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RESUMO

Este Memorial de Projetos aborda a aplicação de conceitos de Inteligência 
Artificial (IA) para a otimização de processos em segurança da informação, com foco 
em um estudo de caso sobre a revisão de acessos. O projeto detalha a utilização de 
algoritmos de resolução de problemas por meio de busca visando mitigar riscos do 
processo manual de revisão de acessos. O problema é modelado por meio de uma 
estrutura de busca, cujo espaço de estados considera o usuário, seu time, a 
estrutura hierárquica e seus pares. A solução implementada consiste em um 
algoritmo de score que avalia as permissões com base em múltiplos fatores 
contextuais, recomendando a revogação de acessos quando o modelo atinge um 
limiar de confiança de 80%. Os resultados demonstram a eficácia da abordagem na 
mitigação de riscos de segurança e na redução da intervenção manual, validando 
como os fundamentos teóricos da IA, explorados ao longo do curso, são essenciais 
para o desenvolvimento de soluções corporativas robustas e responsáveis.

Palavras-chaves: inteligência artificial; resolução de problemas; algoritmos de 
busca; gestão de acessos; segurança da informação.



ABSTRACT

This Project Memorial addresses the application of Artificial Intelligence (AI) 
concepts for process optimization in information security, focusing on a case study 
on access review. The project details the use of problem-solving by search 
algorithms aiming to mitigate risks of the manual access review process. The 
problem is modeled through a search structure whose state space considers the 
user, their squad, the hierarchical structure, and their peers. The implemented 
solution consists of a score algorithm that evaluates permissions based on multiple 
contextual factors, recommending the revocation of access when the model reaches 
an 80% confidence threshold. The results demonstrate the approach's effectiveness 
in mitigating security risks and reducing manual intervention, validating how the 
theoretical foundations of AI, explored throughout the course, are essential for 
developing robust and responsible corporate solutions.

Keywords: artificial intelligence; problem solving; search algorithms; identity access 
management; information security.
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1 PARECER TÉCNICO

A gestão de acessos em segurança da informação é um desafio constante

para as organizações, especialmente no que tange ao processo de revisão de

privilégios. A abordagem manual, tradicionalmente utilizada, apresenta riscos 

significativos, como a manutenção de acessos desnecessários que violam o 

princípio do menor privilégio. Este parecer técnico apresenta uma solução baseada 

em Inteligência Artificial para otimizar e automatizar a revisão de acessos, mitigando 

riscos e aumentando a eficiência operacional

Este projeto teve como objetivo a otimização do processo de revisão de

acessos em uma instituição financeira. A Gestão de Identidade e Acesso (IAM - 

Identity and Access Management), consiste em uma estrutura de políticas e 

tecnologias que garante que as pessoas tenham o acesso apropriado aos recursos 

necessários (Singh et al., 2023). A IAM se sustenta em quatro pilares fundamentais:

• Administração (Gerenciamento de Identidade): Foca no ciclo de vida das 

dentro da empresa, desde sua criação e provisionamento inicial até a sua 

desativação segura. Garante a automação de processos de entrada, movimentação 

e saída de colaboradores, conhecido como JML (Joiner, Mover, Leaver).

• Autenticação: É o processo que verifica se um usuário é quem ele diz ser, 

através de credenciais como senhas, tokens ou biometria. Tecnologias como 

Autenticação Multifator (MFA) são essenciais para fortalecer essa verificação.

• Autorização: Após a autenticação, este pilar determina quais recursos um 

usuário pode acessar e quais ações pode executar. Aqui, são aplicadas políticas de 

controle de acesso, como o RBAC (Role-Based Access Control), que concede 

permissões com base na função do usuário

• Auditoria: Garante a conformidade e a segurança contínua, monitorando e 

registrando as atividades dos usuários para identificar riscos e atividades suspeitas.

Dentro desses processos citados, temos o processo de revisão de acesso 

manual que está sujeito a falhas, como decisões tomadas sem contexto ou sem a 

devida atenção do revisor na manutenção de privilégios desnecessários, o que 

compromete o princípio do menor privilégio. O princípio do menor privilégio faz com 

que o colaborador tenha apenas os acessos necessários para conseguir realizar
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suas atividades diárias, prevenindo acessos indevidos ou ações indevidas que não 

cabe ao colaborador realizar (Farman, 2024).

A manutenção de privilégios desnecessários, mencionada anteriormente, 

compromete diretamente o Princípio do Menor Privilégio (PoLP), um dos pilares da 

segurança da informação. A implementação rigorosa deste princípio, aliada à 

segregação de funções, é fundamental para minimizar a superfície de ataque de 

uma organização. O processo manual de revisão de acessos pode falhar 

exatamente neste ponto por diversas razões, especialmente pela ausência de 

mecanismos automatizados e baseados em dados para avaliação de riscos e 

concessões de permissões (Nobi et al., 2022):

• Fadiga de Decisão: Gestores com dezenas de subordinados diretos 

precisam revisar centenas, senão milhares, de permissões em ciclos curtos. Isso 

leva à "aprovação carimbo” (rubber-stamping), onde as permissões são mantidas 

sem uma análise criteriosa.

• Falta de Contexto: Um gestor pode não ter o conhecimento técnico 

detalhado para avaliar se uma permissão específica, como acesso a um 

determinado banco de dados ou a uma função de administrador em um sistema 

legado, ainda é necessária para as atividades diárias de um colaborador.

• Escalabilidade: Em corporações com alta rotatividade e projetos dinâmicos, 

o volume de solicitações e revogações de acesso torna a revisão manual um gargalo 

operacional, aumentando a probabilidade de erros.

Durante a pandemia do covid-19, com o aumento do trabalho remoto o que 

agravou a situação, destacando a necessidade de soluções de IAM mais eficazes 

para autenticação remota. Consequentemente, 77% das empresas aumentaram seu 

orçamento para IAM a fim de mitigar os riscos de cibersegurança. O processo 

manual está na intersecção dos pilares de Autorização e Auditoria e é onde se 

mostra mais vulnerável. Para enfrentar esse desafio, o problema foi modelado 

usando uma estrutura de busca: o espaço de estados representou todas as 

combinações possíveis de permissões de um usuário, de sua squad, de sua posição 

hierárquica e de seus pares; as ações consistiram em manter ou revogar acessos, 

avaliadas por meio de uma função de score ou árvore de busca.
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A necessidade de soluções de IAM mais eficazes, agravada pelo trabalho 

remoto, está alinhada à evolução do paradigma de segurança para a Arquitetura 

Zero Trust (ZTA). Este modelo abandona a ideia de um perímetro de rede seguro e 

opera sob o princípio de "nunca confiar, sempre verificar” , onde cada solicitação de 

acesso é rigorosamente autenticada e autorizada. Conforme aponta a pesquisa de 

Hussain et al. (2022), a ZTA exige uma verificação dinâmica e contextual, tornando a 

revisão manual de privilégios estáticos um método inseguro e inadequado para os 

desafios de segurança modernos, mostrando a necessidade da modernização dos 

processos usados atualmente.

A solução implementada utilizou um algoritmo de score baseado em 

múltiplos fatores como usuários da mesma squad, área ou departamento. O 

algoritmo implementado é, na prática, uma heurística que guia a busca pela melhor 

configuração de acessos. Ele atribui uma pontuação de confiança para cada 

permissão de um usuário, baseando-se em múltiplos fatores ponderados, conforme 

sugerido por análises comparativas de sistemas de IAM baseados em IA 

(Wairagade; Ranjan, 2025):

• Análise de Pares (Peer Analysis): Compara as permissões do usuário com 

as de outros membros da mesma squad ou com a mesma função (RBAC). Uma 

permissão compartilhada pela maioria dos pares recebe uma pontuação de 

confiança maior. Essa abordagem é uma simplificação de técnicas mais avançadas 

de detecção de anomalias baseadas em grafos, que modelam as relações entre 

usuários e recursos para identificar padrões de acesso incomuns que seriam 

invisíveis em uma análise individual, especialmente com o uso de Deep Learning 

(Ma et al., 2021).

• Análise Hierárquica: Verifica se as permissões são consistentes com as do 

gestor ou com as de usuários de mesma área e gestão.

• Análise de Frequência: Avalia a raridade de uma permissão dentro da 

organização. Permissões de alto risco são removidas automaticamente sem a 

necessidade de revisão.

A recomendação de revogação só era validada quando a confiança do 

modelo era igual ou superior a 80%. Este limiar foi definido para otimizar o equilíbrio 

entre precisão (evitar a revogação de acessos legítimos, ou falsos positivos) e recall
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(identificar o máximo de acessos desnecessários). Conforme estudos como o de 

Glockler et al. (2024), a gestão de requisitos em IAM é um desafio complexo, e 

abordagens sistemáticas são essenciais para o sucesso (Glockler et al., 2024). A 

solução automatizada atua como um sistema de recomendação para o gestor, que 

ainda realiza a validação final, mas agora munido de uma análise de dados robusta. 

Essa abordagem está alinhada aos princípios da IA Explicável (XAI), que defende 

que os modelos de decisão automatizada devem ser transparentes e 

compreensíveis, um fator crucial para a adoção de tecnologias de IA em áreas 

críticas como a cibersegurança (Rjoub et al., 2023)
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APÊNDICE 1 -  INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL 

A -  ENUNCIADO

1 ChatGPT

a) (6,25 pontos) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado.
b) (6,25 pontos) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas 

em sala. Explique o porquê.
c) (6,25 pontos) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio 

ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências.
d) (6,25 pontos) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4 

abordagens vistas em sala. Explique o porquê.

2 Busca Heurística

Realize uma busca utilizando o algoritmo A* para encontrar o melhor caminho para chegar a 

Bucharest partindo de Lugoj. Construa a árvore de busca criada pela execução do algoritmo 

apresentando os valores de f(n), g(n) e h(n) para cada nó. Utilize a heurística de distância em linha 

reta, que pode ser observada na tabela abaixo.

Essa tarefa pode ser feita em uma ferram enta de desenho, ou até mesmo no papel, desde 

que seja digitalizada (foto) e convertida para PDF.

a) (25 pontos) Apresente a árvore final, contendo os valores, da mesma forma que foi 
apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um 
formato em blocos, planilha, ou qualquer outra representação.

NÃO É NECESSÁRIO IMPLEMENTAR O ALGORITMO.

A rad 366 M ehadia 241

Bucareste 0 N ean it 234

C ra iova 160 O rad ea 380

D robeta 242 Pitesti 100

E forie 161 Rimnicu V ilcea 193

Fagaras 176 Sibiu 253

G iurgiu 77 Tiitiisoara 329

H irsova 151 U rzicen i 80

Iasi 226 V aslu i 199

Lugoj 244 Zerind 374

Figura 3.22 Valores de hDLR — distâncias em linha reta para Bucareste.
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3 Lógica

Verificar se o argumento lógico é válido.

Se as uvas caem, então a raposa as come 

Se a raposa as come, então estão maduras 

As uvas estão verdes ou caem

Logo

A raposa come as uvas se e somente se as uvas caem

Deve ser apresentada uma prova, no mesmo formato mostrado nos conteúdos de aula e nas 

práticas.

Dicas:

1. Transformar as afirmações para lógica:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

2. Transformar as três primeiras sentenças para formar a base de conhecimento

R1: p ^ q  

R2: q r  

R3: — r  V p

3. Aplicar equivalências e regras de inferência para se obter o resultado esperado. Isto é, com 

essas três primeiras sentenças devemos derivar q p . Cuidado com a ordem em que as fórmulas 

são geradas.

Equivalência Implicação: (a ^  p) equivale a ( - a v  (3)

S ilog ism o H ipotético: a ^  p, p  ^  y h a ^  y

Conjunção: a, p  h a A p
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Equivalência B icond ic iona l: (a ^  p) equivale a (a ^  p) A (p ^  a)

a) (25 pontos) Deve-se mostrar todos os passos e regras aplicadas, no mesmo form ato  
apresentado nas aulas e nas práticas. As equivalências e regras necessárias estão 
descritas acima e no material.

4 Redes Neurais A rtific ia is

Seja a RNA da figura abaixo.

Os neurônios N1, N2 e N3 possuem função de ativação linear. Já N4 possui função de ativação 

tangente hiperbólica (pesquise a fórmula e aplique).

Dada a entrada x 1=-3 , x2=1 , dê:

a) (6,25 pontos) Valor de saída do neurônio N1
b) (6,25 pontos) Valor de saída do neurônio N2
c) (6,25 pontos) Valor de saída do neurônio N3
d) (6,25 pontos) Valor de saída da rede como um todo

B -  RESOLUÇÃO

1 a) Inteligência Artificial (IA) é um campo da ciência da computação que se 

concentra no
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desenvolvimento de sistemas e algoritmos capazes de realizar tarefas que 

normalmente exigiriam inteligência humana. O objetivo da inteligência artificial é criar 

sistemas que

possam aprender, raciocinar, tomar decisões e resolver problemas de forma 

autônoma,

imitando ou mesmo superando as capacidades humanas em determinadas áreas.

b) A abordagem que melhor descreve a situação apresentada é a "Agir 

Racionalmente” dado que a descrição fornecida aborda vários aspectos das 4 

abordagens aprendidas em aula tais como: agir de forma autônoma, imitar ou 

permitir que o agente ultrapasse a capacidade humana permitindo que o mesmo 

passe pelo teste de turing, representação de raciocínio humano permitindo tomar 

boas decisões. Observando todos os aspectos, percebemos que apesar de se 

encaixar em outras abordagens só podemos concluir que a abordagem que melhor 

se encaixa é a "Agir Racionalmente" justamente por suas vastas possibilidades que 

agregam as principais características das 4 abordagens.

c) O ChatGPT (sigla para “Generative Pre-Trained Transformer”) é um modelo de 

linguagem baseado em deep learning (aprendizagem profunda), um braço da 

inteligência artificial.

O chatGPT é um software que utiliza o modelo GPT para gerar texto e que são 

treinados para compreender linguagem natural. Eles emitem uma saída em resposta 

a uma entrada do usuário, que é chamada de "Prompt", além de utilizarem 

processos como Tokenização e embedding.

Na prática, a plataforma utiliza um algoritmo baseado em redes neurais que 

permitem estabelecer uma conversa com o usuário a partir do processamento de um 

imenso volume de dados.

Funciona a partir de uma base de conhecimento atualizada que permite decodificar 

palavras para oferecer respostas textuais às pessoas.
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Trata-se de um modelo treinado a partir de dados de textos disponíveis na internet. 

Referências:

https://platform.openai.com/docs
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/guides/fine-tuning
https://fia.com.br/blog/chat-gpt/

d) O ChatGPT se aproxima mais da abordagem "Agir como Humano” pois seu 

funcionamento tenta simular o comportamento humano das seguintes formas, ele 

responde suas perguntas com um determinado "conhecimento", ele processa a 

linguagem natural podendo até mesmo se adaptar a sua forma de falar e até mesmo 

responder em outros idiomas, possui um raciocínio que apesar de ser diferente do 

humano é um tipo de raciocínio e por final ele ainda consegue aprender com cada 

Prompt e avaliação do usuário em relação as suas respostas.

2 a)

https://platform.openai.com/docs
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/guides/fine-tuning
https://fia.com.br/blog/chat-gpt/
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APÊNDICE 2 -  LINGUAGEM DE PROGRAMAÇÃO APLICADA 

A -  ENUNCIADO

Nome da base de dados do exercício: precos_carros_brasil.csv

Inform ações sobre a base de dados:

Dados dos preços médios dos carros brasileiros, das mais diversas marcas, no ano de 2021, 

de acordo com dados extraídos da tabela FIPE (Fundação Instituto de Pesquisas Econômicas). A 

base original foi extraída do site Kaggle (Acesse aqui a base original) . A mesma foi adaptada para ser 

utilizada no presente exercício.

Observação: As variáveis fuel, gear e engine_size foram extraídas dos valores da coluna 

model, pois na base de dados original não há coluna dedicada a esses valores. Como alguns valores 

do modelo não contêm as informações do tamanho do motor, este conjunto de dados não contém 

todos os dados originais da tabela FIPE.

Metadados:

Nome do cam po Descrição

year_of_reference O preço médio corresponde a um 

mês de ano de referência

month_of_reference O preço médio corresponde a um 

mês de referência, ou seja, a FIPE atualiza 

sua tabela mensalmente

fipe_code Código único da FIPE

authentication Código de autenticação único para 

consulta no site da FIPE

brand Marca do carro

model Modelo do carro

fuel Tipo de combustível do carro

gear Tipo de engrenagem do carro

engine_size Tamanho do motor em centímetros 

cúbicos
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year_model Ano do modelo do carro. Pode não 

corresponder ao ano de fabricação

avg_price Preço médio do carro, em reais

Atenção: ao fazer o download da base de dados, selecione o formato .csv. É o formato 

que será considerado correto na resolução do exercício.

1 Análise Exploratória  dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Carregue a base de dados media_precos_carros_brasil.csv
b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o 

problema de valores faltantes
c. Verifique se há dados duplicados nos dados
d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de

informações das variáveis numéricas e categóricas (estatística descritiva dos dados)
e. Imprima a contagem de valores por modelo (model) e marca do carro (brand)
f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados

encontrados na Análise Exploratória dos dados

2 V isualização dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Gere um gráfico da distribuição da quantidade de carros por marca
b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro
c. Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022 

(variável de tempo no eixo X)
d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de 

engrenagem
e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d
f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de 

combustível
g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f

3 Aplicação de m odelos de m achine learning para prever o preço m édio dos carros

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Escolha as variáveis num éricas (modelos de Regressão) para serem as variáveis 
independentes do modelo.A variável target é avg_price. Observação: caso julgue 
necessário, faça a transformação de variáveis categóricas em variáveis numéricas para 
inputar no modelo. Indique quais variáveis foram transformadas e com o foram 
transformadas

b. Crie partições contendo 75% dos dados para treino e 25% para teste
c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca 

XGBRegressor) para predição dos preços dos carros. Observação: caso julgue necessário, 
mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram 
inputados e indique o treinamento de cada modelo

d. Grave os valores preditos em variáveis criadas



e. Realize a análise de importância das variáveis para estimar a variável target, para cada 

modelo treinado.

f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na 

análise de importância de variáveis.

g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R2.

h. Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor 

resultado e a métrica de avaliação utilizada.

B - RESOLUÇÃO 

1 Análise Exploratória dos dados

#1 a)

dados = pd.read_csv(,precos_carros_brasil.csv')

# b)

dados.isna().any()
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#resultado:

#year_of_reference True 

#month_of_reference True 

#fipe_code True

#authentication True

#brand True

#model True

#fuel True

#gear True

#engine_size True

#year_model True

#avg_price_brl True

#dtype: bool
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# Exclusão das colunas com valor faltante 

dados = dados.dropnaC)
# Verificando a alteração 

dados.isna().any()

#resultado

#year_of_reference False 

#month_of_reference False 

#fipe_code False

#authentication False

#brand False

#model False

#fuel False

#gear False

#engine_size False

#year_model False

#avg_price_brl False

#dtype: bool

#c) Valores Duplicados - Verificando

#resultado

#2

dados.duplicated().sum()
# Removendo valores duplicados 

dados.drop_duplicates(inplace=True)

#d) Categorias - categorias numéricas e categóricas

numericas_cols = [col for col in dados.columns if dados[col].dtype != 
'object']
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categoricas_cols = [col for col in dados.columns if dados[col].dtype == 
'object']

# Variáveis numéricas

dadosLnumericas_colsJ .describe()
#Resultado

Tabela 1 -  Resultado das Variáveis Numéricas 

year_of_reference year_model avg_price_brl

coun t 2 02295 .000000  202295 .000000  202295 .000000
m ean 2021 .564695  2011 .271514  52756 .765713
std 0 .571904  6.376241 51628 .912116
min 2021 .000000  2000 .000000  6647 .000000
25%  2021 .000000  2006 .000000  22855 .000000
50%  2022 .000000  2012 .000000  38027 .000000
75%  2022 .000000  2016 .000000  64064 .000000
m ax 2023 .000000  2023 .000000  979358 .000000

Tabela 2 -  Resultado das variáveis categóricas pt1 

month_of_reference fipe_code authentication brand

count 202295 202295 202295 202295
unique 12 2091 202295 6
top January 003281-6 cfzlctzfwrcp Fiat
freq 24260 425 1 44962

Tabela 3 -  Resultado das variáveis categóricas pt2

model fuel gear engine_size
count 202295 202295 202295 202295
unique 2112 3 2 29
top Palio Week. Adv/Adv TRYON 1.8 mpi Flex Gasoline manual 1,6
freq 425 168684 161883 47420

#e)

# Contagem de valores - categoria de 'Model ' 

dados['model'] .value_counts()
#Resultado

#model
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#Palio Week. Adv/Adv TRYON 1.8 mpi Flex 425

#Focus 1.6 S/SE/SE Plus Flex 8V/16V 5p 425

#Focus 2.0 16V/SE/SE Plus Flex 5p Aut. 400

#Saveiro 1.6 Mi/ 1.6 Mi Total Flex 8V 400

#Corvette 5.7/ 6.0, 6.2 Targa/Stingray 375

# ... 

#STEPWAY Zen Flex 1.0 12V Mec. 2

#Saveiro Robust 1.6 Total Flex 16V CD 2

#Saveiro Robust 1.6 Total Flex 16V 2

#Gol Last Edition 1.0 Flex 12V 5p 2

#Polo Track 1.0 Flex 12V 5p 2

#Name: count, Length: 2112, dtype: int64

# Contagem de valores = categoria 'Brand' 

dados['brand'] .value_counts()
#Resultado

#brand

#Fiat 44962

#VW - VolksWagen 44312

#GM - Chevrolet 38590

#Ford 33150

#Renault 29191

#Nissan 12090

#Name: count, dtype: int64

#f

#RESPOSTA: Na análise de modelo, o Focus 1.6 e o Palio week são os
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#carros que foram mais comprados de acordo com a base de dados. Apesar 

^  de juntos o Focus 1.6 e Focus 2.0 serem mais vendidos que o Palio a

^  marca mais vendida é a Fiat, seguida da Volkswagen da GM sendo a

^  terceira mais vendida. Os carros que mais aparecem são os carros a

^  Gasolina e o Manual. A média de preço de todos os carros

^  apresentados na base é de R$52.756,91.

2 Visualização dos dados

a)

b)
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c)

d)

e)

- O s p reços dos  ca rros  com  eng renagem  au tom á tica  são bem  supe rio res  aos de  e n ­

g renagem  m anual.

- A  m arca  R enau lt é a un ica  que  os ca rros  com  e ng renagens  a u tom á ticos  tem  va lo res



25

in fe rio res  ao de  eng renagem  m anua l,sendo  tam bém  a m arca  com  va lo res  m enores 

em  com paração  com  as ou tras  m arcas.

- O s ca rros  da  m arca  Volksw agen tem  os va lo res  m éd ios  m ais caros.

g)

- Os carros a alcool tem o preço médio mais baixo, em todas as marcas, exceto a 

marca Nissan e Renault que não tem carros a alcool.

- O preço médio de todas as marcas tem valores superiores nos carros com combusti- 

vel a Diesel.

- Nos carros à diesel o maior preço médio foi localizado na marca Volkswagen.

3 Aplicação de modelos de machine learning para prever o preço médio dos 

carros

a)

R: Foram escolhidas year of reference, model, fuel, gear, engine size, year model e 

month number para avaliação, as variaveis model, fuel, engine size, gear e year model 

foram transformadas utilizando LabelEncoder

f)
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Mapa de Correlação das Variáveis Num éricas

# Variável X contém apenas variáveis numéricas de interesse para a 

^  análise, excluindo a variável target

X = data_nums.drop(['avg_price_brl'], axis = 1)
# Variável Y contém apenas a variável target - Faixa Salarial 

Y = data_nums['avg_price_brl']
Y .head()
#0 9162.0

#1 8832.0

#2 8388.0

#3 8453.0

#4 12525.0

#Name: avg_price_brl, dtype: float64 

#b)

# Divisão: 25% dos dados são de teste e 75% de treinamento 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 
^  0.25, random_state = 42)
# Observando os dados de treinamento
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print(X_train.shape) 
X_train.head(1) 
#(151721, 7)

year_of_reference model fuel gear

156364 2022 364 1 1

engine_size year_model month_number

10 20 8

year_of_reference model fuel gear

180633 2022 1235 2 1

engine_size year_model month_number

5 15 11

#c)

model_random_florest = RandomForestRegressor()
model_random_florest_with_params = RandomForestRegressor(max_depth=29, 

min_samples_leaf=32, min_samples_split=28, n_estimators=208, 
random_state=43) 

model_xgboost = XGBRegressor() 
model_random_florest.fit(X_train, Y_train) 
model_random_florest_with_params.fit(X_train, Y_train)
#Resultado

#RandomForestRegressor

#RandomForestRegressor(max_depth=29, min_samples_leaf=32,

^  min_samples_split=28,

n_estimators=208, random_state=43)
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model_xgboost.fit(X_train, Y_train)
#Resultado

#XGBRegressor

#XGBRegressor(base_score=None, booster=None,

^  callbacks=None,colsample_bylevel=None, colsample_bynode=None,

^  colsample_bytree=None, device=None, early_stopping_rounds=None,

^  enable_categorical=False, eval_metric=None, feature_types=None,

^  gamma=None, grow_policy=None, importance_type=None,

^  interaction_constraints=None, learning_rate=None, max_bin=None,

^  max_cat_threshold=None, max_cat_to_onehot=None,

^  max_delta_step=None, max_depth=None, max_leaves=None,

^  min_child_weight=None, missing=nan, monotone_constraints=None,

^  multi_strategy=None, n_estimators=None, n_jobs=None,

^  num_parallel_tree=None, random_state=None, ...)

#R: Foram treinados três modelos, RandomFlorest (sem parametros), Random 

^  Florest com utilização de parametros (max deepth, min_samples_leaf,

^  min_samples_split, n_estimators, random_state) e XGBOOST

d)

predicted_values_random_florest = model_random_florest.predict(X_test)
predicted_values_random_florest
#Resultado

#array([ 42417.29, 11120.21, 9043.58, ..., 105895.85, 9401.27,

24422.68])

predicted_values_random_florest_with_params =
model_random_florest_with_params.predict(X_test) 

predicted_values_random_florest_with_params 
#Resultado
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#array([ 45209.77079159, 11414.42517017, 14984.46717642, ...,

103988.1374703 , 14943.40484225, 24046.74051621])

predicted_values_xgboost = model_xgboost.predict(X_test)
predicted_values_xgboost
#Resultado

#array([ 45716.93 , 11505.324, 9243.854, ..., 108816.414, 10348.15

,

23879.635], dtype=float32)

#e)

model_random_florest.feature_importances_ 
feature_importances_random_florest =

pd.DataFrame(model_random_florest.feature_importances_, index = 
X_train.columns, columns= ['importance']).sort_values('importance', 
ascending = False) 

feature_importances_random_florest

Variável Importância

engine_size 0.453158
year_model 0.391178
model 0.070232
gear 0.034472
fuel 0.032931
year_of_reference 0.012318
month_number 0.005711

model_random_florest_with_params.feature_importances_feature_ 
importances_random_florest_with_params = pd.DataFrame(

model_random_florest_with_params.feature_importances_, 
index=X_train.columns,
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columns= ['importance' ]
) .sort_values('importance', ascending = False)

feature_importances_random_florest_with_params

Variável Importância

engine_size 0.469577
year_model 0.411965
model 0.047686
gear 0.022826
fuel 0.035146
year_of_reference 0.010479
month_number 0.002321

model_xgboost.feature_importances_ 
feature_importances_xgboost = pd.DataFrame( 

model_xgboost.feature_importances_, 
index=X_train.columns,
columns= ['importance']).sort_values('importance', ascending=False)

feature_importances_xgboost

Variável Importância

engine_size 0.428532
year_model 0.221430
model 0.030906
gear 0.129561
fuel 0.165807
year_of_reference 0.017530
month_number 0.006233

f)

R: Em todos os modelos engine_size e year_model tiveram maiores valores de impor- 

tancia, tendo seus maiores valores no modelo random forest with params. As demais 

variaveis não obtiveram um valor alto de importancia.
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g)

R: Melhor modelo de avaliação escolhido foi o Random Florest, sem utilização de ne­

nhum parametro.

h)

R: Apesar de a utilização de parametros no modelo RandomFlorest com aumente li­

geiramente a importancia das variaveis. O modelo Random Florest (sem parametros), 

gerou melhores métricas de mse e mae contendo assim menos erros. E teve a maior 

acurácia perante os outros modelos.
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APÊNDICE 3 -  LINGUAGEM R 

A -  ENUNCIADO

1 Pesquisa com Dados de Satélite (Satellite)

O banco de dados consiste nos valores multiespectrais de pixels em vizinhanças 3x3 em uma 

imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é 

prever esta classificação, dados os valores multiespectrais.

Um quadro de imagens do Satélite Landsat com MSS (Multispectral Scanner System) 

consiste em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas 

estão na região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro 

visível) e duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0 

correspondendo a preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x  80m. 

Cada imagem contém 2340 x  3380 desses pixels. O banco de dados é uma subárea (minúscula) de 

uma cena, consistindo de 82 x  100 pixels. Cada linha de dados corresponde a uma vizinhança 

quadrada de pixels 3x3 completamente contida dentro da subárea 82x100. Cada linha contém os 

valores de pixel nas quatro bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na 

vizinhança de 3x3 e um número indicando o rótulo de classificação do pixel central.

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de 

vegetação, solo cinza muito úmido.

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você 

não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro 

valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores 

espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante, 

com os pixels lidos em sequência, da esquerda para a direita e de cima para baixo. Assim, os quatro 

valores espectrais para o pixel central são dados pelos atributos 17, 18, 19 e 20. Se você quiser, pode 

usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando 

uma vizinhança 3x3 atravessa um limite.

O banco de dados se encontra no pacote m lbench e é completo (não possui dados 

faltantes).

Tarefas:

1. Carregue a base de dados Satellite
2. Crie partições contendo 80% para treino e 20% para teste
3. Treine modelos RandomForest, SVM e RNA para predição destes dados.
4. Escolha o melhor modelo com base em suas matrizes de confusão.
5. Indique qual modelo dá o melhor o resultado e a métrica utilizada
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2 Estim ativa de Volum es de Á rvores

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal 

(mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser 

necessário abatê-las.

O processo é feito pela coleta de dados (dados observados) através do abate de algumas 

árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com 

estes dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população.

Os modelos, chamados alométricos, são usados na área há muitos anos e são baseados em 

regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o 

modelo de Spurr é dado por:

Volum e = b0 + b1 * dap2 * Ht

Onde dap é o diâmetro na altura do peito (1,3metros), Ht é a altura total. Tem-se vários 

modelos alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de 

regressão envolve aplicar os dados observados e encontrar b0 e b1 no modelo apresentado, gerando 

assim uma equação que pode ser usada para prever o volume de outras árvores.

Dado o arquivo Volum es.csv, que contém os dados de observação, escolha um modelo de

aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação.

Tarefas

1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv)
2. Eliminar a coluna NR, que só apresenta um número sequencial
3. Criar partição de dados: treinamento 80%, teste 20%
4. Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes

Neurais (neuralnet) e o modelo alométrico de SPURR

■ O modelo alométrico é dado por: Volume = b0 + b1 * dap2 * Ht

alom <- nls(VOL ~ b0 + b1*DAP*DAP*HT, dados, start=list(b0=0.5, b1=0.5))

5. Efetue as predições nos dados de teste
6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados

observados

■ Coeficiente de determinação: R2

http://www.razer.net.br/datasets/Volumes.csv
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onde y,  é o valor observado, y , é o valor predito e y  é a média dos valores y,  observados. 

Quanto mais perto de 1 melhor é o modelo;

■ Erro padrão da estimativa: Syx

Syx%

esta métrica indica porcentagem de erro, portanto quanto mais perto de 0 melhor é o modelo;

7. Escolha o melhor modelo.

esta métrica indica erro, portanto quanto mais perto de 0 melhor é o modelo;
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B - RESOLUÇÃO

1 Pesquisa com Dados de Satélite (Satellite)

1.1. Carregue a base de dados Satellite

data(Satellite) 
summary(Satellite)

1.2. Crie partições contendo 80% para treino e 20% para teste

set.seed(7)
indices <- createDataPartition(Satellite$classes, p=0.80, list=FALSE) 
treino <- Satellite[indices, ] 
teste <- Satellite[-indices, ]

1.3. Treine modelos RandomForest, SVM e RNA para predição destes dados

rf <- caret::train(classes~ ., data=treino, method="rf")
svm <- caret::train(classes~ ., data=treino, method="svmRadial")
rna <- caret::train(classes~ ., data=treino, method="nnet", trace=FALSE)

predict.rf <- predict(rf, teste) 
predict.svm <- predict(svm, teste) 
predict.rna <- predict(rna, teste)

1.4. Escolha o melhor modelo com base em suas matrizes de confusão

#Random Forest

confusionMatrix(predict.rf, teste$classes)

Overall Statistics 
Accuracy : 0.9213 
Kappa : 0.9025
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# SVM

confusionMatrix(predict.svm, teste$classes)

Overall Statistics 
Accuracy : 0.9112 
Kappa : 0.8901

#RNA

confusionMatrix(predict.rna, teste$classes)

Overall Statistics 
Accuracy : 0.5802 
Kappa : 0.4692

1.5. Indique qual modelo dá o melhor o resultado e a métrica utilizada

# O melhor foi o RandomForest que obteve uma acurácia de 0.9213.

2 Estimativa de Volumes de Árvores

2.1 Carregar o arquivo Volumes.csv

df <- read.csv("http://www.razer.net.br/datasets/Volumes.csv", sep=";", 
^  dec=",")

2.2 Eliminar a coluna NR

df$NR <- NULL

2.3 Criar partição de dados

set.seed(7)

http://www.razer.net.br/datasets/Volumes.csv
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indices <- createDataPartition(df$VOL, p=0.80, list=FALSE) 
treino <- df[indices, ] 
teste <- df[-indices, ]

2.4 Treinar os modelos

rf2 <- caret::train(VOL~ ., data=treino, method="rf")
svm2 <- caret::train(VOL~ ., data=treino, method="svmRadial")
rna2 <- caret::train(VOL~ ., data=treino, method="nnet", trace=FALSE)

2.5 Efetuar as predições

predict.rf2 <- predict(rf2, teste) 
predict.svm2 <- predict(svm2, teste) 
predict.rna2 <- predict(rna2, teste) 
predict.alom <- predict(alom, teste)

2.6 Calcular as métricas

# Coeficiente de determinação

coeficienteDeDeterminacao <- function(y_real, y_pred) { 
x <- sum((y_real-y_pred)~2) 
z <- sum((y_real-mean(y_real))~2) 
return (1-(x/z))

}
coeficienteDeDeterminacao(teste$VOL, predict.rf2) # 0.8535647 

coeficienteDeDeterminacao(teste$VOL, predict.svm2) # 0.8484652 

coeficienteDeDeterminacao(teste$VOL, predict.rna2) # - 0.7244946 

coeficienteDeDeterminacao(teste$VOL, predict.alom) # 0.8263134

# Erro padrão da estimativa:

erroPadraoDaEstimativa <- function(y_real, y_pred) {
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x <- sum((y_real-y_pred)~2) 
z <- length(y_real)-2 
return (sqrt(x/z))

}

percentErroPadraoDaEstimativa <- function(y_real, y_pred) {
return (((erroPadraoDaEstimativa(y_real, y_pred)/mean(y_real))*100))

}

erroPadraoDaEstimativa(teste$VOL, predict.rf2) # 0.1445527 

percentErroPadraoDaEstimativa(teste$VOL, predict.rf2) # 11.07658 

erroPadraoDaEstimativa(teste$VOL, predict.svm2) # 0.1470481 

percentErroPadraoDaEstimativa(teste$VOL, predict.svm2) # 11.2678 

erroPadraoDaEstimativa(teste$VOL, predict.rna2) # 0.49606 

percentErroPadraoDaEstimativa(teste$VOL, predict.rna2) # 38.01139 

erroPadraoDaEstimativa(teste$VOL, predict.alom) # 0.1574296 

percentErroPadraoDaEstimativa(teste$VOL, predict.alom) # 12.0633

2.7 Escolha o melhor modelo

# O melhor modelo é o Random Forest em todas as funções, de acordo com o 

critério de melhor modelo.

Tabela 4 -  Comparação dos resultados dos modelos de regressão.

Métrica RF SVM RNA ALOM (Melhor Modelo)

Coeficiente de determinação 
Erro padrão da estimativa 
Porcentagem de erro

0.8535
0.1445
11.07

0.8484
0.1470
11.26

-0.7244
0.4960
38.01

0.8263
0.1574
12.06

Próximo de 1 
Próximo de 0 
Próximo de 0
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APÊNDICE 4 -  ESTATÍSTICA APLICADA I 

A -  ENUNCIADO

1) G ráficos e tabelas

(15 pontos) Elaborar os gráficos box-plot e histograma das variáveis “age” (idade da esposa) 

e “husage” (idade do marido) e comparar os resultados

(15 pontos) Elaborar a tabela de frequencias das variáveis “age” (idade da esposa) e 

“husage” (idade do marido) e comparar os resultados

2) Medidas de posição e dispersão

(15 pontos) Calcular a média, mediana e moda das variáveis “age” (idade da esposa) e 

“husage” (idade do marido) e comparar os resultados

(15 pontos) Calcular a variância, desvio padrão e coeficiente de variação das variáveis “age” 

(idade da esposa) e “husage” (idade do marido) e comparar os resultados

3) Testes param étricos ou não param étricos

(40 pontos) Testar se as médias (se você escolher o teste paramétrico) ou as medianas (se 

você escolher o teste não paramétrico) das variáveis “age” (idade da esposa) e “husage” (idade do 

marido) são iguais, construir os intervalos de confiança e comparar os resultados.

Obs:

Você deve fazer os testes necessários (e mostra-los no documento pdf) para saber se você 

deve usar o unpaired test (paramétrico) ou o teste U de Mann-Whitney (não paramétrico), justifique 

sua resposta sobre a escolha.

Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos testes 

citados no item 1 acima.



B - RESOLUÇÃO 

1. Gráficos e tabelas

a) (15 pontos) Elaborar os gráficos box-plot e histograma das variáveis “age” (idade 
da esposa) e “husage” (idade do marido) e comparar os resultados.

40
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R: Podemos observar que a mediana da idade dos maridos é levemente superior à 
das esposas, os maridos possuem alguns outliers enquanto as esposas não 
possuem e a idade dos maridos ultrapassa os 70 enquanto a das esposas não.
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R: Podemos observar pelo histograma que em idades até 40 anos as esposas 
superam as quantidades de maridos dos 40 anos e idades superiores a quantidade 
de maridos supera as esposas.

b) (15 pontos) Elaborar a tabela de frequencias das variáveis “age” (idade da 
esposa) e “husage” (idade do marido) e comparar os resultados

Idade das esposas

Class limits f rf rf(%) cf cf(%)
[17.82,20.804) 61 0.01 1.08 61 1.08 
[20.804,23.787) 161 0.03 2.86 222 3.94 
[23.787,26.771) 312 0.06 5.54 534 9.48 
[26.771,29.754) 505 0.09 8.96 1039 18.44 
[29.754,32.738) 562 0.10 9.98 1601 28.42 
[32.738,35.721) 571 0.10 10.13 2172 38.55 
[35.721,38.705) 624 0.11 11.08 2796 49.63



43

[38.705,41.689) 510 0.09 9.05 3306 58.68 
[41.689,44.672) 542 0.10 9.62 3848 68.30 
[44.672,47.656) 432 0.08 7.67 4280 75.97 
[47.656,50.639) 389 0.07 6.90 4669 82.87 
[50.639,53.623) 358 0.06 6.35 5027 89.23 
[53.623,56.606) 304 0.05 5.40 5331 94.62 
[56.606,59.59) 303 0.05 5.38 5634 100.00

Idade dos maridos

Class limits f rf rf(%) cf cf(%)
[18.81,23.671) 102 0.02 1.81 102 1.81 
[23.671,28.531) 466 0.08 8.27 568 10.08 
[28.531,33.392) 809 0.14 14.36 1377 24.44 
[33.392,38.253) 895 0.16 15.89 2272 40.33 
[38.253,43.114) 917 0.16 16.28 3189 56.60 
[43.114,47.974) 629 0.11 11.16 3818 67.77 
[47.974,52.835) 649 0.12 11.52 4467 79.29 
[52.835,57.696) 541 0.10 9.60 5008 88.89 
[57.696,62.556) 394 0.07 6.99 5402 95.88 
[62.556,67.417) 152 0.03 2.70 5554 98.58 
[67.417,72.278) 51 0.01 0.91 5605 99.49 
[72.278,77.139) 21 0.00 0.37 5626 99.86 
[77.139,81.999) 6 0.00 0.11 5632 99.96 
[81.999,86.86) 2 0.00 0.04 5634 100.00

Podemos observar que a maior frequência das esposas está entre 35.721 e 38.705, 
enquanto a maior frequência dos maridos está entre 38.253 e 43.114.

2 Medidas de posição e dispersão

a) (15 pontos) Calcular a média, mediana e moda das variáveis “age” (idade da 
esposa) e “husage” (idade do marido) e comparar os resultados

R:

Idade maridos:

Média de idade dos maridos: 42.45296
Mediana da idade dos maridos: 41
Moda da idade dos maridos: 44 (com 201 repetições)

Idade esposas:

Média de idade das esposas: 39.42758 
Mediana da idade das esposas: 39
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Moda de idade das esposas: 37 (com 217 repetições)

A média de idade dos maridos é de 42 anos enquanto a das esposas é de 39 anos, 
sendo a média de idade dos maridos 7% superior a da idade das esposas.
A mediana da idade dos maridos é de 41 anos e das esposas é de 39 anos sendo a 
mediana de idade dos maridos 5% superior a idade das esposas.
A moda de idade dos maridos é de 44 anos enquanto a moda de idade das esposas 
é de 37 anos sendo a moda dos maridos 18% superior.

b) (15 pontos) Calcular a variância, desvio padrão e coeficiente de variação das 
variáveis “age” (idade da esposa) e “husage” (idade do marido) e comparar os 
resultados

R:

Idades maridos:

Variância:126.0717 
Desvio Padrão: 11.22817 
Coef. Variação: 26.44849

Idade esposas:

Variância: 99.75234 
Desvio Padrão: 9.98761 
Coef. Variação: 25.33153

A variância da idade dos maridos é 26.3847% superior do que a das esposas.
O desvio padrão de idade dos maridos é 12.42099% superior ao desvio padrão da 
idade das esposas.
O coeficiente de variação dos maridos é 4,40% superior ao coeficiente de variacao 
das esposas. Tanto o coeficiente de variação dos maridos (26.44849) quanto o das 
esposas (25.33153) possuem uma média dispersão (15% =< CV <= 30%)

3 Testes paramétricos ou não paramétricos

a) (40 pontos) Testar se as médias (se você escolher o teste paramétrico) ou as 
medianas (se você escolher o teste não paramétrico) das variáveis “age” (idade da 
esposa) e “husage” (idade do marido) são iguais, construir os intervalos de confiança 
e comparar os resultados. Obs:

1) Você deve fazer os testes necessários (e mostra-los no documento pdf) para 
saber se você deve usar o unpaired test (paramétrico) ou o teste U de Mann- 
Whitney (não paramétrico), justifique sua resposta sobre a escolha.

2) Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos 
testes citados no item 1 acima.
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R: O teste escolhido foi o de U de Mann-Whitney (não paramétrico), pois ao re­

alizar os testes de normalidade nos dados, foi observado que os dados não possuem 

distribuição normal. 

Os testes realizados foram Shapiro-Wilk utilizando as primeiras 5000 amostras nos 

dados de idades de maridos e de esposas, JarqueBeraTest utilizando parametro ro- 

bust=TRUE e Anderson-Darling Test (ad.tes)

Shapiro-wilk normality test

data: salarios$husage[0: 5000]
W = 0.98151, p-value < 0 . 00000000000000022

> with(salarios, shapiro. test(salarios$age[0:5000])) # p-value < 

^  0.00000000000000022

Shapiro-wilk normality test

data: salarios$age[0:5000]

W = 0.97695, p-value < 0 . 00000000000000022

> JarqueBeraTest(salarios$husage, robust = TRUE) # p-value <

^  0.00000000000000022

Robust Jarque Bera Test

data: salarios$husage
X-squared = 153.12, df = 2 , p-value < 0.00000000000000022

> JarqueBeraTest(salariosSage, robust = TRUE) # p-value <

^  0.00000000000000022

Robust Jarque Bera Test
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data: salarios$age
X-squared = 158.49, df = 2 , p-value < 0.00000000000000022

> ad. test (salarios$husage) # p-value < 0.00000000000000022 

Anderson-Darling normality test

data: salarios$husage
A = 28.176, p-value < 0.00000000000000022

> ad. test(salarios$age) # p-value < 0.00000000000000022 

Anderson-Darling normality test

data: salarios$age
A = 31.828, p-value < 0.00000000000000022 

Intervalo de confiança resultados:

H0: A idade mediana das esposas é igual estatisticamente a idade medianda dos 

maridos 

Ha: A idade mediana das esposas não é estatisticamente igual a idade mediana dos 

maridos

wilcoxon rank sum test with continuity correction 

data: idade by type
W = 13619912, p-value < 0.00000000000000022
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval:
-3.000024 -2.000033 
sample estimates : 
difference in location
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-2.999966

O p-value do teste é 0.00000000000000022, que é menor que o nível de significância 

0,05. Podemos concluir que a idade mediana das esposas é estatisticamente diferente 

da idade mediana dos maridos (rejeitamos H0).

O intervalo de confiança da diferença entre as medianas está entre -3.000024 e - 

2.000033, com uma mediana de -2.999966.

H0: A idade mediana das esposas não é estatisticamente maior que a idade mediana 

dos maridos

Ha: A idade mediana das esposas e estatisticamente maior do que a idade mediana 

dos maridos.

wilcoxon rank sum test with continuity correction

data: idade by type 
W = 13619912, p-value = 1
alternative hypothesis: true location shift is greater than 0 
95 percent confidence interval:
-3.000034
Inf
sample estimates: 
difference in location 
-2.999966

Como p-value > 0.05, aceitamos H0, a idade mediana das esposas não é estatistica­

mente maior do que a idade mediana dos maridos.

H0: A idade mediana das esposas não é estatisticamente menor do que a idade medi­

ana dos maridos

Ha: A idade mediana das esposas e estatisticamente menor do que a idade mediana 

dos maridos

wilcox. test(idade ~ type, data - salarios2,
exact = FALSE, alternative = "less",+ conf. int = TRUE)
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wilcoxon rank sum test with continuity correction 

data: idade by type
W = 13619912, p-value < 0.00000000000000022
alternative hypothesis: true location shift is less than 0
95 percent confidence interval:
-Inf -2.000046 
sample estimates : 
difference in location 
-2.999966

Como p-value < 0.05, rejeitamos H0, sendo, portanto, Ha válida: A idade medi­

ana das esposas é estatisticamente menor do que a idade mediana dos maridos.
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APÊNDICE 5 -  ESTATÍSTICA APLICADA II 

A -  ENUNCIADO

Regressões Ridge, Lasso e ElasticNet

(100 pontos) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente 

“Iwage” (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de 

dados são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No 

pdf você deve colocar a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e 

R2) e concluir qual o melhor modelo entre os três, e mostrar o resultado da predição com intervalos de 

confiança para os seguintes valores:

husage = 40 (anos -  idade do marido)

husunion = 0 (marido não possui união estável)

husearns = 600 (US$ renda do marido por semana)

huseduc =13 (anos de estudo do marido)

husblck = 1 (o marido é preto)

hushisp = 0 (o marido não é hispânico)

hushrs = 40 (horas semanais de trabalho do marido)

kidge6 = 1 (possui filhos maiores de 6 anos)

age = 38 (anos -  idade da esposa)

black = 0 (a esposa não é preta)

educ = 13 (anos de estudo da esposa)

hispanic = 1 (a esposa é hispânica)

union = 0 (esposa não possui união estável)

exper = 18 (anos de experiência de trabalho da esposa)

kidlt6 = 1 (possui filhos menores de 6 anos)

obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto voçê não 

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para 

obter o resultado da predição.
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B - RESOLUÇÃO

Métricas resultados:

RMSE Rsquare
Ridge base de treinos 0.425665 0.2921375
Ridge base de testes 0.5006593 0.259081
Lasso base de treinos 0.426272 0.2901174
Lasso base de testes 0.5009585 0.2581953
Elastic base de treinos 0.4259722 0.2911154
Elastic base de testes 0.500484 0.2595998

Predição e intervalos de confiança:

Valor da predição Intervalor de 
Confiança negativo

Intervalo de 
Confiança Positivo

Regressão Ridge 3.32512 3.30257 3.34767
Regressão Lasso 3.286964 3.264414 3.309514
Regressão Elastic 3.278598 3.256048 3.301147

Conclusão: Os três modelos de regressão possuem métricas bem similares, não 

existindo assim um modelo que seja superior aos demais.
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> library(dplyr)
> library(caret)
> library(glmnet)
>
> load("trabalhosalarios.RData")
>
> dat <- trabalhosalarios
>
> View(dat)
> glimpse(dat)
Rows: 2 ,574 
Columns: 17

> gc()
used (Mb) gc trigger (Mb) max used (Mb)

Ncells 14078688 751.9 24930525 1331.5 24930525 1331.5
Vcells 52489476 400.5 94570028 721.6 94570028 721.6
>
>
> set.seed(302)
>
> index = sample(1 :nrow(dat),0.8*nrow(dat))
>
> train = dat[index,]
> test = dat[-index,]
>
> dim(train)
[1] 2059 17
> dim(test)
[1] 515 17
>
> # Objeto com as variaveis para padronizar
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> cols = c('husage', 'husearns', 'huseduc', 'hushrs',
+ 'age', 'educ', 'exper')
>

> pre_proc_val <- preProcess(train[,cols],
+ method = c("center", "scale"))
>
> train[,cols] = predict(pre_proc_val, train[,cols])
> test[,cols] = predict(pre_proc_val, test[,cols])
>
> summary(train)

husage husunion husearns huseduc
m  husblck hushisp hushrs kidge6

Min. :-2.1039 Min. :0.0000 Min. :-1.7145 Min. :-5.0191
m  Min. :0.00000 Min. :0.00000 Min. :-3.3291 Min. :0.0000
1st Qu.:-0.8087 1st Qu.:0.0000 1st Qu.:-0.6615 1st Qu.:-0.5568
m  1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:-0.1961 1st Qu.:0.0000
Median :-0.1113 Median :0.0000 Median :-0.2166 Median :-0.1849
m  Median :0.00000 Median :0.00000 Median :-0.1961 Median :0.0000
Mean : 0.0000 Mean :0.2205 Mean : 0.0000 Mean : 0.0000
m  Mean :0.06217 Mean :0.04905 Mean : 0.0000 Mean :0.3439
3rd Qu.: 0.6857 3rd Qu.:0.0000 3rd Qu.: 0.4212 3rd Qu.: 0.9306
m  3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.: 0.5871 3rd Qu.:1.0000
Max. : 2.8775 Max. :1.0000 Max. : 3.9006 Max. : 1.6744
m  Max. :1.00000 Max. :1.00000 Max. : 4.4250 Max. :1.0000

earns age black educ
m  hispanic union exper kidlt6

Min. : 5.0 Min. :-2.12418 Min. :0.00000 Min. :-5.6264
m  Min. :0.00000 Min. :0.0000 Min. :-1.89545 Min. :0.0000
1st Qu.: 200.0 1st Qu.:-0.83944 1st Qu.:0.00000 1st Qu.:-0.6265
m  1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:-0.86181 1st Qu.:0.0000
Median : 320.0 Median :-0.09001 Median :0.00000 Median :-0.2098

m  Median :0.00000 Median :0.0000 Median :-0.03489 Median :0.0000
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Mean : 370.7 Mean : 0.00000 Mean :0.06022 Mean : 0.0000
m  Mean :0.05148 Mean :0.1481 Mean : 0.00000 Mean :0.2545
3rd Qu.: 490.0 3rd Qu.: 0.65943 3rd Qu.:0.00000 3rd Qu.: 1.0401
m  3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.: 0.68866 3rd Qu.:1.0000
Max. :2884.5 Max. : 2.26536 Max. :1.00000 Max. : 1.8734
m  Max. :1.00000 Max. :1.0000 Max. : 2.65259 Max. :1.0000

lwage
Min. -0.2231
1st Qu. 1.8458
Median 2.1656
Mean 2.1958
3rd Qu.: 2.5257
Max. : 4.2782

> summary(test)
husage husunion husearns huseduc
m  husblck hushisp hushrs kidge6

Min. :-1.80501 Min. :0.0000 Min. :-1.72343 Min. :-5.0191
m Min. :0.00000 Min. :0.00000 Min. :-3.32913 Min. :0.000
1st Qu.:-0.70910 1st Qu.:0.0000 1st Qu.:-0.72231 1st Qu.:-0.5568 
m  1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:-0.19614 1st Qu.:0.000
Median :-0.01171 Median :0.0000 Median :-0.20173 Median :-0.1849
m  Median :0.00000 Median :0.00000 Median :-0.19614 Median :0.000 
Mean : 0.05078 Mean :0.2272 Mean :-0.03584 Mean :-0.0167
m  Mean :0.07961 Mean :0.06214 Mean :-0.02625 Mean :0.365
3rd Qu.: 0.68568 3rd Qu.:0.0000 3rd Qu.: 0.42118 3rd Qu.: 0.9306
m  3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.: 0.46963 3rd Qu.:1.000
Max. : 2.47898 Max. :1.0000 Max. : 3.90062 Max. : 1.6744
m Max. :1.00000 Max. :1.00000 Max. : 4.42503 Max. :1.000

earns age black educ
m  hispanic union exper kidlt6

Min. : 1.0 Min. :-1.91006 Min. :0.00000 Min. :-5.62636
m Min. :0.00000 Min. :0.0000 Min. :-1.79209 Min. :0.0000
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1st Qu.: 210.0 1st Qu.:-0.73238 1st Qu.:0.00000 1st Qu.:-0.62650 
1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:-0.65508 1st Qu.:0.0000 

Median : 335.0 Median : 0.01706 Median :0.00000 Median :-0.62650
Median :0.00000 Median :0.0000 Median :-0.03489 Median :0.0000

Mean : 372.0 Mean : 0.06404 Mean :0.07767 Mean :-0.09496
^  Mean :0.07184 Mean :0.1379 Mean : 0.08533 Mean :0.2544
3rd Qu.: 479.5 3rd Qu.: 0.76649 3rd Qu.:0.00000 3rd Qu.: 0.62347

3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.: 0.74034 3rd Qu.:1.0000
Max. :1800.0 Max. : 2.26536 Max. :1.00000 Max. : 1.87343
^  Max. :1.00000 Max. :1.0000 Max. : 2.44586 Max. :1.0000

lwage
Min. -3.401
1st Qu. 1.874
Median 2.175
Mean : 2.200
3rd Qu.: 2.526
Max. : 4.234

>
> # variaveis do modelo
> cols_reg = c('husage', 'husunion', 'husearns', 'huseduc', 'husblck',

'hushisp','hushrs', 'kidge6', 'age', 'black', 'educ',
+ 'hispanic','union', 'exper', 'kidlt6', 'lwage')
>
> # geraração de variaveis dummies para organizar os datasets
> #em objetos tipo matriz
>
> fml <- formula(lwage~husage+husunion+husearns+huseduc+husblck+hushisp+ 
+ hushrs+kidge6+age+black+educ+hispanic+union+
+ exper+kidlt6)
>
> dummies <- dummyVars(fml, data = dat[,cols_reg])
>
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> train_dummies = predict(dummies, newdata = train[,cols_reg])
> test_dummies = predict(dummies, newdata = test[,cols_reg])
> print(dim(train_dummies)); print(dim(test_dummies))
[1] 2059 15
[1] 515 15
>
> x = as.matrix(train_dummies)
> y_train = train$lwage
> x_test = as.matrix(test_dummies)
> y_test = test$lwage
>
> # Vamos calcular o R"2 dos valores verdadeiros e
> # preditos conforme a seguinte funcao:
> eval_results <- function(true, predicted, df) {

SSE <- sum((predicted - true)~2)
SST <- sum((true - mean(true))~2)

+ R_square <- 1 - SSE / SST
+ RMSE = sqrt(SSE/nrow(df))
+

+ # As metricas de performace do modelo:

+ data.frame(
+ RMSE = RMSE,

Rsquare = R_square
+ )
+ }
>
> standardize <- function(value, pre_proc_values, column) {

(value-pre_proc_values[["mean"]][[column]])/
pre_proc_values[["std"]][[column]]

+ }
>
> husage = standardize(40, pre_proc_val, "husage")
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> husunion = 0
> husearns = standardize(600, pre_proc_val, "husearns")
> huseduc = standardize(13, pre_proc_val, "huseduc")
> husblck = 1
> hushisp = 0
> hushrs = standardize(40, pre_proc_val, "hushrs")
> kidge6 = 1
> age = standardize(38, pre_proc_val, "age")
> black = 0
> educ = standardize(13, pre_proc_val, "educ")
> hispanic = 1
> union = 0
> exper = standardize(18, pre_proc_val, "exper")
> kidlt6 = 1
>
> # Vamos construir uma matriz de dados para a predicao
>
> dflist <- list(husage=husage,
+ husunion=husunion,
+ husearns=husearns,
+ huseduc=huseduc,
+ husblck=husblck,
+ hushisp=hushisp,
+ hushrs=hushrs,
+ kidge6=kidge6,
+ age=age,
+ black=black,
+ educ=educ,
+ hispanic=hispanic,
+ union=union,
+ exper=exper,
+ kidlt6=kidlt6)
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>
> our_pred = as.matrix(data.frame(args=dflist))
>
> confidence_interval <- function(n, m, s) {
+ dam <- s/sqrt(n)
+ cilwr <- m + (qnorm(0.025))*dam 
+ ciupr <- m - (qnorm(0.025))*dam 
+ ret <- list("lower" = cilwr, "uper" = ciupr)
+ return(ret)
+ }
>
> #############################################################

> # REGRESSÃO RIDGE #

> #############################################################

> # Vamos calcular o valor otimo de lambda;

> lambdas <- 10~seq(2 , -3, by = -.1)
> # Calculando o lambda:

> ridge_lamb <- cv.glmnet(x, y_train, alpha = 0 , lambda = lambdas)
>
> # Vamos ver qual o lambda otimo

> best_lambda_ridge <- ridge_lamb$lambda.min
> best_lambda_ridge 
[1] 0.01584893
>
> # Estimando o modelo Ridge
> ridge_reg = glmnet(x, y_train, nlambda = 25, alpha = 0 ,family =

'gaussian', lambda = best_lambda_ridge)
>
> # Vamos ver o resultado (valores) da estimativa

> # (coeficientes)
> ridge_reg[["beta"]]
15 x 1 sparse Matrix of class dgCMatrix"
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s0
husage -0.0024455313
husunion 0.0006554252
husearns 0.1165514550
huseduc 0.0259588560
husblck 0.1102064740
hushisp 0.0436424524
hushrs -0.0351909179
kidge6 -0.0920898819
age 0.0350734272
black -0.1405975710
educ 0.1655944730
hispanic -0.0057816320
union 0.1850796037
exper -0.0082137149
kidlt6 -0.0215058607
>
> ridge_predictions_train <- predict(ridge_reg, s = best_lambda_ridge,

newx = x)
>
> # As metricas da base de treinamento sao:
> eval_results(y_train, ridge_predictions_train, train)

RMSE Rsquare 
1 0.425665 0.2921375
>
> # Predicao e avaliacao nos dados de teste:
> ridge_predictions_test <- predict(ridge_reg, s = best_lambda_ridge,

newx = x_test)
>
> # As metricas da base de teste sao:
> eval_results(y_test, ridge_predictions_test, test)

RMSE Rsquare
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1 0.5006593 0.259081 
>
> predict_our_ridge <- predict(ridge_reg, s = best_lambda_ridge,
+ newx = our_pred)
> # O resultado da predicao eh:
> predict_our_ridge

s1
[1,] 2.16152
>
> # O resultado eh um valor padronizado, vamos converte-lo

> # para o valor nominal, consistente com o dataset original

> wage_pred_ridge = (predict_our_ridge * sd(dat$lwage)) + mean(dat$lwage)
>
> # O resultado eh:
> wage_pred_ridge

s1
[1,] 3.32512
>
> CI_ridge <- confidence_interval( nrow(train),wage_pred_ridge,
+ sd(dat$lwage))
>
> CI_ridge$lower

s1
[1,] 3.30257
> CI_ridge$uper

s1
[1,] 3.34767

> #############################################################

> # REGRESSAO LASSO #

> ############################################################# 
>
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> # Vamos atribuir alpha = 1 para implementar a regressao
> # lasso
> lasso_lamb <- cv.glmnet(x, y_train, alpha = 1,
+ lambda = lambdas, standardize = TRUE, nfolds = 5)
>
> best_lambda_lasso <- lasso_lamb$lambda.min
> best_lambda_lasso 
[1] 0.006309573
>
> # Vamos estimar o modelo Lasso
> lasso_model <- glmnet(x, y_train, alpha = 1,
+ lambda = best_lambda_lasso,
+ standardize = TRUE)
>
> # Vamos visualizar os coeficientes estimados
> lasso model[["beta"]]
15 x 1 sparse Matrix of class dgCMatrix"

husage
s0

husunion
husearns 0.11644518
huseduc 0.01526450
husblck
hushisp
hushrs -0.03055660
kidge6 -0.07226852
age 0.02377897
black -0.01629025
educ 0.17165821
hispanic
union 0.17389132
exper
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kidlt6 .
>
> lasso_predictions_train <- predict(lasso_model, s = best_lambda_lasso,

newx = x)
>
> # As metricas da base de treinamento sao:
> eval_results(y_train, lasso_predictions_train, train)

RMSE Rsquare 
1 0.426272 0.2901174
>
> # Vamos fazer as predicoes na base de teste
> lasso_predictions_test <- predict(lasso_model, s = best_lambda_lasso,

newx = x_test)
>
> # As metricas da base de teste sao:
> eval_results(y_test, lasso_predictions_test, test)

RMSE Rsquare 
1 0.5009585 0.2581953
>
> # Vamos para a predicao
> predict_our_lasso <- predict(lasso_model, s = best_lambda_lasso, newx =

our_pred)
> predict_our_lasso

s1
[1,] 2.088435
>
> wage_pred_lasso = (predict_our_lasso * sd(dat$lwage)) + mean(dat$lwage)
>
> wage_pred_lasso

s1
[1,] 3.286964
>
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> CI_lasso <- confidence_interval(
+ nrow(train),

wage_pred_lasso,
+ sd(dat$lwage))
>
> # O intervalo de confianca eh:
> CI_lasso$lower

s1
[1,] 3.264414
> CI_lasso$uper

s1
[1,] 3.309514
>
> #############################################################
> # REGRESSAO ELASTICNET #

> ############################################################# 
>
> elastic_predictions_train <- predict(elastic_reg, x)
>
> # As metricas de performance na base de treinamento
> # sao:
> eval_results(y_train, elastic_predictions_train, train)

RMSE Rsquare 
1 0.4259722 0.2911154
>
> # Vamos fazer as predicoes na base de teste
> elastic_predictions_test <- predict(elastic_reg, x_test)
>
> # As metricas de performance na base de teste sao:
> eval_results(y_test, elastic_predictions_test, test)

RMSE Rsquare 
1 0.500484 0.2595998
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>
> predict_our_elastic <- predict(elastic_reg, our_pred)
> predict_our_elastic 
[1] 2.072409
>
> wage_pred_elastic= (predict_our_elastic * sd(dat$lwage)) +

mean(dat$lwage)
> wage_pred_elastic 
[1] 3.278598
>
> CI_elastic <- confidence_interval(
+ nrow(train),

wage_pred_elastic,
+

>
sd(dat $lwage))

> # O intervalo de confianca eh:
> CI_elastic 
[1] 3.256048
> CI_elastic 
[1] 3.301147

lower

$uper

> # O melhor parametro alpha escolhido eh:
> elastic_reg$bestTune

alpha lambda
4 0.378853 0.008377773
>
> # E os parametros sao:
> elastic_reg[["finalModel"]][["beta"]]
15 x 77 sparse Matrix of class dgCMatrix"
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APÊNDICE 6 -  ARQUITETURA DE DADOS

A -  ENUNCIADO

1 C onstrução de Características: Iden tificador autom ático de idioma

O problema consiste em criar um modelo de reconhecimento de padrões que dado um texto 

de entrada, o programa consegue classificar o texto e indicar a língua em que o texto foi escrito.

Parta do exemplo (notebook produzido no Colab) que foi disponibilidade e crie as funções 

para calcular as diferentes características para o problema da identificação da língua do texto de 

entrada.

Nessa atividade é para "construir características".

Meta: a acurácia deverá ser maior ou igual a 70%.

Essa tarefa pode ser feita no Colab (Google) ou no Jupiter, em que deverá exportar o 

notebook e imprimir o notebook para o formato PDF. Envie no UFPR Virtual os dois arquivos.

2 Melhore uma base de dados ruim

Escolha uma base de dados pública para problemas de classificação, disponível ou com 

origem na UCI Machine Learning.

Use o mínimo de intervenção para rodar a SVM e obtenha a matriz de confusão dessa base.

O trabalho começa aqui, escolha as diferentes tarefas discutidas ao longo da disciplina, para 

melhorar essa base de dados, até que consiga efetivamente melhorar o resultado.

Considerando a acurácia para bases de dados balanceadas ou quase balanceadas, se o 

percentual da acurácia original estiver em até 85%, a meta será obter 5%. Para bases com mais de 

90% de acurácia, a meta será obter a melhora em pelo menos 2 pontos percentuais (92% ou mais).

Nessa atividade deverá ser entregue o script aplicado (o notebook e o PDF correspondente).
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B - RESOLUÇÃO

1 Construção de Características: Identificador automático de idioma

[ ]: #
# amostras de texto em diferentes línguas
#
ingles = [
"Hello, how are you?",
"I love to read books.",
"The weather is nice today.",
"Where is the nearest restaurant?",
"What time is it?",
"I enjoy playing soccer.",
"Can you help me with this?",
"I'm going to the movies tonight.",
"This is a beautiful place.",
"I like listening to music.",
"Do you speak English?",
"What is your favorite color?",
"I'm learning to play the guitar.",
"Have a great day!",
"I need to buy some groceries.",
"Let's go for a walk.",
"How was your weekend?",
"I'm excited for the concert.",
"Could you pass me the salt, please?",
"I have a meeting at 2 PM.",
"I'm planning a vacation.",
"She sings beautifully.",
"The cat is sleeping.",
"I want to learn French.",
"I enjoy going to the beach.",
"Where can I find a taxi?",
"I'm sorry for the inconvenience.",
"I'm studying for my exams.",
"I like to cook dinner at home.",
"Do you have any recommendations for restaurants?",
]

espanhol = [
"Hola, ^cómo estás?",
"Me encanta leer libros.",
"El clima está agradable hoy.",
"^Dónde está el restaurante más cercano?",
"iQué hora es?",
"Voy al parque todos los días.",
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"^Puedes ayudarme con esto?",
"Me gustaría ir de vacaciones.",
"Este es mi libro favorito.",
"Me gusta bailar salsa.",
"^Hablas espanol?",
"^Cuál es tu comida favorita?",
"Estoy aprendiendo a tocar el piano.",
"jQue tengas un buen día!",
"Necesito comprar algunas frutas.",
"Vamos a dar un paseo.",
"^Cómo estuvo tu fin de semana?",
"Estoy emocionado por el concierto.",
"^Me pasas la sal, por favor?",
"Tengo una reunión a las 2 PM.",
"Estoy planeando unas vacaciones.",
"Ella canta hermosamente.",
"El perro está jugando.",
"Quiero aprender italiano.",
"Disfruto ir a la playa.",
"^Dónde puedo encontrar un taxi?",
"Lamento las molestias.",
"Estoy estudiando para mis exámenes.",
"Me gusta cocinar la cena en casa.",
"^Tienes alguna recomendación de restaurantes?",
]

portugues = [
"Estou indo para o trabalho agora.",
"Adoro passar tempo com minha família.",
"Preciso comprar leite e pão.",
"Vamos ao cinema no sábado.",
"Gosto de praticar esportes ao ar livre.",
"O trânsito está terrível hoje.",
"A comida estava deliciosa!",
"Você já visitou o Rio de Janeiro?",
"Tenho uma reunião importante amanhã.",
"A festa começa às 20h.",
"Estou cansado depois de um longo dia de trabalho.", 
"Vamos fazer um churrasco no final de semana.",
"O livro que estou lendo é muito interessante.", 
"Estou aprendendo a cozinhar pratos novos.",
"Preciso fazer exercícios físicos regularmente.", 
"Vou viajar para o exterior nas férias.",
"Você gosta de dançar?",
"Hoje é meu aniversário!",
"Gosto de ouvir música clássica.",
"Estou estudando para o vestibular.",
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"Meu time de futebol favorito ganhou o jogo.",
"Quero aprender a tocar violão.",
"Vamos fazer uma viagem de carro.",
"O parque fica cheio aos finais de semana.",
"O filme que assisti ontem foi ótimo.",
"Preciso resolver esse problema o mais rápido possível.", 
"Adoro explorar novos lugares.",
"Vou visitar meus avós no domingo.",
"Estou ansioso para as férias de verão.",
"Gosto de fazer caminhadas na natureza.",
"O restaurante tem uma vista incrível.",
"Vamos sair para jantar no sábado.",
]

A “am ostras” de texto precisa ser “transform ada” em padrões 

Um padrão é um conjunto de características, geralm ente representado por um vetor e um conjunto 
de padrões no formato de tabela. Onde cada linha é um padrão e as colunas as características 
e, geralmente, na últim a coluna a classe

import random

pre_padroes = [] 
for frase in ingles:
pre_padroes.append( [frase, 'inglês'])

for frase in espanhol:
pre_padroes.append( [frase, 'espanhol'])

for frase in portugues:
pre_padroes.append( [frase, 'português'])

#O DataFrame do pandas facilita a visualização.

import pandas as pd
dados = pd.DataFrame(pre_padroes)
dados

[ ]

[ ]
0 Estou aprendendo a cozinhar pratos novos. português
1 Me gusta bailar salsa. espanhol
2 I like listening to music. inglês
3 Meu time de futebol favorito ganhou o jogo. português
4 Adoro explorar novos lugares. português

87 I'm sorry for the inconvenience. inglês
88 Me encanta leer libros. espanhol
89 O parque fica cheio aos finais de semana. português

0 1
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90 Where is the nearest restaurant? inglês
91 Tengo una reunión a las 2 PM. espanhol

[92 rows x 2 columns]

Construção dos atributos - medição das frases e sentença para extrair características e melhorar 
o resultado. A matriz de confusão obtida:

0 1 2 3 4
0 5.833333 3 0 0 português
1 4.500000 0 0 0 espanhol
2 4.200000 0 1 0 inglês
3 4.375000 4 0 0 português
4 6.250000 0 0 0 português

87 4.333333 0 1 0 inglês
88 4.750000 0 0 1 espanhol
89 4.125000 2 0 0 português
90 5.400000 0 3 0 inglês
91 3.142857 0 0 2 espanhol

[92 rows x 5 columns]

Treinando o modelo com SVM  e Separando o conjunto de treinam ento do conjunto de testes 
obtemos:

Acurácia nos dados de treinamento: 95.65%
precision recall f1-score support

espanhol 0.88 1.00 0.94 23
inglês 1.00 1.00 1.00 22

português 1.00 0.88 0.93 24

accuracy 0.96 69
macro avg 0.96 0.96 0.96 69

weighted avg 0.96 0.96 0.96 69

precision

espanhol 0.78
inglês 1.00

português 1.00

accuracy 
macro avg 0.93

weighted avg 0.93

recall f1-score support

1.00 0.88 7
1.00 1.00 8
0.75 0.86 8

0.91 23
0.92 0.91 23
0.91 0.91 23
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Atividade 2 - Melhorar o desempenho de RP em conjunto de dados existentes 
Base de dados

Inflation rate GDP
count 4424.000000 4424.000000
mean 1.228029 0.001969
std 1.382711 2.269935
min -0.800000 -4.060000
25% 0.300000 -1.700000
50% 1.400000 0.320000
75% 2.600000 1.790000
max 3.700000 3.510000

[8 rows x 36 columns]

Tratamento dos dados, Target e Gender removidos
[ ]: X_data = students_dropout.iloc[:,:36]

X_data = X_data.drop(['Gender'], axis=1)

#print(X_data.to_string())

Y = students_dropout['Gender']
Y_orig = students_dropout['Gender']

print(Y.unique())

[1 0]
Gerado uma variável com dados originais e tratados. Após é realizado a normalização.

[ ]: from sklearn.preprocessing import scale
from sklearn.preprocessing import minmax_scale 
import pandas as pd

X= X_data.copy(deep=True)
X_orig = X_data.copy(deep=True)

# normalização min-max 
X = pd.DataFrame( minmax_scale(X) )
X .drop_duplicates()

print(X.head())

0 1 2 3 4 5 6 7 8
0 0.0 0.285714 0.555556 0.013858 1.0 0.0 0.284211 0.0 0.418605
1 0.0 0.250000 0.111111 0.925989 1.0 0.0 0.684211 0.0 0.000000
2 0.0 0.000000 0.555556 0.907512 1.0 0.0 0.284211 0.0 0.837209
3 0.0 0.285714 0.222222 0.978108 1.0 0.0 0.284211 0.0 0.860465

1
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4 0.2 0.678571 0.111111 0.801466 0.0 0.0 0.052632 0.0 0.837209

9 ... 25 26 27 28 29 30 31 32
0 0.255814 ... 0.0 0.0 0.00000 0.000000 0.00 0.000000 0.0 0.372093
1 0.046512 ... 0.0 0.0 0.26087 0.181818 0.30 0.735897 0.0 0.732558
2 0.837209 ... 0.0 0.0 0.26087 0.000000 0.00 0.000000 0.0 0.372093
3 0.837209 ... 0.0 0.0 0.26087 0.303030 0.25 0.667692 0.0 0.209302
4 0.860465 ... 0.0 0.0 0.26087 0.181818 0.30 0.700000 0.0 0.732558

33 34
0 0.488889 0.766182
1 0.111111 0.640687
2 0.488889 0.766182
3 0.000000 0.124174
4 0.111111 0.640687

[5 rows x 35 columns]
[ ]: from sklearn.model_selection import train_test_split 

import numpy as np

Y_orig.reset_index(drop=True)

# com os dados originais
X_oring_train, X_orig_test, y_orig_train, y_orig_test = train_test_split(X_orig,

Y_orig, test_size=0.25, stratify=Y_orig,random_state=10)

# com os dados tratados
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.25,

stratify=Y,random_state=10)

\

Treinamento (SVM).
[ ]: from sklearn import svm

from sklearn.metrics import confusion_matrix 
from sklearn.metrics import classification_report

treinador = svm.SVC() #algoritmo escolhido

modelo_orig = treinador.fit(X_oring_train, y_orig_train)

# predição com os mesmos dados usados para treinar
y_orig_pred = modelo_orig.predict(X_oring_train)
cm_orig_train = confusion_matrix(y_orig_train, y_orig_pred)
print('Matriz de confusão - com os dados ORIGINAIS usados no TREINAMENTO')
print(cm_orig_train)
print(classification_report(y_orig_train, y_orig_pred))

2
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# predição com os mesmos dados usados para testar
print('Matriz de confusão - com os dados ORIGINAIS usados para TESTES') 
y2_orig_pred = modelo_orig.predict(X_orig_test) 
cm_orig_test = confusion_matrix(y_orig_test, y2_orig_pred) 
print(cm_orig_test)
print(classification_report(y_orig_test, y2_orig_pred))

Matriz de confusão - com os dados ORIGINAIS usados no TREINAMENTO
[[2074 77]
[1076 91]]

precision recall f1-score support

0 0.66 0.96 0.78 2151
1 0.54 0.08 0.14 1167

accuracy 0.65 3318
macro avg 0.60 0.52 0.46 3318

weighted avg 0.62 0.65 0.56 3318

Matriz de confusão - com os dados ORIGINAIS usados para TESTES
[[693 24]
[354 35]]

precision recall f1-score support

0 0.66 0.97 0.79 717
1 0.59 0.09 0.16 389

accuracy 0.66 1106
macro avg 0.63 0.53 0.47 1106

weighted avg 0.64 0.66 0.56 1106

Como os dados ficam após os processos de tratamento dos dados?
[ ]: from sklearn import svm

from sklearn.metrics import confusion_matrix 
from sklearn.metrics import classification_report

treinador = svm.SVC() #algoritmo escolhido

modelo = treinador.fit(X_train, y_train)

y_pred = modelo.predict(X_train)
cm_train = confusion_matrix(y_train, y_pred)
print('Matriz de confusão - com os dados TRATADOS usados no TREINAMENTO') 
print(cm_train)
print(classification_report(y_train, y_pred))

3
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print('Matriz de confusão - com os dados TRATADOS usados para TESTES')
y2_pred = modelo.predict(X_test)
cm_test = confusion_matrix(y_test, y2_pred)
print(cm_test)
print(classification_report(y_test, y2_pred))

Matriz de confusão 
[[2019 132]
[ 799 368]]

com os dados TRATADOS usados no TREINAMENTO

precision recall fl-score support

0 0.72 0.94 0.81 2151
1 0.74 0.32 0.44 1167

accuracy 0.72 3318
macro avg 0.73 0.63 0.63 3318

weighted avg 0.72 0.72 0.68 3318

Matriz de confusão - com os dados TRATADOS usados para TESTES 
[[653 64]
[284 105]]

precision recall f1-score support

0 0.70 0.91 0.79 717
1 0.62 0.27 0.38 389

accuracy 0.69 1106
macro avg 0.66 0.59 0.58 1106

weighted avg 0.67 0.69 0.64 1106

4
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APÊNDICE 7 -  APRENDIZADO DE MÁQUINA

A -  ENUNCIADO

Para cada uma das tarefas abaixo (Classificação, Regressão etc.) e cada base de 
dados (Veículo,Diabetes etc.), fazer os experimentos com todas as técnicas 
solicitadas (KNN, RNA etc.) e preencher os quadros com as estatísticas solicitadas, 
bem como os resultados pedidos em cada experimento.

B - RESOLUÇÃO

Seed utilizado: 202490
(Ano atual com 4 dígitos + 2 algarismos do dígito verificador do CPF de um dos 
integrantes)

Especificações:
O trabalho pode ser feito por uma equipe de 1 a 6 integrantes.
Para cada problema, preencher as colunas dos quadros com o que pede. Além 
disso, fazer as solicitações pedidas antes dos quadros.

CLASSIFICAÇÃO

Para o experimento de Classificação:
• Ordenar pela Acurácia (descendente), ou seja, a técnica de melhor 

acurácia ficará em primeiro na tabela.
• Após o quadro colocar:

o Um resultado com 3 linhas com a predição de novos casos para a 
técnica/parâmetro de maior Acurácia (criar um arquivo com novos 
casos à sua escolha) 

o A lista de comandos emitidos no RStudio para conseguir os 
resultados obtidos

Veículo

Técnica Parâmetro Acurácia Matriz de Confusão

RNA -  CV size=31
decay=0,7 0.8263

Prediction bus opel saab van 
bus 42 1 0 1 
opel 0 29 12 0 
saab 0 11 30 1 
van 1 1 1 37

SVM -  Hold- 
out

C=1
Sigma=
0.06828384

0.7784

Prediction bus opel saab van 
bus 42 0 2 1 
opel 0 27 14 0 
saab 0 14 24 1 
van 1 1 3 37

SVM -  CV
C=1
Sigma=
0.06828384

0.7784

Prediction bus opel saab van 
bus 42 0 2 1 
opel 0 27 14 0 
saab 0 14 24 1 
van 1 1 3 37
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RF -  CV mtry=10 0.7246

Prediction bus opel saab van 
bus 42 1 1 0 
opel 0 21 17 1 
saab 1 19 21 1 
van 0 1 4  37

RF -  Hold-out mtry=2 0.7186

Prediction bus opel saab van 
bus 42 0 1 0 
opel 0 22 21 0 
saab 0 17 18 1 
van 1 3 3 38

KNN k=1 0.6647

Prediction bus opel saab van 
bus 33 3 4 4 
opel 0 16 15 1 
saab 6 21 22 1 
van 2 0 0 42

RNA -  Hold- 
out

size=5 
decay=0.1 0.6228

Prediction bus opel saab van 
bus 30 1 6 3 
opel 0 4 1 0 

saab 12 31 34 0 
van 1 6 2 36

Predição Veículos
C cir D R Pr M Sc El Pr M Sc Sc R Sk Sk K K H Pred
o c ci ad A ax at on A ax Va Va a ew e ur ur oll ito
m c R xi L R g xi L rM r G M w tm tM R tipo
P a s R a s R ax m yr ax m ax ax a

R a R ec is ax is ax is is
a ec

t
t is is

85 37 87 15 71 5 15 42 15 14 16 30 1 60 7 15 18 18 bus
8 2 0 9 0 8

5
5 0

11 61 11 23 70 11 31 10 25 15 12 73 3 70 15 8 17 20 saab
5 6 0 0 9 5 0 4

8
9 1

10 51 10 21 67 11 21 33 25 15 22 63 2 74 15 19 18 19 saab
5 7 9 8 7 5 3 2

1
3 7
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#install.packages("caret")

#install.packages("e1071")

#install.packages("mlbennch")

#install.packages("mice") 

library(mlbench) 
library(caret) 
library(mice)

dados <- read.csv("./csvs/6 - Veiculos - Dados.csv", header=T)
dados$a <- NULL
View(dados)
novos_dados <- read.csv("./csvs/6 - Veiculos - NOVOS-CASOS - Dados.csv", 

header=T) 
novos_dados$a <- NULL 
novos_dados$tipo <- NULL 
View(novos_dados)

###########

### KNN ###

###########

set.seed(202490)

ran <- sample(1:nrow(dados), 0.8 * nrow(dados))
knn_train <- dados[ran,]
knn_test <- dados[-ran,]
tuneGrid <- expand.grid(k = c (1,3 ,5 ,7 ,9))

set.seed(202490)

knn <- train(tipo~ ., data=knn_train, method="knn", tuneGrid=tuneGrid) 
knn
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#knn$bestTune$k

predict.knn <- predict(knn, knn_test)
cof <- confusionMatrix(predict.knn, as.factor(knn_test$tipo)) 
accuracy.knn <- cof$overall[[1]]

######################

### SVM Hold-out ###

######################

set.seed(202490)

indices <- createDataPartition(dados$tipo, p=0.80, list=FALSE) 
treino <- dados[indices,] 
teste <- dados[-indices,]

set.seed(202490)

svm <- train(tipo~ ., data=treino, method="svmRadial") 
predicoes.svm <- predict(svm, teste)
cof <- confusionMatrix(predicoes.svm, as.factor(teste$tipo)) 
accuracy.svm_holdout <- cof$overall[[1]]

##############################

### SVM Cross-validation ###

##############################

ctrl <- trainControl(method="cv", number=10)

set.seed(202490)

svmcrossvalidation <- train(tipo~ ., data=treino, method="svmRadial", 
trControl=ctrl)
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svmcrossvalidation
predicoes.crossvalidation <- predict(svmcrossvalidation, teste)
cof <- confusionMatrix(predicoes.crossvalidation, as.factor(teste$tipo))
accuracy.svm_cross <- cof$overall[[1]]

####################

### RNA-Hold-out ###

####################

imp <- mice(dados) 
dados_rna <- complete(imp, 1)

set.seed(202490)

rna_indices <- createDataPartition(dados_rna$tipo, p=0.80, list=FALSE) 
rna_train <- dados_rna[rna_indices,] 
rna_test <- dados_rna[-rna_indices,]

set.seed(202490)

rna <- train(tipo~ ., data=rna_train, method="nnet", trace=FALSE) 
predict.rna <- predict(rna, rna_test)
cof <- confusionMatrix(predict.rna, as.factor(rna_test$tipo)) 
accuracy.rna_holdout <- cof$overall[[1]]

############################

### RNA Cross-validation ###

############################

ctrl <- trainControl(method = "cv", number = 10) 
set.seed(202490)
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rna_crossvalidation <- train(tipo~ ., data=rna_train, 
method="nnet",trace=FALSE, trControl=ctrl) 

predict.rnacrossvalidation <- predict(rna_crossvalidation, rna_test) 
confusionMatrix(predict.rnacrossvalidation, as.factor(rna_test$tipo)) 
grid <- expand.grid(size = seq(from = 1, to = 45, by = 10),decay = 

seq(from = 0.1, to = 0.9, by = 0.3)) 
set.seed(202490)
rna_crossvalidation <- train(form=tipo~ ., data=rna_train, method="nnet", 

tuneGrid=grid, trControl=ctrl, maxit = 2000, trace=FALSE) 
rna_crossvalidation
predict.rnacrossvalidation <- predict(rna_crossvalidation, rna_test) 
cof <- confusionMatrix(predict.rnacrossvalidation, 

as.factor(rna_test$tipo)) 
accuracy.rna_cross <- cof$overall[[1]]
predict.rnacrossvalidation_new <- predict(rna_crossvalidation, 

novos_dados)
result.rnacrossvalidation_new <- cbind(novos_dados, 

predict.rnacrossvalidation_new)
View(result.rnacrossvalidation_new)

#####################

### RF Hold-out ###

#####################

set.seed(202490)
rf <- train(tipo~ ., data=treino, method="rf") 
rf
predicoes.rf <- predict(rf, teste)
cof <- confusionMatrix(predicoes.rf, as.factor(teste$tipo)) 
accuracy.rf_holdout <- cof$overall[[1]]

###############
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### RF CV ### 

###############

ctrl <- trainControl(method = "cv", number = 10) 
set.seed(202490)
rf_cross <- train(tipo~ ., data=treino, method="rf", trControl=ctrl) 
rf_cross
predict.rf_cross <- predict(rf_cross, teste) 
confusionMatrix(predict.rf_cross, as.factor(teste$tipo)) 
tuneGrid = expand.grid(mtry=c (2 , 5 , 7 , 9)) 
set.seed(202490)
rf_cross <- train(tipo~ ., data=treino, method="rf", trControl=ctrl, 
m  tuneGrid=tuneGrid) 
rf_cross
predict.rf_cross <- predict(rf_cross, teste)
cof <- confusionMatrix(predict.rf_cross, as.factor(teste$tipo)) 
cof
accuracy.rf_cross <- cof$overall[[1]]

### Results ###

df <- data.frame(
Tecnica = c ("KNN",

"SVM - Hold-Out",
"SVM - CV",
"RNA - Hold-out",
"RNA - CV",
"RF - Hold-out",
"RF - CV"),

Parametro = c(knn$bestTune$k,
paste("C=", svm$bestTune$C, " ", "Sigma=", 
m  svm$bestTune$sigma, sep=""),



80

paste("C=", svmcrossvalidation$bestTune$C, " ", "Sigma=", 
m  svmcrossvalidation$bestTune$sigma, sep=""), 
m  paste("Size=", rna$bestTune$size, " ", "Decay=", 
m  rna$bestTune$decay, sep=""),
paste("Size=", rna_crossvalidation$bestTune$size, " ", 
m  "Decay=", na_crossvalidation$bestTune$decay, sep=""), 
m  rf$bestTune$mtry, cross$bestTune$mtry),

Acuracia = c(accuracy.knn,
accuracy.svm_holdout,
accuracy.svm_cross,
accuracy.rna_holdout,
accuracy.rna_cross,
accuracy.rf_holdout,
accuracy.rf_cross)

)
df

Diabetes

#install.packages("caret")

#install.packages("e1071")

#install.packages("mlbennch")

#install.packages("mice") 

library(mlbench) 
library(caret) 
library(mice)

dados <- read.csv("./csvs/10 - Diabetes - Dados.csv", header=T)
dados$num <- NULL
View(dados)

novos_dados <- read.csv("./csvs/10 - Diabetes - NOVOS-CASOS - Dados.csv", 
m  header=T)
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novos_dados$num <- NULL 
novos_dados$diabetes <- NULL

View(novos_dados)

###########

### KNN ###

###########

set.seed(202490)

ran <- sample(1:nrow(dados), 0.8 * nrow(dados))
knn_train <- dados[ran,]
knn_test <- dados[-ran,]
tuneGrid <- expand.grid(k = c (1,3 ,5 ,7 ,9))

set.seed(202490)

knn <- train(diabetes~., data=knn_train, method="knn", tuneGrid=tuneGrid) 
knn

#knn$bestTune$k

predict.knn <- predict(knn, knn_test)
cof <- confusionMatrix(predict.knn, as.factor(knn_test$diabetes)) 
cof

accuracy.knn <- cof$overall[[1]]

###################### 

### SVM Hold-out ### 
######################
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set.seed(202490)

indices <- createDataPartition(dados$diabetes, p=0.80, list=FALSE) 
treino <- dados[indices,] 
teste <- dados[-indices,]

set.seed(202490)
svm <- train(diabetes~., data=treino, method="svmRadial") 
svm
predicoes.svm <- predict(svm, teste)
cof <- confusionMatrix(predicoes.svm, as.factor(teste$diabetes)) 
cof
accuracy.svm_holdout <- cof$overall[[1]] 
predict.svm_new <- predict(svm, novos_dados) 
result.svm_new <- cbind(novos_dados, predict.svm_new)
View(result.svm_new)

##############################

### SVM Cross-validation ###

##############################

ctrl <- trainControl(method="cv", number=10) 
set.seed(202490)

svmcrossvalidation <- train(diabetes~ ., data=treino, method="svmRadial", 
trControl=ctrl) 

svmcrossvalidation
predicoes.crossvalidation <- predict(svmcrossvalidation, teste) 
cof <- confusionMatrix(predicoes.crossvalidation, 

as.factor(teste$diabetes))
cof
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accuracy.svm_cross <- cof$overall[[1]]

####################

### RNA-Hold-out ###

####################

imp <- mice(dados) 
dados_rna <- complete(imp, 1)

set.seed(202490)

rna_indices <- createDataPartition(dados_rna$diabetes, p=0.80, 
list=FALSE) 

rna_train <- dados_rna[rna_indices,] 
rna_test <- dados_rna[-rna_indices,]

set.seed(202490)

rna <- train(diabetes~., data=rna_train, method="nnet", trace=FALSE) 
rna
predict.rna <- predict(rna, rna_test)
cof <- confusionMatrix(predict.rna, as.factor(rna_test$diabetes)) 
cof
accuracy.rna_holdout <- cof$overall[[1]]

############################

### RNA Cross-validation ###

############################

ctrl <- trainControl(method = "cv", number = 10)

set.seed(202490)
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rna_crossvalidation <- train(diabetes~., data=rna_train, 
method="nnet",trace=FALSE, trControl=ctrl) 

predict.rnacrossvalidation <- predict(rna_crossvalidation, rna_test) 
confusionMatrix(predict.rnacrossvalidation, as.factor(rna_test$diabetes)) 
grid <- expand.grid(size = seq(from = 1, to = 45, by = 10),decay = 

seq(from = 0.1, to = 0.9, by = 0.3))

set.seed(202490)

rna_crossvalidation <- train(form=diabetes~ ., data=rna_train, 
method="nnet", tuneGrid=grid, trControl=ctrl, maxit = 2000, 
trace= FALSE) 

rna_crossvalidation

predict.rnacrossvalidation <- predict(rna_crossvalidation, rna_test) 
cof <- confusionMatrix(predict.rnacrossvalidation, 

as.factor(rna_test$diabetes))
cof
accuracy.rna_cross <- cof$overall[[1]]

#####################

### RF Hold-out ###

#####################

set.seed(202490)

rf <- train(diabetes~ ., data=treino, method="rf") 
rf
predicoes.rf <- predict(rf, teste)
cof <- confusionMatrix(predicoes.rf, as.factor(teste$diabetes)) 
cof
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accuracy.rf_holdout <- cof$overall[[1]]

###############

### RF CV ###

###############

ctrl <- trainControl(method = "cv", number = 10) 
set.seed(202490)

rf_cross <- train(diabetes~ ., data=treino, method="rf", trControl=ctrl) 
rf_cross
predict.rf_cross <- predict(rf_cross, teste) 
confusionMatrix(predict.rf_cross, as.factor(teste$diabetes))

tuneGrid = expand.grid(mtry=c (2 , 5 , 7 , 9)) 
set.seed(202490)

rf_cross <- train(diabetes~ ., data=treino, method="rf", trControl=ctrl, 
m  tuneGrid=tuneGrid) 
rf_cross

predict.rf_cross <- predict(rf_cross, teste)
cof <- confusionMatrix(predict.rf_cross, as.factor(teste$diabetes)) 
cof

accuracy.rf_cross <- cof$overall[[1]]

### Results ###

df <- data.frame(
Tecnica = c ("KNN",
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Parametro

Acuracia =

)
df

"SVM - Hold-Out",
"SVM - CV",
"RNA - Hold-out",
"RNA - CV",
"RF - Hold-out",
"RF - CV"),

= c(knn$bestTune$k,
paste("C=", svm$bestTune$C, " ", "Sigma=", 
m  svm$bestTune$sigma, sep=""),
paste("C=", svmcrossvalidation$bestTune$C, " ", "Sigma=", 
m  svmcrossvalidation$bestTune$sigma, sep=""), 
paste("Size=", rna$bestTune$size, " ", "Decay=", 
m  rna$bestTune$decay, sep=""),
paste("Size=", rna_crossvalidation$bestTune$size, " ", 
m  "Decay=", rna_crossvalidation$bestTune$decay, 
m  sep=""), 
rf $bestTune$mtry, 
rf_cross$bestTune$mtry), 

c(accuracy.knn,
accuracy.svm_holdout,
accuracy.svm_cross,
accuracy.rna_holdout,
accuracy.rna_cross,
accuracy.rf_holdout,
accuracy.rf_cross)
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Técnica Parâmetro Acurácia Matriz de Confusão

SVM -  Hold-out
C= 0.25 
Sigma= 
0.09755161

0.7516
Prediction neg pos 

neg 93 31 
pos 7 22

SVM -  CV C= 0.5 Sigma= 
0.09755161 0.7451

Prediction neg pos 
neg 91 30 
pos 9 23

RF -  CV mtry=2 0.7451
Prediction neg pos 

neg 90 29 
pos 10 24

RF -  Hold-out mtry=2 0.7255
Prediction neg pos 

neg 89 31 
pos 11 22

RNA -  CV size=11 decay=0.1 0.719
Prediction neg pos 

neg 87 30 
pos 13 23

KNN k=9 0.6883
Prediction neg pos 

neg 85 26 
pos 22 21

RNA -  Hold-out size=1 decay=0.1 0.6471
Prediction neg pos 

neg 96 50 
pos 4 3

Predição Diabetes
pregO
nt

gluco
se

press
ure

tricep
s

insuli
n

mass pedig
ree

age diabet
es

4 200 75 45 0 35.7 0.627 35 pos
5 80 60 0 0 28.1 0.351 25 neg
7 170 65 30 0 22.1 0.562 60 pos

REGRESSÃO

Para o experimento de Regressão:
• Ordenar por R2 descendente, ou seja, a técnica de melhor R2 ficará em 

primeiro na tabela.
• Após o quadro, colocar:

o Um resultado com 3 linhas com a predição de novos casos para a 
técnica/parâmetro de maior R2 (criar um arquivo com novos casos à 
sua escolha)

o O Gráfico de Resíduos para a técnica/parâmetro de maior R2 
o A lista de comandos emitidos no RStudio para conseguir os resultados 

obtidos
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Regressão Admissão

if (!require("caret")) install.packages("caret")
if (!require("Metrics")) install.packages("Metrics")
if (!require("e1071")) install.packages("e1071")
if (!require("mlbench")) install.packages("mlbench")
if (!require("mice")) install.packages("mice")
if (!require("kernlab")) install.packages("kernlab")
if (!require("Fgmutils")) install.packages('Fgmutils')
library(caret)
library(Metrics)
library(e1071)
library(mlbench)
library(mice)
library(kernlab)
library(Fgmutils)

r2 <- function(predicted, watched) {
return(1 - (sum((predicted-watched)~2) / 

sum((watched-mean(watched))~2)))
}
syx <- function(y_real, y_pred) {

return (sqrt(sum((y_real - y_pred)~2) / (length(y_real) -2 )))
}

data <- read.csv("./csvs/9 - Admissao - Dados.csv", header=T) 
View(data)
new_data <- read.csv("./csvs/9 - Admissao - NOVOS-CASOS - Dados.csv", 

header=T) 
new data$ChanceOfAdmit <- NULL

data$num <- NULL
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set.seed(202490)

index <- createDataPartition(data$ChanceOfAdmit, p=0.80, list=FALSE)

data_train <- data[index,] 
data_test <- data[-index,]

###########

### KNN ###

###########

tuneGrid <- expand.grid(k = c (1,3 ,5 ,7 ,9))

knn <- train(ChanceOfAdmit~ ., data=data_test, method="knn", 
tuneGrid=tuneGrid)

knn

predict.knn <- predict(knn, data_test)

result.knn.rmse = rmse(data_test$ChanceOfAdmit, predict.knn) 
result.knn.r2 = r2(predict.knn, data_test$ChanceOfAdmit) 
result.knn.syx = syx(data_test$ChanceOfAdmit, predict.knn) 
result.knn.mae = mae(data_test$ChanceOfAdmit, predict.knn) 
result.knn.pearson = cor(data_test$ChanceOfAdmit, predict.knn, method = 

"pearson")
View(new_data)

predict.knn_new <- predict(knn, new_data)

result.knn_new <- cbind(new_data, predict.knn_new)
View(result.knn new)



90

####################

### RNA-Hold-out ###

####################

rna <- train(ChanceOfAdmit~ ., data=data_train, method="nnet", linout=T , 
m  trace= )
rna

predict.rna <- predict(rna, data_test)

result.rna.rmse = rmse(data_test$ChanceOfAdmit, predict.rna) 
result.rna.r2 = r2(predict.rna, data_test$ChanceOfAdmit) 
result.rna.syx = syx(data_test$ChanceOfAdmit, predict.rna) 
result.rna.mae = mae(data_test$ChanceOfAdmit, predict.rna) 
result.rna.pearson = cor(data_test$ChanceOfAdmit, predict.rna, method = 
m  "pearson")

predict.rna_new <- predict(rna, new_data) 
result.rna_new <- cbind(new_data, predict.rna_new)
View(result.rna_new)

############################

### RNA Cross-validation ###

############################

control <- trainControl(method = "cv", number = 10)
tuneGrid <- expand.grid(size = seq(from = 1, to = 10, by = 1), decay = 
m  seq(from = 0.1, to = 0.9, by = 0.3))

rna_cv <- train(ChanceOfAdmit~., 
data=data_train, 
method="nnet",
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trainControl=control,
tuneGrid=tuneGrid,
linout=T ,
MaxNWts=10000, 
maxit=2000, 
trace=F)

rna_cv

predict.rna_cv <- predict(rna_cv, data_test)
result.rna_cv.rmse = rmse(data_test$ChanceOfAdmit, predict.rna_cv) 
result.rna_cv.r2 = r2(predict.rna_cv, data_test$ChanceOfAdmit) 
result.rna_cv.syx = syx(data_test$ChanceOfAdmit, predict.rna_cv) 
result.rna_cv.mae = mae(data_test$ChanceOfAdmit, predict.rna_cv) 
result.rna_cv.pearson = cor(data_test$ChanceOfAdmit, predict.rna_cv, 

method = "pearson")

predict.rna_cv_new <- predict(rna_cv, new_data) 
result.rna_cv_new <- cbind(new_data, predict.rna_cv_new)
View(result.rna_cv_new)

res <- resid(rna_cv) 
res

plot(fitted(rna_cv), res, xlab="Chance Of Admit") 
abline(0,0)

######################

### SVM Hold-out ###

######################

svm <- train(ChanceOfAdmit~ ., data=data_train, method = "svmRadial") 
svm
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predict.svm <- predict(svm, data_test)

result.svm.rmse = rmse(data_test$ChanceOfAdmit, predict.svm) 
result.svm.r2 = r2(predict.svm, data_test$ChanceOfAdmit) 
result.svm.syx = syx(data_test$ChanceOfAdmit, predict.svm) 
result.svm.mae = mae(data_test$ChanceOfAdmit, predict.svm) 
result.svm.pearson = cor(data_test$ChanceOfAdmit, predict.svm, method = 
m  "pearson")

##############################

### SVM Cross-validation ###

##############################

ctrl <- trainControl(method = "cv", number = 10)

svm_cv <- train(ChanceOfAdmit~., data=data_train, method="svmRadial", 
m  trControl=ctrl) 
svm_cv

predict.svm_cv <- predict(svm_cv, data_test)

rmse(data_test$ChanceOfAdmit, predict.svm_cv) 
r2(predict.svm_cv, data_test$ChanceOfAdmit) 
syx(data_test$ChanceOfAdmit, predict.svm_cv) 
mae(data_test$ChanceOfAdmit, predict.svm_cv)
cor(data_test$ChanceOfAdmit, predict.svm_cv, method = "pearson") 

###############################################

tuneGrid = expand.grid(C=c (1, 2 , 10, 50, 100), sigma=c(.01, .015, 0.2))
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svm_sigma <- train(ChanceOfAdmit~ ., data=data_train, method="svmRadial",
m  trControl=ctrl, tuneGrid=tuneGrid)
svm_sigma

predict.svm_sigma <- predict(svm_sigma, data_test)
result.svm_sigma.rmse = rmse(data_test$ChanceOfAdmit, predict.svm_sigma) 
result.svm_sigma.r2 = r2(predict.svm_sigma, data_test$ChanceOfAdmit) 
result.svm_sigma.syx = syx(data_test$ChanceOfAdmit, predict.svm_sigma) 
result.svm_sigma.mae = mae(data_test$ChanceOfAdmit, predict.svm_sigma) 
result.svm_sigma.pearson = cor(data_test$ChanceOfAdmit, 
m  predict.svm_sigma, method = "pearson")

predict.new_svm_sigma <- predict(svm_sigma, new_data) 
result.svm_sigma_new <- cbind(new_data, predict.new_svm_sigma) 
View(result.svm_sigma_new)

#####################

### RF Hold-out ###

#####################

rf <- train(ChanceOfAdmit~ ., data=data_train, method="rf") 
rf

predict.rf <- predict(rf, data_test)

result.rf.rmse = rmse(data_test$ChanceOfAdmit, predict.rf) 
result.rf.r2 = r2(predict.rf, data_test$ChanceOfAdmit) 
result.rf.syx = syx(data_test$ChanceOfAdmit, predict.rf) 
result.rf.mae = mae(data_test$ChanceOfAdmit, predict.rf) 
result.rf.pearson = cor(data_test$ChanceOfAdmit, predict.rf, method = 
m  "pearson")

set.seed(1912)
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###############

### RF CV ###

###############

ctrl <- trainControl(method = "cv", number = 10)

rf_cv <- train(ChanceOfAdmit~ ., data=data_train, method="rf", 
trControl=ctrl) 

rf_cv

predict.rf_cv <- predict(rf_cv, data_test)

rmse(data_test$ChanceOfAdmit, predict.rf_cv) 
r2(predict.rf_cv, data_test$ChanceOfAdmit) 
syx(data_test$ChanceOfAdmit, predict.rf_cv) 
mae(data_test$ChanceOfAdmit, predict.rf_cv)
cor(data_test$ChanceOfAdmit, predict.rf_cv, method = "pearson")

###############################################

tuneGrid = expand.grid(mtry=c (2 , 5 , 7 , 9))

rf_mtry <- train(ChanceOfAdmit~ ., data=data_train, method="rf", 
trControl=ctrl, tuneGrid=tuneGrid) 

rf_mtry

predict.rf_mtry <- predict(rf_mtry, data_test)

result.rf_mtry.rmse = rmse(data_test$ChanceOfAdmit, predict.rf_mtry) 
result.rf_mtry.r2 = r2(predict.rf_mtry, data_test$ChanceOfAdmit) 
result.rf_mtry.syx = syx(data_test$ChanceOfAdmit, predict.rf_mtry)
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result.rf_mtry.mae = mae(data_test$ChanceOfAdmit, predict.rf_mtry) 
result.rf_mtry.pearson = cor(data_test$ChanceOfAdmit, predict.rf_mtry, 
m  method = "pearson")

predict.new_rf_mtry <- predict(rf_mtry, new_data) 
result.rf_mtry_new <- cbind(new_data, predict.new_rf_mtry)
View(result.rf_mtry_new)

df <- data.frame(
Tecnica = c ("KNN",

"RNA - Hold-out",
"RNA - CV",
"SVM - Hold-Out",
"SVM - CV",
"RF - Hold-out",
"RF - CV"),

Parametro = c(knn$bestTune$k,
paste("Size=", rna$bestTune$size, " ", "Decay=", 
m  rna$bestTune$decay, sep=""),
paste("Size=", rna_cv$bestTune$size, " ", "Decay=", 
m  rna_cv$bestTune$decay, sep=""), 
paste("C=", svm$bestTune$C, " ", "Sigma=", 
m  svm$bestTune$sigma, sep=""), 
paste("C=", svm_sigma$bestTune$C, " ", "Sigma=", 
m  svm_sigma$bestTune$sigma, sep=""), 
rf $bestTune$mtry, 
rf_mtry$bestTune$mtry),

R2 = c(result.knn.r2, 
result.rna.r2, 
result.rna_cv.r2, 
result.svm.r2, 
result.svm_sigma.r2,
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result.rf.r2,
result.rf_mtry.r2),

SYX = c (result.knn.syx, 
result.rna.syx, 
result.rna_cv.syx, 
result.svm.syx, 
result.svm_sigma.syx, 
result.rf.syx, 
result.rf_mtry.syx),

Pearson = c (result.knn.pearson, 
result.rna.pearson, 
result.rna_cv.pearson, 
result.svm.pearson, 
result.svm_sigma.pearson, 
result.rf.pearson, 
result.rf_mtry.pearson), 

RMSE = c (result.knn.rmse, 
result.rna.rmse, 
result.rna_cv.rmse, 
result.svm.rmse, 
result.svm_sigma.rmse, 
result.rf.rmse, 
result.rf_mtry.rmse),

MAE = c (result.knn.mae, 
result.rna.mae, 
result.rna_cv.mae, 
result.svm.mae, 
result.svm_sigma.mae, 
result.rf.mae, 
result.rf_mtry.mae)

)
df
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Regressão de Biomassa

if (!require("caret")) install.packages("caret") 
if (!require("Metrics")) install.packages("Metrics") 
if (!require("e1071")) install.packages("e1071") 
if (!require("mlbench")) install.packages("mlbench") 
if (!require("mice")) install.packages("mice") 
if (!require("kernlab")) install.packages("kernlab")

library(caret) 
library(Metrics) 
library(e1071) 
library(mlbench) 
library(mice) 
library(kernlab)

r2 <- function(predicted, watched) {
return(1 - (sum((predicted-watched)~2) / 
m  sum((watched-mean(watched))~2)))

}

syx <- function(y_real, y_pred) {
return (sqrt(sum((y_real - y_pred)~2) / (length(y_real) -2 )))

}

#mae <- function(y_real, y_pred) {

# return (1 / length(y_real) * (sum(y_real - y_pred)))

#}

#cor.test(iris$Sepal.Length, iris$Petal.Length, method = "pearson")

data <- read.csv("./csvs/5 - Biomassa - Dados.csv", header=T) 
View(data)
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new_data <- read.csv("./csvs/5 - Biomassa - NOVOS-CASOS - Dados.csv", 
header=T) 

new_data$biomassa <- NULL

set.seed(202490)

index <- createDataPartition(data$biomassa, p=0.80, list=FALSE)

data_train <- data[index,] 
data_test <- data[-index,]

###########

### KNN ###

###########

tuneGrid <- expand.grid(k = c (1,3 ,5 ,7 ,9))

knn <- train(biomassa~., data=data_test, method="knn", tuneGrid=tuneGrid) 
knn

predict.knn <- predict(knn, data_test)

result.knn.rmse = rmse(data_test$biomassa, predict.knn) 
result.knn.r2 = r2(predict.knn, data_test$biomassa) 
result.knn.syx = syx(data_test$biomassa, predict.knn) 
result.knn.mae = mae(data_test$biomassa, predict.knn) 
result.knn.pearson = cor(data_test$biomassa, predict.knn, method = 

"pearson")

View(new_data)
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predict.knn_new <- predict(knn, new_data)

result.knn_new <- cbind(new_data, predict.knn_new)
View(result.knn_new)

####################

### RNA-Hold-out ###

####################

rna <- train(biomassa~., data=data_train, method="nnet", linout=T , 
m  trace= ) 
rna

predict.rna <- predict(rna, data_test)

result.rna.rmse = rmse(data_test$biomassa, predict.rna) 
result.rna.r2 = r2(predict.rna, data_test$biomassa) 
result.rna.syx = syx(data_test$biomassa, predict.rna) 
result.rna.mae = mae(data_test$biomassa, predict.rna) 
result.rna.pearson = cor(data_test$biomassa, predict.rna, method = 
m  "pearson")

predict.rna_new <- predict(rna, new_data) 
result.rna_new <- cbind(new_data, predict.rna_new)
View(result.rna_new)

############################

### RNA Cross-validation ###

############################

control <- trainControl(method = "cv", number = 10)
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tuneGrid <- expand.grid(size = seq(from = 1, to = 10, by = 1), decay = 
m  seq(from = 0.1, to = 0.9, by = 0.3))

rna_cv <- train(biomassa~ .,
data=data_train, 
method="nnet", 
trainControl=control, 
tuneGrid=tuneGrid, 
linout=T ,
MaxNWts=10000, 
maxit=2000, 
trace=F)

rna_cv

predict.rna_cv <- predict(rna_cv, data_test)

result.rna_cv.rmse = rmse(data_test$biomassa, predict.rna_cv) 
result.rna_cv.r2 = r2(predict.rna_cv, data_test$biomassa) 
result.rna_cv.syx = syx(data_test$biomassa, predict.rna_cv) 
result.rna_cv.mae = mae(data_test$biomassa, predict.rna_cv) 
result.rna_cv.pearson = cor(data_test$biomassa, predict.rna_cv, method = 
m  "pearson")

predict.rna_cv_new <- predict(rna_cv, new_data) 
result.rna_cv_new <- cbind(new_data, predict.rna_cv_new)
View(result.rna_cv_new)

######################

### SVM Hold-out ###

######################

svm <- train(biomassa~., data=data_train, method = "svmRadial")



101

svm

predict.svm <- predict(svm, data_test)

result.svm.rmse = rmse(data_test$biomassa, predict.svm) 
result.svm.r2 = r2(predict.svm, data_test$biomassa) 
result.svm.syx = syx(data_test$biomassa, predict.svm) 
result.svm.mae = mae(data_test$biomassa, predict.svm) 
result.svm.pearson = cor(data_test$biomassa, predict.svm, method = 

"pearson")

##############################

### SVM Cross-validation ###

##############################

ctrl <- trainControl(method = "cv", number = 10)

svm_cv <- train(biomassa~ ., data=data_train, method="svmRadial", 
trControl=ctrl) 

svm_cv

predict.svm_cv <- predict(svm_cv, data_test)

rmse(data_test$biomassa, predict.svm_cv) 
r2(predict.svm_cv, data_test$biomassa) 
syx(data_test$biomassa, predict.svm_cv) 
mae(data_test$biomassa, predict.svm_cv)
cor(data_test$biomassa, predict.svm_cv, method = "pearson")

###############################################
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tuneGrid = expand.grid(C=c (1, 2 , 10, 50, 100), sigma=c(.01, .015, 0.2)) 

set.seed(1912)
svm_sigma <- train(biomassa~ ., data=data_train, method="svmRadial", 

trControl=ctrl, tuneGrid=tuneGrid) 
svm_sigma
predict.svm_sigma <- predict(svm_sigma, data_test) 
result.svm_sigma.rmse = rmse(data_test$biomassa, predict.svm_sigma) 
result.svm_sigma.r2 = r2(predict.svm_sigma, data_test$biomassa) 
result.svm_sigma.syx = syx(data_test$biomassa, predict.svm_sigma) 
result.svm_sigma.mae = mae(data_test$biomassa, predict.svm_sigma) 
result.svm_sigma.pearson = cor(data_test$biomassa, predict.svm_sigma, 

method = "pearson") 
predict.new_svm_sigma <- predict(svm_sigma, new_data) 
result.svm_sigma_new <- cbind(new_data, predict.new_svm_sigma) 
View(result.svm_sigma_new)
res <- ((data_test$biomassa - predict.svm_sigma)/data_test$biomassa) *100 
res
plot(data_test$biomassa, res, xlab="Biomassa") 
abline(0,0)

#####################

### RF Hold-out ###

#####################

rf <- train(biomassa~ ., data=data_train, method="rf") 
rf
predict.rf <- predict(rf, data_test) 
result.rf.rmse = rmse(data_test$biomassa, predict.rf) 
result.rf.r2 = r2(predict.rf, data_test$biomassa) 
result.rf.syx = syx(data_test$biomassa, predict.rf) 
result.rf.mae = mae(data_test$biomassa, predict.rf)
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result.rf.pearson = cor(data_test$biomassa, predict.rf, method = 
m  "pearson")

###############

### RF CV ###

###############

ctrl <- trainControl(method = "cv", number = 10)
rf_cv <- train(biomassa~ ., data=data_train, method="rf", trControl=ctrl) 
rf_cv
predict.rf_cv <- predict(rf_cv, data_test) 
rmse(data_test$biomassa, predict.rf_cv) 
r2(predict.rf_cv, data_test$biomassa) 
syx(data_test$biomassa, predict.rf_cv) 
mae(data_test$biomassa, predict.rf_cv)
cor(data_test$biomassa, predict.rf_cv, method = "pearson")

###############################################

tuneGrid = expand.grid(mtry=c (2 , 5 , 7 , 9)) 
rf_mtry <- train(biomassa~ ., data=data_train, method="rf", 
m  trControl=ctrl, tuneGrid=tuneGrid) 
rf_mtry
predict.rf_mtry <- predict(rf_mtry, data_test)

result.rf_mtry.rmse = rmse(data_test$biomassa, predict.rf_mtry) 
result.rf_mtry.r2 = r2(predict.rf_mtry, data_test$biomassa) 
result.rf_mtry.syx = syx(data_test$biomassa, predict.rf_mtry) 
result.rf_mtry.mae = mae(data_test$biomassa, predict.rf_mtry) 
result.rf_mtry.pearson = cor(data_test$biomassa, predict.rf_mtry, method 
m  = "pearson")
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predict.new_rf_mtry <- predict(rf_mtry, new_data) 
result.rf_mtry_new <- cbind(new_data, predict.new_rf_mtry)
View(result.rf_mtry_new)

df <- data.frame(
Tecnica = c ("KNN",

"RNA - Hold-out",
"RNA - CV",
"SVM - Hold-Out",
"SVM - CV",
"RF - Hold-out",
"RF - CV"),

Parametro = c(knn$bestTune$k,
paste("Size=", rna$bestTune$size, " ", "Decay=", 
m  rna$bestTune$decay, sep=""),
paste("Size=", rna_cv$bestTune$size, " ", "Decay=", 
m  rna_cv$bestTune$decay, sep=""), 
paste("C=", svm$bestTune$C, " ", "Sigma=", 
m  svm$bestTune$sigma, sep=""), 
paste("C=", svm_sigma$bestTune$C, " ", "Sigma=", 
m  svm_sigma$bestTune$sigma, sep=""), 
rf $bestTune$mtry, 
rf_mtry$bestTune$mtry),

R2 = c(result.knn.r2, 
result.rna.r2, 
result.rna_cv.r2, 
result.svm.r2, 
result.svm_sigma.r2, 
result.rf.r2, 
result.rf_mtry.r2),

SYX = c (result.knn.syx, 
result.rna.syx,
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result.rna_cv.syx,
result.svm.syx,
result.svm_sigma.syx,
result.rf.syx,
result.rf_mtry.syx),

Pearson = c (result.knn.pearson, 
result.rna.pearson, 
result.rna_cv.pearson, 
result.svm.pearson, 
result.svm_sigma.pearson, 
result.rf.pearson, 
result.rf_mtry.pearson), 

RMSE = c (result.knn.rmse, 
result.rna.rmse, 
result.rna_cv.rmse, 
result.svm.rmse, 
result.svm_sigma.rmse, 
result.rf.rmse, 
result.rf_mtry.rmse),

MAE = c (result.knn.mae, 
result.rna.mae, 
result.rna_cv.mae, 
result.svm.mae, 
result.svm_sigma.mae, 
result.rf.mae, 
result.rf_mtry.mae)

)
df
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Admissão
Técnic

a
Parâmetr

o
R2 Syx Pearson Rmse MAE

RNA -  
CV

size=10
decay=0.
1

0.837062
8

0.0541933
1

0.917980
4

0.0536374
7

0.0401110
6

RF -  
CV

mtry=2 0.827720
2

0.0557253
5

0.91234 0.0551537
9

0.0388954
3

SVM -
Hold-
out

C=0.5
Sigma=
0.173088
3

0.825123
4

0.0561437
5

0.909074 0.0555679
1

0.0397701
5

RNA -
Hold-
out

size=5
decay=0.
1

0.824209
9

0.0562901
9

0.911021
1

0.0557128
4

0.0416485
6

RF -  
Hold- 
out

mtry=2 0.823433
2

0.0564144
2

0.910303
5

0.0558358 0.0398984
3

i> 
>

 
CO 

o C= 1 
Sigma= 
0.171058 
5

0.822460
1

0.0565696
5

0.907076
3

0.0559894
4

0.0394027
2

KNN K=7 0.777649
9

0.0633073
7

0.882363
5

0.0626580
5

0.0488338
2

Gráfico de resíduos
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Predição Admissão
GRE
Score

TOEFLSc
ore

Univers
ity
Rating

SOP LOR CGPA Resear
ch

Predict
ed
Chance
OfAdmi
t

300 108 3 3.5 3.5 7.77 0 0.60334
19

354 119 4 5.0 4.5 7.50 1 0.65365
53

200 120 5 5.0 5.0 8.00 1 0.67583
79

Biomassa
Técnica Parâmetro R2 Syx Pearson Rmse MAE

i> 
>

 
co 

o C=50
Sigma=0.01

0.8822678 855.3966 0.9894328 841.0192 189.6646

RNA -  
Hold-out

size=5
decay=0.1

0.7580049 1226.3749 0.9898464 1205.7621 291.6157

RNA -  
CV

size=7
decay=0.4

0.7019301 1361.0656 0.9671596 1338.1889 256.3490

KNN K=3 0.6902221 1387.5390 0.9560010 1364.2173 260.6396
RF -  
Hold-out

mtry=2 0.6590796 1455.6148 0.9586842 1431.1490 258.2948

RF -  CV mtry=2 0.6515169 1471.6714 0.9533632 1446.9357 260.0076

-t—»
l 

o
 ̂

2
 

> 
o 

CO 
X ii

¥ 
,g>S

O 
co 

d
0.1290280 2326.6020 0.4455273 2287.4966 406.4971

Prediçãio Biomassa
dap h Me Predicted

biomassa
6.6 7.5 2.00 546.69398

5.3 7.5 0.50 69.04666

17.5 17.5 1.04 310.29891
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Gráfico de resíduos

AGRUPAMENTO 

Veículo

Lista de C lusters gerados:

10 p rim e iras  linhas do a rqu ivo  com  o c luster correspondente .
Usa 10 clusters no experim en to .
Colocar a lista de com andos em itidos  no RStudio para conseguir os resultados obtidos

> library(klaR)
> dados <- read.csv("C:/Users/prisc/Downloads/Pós IAA/Aprendizado de 
Maquina/6 - Veiculos - Dados.csv", header=T)
> View(dados)
> dados$a <- NULL
> set.seed(2 02 4 90)
> cluster.results <- kmodes(dados, 10, iter.max = 10, weighted = FALSE) 
Warning message:
In kmodes(dados, 10, iter.max = 10, weighted = FALSE) :

data has numeric coloumns with more than 30 different levels!
> cluster.results

K-modes clustering with 10 clusters of sizes 109, 68, 66, 104, 100, 79, 
114, 76, 68, 62

Cluster modes:
Comp Circ DCirc RadRa PrAxisRa MaxLRa ScatRa Elong PrAxisRect 

MaxLRect ScVarMaxis ScVarmaxis RaGyr
1 85 43 68 120 54 7 150 46 19
145 169 341 171
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2 89 47 85 162 64 11 157 43 20
160 173 354 186
3 90 38 75 169 68 6 161 41 20
131 184 388 137
4 107 54 103 197 62 11 220 31 24
162 229 635 214
5 104 52 101 197 64 10 208 31 24
161 228 706 218
6 89 42 66 155 64 7 149 45 19
144 167 327 158
7 86 37 66 150 59 7 133 50 18
127 159 246 145
8 86 39 72 140 56 7 151 44 19
134 170 339 139
9 100 51 104 201 67 10 201 32 23
158 214 307 186
10 91 46 76 176 63 9 157 40 20
148 181 373 151

SkewMaxis Skewmaxis Kurtmaxis :KurtMaxis HollRa tipo
1 85 4 14 180 184 bus
2 75 1 9 183 195 van
3 71 1 6 200 204 bus
4 70 0 11 189 199 saab
5 74 0 6 187 197 opel
6 72 1 13 188 201 saab
7 64 1 7 186 183 van
8 80 0 21 183 187 opel
9 72 5 11 192 196 bus
10 67 0 10 192 198 opel

Clustering vector:
[1] 5 6 9 10 6 3 3 7 7 4 7 3 3 6 3 9 2 9 5 5 2 7

1 9 9 6 7 4 3 6 2 6 7 5
[35] 10 10 1 8 5 8 9 7 2 10 4 2 7 1 2 10 6 4 5 9 1 7

4 2 4 7 5 8 7 6 9 8 1 5
[69] 1 1 5 5 10 7 8 10 6 8 5 1 8 4 7 8 1 3 6 7 3 7

4 3 5 2 1 5 6 1 10 1 6 6
[103] 7 3 1 4 5 8 1 3 1 2 8 8 1 2 9 6 1 9 7 2 6 2
9 2 6 6 2 9 9 6 6 7 5 2
[137] 2 7 7 4 10 1 5 1 10 10 2 9 6 7 5 1 8 5 1 1 6 7
8 8 7 5 10 7 5 4 6 4 1 7
[171] 4 4 1 5 2 3 8 1 3 7 4 3 1 8 4 9 3 10 5 10 10 4
6 1 10 1 4 8 1 1
[ reached getOption("max.print") -- omitted 646 entries ]

Within cluster simple-matching distance by cluster:
[1] 1652 1012 1032 1563 1526 1266 1829 1195 1056 980

Available components:
[1] "cluster" "size" "modes" "withindiff" "iterations"
"weighted"

> resultado <- cbind(dados, cluster.results$cluster)
> options(max.print =200)
> resultado

Comp Circ DCirc RadRa PrAxisRa MaxLRa ScatRa Elong
1 95 48 83 178 72 10 162 42
2 91 41 84 141 57 9 149 45
3 104 50 106 209 66 10 2 07 32
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4 93 41 82 159 63 9 144 46
5 85 44 70 205 103 52 149 45
6 107 57 106 172 50 6 255 26
7 97 43 73 173 65 6 153 42
8 90 43 66 157 65 9 137 48
9 86 34 62 140 61 7 122 54
10 93 44 98 197 62 11 183 36

PrAxisRect MaxLRect ScVarMaxis ScVarmaxis RaGyr
1 20 159 17 6 379 184
2 19 143 17 0 330 158
3 23 158 223 635 220
4 19 143 160 309 127
5 19 144 241 325 188
6 28 169 280 957 2 64
7 19 143 17 6 361 172
8 18 146 162 281 164
9 17 127 141 223 112
10 22 146 202 505 152

SkewMaxis Skewmaxis Kurtmaxis KurtMaxis HollRa tipo
1 70 6 16 187 197 van
2 72 9 14 189 199 van
3 73 14 9 188 196 saab
4 63 6 10 199 207 van
5 127 9 11 180 183 bus
6 85 5 9 181 183 bus
7 66 13 1 200 204 bus
8 67 3 3 193 202 van
9 64 2 14 200 208 van
10 64 4 14 195 204 saab

cluster.results$cluste r
1 5
2 6
3 9
4 10
5 6
6 3
7 3
8 7
9 7
10 4
[ reached 'max' / getOption("max .print") -- omitted 836 rows ]

REGRAS DE ASSOCIAÇÃO 

Musculação

Regras geradas com  uma con figu ração  de Suporte e Confiança.
Colocar a lista de com andos em itidos  no RStudio para conseguir os resultados obtidos

> library(arules)
> library(datasets)
>
> dados <- read.transactions("C:/Users/prisc/Downloads/Pós 
IAA/Aprendizado de Maquina/2 - Musculacao - Dados.csv", sep = ";", 
format = "basket")
Warning message:
In asMethod(object) : removing duplicated items in transactions
>
> inspect(dados[1:5])
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items
[1] {Afundo,Crucifixo,Gemeos,LegPress}
[2] {Agachamento,Gemeos,LegPress}
[3] {Afundo,Agachamento,Gemeos,LegPress}
[4] {Adutor,Agachamento,LegPress}
[5] {Afundo,Bicicleta,Gemeos,LegPress}

> set.seed(202490)
>
> rules <- apriori(dados, parameter = list(supp = 0.3, conf = 0.75, 
target = "rules"))

Apriori

Parameter specification: 
confidence minval smax arem aval originalSupport

0.75 0.1 1 none FALSE TRUE
maxtime support minlen maxlen target ext

5 0.3 1 10 rules TRUE

Algorithmic control: 
filter tree heap memopt load sort verbose 

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 7

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[11 item(s), 26 transaction(s)] done [0.00s]
sorting and recoding items ... [8 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 done [0.00s].
writing ... [16 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

> inspect(rules)
lhs rhs support

confidence coverage lift count
[1] {} => {LegPress} 0.8076923
0.8076923 1.0000000 1.000000 21
[2] {Agachamento} => {LegPress} 0.3076923
1.0000000 0.3076923 1.238095 8
[3] {Afundo} => {Gemeos} 0.3461538
1.0000000 0.3461538 1.529412 9
[4] {AgachamentoSmith} => Esteira} 0.3076923
0.8000000 0.3846154 1.733333 8
[5] {AgachamentoSmith} => Extensor} 0.3461538
0.9000000 0.3846154 1.800000 9
[6] {AgachamentoSmith} => Bicicleta} 0.3076923
0.8000000 0.3846154 1.485714 8
[7] {Esteira} => {Extensor} 0.4230769
0.9166667 0.4615385 1.833333 11
[8] {Extensor} => {Esteira} 0.4230769
0.8461538 0.5000000 1.833333 11
[9] {Esteira} => {Bicicleta} 0.3846154
0.8333333 0.4615385 1.547619 10
[10] {Extensor} => {Bicicleta} 0.4615385
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0.9230769 0.5000000 1.714286 12
[11] {Bicicleta} => {Extensor} 0.4615385
0.8571429 0.5384615 1.714286 12
[12] {AgachamentoSmith,Extensor}=> {Bicicleta} 0.3076923 
0.8888889 0.3461538 1.650794 8
[13] {AgachamentoSmith,Bicicleta}=> {Extensor} 0.3076923 
1.0000000 0.3076923 2.000000 8
[14] {Esteira,Extensor} => {Bicicleta} 0.3846154
0.9090909 0.4230769 1.688312 10
[15] {Bicicleta,Esteira} => {Extensor}
0.3846154 1.0000000 0.3846154 2.000000 10
[16] {Bicicleta,Extensor} => {Esteira}
0.3846154 0.8333333 0.4615385 1.805556 10
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APÊNDICE 8 -  DEEP LEARNING 

A -  ENUNCIADO

1 C lassificação de Imagens (CNN)

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a 

arquitetura CNN vista no curso.

2 Detector de SPAM (RNN)

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e 

arquitetura de RNN vista no curso.

3 Gerador de Dígitos Fake (GAN)

Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN 

vista no curso.

4 T radutor de Textos (Transform er)

Implementar o tradutor de texto do português para o inglês, usando a base de dados e a 

arquitetura Transformer vista no curso.
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B - RESOLUÇÃO 

1 - Classificação de Imagens (CNN)

[ ]: import tensorflow as tf
import numpy as np 
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, Dropout
from tensorflow.keras.models import Model
from mlxtend.plotting import plot_confusion_matrix
from sklearn.metrics import confusion_matrix

[ ]: cifariü = tf.keras.datasets.cifariü
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

[ ]: x_train, x_text = x_train/255.0, x_test/255.0

y_train, y_test = y_train.flatten(), y_test.flatten()

print("x_train.shape", x_train.shape) 
print("y_train.shape", y_train.shape) 
print("x_test.shape", x_test.shape) 
print("y_test.shape", y_test.shape)

x_train.shape (50000, 32, 32, 3) 
y_train.shape (50000,) 
x_test.shape (10000, 32, 32, 3) 
y_test.shape (10000,)

[ ]: K = len(set(y_train))

i = Input(shape=x_train[0] .shape)
x = Conv2D(32, (3,3), strides=2, activation="relu")(i) 
x = Conv2D(64, (3,3), strides=2, activation="relu")(x) 
x = Conv2D(128, (3 ,3), strides=2, activation="relu")(x) 
x = Flatten()(x) 
x = Dropout(0.5)(x)
x = Dense(1024, activation="relu")(x) 
x = Dropout(0.2)(x)
x = Dense(K, activation="softmax")(x) 

model = Model(i, x)

[ ]: model.summary()

Model: "functional"
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Layer (type) Output Shape Param #

input_layer (InputLayer) (None, 162) 0
embedding (Embedding) (None, 162, 20) 144,520
Istm (LSTM) (None, 5) 520
dense (Dense) (None, 1) 6

Total params: 145,046 (566.59 KB)
Trainable params: 145,046 (566.59 KB)
Non-trainable params: 0 (0.00 B)

Total params: 1,284,170 (4.90 MB)
Trainable params: 1,284,170 (4.90 MB)
Non-trainable params: 0 (0.00 B)

[ ]: model.compile(optimizer="adam", loss="sparse_categorical_crossentropy",u
^ metrics= ["accuracy"]) 

r = model.fit(x_train, y_train, validation_data=(x_text, y_test),u 
^ epochs=15)

Epoch 1/15
1563/1563 [CONCLUIDO] 16s 7ms/step -
accuracy: 0.3566 - loss: 1.7506 - val_accuracy: 0.5311 - val_loss: 1.3112 

Epoch 1/15
1563/1563 [CONCLUIDO] 16s 7ms/step -
accuracy: 0.3566 - loss: 1.7506 - val_accuracy: 0.5311 - val_loss: 1.3112

[ ]: plt.plot(r.history["loss"], label="loss")
plt.plot(r.history["val_loss"], label="val_loss") 
plt.legend() 
plt.show()

plt.plot(r.history["accuracy"], label="acc") 
plt.plot(r.history["val_accuracy"], label="val_acc") 
plt.legend() 
plt.show()
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[ ]: y_pred = model.predict(x_test).argmax(axis=1)

cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(conf_mat=cm, figsize=(7 ,7), show_normed=True)

313/313 ---------------  1s 2ms/step
[ ]: (<Figure size 700x700 with 1 Axes>,

<Axes: xlabel='predicted label', ylabel='true label'>)

í----------------------------- 1----------------------------- 1----------------------------- 1----------------------------- r
0 2 4 6 8

predicted label

[ ]: labels = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog",u
V horse", "ship", "truck"]

misclassified = np.where(y_pred!=y_test)[0]
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i = np.random.choice(misclassified) 

plt.imshow(x_test[i], cmap="gray")
plt.title("True label: %s - Predicted: %s" % (labels[y_test[i]],u 
-̂ labels[y_pred [i]]))

[ ]: Text(0.5, 1.0, 'True label: bird - Predicted: airplane')

True label: bird - Predicted: airplane
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2 - Detector de SPAM (RNN)

[ ]: import tensorflow as tf
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
import seaborn as sns
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import Input, Embedding, LSTM, Dense 
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.sequence import pad_sequences 
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint 
from tensorflow.keras.preprocessing.text import Tokenizer

[ ]: !wget http://www.razer.net.br/datasets/spam.csv

df = pd.read_csv("spam.csv",encoding="ISO-8859-1") 
df.head()

df = df.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1) 
df.columns = ['label', 'data']

df["b_label"] = df["label"] .map({"ham":0 ,"spam":1}) 
y = df["b_label"] .values

--2024-08-11 18:27:49-- http://www.razer.net.br/datasets/spam.csv 
Resolvingwww.razer.net.br (www.razer.net.br)... 178.128.150.229 
Connecting to www.razer.net.br (www.razer.net.br)|178.128.150.229|:80... 
connected.
HTTP request sent, awaiting response... 200 OK 
Length: 503663 (492K) [text/csv]
Saving to: 'spam.csv’

spam.csv 100%[===================>] 491.86K --.-KB/s in 0.1s

2024-08-11 18:27:50 (3.50 MB/s) - 'spam.csv’ saved [503663/503663]

[ ]: x_train, x_test, y_train, y_test =u
^ train_test_split(df["data"],y,test_size=0.33)

[ ]: num_words = 20000
tokenizer = Tokenizer(num_words=num_words) 
tokenizer.fit_on_texts(x_train)
sequences_train = tokenizer.texts_to_sequences(x_train)

http://www.razer.net.br/datasets/spam.csv
http://www.razer.net.br/datasets/spam.csv
http://www.razer.net.br
http://www.razer.net.br
http://www.razer.net.br
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sequences_test = tokenizer.texts_to_sequences(x_test) 
word2index = tokenizer.word_index 
V = len(word2index) 
print(f"{V}s tokens")

7225s tokens

[ ]: data_train = pad_sequences(sequences_train)
T = data_train.shape[1]
print(f"Tamanho da sequencia treino: {T}")

data_test = pad_sequences(sequences_test,maxlen= T)
U = data_test.shape[1]
print(f"Tamanho da sequencia teste: {U}")

Tamanho da sequencia treino: 162 
Tamanho da sequencia teste: 162

[ ]: print(data_train.shape)
print(data_test.shape)

(3733, 162)
(1839, 162)

[ ]: # Tamanho do Embeding
D = 20
#Quantidade de LSTM 
M = 5
#Camada de entrada 
i = Input(shape= (T,))
#Criando camada de embedding, essa camada vai ser treinada tambem 
x = Embedding(V + 1, D)(i)
# Camada LSTM 
x = LSTM(M)(x)
#Camada Densa
x = Dense(1, activation="sigmoid")(x)
# Modelo
model = Model(i, x)

[ ]: model.summary()

Model: "functional"
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Layer (type) Output Shape Param #

input_layer (InputLayer) (None, 162) 0
embedding (Embedding) (None, 162, 20) 144,520
Istm (LSTM) (None, 5) 520
dense (Dense) (None, 1) 6

Total params: 145,046 (566.59 KB)
Trainable params: 145,046 (566.59 KB)
Non-trainable params: 0 (0.00 B)

[ ]: model.compile(loss="binary_crossentropy", optimizer="adam",u
-̂ metrics= ["accuracy"])

epochs = 5

r = model.fit(data_train, y_train, epochs= epochs,u 
-̂ validation_data= (data_test, y_test))

Epoch 1/5
117/117 -------------------  11s 71ms/step -
accuracy: 0.8341 - loss: 0.5878 - val_accuracy: 0.9233 - val_loss: 0.3001 
Epoch 2/5
117/117 -------------------  8s 69ms/step -
accuracy: 0.9608 - loss: 0.2497 - val_accuracy: 0.9668 - val_loss: 0.1772 
Epoch 3/5
117/117   6s 55ms/step -
accuracy: 0.9843 - loss: 0.1439 - val_accuracy: 0.9821 - val_loss: 0.1188
Epoch 4/5
117/117   9s 76ms/step -
accuracy: 0.9904 - loss: 0.0958 - val_accuracy: 0.9859 - val_loss: 0.0924
Epoch 5/5
117/117   8s 56ms/step -
accuracy: 0.9965 - loss: 0.0619 - val_accuracy: 0.9859 - val_loss: 0.0773

[ ]: plt.plot(r.history['loss'],label= 'loss')
plt.plot(r.history['val_loss'], label= 'val_loss') 
plt.xlabel("Epochs") 
plt.ylabel("Loss")
plt.xticks(np.arange(0 ,epochs, step=1), labels=range(1,epochs+1)) 
plt.legend() 
plt.show()

plt.plot(r.history['accuracy'], label= 'acc')



122

plt.plot(r.history['val_accuracy'], label= 'val_acc') 
plt.xlabel("Epochs") 
plt.ylabel("acc")
plt.xticks(np.arange(0 ,epochs, step=1), labels=range(1,epochs+1)) 
plt.legend() 
plt.show()
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[ ]: texto = "Is your car dirty? Discover our new product. Free for all. Clicku
-̂ the link."

seq_texto = tokenizer.texts_to_sequences([texto]) 
data_texto = pad_sequences(seq_texto, maxlen= T)

pred = model.predict(data_texto) 
print(pred)
print("SPAM" if pred >=0.5 else "OK")
1 / 1 ---------
[[0.5046611]]
SPAM

0s 178ms/step
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3 - Gerador de Dígitos Fake (GAN)

[ ]: !pip install imageio

Requirement already satisfied: imageio in /usr/local/lib/python3.10/ 
^ dist-packages (2.34.2)

Requirement already satisfied: numpy in /usr/local/lib/python3.10/ 
-̂ dist-packages (from imageio) (1.26.4)

Requirement already satisfied: pillow>=8.3.2 in /usr/local/lib/python3.10/ 
-̂ dist-packages (from imageio) (9.4.0)

[ ]: !pip install git+https://github.com/tensorflow/docs

Collecting git+https://github.com/tensorflow/docs
Cloning https://github.com/tensorflow/docs to /tmp/pip-req-build-i8_uu6q4 
Running command git clone --filter=blob:none --quiet https://github.com/ 
-̂ tensorflow/docs /tmp/pip-req-build-i8_uu6q4 
Resolved https://github.com/tensorflow/docs to commitu 
^ 7d4187e1624afa1caf0639de9ca5b7ccd5ad19e3 
Preparing metadata (setup.py) ... done 

Collecting astor (from tensorflow-docs==2024.7.15.51478)
Downloading astor-0.8.1-py2.py3-none-any.whl.metadata (4.2 kB)

Requirement already satisfied: absl-py in /usr/local/lib/python3.10/ 
-̂ dist-packages (from tensorflow-docs==2024.7.15.51478) (1.4.0)

Successfully installed astor-0.8.1 tensorflow-docs-2024.7.15.51478

[ ]: import tensorflow as tf
import glob 
import imageio
import matplotlib.pyplot as plt 
import numpy as np 
import os 
import PIL
from tensorflow.keras import layers 
import time

from IPython import display

[ ]: (train_images, train_labels), (_,_) = tf.keras.datasets.mnist.load_data()

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1). 
-̂ astype(' float32')

train_images = (train_images - 127.5) / 127.5

https://github.com/tensorflow/docs
https://github.com/tensorflow/docs
https://github.com/tensorflow/docs
https://github.com/
https://github.com/tensorflow/docs
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Downloading data from https://storage.googleapis.com/tensorflow/ 
-̂ tf-keras-datasets/mnist.npz

11490434/11490434 ------------------------------ 2s
0us/step

[ ]: BUFFER_SIZE = 60000
BATCH_SIZE = 256

[ ]: train_dataset = tf.data.Dataset.from_tensor_slices(train_images).
^ shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

[ ]: def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use_bias=False, input_shape= (100,))) 
model.add(layers.BatchNormalization()) 
model.add(layers.LeakyReLU())

model.add(layers.Reshape((7 , 7 , 256))) 
assert model.output_shape == (None, 7 , 7 , 256)

model.add(layers.Conv2DTranspose(128,(5 ,5), strides=1,padding= 'same',u 
-̂ use_bias=False)) 
assert model.output_shape == (None, 7 , 7 , 128)

model.add(layers.BatchNormalization()) 
model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(64,(5 ,5),u 
-̂ strides=(2 ,2),padding= 'same', use_bias=False)) 
assert model.output_shape == (None, 14, 14, 64) 
model.add(layers.BatchNormalization()) 
model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(1,(5 ,5), strides= (2 ,2),padding= 'same',u 
-̂ use_bias=False, activation= 'tanh')) 
assert model.output_shape == (None, 28, 28, 1)

return model

[ ]: generator = make_generator_model()

noise = tf.random.normal([1,100]) 
generated_image = generator(noise, training=False) 
plt.imshow(generated_image[0 ,:,:,0], cmap= 'gray')

https://storage.googleapis.com/tensorflow/
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[ ]: <matplotlib.image.AxesImage at 0x7b549c4122f0>

[ ]: def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64,(5 ,5), strides=(2 ,2), padding= 'same',u 
^ input_shape= [28, 28, 1])) 
model.add(layers.LeakyReLU()) 
model.add(layers.Dropout(0.3))

model.add(layers.Conv2D(128, (5 ,5), strides=(2 ,2), padding= 'same')) 
model.add(layers.LeakyReLU()) 
model.add(layers.Dropout(0.3))

model.add(layers.Flatten()) 
model.add(layers.Dense(1))

return model

[ ]: discriminator = make_discriminator_model()
decision = discriminator(generated_image)
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print(decision)

tf.Tensor([[0.00391983]], shape=(1, 1), dtype=float32)

[ ]: cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output) 
fake_output = cross_entropy(tf.zeros_like(fake_output), fake_output) 
total_loss = real_loss + fake_output 
return total_loss

def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)

[ ]: generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

[ ]: checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,

u
^ discriminator_optimizer=discriminator_optimizer,

generator=generator,
discriminator=discriminator)

[ ]: EPOCHS =100
noise_dim = 100 
num_examples_to_generate = 16

seed = tf.random.normal([num_examples_to_generate,noise_dim])

[ ]: @tf.function
def train_step(images):

noise = tf.random.normal([BATCH_SIZE, noise_dim])

with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: 
generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True) 
fake_output = discriminator(generated_images, training=True)

gen_loss = generator_loss(fake_output) 
disc_loss = discriminator_loss(real_output, fake_output)
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gradients_of_generator = gen_tape.gradient(gen_loss, generator. 
-̂ trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss,u 
-̂ discriminator.trainable_variables)

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator,u 
-̂ discriminator.trainable_variables))
generator_optimizer.apply_gradients(zip(gradients_of_generator,u 
-̂ generator.trainable_variables))

[ ]: def train(dataset, epochs):
for epoch in range(epochs): 

start = time.time()

for image_batch in dataset: 
train_step(image_batch)

display.clear_output(wait=True) 
generate_and_save_images(generator,

epoch + 1, 
seed)

if (epoch + 1) % 15 == 0 :
checkpoint.save(file_prefix = checkpoint_prefix)

print('Time for epoch {} is {} sec'.format(epoch + 1, time. 
^ time()-start))

display.clear_output(wait=True) 
generate_and_save_images(generator,

epochs,
seed)

[ ]: def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False) 
fig = plt.figure(figsize= (4 ,4))

for i in range(predictions.shape[0]): 
plt.subplot(4 ,4 ,i+1)
plt.imshow(predictions[i,:,:,0] * 127.5 + 127.5, cmap= 'gray') 
plt.axis('off')

plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) 
plt.show()
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def split_heads(self, x, batch_size):

Separa a última dimensão em (num_heads, depth). Transpõe o resultado 
para o shape (batch_size, num_heads, seq_len, depth)

x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))

return tf.transpose(x, perm= [0 , 2 , 1, 3])

def call(self, v, k, q, mask): 
batch_size= tf.shape(q)[0]

q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k) # (batch_size, seq_len, d_model)
v = self.wv(v) # (batch_size, seq_len, d_model)

q = self.split_heads(q, batch_size) # (batch_size, num_heads,u 
■+seq_len_q, depth)

k = self.split_heads(k, batch_size) # (batch_size, num_heads,u 
■+seq_len_k, depth)

v = self.split_heads(v, batch_size) # (batch_size, num_heads,u 
■+seq_len_v, depth)

# Calcula a atenção para cada cabeça (de forma matricial)
# scaled_attention.shape== (batch_size, num_heads, seq_len_q, depth)
# attention_weights.shape== (batch_size, num_heads, seq_len_q,u 

■+seq_len_k)
scaled_attention, attention_weights= scaled_dot_product_attention(q,u 

k, v, mask)

# Troca a dimensão 2 com 1, para acertar o num_heads
# (batch_size, seq_len_q, num_heads, depth)
scaled_attention= tf.transpose(scaled_attention, perm= [0 , 2 , 1, 3])

# Concatena os valores em: (batch_size, seq_len_q, d_model) 
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.

^d_model))
output = self.dense(concat_attention) # (batch_size, seq_len_q,u 

d_model)

return output, attention_weights
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Cria rede feed-forward pontual

[ ]: def point_wise_feed_forward_network(d_model, dff): 
return tf.keras.Sequential([

tf.keras.layers.Dense(dff, activation= 'relu'), # (batch_size,u
■-̂ seq_len, dff)

tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model)
])

Camada do Codificador

[ ]: class EncoderLayer(tf.keras.layers.Layer):

def  init (self, d_model, num_heads, dff, rate=0.1):
super(EncoderLayer, self). init ()

self.mha = MultiHeadAttention(d_model, num_heads) 
self.ffn = point_wise_feed_forward_network(d_model, dff)

self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)

self.dropout1 = tf.keras.layers.Dropout(rate) 
self.dropout2 = tf.keras.layers.Dropout(rate)

def call(self, x, training, mask):
attn_output, _ = self.mha(x, x, x, mask) # (batch_size,u 

^ input_seq_len, d_model)
attn_output = self.dropout1(attn_output, training=training) 
out1 = self.layernorm1(x + attn_output) # (batch_size,u 

^ input_seq_len, d_model)

ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model) 
ffn_output = self.dropout2(ffn_output, training=training) 
out2 = self.layernorm2(out1 + ffn_output) # (batch_size,u 

-̂ input_seq_len, d_model)

return out2
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Camada do Decodificador

[ ]: class DecoderLayer(tf.keras.layers.Layer):

def  init (self, d_model, num_heads, dff, rate=0.1):
super(DecoderLayer, self). init ()

self.mha1 = MultiHeadAttention(d_model, num_heads) 
self.mha2 = MultiHeadAttention(d_model, num_heads) 
self.ffn = point_wise_feed_forward_network(d_model, dff)

self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)

self.dropout1 = tf.keras.layers.Dropout(rate) 
self.dropout2 = tf.keras.layers.Dropout(rate) 
self.dropout3 = tf.keras.layers.Dropout(rate)

def call(self, x, enc_output, training, look_ahead_mask, padding_mask):
# enc_output.shape == (batch_size, input_seq_len, d_model)

# (batch_size, target_seq_len, d_model)
attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask) 
attn1 = self.dropout1(attn1, training=training) 
out1 = self.layernorm1(attn1 + x)

# (batch_size, target_seq_len, d_model)
attn2, attn_weights_block2 = self.mha2(enc_output, enc_output, out1,u 

-̂ padding_mask)
attn2 = self.dropout2(attn2, training=training)
out2 = self.layernorm2(attn2 + out1) # (batch_size, target_seq_len,u 

^ d_model)

ffn_output = self.ffn(out2) # (batch_size, target_seq_len, d_model) 
ffn_output = self.dropout3(ffn_output, training=training) 
out3 = self.layernorm3(ffn_output + out2) # (batch_size,u 

-̂ target_seq_len, d_model)

return out3, attn_weights_block1, attn_weights_block2
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Encoder Completo

[ ]: class Encoder(tf.keras.layers.Layer):

def  init (self, num_layers, d_model, num_heads, dff,
input_vocab_size, maximum_position_encoding, rate=0.1):

super(Encoder, self). init ()

self.d_model = d_model 
self.num_layers = num_layers

self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) 
self.pos_encoding = positional_encoding(maximum_position_encoding,u 

^■self. d_model)

self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) 
for _ in range(num_layers)] 

self.dropout = tf.keras.layers.Dropout(rate)

def call(self, x, training, mask): 
seq_len= tf.shape(x)[1]

# addingembeddingandposition encoding.
x = self.embedding(x) # (batch_size, input_seq_len, d_model) 
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 
x += self.pos_encoding[:, :seq_len, :] 
x = self.dropout(x, training=training)

for i in range(self.num_layers):
x = self.enc_layers[i](x, training, mask)

return x # (batch_size, input_seq_len, d_model)

Decoder Completo

[ ]: class Decoder(tf.keras.layers.Layer):

def  init (self, num_layers, d_model, num_heads, dff,u
-̂ target_vocab_size,

maximum_position_encoding, rate=0.1): 
super(Decoder, self). init ()

self.d_model = d_model
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self.num_layers = num_layers

self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model) 
self.pos_encoding = positional_encoding(maximum_position_encoding,u 

-̂ d_model)

self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate)
for _ in range(num_layers)] 

self.dropout = tf.keras.layers.Dropout(rate)

def call(self, x, enc_output, training, look_ahead_mask, padding_mask): 
seq_len= tf.shape(x)[1] 
attention_weights= {}

x = self.embedding(x) # (batch_size, target_seq_len, d_model) 
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 
x += self.pos_encoding[:, :seq_len, :]

x = self.dropout(x, training=training)

for i in range(self.num_layers):
x, block1, block2 = self.dec_layers[i](x, enc_output, training,

look_ahead_mask,u
-̂ padding_mask)

attention_weights[f 'decoder_layer{i+1}_block1'] = block1 
attention_weights[f 'decoder_layer{i+1}_block2'] = block2

# x.shape== (batch_size, target_seq_len, d_model) 
return x, attention_weights

Transformer Completo

[ ]: class Transformer(tf.keras.Model):

def  init (self, num_layers, d_model, num_heads, dff,u
-̂ input_vocab_size,
target_vocab_size, pe_input, pe_target, rate=0.1): 

super(). init ()
self.encoder = Encoder(num_layers, d_model, num_heads, dff,

input_vocab_size, pe_input, rate)

self.decoder = Decoder(num_layers, d_model, num_heads, dff,
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target_vocab_size, pe_target, rate) 

self.final_layer = tf.keras.layers.Dense(target_vocab_size)

def call(self, inputs, training):
# Keras models prefer if you pass all your inputs in the firstu 

argument

inp, tar = inputs

enc_padding_mask, look_ahead_mask, dec_padding_mask = self. 
^create_masks(inp, tar)

# (batch_size, inp_seq_len, d_model)
enc_output = self.encoder(inp, training, enc_padding_mask)

# dec_output.shape == (batch_size, tar_seq_len, d_model) 
dec_output, attention_weights = self.decoder(

tar, enc_output, training, look_ahead_mask, dec_padding_mask)

# (batch_size, tar_seq_len, target_vocab_size) 
final_output = self.final_layer(dec_output)

return final_output, attention_weights

def create_masks(self, inp, tar):
# Encoder padding mask
enc_padding_mask = create_padding_mask(inp)

# Used in the 2nd attention block in the decoder.
# This padding mask is used to mask the encoder outputs. 
dec_padding_mask = create_padding_mask(inp)

# Used in the 1st attention block in the decoder.
# It is used to pad and mask future tokens in the input received by
# the decoder.
look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1]) 
dec_target_padding_mask = create_padding_mask(tar)
look_ahead_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)

return enc_padding_mask, look_ahead_mask, dec_padding_mask
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Hiperparâmetros

[ ]: # Hiperparâmetros 
num_layers = 4 
d_model = 128 
dff = 512 
num_heads = 8 
dropout_rate =0.1

Otimizador

[ ]: class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):

def  init (self, d_model, warmup_steps=4000):
super(CustomSchedule, self). init ()

self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32) 
self.warmup_steps = warmup_steps

def  call (self, step):
step = tf.cast(step, tf.float32) # Adicionado para evitar ERRO

arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)

return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2) 

learning_rate = CustomSchedule(d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0. 
-̂ 98, epsilon=1e-9)

Função de Perda e Métrica de Acurácia (mascarados)

[ ]: loss_object = tf.keras.losses.
-̂ SparseCategoricalCrossentropy(from_logits=True, reduction= 'none')

def loss_function(real, pred):
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
return tf.reduce_sum(loss_)/tf.reduce_sum(mask)
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def accuracy_function(real, pred):
accuracies = tf.equal(real, tf.argmax(pred, axis=2)) 
mask = tf.math.logical_not(tf.math.equal(real, 0)) 
accuracies = tf.math.logical_and(mask, accuracies) 
accuracies = tf.cast(accuracies, dtype=tf.float32) 
mask = tf.cast(mask, dtype=tf.float32) 
return tf.reduce_sum(accuracies)/tf.reduce_sum(mask)

train_loss = tf.keras.metrics.Mean(name= 'train_loss') 
train_accuracy = tf.keras.metrics.Mean(name= 'train_accuracy')

0.1 Treinamento
[ ]: transformer = Transformer(num_layers=num_layers,

d_model=d_model,
num_heads=num_heads,
dff=dff,
input_vocab_size=tokenizers.pt.get_vocab_size().

^ numpy(),
target_vocab_size=tokenizers.en. 

^ get_vocab_size().numpy(),
pe_input=1000, 
pe_target=1000, 
rate=dropout_rate)

Checkpoint

[ ]: # Checkpoint
checkpoint_path = "./checkpoints/train"
ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer) 
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path,u 
-̂ max_to_keep=5)

# if a checkpoint exists, restore the latest checkpoint. 
if ckpt_manager.latest_checkpoint:

ckpt.restore(ckpt_manager.latest_checkpoint) 
print('Latest checkpoint restored!!')
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Processo de Treinamento

[ ]: EPOCHS = 20

train_step_signature= [
tf.TensorSpec(shape= (None, None), dtype=tf.int64), 
tf.TensorSpec(shape= (None, None), dtype=tf.int64),

]

@tf.function(input_signature=train_step_signature) 
def train_step(inp, tar): 

tar_inp= tar[:, :-1] 
tar_real= tar[:, 1:]

with tf.GradientTape() as tape:
predictions, _ = transformer([inp, tar_inp], training = True) 
loss= loss_function(tar_real, predictions)

gradients= tape.gradient(loss, transformer.trainable_variables) 
optimizer.apply_gradients(zip(gradients, transformer. 
^ trainable_variables))

train_loss(loss)
train_accuracy(accuracy_function(tar_real, predictions))

[ ]: for epoch in range(EPOCHS): 
start = time.time() 
train_loss.reset_state() 
train_accuracy.reset_state()

# inp-> portuguese, tar-> english
for(batch, (inp, tar)) in enumerate(train_batches): 

train_step(inp, tar)

if batch % 50 == 0 : 
if batch == 0 :
print(f 'Epoch {epoch+1} Batch {batch} Loss {train_loss.result(): 

-^.4f} Accuracy {train_accuracy.result():.4f} ') 
elif batch == 50:

print(f 'Epoch {epoch+1} Batch {batch} Loss {train_loss.result():. 
-̂ 4f} Accuracy {train_accuracy.result():.4f} ') 

else:
print(f 'Epoch {epoch+1} Batch {batch} Loss {train_loss.result():. 

-̂ 4f} Accuracy {train_accuracy.result():.4f} ')
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if(epoch+1) % 5 == 0 :
ckpt_save_path = ckpt_manager.save()
print(f 'Saving checkpoint for epoch {epoch+1} at {ckpt_save_path} ')

print(f 'Epoch {epoch+1} Loss {train_loss.result():.4f} Accuracyu 
^{train_accuracy.result():.4f} ')
print(f'Time taken for 1 epoch: {time.time() -start:.2f} secs\n')

Epoch 1 Batch 0 Loss 8.8823 Accuracy 0.0000
Epoch 1 Batch 50 Loss 8.8116 Accuracy 0.0127
Epoch 1 Batch 100 Loss 8.7075 Accuracy 0.0298
Epoch 1 Batch 150 Loss 8.5943 Accuracy 0.0361
Epoch 1 Batch 200 Loss 8.4554 Accuracy 0.0393
Epoch 1 Batch 250 Loss 8.2874 Accuracy 0.0421
Epoch 1 Batch 300 Loss 8.0976 Accuracy 0.0449
Epoch 1 Batch 350 Loss 7.8994 Accuracy 0.0510
Epoch 1 Batch 400 Loss 7.7098 Accuracy 0.0591
Epoch 1 Batch 450 Loss 7.5438 Accuracy 0.0657
Epoch 1 Batch 500 Loss 7.3972 Accuracy 0.0727
Epoch 1 Batch 550 Loss 7.2665 Accuracy 0.0794
Epoch 1 Batch 600 Loss 7.1445 Accuracy 0.0869
Epoch 1 Batch 650 Loss 7.0294 Accuracy 0.0945
Epoch 1 Batch 700 Loss 6.9226 Accuracy 0.1014
Epoch 1 Batch 750 Loss 6.8224 Accuracy 0.1078
Epoch 1 Batch 800 Loss 6.7284 Accuracy 0.1139
Epoch 1 Loss 6.7121 Accuracy 0.1150
Time taken for 1 epoch 172.86 secs

Epoch 2 Batch 0 Loss 5.3843 Accuracy 0.1926
Epoch 2 Batch 50 Loss 5.2308 Accuracy 0.2108
Epoch 2 Batch 100 Loss 5.1956 Accuracy 0.2149
Epoch 2 Batch 150 Loss 5.1750 Accuracy 0.2175
Epoch 2 Batch 200 Loss 5.1523 Accuracy 0.2207
Epoch 2 Batch 250 Loss 5.1326 Accuracy 0.2227
Epoch 2 Batch 300 Loss 5.1051 Accuracy 0.2255
Epoch 2 Batch 350 Loss 5.0805 Accuracy 0.2282
Epoch 2 Batch 400 Loss 5.0533 Accuracy 0.2310
Epoch 2 Batch 450 Loss 5.0310 Accuracy 0.2332
Epoch 2 Batch 500 Loss 5.0114 Accuracy 0.2350
Epoch 2 Batch 550 Loss 4.9896 Accuracy 0.2372
Epoch 2 Batch 600 Loss 4.9686 Accuracy 0.2393
Epoch 2 Batch 650 Loss 4.9482 Accuracy 0.2412
Epoch 2 Batch 700 Loss 4.9331 Accuracy 0.2424
Epoch 2 Batch 750 Loss 4.9174 Accuracy 0.2437



139

Epoch 20 Batch 650 Loss 1.4316 Accuracy 0.6828
Epoch 20 Batch 700 Loss 1.4326 Accuracy 0.6827
Epoch 20 Batch 750 Loss 1.4372 Accuracy 0.6819
Epoch 20 Batch 800 Loss 1.4396 Accuracy 0.6816
Saving checkpoint for epoch 20 at ./checkpoints/train/ckpt-4
Epoch 20 Loss 1.4401 Accuracy 0.6815
Time taken for 1 epoch: 97.21 secs

Tradutor

[ ]: class Translator(tf.Module):

def  init (self, tokenizers, transformer):
self.tokenizers = tokenizers 
self.transformer = transformer

def  call (self, sentence, max_length=20):
# input sentence is portuguese, hence adding the start and end token 
assert isinstance(sentence, tf.Tensor)

if len(sentence.shape) == 0 : 
sentence = sentence[tf.newaxis]

sentence = self.tokenizers.pt.tokenize(sentence).to_tensor() 
encoder_input = sentence

# as the target is english, the first token to the transformer should
# be the english start token.
start_end = self.tokenizers.en.tokenize([''])[0] 
start = start_end[0][tf.newaxis] 
end = start_end[1][tf.newaxis]

output_array = tf.TensorArray(dtype=tf.int64, size=0,u 
-̂ dynamic_size=True)

output_array = output_array.write(0 , start)

for i in tf.range(max_length):
output = tf.transpose(output_array.stack()) 
predictions, _ = self.transformer([encoder_input, output],u 

^ training=False)
predictions = predictions[:, -1:, :] # (batch_size, 1, vocab_size)
predicted_id = tf.argmax(predictions, axis=-1) 
output_array = output_array.write(i+1, predicted_id[0])
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if predicted_id == end: 
break

output = tf.transpose(output_array.stack())

# output.shape (1, tokens)
text = tokenizers.en.detokenize(output)[0]
tokens = tokenizers.en.lookup(output)[0]
_, attention_weights = self.transformer([encoder_input, output[:,: 

-+-1]], training=False)

return text, tokens, attention_weights

Efetuar uma tradução

[ ]: translator = Translator(tokenizers, transformer)
sentence = "Eu li sobre triceratops na enciclopédia." 
translated_text, translated_tokens, attention_weights = translator(tf.
-̂ constant(sentence)) 

print(f '{"Prediction":15s} : {translated_text} ')

Prediction : b'i read about tattoos in enclopedia .'
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A -  ENUNCIADO

Enviar um arquivo PDF contendo uma descrição breve (2 páginas) sobre a 
implementação de uma aplicação ou estudo de caso envolvendo Big Data e 
suas ferramentas (NoSQL e NewSQL). Caracterize os dados e Vs envolvidos, 
além da modelagem necessária dependendo dos modelos de dados 
empregados.

B - RESOLUÇÃO

Resumo da Implementação de Big Data no Setor Financeiro

Neste projeto, realizamos a migração de uma vasta quantidade de dados 
sigilosos (valor) de uma empresa do setor financeiro, anteriormente 
armazenados na AWS, para um ambiente on-premise, utilizando a plataforma 
Hortonworks com HBase e Hive, como fonte de dados. O objetivo principal era 
aumentar a segurança e reduzir custos, sem comprometer a performance e a 
integridade dos dados. O projeto envolveu a migração de dados estruturados, 
semiestruturados e não estruturados (Variedade), exigindo um planejamento 
cuidadoso para garantir a integridade, veracidade e disponibilidade dos dados 
durante e após a migração (Veracidade).

A empresa mantinha seus dados em um ambiente de nuvem na AWS, 
utilizando o S3 para armazenamento e o DynamoDB para gerenciar dados 
relacionais e não relacionais. No entanto, devido à natureza confidencial dos 
dados financeiros, foi necessário migrá-los para um ambiente on-premise, onde 
o controle e a segurança poderiam ser aprimorados. A escolha da plataforma 
Hortonworks, com HBase e Hive, foi feita devido à sua capacidade de lidar com 
grandes volumes de dados (Volume), variedade de formatos e a necessidade de 
manter a integridade dos dados.

A migração envolveu a transferência de dados de várias naturezas:

• Dados Estruturados: Informações organizadas em formatos tabu lares, 
com relações bem definidas entre as entidades.

• Dados Semiestruturados: Incluindo arquivos JSON e XML, que, 
embora possuam alguma estrutura, não são tão rigidamente 
organizados como os dados relacionais.
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• Dados Não Estruturados: Arquivos de texto, documentos e outras 
informações que não seguem uma estrutura pré-definida.

A complexidade da migração foi aumentada pela necessidade de adaptar 
modelos de dados relacionais para o HBase e Hive, que são mais orientados a 
colunas e não impõem restrições rígidas quanto à forma dos dados. Além disso, 
a volumetria foi um desafio significativo, uma vez que o banco de dados 
DynamoDB já continha uma vasta quantidade de registros, muitos dos quais 
eram dados sensíveis de clientes.

Os principais desafios enfrentados incluíram:

1. Segurança e Confidencialidade dos Dados: A migração de dados 
sigilosos exigiu criptografia de ponta a ponta e verificações rigorosas de 
integridade para garantir que os dados não fossem corrompidos ou 
expostos durante o processo.

2. Adaptação dos Modelos Relacionais: A conversão de modelos 
relacionais para o HBase e Hive exigiu revisões de design e ajustes para 
garantir que a performance fosse mantida e que as consu ltas pudessem 
ser executadas eficientemente.

3. Gerenciamento de Volume de Dados: A volumetria foi um fator crítico, 
exigindo otimização dos processos de ingestão e indexação para garantir 
que o ambiente Hortonworks pudesse lidar com a carga sem comprometer 
a performance.

4. Veracidade e Confiabilidade: A precisão e a integridade dos dados eram 
fundamentais, especialmente em um ambiente financeiro. A 
implementação incluiu mecanismos de verificação e validação para 
garantir que os dados migrados fossem consistentes e confiáveis.

5. Redução de Custos: A migração para um ambiente on-premise resultou 
em economia de custos significativa, uma vez que o gerenciamento local 
de grandes volumes de dados era mais econômico a longo prazo do que 
manter esses dados na nuvem.

6. Maior Segurança: Com os dados mantidos em um ambiente controlado, 
a empresa pôde implementar medidas de segurança mais rigorosas, 
garantindo que os dados confidenciais dos clientes fossem protegidos 
contra acessos não autorizados.

7. Manutenção da Performance: Embora a velocidade de acesso aos 
dados não tenha sido drasticamente impactada pela migração, a 
implementação de um ambiente otimizado garantiu que a performance 
fosse mantida em níveis aceitáveis, mesmo com a complexidade e 
variedade dos dados (Velocidade).

8. Flexibilidade no Gerenciamento de Dados: A adoção do HBase e Hive 
permitiu à empresa lidar com diferentes tipos de dados de maneira 
eficiente, oferecendo flexibilidade para atender às necessidades do 
negócio.

A implementação de Big Data no ambiente on-premise da empresa do 
setor financeiro foi um sucesso, atendendo às exigências de segurança, redução 
de custos e integridade dos dados. A migração para a plataforma Hortonworks, 
com HBase e Hive, proporcionou à empresa uma solução robusta e escalável, 
capaz de gerenciar grandes volumes de dados variados, mantendo a 
performance e confiabilidade necessárias para suas operações.
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SoR, SoT e Spec

Em um projeto de outro setor financeiro, os dados armazenados on- 
premise estão sendo migrados para a AWS, um processo denominado 
"democratização dos dados”. Essa democratização tem como objetivo criar um 
data lake para facilitar o compartilhamento de dados entre diversos setores da 
empresa.

O processo de democratização envolve 3 camadas:

1. SoR -  Primeira Camada da Democratização dos Dados: Nesta 
camada, as informações são idênticas aos dados da tabela on-premise, 
sem nenhuma adição, alteração ou remoção. Esta camada não pode ser 
compartilhada devido a possibilidade de conter dados sensíveis ou 
sigilosos.

2. SoT -  Segunda Camada da Democratização dos Dados: Nesta 
camada, utilizam-se as informações da camada SoR, resultando em 
dados mais "polidos”. Alterações são feitas, se necessário, para tornar os 
dados mais "amigáveis” , facilitando no desenvolvimento da Spec e 
evitando retrabalho. Esta camada não pode ser compartilhada devido a 
possibilidade de conter dados sensíveis ou sigilosos.

3. Spec -  Terceira Camada da Democratização dos Dados: Nesta 
camada, os dados são preparados especificamente para atender às 
necessidades do usuário final. Na empresa em questão, a área 
responsável solicita ao dono do dado uma tabela contendo as 
informações necessárias.
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APÊNDICE 10 -  VISÃO COMPUTACIONAL 

A -  ENUNCIADO

1) Extração de Características

Os bancos de imagens fornecidos são conjuntos de imagens de 250x250 pixels de imuno- 

histoquímica (biópsia) de câncer de mama. No total são 4 classes (0, 1+, 2+ e 3+) que estão divididas 

em diretórios. O objetivo é classificar as imagens nas categorias correspondentes. Uma base de 

imagens será utilizada para o treinamento e outra para o teste do treino.

As imagens fornecidas são recortes de uma imagem maior do tipo WSI (Whole Slide Imaging) 

disponibilizada pela Universidade de Warwick (link). A nomenclatura das imagens segue o padrão 

XX_HER_YYYY.png, onde XX é o número do paciente e YYYY é o número da imagem recortada. 

Separe a base de treino em 80% para treino e 20% para validação. Separe por pacientes (XX), não 

utilize a separação randôm ica! Pois, im agens do m esm o paciente não podem estar na base de 

tre ino  e de validação, pois isso pode gerar um viés. No caso da CNN VGG16 remova a última 

camada de classificação e armazene os valores da penúltima camada como um vetor de 

características. Após o treinamento, os modelos treinados devem ser validados na base de teste.

Tarefas:

a) Carregue a base de dados de Treino.
b) Crie partições contendo 80% para treino e 20% para validação (atenção aos pacientes).
c) Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada 

extrator).
d) Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.
e) Carregue a base de Teste e execute a tarefa 3 nesta base.
f) Aplique os modelos treinados nos dados de treino
g) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas 

matrizes de confusão.
h) Indique qual modelo dá o melhor o resultado e a métrica utilizada

2) Redes Neurais

Utilize as duas bases do exercício anterior para treinar as Redes Neurais Convolucionais 

VGG16 e a Resnet50. Utilize os pesos pré-treinados (Transfer Learning), refaça as camadas Fully 

Connected para o problema de 4 classes. Compare os treinos de 15 épocas com e sem Data 

Augmentation. Tanto a VGG16 quanto a Resnet50 têm como camada de entrada uma imagem 

224x224x3, ou seja, uma imagem de 224x224 pixels coloridos (3 canais de cores). Portanto, será 

necessário fazer uma transformação de 250x250x3 para 224x224x3. Ao fazer o Data Augmentation 

cu idado para não alterar demais as cores das imagens e atrapalhar na classificação.

Tarefas:
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a) Utilize a base de dados de Treino já separadas em treino e validação do exercício anterior

b) Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation

c) Aplique os modelos treinados nas imagens da base de Teste

d) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas matrizes 
de confusão.

e) Indique qual modelo dá o melhor o resultado e a métrica utilizada 

B - RESOLUÇÃO

[ ]: # Libraries
import numpy as np, cv2, sys, pylab, matplotlib, PIL, scipy
from numpy import histogram
from scipy import stats
from PIL import Image
import matplotlib.pyplot as plt
import skimage
from skimage.feature import local_binary_pattern 
from skimage import data, morphology

from skimage.transform import rotate 
from skimage import data 
from skimage.color import label2rgb 
from skimage import data, exposure, util

from skimage.util import dtype

import os 
import random

Q 1 Extração de Características 

Q1T1. Carregue a base de dados de Treino

[ ]: from google.colab import files,drive 
drive.mount('/content/drive')

Mounted at /content/drive

[ ]: # Leitura e extração Zip - Dados de Treinamento 
from google.colab import files

[Ijunzip Train_Warwick.zip
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unzip: cannot find or open Train_Warwick.zip, Train_Warwick.zip.zip or
Train_Warwick.zip.ZIP.

Q1T2. Crie partições contendo 80% para treino e 20% para validação (atenção aos 
pacientes).

[ ]: # Set the path to your data
data_train = '/content/drive/MyDrive/Colab Notebooks/Visão Computacional/ 
^Train_4cls_amostra/Pasta Treino' 

data_val = '/content/drive/MyDrive/Colab Notebooks/Visão Computacional/ 
^Train 4cls amostra/Pasta Validacao'

[ ]: def gravar_lista_imagens(data_path):
# Lista para armazenar os caminhos das imagens

all_files = []

for class_folder in os.listdir(data_path):
class_path = os.path.join(data_path, class_folder) 
if os.path.isdir(class_path):

for img_file in os.listdir(class_path): 
if img_file.endswith('.png'):

file_path = os.path.join(class_path, img_file) 
all_files.append(file_path)

return all files

train_files = gravar_lista_imagens(data_train) 
valid_files = gravar_lista_imagens(data_val )

[ ]: print(f"Total train images: {len(train_files)}")
print(f"Total validation images: {len(valid_files)}")

Total train images: 473
Total validation images: 120

[ ]: # Example: print the first few file paths in train and test sets 
print("Train files:", train_files[:5]) 
print("Validation files:", valid_files[:5])

Train files: ['/content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Train_4cls_amostra/Pasta Treino/0/13_HER2_11272.png', 
'/content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Train_4cls_amostra/Pasta Treino/0/13_HER2_10874.png', 
'/content/drive/MyDrive/Colab Notebooks/Visão
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Computacional/Train_4cls_amostra/Pasta Treino/0/13_HER2_10494.png', 
'/content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Train_4cls_amostra/Pasta Treino/0/13_HER2_10366.png', 
'/content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Train_4cls_amostra/Pasta Treino/0/01_HER2_7144.png']
Validation files: ['/content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Train_4cls_amostra/Pasta Validacao/0/57_HER2_4420.png', 
'/content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Train_4cls_amostra/Pasta Validacao/0/57_HER2_4666.png', 
'/content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Train_4cls_amostra/Pasta Validacao/0/57_HER2_4898.png', 
'/content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Train_4cls_amostra/Pasta Validacao/0/57_HER2_6349.png', 
'/content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Train_4cls_amostra/Pasta Validacao/0/57_HER2_4660.png']

[ ]: # Testing if the split into train and validation worked 
def check_patient_overlap(train_list, valid_list):

# Extract the patient IDs from the train and test lists 
train_patients = set([os.path.basename(file).split('_')[0] for fileu

^in train_list])
valid_patients = set([os.path.basename(file).split('_')[0] for fileu 

^in valid_list])

# Find the common patient IDs in both lists 
overlap = train_patients.intersection(valid_patients)

# Check if there's any overlap 
if overlap:

return f"Patients in both train and validation sets:u 
^{sorted(list(overlap))}" 

else:
return "No patients are present in both train and validation sets.

result = check_patient_overlap(train_files, valid_files) 
print(result)

Patients in both train and validation sets: ['01', '04', '11', '14', '15',u 
^ '16',

'19', '25', '26', '36', '46', '57']
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Q1T3.1 Extraia características utilizando LBP (gerando um csv).

[ ]: ## Extracting LBP characteristics for train and validation and saving tou 
^file 

import os 
import cv2 
import numpy as np
from skimage.feature import local_binary_pattern 
from skimage import morphology 
import csv

# Funções de extração adaptadas 
def lbp_riu(npmat_img, label): 

radius = 1 
n_points = 8
lbp = local_binary_pattern(npmat_img, n_points, radius,u 

^method= 'uniform')

array_lbp = np.zeros(11, dtype=int) # Dez posições do P+2 e mais umau 
^para o label

rows, cols = npmat_img.shape 
for ci in range(rows):

for cj in range(cols):
aux = int(lbp[ci][cj]) 
array_lbp[aux + 1] += 1

array_lbp[0] = label # Label da imagem (agora um número) 
return array_lbp # Retorna os vetores extraídos

def lbp_tophat(npmat_img, label): 
radius = 1 
n_points = 8
lbp = local_binary_pattern(npmat_img, n_points, radius,u 

^method= 'uniform')

array_lbp = np.zeros(11, dtype=int) # Dez posições do P+2 e mais umau 
^para o label

rows, cols = npmat_img.shape 
for ci in range(rows):

for cj in range(cols):
aux = int(lbp[ci][cj]) 
array_lbp[aux + 1] += 1

se = morphology.disk(5)
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white = morphology.white_tophat(npmat_img, se)
black = morphology.black_tophat(npmat_img, se)
wmean = np.mean(white)
wsd = np.std(white)
bmean = np.mean(black)
bsd = np.std(black)

top_hat_features = np.array([wmean, wsd, bmean, bsd])
# return np.concatenate((array_lbp, top_hat_features)) # Combina asu 

^características LBP e tophat
return array_lbp, top_hat_features

def tophat(npmat_img, label): 
se = morphology.disk(5)
white = morphology.white_tophat(npmat_img, se)
black = morphology.black_tophat(npmat_img, se)
wmean = np.mean(white)
wsd = np.std(white)
bmean = np.mean(black)
bsd = np.std(black)

top_hat_features = np.array([label, wmean, wsd, bmean, bsd]) 
return top_hat_features # Retorna as características extraídas

# Função para calcular características e salvar em CSV 
def Calcula_caracteristicas(file_list, csv_name):

with open(csv_name, mode= 'w', newline= '') as csv_file: 
csv_writer = csv.writer(csv_file)

header = ['Nome do Arquivo', 'Label'] + [f'LBP_{i} ' for i inu 
^range(1, 11)] + \

[f 'TopHat_wmean', f'TopHat_wsd', f'TopHat_bmean',u 
^f'TopHat_bsd'] + \

[f'LBP_TopHat_{i} ' for i in range(1, 11)] + \
[f 'TopHat_wmean2', f'TopHat_wsd2', f'TopHat_bmean2',u

^f 'TopHat_bsd2']
csv_writer.writerow(header)

for image_path in file_list:
file_name = os.path.basename(image_path) 
class_label = int(os.path.basename(os.path. 

^dirname(image_path)))
img = cv2.imread(image_path, 0)
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if img is not None:
lbp_features = lbp_riu(img, class_label) 
lbp_tophat_features, tophat_features1 = lbp_tophat(img,u

class_label)
tophat_features2 = tophat(img, class_label)

# Combine all features
combined_features = np.concatenate(([file_name], #u 

Include filename here
lbp_features, 
tophat_features1, 
lbp_tophat_features[1:], u

# Exclude the label

tophat_features2[1:] #u
Exclude the label

))

csv_writer.writerow(combined_features)

[ ]: # Chamando para os datasets de treino e teste
Calcula_caracteristicas(train_files, 'train_lbp_features.csv') 
Calcula_caracteristicas(valid_files, 'valid_lbp_features.csv')

print("Extração de características LBP e TopHat concluída e salva nosL 
+arquivos CSV.")

Extração de características LBP e TopHat concluída e salva nos arquivos CSV. 

Q1T3.2 Extraia características utilizando CNN VGG16 (gerando um csv ).

[ ]: !pip install keras

Requirement already satisfied: keras in /usr/local/lib/python3.11/ 
^dist-packages 

(3.8.0)
Requirement already satisfied: absl-py in /usr/local/lib/python3.11/dist- 
packages (from keras) (1.4.0)
Requirement already satisfied: numpy in /usr/local/lib/python3.11/ 
^dist-packages 

(from keras) (2.0.2)
Requirement already satisfied: rich in /usr/local/lib/python3.11/ 
^dist-packages 

(from keras) (13.9.4)
Requirement already satisfied: namex in /usr/local/lib/python3.11/ 
^dist-packages
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3 0.000000 0.0 0.202915
4 0.669177 0.0 0.092328

0.000000 0.730596 0.0 0.0 0.000000 0.0
0.000000 0.000000 0.0 0.0 0.000000 0.0

115 0.502435 0.0 0.000000 0.115867 0.000000 0.0 0.0 0.332782 0.0
116 0.340461 0.0 0.311162 0.420919 0.000000 0.0 0.0 0.000000 0.0
117 0.354492 0.0 0.937881 0.407781 0.337284 0.0 0.0 0.000000 0.0
118 0.981852 0.0 0.726162 0.703347 0.307817 0.0 0.0 0.204648 0.0
119 0.014179 0.0 0.139641 0.226677 0.000000 0.0 0.0 0.369366 0.0

\
9 ... 25080 25081 25082 25083 25084 25085

^ \
0 0.000000 ... 0.451090 0.114031 0.000000 0.000000 0.0 0.00000
1 0.000000 . 0.706679 0.000000 0.191406 0.447078 0.0 0.00000
2 0.000000 . 0.045687 0.000000 0.215100 0.000000 0.0 0.00000
3 0.000000 . 0.598636 0.000000 0.256484 0.454856 0.0 0.00000
4 0.000000 . 0.785919 0.000000 0.130940 0.000000 0.0 0.00000

115 0.000000 . 0.603611 0.000000 0.000000 0.000000 0.0 0.00000
116 0.000000 . 0.755744 0.198884 0.000000 0.000000 0.0 0.00974
117 0.159063 . 0.284996 0.000000 0.000000 0.000000 0.0 0.00000
118 0.000000 . 0.798354 0.000000 0.502949 0.000000 0.0 0.00000
119 0.000000 . 0.052298 0.000000 0.830387 0.000000 0.0 0.00000

25086 25087 Label paciente
0 1.286761 0.000000 0 57
1 0.889122 0.000000 0 57
2 0.996628 0.000000 0 57
3 1.160086 0.000000 0 57
4 0.802790 0.000000 0 57

115 0.084894 0.000000 3 11
116 0.592438 0.000000 3 19
117 0.000000 0.006357 3 11
118 0.669602 0.000000 3 19
119 0.223745 0.000000 3 11

[120 rows x 25090 columns]

U

Q1T4. Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.

[ ]:
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# ler os arquivos train_lbp_features.csv e valid_lbp_features.csv,u
^transformar a coluna label para inteiro, ajustar modelos RF, RNA eu 
^SVM nos dados de treinamento e testar os ajustes nos dados deu 
^validação, mostrar matriz de confusão colorida para a performance deu 
^cada modelo nos dados de teste, salvar e mostrar um df com acurácia,u 
^sensibilidade, especificidade, F1Score, ordenar por maior F1Score

import pandas as pd
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.neural_network import MLPClassifier 
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix, accuracy_score,u 
^recall_score, f1_score, precision_score 

import matplotlib.pyplot as plt 
import seaborn as sns
from sklearn.preprocessing import StandardScaler # Import StandardScaler

# Load the CSV files
train_df_lbp = pd.read_csv('train_lbp_features.csv') 
valid_df_lbp = pd.read_csv('valid_lbp_features.csv')

# Convert 'Label' column to integer type 
train_df_lbp['Label'] = train_df_lbp['Label'] .astype(int) 
valid_df_lbp['Label'] = valid_df_lbp['Label'] .astype(int)

# Separate features and labels for train and test sets 
X_train_lbp = train_df_lbp.drop(columns= ['Nome do Arquivo', 'Label']) 
y_train_lbp = train_df_lbp['Label']
X_valid_lbp = valid_df_lbp.drop(columns= ['Nome do Arquivo', 'Label']) 
y_valid_lbp = valid_df_lbp['Label']

# Normalize LBP features 
scaler = StandardScaler()
X_train_lbp_scaled = scaler.fit_transform(X_train_lbp)
X_valid_lbp_scaled = scaler.transform(X_valid_lbp)

# Initialize models
rf_model_lbp = RandomForestClassifier() 
rna_model_lbp = MLPClassifier() 
svm_model_lbp = SVC()

# Train the models
rf_model_lbp.fit(X_train_lbp, y_train_lbp)
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rna_model_lbp.fit(X_train_lbp, y_train_lbp) 
svm_model_lbp.fit(X_train_lbp, y_train_lbp)

# Make predictions on the valid set 
rf_pred_lbp = rf_model_lbp.predict(X_valid_lbp) 
rna_pred_lbp = rna_model_lbp.predict(X_valid_lbp) 
svm_pred_lbp = svm_model_lbp.predict(X_valid_lbp)

# Function to calculate metrics and create confusion matrix 
def evaluate_model(y_true, y_pred_lbp, model_name):

cm = confusion_matrix(y_true, y_pred_lbp)
accuracy = accuracy_score(y_true, y_pred_lbp)
tpr = recall_score(y_true, y_pred_lbp, average= 'weighted')
precision = precision_score(y_true, y_pred_lbp, average= 'weighted')
f1 = f1_score(y_true, y_pred_lbp, average= 'weighted')
specificity = recall_score(y_true, y_pred_lbp, average= 'weighted')

# Create a colored confusion matrix 
plt.figure(figsize= (6, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues") 
plt.title(f'Confusion Matrix for {model_name} ') 
plt.xlabel('Predicted Label') 
plt.ylabel('True Label') 
plt.show()

return accuracy, tpr, specificity, f1

# Evaluate and display confusion matrices for each model 
rf_accuracy_lbp, rf_tpr_lbp, rf_specificity_lbp, rf_f1_lbp =u
^evaluate_model(y_valid_lbp, rf_pred_lbp, 'Random Forest LBP VALID') 

rna_accuracy_lbp, rna_tpr_lbp, rna_specificity_lbp, rna_f1_lbp =u 
^evaluate_model(y_valid_lbp, rna_pred_lbp, 'RNA LBP VALID') 

svm_accuracy_lbp, svm_tpr_lbp, svm_specificity_lbp, svm_f1_lbp =u 
^evaluate_model(y_valid_lbp, svm_pred_lbp, 'SVM LBP VALID')

# Create a DataFrame to store the results 
results_df_lbp = pd.DataFrame({

'Model': ['Random Forest LBP VALID', 'RNA LBP VALID', 'SVM LBPu 
^VALID'],

'Accuracy': [rf_accuracy_lbp, rna_accuracy_lbp, svm_accuracy_lbp], 
'Sensibility': [rf_tpr_lbp, rna_tpr_lbp, svm_tpr_lbp], 
'Specificity': [rf_specificity_lbp, rna_specificity_lbp,u 

^svm_specificity_lbp],
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'F1Score': [rf_f1_lbp, rna_f1_lbp, svm_f1_lbp]
})

# Sort the DataFrame by F1Score in descending order 
results_df_lbp = results_df_lbp.sort_values('F1Score' ascending=False)

# Display the results 
print(results_df_lbp)

Confusion M atrix fo r Random Forest LBP VALID
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/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:
^1565:

UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 inu 
^labels

with no predicted samples. Use 'zero_division' parameter to control this 
behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
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Confusion M atrix fo r SVM LBP VALID

Model Accuracy
0 Random Forest LBP VALID 0.741667
1 RNA LBP VALID 0.583333
2 SVM LBP VALID 0.541667

Sensibility
0.741667
0.583333
0.541667

Specificity
0.741667
0.583333
0.541667

[ ]: # Import necessary classes from scikit-learn
from sklearn.ensemble import RandomForestClassifier 
from sklearn.neural_network import MLPClassifier 
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix, accuracy_score,L 
^recall_score, precision_score, f1_score 

import seaborn as sns 
import matplotlib.pyplot as plt

F1Score
0.743386
0.537205
0.464582
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# Load the CSV files
train_df_vgg = pd.read_csv('train_vgg16_features.csv') 
valid_df_vgg = pd.read_csv('valid_vgg16_features.csv')

# Convert 'Label' column to integer type 
train_df_vgg['Label'] = train_df_vgg['Label'] .astype(int) 
valid_df_vgg['Label'] = valid_df_vgg['Label'] .astype(int)

# For the training set:
X_train_vgg = train_df_vgg.iloc[:, :-2] # Select all rows, all columnsu 
^except the last two 

y_train_vgg = train_df_vgg['Label']

# For the validation set:
X_valid_vgg = valid_df_vgg.iloc[:, :-2] # Same logic for validation set 
y_valid_vgg = valid_df_vgg['Label']

# Initialize models
rf_model_vgg = RandomForestClassifier() 
rna_model_vgg = MLPClassifier() 
svm_model_vgg = SVC()

# Train the models
rf_model_vgg.fit(X_train_vgg, y_train_vgg) 
rna_model_vgg.fit(X_train_vgg, y_train_vgg) 
svm_model_vgg.fit(X_train_vgg, y_train_vgg)

# Make predictions on the valid set 
rf_pred_vgg = rf_model_vgg.predict(X_valid_vgg) 
rna_pred_vgg = rna_model_vgg.predict(X_valid_vgg) 
svm_pred_vgg = svm_model_vgg.predict(X_valid_vgg)

# Function to calculate metrics and create confusion matrix 
def evaluate_model(y_true, y_pred_vgg, model_name):

cm = confusion_matrix(y_true, y_pred_vgg)
accuracy = accuracy_score(y_true, y_pred_vgg)
tpr = recall_score(y_true, y_pred_vgg, average= 'weighted')
precision = precision_score(y_true, y_pred_vgg, average= 'weighted')
f1 = f1_score(y_true, y_pred_vgg, average= 'weighted')
specificity = recall_score(y_true, y_pred_vgg, average= 'weighted')

# Create a colored confusion matrix 
plt.figure(figsize= (6, 6))



158

sns.heatmap(cm, annot=True, fmt="d", cmap="Blues") 
plt.title(f'Confusion Matrix for {model_name} ') 
plt.xlabel('Predicted Label') 
plt.ylabel('True Label') 
plt.show()

return accuracy, tpr, specificity, f1

# Evaluate and display confusion matrices for each model 
rf_vgg_accuracy, rf_vgg_tpr, rf_vgg_specificity, rf_vgg_f1 =u
^evaluate_model(y_valid_vgg, rf_pred_vgg, 'Random Forest VGG16 VALID') 

rna_vgg_accuracy, rna_vgg_tpr, rna_vgg_specificity, rna_vgg_f1 =u 
^evaluate_model(y_valid_vgg, rna_pred_vgg, 'RNA VGG16 VALID') 

svm_vgg_accuracy, svm_vgg_tpr, svm_vgg_specificity, svm_vgg_f1 =u 
^evaluate_model(y_valid_vgg, svm_pred_vgg, 'SVM VGG16 VALID')

# Create a DataFrame to store the results 
results_df_vgg = pd.DataFrame({

'Model': ['Random Forest VGG16 VALID', 'RNA VGG16 VALID', 'SVM VGG16u 
^VALID'],

'Accuracy': [rf_vgg_accuracy, rna_vgg_accuracy, svm_vgg_accuracy], 
'Sensibility': [rf_vgg_tpr, rna_vgg_tpr, svm_vgg_tpr],
'Specificity': [rf_vgg_specificity, rna_vgg_specificity,u 

^svm_vgg_specificity],
'F1Score': [rf_vgg_f1, rna_vgg_f1, svm_vgg_f1]

})

# Sort the DataFrame by F1Score in descending order
results_df_vgg = results_df_vgg.sort_values('F1Score', ascending=False)

# Display the results 
print(results_df_vgg)
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Confusion M atrix fo r Random Forest VGG16 VALID
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Confusion M atrix fo r RNA VGG16 VALID
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Confusion M atrix fo r SVM VGG16 VALID

Model Accuracy
1 RNA VGG16 VALID 0.883333
2 SVM VGG16 VALID 0.841667
0 Random Forest VGG16 VALID 0.816667

Sensibility
0.883333
0.841667
0.816667

Specificity
0.883333
0.841667
0.816667

F1Score
0.880913
0.841597
0.813274

[ ]: # prompt: juntar os dataframes de resultados acima e ordenar por maioru 

^f1score

# Concatenate the two DataFrames
combined_results_df = pd.concat([results_df_lbp, results_df_vgg],u 
^ignore_index=True)

# Sort the combined DataFrame by F1Score in descending order
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combined_results_df = combined_results_df.sort_values('F1Score',u 
^ascending=False)

# Display the combined and sorted results 
print(combined_results_df)

Model Accuracy Sensibility Specificity FIScore
3 RNA VGG16 VALID 0.883333 0.883333 0.883333 0.880913
4 SVM VGG16 VALID 0.841667 0.841667 0.841667 0.841597
5 Random Forest VGG16 VALID 0.816667 0.816667 0.816667 0.813274
0 Random Forest LBP VALID 0.741667 0.741667 0.741667 0.743386
1 RNA LBP VALID 0.583333 0.583333 0.583333 0.537205
2 SVM LBP VALID 0.541667 0.541667 0.541667 0.464582

T5 Carregue a base de Teste e execute a tarefa 3 nesta base.

[ ]: from google.colab import files

!unzip '/content/drive/MyDrive/Colab Notebooks/Visão Computacional/ 
^Test_Warwick.zip'

Archive: /content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Test_Warwick.zip 

creating: Test_4cl_amostra/ 
creating: Test_4cl_amostra/0/ 
inflating: Test_4cl_amostra/0/70_HER2_23828.png 
inflating: Test_4cl_amostra/0/70_HER2_23827.png

inflating: Test_4cl_amostra/1/34_HER2_18120.png 
inflating: Test_4cl_amostra/1/34_HER2_17287.png 
inflating: Test_4cl_amostra/1/34_HER2_18288.png 
inflating: Test_4cl_amostra/1/34_HER2_6302.png

[ ]: # Set the path to your data
data_path = '/content/Test_4cl_amostra'

import os

# Dictionary to store image paths grouped by patient ID 
patient_dict = {}

# List to store all image file paths 
all files = []



163

# Assume data_path is defined earlier in your code
# data_path = "path/to/your/data/directory"

# Loop through class folders and images to extract patient ID and storeu 
^image paths

for class_folder in os.listdir(data_path):
class_path = os.path.join(data_path, class_folder) 
if os.path.isdir(class_path):

for img_file in os.listdir(class_path): 
if img_file.endswith('.png'):

patient_id = img_file.split('_')[0] # Extract theu 
^patient number XX

full_path = os.path.join(class_path, img_file)

# Add to patient dictionary
if patient_id not in patient_dict: 

patient_dict[patient_id] = [] 
patient_dict[patient_id].append(full_path)

# Add to all_files list 
all_files.append(full_path)

# Print some statistics
print(f"Total number of images: {len(all_files)}") 
print(f"Number of unique patients: {len(patient_dict)}")

# If you need to use the files later in your code, you can use theu 
^all_files list

# For example:
# for file_path in all_files:
# # Process each file
# pass

Total number of images: 371 
Number of unique patients: 13

[ ]: Calcula_caracteristicas(all_files, 'testfinal_lbp_features.csv')

[ ]: imagens_all, rotulos_all, pacientes_all =carregar_dados_imagens(data_path) 
treino(imagens_all, rotulos_all, pacientes_all,'testfinal_vgg16_features. 
^csv')

WARNING:tensorflow:5 out of the last 20 calls to <function 
TensorFlowTrainer.make_predict_function.<locals>. 
^one_step_on_data_distributed at
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4 0.697009 0.0 1 34

366 1.133308 0.0 0 66
367 0.955719 0.0 0 73
368 0.621897 0.0 0 68
369 0.749184 0.0 0 68
370 0.695996 0.0 0 68

[371 rows x 25090 columns]

Q1T6. Aplique os modelos treinados nos dados de teste

Q1T7. Calcule as métricas de Sensibilidade, Especificidade e Fl-Score com base em 
suas matrizes de confusão.

[ ]: test_df_lbpfinal = pd.read_csv('testfinal_lbp_features.csv')

# Convert 'Label' column to integer type
test_df_lbpfinal['Label'] = test_df_lbpfinal['Label'] .astype(int)

# Separate features and labels for train and test sets 
X_test_lbpfinal = test_df_lbpfinal.drop(columns= ['Nome do Arquivo',u
^ 'Label'])

y_test_lbpfinal = test_df_lbpfinal['Label']

# Make predictions on the test set
rf_pred_lbpfinal = rf_model_lbp.predict(X_test_lbpfinal) 
rna_pred_lbpfinal = rna_model_lbp.predict(X_test_lbpfinal) 
svm_pred_lbpfinal = svm_model_lbp.predict(X_test_lbpfinal)

# Function to calculate metrics and create confusion matrix 
def evaluate_model(y_true, y_pred, model_name):

cm = confusion_matrix(y_true, y_pred)
accuracy = accuracy_score(y_true, y_pred)
tpr = recall_score(y_true, y_pred, average= 'weighted')
precision = precision_score(y_true, y_pred, average= 'weighted')
f1 = f1_score(y_true, y_pred, average= 'weighted')
specificity = recall_score(y_true, y_pred, average= 'weighted')

# Create a colored confusion matrix 
plt.figure(figsize= (6, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues") 
plt.title(f'Confusion Matrix for {model_name} ') 
plt.xlabel('Predicted Label')
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plt.ylabel('True Label') 
plt.show()

return accuracy, tpr, specificity, f1

# Evaluate and display confusion matrices for each model 
rf_lbpfinal_accuracy, rf_lbpfinal_tpr, rf_lbpfinal_specificity,u
^rf_lbpfinal_f1 = evaluate_model(y_test_lbpfinal, rf_pred_lbpfinal,u 
^ 'Random Forest LBP OOT') 

rna_lbpfinal_accuracy, rna_lbpfinal_tpr, rna_lbpfinal_specificity,u 
^rna_lbpfinal_f1 = evaluate_model(y_test_lbpfinal, rna_pred_lbpfinal,u 
^ 'RNA LBP OOT')

svm_lbpfinal_accuracy, svm_lbpfinal_tpr, svm_lbpfinal_specificity,u 
^svm_lbpfinal_f1 = evaluate_model(y_test_lbpfinal, svm_pred_lbpfinal,u 
^ 'SVM LBP OOT')

# Create a DataFrame to store the results 
results_df_vggfinal = pd.DataFrame({

'Model': ['Random Forest LBP OOT', 'RNA LBP OOT', 'SVM LBP OOT'], 
'Accuracy': [rf_lbpfinal_accuracy, rna_lbpfinal_accuracy,u 

^svm_lbpfinal_accuracy],
'Sensibility': [rf_lbpfinal_tpr, rna_lbpfinal_tpr, svm_lbpfinal_tpr], 
'Specificity': [rf_lbpfinal_specificity, rna_lbpfinal_specificity,u 

^svm_lbpfinal_specificity],
'FIScore': [rf_lbpfinal_f1, rna_lbpfinal_f1, svm_lbpfinal_f1]

})

# Sort the DataFrame by F1Score in descending order 
results_df_lbpfinal = results_df_vggfinal.sort_values('F1Score',u
^ascending=False)

# Display the results 
print(results_df_lbpfinal)
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Confusion M atrix fo r Random Forest LBP OOT
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Confusion M atrix fo r RIMA LBP OOT

/usr/local/lib/python3.11/dist-packages/sklearn/metrics/_classification.py:
^1565:

UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 inu 
^labels

with no predicted samples. Use 'zero_division' parameter to control this 
behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
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Confusion M atrix fo r SVM LBP OOT

Model Accuracy
0 Random Forest LBP OOT 0.622642
2 SVM LBP OOT 0.601078
1 RNA LBP OOT 0.490566

Sensibility
0.622642
0.601078
0.490566

Specificity
0.622642
0.601078
0.490566

F1Score
0.617302
0.515966
0.432148

[ ]: test_df_vggfinal = pd.read_csv('testfinal_vgg16_features.csv')

# Convert 'Label' column to integer type
test_df_vggfinal['Label'] = test_df_vggfinal['Label'] .astype(int)

# Separate features and labels for train and test sets 
X_test_vggfinal = test_df_vggfinal.iloc[:, :-2] 
y_test_vggfinal = test_df_vggfinal['Label']
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# Make predictions on the test set
rf_pred_vggfinal = rf_model_vgg.predict(X_test_vggfinal) 
rna_pred_vggfinal = rna_model_vgg.predict(X_test_vggfinal) 
svm_pred_vggfinal = svm_model_vgg.predict(X_test_vggfinal)

# Function to calculate metrics and create confusion matrix 
def evaluate_model(y_true, y_pred, model_name):

cm = confusion_matrix(y_true, y_pred)
accuracy = accuracy_score(y_true, y_pred)
tpr = recall_score(y_true, y_pred, average= 'weighted')
precision = precision_score(y_true, y_pred, average= 'weighted')
f1 = f1_score(y_true, y_pred, average= 'weighted')
specificity = recall_score(y_true, y_pred, average= 'weighted')

# Create a colored confusion matrix 
plt.figure(figsize= (6, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues") 
plt.title(f'Confusion Matrix for {model_name} ') 
plt.xlabel('Predicted Label') 
plt.ylabel('True Label') 
plt.show()

return accuracy, tpr, specificity, f1

# Evaluate and display confusion matrices for each model 
rf_vggfinal_accuracy, rf_vggfinal_tpr, rf_vggfinal_specificity,u
^rf_vggfinal_f1 = evaluate_model(y_test_vggfinal, rf_pred_vggfinal,u 
^ 'Random Forest VGG16 OOT') 

rna_vggfinal_accuracy, rna_vggfinal_tpr, rna_vggfinal_specificity,u 
^rna_vggfinal_f1 = evaluate_model(y_test_vggfinal, rna_pred_vggfinal,u 
^ 'RNA VGG16 OOT')

svm_vggfinal_accuracy, svm_vggfinal_tpr, svm_vggfinal_specificity,u 
^svm_vggfinal_f1 = evaluate_model(y_test_vggfinal, svm_pred_vggfinal,u 
^ 'SVM VGG16 OOT')

# Create a DataFrame to store the results 
results_df_vggfinal = pd.DataFrame({

'Model': ['Random Forest VGG16 OOT', 'RNA VGG16 OOT', 'SVM VGG16u 
^OOT'],

'Accuracy': [rf_vggfinal_accuracy, rna_vggfinal_accuracy,u 
^svm_vggfinal_accuracy],

'Sensibility': [rf_vggfinal_tpr, rna_vggfinal_tpr, svm_vggfinal_tpr],
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'Specificity': [rf_vggfinal_specificity, rna_vggfinal_specificity,u 
^svm_vggfinal_specificity],

'FIScore': [rf_vggfinal_f1, rna_vggfinal_f1, svm_vggfinal_f1]
})

# Sort the DataFrame by FIScore in descending order 
results_df_vggfinal = results_df_vggfinal.sort_values('F1Score',u 
^ascending=False)

# Display the results 
print(results_df_vggfinal)

Confusion M atrix fo r Random Forest VGG16 OOT
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C o n fu s io n  M a t r ix  f o r  RN A V G G 1 6  O O T



172

Confusion M atrix fo r SVM VGG16 OOT

Model
1 RNA VGG16 OOT 0.908356
0 Random Forest VGG16 OOT 0.867925

Accuracy Sensibility Specificity FIScore 
0.908356 0.908356 0.907536
0.867925 0.867925 0.866614

2 SVM VGG16 OOT 0.859838 0.859838 0.859838 0.857517

Q1T8. Indique qual modelo dá o melhor o resultado e a métrica utilizada

[ ]: # prompt: juntar os dataframes de resultados acima e ordenar por maioru 

^f1score

# Concatenate the two DataFrames
combined_results_dffinal = pd.concat([results_df_lbpfinal, 
^results_df_vggfinal], ignore_index=True)
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# Sort the combined DataFrame by FIScore in descending order 
combined_results_dffinal = combined_results_dffinal. 
^sort_values('F1Score', ascending=False)

# Display the combined and sorted results 
print(combined_results_dffinal)

Model Accuracy Sensibility Specificity F1Score
3 RNA VGG16 OOT 0.908356 0.908356 0.908356 0.907536
4 Random Forest VGG16 OOT 0.867925 0.867925 0.867925 0.866614
5 SVM VGG16 OOT 0.859838 0.859838 0.859838 0.857517
0 Random Forest LBP OOT 0.622642 0.622642 0.622642 0.617302
1 SVM LBP OOT 0.601078 0.601078 0.601078 0.515966
2 RNA LBP OOT 0.490566 0.490566 0.490566 0.432148
RESULTADO Q1: Os modelos SVM e Random Forest treinados com as características extraídas 
do modelo CNN VGG16 foram os melhores resultados por apresentarem maior F1-Score, ou 
seja,além de conseguir classificar corretamente maior proporção dos pacientes que realmente 
tinham câncer de mama, também tem a melhor especificidade ao classificar corretamente os 
pacientes que não têm a doença.

0.1 Q 2. Redes Neurais Artific iais

Q2T1 Utilize a base de dados de Treino já separadas em treino e validação do exercício 
anterior

[ ]: import os
from keras.models import Model 
from keras.optimizers import Adam
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ModelCheckpoint, EarlyStopping
from keras.layers import Dense, Dropout, Flatten
from keras.applications.vgg16 import VGG16
from pathlib import Path
import numpy as np
import pandas as pd

# Módulo para imprimir os gráficos de treinamento de forma dinâmica.
!pip install livelossplot

Collecting livelossplot
Downloading livelossplot-0.5.6-py3-none-any.whl.metadata (8.9 kB) 

Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist- 
packages (from livelossplot) (3.10.0)
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Requirement already satisfied: python-dateutil>=2.7 in 
/usr/local/lib/python3.11/dist-packages (from matplotlib->livelossplot) 
(2.9.0.post0)
Requirement already satisfied: MarkupSafe>=2.0 in 
/usr/local/lib/python3.11/dist-packages (from Jinja2>=2.
^9->bokeh->livelossplot)

(3.0.2)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/ 
^dist-

packages (from pandas>=1.2->bokeh->livelossplot) (2025.2)
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/ 
^dist-

packages (from pandas>=1.2->bokeh->livelossplot) (2025.2)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist- 
packages (from python-dateutil>=2.7->matplotlib->livelossplot) (1.17.0) 
Downloading livelossplot-0.5.6-py3-none-any.whl (23 kB)
Installing collected packages: livelossplot 
Successfully installed livelossplot-0.5.6

[ ]: !pip install tensorflow==2.15

Collecting tensorflow==2.15
Downloading tensorflow-2.15.0-cp310-cp310- 

manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.4 kB)

Successfully installed keras-2.15.0 ml-dtypes-0.2.0 tensorboard-2.15.2
tensorflow-2.15.0 tensorflow-estimator-2.15.0 wrapt-1.14.1

tf-keras 2.17.0 requires tensorflow<2.18,>=2.17, but you have tensorflow 2. 
^15.0

Q2T3 Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation

Data Augmentation O ImageDataGenerator vai alterar as imagens de acordo com as transfor­
mações indicada dentro dela. Isso irá criar novas imagens com essas alterações. A quantidade 
de imagens é definida pelo batch_size que define para cada ciclo de retreinamento o número de 
imagens criadas. A opção rescale ajuda no treinamento, pois normaliza os valores da imagem 
entre 0 e 1.

[ ]: # Leitura e extração Zip - Dados de Treinamento 
from google.colab import files
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!unzip '/content/drive/MyDrive/Colab Notebooks/Visão Computacional/ 
^Test_Warwick.zip'

Archive: /content/drive/MyDrive/Colab Notebooks/Visão
Computacional/Test_Warwick.zip
replace Test_4cl_amostra/0/70_HER2_23828.png? [y]es, [n]o, [A]ll, [N]one, 
[r]ename:

[ ]: data_teste = '/content/Test_4cl_amostra'
data_train = '/content/drive/MyDrive/Colab Notebooks/Visão Computacional/ 
^Train_4cls_amostra/Pasta Treino' 

data_val = '/content/drive/MyDrive/Colab Notebooks/Visão Computacional/ 
^Train 4cls amostra/Pasta Validacao'

[ ]: from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.applications.resnet50 import preprocess_input #u 
^Import ResNet50 preprocess_input

batch_size = 32

def create_resnet_augmentation_generators(train_df, valid_df, test_df):

train_generator = ImageDataGenerator(
rotation_range=90, 
brightness_range= [0.1, 0.7], 
width_shift_range=0.5, 
height_shift_range=0.5, 
horizontal_flip=True, 
vertical_flip=True,
preprocessing_function=preprocess_input)u 

^# Use ResNet50 preprocess_input

valid_generator =u 
^ImageDataGenerator(preprocessing_function=preprocess_input) # Useu 
^ResNet50 preprocess_input

test_generator =u 
^ImageDataGenerator(preprocessing_function=preprocess_input) # Useu 
^ResNet50 preprocess_input

traingen = train_generator.flow_from_dataframe(
train_df,
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x_col= 'filename',
y_col= 'class',
target_size= (224,224),
batch_size=batch_size,
class_mode= 'categorical',
classes=class_subset,
shuffle=True,
seed=42)

validgen = valid_generator.flow_from_dataframe(
valid_df,
x_col= 'filename',
y_col= 'class',
target_size= (224,224),
batch_size=batch_size,
class_mode= 'categorical',
classes=class_subset,
shuffle=True,
seed=42)

testgen = test_generator.flow_from_dataframe(test_df,
target_size= (224,224),
batch_size=batch_size,
class_mode= 'categorical',
classes=class_subset,
shuffle=False,
seed=42)

return traingen, validgen, testgen 

[ ]: class_subset = ['0','1','2','3']

def create_dataframe(file_list): 
labels = []
for file_path in file_list:

# Extract the label (folder name) from the file path 
label = os.path.basename(os.path.dirname(file_path)) 
labels.append(label)

df = pd.DataFrame({
'filename': file_list,
'class': labels

})
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# Convert numeric labels to strings (if necessary)
# df['class'] = df['class'].astype(str) # This line might beu 

^redundant if labels are already strings

return df

train_files = gravar_lista_imagens(data_train) 
valid_files = gravar_lista_imagens(data_val) 
test_files = gravar_lista_imagens(data_teste)

train_df = create_dataframe(train_files) 
valid_df = create_dataframe(valid_files) 
test_df = create_dataframe(test_files)

[ ]: traingen, validgen, testgen =u
^create_resnet_augmentation_generators(train_df, valid_df, test_df)

Found 473 validated image filenames belonging to 4 classes.
Found 120 validated image filenames belonging to 4 classes.
Found 371 validated image filenames belonging to 4 classes.
Resnet treinada do zero 

[ ]: from tensorflow.keras.applications.resnet50 import ResNet50

# A opção include_top=False não inclui as camadas de aprendizado da redeu 
^original

resnet_0 = ResNet50(input_shape= (224,224,3), weights= 'imagenet', u 
^include_top=False)

# treinar os pesos existentes 
for layer in resnet_0.layers:

layer.trainable = False

Downloading data from https://storage.googleapis.com/tensorflow/keras- 
applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 
94765736/94765736 5s
Ous/step
Criação das camadas Fully Connected para o treinamento

[ ]: # camadas próprias - você pode colocar mais se quiser
# A saída da resnet será a entrada da camada criada 
x = Flatten()(resnet_0.output)

https://storage.googleapis.com/tensorflow/keras-


178

# camada de classificação com as 4 classes utilizadas 
prediction = Dense(len(class_subset), activation= 'softmax')(x)

# Criação do Objeto Modelo (a parte da resnet + as camadas Fullyu 
^connected criadas)

model_0 = Model(inputs=resnet_0.input, outputs=prediction)

[ ]: model_0.summary() # Impressão das arquitetura da rede 

Model: "functional 3"

Layer (type) Output Shape Param # Connected to

input_layer_3 (None, 224,
(None, 7 , 7 , 8,192 conv5_block3_3_c...
(BatchNormalizatio... 2048)

dense (Dense) (None, 4) 401,412 flatten[0][0]

Total params: 23,989,124 (91.51 MB) 

Trainable params: 401,412 (1.53 MB) 

Non-trainable params: 23,587,712 (89.98 MB)

Resnet50 com Data Augmentation
[ ]: %%time

# Otimizador propagação da Raiz quadrada da média ao quadrado (Root Meanu 
^Squared Propagation) 

from keras.optimizers import RMSprop
from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard
from livelossplot import PlotLossesKeras
from tensorflow.keras.utils import to_categorical

steps_per_epoch = traingen.samples // batch_size 
val_steps = validgen.samples // batch_size

n_epochs = 10
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optimizer = RMSprop(learning_rate=0.0001)

model_0.compile(loss= 'categorical_crossentropy', optimizer=optimizer,u 
^metrics= ['accuracy'])

#Trainning the model
# Salva o modelo Keras após cada época, porém só o de melhor resultado 
checkpointer = ModelCheckpoint(filepath= 'img_model_0.weights.best.keras',

verbose=1,
save_best_only=True)

# Para o treinamento para prevenir o overfitting 
early_stop = EarlyStopping(monitor= 'val_loss',

patience=10,
restore_best_weights=True, 
mode= 'min')

CPU times: user 14.8 ms, sys: 2.98 ms, total: 17.8 ms 
Wall time: 17.6 ms

[ ]: history_0 = model_0.fit(traingen,
epochs=n_epochs,
steps_per_epoch=steps_per_epoch, 
validation_data=validgen, 
validation_steps=val_steps, 
callbacks= [checkpointer, PlotLossesKeras()], 
verbose=False)
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accuracy

^906)

^781) 
Loss

training

validation

194)

865)

training

validation

(min: 0.510, max: 0.920, cur: 0.

(min: 0.552, max: 0.812, cur: 0.

(min: 0.194, max: 2.179, cur: 0.

(min: 0.695, max: 2.157, cur: 0.

# # # # R e s n e t sem data augmentation

[ ]: # Utiliza os pesos treinados na base imagenet
resnet_sem_augment = ResNet50(input_shape= (224,224,3), 
^weights= 'imagenet', include_top=False)

for layer in resnet_sem_augment.layers: 
layer.trainable = False

Rede igual ao treinamento do zero, porém utilizando os pesos da Imagenet.
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[ ]: x_sem_augment = Flatten()(resnet_sem_augment.output)

prediction = Dense(len(class_subset), activation= 'softmax')(x_sem_augment)

model_sem_augment = Model(inputs=resnet_sem_augment.input,u 
^outputs=prediction)

model_sem_augment.summary()

Model: "functional 4M

Layer (type) Output Shape Param # Connected to

input_layer_4 (None, 224, 224, 0 -
(InputLayer) 3)

dense_1 (Dense) (None, 4) 401,412 flatten_1[0][0]

Total params: 23,989,124 (91.51 MB)

Trainable params: 401,412 (1.53 MB)

Non-trainable params: 23,587,712 (89.98 MB)

# # # # T re in a m e n to  sem data augmention

[ ]: #Gerando imagem sem data augmentation
def create_resnet_sem_augmentation_generators(train_df, valid_df):

# Create training data generator 
train_sem_augmentation_gen =u 

^ImageDataGenerator(preprocessing_function=preprocess_input) # Useu 
^ResNet50 preprocess_input

valid_sem_augmentation_gen =u 
^ImageDataGenerator(preprocessing_function=preprocess_input) # Useu 
^ResNet50 preprocess_input

traingen = train_sem_augmentation_gen.flow_from_dataframe(
train_df,
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x_col= 'filename',
y_col= 'class',
target_size= (224,224),
batch_size=64,
class_mode= 'categorical',
classes=class_subset,
shuffle=True,
seed=42)

validgen = valid_sem_augmentation_gen.flow_from_dataframe(
valid_df,
x_col= 'filename',
y_col= 'class',
target_size= (224,224),
batch_size=64,
class_mode= 'categorical',
classes=class_subset,
shuffle=True,
seed=42)

return traingen, validgen

[ ]: # Corrected ResNet without Data Augmentation training setup
from tensorflow.keras.applications.resnet50 import ResNet50 # Importu 
^ResNet50 again for clarity

# Utiliza os pesos treinados na base imagenet 
resnet_sem_augment = ResNet50(input_shape= (224,224,3),u
^weights= 'imagenet', include_top=False)

# Freeze the pre-trained layers
for layer in resnet_sem_augment.layers: 

layer.trainable = False

[ ]: %%time

from keras.optimizers import RMSprop
from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard
from livelossplot import PlotLossesKeras
from tensorflow.keras.utils import to_categorical

steps_per_epoch = traingen.samples // batch_size
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val_steps = validgen.samples // batch_size 

n_epochs = 10

optimizer = RMSprop(learning_rate=0.0001)

model_sem_augment.compile(loss= 'categorical_crossentropy',u 
^optimizer=optimizer, metrics= ['accuracy'])

checkpointer = ModelCheckpoint(filepath= 'img_model_sem_data_augmention. 
^weights.best.keras',

verbose=1,
save_best_only=True)

early_stop = EarlyStopping(monitor= 'val_loss',
patience=10,
restore_best_weights=True, 
mode= 'min')

CPU times: user 6.1 ms, sys: 3 ^s, total: 6.1 ms 
Wall time: 5.75 ms

[ ]: history_tl = model_sem_augment.fit(traingen,
epochs=n_epochs,
steps_per_epoch=steps_per_epoch, 
validation_data=validgen, 
validation_steps=val_steps, 
callbacks= [checkpointer, PlotLossesKeras()], 
verbose=True)



184

accuracy

^969)

^792) 
Loss

training

validation

093)

995)

training

validation

(min: 0.528, max: 0.969, cur: 0.

(min: 0.615, max: 0.792, cur: 0.

(min: 0.093, max: 2.247, cur: 0.

(min: 0.735, max: 1.535, cur: 0.

14/14 1s 95ms/step -
accuracy: 0.9688 - loss: 0.0934 - val_accuracy: 0.7917 - val_loss: 0.9947 
# # # # V G G 1 6  com data augmentation

[ ]: from tensorflow.keras.applications.vgg16 import preprocess_input #u 
^Import VGG16 preprocess_input

def create_vgg16_augmentation_generators(train_df, valid_df, test_df):

train_generator = ImageDataGenerator(
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rotation_range=90, 
brightness_range= [0.1, 0.7], 
width_shift_range=0.5, 
height_shift_range=0.5, 
horizontal_flip=True, 
vertical_flip=True,
preprocessing_function=preprocess_input)u

^# Use VGG16 preprocess_input

valid_generator =u 
^ImageDataGenerator(preprocessing_function=preprocess_input) # Useu 
^ VGG16 preprocess_input

test_generator =u 
^ImageDataGenerator(preprocessing_function=preprocess_input) # Useu 
^ VGG16 preprocess_input

traingen = train_generator.flow_from_dataframe(
train_df,
x_col= 'filename',
y_col= 'class',
target_size= (224,224),
batch_size=batch_size,
class_mode= 'categorical',
classes=class_subset,
shuffle=True,
seed=42)

validgen = valid_generator.flow_from_dataframe(
valid_df,
x_col= 'filename',
y_col= 'class',
target_size= (224,224),
batch_size=batch_size,
class_mode= 'categorical',
classes=class_subset,
shuffle=True,
seed=42)

testgen = test_generator.flow_from_dataframe(test_df,
target_size= (224,224), 
batch_size=batch_size, 
class_mode= 'categorical',
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classes=class_subset,
shuffle=False,
seed=42)

return traingen, validgen, testgen

[ ]: from tensorflow.keras.applications.vgg16 import preprocess_input #u 
^Import VGG16 preprocess_input 

from keras.applications.vgg16 import VGG16 # Import VGG16 again foru 
^clarity

vgg_augmentation = VGG16(input_shape= (224,224,3), weights= 'imagenet', u 
^include_top=False)

# treinar os pesos existentes
for layer in vgg_augmentation.layers: 

layer.trainable = False

x_vgg = Flatten()(vgg_augmentation.output)

# camada de classificação com as 04 classes utilizadas 
prediction = Dense(4 , activation= 'softmax')(x_vgg)

# Criação do Objeto Modelo
vgg_augmentation = Model(inputs=vgg_augmentation.input,u 
^outputs=prediction)

vgg_augmentation.summary()

Model: "functional 6M

Layer (type) Output Shape

input_layer_7 (InputLayer) (None, 224, 224, 3)

dense_3 (Dense) (None, 4)

Total params: 14,815,044 (56.51 MB)

Param #

0

100,356
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Trainable params: 100,356 (392.02 KB) 

Non-trainable params: 14,714,688 (56.13 MB)

[ ]: traingen, validgen, testgen =u
^create_vgg16_augmentation_generators(train_df, valid_df, test_df)

Found 473 validated image filenames belonging to 4 classes.
Found 120 validated image filenames belonging to 4 classes.
Found 371 validated image filenames belonging to 4 classes.

[ ]: %%time
from keras.optimizers import RMSprop
from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard
from livelossplot import PlotLossesKeras
from tensorflow.keras.utils import to_categorical

steps_per_epoch = traingen.samples // batch_size 
val_steps = validgen.samples // batch_size

n_epochs = 10

optimizer = RMSprop(learning_rate=0.0001)

vgg_augmentation.compile(loss= 'categorical_crossentropy',u 
^optimizer=optimizer, metrics= ['accuracy'])

# Treinamento do Modelo

# Salva o modelo Keras após cada época, porém só o de melhor resultado 
checkpointer = ModelCheckpoint(filepath= 'img_vgg_augmentation.weights.
^best.keras',

verbose=1,
save_best_only=True)

# Para o treinamento para prevenir o overfitting
# Não utilizei aqui, pois queria que rodasse todas as 30 épocas 
early_stop = EarlyStopping(monitor= 'val_loss',

patience=10,
restore_best_weights=True, 
mode= 'min')
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CPU times: user 6.38 ms, sys: 0 ns, total: 6.38 ms 
Wall time: 5.91 ms

[ ]: history_0 = vgg_augmentation.fit(traingen,
epochs=n_epochs,
steps_per_epoch=steps_per_epoch, 
validation_data=validgen, 
validation_steps=val_steps, 
callbacks= [checkpointer, PlotLossesKeras()], 
verbose=True)

accuracy
training (min: 0.417, max: 0.750, cur: 0.

^750)
validation (min: 0.438, max: 0.677, cur: 0.

^635)
Loss

training (min: 1.026, max: 3.757, cur: 1.
^060)

validation (min: 2.076, max: 4.087, cur: 2.
^27 2)
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14/14 2s 104ms/step -
accuracy: 0.7500 - loss: 1.0600 - val_accuracy: 0.6354 - val_loss: 2.2717 
# # # # V G G 1 6  Sem data augmentation

[ ]: from tensorflow.keras.applications.vgg16 import preprocess_input #u 
^Import VGG16 preprocess_input 

def create_vgg16_sem_augmentation_generators(train_df, valid_df):
# Create training data generator 
train_sem_augmentation_gen =u 

^ImageDataGenerator(preprocessing_function=preprocess_input) # Useu 
^ VGG16 preprocess_input

valid_sem_augmentation_gen =u 
^ImageDataGenerator(preprocessing_function=preprocess_input) # Useu 
^ VGG16 preprocess_input

traingen = train_sem_augmentation_gen.flow_from_dataframe(
train_df,
x_col= 'filename',
y_col= 'class',
target_size= (224,224),
batch_size=64,
class_mode= 'categorical',
classes=class_subset,
shuffle=True,
seed=42)

validgen = valid_sem_augmentation_gen.flow_from_dataframe(
valid_df,
x_col= 'filename',
y_col= 'class',
target_size= (224,224),
batch_size=64,
class_mode= 'categorical',
classes=class_subset,
shuffle=True,
seed=42)

return traingen, validgen

[ ]: from keras.applications.vgg16 import VGG16 # Import VGG16 again foru 
^clarity
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vgg_sem_augment = VGG16(input_shape= (224,224,3), weights= 'imagenet', u 
^include_top=False)

for layer in vgg_sem_augment.layers: 
layer.trainable = False

[ ]: x_vgg_sem_augment = Flatten()(vgg_sem_augment.output)

# camada de classificação com as 04 classes utilizadas 
prediction = Dense(4 , activation= 'softmax')(x_vgg_sem_augment)

# Criação do Objeto Modelo
vgg_sem_augment = Model(inputs=vgg_sem_augment.input, outputs=prediction)

[ ]: sem_aug_traingen, sem_aug_validgen=u
^create_vgg16_sem_augmentation_generators(train_df, valid_df)

Found 473 validated image filenames belonging to 4 classes.
Found 120 validated image filenames belonging to 4 classes.

[ ]: %%time
# Otimizador propagação da Raiz quadrada da média ao quadrado (Root Meanu 
^Squared Propagation)

from keras.optimizers import RMSprop
from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard
from livelossplot import PlotLossesKeras
from tensorflow.keras.utils import to_categorical

steps_per_epoch = sem_aug_traingen.samples // batch_size 
val_steps = sem_aug_validgen.samples // batch_size

n_epochs = 10

optimizer = RMSprop(learning_rate=0.0001)

vgg_sem_augment.compile(loss= 'categorical_crossentropy',u 
^optimizer=optimizer, metrics= ['accuracy'])

# Salva o modelo Keras após cada época, porém só o de melhor resultado 
checkpointer = ModelCheckpoint(filepath= 'img_model_vgg_sem_augment.
^weights.best.keras',

verbose=1,
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save_best_only=True)

# Para o treinamento para prevenir o overfitting 
early_stop = EarlyStopping(monitor= 'val_loss',

patience=10,
restore_best_weights=True, 
mode= 'min')

CPU times: user 3.62 ms, sys: 821 ps, total: 4.44 ms 
Wall time: 4.46 ms

[ ]: history_0 = vgg_augmentation.fit(sem_aug_traingen,
epochs=n_epochs,
steps_per_epoch=steps_per_epoch, 
validation_data=sem_aug_validgen, 
validation_steps=val_steps, 
callbacks= [checkpointer, PlotLossesKeras()], 
verbose=True)

accuracy
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training
-000)

validation
->817)

Loss
training

-002)
validation

-870)

14/14 7s 447ms/step -
accuracy: 1.0000 - loss: 0.0018 - val_accuracy: 0.8167 - val_loss: 0.8698 

[ ]: test df.head()

[ ]: filename class
0 /content/Test_4cl_amostra/1/39_HER2_22299.png 1
1 /content/Test_4cl_amostra/1/39_HER2_25631.png 1
2 /content/Test_4cl_amostra/1/39_HER2_24516.png 1
3 /content/Test_4cl_amostra/1/34_HER2_12127.png 1
4 /content/Test_4cl_amostra/1/34_HER2_17118.png 1

# # # Q 2 T 3 . Aplique os modelos treinados nas imagens da base de Teste

Predições dos Modelos com Data Augmentation Resnet50
[ ]: true_classes = testgen.classes 

true classes2 = test df['class']

[ ]: if np.array_equal(true_classes, true_classes2): 
print("true_classes é igual a true_classes2") 

else:
print("true_classes não é igual a true_classes2") 

true_classes não é igual a true_classes2

[ ]: from sklearn.metrics import accuracy_score, recall_score,u 
-precision_score, f1_score, confusion_matrix 

import pandas as pd 
import numpy as np

# Função para calcular a especificidade em problemas multiclasses 
def specificity_score_multiclass(y_true, y_pred): 

cm = confusion_matrix(y_true, y_pred)
# Inicializa a lista para armazenar a especificidade por classe 
specificity_per_class = []

(min: 0.782, max:

(min: 0.742, max:

(min: 0.002, max:

(min: 0.870, max:

1.000, cur: 1

0.825, cur: 0

1.472, cur: 0

1.131, cur: 0
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# Itera sobre cada classe para calcular a especificidade 
for i in range(len(cm)):

tn = np.sum(np.delete(np.delete(cm, i, axis=0), i, axis=1)) #u 
^Remove a linha e coluna da classe 'i'

fp = np.sum(cm[:, i]) - cm[i, i] # Falsos positivos para au 
^classe 'i'

specificity = tn / (tn + fp) if (tn + fp) > 0 else 0 # Evitaru
^divisão por zero

specificity_per_class.append(specificity)
# Retorna a média da especificidade sobre todas as classes 
return np.mean(specificity_per_class)

# Função para calcular todas as métricas
def calculate_metrics(true_classes, pred_classes, model_name): 

acc = accuracy_score(true_classes, pred_classes)
sens = recall_score(true_classes, pred_classes, average= 'macro') #u 

^Sensibilidade média por classe
spec = specificity_score_multiclass(true_classes, pred_classes) #u 

^Especificidade média por classe
f1 = f1_score(true_classes, pred_classes, average= 'macro') #u 

^F1-Score médio por classe
return [model_name, acc, sens, spec, f1]

[ ]: from sklearn.metrics import accuracy_score, recall_score,u 
^precision_score, f1_score, confusion_matrix 

import pandas as pd 
import numpy as np

# Carregar os pesos dos modelos
model_0.load_weights('img_model_0.weights.best.keras')

# Gerar as previsões
preds_0 = model_0.predict(testgen) 
pred_classes_0 = np.argmax(preds_0, axis=1)

# Calcular as métricas para cada modelo
metrics_0 = calculate_metrics(true_classes, pred_classes_0, "Modelou 
^ResNet50 com Data Augmentation Treinado do Zero")

# Criar DataFrame com os resultados 
df_metrics = pd.DataFrame([metrics_0],

columns= ["Modelo", "Acurácia", "Sensibilidade",u 
^"Especificidade", "F1-Score"])
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# Ordenar pelo maior F1-Score
df_metrics = df_metrics.sort_values(by="F1-Score", ascending=False)

# Exibir o DataFrame ordenado 
print(df_metrics)

/usr/local/lib/python3.11/dist-
packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:121: 
UserWarning: Your 'PyDataset' class should call 'super().
^ init (**kwargs)' in

its constructor. '**kwargs' can include 'workers', 'use_multiprocessing', 
'max_queue_size'. Do not pass these arguments to 'fit()', as they will be 
ignored.

self._warn_if_super_not_called()
12/12 13s 643ms/step

Modelo Acurácia u
^Sensibilidade \

0 Modelo ResNet50 com Data Augmentation Treinado... 0.789757 0.783333

Especificidade F1-Score 
0 0.929336 0.761894

[ ]: df metrics

[ ]: Modelo Acurácia u
^Sensibilidade \

0 Modelo ResNet50 com Data Augmentation Treinado. 0.606469 0.
^611689

Especificidade F1-Score 
0 0.869962 0.585786

CNN VGG16 com Data Augmentation
[ ]: from tensorflow.keras.applications import VGG16

from tensorflow.keras.layers import Dense, Flatten, Dropout 
from tensorflow.keras.models import Model 
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

# Definir o tamanho da imagem (mesmo que nos geradores) 
img_size = (224, 224)
num_classes = len(class_subset) # Número de classes a seremu 
^classificadas
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# Carregar o modelo base VGG16 pré-treinado no ImageNet 
base_model = VGG16(weights= 'imagenet', include_top=False,u
^input_shape=(img_size[0], img_size[1], 3))

# Congelar as camadas da VGG16 para transfer learning 
for layer in base_model.layers:

layer.trainable = False

# Adicionar camadas de classificação no topo
x = Flatten()(base_model.output) # Achata as ativações das camadasu 
^convolucionais

x = Dense(512, activation= 'relu')(x) # Primeira camada totalmenteu 
^conectada

x = Dropout(0.5)(x) # Dropout para evitar overfitting 
x = Dense(num_classes, activation= 'softmax')(x) # Camada de saída comu 
^número de classes

# Criar o modelo final
model = Model(inputs=base_model.input, outputs=x)

# Compilar o modelo
model.compile(optimizer=Adam(learning_rate=1e-4),u 
^loss= 'categorical_crossentropy', metrics= ['accuracy'])

# Definir callbacks: checkpoint para salvar o melhor modelo e earlyu 
^stopping

checkpoint = ModelCheckpoint('img_vgg_augmentation.keras',u 
^monitor= 'val_loss', save_best_only=True, verbose=1) 

early_stopping = EarlyStopping(monitor= 'val_loss', patience=10, verbose=1)

# Treinar o modelo 
history = model.fit(

traingen,
validation_data=validgen,
epochs=10,
steps_per_epoch=traingen.samples // traingen.batch_size, 
validation_steps=validgen.samples // validgen.batch_size, 
callbacks= [checkpoint, early_stopping]

)

Epoch 1/10
14/14 0s 793ms/step -
accuracy: 0.2943 - loss: 6.8849
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# Converter as previsões em classes 
pred_classes = np.argmax(preds, axis=1)

# Classes verdadeiras 
true_classes = testgen.classes

# Verificar se o número de previsões corresponde ao número de amostrasu 
^no conjunto de teste

print(f"Número de classes verdadeiras: {len(true_classes)}") 
print(f"Número de classes previstas: {len(pred_classes)}")

# Calcular métricas
acc = accuracy_score(true_classes, pred_classes)
sens = recall_score(true_classes, pred_classes, average= 'macro') #u 
^Sensibilidade média 

spec = specificity_score_multiclass(true_classes, pred_classes) #u 
^Especificidade média 

f1 = f1_score(true_classes, pred_classes, average= 'macro') # F1-Scoreu 
^médio

12/12 12s 1s/step 
Número de classes verdadeiras: 371 
Número de classes previstas: 371

# Criar DataFrame com as métricas 
df_metrics1 = pd.DataFrame({

'Modelo':"VGG16 Data Augmentation", 
'Acurácia': [acc],
'Sensibilidade': [sens], 
'Especificidade': [spec],
' F1-Score': [f1]

})

# Exibir o DataFrame com os resultados 
print(df_metrics1)

Modelo Acurácia Sensibilidade
^F1-Score

0 VGG16 Data Augmentation 0.654987 0.644444 
^588581

Especificidade u 

0.883113 0.

[]

[ ]: # prompt: unir os dataframes df_metrics e df_metrics1 e ordenar pelou 
^maior F1 score
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# Concatenar os DataFrames df_metrics e df_metrics1
df_combined = pd.concat([df_metrics, df_metrics1], ignore_index=True)

# Ordenar o DataFrame combinado pelo maior F1-Score
df_combined = df_combined.sort_values(by= 'F1-Score', ascending=False)

# Exibir o DataFrame ordenado 
print(df_combined)

Modelo Acurácia u
^Sensibilidade \

0 Modelo ResNet50 com Data Augmentation Treinado... 0.789757 0.783333
1 VGG16 Data Augmentation 0.654987 0.
^644444

Especificidade F1-Score
0 0.929336 0.761894
1 0.883113 0.588581

Resnet50 sem Data augmentation
[ ]: import pandas as pd

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.layers import Dense, Flatten, Dropout
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import RMSprop
from keras.callbacks import ModelCheckpoint, EarlyStopping
from livelossplot import PlotLossesKeras

# Parâmetros
img_size = (224, 224) # Tamanho das imagens
batch_size = 32 
n_epochs = 10

# Criar geradores de dados
train_datagen = ImageDataGenerator(rescale=1./255) # Normalização 
valid_datagen = ImageDataGenerator(rescale=1./255) 
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_dataframe( 
train_df, 
x_col= 'filename', 
y_col= 'class', 
target_size=img_size,
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batch_size=batch_size,
class_mode= 'categorical', # Para múltiplas classes 
shuffle=True

)

valid_generator = valid_datagen.flow_from_dataframe( 
valid_df, 
x_col= 'filename', 
y_col= 'class', 
target_size=img_size, 
batch_size=batch_size, 
class_mode= 'categorical', 
shuffle=False

)

test_generator = test_datagen.flow_from_dataframe( 
test_df,
x_col= 'filename', 
y_col= 'class', 
target_size=img_size, 
batch_size=batch_size, 
class_mode= 'categorical', 
shuffle=False

)

# Carregar o modelo ResNet50
base_model = ResNet50(weights= 'imagenet', include_top=False,u 
^input_shape=(img_size[0], img_size[1], 3))

# Congelar as camadas do modelo base 
for layer in base_model.layers:

layer.trainable = False

# Adicionar camadas personalizadas 
x = Flatten()(base_model.output)
x = Dense(512, activation= 'relu')(x) 
x = Dropout(0.5)(x)

# Definir a camada de saída com o número correto de classes
x = Dense(len(train_generator.class_indices), activation= 'softmax')(x)

# Criar o modelo final
model = Model(inputs=base_model.input, outputs=x)
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# Compilar o modelo
optimizer = RMSprop(learning_rate=0.0001)
model.compile(loss= 'categorical_crossentropy', optimizer=optimizer,u 
^metrics= ['accuracy'])

# Definir callbacks
checkpointer = ModelCheckpoint(filepath= 'resnet50_best_weights.keras',u 
^verbose=1, save_best_only=True)

early_stop = EarlyStopping(monitor= 'val_loss', patience=10,u 
^restore_best_weights=True, mode= 'min')

# Ajustar o modelo
steps_per_epoch = train_generator.samples // batch_size
val_steps = valid_generator.samples // batch_size

history = model.fit( 
train_generator, 
epochs=n_epochs,
steps_per_epoch=steps_per_epoch, 
validation_data=valid_generator, 
validation_steps=val_steps, 
callbacks= [checkpointer, PlotLossesKerasQ], 
verbose=1

)
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[ ]: from sklearn.metrics import accuracy_score, recall_score,u 
^precision_score, f1_score, confusion_matrix 

import pandas as pd 
import numpy as np

# Gerar as previsões
preds = model.predict(testgen) 
pred_classes = np.argmax(preds, axis=1)

# Calcular as métricas para cada modelo
metrics = calculate_metrics(true_classes, pred_classes, "Modelo ResNet50u 
^sem Data Augmentation")

# Criar DataFrame com os resultados 
df_metrics3 = pd.DataFrame([metrics],

columns= ["Modelo", "Acurácia", "Sensibilidade",u 
^"Especificidade", "F1-Score"])

# Ordenar pelo maior F1-Score
df_metrics3 = df_metrics3.sort_values(by="F1-Score", ascending=False)

# Exibir o DataFrame ordenado 
print(df_metrics3)

12/12
Modelo Acurácia Sensibilidade \

13s 730ms/step

accuracy
training (min: 0.311, max: 0.562, cur: 0.

^562)
validation (min: 0.229, max: 0.573, cur: 0.

^323)
Loss

training (min: 0.887, max: 4.495, cur: 0.
^963)

validation (min: 1.038, max: 1.807, cur: 1.
^198)

14/14 1s 103ms/step -
accuracy: 0.5625 - loss: 0.9632 - val_accuracy: 0.3229 - val_loss: 1.1984
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0 Modelo ResNet50 sem Data Augmentation 0.250674 0.258333

Especificidade F1-Score 
0 0.752669 0.123172

CNN VGG16 Sem Data Augmentation
[ ]: from tensorflow.keras.applications import VGG16

from tensorflow.keras.layers import Dense, Flatten, Dropout 
from tensorflow.keras.models import Model 
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

# Definir o tamanho da imagem (mesmo que nos geradores) 
img_size = (224, 224)
num_classes = len(class_subset) # Número de classes a seremu 
^classificadas

# Carregar o modelo base VGG16 pré-treinado no ImageNet 
base_model = VGG16(weights= 'imagenet', include_top=False,u
^input_shape=(img_size[0], img_size[1], 3))

# Congelar as camadas da VGG16 para transfer learning 
for layer in base_model.layers:

layer.trainable = False

# Adicionar camadas de classificação no topo
x = Flatten()(base_model.output) # Achata as ativações das camadasu 
^convolucionais

x = Dense(512, activation= 'relu')(x) # Primeira camada totalmenteu 
^conectada

x = Dropout(0.5)(x) # Dropout para evitar overfitting 
x = Dense(num_classes, activation= 'softmax')(x) # Camada de saída comu 
^número de classes

# Criar o modelo final
model = Model(inputs=base_model.input, outputs=x)

# Compilar o modelo
model.compile(optimizer=Adam(learning_rate=1e-4),u 
^loss= 'categorical_crossentropy', metrics= ['accuracy'])

# Definir callbacks: checkpoint para salvar o melhor modelo e earlyu 
^stopping
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checkpoint = ModelCheckpoint('img_model_vgg_sem_augment.keras',u 
^monitor= 'val_loss', save_best_only=True, verbose=1) 

early_stopping = EarlyStopping(monitor= 'val_loss', patience=10, verbose=1)

# Treinar o modelo 
history = model.fit( 

traingen,
validation_data=validgen,
epochs=10,
steps_per_epoch=traingen.samples // traingen.batch_size, 
validation_steps=validgen.samples // validgen.batch_size, 
callbacks= [checkpoint, early_stopping]

)

Epoch 1/10
14/14 0s 777ms/step -
accuracy: 0.3385 - loss: 5.9763
Epoch 1: val_loss improved from inf to 6.20825, saving model to
img_model_vgg_sem_augment.keras
14/14 17s 1s/step -
accuracy: 0.3426 - loss: 5.9117 - val_accuracy: 0.4479 - val_loss: 6.2083 
Epoch 2/10 
1/14 2s 166ms/step -

accuracy: 0.5000 - loss: 3.6972
/usr/local/lib/python3.11/dist-
packages/keras/src/trainers/epoch_iterator.py:107: UserWarning: Your inputu 
^ran

out of data; interrupting training. Make sure that your dataset oru 
^generator can

generate at least 'steps_per_epoch * epochs' batches. You may need to useu 
^the

'.repeat()' function when building your dataset. 
self._interrupted_warning()

Epoch 2: val_loss did not improve from 6.20825
14/14 3s 253ms/step -
accuracy: 0.5000 - loss: 3.6972 - val_accuracy: 0.4792 - val_loss: 6.2454 
Epoch 3/10
14/14 0s 668ms/step -
accuracy: 0.5620 - loss: 3.0239
Epoch 3: val_loss improved from 6.20825 to 4.18646, saving model to
img_model_vgg_sem_augment.keras
14/14 24s 2s/step -
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img_model_vgg_sem_augment.keras 
14/14 5s 350ms/step -
accuracy: 0.6875 - loss: 0.6068 - val_accuracy: 0.7188 - val_loss: 2.2371

[ ]: from sklearn.metrics import accuracy_score, recall_score,u 
^precision_score, f1_score, confusion_matrix 

import pandas as pd 
import numpy as np

# Avaliar o modelo no conjunto de teste
test_loss, test_acc = model.evaluate(testgen, steps=testgen.samples //u 
^testgen.batch_size) 

print(f'Acurácia no conjunto de teste: {test_acc * 100:.2f}%')

11/11 2s 199ms/step -
accuracy: 0.4900 - loss: 3.9278 
Acurácia no conjunto de teste: 71.31%

Q2T4 Calcule as métricas de Sensibilidade, Especificidade e Fl-Score com base em 
suas matrizes de confusão
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[ ]: # Gerar previsões no conjunto de teste (sem o parâmetro 'steps' parau 
^prever todas as amostras) 

preds = model.predict(testgen)

# Converter as previsões em classes 
pred_classes = np.argmax(preds, axis=1)

# Classes verdadeiras 
true_classes = testgen.classes

# Verificar se o número de previsões corresponde ao número de amostrasu 
^no conjunto de teste

print(f"Número de classes verdadeiras: {len(true_classes)}") 
print(f"Número de classes previstas: {len(pred_classes)}")

# Calcular métricas
acc = accuracy_score(true_classes, pred_classes)
sens = recall_score(true_classes, pred_classes, average= 'macro') #u 
^Sensibilidade média 

spec = specificity_score_multiclass(true_classes, pred_classes) #u 
^Especificidade média 

f1 = f1_score(true_classes, pred_classes, average= 'macro') # F1-Scoreu 
^médio

12/12 5s 327ms/step
Número de classes verdadeiras: 371 
Número de classes previstas: 371

[ ]: # Criar DataFrame com as métricas 
df_metrics4 = pd.DataFrame({

'Modelo':"VGG16 Sem Data Augmentation",
'Acurácia': [acc],
'Sensibilidade': [sens],
'Especificidade': [spec],
' F1-Score': [f1]

})

# Exibir o DataFrame com os resultados 
print(df_metrics4)

Modelo Acurácia Sensibilidade Especificidade \ 
0 VGG16 Sem Data Augmentation 0.727763 0.719444 0.907714

F1-Score 
0 0.675051
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[ ]: # Concatenar os DataFrames
df_combined = pd.concat([df_metrics,u 
^df_metrics1,df_metrics3,df_metrics4], ignore_index=True)

# Ordenar o DataFrame combinado pelo maior F1-Score
df_combined = df_combined.sort_values(by= 'F1-Score', ascending=False)

# Exibir o DataFrame ordenado 
print(df_combined)

Modelo Acurácia u
^Sensibilidade \

0 Modelo ResNet50 com Data Augmentation Treinado™ 0.789757 0.783333
3 VGG16 Sem Data Augmentation 0.727763 0.
^719444

1 VGG16 Data Augmentation 0.654987 0.
^644444

2 Modelo ResNet50 sem Data Augmentation 0.250674 0.
^258333

Especificidade F1-Score
0 0.929336 0.761894
3 0.907714 0.675051
1 0.883113 0.588581
2 0.752669 0.123172

Q2T5 5. Indique qual modelo dá o melhor o resultado e a métrica utilizada

RESULTADO Q2: O modelo que tem maior F1 score é o modelo ResNet50 com data augmen­
tation, ele tem os melhores resultados de sensibilidade, ou seja, identifica corretamente 78,33% 
do tota l de casos verdadeiros de câncer de mama do período de teste; bem com é o modelo com 
melhor especificidade, ou seja, identifica corretamente 92,93% dos casos verdadeiros de pacientes 
sem a doença.
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APÊNDICE 11 -  ASPECTOS FILOSÓFICOS E ÉTICOS DA IA 

A -  ENUNCIADO

Título do Trabalho: "Estudo de Caso: Implicações Éticas do Uso do ChatGPT"

Trabalho em Grupo: O trabalho deverá ser realizado em grupo de alunos de no máximo seis (06) 

integrantes.

Objetivo do Trabalho: Investigar as implicações éticas do uso do ChatGPT em diferentes contextos e 

propor soluções responsáveis para lidar com esses dilemas.

Parâmetros para elaboração do Trabalho:

1. Relevância Ética: O trabalho deve abordar questões éticas significativas relacionadas ao uso da 

inteligência artificial, especialmente no contexto do ChatGPT. Os alunos devem identificar dilemas 

éticos relevantes e explorar como esses dilemas afetam diferentes partes interessadas, como 

usuários, desenvolvedores e a sociedade em geral.

2. Análise Crítica: Os alunos devem realizar uma análise crítica das implicações éticas do uso do 

ChatGPT em estudos de caso específicos. Eles devem examinar como o algoritmo pode influenciar a 

disseminação de informações, a privacidade dos usuários e a tomada de decisões éticas. Além disso, 

devem considerar possíveis vieses algorítmicos, discriminação e questões de responsabilidade.

3. Soluções Responsáveis: Além de identificar os desafios éticos, os alunos devem propor soluções 

responsáveis e éticas para lidar com esses dilemas. Isso pode incluir sugestões para políticas, 

regulamentações ou práticas de design que promovam o uso responsável da inteligência artificial. 

Eles devem considerar como essas soluções podem equilibrar os interesses de diferentes partes 

interessadas e promover valores éticos fundamentais, como transparência, justiça e privacidade.

4. Colaboração e D iscussão: O trabalho deve envolver discussões em grupo e colaboração entre os 

alunos. Eles devem compartilhar ideias, debater diferentes pontos de vista e chegar a conclusões 

informadas através do diálogo e da reflexão mútua. O estudo de caso do ChatGPT pode servir como 

um ponto de partida para essas discussões, incentivando os alunos a aplicar conceitos éticos e legais 

aprendidos ao analisar um caso concreto.

5. L im ite de Palavras: O trabalho terá um limite de 6 a 10 páginas teria aproximadamente entre 1500 

e 3000 palavras.

6. Estruturação Adequada: O trabalho siga uma estrutura adequada, incluindo introdução, 

desenvolvimento e conclusão. Cada seção deve ocupar uma parte proporcional do total de páginas, 

com a introdução e a conclusão ocupando menos espaço do que o desenvolvimento.

7. Contro le de Inform ações: Evitar incluir informações desnecessárias que possam aumentar o 

comprimento do trabalho sem contribuir significativamente para o conteúdo. Concentre-se em 

informações relevantes, argumentos sólidos e evidências importantes para apoiar sua análise.
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8. Síntese e Clareza: O trabalho deverá ser conciso e claro em sua escrita. Evite repetições 

desnecessárias e redundâncias. Sintetize suas ideias e argumentos de forma eficaz para transmitir 

suas mensagens de maneira sucinta.

9. Formatação Adequada: O trabalho deverá ser apresentado nas normas da ABNT de acordo com 

as diretrizes fornecidas, incluindo margens, espaçamento, tamanho da fonte e estilo de citação. 

Devese seguir o seguinte template de arquivo:

hfps://bibliotecas.ufpr.br/wpcontent/uploads/2022/03/template-artigo-de-periodico.docx

B - RESOLUÇÃO
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Estudo de caso: Implicações Éticas do uso do ChatGPT

N om e dos  autores:

Leandro  M otta  M arinho  de O live ira  
Luan S ilva  G om es 
P au lo  S ilas B raz ile iro  Luiz 
P risc ila  L ie K aw am ura  
V in ic iu s  N atan S ilva  e Sou

RESUMO

N este  tra ba lh o  se rá  d iscu tido  as im p licações é ticas  do uso  do m ode lo  de 

in te ligênc ia  a rtific ia l C hatG P T, um a fe rra m e n ta  que  em erg iu  com o  um fen ô m e no  

m undia l, a lca nça n do  o p úb lico  em gera l com  suas ca pa c id a de s  gen e ra tivas  capazes 

de c ria r tex tos  de p ra ticam en te  q u a lq u e r assun to  e com  g rande  po te nc ia l de 

d isse m in a r o p in iões  p reconce ituosas , in fo rm ações  fa lsas  en tre  ou tras  u tilizações  pa ra  

p re jud ica r a soc iedade  e ind ivíduo . D entro  deste  con tex to  se rão  d iscu tidos  os desa fios  

é ticos  e m e rg en tes  re lac ionados  ao seu dese n vo lv im e n to  e ap licação , des tacando  

que s tõe s  c ruc ia is  com o p rivac idade , d isse m in a çã o  de in fo rm ações  e tom ada  de 

dec isões  é ticas. A  aná lise  c rítica  abo rda  tam bém  poss íve is  v ieses  a lgorítm icos, 

d isc rim in açã o  e resp on sa b ilid ad e s  a ssoc iadas  ao uso  des ta  tecno log ia . Este es tudo  

v isa  fo rn e c e r um a com pre en sã o  ap ro fundada  dos d ilem as é ticos  co n te m p o rân e os  na 

era  da in te ligênc ia  artific ia l.

P a lavras-chave : C hatG P T . Q uestões  éticas. Fe rram enta . In te ligênc ia  A rtific ia l.

ABSTRACT

In th is  paper, w e  w ill d iscuss  the  e th ica l im p lica tions  o f us ing  the  C ha tG P T  
a rtific ia l in te lligence  m odel, a too l tha t has em erged  as a g loba l phenom enon, reach ing
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the  gene ra l p ub lic  w ith  its g ene ra tive  capab ilities  capab le  o f c rea ting  tex ts  on v irtua lly  
any  su b jec t and  w ith  s ig n ifican t po ten tia l to d isse m in a te  p re jud iced  op in ions, fa lse  
in form ation , and o th e r uses harm fu l to soc ie ty  and ind iv idua ls . W ith in  th is  con text, w e  
w ill e xam ine  the  em erg ing  e th ica l cha llenges  re la ted  to its d eve lo p m en t and 
app lica tion , h igh ligh ting  critica l issues such  as privacy, in fo rm a tion  d issem ina tion , and 
e th ica l d ec is ion -m ak ing . The  critica l ana lys is  w ill a lso  add ress  po ten tia l a lg o rith m ic  
b iases, d iscrim ina tion , and re spons ib ilitie s  a ssoc ia ted  w ith  the  use o f th is  techno logy. 
T h is  s tudy  a im s to p rov ide  an in -dep th  unde rs tand ing  o f co n te m p o ra ry  e th ica l 
d ile m m a s in the  era  o f a rtific ia l in te lligence .

K eyw ords: C hatG P T. E th ica l issues. Tool. A rtific ia l In te lligence.

1 INTRODUÇÃO

H o je  em dia, com  o avanço  tecno lóg ico , é  possíve l usa r a linguagem  natura l 

para  co nve rsa r com  um a m áqu ina  e o b te r respostas  m a is  e labo rados. C om  o uso da 

in te ligênc ia  a rtific ia l, ab riu -se  d ive rsas  p oss ib ilidades  de uso em d ive rsas  á re a s  que  

podem  e s ta r re lac ionadas  a tecn o lo g ia  ou não.

P ara  uso  pessoa l, p ro fiss iona l ou acadêm icos, m u itos  ado ta ram  o fam oso  

C hatG P T . A s in fin itas  poss ib ilid ad e s  de uso do C ha tG P T  para  aux ilia r-n o s  depende  

tam bém  de o usuá rio  usa r de fo rm a  c la ra  e p rec isa  para  co n se g u ir um resu ltado  

espe rado  e preciso.

O  C ha tG P T  trouxe  d ive rsos  bene fíc ios  para a soc iedade, m as há  q ue s tõe s  

que  é necessá rio  te r cau te la  ao u tiliza r qua lq u e r fe rra m e n ta  d isp on íve is  no m ercado. 

N ã o  a penas  ao utilizar, m as tam bém  ao d e se n vo lve r um a fe rra m e n ta  para  o púb lico  

para  v io la r ques tões  ética. P or isso, neste  tra ba lh o  irem os d iscu tir essas  ques tões  

é ticas  po r trás  des ta  fe rra m e n ta  que  se to rnou  fam osa  no m undo  todo.

2 DESENVOLVIMENTO

2.1 CHATGPT

O C ha tG P T  é um a fe rra m e n ta  que  pode  se r usado  para  d ive rsos  fins. A qu i 

tem os  um resum o que  o p róprio  C ha tG P T  e screveu  sobre  a si m esm o:

“O ChatGPTé um modelo de linguagem desenvolvido pela OpenAI que utiliza 

inteligência artificial para gerar respostas em conversas com base no contexto 

fornecido. Ele é treinado em uma grande quantidade de dados textuais para entender 

e responder a uma ampla variedade de perguntas e comandos. O ChatGPT é capaz
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de manter conversas fluentes e contextuais com os usuários, simulando uma 

interação humana em vários tópicos. Ele pode ser utilizado em uma variedade de 

aplicações, desde assistentes virtuais até suporte ao cliente e geração de conteúdo. 

O ChatGPT tem sido elogiado por sua capacidade de gerar respostas relevantes e 

coerentes, tornando-o uma ferramenta útil para comunicação e interação online 

(C H A T G P T ,2024 )

C om o  m enc ionado  no p a rág ra fo  ante rio r, o C ha tG P T  é ca pa z  de re a liza r 

d ive rsas  açõe s  com o te r co nve rsas  flu en tes  sobre  d ive rsos  tóp icos, g e ra r conteúdo, 

g e ra r pa rtes  de cód igo  para  dese n vo lved o re s  e para  d ive rsas  ou tras  a p licações  dev ido  

a sua  a rqu ite tu ra  cham ada  G P T  (G ene ra tive  P re tra ined  T rans fo rm er).

A  In te ligênc ia  a rtific ia l trouxe  para soc iedade  um avanço  m u ito  im portan te  que 

im pactou  o d ia  a d ia  de  d ive rsas  pessoas. E por e n vo lve r pessoas, esse  p rog resso  

te cn o ló g ico  trouxe  d ive rsas  ques tões  é ticas  e cu idados  crucia is .

2.1.1 INTELIGÊNCIA ARTIFICIAL

C om o v is to  no curso , há d ive rsos  tipos  de in te ligênc ia  a rtific ia l. No C ha tG P T  

É usado  a IA G ene ra tiva  onde  a respos ta  é fo rm u la da  com  base  em in fo rm ações  de 

d ive rsos  s ites  d isp on ib iliza d os  na in ternet. D ev ido  a isso, as in fo rm ações  que  são 

a p ren d ida s  pelo  C ha tG P T  têm  com o base  a in ternet, e po r isso é nece ssá rio  cau te la  

ao usa r in fo rm ações  a dqu iridas  den tro  do C ha tG P T  para  não co rre r o risco  de p lágio, 

respos tas  com  v iés  p re con ce ituo so  ou a expo s içã o  de  dados  pessoa is .

2.2 ÉTICA

A  é tica  é um es tudo  n ecessá rios  para o d esenvo lv im en to  de vá ria s  ques tões  

em re lação  ao que  é co ns ide ra do  ce rto  e e rrado , b uscando  e n te nd e r e d e fin ir o que 

cons titu i de  ações m o ra lm en te  co rre tas  e justas.

É essenc ia l em d ive rsas  á reas inc lu indo  a tecn o lo g ia  para  g a ran tir que  as 

ações  e dec isões  sem pre  se jam  ju s ta s  e bené ficas  para  a soc iedade. No con tex to  da 

In te ligênc ia  a rtific ia l é a lgo  cruc ia l cons ide ra r as que s tõe s  é ticas  re lac ionado  a 

p rivac idade , segu rança  e equ idade  para  nos g u ia r a a g ir de  m ane ira  responsáve l e 

ju s ta  para  p ro m o ver a co nv ivênc ia  ha rm on iosa  e e qu ita tiva  na soc iedade.
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2.2.1 ÉTICA NA TECNOLOGIA E NA IA

H oje  em  dia, m esm o an tes  do C hatG P T, já  se ex is tiam  d ive rsas  le is que se 

ap licam  as e m presas  e dese n vo lved o re s  no cu idado  do uso de dados  tan to  púb licos  

com o pessoas. Os pon tos  p rinc ipa is  são:

P rivac idade  de dados: G aran tir que  in fo rm ações  pessoa is  es te jam  p ro teg idas  e 

usadas  de  fo rm a  corre ta.

R esp on sa b ilid ad e  Socia l: D e se nvo lve r tecno log ias  que  m e lho re  a qua lid a de  de v ida  

das e pessoas  e da soc iedade  cons ide rando  os im pactos  soc ia is  e am b ien ta is . 

T ranspa rênc ia : O uso dos dados pessoas po r em presam  devem  se r transpa ren te . 

Para  g a ra n tir essas p rá ticas  com  a lei de  p ro teção  de dados LG PD  (Lei G eral de 

P ro teção  de D ados) do Brasil

Inc lusão  e D ive rs idade: P ro m o ve r a d ive rs idade  e a inc lusão  no d ese n vo lv im e n to  para  

g a ra n tir que  as so luções  não tenham  v ié s  causando  a des igua ldade .

Im pacto  A m b ien ta l: B usca r so luções  sus te n táve is  co n s ide ra nd o  os e fe itos  am b ien tas  

das tecn o lo g ias  para m in im iza r os danos ao m eio  am bien te .

2.2.2 IA GENERATIVA, CHATGPT E ÉTICA

D uran te  o dese n vo lv im e n to  e uso de  fe rra m e n ta s  de IA G ene ra tiva  igual o 

C hatG P T , com o m e n c ion a do  no tóp ico  an te rio r, tem  d ive rsos  fa to re s  que  é essenc ia l 

te r d ev ida  a a tenção  para  não v io la r ques tões  éticas.

O uso de in fo rm ações  indev idas, podem  tra ze r um a  respos ta  com  v iés  que  acabe  

pe rpe tua n do  este reó tipos, p re con ce ituo so  e im ora l d u ran te  um a pesqu isa . É 

necessá rio  o cu idado  ao d ese n vo lve r este  tipo  de fe rra m e n ta  para  sem pre  te r com o 

base, in fo rm ações  im parc ia is .

U m a em p re sa  usa r a IA G ene ra tiva  para  in flu en c ia r um a dec isão  a fa v o r de outra  

em p re sa  ou a lgo  im ora l m ostra  a fa lta  de tra nsp a rê nc ia  e a n tié tico  da fe rram en ta  

dese n vo lv ida  sendo  um dos p ila res  a tra nsp a rê nc ia  dos a lgo ritm os

2.3 PRIVACIDADE

O s dad o s  pessoa is , a p ro teção  dos  dados  e a segu rança  da  p rivac idade  são  pon tos 

im portan tes . Os s is tem as  de In te ligênc ia  A rtific ia l devem  se r p ro je tados  levando  em 

con ta  a p rivac idade  e segu rança  das in fo rm ações  do usuário , ga ran tindo  que
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in fo rm ações  pessoa is  u tilizadas  du ran te  o uso  se jam  tra tad a s  com  co n fid e nc ia lida d e  

e não se jam  u tilizadas  para  fin s  não au to rizados, respe itando  a é tica  e as 

regu la m e n taçõ e s  ex is ten tes .

2.4 RESPONSABILIDADE

É im portan te  que  os d esenvo lvedo res  e usuários  de IA se jam  responsáve is  po r suas 

ações. Os d e se n vo lved o re s  devem  g a ran tir que  o G P T  se ja  p ro je tado  e tre in ad o  de 

m ane ira  é tica, iden tificando  e m itigando  poss íve is  riscos com o v iés  ou d iscrim inação . 

O s u suá rios  têm  a re sp on sa b ilid ad e  de u tiliza r a fe rra m e n ta  de m ane ira  é tica  e 

responsáve l, não a u tilizando  para  so lic ita çõe s  ilega is  e c rim inosas.

2.5 TOMADA DE DECISÕES

IAs podem  se r g randes  a liadas na tom ada  de dec isões, levando  em con ta  a g rande  

ca rga  de in fo rm ações  que  conseguem  a n a lisa r e p rocessar, to rn a n d o -se  assim  um a 

fe rra m e n ta  va liosa  para  d ive rsas  áreas. M as a inda  devem os leva r em con ta  que  tudo  

isso é um g rande  m ode lo  baseado  em esta tís tica , c ria d o  p o r hum anos que  podem  

co n te r v ie se s  e p reconce itos . A p e s a r de se r um a fon te  va lio sa  de in fo rm ações  e um a 

g rande  a juda  na tom ada  de dec isão , a inda  devem os a na lisa r as in fo rm ações  de 

m ane ira  crítica , to rn a n d o -n o s  assim  responsáve is  po r nossas  dec isões, levando  em 

con ta  a é tica  e o b em -e s ta r da soc iedade  com o  um todo  e respe itando  as 

regu la m e n taçõ e s  v igentes.

3 CONCLUSÃO

A  IA gen e ra tiva  é um m arco  no p rog resso  tecno lóg ico , com  isso é necessá rio  

c o m b a te r os v ieses  dese n vo lv ido s  du ran te  o tre in am en to  desses dados. C om o toda  

fe rram en ta , tem -se  a nece ss id a de  de o d e se n vo lve d o r aprender, rev isar, p ro m o ve r 

m e lho rias  e se co n sc ie n tiza r das boas p rá ticas  da  In te ligênc ia  e q ue s tõe s  é ticas . Com  

uso da p rópria  IA usa r fe rra m e n ta s  para  e ns ina r a m áqu ina  d e te c ta r e co rrig ir os
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p rob lem as que  podem  in flig ir ques tões  é ticas. Na ques tão  de p rivac idade , com  o 

su rg im e n to  de  novas fe rram entas , se rão  n ecessá rias  o su rg im e n to  de novas le is com o 

o exem p lo  da LG PD  que é um a lei recen te  a pe sa r do uso da tecn o lo g ia  fa z e r parte  do 

co tid iano  da soc iedade  há a lguns  anos.
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APÊNDICE 12 -  GESTÃO DE PROJETOS DE IA 

A -  ENUNCIADO

1 O bjetivo

Individualmente, ler e resumir -  seguindo o template fornecido -  um dos artigos abaixo:

AHMAD, L.; ABDELRAZEK, M.; ARORA, C.; BANO, M; GRUNDY, J. Requirements 

practices and gaps when engineering human-centered Artificial Intelligence systems. Applied 

Soft Computing. 143. 2023. DOI https://doi.org/10.1016/j.asoc.2023.110421

NAZIR, R.; BUCAIONI, A.; PELLICCIONE, P.; Architecting ML-enabled systems: 

Challenges, best practices, and design decisions. The Journal of Systems & Software. 207. 

2024. DOI https://doi.org/10.1016/j.jss.2023.111860

SERBAN, A.; BLOM, K.; HOOS, H.; VISSER, J. Software engineering practices for 

machine learning -  Adoption, effects, and team assessment. The Journal of Systems & 

Software. 209. 2024. DOI https://doi.org/10.1016/j.jss.2023.111907

STEIDL, M.; FELDERER, M.; RAMLER, R. The pipeline for continuous development 

of artificial intelligence models -  Current state of research and practice. The Journal of 

Systems & Software. 199. 2023. DOI https://doi.org/10.1016/j.jss.2023.111615

XIN, D.; WU, E. Y.; LEE, D. J.; SALEHI, N.; PARAMESWARAN, A. Whither AutoML? 

Understanding the Role of Automation in Machine Learning Workflows. In CHI Conference on 

Human Factors in Computing Systems (CHI’21), Maio 8-13, 2021, Yokohama, Japão. DOI 

https://doi.org/10.1145/3411764.3445306

2 Orientações ad ic iona is

Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para 

entender o conteúdo dos artigos -  caso precise, mas escreva o resumo em língua portuguesa e nas 

suas palavras.

Não esqueça de preencher, no trabalho, os campos relativos ao seu nome e ao artigo 

escolhido.

No template, você deverá responder às seguintes questões:

• Qual o objetivo do estudo descrito pelo artigo?
• Qual o problema/oportunidade/situação que levou a necessidade de realização deste estudo?
• Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?
• Quais os principais resultados obtidos pelo estudo?

https://doi.org/10.1016/j.asoc.2023.110421
https://doi.org/10.1016/j.jss.2023.111860
https://doi.org/10.1016/j.jss.2023.111907
https://doi.org/10.1016/j.jss.2023.111615
https://doi.org/10.1145/3411764.3445306
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Responda cada questão utilizando o espaço fornecido no template, sem alteração do 

tamanho da fonte (Times New Roman, 10), nem alteração do espaçamento entre linhas (1.0).

Não altere as questões do template.

Utilize o editor de textos de sua preferência para preencher as respostas, mas entregue o 

trabalho em PDF.

B -  RESOLUÇÃO

Nome do artigo escolhido: Software engineering practices for machine learning —  Adoption, effects,and team 

assessment

Qual o objetivo do estudo descrito pelo artigo?

O estudo, que utiliza componentes de Machine Learning, visa coletar e disseminar evidências empíricas sobre a 

importância das práticas de engenharia em diferentes domínios e organizações.

A publicação compreende um conjunto de dados abrangente que pode ser usado para ajudar as equipes a 

melhorar a qualidade de seus métodos de engenharia. Além disso, o estudo discute direções promissoras para o 

desenvolvimento de modelos de qualidade utilizando os dados publicados e apresenta um caso de uso 

exploratório em que os dados são usados para avaliar a habilidade das equipes de engenharia ao desenvolverem 

software com componentes de Machine Learning.

O estudo atual é baseado em dois estudos anteriores dos mesmos autores que investiga os métodos de 

engenharia para todo o ciclo de desenvolvimento e as práticas para o desenvolvimento de um machine learning 

confiável.

Qual o problema/oportunidade/situação que levou à necessidade de realização desse estudo?

O estudo surgiu devido a necessidade de estabelecer métodos sólidos de engenharia de software no 

desenvolvimento de sistemas que fazem o uso de machine learning pelos seguintes fatores:

Aumento rápido do uso de ML em aplicações como sistemas críticos de segurança, tendo como necessidade um 

sistema com robustez, confiabilidade e a segurança do sistema algo crucial.

O campo de ML ainda está em desenvolvimento, fazendo com que a comunidade enfrenta desafios para 

identificar e disseminar as melhores práticas para garantir a qualidade e a confiabilidade dos sistemas devido a 

carência de evidências sobre o quão efetivo são os métodos em diferentes contextos e organizações.

A engenharia de ML carece de modelos de qualidade e maturidade padronizados, dificultando a avaliação da 

qualidade dos sistemas e identificação
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Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?

Foi realizado uma metodologia de métodos mistos dividia em três etapas:

Revisão de sistemática de literatura (RSL) que tinha como objetivo mapear as melhores práticas de engenharia 

existentes usando o google, google scholar e outras fontes de informação. Foi filtrado os documentos 

publicados entre 2015 e 2020 e com base na autoridade das fontes, objetividade e presença de duplicata. 

Questionário estruturado com perguntas sobre o perfil das equipes, adoção dos métodos e efeitos percebidos 

pelos profissionais para validar e mensurar a adoção dos métodos de engenharia mapeadas na RSL. Foi 

utilizado a estratégia snowball para a distribuição de questionário e realizado a análise das respostas para 

determinar a taxa de adoção de cada método, agrupando e normalizando as porcentagens de acordo com a 

escala Likert.

Validação da entrevista para obter insights mais aprofundados sobre a prática do método de engenharia e 

compreender o não uso de certos métodos. As entrevistas foram transcritas e analisadas usando técnica de 

análise temática.

Quais os principais resultados obtidos pelo estudo?

O estudo resultou na criação de um catálogo com 45 métodos de engenharia de software para ML.

A adoção dos métodos varia conforme a região, o tipo de organização, o tamanho e a experiência da equipe, 

aumentando com o crescimento e a experiência das equipes. Profissionais tendem a priorizar métodos 

específicos para ML, em detrimento das práticas tradicionais de engenharia de software.

Métodos voltados para a mitigação de vieses e garantia de segurança têm baixa adoção. Alguns métodos 

frequentemente utilizados têm baixo impacto na qualidade do software e na rastreabilidade, enquanto os menos 

populares demonstram grande impacto. Há desafios relatados na implementação dos métodos de testes e 

monitoramento dos modelos. Há necessidade de diretrizes e políticas claras para garantir a adoção de métodos 

confiáveis, especialmente para a proteção de dados sensíveis e mitigação de vieses.
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APÊNDICE 13 -  FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL

A -  ENUNCIADO

1 C lassificação (RNA)

Implementar o exemplo de Classificação usando a base de dados Fashion MNIST e a 

arquitetura RNA vista na aula FRA - Aula 10 - 2.4 Resolução de exercício de RNA - C lass ificação .

Além disso, fazer uma breve explicação dos seguintes resultados:

- Gráficos de perda e de acurácia;
- Imagem gerada na seção “M ostrar algum as c lassificações erradas” , apresentada na aula 

prática.
Informações:

•  Base de dados: Fashion MNIST Dataset
•  Descrição: Um dataset de imagens de roupas, onde o objetivo é classificar o tipo de 

vestuário. É semelhante ao famoso dataset MNIST, mas com peças de vestuário em vez de 
dígitos.

•  Tamanho: 70.000 amostras, 784 features (28x28 pixels).
•  Im portação do dataset: Copiar código abaixo.

data = tf.keras.datasets.fashion_mnist

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_dataO

2 Regressão (RNA)

Implementar o exemplo de Classificação usando a base de dados Wine Dataset e a 

arquitetura RNA vista na aula FRA - Aula 12 - 2.5 Resolução de exercíc io de RNA - R egressão.

Além disso, fazer uma breve explicação dos seguintes resultados:

•  Gráficos de avaliação do modelo (loss);
•  Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R2).

Informações:

•  Base de dados: Wine Quality
•  Descrição: O objetivo deste dataset prever a qualidade dos vinhos com base em suas

características químicas. A variável target (y) neste exemplo será o score de qualidade do
vinho, que varia de 0 (pior qualidade) a 10 (melhor qualidade)

•  Tamanho: 1599 amostras, 12 features.
•  Importação: Copiar código abaixo.

url = "https://archive.ics.uci.edu/ml/machme-leammg-databases/wme-quaNty/wmequaNty-

red.csv"

data = pd.read_csv(url, delimiter-';')

Dica 1. Para facilitar o trabalho, renomeie o nome das colunas para português, dessa forma:

https://archive.ics.uci.edu/ml/machme-leammg-databases/wme-quaNty/wmequaNty-
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data.columns = [

'acidez_fixa', # fixed acidity

'acidez_volatil', # volatile acidity

'acido_citrico', # citric acid

'acucar_residual', # residual sugar 

'cloretos', # chlorides

'dioxido_de_enxofre_livre', # free sulfur dioxide 

'dioxido_de_enxofre_total', # total sulfur dioxide 

'densidade', # density

'pH', # pH

'sulfatos', # sulphates

'alcool', # alcohol

'score_qualidade_vinho' # quality

]

Dica 2. Separe os dados (x e y) de tal forma que a última coluna (índice -1), chamada 

score_qualidade_vinho, seja a variável target (y)

3 Sistemas de Recomendação

Implementar o exemplo de Sistemas de Recomendação usando a base de dados 

Base_livos.csv e a arquitetura vista na aula FRA - Aula 22 - 4.3 Resolução do Exercício de 

S istemas de Recomendação. Além disso, fazer uma breve explicação dos seguintes resultados:

•  Gráficos de avaliação do modelo (loss);
•  Exemplo de recomendação de livro para determinado Usuário.

Informações:

•  Base de dados: Base_livros.csv
•  Descrição: Esse conjunto de dados contém informações sobre avaliações de livros (Notas), 

nomes de livros (Titulo), ISBN e identificação do usuário (ID_usuario)
•  Im portação: Base de dados disponível no Moodle (UFPR Virtual), chamada Base_livros 

(formato .csv).

4 Deepdream

Implementar o exemplo de implementação mínima de Deepdream usando uma imagem de 

um felino - retirada do site Wikipedia - e a arquitetura Deepdream vista na aula FRA - Aula 23 - 

Prática Deepdream. Além disso, fazer uma breve explicação dos seguintes resultados:
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• Imagem onírica obtida por Main Loop;

• Imagem onírica obtida ao levar o modelo até uma oitava;

• Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo até a oitava. 

Informações:

• Base de dados: https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
• Importação da imagem: Copiar código abaixo.

url = "https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.jpg"

Dica: Para exibir a imagem utilizando display (display.html) use o link https://commons.wikimedia.org/ 
wiki/File:Felis_catus-cat_on_snow.jpg

B - RESOLUÇÃO

1 - Classificação (RNA)

[ ]: # TensorFlow e tf.keras
import tensorflow as tf 
from tensorflow import keras

# Bibliotecas Auxiliares 
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import StandardScaler 
from mlxtend.plotting import plot_confusion_matrix 
from sklearn.metrics import confusion_matrix

# Importando Fashion Mnist Dataset 
data = tf.keras.datasets.fashion_mnist

# Treino e Teste
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist. 
•̂ load_data()

import seaborn as sns

plt.figure(figsize= (10, 6)) 
sns.distplot(x_train.flatten(), kde=False) 
plt.title('Distribution of Pixel Values in x_train') 
plt.xlabel('Pixel Value') 
plt.ylabel('Frequency') 
plt.show()

https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/
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[ ]: # Calcular a frequência de cada classe em y_train
unique_classes, class_counts = np.unique(y_train, return_counts=True)

# Criar o gráfico de barras
plt.bar(unique_classes, class_counts)

# Adicionar rótulos aos eixos 
plt.xlabel('Classes')
plt.ylabel('Frequência')
plt.title('Frequência das Classes em y_train')

# Mostrar o gráfico 
plt.show()
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[ ]: y_train
# array([9, 0, 0, ..., 3, 0, 5], dtype=uint8)
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 

'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

x_train.shape
# (60000, 28, 28) 
len(y_train)
# 60000 
x_test.shape 
# (10000, 28, 28) 
len(y_test)
# 10000

# Calcular a frequência de cada classe em y_test
unique_classes, class_counts = np.unique(y_test, return_counts=True)

# Criar o gráfico de barras
plt.bar(unique_classes, class_counts)

# Adicionar rótulos aos eixos 
plt.xlabel('Classes')
plt.ylabel('Frequência')
plt.title('Frequência das Classes em y_test')
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# Mostrar o gráfico 
plt.show()

Frequência das Classes em y_test

Pré Processamento
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[ ]:

[ ]:

#Padronização
x_train = x_train / 255.0
x_test = x_test / 255.0

plt.figure(figsize= (10,10)) 
for i in range(36):

plt.subplot(6,6,i+1) 
plt .xticks( []) 
plt.yticks([]) 
plt.grid(False)
plt.imshow(x_train[i], cmap=plt.cm.binary) 
plt.xlabel(class_names[y_train[i]]) 

plt.show()
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Treinamento do Modelo

[ ]: i = tf.keras.layers.Input(shape= (28, 28)) 
x = tf.keras.layers.Flatten()(i)
x = tf.keras.layers.Dense(128, activation="relu")(x) 
x = tf.keras.layers.Dropout(0.2)(x) 
x = tf.keras.layers.Dense(10, activation="softmax")(x)

model = tf.keras.models.Model(i, x)

[ ]: model.compile(optimizer= 'adam',
loss= 'sparse_categorical_crossentropy'
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metrics= ['accuracy'])

[ ]: r = model.fit(x_train, y_train, validation_data = (x_test, y_test), epochs=10)

Avaliação do Modelo

[ ]: print("Train score: ", model.evaluate(x_train, y_train)) 
print("Test score: ", model.evaluate(x_test, y_test))

1875/1875 3s 2ms/step - 
accuracy: 0.8482 - loss: 0.4254
Train score: [0.42815962433815, 0.8467833399772644]
313/313 1s 2ms/step - 
accuracy: 0.8392 - loss: 0.4582
Test score: [0.46324795484542847, 0.8338000178337097]

Gráfico de Perda

No plot acim a temos a evolução da perda nos dados de treinam ento (azul) e dos dados de val­
idação (laranja). O modelo com eça com uma perda alta, mas melhora rapidamente nas próx­
imas épocas. Vemos que está convergindo adequadaente, pois ambas as curvas apresentam 
tendência decrescente e se estabilizam nas épocas finais. Também não é possível ver overffiting 
significativo, já  que na maioria do histórico as curvas se mantém distantes. Por volta da época 6 
ambas as curvas começam a estabilizar a perda em torno de 0.50 indicando que o modelo atingiu 
um ponto de equilíbrio na aprendizagem.

[ ]: # Plotar a acurácia
plt.plot(r.history['accuracy'], label= 'acc')
plt.plot(r.history['val_accuracy'], label= 'val_acc')
plt.legend()
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Gráfico de Acurácia

No gráfico acima é possível observar a evolução da acurácia (eixo y) com o passar das épocas 
(eixo x), em azul estão os dados de treinam ento e em laranja os dados de validação. Na primeira 
época a acurácia dos dados de treinam ento é de 53%, ou seja, do total de observações de 
treinamento, o modelo conseguiu classificar corretam ente pouco mais da metade, apesar disso 
já  na prim eira época a acurácia dos dados separados para validação é superior ao treinamento, 
cerca de 74%, o que mostra bom potencial do modelo em generalizar quando apresentado a 
novos dados. Na segunda época a acurácia dos dados de treinam ento aumenta cerca de 21 
pontos percentuais, chegando a 74%, enquanto a acurácia dos dados de validação, apenas 3 pp, 
chegando a 77%, o que demonstra melhora do aprendizado do modelo. A distância das acurácias 
entre amostra de treino e validação dim inui à medida que as épocas evoluem. São praticamente 
equivalentes entre as épocas 5 a 8, quando então a acurácia dos dados de treinam ento supera 
ligeiramente a dos dados de validação. Um bom ponto de parada seria a época 7, para evitar 
overfitting.

Predições

[ ]: y_pred = model.predict(x_test).argmax(axis=1) 
print(y_pred)

[ ]: # Matriz de confusão
cm = confusion_matrix(y_test, y_pred) 
plot_confusion_matrix(conf_mat=cm, figsize=(7, 7),

show_normed=True)
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Acurácia

[ ]: test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2) 

print('\nTest accuracy:', test_acc)

313/313 - 0s - 2ms/step - accuracy: 0.8878 - loss: 1.3274

Test accuracy: 0.8877999782562256 
O modelo identificou corretam ente 88,78% dos dados de teste.

Mostrar algumas Predições Erradas

[ ]: misclassified = np.where(y_pred != y_test)[0]

i = np.random.choice(misclassified)
plt.imshow(x_test[i].reshape(28, 28), cmap='gray')
plt.title('True label: %s Predicted: %s' % (y_test[i], y_pred[i]))
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T rue  la b e l :  2 P re d i c te d :  4

Acim a está um exemplo predição incorreta que o modelo acabou classificando como “Coat”, 
categoria 4, mas na verdade era um “Pullover”, categoria “2”.

2 - Regressão (RNA)

[ ]: import pandas as pd
import matplotlib.pyplot as plt 
import seaborn as sb

import tensorflow as tf

from tensorflow.python.keras import backend 
from sklearn.preprocessing import StandardScaler 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import r2_score, mean_squared_error 
from math import sqrt

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/ 
•̂ winequality-red.csv'

https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
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data = pd.read_csv(url, delimiter= ';', decimal= '.')

data.columns = [
'acidez_fixa',
'acidez_volatil',
'acido_citrico',
'acucar_residual',
'cloretos',
'dioxido_de_enxofre_livre' 
'dioxido_de_enxofre_total' 
'densidade',
'pH' ,
'sulfatos' ,
'alcool',
'score_qualidade_vinho'

]

# fixed acidity
# volatile acidity
# citric acid
# residual sugar

# chlorides
# free sulfur dioxide
# total sulfur dioxide

# density
# pH
# sulphates
# alcohol

# quality

fig, ax = plt.subplots(figsize= (10,8)) 
sb.heatmap(data.corr(), annot=True, ax=ax) 
plt.show()

Matriz de correlação
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[ ]: plt.figure(figsize= (10, 8)) 
sb.scatterplot(

x= 'acidez_fixa', 
y= 'densidade',
hue='score_qualidade_vinho',
data=data,
alpha=0.7,
palette= 'Set1')

[ ]: # Separação em dados de treino e de teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

# Criação do Modelo 
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

i = tf.keras.layers.Input(shape=(11,)) 
x = tf.keras.layers.Dense(16, activation= 'relu')(i) 
x = tf.keras.layers.Dense(8)(x)
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x = tf.keras.layers.Dense(6)(x) 
x = tf.keras.layers.Dense(1)(x)

model = tf.keras.models.Model(i, x)

# Compilação e treinamento do modelo
# Função RMSE
def rmse(y_true, y_pred):

return backend.sqrt(backend.mean( backend.square(y_pred - y_true),

# Função R2
def r2(y_true, y_pred):
media = backend.mean(y_true)
num = backend.sum(backend.square(y_true - y_pred))
den = backend.sum(backend.square(y_true - media))
return (1.0 - num/den)

# Compilando
optimizer=tf.keras.optimizers.Adam(learning_rate=0.02)
# optimizer=tf.keras.optimizers.SGD(learning_rate=0.2, momentum=0.5)
# optimizer=tf.keras.optimizers.RMSprop(0.01)

model.compile(
optimizer=optimizer, 
loss= 'mse', 
metrics= [rmse, r2])

# Condição de parada antecipada
early_stop = tf.keras.callbacks.EarlyStopping( 

monitor= 'val_loss', 
patience=50,
restore_best_weights=True)

r = model.fit(
X_train, y_train, 
epochs=1500, 
batch_size=32,
validation_data=(X_test, y_test), 
callbacks= [early_stop])

# Avaliação do modelo
plt.plot( r .history['loss'] , label='loss' ) 
plt.plot( r .history['val_loss'] , label= 'val_loss' ) 
plt.legend()

axis=-1) )
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Avaliação do modelo

plt.plot( r .history['rmse'] , label='rmse' ) 
plt.plot( r .history['val_rmse'] , label= 'val_rmse' ) 
plt.legend()
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[ ]: plt.plot( r .history['r2'] , label= 'r2' )
plt.plot( r .history['val_r2'] , label= 'val_r2' ) 
plt.legend()

#####Foi utilizado o parâm etro epochs (épocas) setado para 1500, visando um maior desenvolvi­
mento do modelo. No entanto, com intuito de não exaurir todo processamento, foi colocada a 
condicção de parada com o parâmetro patience em 50, monitorando a variável val_loss. C on­
forme se verifica nos gráficos, o processamento alcança uma estabilização relativamente cedo. 
Uma das causas pode ser o tam anho pequeno da amostra.

Predições

[ ]: y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
rmse = sqrt(mse)
r2 = r2_score(y_test, y_pred)

print('mse = ', mse)
print('rmse = ', rmse)
print('r2 = ', r2)

mse = 0.4122875117521187
rmse = 0.6420961857479911
r2 = 0.38747960329055786
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R: Depois de executado o modelo, alcançou-se o valor de cerca de 0.41228 para o Mean Squared 
Error (MSE), que é a métrica utilizada para descrever o quão perto a reta de regressão está em 
relação ao conjunto de dados. Ainda, pode-se citar o Coeficiente de Determinação, que teve um 
valor aproximado de 0.38747. Esse valor indica que que, no conjunto de dados observado, há 
uma correlação leve em que as variáveis movem-se na mesma direção crescente.

3 - Sistemas de Recomendação

[ ]: import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Embedding, Flatten, Concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import SGD, Adam

from sklearn.utils import shuffle

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('Base_livros_in_6.csv', on_bad_lines= 'skip', sep= ',') 
print(df.columns.values)
# ['ISBN' 'Titulo' 'Autor' 'Ano' 'Editora' 'ID_usuario' 'Notas'] 
df.shape
# (128895, 7)
df.ID_usuario = pd.Categorical(df.ID_usuario)
df.ISBN = pd.Categorical(df.ISBN)
df.Titulo = pd.Categorical(df.Titulo)
df.Autor = pd.Categorical(df.Autor)
df.Editora = pd.Categorical(df.Editora)
df.Ano = pd.Categorical(df.Ano)
df.Notas = pd.Categorical(df.Notas)
df['new_ID_usuario'] = df.ID_usuario.cat.codes
df['new_ISBN'] = df.ISBN.cat.codes
df['new_notas'] = df.Notas.cat.codes
# Foi necessário ajustar o parametro K (dimensão dos embeddings)
N = len(set(df.new_ID_usuario))
M = len(set(df.new_ISBN))
K = 100
u = Input(shape=(1,)) 
u_emb = Embedding(N, K)(u) 
u_emb = Flatten()(u_emb)

m = Input(shape=(1,)) 
m_emb = Embedding(M, K)(m) 
m_emb = Flatten()(m_emb)
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x = Concatenate()([u_emb, m_emb])

x = Dense(1024, activation= 'relu')(x) 
x = Dense(1)(x)

model = Model(inputs= [u, m], outputs=x) 
model.compile( 

loss= 'mse',
optimizer=SGD(learning_rate=0.08, momentum=0.9)

)

user_ids, isbns, ratings = shuffle(df.new_ID_usuario, df.new_ISBN, df.new_notas)

Ntrain = int(0.7 * len(ratings))

train_users = user_ids:Ntrain 
train_books = isbns:Ntrain 
train_ratings = ratings:Ntrain 
test_users = user_ids[Ntrain:] 
test_books = isbns[Ntrain:] 
test_ratings = ratings[Ntrain:]

# centralizar as notas 
avg_rating = train_ratings.mean() 
train_ratings = train_ratings - avg_rating 
test_ratings = test_ratings - avg_rating 
epochs = 50 
r = model.fit(

x= [train_users, train_books], 
y=train_ratings, 
epochs=epochs, 
batch_size=1024, 
verbose=2,
validation_data=([test_users, test_books], test_ratings)

)

plt.plot(r.history['loss'], label= 'loss') 
plt.plot(r.history['val_loss'], label= 'val_loss') 
plt.legend() 
plt.show()
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Gráfico da função de perda

Foi utilizado o numero de 50 para epochs, depois de algumas epochs o grafico se estabiliza, a 
diferença perm enace grande devido ao numero de dados ser pequeno. (por volta de 128 mil em 
com paração aos 20 milhões do exemplo apresentado em aula.

Geração da recomendação

[ ]: input_usuario = np.repeat(a=11089, repeats=M) 
book = np.array(list(set(isbns)))

preds = model.predict( [input_usuario, book] )

rat = preds.flatten() + avg_rating 

idx = np.argmax(rat)

print("Recomendação: Livro - ", book[idx], " / ", rat[idx] , "*")

4028/4028 8s 2ms/step
Recomendação: Livro - 88700 / 10.694294 *
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[ ]: print(df.loc[[book[idx]]])

ISBN Titulo \
88700 451526201 Plunkitt of Tammany Hall: A Series of Very Pla...

Autor Ano Editora ID_usuario Notas \
88700 William L. Riordon 1995 Signet Classics 19609 9

new_ID_usuario new_ISBN new_notas 
88700 7141 72537 9

[ ]: input_usuario = np.repeat(a=50, repeats=M) 
book = np.array(list(set(isbns)))

preds = model.predict( [input_usuario, book] )

rat = preds.flatten() + avg_rating 

idx = np.argmax(rat)

print("Recomendação: Livro - ", book[idx], " / ", rat[idx] , "*")

4028/4028 8s 2ms/step
Recomendação: Livro - 113079 / 10.522945 *

[ ]: print(df.loc[[book[idx]]])

ISBN Titulo \
113079 1560441771 Where Dinosaurs Still Rule: A Guide to Dinosau...

Autor Ano Editora ID_usuario Notas new_ID_usuario \
113079 Debbie Tewell 1993 Globe Pequot Pr 26216 3 9689

new_ISBN new_notas 
113079 15779 3
R: Executando o sistema de recomendação com dois usuarios diferentes 11089 e 50 e exibindo 
duas recomendações diferentes de livros. Para o sistema de recomendações funcionar foi 
necessario alterar o parametro de embbedings.



238

4 - Deepdream 

Importando a imagem

[ ]: import tensorflow as tf
import numpy as np 
import matplotlib as mpl 
import IPython.display as display 
import PIL.Image

url = 'https://commons.wikimedia.org/wiki/Special:FilePath/ 
•̂ Felis_catus-cat_on_snow.jpg'

def download(url, max_dim=None): 
name = url.split('/')[-1]
image_path = tf.keras.utils.get_file(name, origin=url) 
img = PIL.Image.open(image_path) 
if max_dim:

img.thumbnail((max_dim, max_dim)) 
return np.array(img)

def deprocess(img):
img = 255*(img + 1.0)/2.0 
return tf.cast(img, tf.uint8)

def show(img):
display.display(PIL.Image.fromarray(np.array(img)))

original_img = download(url, max_dim=500) 
show(original_img)
display.display(display.HTML('Image cc-by: <a "href=https://commons.wikimedia. 
•̂ org/wiki/File:Felis_catus-cat_on_snow.jpg">Von.grzanka</a>'))

https://commons.wikimedia.org/wiki/Special:FilePath/
https://commons.wikimedia
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[ ]: # Preparação do modelo para extração
base_model = tf.keras.applications.InceptionV3(include_top=False,u 
•̂ weights='imagenet')

# Maximizando as ativações das camadas 
names = ['mixed3', 'mixed5']
layers = [base_model.get_layer(name).output for name in names]

# Criação do modelo
dream_model = tf.keras.Model(inputs=base_model.input, outputs=layers)

# Calculo da perda
def calc_loss(img, model):

# Passe a imagem pelo modelo para recuperar as ativações.
# Converte a imagem em um batch de tamanho 1. 
img_batch = tf.expand_dims(img, axis=0) 
layer_activations = model(img_batch)
if len(layer_activations) == 1:

layer_activations = [layer_activations]

losses = []
for act in layer_activations: 

loss = tf.math.reduce_mean(act) 
losses.append(loss)

return tf.reduce_sum(losses)

# Calculo do Gradiente em cima da Imagem Original 
class DeepDream(tf.Module):
def  init (self, model):

self.model = model

n+ndtf.function(
input_signature=(
tf.TensorSpec(shape= [None,None,3] , dtype=tf.float32), 
tf.TensorSpec(shape= [], dtype=tf.int32), 
tf.TensorSpec(shape= [], dtype=tf.float32),

)
def  call (self, img, steps, step_size):

print('Tracing') 
loss = tf.constant(0.0)

for n in tf.range(steps):
with tf.GradientTape() as tape:

# Gradientes relativos a img 
tape.watch(img)
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loss = calc_loss(img, self.model)

# Calculo do gradiente da perda em relação aos pixels da imagem deu 
entrada.

gradients = tape.gradient(loss, img)

# Normalizacao dos gradintes
gradients /= tf.math.reduce_std(gradients) + 1e-8

# Na subida gradiente, a "perda" é maximizada.
# Você pode atualizar a imagem adicionando diretamente os gradientesu 

(pporque eles têm o mesmo formato!)
img = img + gradients * step_size 
img = tf.clip_by_value(img, -1, 1)

return loss, img 
deepdream = DeepDream(dream_model)

# Main Loop
def run_deep_dream_simple(img, steps=100, step_size=0.01):

img = tf.keras.applications.inception_v3.preprocess_input(img)
img = tf.convert_to_tensor(img)
step_size = tf.convert_to_tensor(step_size)
steps_remaining = steps
step = 0
while steps_remaining:

if steps_remaining > 100:
run_steps = tf.constant(100) 

else:
run_steps = tf.constant(steps_remaining) 

steps_remaining =steps_remaining - run_steps 
step = step + run_steps

loss, img = deepdream(img, run_steps, tf.constant(step_size))

display.clear_output(wait=True) 
show(deprocess(img))
print('Step , loss ''.format(step, loss))

result = deprocess(img) 
display.clear_output(wait=True) 
show(result)

return result

dream_img = run_deep_dream_simple(img=original_img,
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steps=100, step_size=0.01)

Resultado Main Loop

[ ]: import time
start = time.time()

OCTAVE_SCALE =1.60

img = tf.constant(np.array(original_img)) 
base_shape = tf.shape(img)[:-1]
float_base_shape = tf.cast(base_shape, tf.float32)

for n in range(-2, 3):
new_shape = tf.cast(float_base_shape*(OCTAVE_SCALE**n), tf.int32)

img = tf.image.resize(img, new_shape).numpy()

img = run_deep_dream_simple(img=img, steps=50, step_size=0.01)

display.clear_output(wait=True)
img = tf.image.resize(img, base_shape)
img = tf.image.convert_image_dtype(img/255.0, dtype=tf.uint8) 
show(img)

end = time.time() 
end-start
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Modelo até um oitava

Imagem  onírica obtida por Main Loop

R: No Main Loop é feito um pré processamento feito uma conversão de acordo com as iterações 
definidas. Depois é feito um aumento de gradiente. Depois a imagem é desprocessada que 
vai converter a imagem com o valor original dando para ver a imagem gerada com o a função 
dream_img. A imagem resultante é uma imagem ruidosa com baixa resolução e ao se observar a 
imagem onírica, não parece ter muito padrão com parado ao mostrado em aula que tem as bordas 
da imagem bem definidas dando para observar os contornos da figura que está na imagem.

Imagem onírica obtida ao levar o modelo até uma oitava;

R: Neste é feito diversos redimensionam ento para ajustar a granularidade e o problema de baixa 
resolução do modelo, na imagem obtida, é possível verificar os contornos mais salientes resul­
tando em uma imagem onirica onde é possivel identificar uma diferença entre o fundo e o animal.

Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo até a oitava.

R: A diferença que no main loop produz uma imagem onirica com padrões aprimorados na escala 
original da imagem. Já no modelo levado até uma oitava é possível ver uma granularidade maior 
gerando uma imagem mais onírica onde a diferença de gradiente é nitidamente visível gerando 
uma imagem mais complexa e detalhada
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APÊNDICE 14 -  VISUALIZAÇÃO DE DADOS E STORYTELLING 

A -  ENUNCIADO

Escolha um conjunto de dados brutos (ou uma visualização de dados que você acredite que 

possa ser melhorada) e faça uma visualização desses dados (de acordo com os dados escolhidos e 

com a ferramenta de sua escolha)

Desenvolva uma narrativa/storytelling para essa visualização de dados considerando os 

conceitos e informações que foram discutidas nesta disciplina. Não esqueça de deixar claro para seu 

possível público alvo qual o ob je tivo  dessa visualização de dados, o que esses dados sign ificam , 

quais possíveis ações podem ser fe itas com base neles.

Entregue em um PDF:

- O con jun to  de dados brutos (ou uma visualização de dados que você acredite que 

possa ser melhorada);

- Explicação do contexto  e o pub lico-a lvo  da visualização de dados e do storytelling que 

será desenvolvido;

- A v isualização desses dados (de acordo com os dados escolhidos e com a ferramenta de 

sua escolha) exp licando a escolha do tip o  de visualização e da ferram enta usada; (50 pontos)

B -  RESOLUÇÃO

1. Base de dados bruto/Visualização de dado

Link para a base de dados:https://basedosdados.org/dataset/782c5607-9f69-4e12-b0d5- 

aa0fla7a94e2?table=28d16282-d100-4ea8-9dde-36c05c8f1ca2

Foi necessário selecionar os dados pois a base possui mais de 1 GB. Nele foi filtrado e 

coletado apenas os dados que são interessados para esse storytelling.Os dados foram filtrados 

pelo id_estacao da cidade de São Paulo, pegando a média da precipitação por mês de todos os 

anos (2000-2024).As informações do id_estacao de cada município está disponível no mesmo 

link fornecido.

https://basedosdados.org/dataset/782c5607-9f69-4e12-b0d5-
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Média de precipitações

mes media_precipitacao (mm)

1 10.091

2 11.642

3 10.496

4 7.126

5 4.686

6 5.972

7 4.843

8 3.889

9 6.002

10 7.121

11 7.694

12 10.498

Fonte do m apa fornecido no storytelling:

h ttp s : / /q u ilo m b o p e r ife r ic o .c o m .b r /re g is tro -d e -e n c h e n te s /

2. Contexto e Público-Alvo

Os d a d o s  b ru to s  a p re s e n ta d o  é a m é d ia  d e  p re c ip ita ç õ e s  d e  2000  a 

2024  p o r m e se s  na  c id a d e  d e  São Paulo. C o m  esses d a d o s  e s tá  se n d o  

fe ito  a re la ç ã o  d a s  é p o c a s  d e  m a io r  n ú m e ro  d e  c h u v a s  e m  São P au lo  q u e  

possu i m a is  e n c h e n te s  e u s a n d o  u m a  h is tó r ia  f ic tíc ia , se rá  p a s s a d o  os 

d a d o s  a d q u ir id o s .

C o m  e s ta  v is u a liz a ç ã o  e s to ry te llin g  te m  c o m o  p r in c ip a is  p ú b lic o s  

a lvo : G ove rn o  M u n ic ip a l p a ra  in v e s tir  na in fra e s tru tu ra  u rb a n a  p a ra  

m e lh o ra r  os s is te m a s  d e  d re n a g e m  d a  c id a d e  e a le r ta s  d e  poss íve is  

e n c h e n te s . Para a p o p u la ç ã o  lo c a l se c o n s c ie n tiz a r e c o m p a d e c e r  c o m  

s itu a ç ã o  d a s  v ít im a s  d e  e n c h e n te s  se ja  p o r m e io  d e  t ra b a lh o  v o lu n tá r io , 

d o a ç õ e s  ou  a p o io  e m o c io n a l.

3. Visualização de Dados:

https://quilomboperiferico.com.br/registro-de-enchentes/


C o m o  m e n c io n a d o  no p r im e iro  tó p ic o , o d a d o  já  fo i t ra ta d o  v ia  b ig  

q u e ry  d e v id o  a o  g ra n d e  v o lu m e  d e  d a d o s  a p re s e n ta d o s  na  b a s e  b ru ta . O 

d a d o  f i lt ra d o  e c o le ta d o  e ra  p e q u e n o , e n tã o  pe la  p ra t ic id a d e  d o  Excel fo i 

u tiliz a d o  o m e s m o  p a ra  g e ra r o g rá fic o  d e  p re c ip ita ç õ e s  u s a d o  no 

s to ry te llin g  m o s tra n d o  a m é d ia  d e  p re c ip ita ç õ e s  d e  ja n e iro  a d e z e m b ro  

d o s  a n o s  2000  a 2024. Foi u tiliz a d o  esse t ip o  de  v is u a liz a ç ã o  d o  g rá fic o , 

po is  é fa c il ita  a v is u a liz a ç ã o  d o s  m e se s  q u e  hou ve  a m a io r  m é d ia  d e  

p re c ip ita ç õ e s  o c o rr id a s  p o r m eses. C o m  esses d a d o s , p o d e m o s  e n te n d e r 

c o m o  a q u a n t id a d e  d e  c h u v a s  q u e  o c o rre  no m ê s  a fe ta  d ire ta m e n te  a 

q u a n t id a d e  d e  e n c h e n te s  q u e  o c o rre  d u ra n te  o ano .

A im a g e m  fo rn e c id a  so b re  as  re g iõ e s  m a is  a fe ta d a s  p e la s  

e n c h e n te s  e m  São Pau lo  fo i e s c o lh id a  p a ra  e n fa t iz a r  a h is tó r ia  re la ta d a  

d u ra n te  o s to ry te llin g . N ão fo i e n c o n tra d o  u m a  b a se  b ru ta  c o m  os d a d o s  

d e la  ta b e la .
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4. Narrativa/Storytelling:

São Paulo, a m aior c idade do Brasil, é tam bém  uma das mais castigadas pelas 

chuvas de verão. Todos os anos, entre dezem bro e m arço, as ruas se transfo rm am  em 

rios tu rbu len tos, e as casas em ilhas de desespero. O que deveria ser uma bênção da 

natureza.

A chuva que irriga os cam pos e enche os reservatórios torna-se uma m aldição 

para m ilhares de fam ílias. Esta é a h istória de com o as águas que deveriam  trazer vida 

acabam  levando sonhos, esperanças e, m uitas vezes, tudo  o que as pessoas têm . É a 

h istória de uma cidade que luta contra as enchentes, mas tam bém  de uma população 

que resiste m esm o quando as águas sobem  e o fu tu ro  parece incerto.

E nchen tes  na c id a d e  d e  São Pau lo



246

Janeiro: Inicio do Caos

Dezembro a março marcam o período das chuvas mais intensas em São 
Paulo, e janeiro é quando a natureza começa a mostrar sua força implacável. Com 
uma média de 10.091 mm de precipitação, as ruas já começam a alagar, 
transformando avenidas em rios e bairros em cenários de caos. Para muitos, 
como a família Souza, que mora no Itaim Paulista, na Zona Leste, é o sinal de que 
o verão será longo e difícil. Dona Marta, mãe de dois filhos, lembra com angústia 
do dia em que a água invadiu sua casa. "A chuva não parava, e a água começou a 
entrar pela porta. Tivemos que sair às pressas, carregando o que dava" relata 
enquanto segura uma foto da família, já desbotada pela umidade. "Perdemos 
quase tudo. Até os brinquedos das crianças foram levados pela enxurrada."

Média de precipitações de 2000 a 2024
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A  h is tó r ia  das enchentes em São Paulo não é nova. Em ja n e iro  de 1929, a 
cidade v iveu  um a de suas m aiores tragédias: 1 25 ,4  m m  de chuva caíram  em um  

único  dia, sendo 82 m ilím e tro s  em apenas u m a  h o ra . O r io  Tietê transbo rdou , 

sub indo  cerca de dois m e tros e a rrastando tudo  em seu cam inho. M uros 

desabaram, anim ais dom ésticos m o rre ra m  afogados e b a irro s  como V ila  Elisa, 
V ila  G uilherm e e Mooca fica ram  debaixo d"água. Quase um  século depois, a 

h is tó r ia  se repete. Em 2025, m al começou o ano, e um  idoso de 73 anos perdeu a 

v id a  após ser a rrastado  p o r um a enxurrada  em P inheiros. Será que essa tragéd ia  

pode ria  te r  sido evitada?

Fevereiro: O Pico das Águas

F evere iro  é o m ê s  m a is  c rít ico , c o m  u m a  m é d ia  d e  11,64 m m  de  

c h u v a . Foi nesse  m ê s  q u e  o p e q u e n o  Lucas, filh o  d e  D ona M a rta , d e  7 anos, 

v iu  sua  c a s a  ser in v a d id a  p e la  á g u a . "N ão p u d e  sa ir p a ra  b r in c a r  p o r d ias" 

c o n ta  ele, c o m  os o lh os  c h e io s  d e  lá g r im a s , e n q u a n to  se g u ra  o c a rr in h o  d e  

b r in q u e d o  q u e  c o n s e g u iu  sa lva r. Para os pa is , o d e s a fio  é a in d a  m a io r: 

c o m o  g a ra n t ir  q u e  os filh o s  te n h a m  u m  fu tu ro  m e lh o r se a e d u c a ç ã o  é 

in te r ro m p id a  p e la s  ch u va s?  "Ele p e rd e u  u m a  s e m a n a  d e  a u la  p o rq u e  a 

e s c o la  fic o u  a la g a d a " , la m e n ta  D ona M arta , e n q u a n to  te n ta  s e c a r os liv ros 

d o  f ilh o  a in d a  e n c h a rc a d o s .

No d ia  24 d e  fe ve re iro  d e s te  ano , os m o ra d o re s  d a  c id a d e  d e  São 

P au lo  fo ra m  s u rp re e n d id o s  p e la  p r im e ira  vez c o m  u m  a le r ta  d e  c h u v a s  

se ve ra s  d a  D efesa  C iv il no  ce lu la r. Nesse d ia , d e v id o  a o  c a lo r  in te n s o  e à 

u m id a d e  excess iva , u m a  te m p e s ta d e  h is tó r ic a  d e s p e jo u  144 m m  d e  c h u v a  

e m  a p e n a s  três horas, o s e g u n d o  m a io r  v o lu m e  d e s d e  1961. As ruas 

v ira ra m  rios, c a rro s  fo ra m  a rra s ta d o s  e fa m ília s  in te ira s  p e rd e ra m  tu d o  o 

q u e  t in h a m . "Foi c o m o  se o cé u  tive sse  c a íd o  so b re  a c id a d e ", d e s c re v e  u m  

m o ra d o r. Esse e v e n to  n ã o  só m o s tro u  a fo rç a  d a  n a tu re za , m a s  ta m b é m  a 

u rg ê n c ia  d e  u m a  m e lh o r ia  no p la n e ja m e n to  u rb a n o  p a ra  a c id a d e  d e  São 

Paulo. E nq u an to  as  á g u a s  b a ix a v a m , u m a  p e rg u n ta  e c o a v a  na m e n te  de  

to d o s : a té  q u a n d o  v a m o s  c o n v iv e r c o m  essa  re a lid a d e ?

Março: A Resistência Continua



No q u a r to  m ê s  c o n s e c u tiv o , m a rç o  a in d a  tra z  c h u v a s  in ten sa s , c o m  

u m a  m é d ia  d e  10,49 m m . D ona M a rta  e sua  fa m ília  já  e s tã o  m a is  

p re p a ra d a s , m a s  o m e d o  n ã o  d e s a p a re c e . "A c a d a  c h u v a  fo rte , a g e n te  

f ic a  d e  o lh o  no rio, to rc e n d o  p a ra  n ã o  tra n s b o rd a r" , d iz  e la , e n q u a n to  

o b s e rv a  as  á g u a s  b a rre n ta s  s u b ire m  p e r ig o s a m e n te  p e rto  d e  sua  c a s a . As 

fa m ília s  a p re n d e ra m  a c o n v iv e r  c o m  as  e n ch e n te s , m a s  o c u s to  

e m o c io n a l é a lto . "É c o m o  se a g e n te  v ive sse  e m  u m  e s ta d o  d e  a le rta  

c o n s ta n te ", d e s a b a fa  D ona M a rta , s e g u ra n d o  o p e q u e n o  Lucas, q u e  a in d a  

te m  p e s a d e lo s  c o m  o d ia  e m  q u e  a á g u a  in v a d iu  seu q u a rto . A p e sa r d a  

d im in u iç ã o  d a s  ch u va s , a in d a  n ã o  é o f im  d a s  e n ch e n te s . Para m u ito s , é 

a p e n a s  u m a  tré g u a  te m p o rá r ia  a n te s  d o  p ró x im o  d ilú v io .

Abril a setembro: Um Respiro

A p a r tir  d e  a b ril, as  c h u v a s  c o m e ç a m  a d im in u ir  c o m  u m a  m é d ia  d e

7.12 m m , e c h e g a n d o  a a p e n a s  3,88 m m  e m  a g o s to . Para m u ita s  fa m ília s , 

c o m o  a d e  D ona M a rta , é u m  p e río d o  d e  re c o n s tru ç ã o . Ela a p ro v e ita  p a ra  

re fo rm a r a c a s a , s u b s titu in d o  os m ó ve is  d e s tru íd o s  p e la  á g u a  e re p in ta n d o  

as  p a re d e s  q u e  a in d a  c a r re g a m  m a rc a s  d o  níve l d a s  e n ch e n te s . "É c o m o  

se a g e n te  e s tivesse  s e m p re  se p re p a ra n d o  p a ra  a p ró x im a  b a ta lh a " , diz 

e la  e n q u a n to  a rru m a  os p o u c o s  p e rte n c e s  q u e  c o n s e g u iu  sa lva r.

O que será das fam ílias de São Paulo?

O u tu b ro  m a rc a  o in íc io  d o  a u m e n to  d a s  c h u v a s  c o m  u m a  m é d ia  d e

7.12 m m , q u e  so b e  p a ra  10,49 m m  e m  d e ze m b ro . Para a fa m ília  Souza, é 

u m  p e río d o  d e  a n s ie d a d e . "N ão posso  v ia ja r  c o m  m e d o  d e  e n c o n tra r  a 

c a s a  a la g a d a " , d iz D ona M arta . A fa m ília  c o n tin u a  a v id a  m a s  a s e n s a ç ã o  

d e  in ce rte za  e im p o tê n c ia  é g ra n d e , p o s te rg a n d o  p la n o s  e sonhos.

A h is tó r ia  d a  fa m ília  Souza é u m  re flexo  d a  re a lid a d e  d e  m ilh a re s  de  

p a u lis ta n o s  q u e  c o n v iv e m  c o m  as  e n c h e n te s  to d o s  os anos . As ch uva s , 

q u e  d e v e r ia m  ser u m a  b ê n ç ã o , se tra n s fo rm a m  e m  u m a  m a ld iç ã o  p a ra  

m u ito s , m a s  a m u d a n ç a  é possíve l. C o m  a c o n s tru ç ã o  d e  p isc in õe s , a 

re v ita liz a ç ã o  d o s  rios e a c o n s c ie n tiz a ç ã o  d a  p o p u la ç ã o  so b re  o d e s c a rte
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c o rre to  d o  lixo, p o d e m o s  tra n s fo rm a r  São Pau lo  e m  u m  lu g a r m a is  se g u ro  

e res ilien te . E vo cê , o q u e  p o d e  fa ze r p a ra  a ju d a r?  C o m e c e  ho je  m e sm o , 

d e s c a r ta n d o  o lixo c o rre ta m e n te  e c o b ra n d o  a ç õ e s  d o  g o ve rn o . Jun tos , 

p o d e m o s  g a ra n t ir  q u e  as  á g u a s  q u e  ho je  tra z e m  d e s tru iç ã o , no fu tu ro , 

t ra g a m  v id a  e e s p e ra n ç a .
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APÊNDICE 15 -  TÓPICOS EM INTELIGÊNCIA ARTIFICIAL 

A -  ENUNCIADO

1) A lgo ritm o  Genético

Problema do Caixeiro Viajante

A Solução poderá ser apresentada em: Python (preferencialmente), ou em R, ou em Matlab, 

ou em C ou em Java.

Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita 

simplesmente para tornar o problema intratável. A solução ótima para este problema não é 

conhecida).

Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades 

diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o 

percurso de menor distância que passe uma única vez por todas as cidades e retorne à cidade de 

origem.

Para tornar a coisa mais interessante, as coordenadas das cidades deverão ser sorteadas 

(aleatórias), considere que cada cidade possui um par de coordenadas (x e y) em um espaço limitado 

de 100 por 100 pixels.

O relatório deverá conter no mínimo a primeira melhor solução (obtida aleatoriamente na 

geração da população inicial) e a melhor solução obtida após um número mínimo de 1000 gerações. 

Gere as imagens em 2d dos pontos (cidades) e do caminho.

Sugestão:

(1) considere o cromossomo formado pelas cidades, onde a cidade de início (escolhida
aleatoriamente) deverá estar na posição 0 e 100 e a ordem das cidades visitadas nas
posições de 1 a 99 deverão ser definidas pelo algoritmo genético.

(2) A função de avaliação deverá minimizar a distância euclidiana entre as cidades (os pontos).
(3) Utilize no mínimo uma população com 100 indivíduos;
(4) Utilize no mínimo 1% de novos indivíduos obtidos pelo operador de mutação;
(5) Utilize no mínimo de 90% de novos indivíduos obtidos pelo método de cruzamento

(crossover-ox);
(6) Preserve sempre a melhor solução de uma geração para outra.

Im portante: A solução deverá implementar os operadores de “cruzamento” e “mutação”.

2) Compare a representação de do is m odelos vetoria is
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Pegue um texto relativamente pequeno, o objetivo será visualizar a representação vetorial, que poderá 

ser um vetor por palavra ou por sentença. Seja qual for a situação, considere a quantidade de palavras 

ou sentenças onde tenha no mínimo duas similares e no mínimo 6 textos, que deverão produzir no 

mínimo 6 vetores. Também limite o número máximo, para que a visualização fique clara e objetiva.

O trabalho consiste em pegar os fragmentos de texto e codificá-las na forma vetorial. Após obter os 

vetores, imprima-os em figuras (plot) que demonstrem a projeção desses vetores usando a PCA.

O PDF deverá conter o código-fonte e as imagens obtidas.

B - RESOLUÇÃO 

Questão 1

import numpy as np
import matplotlib.pyplot as plt
import random
from itertools import permutations

# Definição de parâmetros 

NUM_CIDADES = 100 
DIMENSAO = 100 
POPULACAO_SIZE = 100 
GERACOES = 1000 
TAXA_MUTACAO =0.01

# Gerar cidades com coordenadas aleatórias 

cidades = np.random.rand(NUM_CIDADES, 2) * DIMENSAO

# Função para calcular a distância euclidiana 

def distancia_total(caminho, cidades):
dist = 0
for i in range(len(caminho) - 1):

dist += np.linalg.norm(cidades[caminho[i]] - cidades[caminho[i + 
^  1]])

dist += np.linalg.norm(cidades[caminho[-1]] - cidades[caminho[0]]) # 

^  Retorno à cidade inicial 

return dist
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# Inicialização da população

def inicializar_populacao(size, num_cidades): 
populacao = [] 
for _ in range(size):

individuo = list(np.random.permutation(num_cidades)) 
populacao.append(individuo) 

return populacao

# Função de seleção por torneio

def selecao_torneio(populacao, cidades, k=5): 
selecionados = random.sample(populacao, k)
selecionados.sort(key=lambda ind: distancia_total(ind, cidades)) 
return selecionados[0]

# Crossover OX (Order Crossover) 

def crossover_ox(parent1, parent2):
size = len(parent1)
p1, p2 = sorted(random.sample(range(size), 2)) 
child = [None] * size 
child[p1:p2] = parent1[p1:p2]
fill_pos = [i for i in parent2 if i not in child] 
idx = 0
for i in range(size):

if child[i] is None:
child[i] = fill_pos[idx] 
idx += 1 

return child

# Mutação por swap

def mutacao(individuo):
if random.random() < TAXA MUTACAO:
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i, j = random.sample(range(len(individuo)), 2) 
individuo[i], individuo[j] = individuo[j], individuo[i] 

return individuo

# Algoritmo Genético

def algoritmo_genetico():
populacao = inicializar_populacao(POPULACAO_SIZE, NUM_CIDADES) 
melhor_solucao = min(populacao, key=lambda ind: distancia_total(ind, 

cidades))

for geracao in range(GERACOES): 
nova_populacao = []
while len(nova_populacao) < POPULACAO_SIZE:

parent1 = selecao_torneio(populacao, cidades) 
parent2 = selecao_torneio(populacao, cidades) 
child = crossover_ox(parent1, parent2) 
child = mutacao(child) 
nova_populacao.append(child)

populacao = sorted(nova_populacao, key=lambda ind: 
distancia_total(ind, cidades)) 

if distancia_total(populacao[0], cidades) < 
distancia_total(melhor_solucao, cidades): 
melhor_solucao = populacao[0]

return melhor_solucao

# Executar o algoritmo e obter melhor caminho 

melhor_caminho = algoritmo_genetico()

# Plotar cidades e caminho 

plt.figure(figsize= (8 , 8))
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caminho_x = [cidades[i][0] for i in melhor_caminho] + 
[cidades[melhor_caminho[0]][0]] 

caminho_y = [cidades[i][1] for i in melhor_caminho] + 
[cidades[melhor_caminho[0]][1]] 

plt.plot(caminho_x, caminho_y, marker= 'o', linestyle= '-') 
plt.scatter(cidades[:, 0], cidades[:, 1], c= 'red') 
plt.title("Melhor Caminho Encontrado") 
plt.show()

M ostrando  os resu ltados

M e lhor so lução  in icia l (custo: 4836 .21 ):

[0 ,4 4 ,5 1 ,9 3 ,73 ,79 ,4 ,2 3 ,2 5 ,43 ,99 ,8 7 ,6 2 ,6 1 ,5 ,83 ,18 ,

8 8 ,20 ,81 ,59 ,69 ,91 ,60 ,5 3 ,8 ,6 7 ,39 ,41 ,9 5 ,3 ,2 7 ,78 ,46 ,9 ,8 2 ,3 6 ,54 ,2 ,2 2 ,9 2 ,7 2 ,3 5 ,63 ,11 ,3 7 ,9 6 , 

7 7 ,1 2 ,5 7 ,7 5 ,49 ,65 ,74 ,2 1 ,7 0 ,8 4 ,7 1 ,6 ,3 2 ,1 6 ,2 4 ,2 9 ,4 8 ,1 4 ,34 ,55 ,5 2 ,5 0 ,3 3 ,2 6 ,8 5 ,7 6 ,7 ,4 5 ,1 5 , 

1 7 ,1 ,40 ,98 ,86 ,68 ,56 ,89 ,10 ,13 ,42 ,30 ,38 ,66 ,28 , 94 ,97 ,90 ,19 ,58 ,80 ,64 ,31 ,47 ]

Melhor solução final encontrada (custo: 1895.59): [0,83,4,29,78,27,35,46,
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89,15,20,70,79,98,54,36,53,30,99,93,84,52,66,63,33,34,55,18,67,58,38,21,
87,37,71,97,57,51,31,95,69,28,80,96,16,77,81,10,25,42,88,2,41,12,11,24,17
,56,3,49,39,50,62,26,22,19,7,92,48,44,61,40,5,86,68,14,45,13,72,64,23,74,
8,6,47,91,85,60,32,59,75,76,43,82,90,1,73,94,9,65]

Questão 2

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.feature_extraction.text import TfidfVectorizer

# Definição de textos 

textos = [
"O cachorro correu pelo parque.",
"O cão brincou com a bola no parque.",
"A criança jogou a bola para o cachorro.",
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"O gato dormiu o dia todo.",
"O felino descansava tranquilamente.",
"A bola rolou para longe do parque."

]

# Vetorização usando TF-IDF 

vectorizer = TfidfVectorizer()
vetores = vectorizer.fit_transform(textos).toarray()

# Redução de dimensionalidade com PCA 

pca = PCA(n_components=2) 
vetores_pca = pca.fit_transform(vetores)

# Plotando os vetores 

plt.figure(figsize= (8 , 6))
for i, txt in enumerate(textos):

plt.scatter(vetores_pca[i, 0], vetores_pca[i, 1])
plt.annotate(f"Texto {i+1}", (vetores_pca[i, 0], vetores_pca[i, 1]))

plt.title("Projeção dos Textos via PCA") 
plt.xlabel("Componente Principal 1") 
plt.ylabel("Componente Principal 2") 
plt.grid() 
plt.show()



257

Dendroqrama do vetor de palavras

Aplicando o PCA - Plotando o Resultado

Visualização de Vetores de Palavras com PCA


