos 32, 33 e 34 da Resolução 74/94-C corresponde
ao conceito “ A ”.

Curitiba, 04 de outubro de 19í

Prof. Sergio Scheer, D.Sc. 
Presidente

Prof. Waldyr de Lima e Silva Júh^or, Ph.D.

Prof. Ricard -Eng.


