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Pharmacology, ao qual o artigo foi submetido. Durante a elaboragdo deste trabalho

foi utilizada ferramenta de inteligéncia artificial para revisdo gramatical e tradugao.



RESUMO

A doenca hepatica gordurosa associada ao metabolismo (DHGAM) caracteriza-se
pela presenca de esteatose hepatica, podendo evoluir para cirrose e carcinoma
hepatocelular. Afeta até 30% da populagédo adulta e resulta da interagao de fatores
genéticos e ambientais, incluindo alteracbes epigenéticas, dietas ricas em lipidios
e/lou frutose, obesidade, resisténcia a insulina, consumo de alcool, tabagismo e
disbiose intestinal. Apesar da relevancia clinica, ndo ha tratamento especifico, e o
manejo € focado na etiologia subjacente. A doenga constitui importante problema de
saude publica, pela morbimortalidade e os custos econémicos associados,
reforcando a necessidade de estratégias terapéuticas eficazes. Estudos
etnofarmacoldgicos surgem como alternativa promissora ao manejo da DHGAM.
Destaca-se Petiveria alliacea L. (guiné, tipi ou erva-de-alho), tradicionalmente
utilizada como analgésico, hipoglicemiante, diurético e antitérmico. Este estudo
avaliou a seguranca toxicologica e a eficacia terapéutica da fragao etandlica soluvel
de P. alliacea em modelo pré-clinico inovador de DHGAM induzida por diabetes e
dislipidemia associadas ao alcool. Inicialmente, o extrato foi testado quanto a
citotoxicidade in vitro em células HepG2 e a toxicidade oral aguda em ratos Wistar
machos, néo apresentando efeitos adversos, evidenciando seguranca.
Posteriormente, durante cinco semanas, estabeleceu-se um modelo multi-hit de
DHGAM em ratos Wistar machos (n = 6-7), combinando diabetes (induzido pela
administragcdo de estreptozotocina 60 mg/kg, i.p.), dislipidemia (promovida pelo
consumo de ragao enriquecida com 0,5% de colesterol) e consumo de alcool (5%,
na agua de beber), sendo este ultimo um fator agravante da doenga. Nas duas
ultimas semanas, os animais receberam diariamente por gavagem veiculo (agua
filtrada, grupo controle negativo, C-), P. alliacea (30, 100 ou 300 mg/kg) ou a
combinagdo de sinvastatina e insulina [2,5 mg/kg e 6 Ul (s.c.), respectivamente,
grupo controle positivo, C+], enquanto ratos ndo expostos aos fatores de risco
constituiram o grupo basal. Foram avaliados parametros bioquimicos séricos, cortes
histolégicos hepaticos e renais, e marcadores de estresse oxidativo hepatico. Os
animais do grupo C- apresentaram disfungcdo metabdlica e hepatica, com aumento

da glicemia, de lipidios plasmaticos e hepaticos, aspartato e alanina



aminotransferase, bem como altera¢cdes histopatoldgicas hepaticas e renais. O
tratamento com o extrato de P alliacea reduziu parcialmente a hiperglicemia e, de
forma dose-dependente, as concentracdes plasmaticas e hepaticas de colesterol e
triglicerideos, além de normalizar as enzimas hepaticas. A administragao da dose de
300 mg/kg restaurou integralmente as defesas antioxidantes hepaticas e reduziu a
peroxidagao lipidica. A disfungao renal observada no grupo C- (aumento do peso
relativo dos rins, elevagdo de ureia e creatinina e lesbes histopatoldgicas) foi
revertida nos animais tratados com 300 mg/kg do extrato, enquanto o tratamento
com doses menores promoveu melhorias intermediarias. Por sua vez, a combinagao
de sinvastatina e insulina normalizou o perfil lipidico e reduziu a glicemia, mas nao
restaurou completamente as enzimas hepaticas nem os marcadores de estresse
oxidativo e dano renal. Histologicamente, os animais do grupo C+ exibiram
alteracbes hepaticas minimas, sem evidéncia de esteatose e alteragbes renais
intermediarias. Esses achados indicam que P. alliacea possui um perfil de seguranca
favoravel e acao multialvo, evidenciando potencial como agente hepato e

nefroprotetor no manejo da DHGAM.

Palavras-chave: Alcool; Antioxidante; Diabetes Mellitus; Esteatose Hepatica; Guiné;
Figado.



ABSTRACT

Metabolism-associated fatty liver disease (MASLD) is characterized by hepatic
steatosis and may progress to cirrhosis and hepatocellular carcinoma. It affects up to
30% of the adult population and results from a complex interaction between genetic
and environmental factors, including epigenetic modifications, diets rich in lipids
and/or fructose, obesity, insulin resistance, alcohol consumption, smoking, and
intestinal dysbiosis. Despite its clinical relevance, there is no specific treatment, and
current management focuses on addressing the underlying causes. MASLD
represents a major public health concern due to its high morbidity, mortality, and
economic burden, underscoring the urgent need for effective therapeutic strategies.
Ethnopharmacological studies have emerged as promising alternatives for MASLD
management. Petiveria alliacea L. (commonly known as guiné, tipi, or garlic weed)
stands out for its traditional use as an analgesic, hypoglycemic, diuretic, and
antipyretic agent. This study evaluated the toxicological safety and therapeutic
efficacy of the ethanol-soluble fraction of P. alliacea in an innovative preclinical model
of MASLD induced by diabetes and dyslipidemia associated with alcohol intake.
Initially, the extract was tested for in vitro cytotoxicity in HepG2 cells and for acute
oral toxicity in male Wistar rats. No adverse effects were observed, demonstrating its
safety. Subsequently, a multi-hit MASLD model was established over five weeks in
male Wistar rats (n = 6—7), combining diabetes (induced by streptozotocin, 60 mg/kg,
i.p.), dyslipidemia (via a 0.5% cholesterol-enriched diet), and alcohol consumption
(5% in drinking water), with alcohol acting as an aggravating factor. During the final
two weeks, animals received daily oral administration (gavage) of either vehicle
(filtered water; negative control, C-), P. alliacea extract (30, 100, or 300 mg/kg), or a
combination of simvastatin and insulin [2.5 mg/kg and 6 IU (s.c.), respectively;
positive control, C+]. Rats not exposed to risk factors comprised the basal group.
Serum biochemical parameters, hepatic and renal histology, and hepatic oxidative
stress markers were evaluated. Rats in the C— group exhibited metabolic and hepatic
dysfunction, evidenced by elevated blood glucose, plasma and hepatic lipids,
aspartate and alanine aminotransferases, and histopathological alterations in the
liver and kidneys. Treatment with P. alliacea extract partially reduced hyperglycemia

and dose-dependently decreased plasma and hepatic cholesterol and triglycerides,



while normalizing liver enzyme levels. The 300 mg/kg dose fully restored hepatic
antioxidant defenses and reduced lipid peroxidation. Renal dysfunction observed in
the C- group—including increased relative kidney weight, elevated urea and
creatinine levels, and histopathological damage—was reversed in animals treated
with 300 mg/kg of the extract, while lower doses produced intermediate
improvements. In contrast, treatment with simvastatin and insulin normalized the lipid
profile and reduced glycemia but failed to fully restore hepatic enzyme activity or
oxidative stress and renal damage markers. Histologically, C+ animals showed
minimal hepatic alterations without steatosis and moderate renal changes. These
findings demonstrate that P. alliacea exhibits a favorable safety profile and
multi-target action, highlighting its potential as a hepato and nephroprotective agent

in the management of MASLD.

Keywords: Alcohol; Antioxidant; Diabetes Mellitus; Guiné; Hepatic Steatosis; Liver.
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1. INTRODUGCAO
1.1 Caracterizagdo e epidemiologia da doenga hepatica gordurosa associada ao

metabolismo

A doenga hepatica gordurosa associada ao metabolismo (DHGAM),
anteriormente denominada doenca hepatica gordurosa nao alcodlica, consiste na
presenca de esteatose hepatica, a qual se caracteriza pelo excesso de triglicerideos
no figado (ESLAN et al.,, 2020; POLYZOS et al., 2019). Na esteatose, a gordura
acumulada no citoplasma dos hepatécitos € igual ou superior a 5% do peso hepatico
total (CHALASANI et al., 2018).

A DHGAM atinge entre 25% e 30% da populagado adulta mundial, sendo uma
das principais causas de morte por doengas hepaticas crénicas (ESLAN et al., 2020;
POLYZOS et al.,, 2019; YOUNOSSI et al.,, 2016; YOUNOSSI et al.,, 2023). A
enfermidade vem crescendo em paralelo a epidemia global de obesidade e diabetes
mellitus (BENCE et al., 2020; CHALASANI et al., 2018). De fato, Estes et al. (2018)
estimam um aumento global de 30% nos casos de DHGAM até 2030, caso a
obesidade e o diabetes mellitus continuem a crescer.

Allen et al. (2018) realizaram um estudo populacional na comunidade no
Minnesota (EUA), acompanhando 3.869 pacientes com DHGAM e 15.209 individuos
controle, durante 20 anos. Neste estudo, o indice de mortalidade foi
significativamente maior entre os pacientes com DHGAM (10,2%) em comparagao a
populagao controle (7,6%), sendo o risco de morte associado principalmente a
presenca de comorbidades metabdlicas, como diabetes mellitus, e a progressao

para cirrose.

1.2 Fatores de risco para a DHGAM

A DHGAM desenvolve-se devido a multiplos fatores genéticos e ambientais.
Entre eles estdo polimorfismos genéticos, modificacbes epigenéticas, dieta com
excesso de gordura e/ou frutose, falta de exercicio fisico, obesidade e resisténcia a
insulina, estresse oxidativo, alcoolismo, tabagismo e disbiose da microbiota
intestinal. Por meio da combinacdo desses fatores, lipideos se acumulam nos
hepatocitos, causando esteatose hepatica, que, se ndo controlada, gera uma

infiltracdo de células imunes no figado, causando um processo inflamatério, o qual
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pode gerar fibrose hepatica e evoluir para carcinoma hepatocelular (ESLAN et al.,
2018; MAHADY et al., 2016; MOTA et al., 2016; POLYZOS et al., 2019; RAO et al.,
2023).

Considerando a complexidade da DHGAM, fatores sociodemograficos
influenciam na prevaléncia da doenca. Em 2021, observou-se que homens
apresentaram uma prevaléncia global de DHGAM, ajustada por idade, superior a
das mulheres. Entre os homens, estima-se que cerca de 15.731 casos por 100 mil
habitantes, enquanto entre as mulheres a taxa foi de aproximadamente 14.311 casos
por 100 mil (FENG et al., 2025). Cho et al. (2025) realizaram um estudo populacional
na Coréia do Sul com 70.276 individuos com idade =219 anos, dos quais 29.169 eram
homens (41,51%). Observou-se que a prevaléncia de DHGAM foi maior entre
mulheres de baixa renda e apresentou tendéncia a ser mais elevada entre homens
de alta renda. Além disso, sexo masculino, meia-idade, niveis elevados de estresse
e tabagismo foram identificados como fatores de risco significativos para DHGAM.

A prevaléncia global de DHGAM em pacientes com diabetes mellitus tipo 2
(DM2) é de 55,5% (YOUNOSSI et al., 2019). A DHGAM e o DM2 apresentam-se de
forma bidirecional, sendo que o DM2, por meio da glicotoxicidade agravada pela
hiperglicemia, produz resisténcia periférica e hepatica a insulina. Como resposta, ha
maior secrecao pancreatica e menor clearance hepatico de insulina, visando
aumentar a concentracdo sérica do horménio e prevenir o desenvolvimento de
hiperglicemia. Dessa forma, ha supressao da lipdlise e acumulo de triglicerideos nos
hepatdcitos, gerando esteatose. Na outra diregdo, a DHGAM aumenta o risco de
desenvolvimento de DM2 por meio da lipotoxicidade criada pelo acumulo de gordura
ectopica. A lipotoxicidade contribui para um estado inflamatério, o qual provoca
resisténcia a insulina. Além disso, ha desregulacédo da producao hepatica de glicose,
resultando em hiperglicemia (GASTALDELLI et al., 2019; MALDONADO-ROJAS et
al., 2024; POWELL et al., 2021; TOMAH et al., 2020).

A dislipidemia pode ser causada por fatores genéticos ou pelo estilo de vida e
constitui um importante fator de risco para a DHGAM, principalmente devido a
lipotoxicidade decorrente do acumulo excessivo de gordura nos hepatdcitos. Esse
acumulo resulta de um desequilibrio entre a sintese, a oxidagao e o transporte de
lipidios, de modo que, quando a captagao de acidos graxos livres e a sintese de

triglicerideos superam a capacidade do figado de oxida-los ou exporta-los na forma
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de lipoproteinas, ocorre acumulo intracelular de lipidios. Esse excesso de
triglicerideos induz estresse oxidativo, disfungao mitocondrial e ativagdo de vias
inflamatdrias, fatores que favorecem o desenvolvimento da esteatose hepatica e a
progressao para lesdes hepaticas mais graves (KATSIKI et al., 2016; RAO et al.,
2023; RESS et al., 2016). Zang et al. (2021) analisaram dados representativos da
populacdo adulta dos Estados Unidos, provenientes do National Health and Nutrition
Examination Survey (NHANES) entre 1999 e 2016, totalizando 19.617 participantes.
O estudo estimou que a prevaléncia de DHGAM foi de 35,8%, sendo que 57,8%
desses individuos apresentaram dislipidemia, evidenciando a elevada carga
metabdlica associada a doenca.

O consumo de alcool constitui um fator de risco, isolado ou como cofator, para
a progressao da DHGAM e influencia o risco de mortalidade (CRABB et al., 2020;
YOUNOSSI et al., 2019). A DHGAM associada ao consumo de alcool inclui
individuos que ingerem quantidades moderadas da substancia, atualmente definidas
como 140-350 g por semana para mulheres e 210-420 g por semana para homens,
equivalentes a uma ingestdo meédia diaria de 20-50 g e 30-60 g, respectivamente
(RINELLA et al., 2023b).

Aproximadamente 90% do alcool absorvido pelo organismo é transportado
para o figado (CEDERBAUM, 2012). O alcool ¢ inicialmente oxidado a acetaldeido
pela alcool desidrogenase no citosol dos hepatdcitos e, de forma parcial,
metabolizado pelo sistema do Citocromo P-450, processo que gera espécies
reativas de oxigénio. O acetaldeido & posteriormente convertido em acetato pela
acetaldeido desidrogenase, principalmente nos macréfagos hepaticos, conhecidos
como células de Kupffer. A ativacdo dessas células promove a liberagcao de citocinas
pré-inflamatérias e a geracdo adicional de espécies reativas de oxigénio,
contribuindo para o processo inflamatorio hepatico (LIU, 2014; SLEVIN et al., 2020).
O consumo de alcool provoca alteragdes significativas no metabolismo lipidico
hepatico. A oxidagdo do alcool aumenta a razdo entre de nicotinamida adenina
dinucleotideo e de sua forma reduzida, comprometendo a oxidagao B-mitocondrial
de acidos graxos, a0 mesmo tempo em que estimula a lipogénese. Esse
desequilibrio metabdlico favorece o acumulo de triglicerideos nos hepatécitos,
contribuindo para o desenvolvimento da esteatose alcodlica (JEON et al., 2020;

SUN; WANG, 2021). Além disso, o alcool pode modificar a composicdo da
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microbiota intestinal e aumentar a permeabilidade da barreira intestinal. Como
resultado, endotoxinas bacterianas, especialmente lipopolissacarideos, alcangam a
circulagao sistémica e o figado, ativando as células de Kupffer e amplificando a
inflamacéao hepatica (SZABO, 2015).

Individuos que consomem alcool geralmente apresentam uma ingestéao
elevada de carboidratos, o que pode estar relacionado ao uso substituto do alcool
pelo agucar em periodos emocionais negativos ou de abstinéncia de bebidas
alcoolicas (BRAUN et al., 2021). A ingestdo de alcool e agucar apresenta
mecanismos glicoliticos similares, ao gerar um aumento de glicose no organismo, o
que, por sua vez, eleva a liberagdao de dopamina no nucleo accumbens, atuando no
sistema de recompensa cerebral (ABRANTES et al., 2022; AVENA et al., 2006;
VOLKOW et al., 2007).

Policarpo et al. (2022) analisaram 161 pacientes com DHGAM, os quais foram
classificados de acordo com o consumo de alcool (alto — acima de 20 g/dia em
mulheres e 30 g/dia em homens; moderado — abaixo de 20 g/dia em mulheres e 30
g/dia em homens; e nao consumo). Juntamente, foi aplicado um questionario
validado de consumo de alimentos, utilizado para avaliar a dieta dos pacientes.
Como resultado, os individuos com DHGAM que consomem alcool apresentaram
maior ingestdo de calorias e tendéncia a consumir mais carboidratos e agucares em
comparacgao aos individuos que nao consomem alcool.

A Figura 1 apresenta, de forma esquematica, os principais fatores de risco e
mecanismos fisiopatolégicos envolvidos no desenvolvimento e progressao da
DHGAM, destacando o papel da dislipidemia, da resisténcia a insulina e do consumo

de alcool.
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Figura 1. Principais fatores de risco e mecanismos envolvidos na Doenga Hepatica

Gordurosa Associada ao Metabolismo.

Fatores de risco: Vias metabélicas alteradas:

* Dieta hiperlipiiica e fica em 1 Influxo de acidos graxos livres
frutose 1 Lipogénese de novo

* Resisténcia a insulina - | Oxidagdo de cidos graxos

* Predisposicdo genética e | Exportacao de VLDL
epigenética

* Obesidade |

* Consumo de alcool

* Tabagismo

* Sedentarismo

* Dishiose intestinal

Actumulo de triglicerideos no figado

Interacdes metabdlicas:

* Dislipidemia <> Resisténcia a
insulina

* Resisténcia a insulina <* Aumento
da lipogénese hepética

¢ Alcool — Estresse oxidativo e
inflamacao

Fonte: Elaborado pela autora, 2025.

1.3 DHGAM e doencga renal cronica

Doenga Hepética Progresséo da DHGAM
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A doencga renal crénica (DRC) é caracterizada pela presenca de lesao renal

ou por uma baixa taxa de filtracdo glomerular estimada, persistindo por 3 meses ou

mais. A DRC envolve uma perda progressiva da fungao renal, frequentemente

levando a necessidade de terapia de substituicao renal, como dialise ou transplante.

As implicacées da DRC sédo amplas, que pode surgir a partir de diversos processos

patolégicos e afeta a saude cardiovascular, a fungdo cognitiva, o metabolismo

0sseo, a pressao arterial e muitos outros indicadores de saude (VAIDYA; AEDDULA,

2024).
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A DHGAM é vista como uma condigcdo multissistémica e esta correlacionada
com o desenvolvimento de patologias extra-hepaticas, como a DRC. Estudos
recentes vém mostrando que individuos com DHGAM apresentam maior risco de
desenvolver DRC (JUNG et al., 2022; QUEK et al., 2022; SUN et al., 2021; ZHANG
et al., 2020). Gao et al. (2024) realizaram uma analise com 79.540 pacientes com
DHGAM por 12,9 anos. Apos esse periodo, exames clinicos e laboratoriais foram
realizados, e pbéde-se avaliar que, desses pacientes, 20.465 (25,72%) individuos
desenvolveram DRC.

A DHGAM e a DRC compartilham mecanismos fisiopatolégicos semelhantes,
como resisténcia a insulina (ALKERWI et al., 2017; DUAN et al., 2019; KRISHNAN et
al., 2024; THONGNAK et al., 2020; YOUNOSSI et al., 2019), dislipidemia (CHEN et
al., 2023; HSU et al., 2021; LIANG et al., 2020), disfuncao endotelial (CHEN et al.,
2015; JIANG et al., 2020; PASARIN et al., 2012; RECIO-MAYORAL et al., 2011;
STINGHEN et al., 2009; WANG et al., 2019; YILMAZ et al., 2011), estresse oxidativo
(KIM; VAZIRI, 2010; LI; LIU, 2024), inflamagao crbénica (AMDUR et al., 2016;
MONSEU et al., 2016; TONELLI et al., 2005) e disfungédo da microbiota intestinal
(JACKEL et al., 2017; NANTO-HARA et al., 2020; TANG et al., 2015).

1.4 Diagnostico da DHGAM

A DHGAM ¢é a manifestacdo hepatica de uma desordem multissistémica, que
pode se apresentar de formas variadas em relacdo a maneira como é causada e se
desenvolve. Por ter uma fisiopatologia complexa, ndo possui um diagnéstico unico.
A deteccdo da DHGAM deve ser baseada em ultrassonografia, histologia e
biomarcadores sanguineos que indiguem a presenca de lesdes hepaticas, em
adicao a pelo menos um dos fatores a seguir: sobrepeso, obesidade, presencga de
DM2 ou evidéncia de desregulacdo metabdlica. A doenca deve ser descrita pelo
grau de atividade e pelo estagio da fibrose hepatica (ESLAN et al., 2020; RINELLA
et al., 2023a).
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1.5 Tratamento da DHGAM

Atualmente, o tratamento para a DHGAM e disfungdes relacionadas € limitado
e frequentemente associado a efeitos adversos. Usualmente, o manejo da condi¢ao
€ realizado com base na causa subjacente da doenga, como DM2, obesidade,
dislipidemia ou tabagismo (RINELLA et al., 2023a). Recomenda-se aos pacientes a
mudanca no estilo de vida, dieta e exercicio fisico, associados ou ndo a intervengdes
farmacologicas (ESLAN et al., 2020).

De acordo com a Diretriz da Sociedade Brasileira de Diabetes, para o
tratamento da DHGAM na auséncia de fibrose, € recomendada a mudanga no estilo
de vida e uma reavaliagao hepatica do paciente em trés anos. Nos casos em que ha
presenca de fibrose, deve ser realizada a mudancga no estilo de vida, a redugédo do
peso corporal em casos de sobrepeso e o uso de farmacoterapia com agonistas do
receptor ativado por proliferadores de peroxissoma gama (pioglitazona) e inibidores
do cotransportador de soédio-glicose 2 (empaglifiozina, dapagliflozina ou
canagliflozina). Agonistas do peptideo semelhante ao glucagon 1 (liraglutida ou
semaglutida) e agonistas do peptideo semelhante ao glucagon-1 e do polipeptideo
insulinotrépico dependente de glicose (tirzepatida) sdo utilizados em casos de DM2
e/ou obesidade. Entre os efeitos adversos desses medicamentos estdo o ganho de
peso, aumento do risco de insuficiéncia cardiaca e fraturas, infecgcdes do trato
urinario, poliuria, hipotensao e sintomas gastrointestinais (LIPSCOMBE et al., 2018;
LYRA et al., 2025).

Em relacdo ao manejo terapéutico da dislipidemia, condicao frequentemente
relacionada a DHGAM, recomenda-se mudancga no estilo de vida e, se necessario, 0
uso de estatinas, as quais, como efeitos adversos, podem causar dores musculares,
hiperglicemia (que pode predispor ao desenvolvimento de DM2), hepatotoxicidade,
além de disturbios neuroldgicos e gastrointestinais (GODOY-MATOS et al., 2023;
KHATIB et al., 2022).

Entre 2024 e 2025, o Food and Drug Administration (FDA) aprovou dois
medicamentos para o tratamento da esteato-hepatite: resmetirom (Rezdriffra®,
Madrigal Pharmaceuticals), um agonista do receptor B-tireoidiano, e a semaglutida
(Wegovy®, Novo Nordisk). Entre os efeitos adversos desses medicamentos estdo

cefaleia, nauseas, vomitos, diarreia e alteracbes hepaticas e na vesicula biliar
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(HARRISON et al.,, 2024; SANYAL et al.,, 2025). Ambos os medicamentos
apresentam custos elevados e sao indicados para casos em que O paciente
apresenta fibrose moderada a avancada. Sendo assim, para os casos de esteatose
hepatica, os tratamentos farmacolégicos atuais continuam limitados, seja por suas
restricoes em abranger todos os mecanismos da DHGAM, seja pelos custos

elevados e/ou efeitos adversos.

1.6 Modelos experimentais de DHGAM

Diversos modelos de roedores tém sido utilizados para o estudo da
dislipidemia e das doencas hepaticas. Ratos, devido ao metabolismo acelerado e a
capacidade de reverter rapidamente alteragbes metabdlicas, sdo particularmente
adequados para modelar essas condi¢des, que se assemelham de forma préxima a
progressao da doengca em humanos (JOHNSTON; FRANCIS; KISS-TOTH, 2018).

O modelo animal ideal para o estudo da DHGAM deve abranger todos os
aspectos de sua fisiopatologia complexa, incluindo a evolugédo temporal e as lesdes
histopatoldgicas nos diferentes estagios da doenca. Até o momento, os modelos
disponiveis contemplam apenas caracteristicas patogénicas e histologicas
principais, com enfoque em abordagens genéticas e dietéticas. Modelos de ratos
geneticamente modificados incluem Zucker obesos (BRAY, 1977; GUZZARDI et al.,
2021), Zucker obesos com dieta rica em gordura (KUNDU et al., 2020) e Otsuka
Long-Evans Tokushima obesos (KAWANO et al., 1992). Os modelos dietéticos de
DHGAM tém sido descritos em ratos com dietas enriquecidas em gordura (CUl et al.,
2020; LIOU et al., 2019; VELAZQUEZ et al., 2019; ZAMANI-GARMSIRI et al., 2021)
ou sacarose (LIMA et al., 2016; VALE et al., 2020), e deficiéncias de colina e
metionina (KARATZAS et al., 2018).

Além disso, a maioria dos estudos em animais tradicionalmente avaliou
fatores de risco isoladamente, embora haja crescente interesse em modelos que
integrem multiplos fatores, permitindo investigar a fisiopatologia complexa da
DHGAM e testar potenciais terapias. Exemplos incluem ratos com combinagdes de
diabetes, dislipidemia, hipertensdo e exposi¢cao ao tabaco (AUTH et al., 2022;
BARBOSA et al., 2020; DWIYEDI et al., 2020; LO et al., 2011; MENDES et al., 2021;
RODRIGUES ALBUQUERQUE et al., 2023).
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A DHGAM destaca-se como uma preocupacao de saude publica devido a sua
alta morbimortalidade e aos custos econémicos substanciais. Dessa forma, é
essencial promover estudos aprofundados que investiguem a DHGAM e possiveis
estratégias terapéuticas (ESLAN et al., 2020; SAYIENER et al., 2017). A proposigao
e o refinamento de modelos animais que reproduzam de forma mais fidedigna as
caracteristicas metabdlicas e histopatologicas observadas em humanos séao
fundamentais para o avango do conhecimento sobre a DHGAM e para a avaliagao
de novas abordagens terapéuticas. Paralelamente, os estudos etnofarmacoldgicos e
suas aplicagdes despontam como estratégias complementares e promissoras para a
compreenséo e o tratamento da doenca (RODRIGUES et al., 2020; SUNTAR, 2020).

1.7 Petiveria alliacea L.: dos usos populares ao estudo farmacoldgico

Popularmente conhecida no Brasil como guiné, tipi, erva-de-alho, mucuracaa,
amansa-senhor ou ouoembo, Petiveria alliacea L. (Figura 2) é um arbusto
pertencente a familia Phytolaccaceae, da ordem de plantas Caryophyllales,
amplamente distribuido pelo continente americano, com ocorréncia principalmente
na América do Sul. A planta ocorre em todos os estados do Brasil e desenvolve-se,
principalmente, em localidades umidas e sombreadas, podendo atingir até 1,5 m de
altura. Apresenta folhas simples, de formato eliptico, com apice e base agudos, raiz
fusiforme de coloragao parda, flores pequenas de coloragao branca, branco-rosa ou
esverdeada e odor aliaceo (CRONQUIST, 1988; DUARTE et al., 2005;
MARCHIORETTO et al., 2014; NEVES et al., 2006).
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Figura 2. Espécie adulta de Petiveria alliacea.

Fonte:https://plantidtools.fieldmuseum.org/pt/nip/search-results/PETIVERIA+A
LLIACEA+L.

A espécie é utilizada pela populacéo para tratar diversas condi¢cdes. As folhas
e raizes sao usadas em infusbes para fazer chas e topicamente em casos de
traumas, contusdes e dores localizadas. Também se atribui a utilizagao de P. alliacea
propriedades  anti-inflamatérias,  hipoglicemiantes, diuréticas, antitérmicas,
anti-helminticas e para congestdo hepatica. Além desses usos populares, a planta
também €& empregada em rituais para induzir visbes ou alucinagdes no México,
Nicaragua, Guatemala e Brasil (BELTRESCHI et al.,, 2019; BREMM et al., 2020;
CARBOLIM et al., 2025; CASAGRANDE et al., 2023; GUIMARAES et al., 2022;
MAGALHAES et al., 2022; MONTENEGRO PAZ, 2024; PAZ PERAFAN; SANTIAGO
et al., 2025; TAYLOR, 2002).

Estudos fitoquimicos identificaram a presenga de taninos, glicosideos,
terpenoides, flavonoides e saponinas (ABDUL RAHEEM et al., 2018; KANMODI et
al.,, 2022). Na caracterizagdo fitoquimica de P. alliacea, também foi possivel
determinar a presenga de 6leo essencial (KERDUDO et al., 2015), cumarina,
enxofre, isoarborinol e acido benzodico (KIM et al., 2005), além de esteroides e
alcaloides (AROGBODO et al, 2021). A composicdo quimica — e,
consequentemente, a atividade biolégica — dos extratos de P. alliacea estao
relacionadas as variagdes de clima, solo, coleta, preparo da planta e obtengao dos

extratos. De fato, macerados frescos das plantas apresentam-se mais vantajosos
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em relacao a preparagcdes com plantas secas ou aquecidas. As extracdes das raizes
apresentam maior atividade antimicrobiana em comparacao as extragdes das folhas
(KIM et al., 2005; LUZ et al., 2016).

Estudos pré-clinicos realizados com extrato etandlico 80% das folhas e raizes
de P. alliacea mostraram potencial antimicrobiano frente as bactérias Staphylococcus
aureus, Pseudomonas aeruginosa e Klebsiella pneumoniae (LOZANO et al., 2021).
Khadka et al. (2023), em uma analise in vitro, demonstraram que o tratamento com o
extrato acetato de etila das folhas, caule e raizes de P. alliacea apresentou atividade
antimicrobiana e antifungica contra S. aureus, Escherichia coli, Bacillus subtilis,
Candida albicans e Aspergillus fumigatus. Pesquisas desenvolvidas com as folhas
de P. alliacea apresentaram efeitos antifungicos: o tratamento com extrato etandlico
das folhas secas da planta inibiu 100% do crescimento de Aspergillus flavus
(MACHADO; RAMOS, 2020). Analises também descrevem que o 6leo essencial de
P alliacea apresenta atividade acaricida em Rhipicephalus microplus
(ARCEO-MEDINA et al., 2017), nematicida em Meloidogyne incognita e inseticida
em Bemisia tabaci (BEZERRA, 2006).

Em um estudo conduzido por Caicedo-Pinto et al. (2019), avaliou-se as
propriedades ansioliticas e antidepressivas de P. alliacea. Utilizou-se a fracéo
aquosa das folhas da planta para o tratamento em ratos submetidos a testes
comportamentais e cognitivos. O tratamento com P. alliacea promoveu efeitos
ansioliticos e antidepressivos nos animais tratados. Zavala-Ocampo et al. (2024)
indicaram que o tratamento com o extrato etandlico das folhas reduziu o dano
oxidativo e melhorou a poténcia de memodria em camundongos com
comprometimento de aprendizagem e memoéria. Além disso, o tratamento com o
extrato hidroetandlico das folhas promoveu melhora cognitiva, reforco da
aprendizagem, memoria de curta e longa duracdo e memodria espacial em ratos
Wistar (SILVA et al., 2015).

Lopez-Martins et al. (2002) descreveram a atividade anti-inflamatéria do
extrato das raizes administrado oralmente em ratos Wistar. Houve reducdo de
neutréfilos, mondécitos e eosindfilos migrantes, bem como efeito analgésico
prolongado, quando comparado ao acido acetilsalicilico. Por meio de analises in
silico, identificou-se o potencial anti-inflamatério de P. alliacea em inibir citocinas

pré-inflamatorias, fator de necrose tumoral alfa e ciclooxigenase-2 (OLAJUBUTU et
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al., 2022), além de interleucina 1 e fator de necrose tumoral alfa (FATIMAH et al.,
2024).

O tratamento com extrato etandlico de folhas e caules de P. alliacea mostrou
atividade antitumoral em linhagens de células de melanoma (URUENA et al., 2008)
e de adenocarcinoma mamario (CARLOSAMA et al., 2024; HERNANDEZ et al.,
2014). Murillo et al. (2023) avaliaram o efeito do extrato etandlico das folhas e caule
da planta em um modelo murino de leucemia mieloide aguda. Os animais tratados
com o extrato apresentaram redugcao dos niveis de blastos circulantes e no baco,
aumento da hemoglobina, hematdcrito, plaquetas e citocinas anti-inflamatérias,
quando comparados ao grupo controle.

Em relagdo aos efeitos anti inflamatorios, o estudo conduzido por Mustika et
al. (2021) mostrou que o tratamento com uma nanoformulagao do extrato das folhas
de P. alliacea reduziu a resisténcia a insulina, interleucina 6 e fator de necrose
tumoral alfa em um modelo pré-clinico de diabetes induzido por estreptozotocina em
ratos Wistar. Entretanto, ainda nao ha investigacoes cientificas em modelos animais

mais complexos de doengas metabdlicas.

1.8 Justificativa do estudo

A DHGAM constitui uma questao de saude publica, associando-se a elevados
gastos econdmicos. A ocorréncia de cirrose e de doengas cardiovasculares esta
diretamente relacionada ao aumento da utilizacdo de recursos financeiros. Dessa
forma, em razdo da crescente mortalidade e das implicagdes econbmicas
decorrentes da DHGAM, torna-se fundamental o desenvolvimento de estudos
voltados para ao melhor entendimento de sua fisiopatologia e, consequentemente,
de seu tratamento (ESLAN et al., 2020; SAYIENER et al., 2017). A DHGAM é uma
condigdo multifatorial cuja abordagem terapéutica ainda € limitada, em virtude da
escassez de opcoes eficazes, muitas vezes associadas a efeitos adversos
relevantes e a elevados custos, tanto para os pacientes quanto para os sistemas de
saude.

Neste contexto, estudos etnofarmacolégicos sdo uma via alternativa
promissora para a compreensao € o tratamento da DHGAM. Ao longo dos séculos,
produtos naturais tém sido a base terapéutica de diversas enfermidades e,

atualmente, a etnobotanica tem se consolidado como uma importante ferramenta na
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descoberta de novas drogas e sistemas terapéuticos. A etnofarmacologia, enquanto
area multidisciplinar de pesquisa, vem acumulando um vasto corpo de conhecimento
sobre o0 uso de plantas medicinais na medicina local e tradicional a nivel global,
configurando-se como uma estratégia relevante para o desenvolvimento de novos
farmacos (LEONTI et al., 2017; YEUNG et al., 2020). De fato, grande parte dos
compostos farmacolégicos atualmente empregados derivam do uso tradicional de
plantas medicinais (RODRIGUES et al., 2020; SUNTAR, 2020).

O emprego de fitoterapicos em sistemas de saude auxilia na redugao de
custos relacionados a fabricacdo de farmacos e ao tratamento de doencgas, por
utilizar recursos vegetais disponiveis localmente (AZEVEDO, 2008). Além disso,
destaca-se que a etnofarmacologia esta relacionada aos estudos de biodiversidade,
contribuindo para a descoberta de diversos compostos bioativos e para a
aplicabilidade do uso de fitoterapicos no progresso socioecondmico, a partir do
manejo sustentavel de fontes naturais e renovaveis. Os estudos etnofarmacologicos
permitem a avaliacdo das propriedades farmacolégicas e toxicolégicas de plantas
medicinais previamente utilizados de forma empirica pela populagao, colaborando
para o0 uso eficaz e seguro desses compostos. Dessa forma, promove-se o
conhecimento tecno-cientifico na area, aliado ao conhecimento tradicional (BRASIL,
2006; BRASIL, 2016; SALES et al., 2015).

Apesar de seu uso tradicional para problemas hepaticos, a P. alliacea ainda
nao possui validagao farmacoldégica em modelos experimentais robustos de doengas
metabdlicas. Além disso, a disponibilidade de modelos animais multi-hit para o
estudo da DHGAM permanece limitada, o que reforca a necessidade de
investigacbes que integrem agentes botanicos promissores a abordagens
experimentais mais complexas.

Assim, o presente projeto propde-se a avaliar a seguranga toxicologica e os
efeitos terapéuticos da P. alliacea em um modelo de doenga hepatica gordurosa

associada a multiplos fatores de risco.
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2. OBJETIVOS

2.1. Objetivo geral

Investigar os efeitos terapéuticos da fragdo soluvel em etanol das forlhas de P.

alliacea em um modelo de doenca hepatica associada a dislipidemia, diabetes e ao

consumo de alcool, além de avaliar sua segurancga toxicolégica aguda por meio de

testes in vivo e in vitro.

2.2. Objetivos especificos

2.2.1.

2.2.2.

Estudos de seguranca in vitro e em ratos tratados oralmente com o extrato de

P alliacea:

Analisar a viabilidade de células HepG2;

Determinar o valor da dose letal 50 (DL50);

Avaliar alteragdes clinicas em ratos apds a administracdo de diferentes doses
do extrato;

Examinar alteragbes no peso corporal, figado, bago, rins e coragcdo dos
animais;

Determinar as concentragbes séricas de glicose, aspartato e alanina
aminotransferase, ureia e creatinina dos ratos;

Averiguar os parametros hematologicos de ratos na presenca de P. alliacea,
Investigar alteragbes sistémicas por meio de analises histopatologicas do

figado, rins, bago e coragao dos animais.

Estudos de eficacia do extrato de P, alliacea em ratos submetidos ao modelo

de estudo:

Avaliar os niveis séricos de glicose, aspartato e alanina aminotransferase,
ureia e creatinina;

Realizar analises morfométricas e histopatologicas do figado e rins, visando
avaliar alteragdes sistémicas provocadas pelo modelo, bem como efeitos

terapéuticos decorrentes do tratamento com o extrato;
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Qualificar e quantificar os lipidios presentes no plasma e nos hepatdcitos por
meio da dosagem de triglicerideos e colesterol;

Estudar a natureza do estresse oxidativo hepatico por meio de medidas de

lipoperoxidagao, glutationa reduzida e superéxido dismutase.
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Abstract

Purpose: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disorder
often accompanied by metabolic and extrahepatic complications, including renal dysfunction. Effective therapies
are limited. Petiveria alliacea L., a medicinal plant traditionally used for diabetes and liver disorders, has not
been systematically evaluated in MASLD-related syndromes. Here, we assessed the toxicological safety and
therapeutic efficacy of P. alliacea in a novel preclinical multi-hit model of MASLD-associated hepatorenal
dysfunction, combining diabetes, dyslipidemia, and ethanol exposure. Methods: In vitro cytotoxicity was
evaluated in HepG2 cells, and acute oral toxicity was assessed in male Wistar rats. MASLD hepatorenal
syndrome was induced by combined diabetes, dyslipidemia, and ethanol exposure over five weeks. Animals
received vehicle, P. alliacea (30, 100, or 300 mg/kg), or simvastatin plus insulin during the last three weeks.
Serum biochemical parameters, hepatic and renal histology, and hepatic oxidative stress markers were analyzed.
Results: P. alliacea extract maintained HepG2 cell viability and caused no behavioral, hematological,
biochemical, or histopathological alterations, confirming safety. In MASLD rats, the extract partially reduced
hyperglycemia and dose-dependently lowered plasma and hepatic cholesterol and triglycerides while
normalizing liver enzymes. The 300 mg/kg dose fully restored hepatic antioxidant defenses, reduced lipid
peroxidation, and reversed renal dysfunction. Conclusion: P alliacea exerts hepatoprotective and
nephroprotective effects in MASLD, supporting its potential as a therapeutic agent for complex metabolic
disorders.

Keywords: Alcohol; Diabetes; Dyslipidemia; Guiné; Hepatoprotection; Nephroprotection.
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1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic
fatty liver disease (NAFLD), is a multifactorial condition characterized by hepatic steatosis (=5% fat
accumulation in hepatocytes), often accompanied by obesity, insulin resistance, dyslipidemia, and chronic
inflammation (Chalasani et al. 2018; Polyzos et al. 2019; Eslam et al. 2020). MASLD has emerged as the most
prevalent chronic liver disorder worldwide, affecting approximately 25-30% of the adult population, and is
projected to increase by over 30% by 2030 due to the rising incidence of diabetes mellitus and obesity (Estes et
al. 2018; Younossi et al. 2023).

Recent evidence indicates that MASLD is not limited to hepatic impairment but rather represents a
multisystemic disorder strongly associated with the development of extrahepatic complications, particularly
cardiovascular disease and chronic kidney disease (Sinn et al. 2020; Jung et al. 2022; Park et al. 2025). These
comorbidities frequently coexist in clinical settings and have contributed to the conceptualization of hepatorenal
syndrome, a condition in which hepatic metabolic dysfunction exacerbates renal injury. This interplay is
mediated by shared pathophysiological mechanisms, including insulin resistance (Alkerwi et al. 2017; Duan et
al. 2019; Younossi et al. 2019; Thongnak et al. 2020; Krishnan et al. 2024), lipid accumulation (Hsu et al. 2021;
Liang et al. 2020; Chen et al. 2023), endothelial dysfunction (Stinghen et al. 2009; Recio-Mayoral et al. 2011;
Yilmaz et al. 2011; Pasarin et al. 2012; Chen et al., 2015; Wang et al. 2019; Jiang et al. 2020), oxidative stress
(Kim and Vaziri 2010; Li and Liu 2024), chronic inflammation (Tonelli et al. 2005; Amdur et al. 2016; Monseu
et al. 2016), and gut microbiota dysbiosis (Tang et al. 2015; Jackel et al. 2017; Nanto-Hara et al. 2020). Current
therapeutic options for MASLD and associated hepatorenal dysfunction are limited, costly, and often associated
with adverse effects, especially when multiple comorbidities are present.

Preclinical models are essential for understanding MASLD pathophysiology and testing potential
therapies. Traditional single-hit models, such as high-fat diet or chemical induction, often fail to reproduce the
complex metabolic and extrahepatic complications observed in patients. In contrast, multi-hit models, which
combine factors such as dyslipidemia, hyperglycemia, and ethanol exposure, more accurately mimic the
multifactorial nature of MASLD and its progression to hepatorenal dysfunction. These models allow evaluation
of therapeutic interventions in a context that closely reflects the clinical scenario, providing a robust platform to
assess hepatoprotective and nephroprotective agents (Cui et al., 2024; Fu et al., 2024; Dua et al., 2025).

Natural products have emerged as promising alternatives for managing complex metabolic syndromes
(Rodrigues et al. 2020; Stintar 2020; Lopes et al. 2023; Silva et al. 2024). Petiveria alliacea L. (Phytolaccaceae),
Guinea henweed, commonly known in Brazil as “guiné”, “tipi”, or “erva-de-alho”, is a medicinal plant native to
the tropical Americas and widely distributed across Latin America (Cronquist 1988; Duarte et al. 2005; Neves et
al. 20006). It has been traditionally used in folk medicine for a variety of ailments, including pain, inflammation,
infections, diabetes, liver congestion, and urinary disorders (Taylor 2002; Beltreschi et al. 2019; Bremm et al.
2020; Guimardes et al. 2022; Magalhées et al. 2022; Casagrande et al. 2023; Paz Perafan and Montenegro Paz
2024; Carbolim et al. 2025; Santiago et al. 2025). Preclinical studies have demonstrated a broad pharmacological
spectrum, including antimicrobial (Guedes et al. 2009; Oyeleke et al. 2021; Khadka et al. 2023),
anti-inflammatory (Lopez-Martins et al. 2002; Cruz Salomoén et al. 2022; Olajubutu et al. 2022; Fatimah et al.

2024), mnemonic (Silva et al. 2015; Zavala-Ocampo et al. 2024), anxiolytic and antidepressant (Caicedo-Pinto et
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al. 2019), antifungal (Machado and Ramos, 2020; Khadka et al. 2023), antioxidant (Zavala-Ocampo et al. 2022;
Carlosama et al. 2024), and antitumoral effects (Murillo et al. 2023; Prada et al. 2023; Rojas et al. 2023;
Carlosama et al. 2024). More recently, ethnobotanical surveys and experimental evidence have highlighted its
potential hepatoprotective, hypoglycemic, and nephroprotective properties (Randle et al. 2018; Mustika et al.
2021; Conceigdo et al. 2023). However, its therapeutic efficacy in complex metabolic conditions such as
MASLD-associated hepatorenal syndrome remains largely unexplored (Urueiia et al. 2008; Silva et al. 2024).
Considering the traditional use of P. alliacea for liver and kidney-related ailments, and the growing
interest in natural therapies for multisystemic metabolic disorders, here, we evaluated the toxicological safety
and therapeutic potential of P. alliacea in a novel multi-hit preclinical model combining diabetes, dyslipidemia,
and ethanol exposure. We hypothesized that P. alliacea extract exerts hepatoprotective and nephroprotective
effects in MASLD by modulating oxidative stress and lipid metabolism. The study aimed to: (i) analyze in vitro
cytotoxicity; (ii) assess in vivo acute toxicological safety; (iii) evaluate hepatoprotective and nephroprotective
effects; and (iiii) provide preclinical evidence supporting its ethnopharmacological use in chronic metabolic

disorders.

2. Material and Methods
2.1. Reagents

Ammonium ferric sulfate (Exodo Cientifica®, Sumaré, Brazil), butylated hydroxytoluene (Synth®,
Diadema, Brazil), chloroform (Biotec®, Curitiba, Brazil), dipotassium phosphate (Exodo Cientifica®, Sumaré,
Brazil), Doxorubicin (Sigma-Aldrich®, Missouri, USA) EDTA (Neon Reagentes®, Suzano, Brazil), Ellman’s
reagent - DTNB (Sigma-Aldrich®, Saint Louis, USA), ethanol (Exodo Cientifica®, Sumaré, Brazil), eosin (Exodo
Cientifica®, Sumaré, Brazil), formalin (Exodo Cientifica®, Sumaré, Brazil), glutathione-reduced (USB®,
Cleveland, USA), Hayem’s solution (Exodo Cientifica®, Sumaré, Brazil), Harris hematoxylin (Exodo
Cientifica®, Sumaré, Brazil), hexane (Dinamica®, Indaiatuba, Brazil), hydrochloric acid (Exodo Cientifica®,
Sumaré, Brazil), isoflurane (Isoforine®, Cristalia, Itapira, Brazil), isopropanol (Biotec®, Curitiba, Brazil),
methanol (Neon Reagentes®, Suzano, Brazil), monopotassium phospate (Exodo Cientifica®, Sumaré, Brazil),
MTT (Sigma-Aldrich®, Missouri, USA), paraffin (Allkimia®, Campinas, Brazil), pyrogallol (Exodo Cientifica®,

®

Sumaré, Brazil), saline solution (Sigma-Aldrich®, Saint Louis, USA), simvastatin (Novartis®, Basel,

®

Switzerland), sodium citrate dihydrate (Exodo Cientifica®, Sumaré, Brazil), streptozotocin (Sigma-Aldrich®,

Missouri, USA), sulfuric acid (Exodo Cientifica®, Sumaré, Brazil), tris (Invitrogen™, Carlsbad, USA), Turk’s
solution (NewProv®, Pinhais, Brazil), trichloroacetic acid (Proquimios®, Bangu, Brazil), xylene (Allkimia®,

Campinas, Brazil), xylenol orang'e (Sigma-Aldrich®, Saint Louis, USA).

2.2. Preparation of Petiveria alliacea

The aerial parts of P. alliacea were collected in April 2022 in Dourados, Mato Grosso do Sul, Brazil
(22°11'43.8"S, 54°56'06.4"W). A voucher specimen (no. 1651) was authenticated and deposited at the DDMS

Herbarium of the Federal University of Grande Dourados (UFGD). The botanical identification was confirmed
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using the WFO Plant List online database, accessed on June 1st, 2022. To obtain the purified aqueous extract, the
aerial parts were washed and dried in a forced-air circulation oven at 35°C for three days. The dried material was
ground into powder and subjected to infusion following the method described by Souza et al. (2020).
Specifically, 100 g of the powdered material was infused in 1 L of boiling chlorinated water. The extraction
process lasted 5 to 6 hours, allowing the mixture to cool naturally at room temperature (25°C). Subsequently,
three volumes of ethanol were added to the infusion to precipitate insoluble components. The resulting
precipitate was removed by filtration, and the ethanol-soluble fraction was lyophilized and stored at —20°C. The

final yield of the extract was 9.31%.

2.3. Toxicological studies of Petiveria alliacea

2.3.1.  Invitro assessment of cell viability

The impact of P alliacea extract on cell viability was evaluated using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. HepG2 cells were
seeded in 96-well flat-bottom plates (Corning™ Costar® 3596, Corning Inc., NY, USA) at a density of 2 x 10*
cells per well in complete DMEM and allowed to adhere for 24 h at 37 °C in a humidified atmosphere with 5%
COs.. Cells were subsequently treated with increasing concentrations of P. alliacea extract (10-900 pg/mL) for
24, 48, or 72 h. Doxorubicin (1 uM; D1515, Sigma-Aldrich, St. Louis, MO, USA) served as a positive control,
and cells treated with vehicle (filtered water) were used as the negative control. At the end of each exposure
period, 10 uL of MTT solution (0.5 mg/mL; CT02, Sigma-Aldrich) was added to each well and incubated for 4h.
The supernatant was then carefully removed, and the formazan crystals formed were dissolved in 100 pL of
dimethyl sulfoxide (DMSO; D2650, Sigma-Aldrich). Absorbance was measured at 570 nm using a microplate
spectrophotometer (Multiskan™ FC, Thermo Fisher Scientific). Cell viability was expressed as the percentage of

absorbance relative to untreated control cells. All experiments were performed in independent triplicates.

2.3.2.  Acute toxicity evaluation

2.3.2.1. Animals

The toxicological evaluation of P. alliacea extract was conducted using male Wistar rats (200-250 g)
obtained from the State University of Ponta Grossa (UEPG, Brazil). Animals were housed under controlled
laboratory conditions at the Laboratory of Cardiometabolic Pharmacology, Federal University of Parand (UFPR),
with ad libitum access to food and water. Environmental parameters were maintained at a temperature of
22 +2 °C, relative humidity of 50 + 10%, and a 12-hour light/dark cycle. Environmental enrichment was
provided to promote animal welfare. All procedures were performed in accordance with the current guidelines of
the Brazilian National Council for the Control of Animal Experimentation (CONCEA) and the ARRIVE
(Animal Research: Reporting of In Vivo Experiments) guidelines for ethical animal research, ensuring
minimization of animal use and adherence to best practices (Percie du Sert et al. 2020). The experimental

protocol was approved by the Institutional Animal Care and Use Committee of UFPR (approval number: 1536).
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2.3.2.2. Experimental design

Acute toxicity was assessed according to guideline 423 of the Organization for Economic Cooperation
and Development (OECD, 2001). After an 8-hour fasting period, male Wistar rats (n = 6) received a single oral
dose of P. alliacea extract. Due to the absence of prior toxicological studies on this extract, an initial dose of 300
mg/kg was selected. Subsequent doses were determined based on the presence or absence of clinical signs of
toxicity or mortality. The acute toxicity evaluation continued until one of the following endpoints was reached:
(1) a dose produced relevant toxic effects; (ii) mortality occurred; (iii) no adverse effects were observed at the
highest dose; or (iv) deaths occurred at the lowest dose. A basal control group (n = 5) received the vehicle

(filtered water) under the same experimental conditions.

2.3.2.3. Assessment of clinical signs

Following oral administration of the P. alliacea extract, animals were observed at predetermined time
points: within the first 30 minutes, and then at 1, 2, 3, and 4 hours post-treatment. Behavioral and clinical signs
were monitored, including grooming behavior, piloerection, dyspnea, abdominal constriction, diarrhea,
prostration, ataxia, sedation, coma, and mortality. After the initial 4-hour observation period, animals were
allowed free access to food and water. Subsequently, they were monitored daily for 14 days for the presence of

clinical signs or death (Silva et al. 2022).

2.3.2.4. Euthanasia, material collection and analysis

On day 15, following a 12-hour fasting period, animals were euthanized by anesthetic overdose using
isoflurane (20%) in a saturated chamber. Blood samples were collected via decapitation for hematological and
biochemical analyses. Serum glucose levels were measured using a glucometer (Accu-Chek Active®, Roche,
Mannheim, Germany). Hematological parameters, including erythrocyte count, total leukocyte count, and
differential leukocyte count, were determined. Serum levels of cholesterol, triglycerides, aspartate
aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine were measured using a
semi-automatic biochemical analyzer and commercial diagnostic kits. The liver, spleen, heart, and kidneys were
excised, rinsed in saline solution, and weighed using an analytical balance. Relative organ weights (%) were
calculated as (organ weight/body weight) x 100. Representative tissue samples were fixed in 10% buffered
formalin, processed using standard histological procedures, embedded in paraffin, and sectioned. Histological
sections were stained with hematoxylin and eosin (H&E) and examined under a light microscope (Leica DM

2500") by a veterinary pathologist to assess morphological alterations potentially associated with the treatment.

2.4, Pharmacological studies

2.4.1.  Animals

Male Wistar rats (200-250 g) were obtained from the Central Animal Facility of the Federal University
of Parand (UFPR) and housed in the animal facility of the Laboratory of Cardiometabolic Pharmacology.
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Animals were maintained under standard environmental conditions (temperature 22 + 2 °C; relative humidity
50 + 10%; 12-hour light/dark cycle), with environmental enrichment, and had free access to food and water. All
experiments were conducted during the light phase of the cycle. Animals were randomly assigned to
experimental groups (n = 6-7). Sample size was determined based on previous studies employing similar
experimental designs and in accordance with the principles of the 3Rs (Replacement, Reduction, and
Refinement) (Percie du Sert et al. 2020; Auth et al. 2022; Albuquerque et al. 2023; Amaral et al. 2023; Silva et
al. 2024). Body weight was measured weekly using an analytical balance. The experimental protocol was
approved by the Institutional Animal Care and Use Committee of UFPR (approval number: 1536). All
procedures complied with relevant national and international regulations and adhered to the ARRIVE guidelines

(Percie du Sert et al. 2020).

2.4.2.  Experimental design and treatments

The MASLD model used in this study was established by combining multiple risk factors, including
diabetes, dyslipidemia, and ethanol intake. Diabetes was induced via a single intraperitoneal injection of
streptozotocin (60 mg/kg) dissolved in 10 mM citrate buffer (pH 4.5) following a 12-hour fasting period (Vit et
al. 2002; Souza et al. 2020). Blood glucose levels were measured from tail vein samples using a glucometer
(Accu-Chek Active®, Roche, Mannheim, Germany) three days after streptozotocin administration. Animals
presenting glycemia > 250 mg/dL. were classified as diabetic. Dyslipidemia was induced by feeding a
cholesterol-enriched diet (0.5%) for five weeks, as described by Silva et al. (2024). This diet was prepared by
mixing 150 g of standard chow with one egg yolk, 13.5 mL of corn oil, and water. The mixture was dried in a
laboratory oven at 50°C for 36 hours and stored in vacuum-sealed bags. Each 150 g portion contained
approximately 225 mg of cholesterol, 1.8 g of saturated fat, 2.16 g of monounsaturated fatty acids, and 0.72 g of
polyunsaturated fatty acids. Additionally, animals received free access to a liquid diet containing 5% ethanol,
following the protocol by Livero et al. (2016). During the final two weeks of the experiment, animals were
treated by oral gavage with either filtered water (negative control group [C—]), P. alliacea extract at doses of 30,
100, or 300 mg/kg, or a combination of simvastatin (2.5 mg/kg) and insulin (6 IU) administered subcutaneously
(SIM+INSU group). A basal control group consisting of normoglycemic, normolipidemic rats not exposed to

ethanol received only filtered water. The experimental design is present in Figure 1.
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Fig 1. Experimental design. The model of metabolic dysfunction-associated steatotic liver disease was induced
with diabetes, dyslipidemia, and ethanol in male Wistar rats during 5 weeks. In the last 2 weeks of the
experiment the baseline group and the negative control group were treated with vehicle (filtered water, 1 mL/kg).
Meanwhile the other 3 groups were treated with the P. alliacea extract (30, 100 and 300 mg/kg) and 1 group
received the standard treatment with simvastatin + insulin. After the treatment the therapeutic effects of P,

alliacea were evaluated. Visual elements created using Canva and Biorender.

2.4.3.  Euthanasia, sample collection and biochemical analysis

At the end of the treatment period, and following a 12-hour fast, animals were euthanized by anesthetic
overdose using isoflurane (20%) in a saturated chamber. Blood samples were collected via decapitation. Serum
glucose levels were determined using a glucometer (Accu-Chek Active®, Roche, Mannheim, Germany). Plasma
levels of ALT, AST, total cholesterol, triglycerides, urea, and creatinine were measured using colorimetric
enzymatic assays in a semi-automatic analyzer (Global Analyzer®, model GTA-300, Calgary, AB, Canada). The
liver and kidneys were excised, weighed using an analytical balance, and dissected. One portion of each organ
was fixed for histological evaluation, while the remaining tissue was stored at —20°C for subsequent analyses of

oxidative stress parameters and lipid content.

2.4.4.  Measurement of hepatic cholesterol and triglycerides

Liver samples were lyophilized and processed for lipid extraction using the gravimetric method (Livero

et al. 2016). For this analysis, samples were mixed with hexane at a ratio of 1:10 (sample:solvent) and incubated
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at 80°C for 2 hours. The supernatant was transferred to a vial and allowed to evaporate at room temperature. This
extraction procedure was repeated three times to ensure maximal lipid recovery. Lipid content was expressed as

a percentage and calculated using the following formula:
Lipid (%) = 100 x (,ﬁnai weight of vial / initial weight of vial) / 0.1 g

The extracted lipids were weighed and resuspended in a solution of 1 mL chloroform and 2 mL
isopropanol. Cholesterol and triglyceride concentrations were quantified using enzymatic colorimetric assays on

an automated analyzer.

2.4.5.  Histopathological analysis

Liver and kidney samples were collected immediately after necropsy, rinsed in saline solution to
remove residual blood, fixed in 10% neutral-buffered formalin for at least 48 hours, dehydrated through graded
ethanol and xylene series, embedded in paraffin, and sectioned at 6 um (liver) and 4 um (kidney). Sections were
stained with hematoxylin and eosin (H&E) to assess cellular architecture and tissue alterations and examined
under a Leica DM 2500 light microscope by a board-certified veterinary pathologist blinded to the treatment
groups. Hepatic lesions were semi-quantitatively scored according to the classification by Kleiner et al. (2005),
which evaluates ballooning and microvesicular and macrovesicular steatosis based on the percentage of affected
parenchyma, graded on a scale from 0 to 3: 0 (no lesions), 1 (mild, 5-33%), 2 (moderate, 34—66%), and 3
(severe, 67-100%). Renal evaluation considered three main lesion categories: tubular (degeneration, necrosis,
edema), glomerular (degeneration, necrosis, glomerulonephritis), and inflammatory infiltrates (presence of
polymorphonuclear or mononuclear cells in the interstitium). Each parameter was scored on a semi-quantitative
scale from 0 to 3, where 0 indicates absence of lesions, 1 mild lesions (focal, <25% of parenchyma), 2 moderate
lesions (multifocal, 25-50%), and 3 severe lesions (diffuse, >50%). Scores were assigned individually to each
kidney section, and group medians were calculated for statistical comparison. Representative photomicrographs

were obtained to illustrate typical findings in each experimental group.

2.4.6. Investigation of hepatic antioxidant system

To assess the antioxidant status of hepatic tissues, liver samples were homogenized at a ratio of 1:10
(W/v) using potassium phosphate buffer (0.1 M, pH 6.5). For the determination of superoxide dismutase (SOD)
activity and lipid peroxidation (LPO) levels, the homogenates were centrifuged at 9,700 rpm for 20 minutes at
4°C. Quantification of SOD and LPO was performed following the methodologies described by Gao et al. (1998)
and Jiang et al. (1992), respectively. For reduced glutathione (GSH) quantification, 100 pL of the homogenate
was mixed with 80 pL of 12.5% trichloroacetic acid, vortexed, and centrifuged at 3,000 rpm for 15 minutes at
4°C. GSH levels were determined in the supernatant according to the protocol established by Sedlak and Lindsay
(1968).
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2.5. Statistical analysis

Statistical analyses were performed following an initial assessment of data distribution and
homogeneity of variance. One-way analysis of variance (ANOVA) was conducted to compare means among
groups, followed by the Tukey post hoc test. The significance level of p < 0.05 was established. Data are
presented as mean =+ standard error of the mean (S.E.M.). All analyses were carried out using GraphPad Prism

version 9.0 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Safety assessment of Petiveria alliacea extract

3.1.1.  Impact of P. alliacea on cell viability

Treatment of HepG2 cells with P. alliacea extract demonstrated that low to intermediate concentrations
had minimal impact on cell viability, whereas higher concentrations and prolonged exposure resulted in
measurable reductions in metabolic activity (Figure 2). At 24 h, viability remained above 70% at concentrations
up to 100 pg/mL, with significant decreases observed at 300 and 900 pg/mL. The ICso at this time point was
relatively high (1297 pg/mL), indicating that short-term exposure to moderate doses does not compromise
cellular viability. After 48 h, viability remained above 70% for concentrations up to 100 pg/mL, with notable
reductions appearing at higher doses. The ICso decreased to 583.3 pg/mL, consistent with a moderate,
time-dependent effect becoming relevant primarily at concentrations > 300 ug/mL. At 72 h, the impact was more
pronounced, though cells maintained approximately 70-80% viability at concentrations < 100 pg/mL. A steep
decline was observed from 300 pg/mL onwards, with an ICso of 309.5 pg/mL. Overall, this temporal profile
indicates that the extract exerts a progressive effect at higher doses and longer exposures, while lower
concentrations are well tolerated even after 72 h. Doxorubicin (1 uM), used as a positive control, caused a sharp
decrease in viability under all conditions, confirming assay sensitivity. Statistical analysis revealed significant
differences (p < 0.001) primarily at higher concentrations (> 100 pg/mL after 48 h and > 300 pg/mL after 72 h)

compared with untreated controls.
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Fig 2. Effect of P. alliacea on cell viability. HepG2 cells after 24, 48, and 72 h of treatment with Petiveria

alliacea extract at different concentrations (10, 30, 100, 300, and 900 pg/mL). Saline solution was used as the

negative control (NC), and doxorubicin (200 pug/mL; 2%) as the positive control (PC). Statistical analysis was

performed by one-way ANOVA followed by Tukey’s post hoc test. *p < 0.001 vs NC.

3.1.2.  Evaluation of clinical signs, relative organs and body weight of rats

Animals orally treated with a single dose of P. alliacea extract at concentrations of 300 mg/kg and 2000

mg/kg exhibited no behavioral or physiological alterations during the entire observation period (from 30 minutes

up to 14 days), when compared to the untreated basal group (Table 1).

Table 1. Assessment of clinical signs in Wistar rats treated with vehicle or Petiveria alliacea extract (300 or

2000 mg/kg), orally, in a single dose

Time
Clinical si
fieat sign 30 Ih  2h 3h 4h 14 days
min
Self-cleaning absence 0/5 0/5 0/5 0/5 0/5 0/5
Piloerection 0/5 0/5 0/5 0/5 0/5 0/5
Dyspnea 0/5 0/5 0/5 0/5 0/5 0/5
Basal (vehicle)
Abdominal contraction 0/5 0/5 0/5 0/5 0/5 0/5
Diarrhea 0/5 0/5 0/5 0/5 0/5 0/5
Prostration 0/5 0/5 0/5 0/5 0/5 0/5
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Extract
of
Petiveria
alliacea

300
mg/kg

2000
mg/kg

Ataxia 0/5 0/5 0/5 0/5 0/5 0/5
Sedation 0/5 0/5 0/5 0/5 0/5 0/5
Coma 0/5 0/5 0/5 0/5 0/5 0/5
Death 0/5 0/5 0/5 0/5 0/5 0/5
Self-cleaning absence 0/6 0/6 0/6 0/6 0/6 0/6
Piloerection 0/6 0/6 0/6 0/6 0/6 0/6
Dyspnea 0/6 0/6 0/6 0/6 0/6 0/6
Abdominal contraction 0/6 0/6 0/6 0/6 0/6 0/6
Diarrhea 0/6 0/6 0/6 0/6 0/6 0/6
Prostration 0/6 0/6 0/6 0/6 0/6 0/6
Ataxia 0/6 0/6 0/6 0/6 0/6 0/6
Sedation 0/6 0/6 0/6 0/6 0/6 0/6
Coma 0/6 0/6 0/6 0/6 0/6 0/6
Death 0/6 0/6 0/6 0/6 0/6 0/6
Self-cleaning absence 0/6 0/6 0/6 0/6 0/6 0/6
Piloerection 0/6 0/6 0/6 0/6 0/6 0/6
Dyspnea 0/6 0/6 0/6 0/6 0/6 0/6
Abdominal contraction 0/6 0/6 0/6 0/6 0/6 0/6
Diarrhea 0/6 0/6 0/6 0/6 0/6 0/6
Prostration 0/6 0/6 0/6 0/6 0/6 0/6
Ataxia 0/6 0/6 0/6 0/6 0/6 0/6
Sedation 0/6 0/6 0/6 0/6 0/6 0/6
Coma 0/6 0/6 0/6 0/6 0/6 0/6
Death 0/6 0/6 0/6 0/6 0/6 0/6

Body and organ weight data for all groups are presented in Table 2. Throughout the 14-day

experimental period, a progressive increase in body weight was observed in all groups. The basal group showed

consistent weight gain, reaching a final average of 328.60 + 13.57 g on day 14. Similarly, rats treated with 300

mg/kg and 2000 mg/kg of the extract also demonstrated a steady increase in weight, with final body weights of

328.70 + 8.00 g and 333.70 + 11.73 g, respectively. The pattern of weight gain in treated groups closely mirrored

that of the basal group, indicating that administration of P. alliacea extract did not adversely affect normal body

weight progression. No statistically significant differences were found in weight gain between control and

treated animals. Additionally, the relative weights of vital organs—including liver, spleen, heart, and

kidneys—were evaluated, and no significant differences were observed between the extract-treated groups and

the basal group.
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Table 2. The body weight and relative organ weight of Wistar rats treated with vehicle or Petiveria alliacea

extract (300 or 2000 mg/kg), orally, in a single dose, after the 14-day experimental period

Extract of Petiveria alliacea

Basal
300 mg/kg 2000 mg/kg

Body weight (g)

14-day 328.60 + 13.57 328.70 £ 8.00 33370+ 11.73

Relative organ weight (%)

Liver 3.31+£0.097 3.07 £0.052 3.01 £0.143
Spleen 0.18 +0.009 0.18 £ 0.007 0.17+0.013
Heart 0.36 + 0.009 0.37 £0.009 0.31+0.017
Kidneys 0.77 +0.032 0.74 £0.030 0.66 + 0.030

Values are expressed as mean + S.E.M., n = 5-6. Data are presented as mean + S.E.M., n = 5-6. Statistical

analysis was performed using one-way ANOVA followed by Tukey's post hoc test.

3.1.3. Biochemical serum parameters in Wistar rats treated with Petiveria alliacea extract

The biochemical evaluation of serum parameters in Wistar rats treated with P alliacea extract
demonstrated no statistically significant alterations across the assessed markers (Figure 3). Total cholesterol
showed a slight but non-significant increase, with the control group presenting 47.60 + 6.03 mg/dL (Figure 3a).
Triglyceride levels remained unchanged, with the basal group showing 54.20 + 3.14 mg/dL and no differences
detected among the treated groups (Figure 3b). Similarly, the hepatic enzymes AST and ALT did not show
significant changes. ALT levels were 66.23 + 2.59 U/L (Figure 3c¢), while AST levels in the control group were
130.90 + 14.74 U/L (Figure 3d). Renal function markers also remained stable, with urea concentrations at 31.10
+ 0.86 mg/dL in the basal group (Figure 3e). Serum creatinine levels were comparable across groups: 0.47 +
0.04 mg/dL in the basal group, 0.46 + 0.03 mg/dL in the 300 mg/kg group, and 0.46 + 0.03 mg/dL in the 2000
mg/kg group (Figure 3f).
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Fig 3. Serum biochemical parameters of Wistar rats treated orally with a single dose of Petiveria alliacea extract
(300 or 2000 mg/kg) or vehicle (filtered water). Measured parameters include (a) total cholesterol, (b)
triglycerides, (¢) alanine aminotransferase (ALT), (d) aspartate aminotransferase (AST), (e) urea, and (f)

creatinine. n = 5-6 per group. Data were analyzed using one-way ANOVA followed by Tukey’s post hoc test.

3.1.4.  Hematological profile of rats treated with Petiveria alliacea extract

Hematological parameters did not show significant alterations among the groups treated with vehicle or
P alliacea. Regarding red and white blood cell counts, no significant differences were observed between the
extract-treated groups and the basal group. Similarly, the analysis of leukocyte subtypes revealed no significant
changes in basophils, neutrophils, or lymphocytes. A slight but statistically significant difference was observed
in monocyte levels in the 300 mg/kg (0.01 + 0.01 x 10° cells/uL) and 2000 mg/kg (0.02 + 0.03 x 10° cells/uL)
groups compared to the basal group (Table 3).
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Table 3. Hematological parameters of Wistar rats treated with vehicle or Petiveria alliacea extract (300 or 2000

mg/kg), orally, single dose

Extract of Petiveria alliacea

Parameter Basal

300 mg/kg 2000 mg/kg
Red blood cells (10° mm/uL) 8.14+0.49 9.33+£0.13 6.14+0.16
Leukocyte (10° mm/uL) 3.98+0.56 3.35+0.20 3.87+0.40
Rods (10° mm/pL) 0.00 +0.00 0.00+0.00 0.00 +0.00
Segmented (10> mm/pL) 0.02 + 0.00 0.01 +£0.00 0.01 +£0.00
Lymphocyte (10> mm/uL) 0.05+0.00 0.05+0.00 0.05+0.00
Monocyte (10° mm/uL) 0.00 +0.00 0.01 +£0.00° 0.02 +0.00°
Eosinophil (10° mm /pL) 0.00 £ 0.00 0.00 +0.00 0.00 +£0.00

Values are expressed as mean + S.E.M., n= 5-6. Statistical analysis was performed using one-way ANOVA
followed by Tukey's post hoc test. * p < 0.05 vs. Basal.

3.2.5.  Petiveria alliacea does not induce hepatic, cardiac and renal cellular alterations

Histopathological analysis of liver, spleen, heart, and kidney tissues from rats treated with both doses
(300 mg/kg and 2000 mg/kg) of P. alliacea extract revealed no significant tissue alterations when compared to
the basal group. The microscopic evaluation demonstrated preservation of normal histoarchitecture across all
organs examined. In hepatic tissue, hepatocytes were arranged in regular cords with well-preserved cytoplasm
and nuclei, without evidence of steatosis, inflammatory infiltrates, ballooning degeneration, or necrosis.
Similarly, the spleen exhibited intact white and red pulp regions, with no signs of lymphoid depletion or
architectural disruption. Cardiac tissue analysis revealed normal myocardial fibers, with no signs of cellular
disorganization, inflammatory cell infiltration, or interstitial fibrosis. Renal tissue sections maintained preserved
glomerular and tubular morphology, with no indications of tubular necrosis, interstitial edema, or inflammatory
changes. No morphological differences were detected between the extract-treated groups and the basal control,

supporting the histological safety of P. alliacea at the tested doses (Figure 4).
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Fig 4. Histopathological analysis of the liver, spleen, heart, and kidney from Wistar rats treated with Petiveria
alliacea (P) extract (300 mg/kg and 2000 mg/kg), compared to the basal (vehicle) group. Representative
H&E-stained tissue sections show no significant morphological alterations in the liver, heart, or kidney at both

dosages of the extract. Magnification: 20 x.

3.2. Pharmacological effects of Petiveria alliacea extract
3.2.1. Petiveria alliacea exhibits a median hypoglycemic effect, and demonstrates significant hepatic protective

properties

After diabetes induction, a marked increase in serum glucose levels was observed in the C— group
(448.60 = 18.31 mg/dL) compared to the basal group, which remained normoglycemic (115.30 + 3.75 mg/dL).
Co-administration of SIM+INSU significantly reduced blood glucose levels (165.30 + 16.21 mg/dL), while
treatment with P. alliacea partially reversed hyperglycemia (Figure 5a). The combined effects of diabetes,
dyslipidemia, and alcohol consumption led to considerable hepatic alterations, as evidenced by elevated levels of
the liver enzymes ALT (107.00 = 3.81 U/L) and AST (155.90 + 6.18 U/L), compared to the basal group (48.00 =
3.81 U/L). Notably, administration of P. alliacea at a dose of 300 mg/kg completely reversed the elevated ALT
and AST levels (Figure 5b and Se, respectively). Treatment with lower doses (30 mg/kg and 100 mg/kg)

partially reversed hepatic alterations, while the SIM+INSU combination was partially effective.
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Fig 5. Serum levels of (a) glucose, (b) alanine aminotransferase (ALT), and (c) aspartate aminotransferase
(AST). Basal: healthy rats, not subjected to the disease model, treated with vehicle. C—: diabetic, dyslipidemic
rats exposed to ethanol, treated with vehicle. P. alliacea: diabetic, dyslipidemic rats exposed to ethanol, treated
with P. alliacea extract (30, 100, or 300 mg/kg). SIM+INSU: diabetic, dyslipidemic rats exposed to ethanol,
treated with simvastatin (2.5 mg/kg) plus insulin (6 IU). n = 6-7 per group. Data are presented as mean + SEM.
“p <0.05 vs. basal; ® p < 0.05 vs. C— (one-way ANOVA followed by Tukey’s post hoc test).

3.2.2. Petiveria alliacea extract exerted median lipid-lowering effects

The concomitant induction of diabetes, dyslipidemia, and alcohol intake resulted in a marked elevation
of plasma lipid levels. Total cholesterol reached 610.30 + 22.29 mg/dL, and triglycerides reached 537.30 + 8.78
mg/dL in the untreated control group exposed to all risk factors (C— group), compared to 58.71 + 4.25 mg/dL
observed in the basal group. Treatment with P. alliacea extract at doses of 30, 100, and 300 mg/kg led to a
reduction in both triglycerides and cholesterol levels in all treated groups (Figure 6a and 6b, respectively).
While the effect was partial at all tested doses, a progressive decrease in lipid levels was observed across
increasing doses. In contrast, animals treated with the combination of SIM+INSU exhibited plasma lipid values
comparable to those of the basal group, indicating complete reversal of the induced dyslipidemia (Figure 6a and
6b). The disease model group (C-), exposed to diabetes, dyslipidemia, and ethanol intake, exhibited a marked
increase in hepatic triglyceride levels (211.70 £ 20.72 mg/dL) compared to the basal group (27.90 + 3.50
mg/dL). Treatment with P. alliacea extract at doses of 30 and 100 mg/kg resulted in a dose-dependent reduction
in triglyceride content, reaching 126.60 + 6.44 and 83.88 + 4.52 mg/dL, respectively. Administration of the 300
mg/kg dose led to a statistically significant reduction (51.89 = 3.59 mg/dL), as did the combination therapy with
simvastatin and insulin (34.16 + 2.80 mg/dL), with both treatments restoring triglyceride levels to values close to
those observed in healthy controls (Figure 6¢). A comparable behaviour was observed in hepatic cholesterol
levels. In the C— group, cholesterol increased significantly to 108.80 + 4.53 mg/dL, compared to 29.57 + 3.26
mg/dL in the basal group. Treatment with P. alliacea extract at doses of 30 and 100 mg/kg led to a partial
reduction, with levels decreasing to 71.65 = 9.32 and 58.54 + 3.50 mg/dL, respectively. Administration of the
300 mg/kg dose resulted in a statistically significant reduction to 38.96 + 1.88 mg/dL. Similarly, the SIM+INSU
group exhibited a significant decrease in hepatic cholesterol to 32.29 + 2.78 mg/dL, with values approaching

those observed in the basal group (Figure 6d).
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Fig 6. Plasmatic levels of (a) triglycerides and (b) total cholesterol, and hepatic levels of (c) triglycerides and (d)
cholesterol. Basal: healthy rats, not subjected to the disease model, treated with vehicle. C—: diabetic,
dyslipidemic rats exposed to ethanol, treated with vehicle. P. alliacea: diabetic, dyslipidemic rats exposed to
ethanol, treated with P. alliacea extract (30, 100, or 300 mg/kg). SIM+INSU: diabetic, dyslipidemic rats exposed
to ethanol, treated with simvastatin (2.5 mg/kg) plus insulin (6 IU). n = 6-7 per group. Data are presented as
mean = SEM. * p < 0.05 vs. basal; ® p < 0.05 vs. C— (one-way ANOVA followed by Tukey’s post hoc test).

3.3.3.  Petiveria alliacea reversed hepatocellular alterations

A significant increase in relative liver weight was observed in the group exposed to multiple risk factors
(C— group), with values reaching 5.62 + 0.121 g, compared to 3.00 = 0.05 g in the basal group. Treatment with P,
alliacea extract at a dose of 300 mg/kg resulted in an intermediate reduction of this parameter. Animals treated
with the combination of SIM+INSU showed a partial normalization of liver weight, with a value of 5.00 + 0.06 g
(Figure 7a). Moreover, the presence of risk factors led to a marked increase of 230.63% in hepatic lipid content
in the C— group relative to the basal group (13.63 = 0.77%). In contrast, administration of P. alliacea extract at
300 mg/kg effectively normalized lipid accumulation, while the 30 mg/kg and 100 mg/kg doses resulted in
partial attenuation of hepatic lipid levels (Figure 7b). Histological analysis of liver tissue revealed no evidence
of steatosis in the basal group. In contrast, the C— group exhibited marked hepatic alterations, with ballooning
degeneration graded as 3, microvesicular steatosis as grade 3, and macrovesicular steatosis as grade 2. Treatment
with P. alliacea extract resulted in dose-dependent attenuation of steatotic features. Animals treated with 30
mg/kg displayed ballooning grade 2, microvesicular steatosis grade 2, and macrovesicular steatosis grade 2. At
the 100 mg/kg dose, findings included ballooning grade 2, microvesicular steatosis grade 2, and macrovesicular

steatosis grade 1. The highest dose, 300 mg/kg, resulted in ballooning grade 1, microvesicular steatosis grade 1,
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and macrovesicular steatosis grade 2. The SIM-+INSU group exhibited minimal histological changes, with

ballooning grade 1, and no evidence of microvesicular or macrovesicular steatosis, with grade 0 for both (Figure

7c).
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Fig 7. Relative liver weight (a), percentage of hepatic lipid content (b), and representative histological sections
of the liver stained with hematoxylin and eosin (H&E) (c). Basal: healthy rats, not subjected to the disease
model, treated with vehicle. C—: diabetic, dyslipidemic rats exposed to ethanol, treated with vehicle. P. alliacea:
diabetic, dyslipidemic rats exposed to ecthanol, treated with P. alliacea extract (30, 100, or 300 mg/kg).
SIM+INSU: diabetic, dyslipidemic rats exposed to ethanol, treated with simvastatin (2.5 mg/kg) plus insulin (6
IU). n = 6-7 per group. Data are presented as mean = SEM. *p < 0.05 vs. basal; °* p < 0.05 vs. C— (one-way
ANOVA followed by Tukey’s post hoc test). In the histological sections, black arrows highlight areas of hepatic

steatosis (fatty degeneration). Images captured at 20x magnification.

3.3.4.  Petiveria alliacea restores hepatic antioxidant defenses and reduces lipid peroxidation

Evaluation of oxidative stress markers in the liver revealed significant disturbances in animals subjected
to the combination of risk factors (Table 4). SOD activity was significantly reduced in the C— group (25.14 +
1.06 U SOD/g of tissue) compared to the basal group (39.12 = 0.97 U SOD/g of tissue). Treatment with P
alliacea at 30 mg/kg (32.36 = 1.42 U SOD/g of tissue) and 100 mg/kg (34.77 + 1.12 U SOD/g of tissue), as well
as SIM+INSU (31.56 + 0.65 U SOD/g of tissue), partially restored SOD activity, whereas the 300 mg/kg dose
normalized enzyme activity (41.40 + 0.54 U SOD/g of tissue), with values not statistically different from the
basal group. Similarly, GSH levels were markedly depleted in the C— group (10.48 + 2.25 ng GSH/g of tissue)
relative to basal animals (58.46 + 2.14 pug GSH/g of tissue). Partial recovery of GSH was observed with P,
alliacea at 30 mg/kg (26.39 + 2.93 pg GSH/g of tissue), 100 mg/kg (36.48 + 4.02 ug GSH/g of tissue), and with
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SIM+INSU (33.15 + 3.10 ug GSH/g of tissue). Full restoration was achieved with the 300 mg/kg dose (61.36 +
1.36 ng GSH/g of tissue), which was not statistically different from basal values. In parallel, LPO was
significantly increased in the C— group (155.20 + 10.16 nmol LPO/g of tissue) compared to the basal group
(56.63 + 3.66 nmol LPO/g of tissue). Treatment with P. alliacea at 30 mg/kg (95.25 + 4.42 nmol LPO/g of
tissue), 100 mg/kg (79.93 + 3.05 nmol LPO/g of tissue), and SIM+INSU (82.89 + 3.30 nmol LPO/g of tissue)
partially reversed this increase. Complete normalization was observed with the 300 mg/kg dose (61.60 + 2.99

nmol LPO/g of tissue), which showed no statistical difference from basal values.

Table 4. Hepatic oxidative stress markers in Wistar rats subjected to the MASLD model and treated with

Petiveria alliacea extract or simvastatin + insulin (SIM+INSU)

Extract of Petiveria alliacea (mg/kg)

Basal C- 30 100 300 SIM+INS

SOD 39.12+0.97 25.14 + 1.06* 3236+ 1.42%® 3477 £1.12% 41.40 £ 0.54° 31.56 £ 0.65®

GSH 58.46 £2.14 10.48 £2.25° 26.39 £2.93%® 36.48 +£ 4.02% 61.36 +1.36° 33.15+3.10®

LPO 56.63 £3.66 15520+ 10.16* 95.25 £ 4.42%® 79.93 £ 3.05% 61.60 +2.99° 82.89 £3.30%

C-, negative control; SIM+INS, simvastatin + insulin; GSH, reduced glutathione (ug GSH/g of tissue); LPO,
lipoperoxidation (nmol LPO/g of tissue); SOD, superoxide dismutase (U SOD/g of tissue). Values are expressed
as mean + S.E.M., n= 7-8. Statistical analysis was performed using one-way ANOVA followed by Tukey's post
hoc test. * p < 0.05 vs. basal; ® p < 0.05 vs. C—.

3.3.5.  Petiveria alliacea ameliorates renal dysfunction and histopathological damage

A significant increase in relative kidney weight was observed in the group exposed to the combination
of risk factors (C— group), with a mean value of 1.17 & 0.04 g, compared to 0.71 + 0.01 g in the basal group.
Treatment with P. alliacea extract at a dose of 300 mg/kg effectively normalized kidney weight (0.82 £ 0.01 g).
In contrast, the SIM+INSU group exhibited a partial reduction in this parameter (1.01 + 0.02 g) (Figure 8a). In
parallel, renal function markers were markedly elevated in the C— group, as evidenced by increased plasma
levels of urea (69.86 + 3.48 mg/dL) and creatinine (74.17 + 1.51 mg/dL), indicating renal impairment associated
with the metabolic disorder. Treatment with P. alliacea extract at 300 mg/kg resulted in complete reversal of
these elevations, with urea and creatinine levels reduced to 26.57 + 1.77 mg/dL and 32.67 + 2.80 mg/dL,
respectively. The lower doses of P. alliacea (30 and 100 mg/kg) produced partial nephroprotective effects, with
intermediate reductions in both renal markers. The SIM+INSU group showed modest improvements in urea and
creatinine levels, but the reductions were less pronounced than those observed with the 300 mg/kg dose of P

alliacea (Figure 8b and 8c, respectively).
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Fig 8. Relative kidney weight (a); plasma urea levels (b); and plasma creatinine levels (c). Basal: healthy rats,
not subjected to the disease model, treated with vehicle. C—: diabetic, dyslipidemic rats exposed to ethanol,
treated with vehicle. P. alliacea: diabetic, dyslipidemic rats exposed to ethanol, treated with P. alliacea extract
(30, 100, or 300 mg/kg). SIM+INSU: diabetic, dyslipidemic rats exposed to ethanol, treated with simvastatin
(2.5 mg/kg) plus insulin (6 IU). n = 6-7 per group. Data are presented as mean = SEM. * p < 0.05 vs. basal; * p <
0.05 vs. C— (one-way ANOVA followed by Newman-Keuls’s post hoc test).

Histological evaluation revealed preserved renal architecture in the basal group (tubular score: 0;
glomerular score: 0; inflammation score: 0). In contrast, the C— group exhibited marked pathological alterations,
with severe multifocal to diffuse tubular necrosis and degeneration (tubular score: 3), occasional moderate
glomerular involvement (glomerular score: 2), and severe multifocal inflammatory infiltrates (inflammation
score: 3), frequently associated with proteinuria. In the P. alliacea 30 mg/kg group, acute tubular necrosis was
the predominant finding (tubular score: 2), accompanied by mild to moderate glomerular alterations (glomerular
score: 1), and mild inflammation (inflammation score: 1). Two animals in this group displayed normal histology.
The 100 mg/kg group showed a higher incidence of glomerular lesions (glomerular score: 2), including acute
multifocal nephritis, chronic nephritis with moderate multifocal necrosis, membranous glomerulonephritis, and
mild glomerulonephritis. Tubular damage remained moderate (tubular score: 2), and inflammation was generally
mild to moderate (inflammation score: 1). One animal in this group presented normal renal morphology.
Administration of P. alliacea at 300 mg/kg was associated with improved renal histology, with most animals
showing normal tissue (tubular score: 0; glomerular score: 0-1; inflammation score: 0). Mild acute
glomerulonephritis (score 1) was observed in two animals, and one case of mild glomerular degeneration with
necrosis was recorded. The SIM+INSU group presented heterogeneous findings, including chronic
pyelonephritis, chronic proliferative multifocal glomerulonephritis, and myeloid substance accumulation with
tubular degeneration (tubular score: 1; glomerular score: 2; inflammation score: 1), while two animals exhibited

normal histology (Figure 9).
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Fig 9. Representative histological sections of the kidneys stained with hematoxylin and eosin (H&E). Basal:
healthy rats, not subjected to the disease model, treated with vehicle. C—: diabetic, dyslipidemic rats exposed to
ethanol, treated with vehicle. P. alliacea: diabetic, dyslipidemic rats exposed to ethanol, treated with P. alliacea
extract (30, 100, or 300 mg/kg). SIM+INSU: diabetic, dyslipidemic rats exposed to ethanol, treated with
simvastatin (2.5 mg/kg) plus insulin (6 IU). Symbols: large black arrow, marked necrosis and multifocal severe
tubular degeneration; large white arrow outlined in black, acute tubular necrosis; black-headed arrow, mild
glomerulonephritis; white-headed arrow outlined in black, chronic pyelonephritis. Images captured at 40x

magnification.

4. Discussion

The present study provides the first integrated evaluation of the safety and therapeutic potential of
Petiveria alliacea in a multifactorial rat model of metabolic dysfunction-associated steatotic liver disease
(MASLD), induced by the concomitant exposure to diabetes, dyslipidemia, and ethanol intake. This
experimental approach mimics the complex clinical scenario in which multiple risk factors act synergistically to
accelerate liver and kidney injury, thereby offering a relevant platform for assessing both the safety and efficacy

of the extract.
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An additional innovative aspect of this study is the implementation of a multi-hit preclinical model that
combines diabetes, dyslipidemia, and ethanol exposure to emulate the multifactorial pathophysiology of
MASLD. Unlike conventional single-hit models, which typically reproduce isolated metabolic alterations, this
approach induces simultaneous hepatic and renal dysfunction, better reflecting the complexity observed in
patients with advanced disease. Importantly, the inclusion of chronic low-dose ethanol exposure acts as a
metabolic aggravator, exacerbating oxidative stress and lipid peroxidation. This factor amplifies the severity of
steatosis and accelerates the onset of renal injury, thereby producing a more clinically relevant and translational
phenotype (Acierno et al., 2025). The concurrent metabolic damage acts synergistically to reproduce the cascade
of cellular and systemic disturbances typical of MASLD progression, strengthening the predictive validity of the
model for testing hepatoprotective and nephroprotective interventions.

Our in vitro results demonstrated that P. alliacea extract was non-cytotoxic to HepG2 cells up to 100
pg/mL, indicating a high degree of biocompatibility with hepatic cells. This absence of cytotoxicity suggests that
the extract preserves fundamental cellular functions, supporting its potential safety for further pharmacological
or nutraceutical applications. Given that HepG2 cells are a well-established model of hepatotoxicity studies,
these findings provide meaningful insights into the hepatic tolerability of the extract and highlight its
translational relevance for future preclinical studies (Gémez-Lechon et al. 2014).

Acute oral toxicity testing in rodents (limit dose: 2000 mg/kg) revealed no signs of behavioral alterations,
physiological distress, or mortality during the 14-day observation period. These results are consistent with
ethnobotanical reports describing the traditional use of P. alliacea without immediate harmful effects (Lawal et
al. 2024; Cruz-Salomon et al. 2022). The lack of adverse effects at this dose places the extract within the least
toxic category according to OECD guideline 423, indicating low acute toxicity potential. Taken together, these
preliminary safety data support the potential of P. alliacea extract for further investigation, including subchronic
toxicity testing and pharmacological efficacy studies. Although limited to acute exposure, the present results
provide an initial scientific basis for its safe use in future preclinical applications. Notably, relative organ
weights, clinical signs, hematological parameters, and histopathological analyses remained unchanged across
treatment groups, confirming the absence of systemic or organ-specific toxicity. Importantly, the absence of
hepatotoxic or nephrotoxic histological findings provides strong support for the extract's safety. These findings
fill a significant gap in the toxicological validation of P. alliacea, which until now had limited preclinical
toxicodynamic documentation, particularly under standardized laboratory conditions.

In the MASLD model, untreated animals displayed clear signs of metabolic and hepatic dysfunction,
including elevated plasma cholesterol and triglycerides, increased hepatic lipid accumulation, and marked
histopathological alterations characterized by steatosis, ballooning, and inflammation. Treatment with P. alliacea
extract ameliorated these alterations in a dose-dependent manner. The 300 mg/kg dose significantly reduced
hepatic cholesterol and triglyceride content, restoring them to levels approaching those of basal animals, and
substantially improved histological architecture, with reductions in steatosis and ballooning. These
hepatoprotective effects were comparable to those achieved with simvastatin combined with insulin,
underscoring the pharmacological relevance of the extract. Notably, serum AST and ALT levels remained
unchanged across groups, suggesting that the extract exerted protective rather than hepatotoxic actions.

Oxidative stress is a central mechanism in MASLD progression (Karkucinska-Wieckowska et al. 2021),

54



and this was corroborated by the observed reductions in antioxidant defenses and the increase in lipid
peroxidation in untreated animals. P. alliacea treatment restored the antioxidant balance, with the 300 mg/kg
dose completely normalizing SOD and GSH levels while reducing lipid peroxidation to basal values. Lower
doses and the pharmacological control produced only partial improvements. These results strongly suggest that
the protective effects of P. alliacea are mediated, at least in part, by its antioxidant properties.

Renal impairment was also evident in the C— group, with increased relative kidney weight, elevated
plasma urea and creatinine levels, and histopathological evidence of tubular necrosis, glomerular injury, and
inflammatory infiltrates. Treatment with P. alliacea at 300 mg/kg completely reversed these alterations,
normalizing renal function markers and restoring tissue integrity, while lower doses produced partial effects. The
nephroprotective efficacy of the extract at the highest dose surpassed that of the pharmacological control,
reinforcing its potential in conditions of metabolic stress. These findings resonate with ethnopharmacological
uses of P. alliacea in kidney-related disorders, now supported by experimental validation.

Collectively, the data presented here demonstrate that P. alliacea is safe and exerts significant
hepatoprotective, nephroprotective, and antioxidant effects in a complex and clinically relevant model of
MASLD. The extract not only attenuated biochemical and histological markers of disease but also restored redox
homeostasis, with effects that in several parameters were comparable or superior to those of conventional
pharmacological treatment. These results underscore the ethnopharmacological relevance of P. alliacea and
highlight its potential as a complementary therapeutic resource for metabolic and chronic liver diseases.
However, caution is warranted when extrapolating to humans. The identification of active compounds,
elucidation of molecular mechanisms, and evaluation of long-term safety and pharmacokinetics remain essential
steps before clinical translation.

Despite only partial correction of hyperglycemia and dyslipidemia, P. alliacea displayed comparable or
superior tissue-protective effects relative to simvastatin plus insulin. The extract notably reversed elevated renal
markers and normalized kidney weight, highlighting its multi-organ protective profile. These results expand the
pharmacodynamic spectrum of P. alliacea, previously explored primarily for antioxidant, immunomodulatory, or
anti-inflammatory properties (Mustika et al. 2021; Cruz-Salomon et al. 2022; Zavala-Ocampo et al. 2022).

This study contributes to the growing body of evidence supporting the repositioning of medicinal plants as
nutraceuticals or phytotherapeutics for chronic disease management (Sarkar et al. 2024; Siddiqui et al. 2024).
The broad-spectrum safety and organ-protective effects demonstrated by P. alliacea in this study provide a
promising foundation for future clinical trials. Importantly, the extract could represent a cost-effective alternative
or adjuvant in public health systems targeting populations with limited access to conventional polypharmacy.
Additionally, our approach integrates biochemical, histological, and functional data, aligning with recent
regulatory frameworks emphasizing comprehensive safety and efficacy profiling of natural products. The data
also contribute toward standardizing P. alliacea as a potential candidate for inclusion in official pharmacopoeias
or public health lists such as RENISUS (Brazil’s National List of Medicinal Plants of Interest to SUS).

Some limitations should be acknowledged. Mechanistic studies were not performed, leaving the molecular
pathways underlying the extract’s effects to be elucidated. The MASLD model was assessed under acute
treatment conditions; long-term studies are needed to evaluate sustained efficacy. Furthermore, while the extract

exerted moderate glucose-lowering effects, its lipid-lowering and tissue-protective actions were more
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pronounced, suggesting that P. alliacea may act primarily as a tissue-protective agent rather than a potent

metabolic modulator, a distinction with potential clinical implications for combinatory therapies.

Conclusion

Petiveria alliacea is a safe and promising botanical candidate with multi-organ protective effects,
particularly in the context of hepatic and renal complications associated with metabolic syndrome. These results
warrant further exploration into its mechanisms of action, chronic effects, and clinical applicability. Future
studies should also investigate the potential synergistic actions of P. alliacea when combined with conventional

treatments, as well as its incorporation into phytopharmaceutical formulations.
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4. CONCLUSAO

O tratamento com o extrato de P alliacea apresentou baixo potencial de
toxicidade, evidenciando biocompatibilidade em células HepG2 e seguranga em
testes de toxicidade aguda em roedores. A auséncia de efeitos adversos, tanto in
vivo quanto in vitro, corrobora o uso tradicional da planta. Além disso, este estudo
possibilitou estabelecer um modelo in vivo, inovador e complexo de DHGAM, por
meio da associacdo de multiplos fatores de risco. Em relagdo a planta analisada, o
tratamento com o extrato de P. alliacea promoveu efeitos protetores hepaticos e
renais, restaurando alteragdes bioquimicas e histopatoldgicas induzidas pelo modelo
de DHGAM. Os resultados obtidos neste estudo apontam Petiveria alliacea como
uma candidata botanica segura e promissora, com efeitos protetores
multi-organicos, particularmente no contexto de complicagdes hepaticas e renais
associadas a DHGAM. Entretanto, investigagdes adicionais sobre os mecanismos de
acao do extrato, seus efeitos em longo prazo e sua aplicabilidade clinica. Estudos
futuros também devem avaliar agbes sinérgicas de P. alliacea em associagado a
terapias convencionais, assim como sua incorporagdo em formulacdes

fitofarmacéuticas.
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