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RESUMO

Esta dissertagcdo desenvolve uma modelagem matematica para simular o processo
de autodepuracédo do rio Pequeno (Parana), utilizando o modelo de Streeter-Phelps
modificado, calibrado sob uma abordagem bayesiana com amostragem via método
de Monte Carlo (NUTS). O objetivo principal é estimar os parametros de
desoxigenagédo (Ky) e reaeracdo (K,), quantificando a incerteza associada as
simulagdes de qualidade da agua em um trajeto do rio Pequeno. Os valores
estimados apds a calibracdo sdo K; = 1,36 £ 0,02 d" e K, = 5,50 + 0,82 d™*, com
intervalos de credibilidade (94% HDI) de [1,32; 1,40] para K, e [4,05; 7,04] para K,. A
validacdo do modelo frente aos dados observados demonstra elevada aderéncia,
com estatisticas de qui-quadrado de x* = 0,06 para o perfil de oxigénio dissolvido
(OD) e x2 = 0,89 para o perfil de demanda bioquimica de oxigénio (DBO), ambas
inferiores ao valor critico (x.2 = 15,51; gl = 8; a = 0,05). O modelo indica que, com os
dados coletados, 99% dos cenarios simulados de OD permanecem acima do limite
legal de 5 mg/L, enquanto 71% das simulagdes de DBO respeitam o limite maximo
permitido. Cenarios de langamento pontual revelam que o rio apresenta resiliéncia
diante de cargas moderadas (<25 mg/L de DBO), mas ha risco de nao conformidade
em casos de alta carga organica (>50 mg/L). A abordagem adotada mostra-se
eficiente na representagcao probabilistica do processo de autodepuracgao, oferecendo
suporte técnico a tomada de decisdo em gestdo da qualidade da agua e
licenciamento ambiental.

Palavras-chave: Streeter-Phelps, K;, K,, Monte Carlo, inferéncia bayesiana,
qualidade da agua, autodepuragéo.



ABSTRACT

This study develops a mathematical model to simulate the self-purification process of
the Pequeno River (Parand), using a modified Streeter-Phelps model calibrated
under a Bayesian framework with sampling via Monte Carlo method (NUTS). The
primary objective is to estimate the deoxygenation (K,;) and reaeration (Kj)
coefficients, while quantifying the uncertainty associated with water quality
simulations along a section of the river. The estimated values after calibration are K,
=1.36 £ 0.02 d" and K, = 5.50 + 0.82 d™*, with 94% highest density intervals (HDI) of
[1.32; 1.40] for Ky and [4.05; 7.04] for K,. Model validation against observed data
demonstrates high agreement, with chi-square statistics of x> = 0.06 for the dissolved
oxygen (DO) profile and x? = 0.89 for the biochemical oxygen demand (BOD) profile,
both below the critical value (x.2 = 15.51; df = 8; a = 0.05). The model indicates that,
based on the collected data, 99% of the simulated DO scenarios remain above the
legal threshold of 5 mg/L, while 71% of the simulated BOD scenarios comply with the
maximum permitted limit. Simulated point-source discharge scenarios reveal that the
river exhibits resilience under moderate organic loads (<25 mg/L of BOD), but
presents a risk of non-compliance under high organic loads (>50 mg/L). The adopted
approach proves effective in probabilistically representing the self-purification
process, offering technical support for decision-making in water quality management
and environmental licensing.

Keywords: Streeter-Phelps, K;, K,, Monte Carlo, Bayesian inference, water quality,
self-purification.
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1 INTRODUGAO

A qualidade da agua € uma caracteristica crucial para a sustentabilidade
ambiental e saude publica, a qual desempenha um papel fundamental tanto na
manutencao do equilibrio dos ecossistemas aquaticos, bem como no fornecimento
seguro de agua potavel (HASSAN, 2011). No contexto da Regido Metropolitana de
Curitiba (RMC), o Rio Pequeno, localizado em Sao José dos Pinhais, assoma como
um recurso hidrico de significativa importéncia, com influéncia direta na qualidade da
agua disponivel para parte da populagdo da RMC (SANEPAR, 2013).

A bacia hidrografica do Rio Pequeno possui uma area de drenagem de
aproximadamente 133 km?, cujo rio é afluente da margem esquerda da bacia do
Altissimo Iguacgu, que é responsavel por parte do abastecimento publico de agua
tratada de Curitiba e regiao.

A definicdo normativa de “boa qualidade da agua” tem seu fundamento na
Constituicao Federal de 1988, que considera a agua um recurso natural limitado, de
dominio publico e dotado de valor econémico. Esses principios sao reforcados pela
Politica Nacional de Recursos Hidricos, viabilizada pela Lei Federal n® 9.433/1997,
que estabelece a gestdo descentralizada dos recursos hidricos com a participacao
do Poder Publico, dos usuarios e das comunidades, bem como o uso multiplo das
aguas. Complementarmente, as resolugdes CONAMA n° 357/2005 e CONAMA n°
430/2011 definem padrdes de qualidade dos corpos d’agua e estabelecem as
condicbes de lancamento de efluentes. Apesar destas normativas, a elevacao
constante na demanda por agua, associada aos usos multiplos (industria, agricultura
e consumo humano), pode provocar crises de escassez e gerar conflitos em bacias
hidrograficas.

Para uma gestéo eficaz dos corpos d’agua € necessario entender quais sao
os fendbmenos que neles existem, como por exemplo a variagao da vazao, alteragcao
de percurso, acumulo de sedimentos, decomposi¢cao de matéria organica dissolvida,
eutrofizagdo, entre outros. A compreensdo desses fenémenos € de suma
importancia, visto que servem de base para apoiar a gestdo e o controle dos
recursos hidricos.

Atualmente, diversos modelos matematicos fundamentam-se em fenémenos
hidrolégicos e hidrodindmicos para simular e antecipar diferentes cenarios

relacionados aos recursos hidricos. Esses modelos, conforme sua finalidade, podem
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abranger desde cenarios de disponibilidade hidrica até a proje¢do da qualidade da
agua. Em especifico, os modelos matematicos voltados a qualidade da agua séo
uteis para compreender a realidade dos corpos d’agua e apoiar a gestdo dos
usuarios da bacia hidrografica. Esses modelos variam desde abordagens mais
simples, como o modelo de Streeter-Phelps, que se baseia na decomposi¢cao de
matéria organica dissolvida, até modelos mais complexos, como o SWAT, que levam
em consideragcdao a ocupacao do solo nas bacias hidrograficas. Cada um desses
modelos oferece uma perspectiva unica, contribuindo para uma gestdo mais
informada e sustentavel dos recursos hidricos.

Um dos maiores usos dos modelos matematicos hidricos € o estudo de
capacidade de suporte de um recurso hidrico, que visa compreender a capacidade
que um corpo d’agua possui para sustentar as demandas ambientais e sociais sem
comprometer sua integridade ecoldgica. No ambito juridico, a CONAMA n° 430/2011,
no seu Art. 7°, decreta a possibilidade da apresentacao de estudo de capacidade de
suporte do corpo receptor de langamento de efluentes para melhor avaliar a situagao
durante o processo de licenciamento ou renovagao ambiental do empreendimento.

Essa abordagem esta diretamente alinhada aos Objetivos de
Desenvolvimento Sustentavel da ONU, em especial o ODS 6, que visa assegurar a
disponibilidade e a gestao sustentavel da agua e do saneamento, e o ODS 15, que
trata da protegao e uso sustentavel dos ecossistemas terrestres e de agua doce. Ao
utilizar modelos matematicos como ferramenta de apoio a gestdo da qualidade da
agua, esta pesquisa contribui para o monitoramento de corpos hidricos e para a
tomada de decisbes que garantam a integridade ambiental e o uso racional dos
recursos naturais.

Diante do exposto, essa dissertagdo visa proporcionar uma compreensao
mais aprofundada sobre as potenciais aplicagdes dos modelos matematicos na

analise da qualidade da agua do Rio Pequeno.

1.1 OBJETIVO GERAL

Obter e testar modelo matematico da qualidade da agua do rio Pequeno em

Sao José dos Pinhais-PR.
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1.2 OBJETIVOS ESPECIFICOS

Para atender o objetivo acima, traga-se como objetivos intermediarios:

e Aplicar o modelo de Streeter-Phelps com abordagem bayesiana para
simulagao da qualidade d’agua do rio Pequeno;

e Calibrar o modelo matematico para a simulagao da qualidade d’agua;

e Comparar cenarios simulados e limites legais.
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2 REVISAO DA LITERATURA

O estudo se baseia em quatro pilares de conhecimento que serao
aprofundados neste capitulo:
e Qualidade da agua;
e Base legal;
e Modelos matematicos para simulagcdo da qualidade da agua;

e Meétodos estatisticos.

2.1 QUALIDADE DA AGUA

A qualidade da agua de rios e lagos resulta de dois componentes principais:
os fendbmenos naturais e a atividade humana. De maneira geral, como afirma Von
Sperling (2014) “a qualidade de uma determinada agua € fungdo das condigbes
naturais e do uso e da ocupagao do solo na bacia hidrografica”.

As condi¢bes naturais se referem a variacdo da qualidade da agua por fatores
como a infiltragdo da agua no solo, escoamento superficial e a cobertura e
composicdao do solo. O resultado da combinacdo desses fatores implica em
diferentes niveis de qualidade da agua para diferentes regibes mesmo sem a
intervencado humana (VON SPERLING, 2014).

A interferéncia humana é associada a poluicdo causada por suas atividades,
que pode ocorrer de forma concentrada (como pelo despejo de efluentes domésticos
e industriais) ou de forma dispersa (como pela aplicagdo de agrotdxicos no solo que
sdo carregados para os corpos de agua). Dessa forma, a atuagao humana influencia
diretamente a qualidade da agua (VON SPERLING, 2014).

As condigbdes naturais e humanas ao entorno do corpo hidrico sao grandes
responsaveis pela qualidade da agua, uma vez que suas influéncias alteram o
equilibrio de nutrientes e condigcbes da agua, ocasionando impacto em todo o
ecossistema presente. Para se discutir a qualidade da agua, em termos objetivos,
pode-se retrata-la a partir de suas caracteristicas fisicas, quimicas e bioldgicas.

Nos estudos acerca da qualidade da agua encontram-se muitos parametros
que traduzem suas caracteristicas como temperatura, cor, gosto, odor, sélidos totais,
condutividade elétrica, pH, acidez, alcalinidade, concentragao de cloro, concentracao
de sulfatos, dureza, entre outros (OMER, 2019).
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Como forma de padronizar e elencar as principais caracteristicas da agua, em

1970, criou-se a metodologia do indice de Qualidade da Agua (IQA). Este indice foi
desenvolvido pela National Sanitation Foundation (Estados Unidos) através do
consenso de diversos especialistas a respeito das caracteristicas mais relevantes da
agua. Foram elencados 9 parametros principais para a agua (ANA, 2025):

e Oxigénio dissolvido;

e Coliformes termotolerantes;

e Potencial hidrogenidnico — pH;

e Demanda Bioquimica de Oxigénio — DBO;

e Temperatura;

e Nitrogénio total,

e Fosforo total;

e Turbidez;

e Residuo total.

A metodologia de célculo do IQA ainda distribui pesos para os componentes e
realiza algumas operagdes matematicas para indicar um numero de 0 a 100 que

representa a qualidade do recurso hidrico em questao.

2.1.1 Oxigénio Dissolvido

O oxigénio dissolvido é considerado como um dos principais parametros na
qualidade da agua, uma vez que é essencial para a manutengéo e respiragcaéo da
vida aquatica. De maneira geral, aguas poluidas apresentam baixas concentragbes
de oxigénio dissolvido (colocando em risco o ecossistema aquatico) e aguas de boa
qualidade apresentam concentragdes elevadas de oxigénio dissolvido (ANA, 2025).

Analisando os fenébmenos comumente relacionados a poluigao de industrias e

esgotos sanitarios, temos nas palavras de Von Sperling (2014, p. 295):

A introdugdo de matéria organica em um corpo dagua resulta,
indiretamente, no consumo de oxigénio dissolvido.

O decréscimo da concentracdo de oxigénio dissolvido tem diversas
implicagées do ponto de vista ambiental, constituindo-se, como ja dito, em

um dos principais problemas de poluigdo das aguas em nosso meio.

Um dos problemas do decréscimo da concentragdo de oxigénio dissolvido

esta ligado diretamente aos ecossistemas aquaticos, pois essa baixa concentragéo
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limita a vida de muitas espécies que se encontram nesse habitat. Importante
ressaltar que o oxigénio dissolvido é levemente soluvel em agua e varia a partir da
pressdo e temperatura do ambiente. Por exemplo, a concentragcdo de saturagao do
oxigénio a 1 atm e 20 °C é de aproximadamente 9 mg/L enquanto a 1 atm e 0°C é
de 14,6 mg/L (OMER, 2019).

A partir dos principios da termodinamica, Benson e Krause (1980) derivaram
uma equagao que correlaciona a concentragdo de saturacdo do oxigénio na agua
com a temperatura. Neste primeiro trabalho, os autores consideraram agua pura e
pressao de 1 atm. Como as equacdes tedricas sdo complexas para tal calculo, eles

realizaram uma regressao para os dados, como pode ser vista na equagéao (1):

5 7
ODs = exp(— 139, 34411 + 1,57;7019410 _ 6,6423082c10 n (1)
emp Temp

1,243800x10'°  8,621949x10"

Temp3 Temp4

em que ODs € a concentragdo de oxigénio dissolvido na saturagdao em mg/L e Temp
é a temperatura da agua em Kelvin.

Mais tarde, Benson e Krause (1984) incluiram fatores de correcdo de sua
equacgao. Esses fatores levam em conta salinidade e presséo. O fator de corregcéo

de pressao (FP) se encontra na equacgao (2):

B (P—u)(l—GOP) 2)

Fp - (1—u)i1—eoj

em que P € a pressado barométrica em atmosfera desejada, u € a presséo de vapor

da agua em atmosfera e 90 esta relacionado com a equacéo do virial do oxigénio,

como mostrado na equagao (3):
-5 -8 2 (3)
60 = 0,000975 — 1,426x10 temp + 6,436x10 temp

em que temp € a temperatura da agua em graus Celsius.
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A equacao de presséo de vapor da agua em atmosferas é dada pela equagao

(4):

u = exp(11,8571 — 384070 216961 (4)
Temp

Tem;r)2

em que Temp é a temperatura da agua em Kelvin.
A variagdo da concentragdo de oxigénio dissolvido na saturagdo na agua
pode ser melhor vista por meio da FIGURA 1 que mostra essa variavel em 3

pressoes diferentes.

FIGURA 1 - Oxigénio dissolvido na saturagcédo na agua em relagao a temperatura em diferentes

pressoes.
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Fonte: Autor (2025).

A FIGURA 1 deixa claro a relagao inversa entre temperatura da agua e
concentracao de oxigénio dissolvido na saturacao, considerando diferentes pressbées
atmosféricas. Nota-se que, com o aumento da temperatura, a solubilidade do
oxigénio diminui, o que pode diminuir a disponibilidade de oxigénio para os
organismos aquaticos sobreviverem. A figura também destaca o papel da pressao:

em regides de menor pressdo atmosférica, como em altitudes elevadas, a
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capacidade da agua de manter o oxigénio dissolvido € ainda menor. Esses aspectos
reforcam a importancia de considerar fatores ambientais locais na avaliagdo da

qualidade da agua e na aplicagdo de modelos de autodepuracgao.
2.1.2 Coliformes termotolerantes

Os coliformes termotolerantes sao bactérias geralmente originarias da
excrecao de animais endotérmicos e sdo um dos principais indicadores de poluicdo
das aguas por esgoto domeéstico. Sua presenga nos corpos hidricos se da, em
grande parte, pelo langamento direto de efluentes sanitarios nao tratados, bem como
por processos de escoamento superficial em areas urbanas e rurais. Elas ndo sio
patogénicas por si, mas a presencga de grandes quantidades dessas bactérias indica
a possibilidade da existéncia de patégenos na agua (por exemplo, os vetores da
disenteria, febre tifoide e colera) (ANA, 2025).

2.1.3 Potencial Hidrogenibnico - pH

Por definicdo, pH é o logaritmo negativo da concentracdo de ions de
hidrogénio na solugéo e indica se ela é acida ou alcalina (HELMENSTINE, 2020). A

equacao (5) explicita seu calculo:

pH =— loglO[H+] (5)

em que pH é o potencial hidrogenibnico e [H+] € a molaridade de ions positivos de
hidrogénio em mol/L.

A escala do pH baseia-se na constante de ionizagdo da agua pura e varia, em
geral, de 0 a 14, sendo que valores abaixo de 7 indicam uma solug&o acida, igual a
7 corresponde a uma solugdo neutra, e acima de 7 indicam uma solu¢ao basica
(alcalina). Essa classificagdo é amplamente aceita e descrita por 6rgaos
internacionais como a United States Environmental Protection Agency (EPA, 2021).

Para aguas doces superficiais, os valores de pH geralmente oscilam entre 6,5

e 8,5, faixa considerada ideal para a manutengdao dos processos biolégicos e da
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integridade dos ecossistemas aquaticos. Alteragbes fora desse intervalo podem
prejudicar a solubilidade de nutrientes e metais, afetar diretamente a vida aquatica e
comprometer os usos multiplos da agua (EPA, 2021).

Além do proprio pH ser prejudicial para a vida aquatica, alteragcbes de pH
podem solubilizar substancias quimicas téxicas (como metais pesados) que afetam

0s organismos aquaticos (ANA, 2025).
2.1.4 Demanda Bioquimica de Oxigénio — DBO

As bactérias e alguns microrganismos aerobios utilizam matéria organica e
oxigénio como fonte de energia. Essa matéria organica é quebrada em moléculas
mais simples como CO, e H,O e a energia liberada € utilizada para crescimento e
reprodugao (OMER, 2019).

Quando esse processo ocorre na agua € o oxigénio dissolvido que sera
consumido. Enquanto esses microrganismos metabolizam a matéria organica, a
concentracdo de oxigénio dissolvido diminui e é exatamente essa necessidade de
oxigénio dissolvido que caracteriza a demanda bioquimica de oxigénio — DBO
(OMER, 2019).

Para determinar a DBO, o método de DBO:?*° é usualmente adotado como
padrao, o qual consiste na medi¢do do oxigénio dissolvido de amostras, diluidas ou
nao, no inicio e apés um periodo de 5 dias a 20 °C. Os microrganismos presentes
consomem a matéria orgénica utilizando o oxigénio dissolvido da amostra. Para
evitar aumento do oxigénio dissolvido a partir da fotossintese de microalgas, as

amostras ficam no escuro durante o processo de analise (BERTOLAMI, 2024).
Levando em conta a metodologia de medi¢ao da DBOEO, obtém-se a seguinte

equacao (para um tempo igual a 5 dias):
20 6
DBO5 = ODO— OD5 (6)

Sendo OD, o oxigénio dissolvido inicial na amostra e ODs; o oxigénio

dissolvido na amostra apos 5 dias. Para evitar problemas bioldgicos e
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fisico-quimicos, as afericbes podem ser feitas diluindo-se as amostras (BERTOLAMI,
2017).

2.1.5 Temperatura

A temperatura influencia varios parametros fisico-quimicos da agua como
viscosidade, solubilidade e reag¢des quimicas. Processos como a sedimentagao e o
consumo de oxigénio por microrganismos também sao dependentes da temperatura
(OMER, 2019). Os corpos d’agua sofrem variagdes de temperatura ao longo do dia e
durante as diferentes estagdes do ano, no entanto o despejo de efluentes com altas
temperaturas pode prejudicar o equilibrio natural e inclusive afetar a vida aquatica
(ANA, 2025).

2.1.6 Nitrogénio total

O nitrogénio esta presente em 4 formas nas aguas e efluentes: nitrogénio
organico, nitrogénio amoniacal, nitritos e nitratos. Aguas poluidas por esgotos
apresentam elevados indices de nitrogénio organico e amoniacal, que serao
transformados em nitritos e nitratos por microrganismos. Os nitratos, por sua vez,
sédo nutriente essencial para o crescimento de plantas e algas e, juntos com outros
nutrientes tais como o fésforo, causam o crescimento excessivo de algas, resultando
no processo de eutrofizagdo dos corpos d'agua, fendbmeno que prejudica o

abastecimento publico e a preservagao da vida aquatica (ANA, 2025).

2.1.7 Fosforo total

Igualmente ao nitrogénio, o fosforo € essencial para plantas e algas e seu
excesso na agua pode gerar o processo de eutrofizacdo do recurso hidrico. As
principais fontes de fosforo nos corpos hidricos se deve ao langamento de efluentes
de industrias de fertilizantes e alimenticia, despejo de esgotos domésticos e pelo

escoamento superficial de areas agricolas e urbanas. (ANA, 2025).
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2.1.8 Turbidez

A turbidez indica o grau de atenuagao que um feixe de luz sofre ao atravessar
a agua. Esta atenuacao é gerada pelos soélidos em suspensao (argila, detritos, silte,
etc...) que absorvem e espalham a luz que atravessa a agua. Suas principais fontes
sdo a erosao do solo (principalmente devido a chuva) e atividades de mineracéo,
langamento de esgotos e de efluentes industriais. Um elevado nivel de turbidez da
agua afeta o equilibrio dos organismos aquaticos, quanto o uso industrial e

recreativo dos corpos hidricos (ANA, 2025).

2.1.9 Residuo total

O residuo total € o material que permanece apds o0 processo de evaporagao,
secagem e calcinacdo de uma amostra de agua. A alta quantidade de residuos em
um corpo hidrico pode causar seu assoreamento que por sua vez gera problemas,

tanto para a navegacao quanto aumenta o risco de enchentes (ANA, 2025).

2.2 BASE LEGAL

Um dos recursos naturais que mais chama a atencdo da sociedade,
principalmente pela divulgagédo de recentes abusos e acidentes, é a agua. Para bem
estabelecer as bases legais desse recurso, a Constituicdo Federal de 1988 delimita

algumas de suas caracteristicas essenciais. A agua € um bem da Unido, quando em

“‘lagos, rios e quaisquer correntes de agua em terrenos de seu dominio, ou
que banhem mais de um Estado, sirvam de limites com outros paises, ou se
estendam a territério estrangeiro ou dele provenham, bem como os terrenos
marginais e as praias fluviais” (BRASIL,1988, Art. 20).

De maneira complementar, a agua inclui-se como bem dos Estados se
“superficiais ou subterraneas, fluentes, emergentes e em depdsito, ressalvadas,
neste caso, na forma da lei, as decorrentes de obras da Unidao” (BRASIL, 1988, Art.
26).

A partir da Constituicdo Federal, e pela importancia da agua na manutengao
da sociedade, surge no Brasil a Politica Nacional de Recursos Hidricos, viabilizada

pela Lei Federal n° 9.433/1997. Em seus fundamentos, ela estabelece uma gestao
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descentralizada dos recursos hidricos com a participagdo do Poder Publico, dos
usuarios e das comunidades, bem como o uso multiplo das aguas. Importante
salientar que a Politica Nacional de Recursos Hidricos fornece uma nova viséo

sobre o valor da agua, como observa-se no inicio da Lei n° 9.433/1997:

A Politica Nacional de Recursos Hidricos baseia-se nos seguintes
fundamentos:

| - a agua é um bem de dominio publico;

Il - a agua € um recurso natural limitado, dotado de valor econémico;

[ll - em situagdes de escassez, o uso prioritario dos recursos hidricos € o
consumo humano e a dessedentacéo de animais;

IV - a gestdo dos recursos hidricos deve sempre proporcionar o uso multiplo
das aguas;

V - a bacia hidrografica € a unidade territorial para implementagdo da
Politica Nacional de Recursos Hidricos e atuagdo do Sistema Nacional de
Gerenciamento de Recursos Hidricos;

VI - a gestédo dos recursos hidricos deve ser descentralizada e contar com a
participagdo do Poder Publico, dos usuarios e das comunidades (BRASIL,
1997, Art. 1°).

Essa nova visdo da agua: recurso natural limitado, de dominio publico e

dotado de valor econdmico, surge com o objetivo de

| - assegurar a atual e as futuras geragdes a necessaria disponibilidade de
agua, em padrdes de qualidade adequados aos respectivos usos;

[...]
IV - incentivar e promover a captagéo, a preservagao e o aproveitamento de
aguas pluviais (BRASIL, 1997, Art. 2°).

Por fim, para assegurar o disposto acima, a Lei firma seu compromisso

instituindo os seguintes instrumentos da Politica Nacional de Recursos Hidricos:

| - os Planos de Recursos Hidricos;

Il - o enquadramento dos corpos de agua em classes, segundo 0s usOs
preponderantes da agua;

[l - a outorga dos direitos de uso de recursos hidricos;

£5/I)] o Sistema de Informagdes sobre Recursos Hidricos (BRASIL, 1997, Art.

A Lei n® 9.433/1997, também, cria o Conselho Nacional de Recursos Hidricos

- CNRH, orgéo central do Sistema Nacional de Gerenciamento de Recursos Hidricos

(SINGREH), responsavel por deliberar e coordenar a implementacédo da Politica

Nacional de Recursos Hidricos. O CNRH possui carater normativo e deliberativo e é

formado por representantes do governo, da sociedade civil e dos usuarios dos
recursos hidricos.

Entre as principais atribuicdes do CNRH, o Art. 35° lista:

| - promover a articulagdo do planejamento de recursos hidricos com os
planejamentos nacional, regional, estaduais e dos setores usuarios;
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Il - arbitrar, em ultima instancia administrativa, os conflitos existentes entre
Conselhos Estaduais de Recursos Hidricos;

[...]

V - analisar propostas de alteracdo da legislacao pertinente a recursos
hidricos e a Politica Nacional de Recursos Hidricos;

VI - estabelecer diretrizes complementares para implementagao da Politica
Nacional de Recursos Hidricos, aplicagdo de seus instrumentos e atuagao
do Sistema Nacional de Gerenciamento de Recursos Hidricos;

[.-]
X - estabelecer critérios gerais para a outorga de direitos de uso de recursos
hidricos e para a cobranga por seu uso (BRASIL, 1997, Art. 35°).

O CNRH desempenha um papel estratégico na formulagdo e implementacéo
de politicas publicas, garantindo que a gestdo da agua seja integrada e abranja as
dimensdes econbmica, social e ambiental. Complementando a estrutura do
SINGREH, a Lei n°® 9.433/1997 prevé a criacao dos Comités de Bacia Hidrografica,
orgaos colegiados que atuam no ambito das bacias hidrograficas, promovendo a
gestao descentralizada. Esses comités sdo formados por representantes do Poder
Publico, dos usuarios de recursos hidricos e de organizagbes civis com atuacao
comprovada na bacia.

Entre suas fun¢gdes destacam-se:

| - promover o debate das questdes relacionadas a recursos hidricos e
articular a atuacao das entidades intervenientes;

Il - arbitrar, em primeira instancia administrativa, os conflitos relacionados
aos recursos hidricos;

Il - aprovar o Plano de Recursos Hidricos da bacia;

IV - acompanhar a execugao do Plano de Recursos Hidricos da bacia e
sugerir as providéncias necessarias ao cumprimento de suas metas
(BRASIL, 1997, Art. 38°).

Os Comités de Bacia Hidrografica sdo fundamentais para adaptar politicas
publicas ao contexto local e para que os recursos hidricos sejam utilizados de forma
sustentavel. A estrutura do CNRH e dos Comités de Bacia Hidrografica formam a
base da gestao descentralizada e participativa dos recursos hidricos no Brasil.

A Lei n° 9.433/1997 da ao Brasil as definigbes legais necessarias para a
gestdo dos recursos hidricos, o que possibilita a regulamentacéo dos padrdes de
qualidade dos corpos d’agua. A Resolugdo CONAMA n° 357/2005, marco legal do
tema, dispbe sobre a classificacdo dos corpos de agua e diretrizes ambientais para o
seu enquadramento, bem como estabelece as condigbes e padrbes de langamento
de efluentes. A respeito das possiveis classificagbes dos corpos de agua, o

QUADRO 1 apresenta os possiveis usos para cada classe.
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QUADRO 1 — Possiveis usos de acordo com a classe estabelecida pela Resolugdo CONAMA n°

357/2005.
Classe Usos
a) ao abastecimento para consumo humano, apés tratamento simplificado;
b) a protegdo das comunidades aquaticas;
C) a recreagcdo de contato primario, tais como natagdo, esqui aquatico e
Classe 1 mergulho, conforme Resolugdo CONAMA n° 274, de 2000;
d) a irrigagdo de hortalicas que sdo consumidas cruas e de frutas que se
desenvolvam rentes ao solo e que sejam ingeridas cruas sem remogao de pelicula; e
e) a protegao das comunidades aquaticas em Terras Indigenas.
a) ao abastecimento para consumo humano, apés tratamento convencional;
b) a protegdo das comunidades aquaticas;
C) a recreagcdo de contato primario, tais como natagdo, esqui aquatico e
Classe 2 mergulho, conforme Resolu¢gdo CONAMA n° 274, de 2000;
d) a irrigagdo de hortalicas, plantas frutiferas e de parques, jardins, campos de
esporte e lazer, com os quais o publico possa vir a ter contato direto; e
e) a aquicultura e a atividade de pesca.
a) ao abastecimento para consumo humano, apods tratamento convencional ou
avangado;
cl b) a irrigacao de culturas arboreas, cerealiferas e forrageiras;
asse 3 N .
C) a pesca amadora;
d) a recreagéo de contato secundario; e
e) a dessedentagdo de animais.
Classe 4 a) ? navegagéo; e
b) a harmonia paisagistica.

FONTE: Adaptado de Brasil (1997).

Além destas definicdes, a Resolucdo CONAMA n° 357 de 2005 estabelece

quais sdo as condigdes e parametros necessarios para o corpo hidrico pertencer a

cada classe. A classe 1 conta com mais de 90 parametros que precisam ser

considerados para garantir o correto enquadramento de um corpo hidrico. De forma

ilustrativa, os QUADROS 2, 3, 4 e 5 trazem os limites de alguns parametros

presentes na resolugao.

QUADRO 2 - Valores dos parametros estipulados pela Resolugdo CONAMA n° 357/2005 para Aguas

Doces de Classe 1.

Parametros Valores Maximos Permitido
pH Entre 6 e 9
OD nado inferior a 6 mg/L
DBO 3 mg/L
Nitrogénio Amoniacal 3.7mg/L N, parapH<7,5

2,0 mg/L N, para 7,5 <pH < 8,0
1,0mg/L N, para8,0<pH=<8,5
0,5 mg/L N, para pH > 8.5

Coliformes Totais 200 coliformes termotolerantes por 100 mililitros em

80% ou mais, de pelo menos 6 amostras, coletadas durante o
periodo de um ano

FONTE: Adaptado de Brasil (1997).




28

QUADRO 3 — Valores dos parametros estipulados pela Resolugdo CONAMA n° 357/2005 para Aguas

Doces de Classe 2.

Parametros Valores Maximos Permitido
pH Entre 6 e 9
oD nao inferior a 5 mg/L
DBO 5 mg/L

Nitrogénio Amoniacal

3,7/mg/L N, parapH<7,5
2,0 mg/L N, para 7,5 <pH <8,0
1,0 mg/L N, para8,0<pH=<8,5
0,5mg/L N, parapH2>85

Coliformes Totais

1.000 coliformes termotolerantes por 100 mililitros em
80% ou mais, de pelo menos 6 amostras, coletadas durante o
periodo de um ano

FONTE: Adaptado de Brasil (1997).

QUADRO 4 — Valores dos parametros estipulados pela Resolugdo CONAMA n° 357/2005 para Aguas

Doces de Classe 3.

Parametros Valores Maximos Permitido
pH Entre 6 e 9
OD Superior a 4 mg/L
DBO 10 mg/L

Nitrogénio Amoniacal

13,3 mg/L N, parapH<7,5
5,6 mg/L N, para 7,5 <pH < 8,0
2,2mg/L N, para8,0<pH=<8,5

1,0 mg/L N, parapH 2> 8.5

Coliformes Totais

2.500 coliformes termotolerantes por 100 mililitros em
80% ou mais, de pelo menos 6 amostras, coletadas durante o
periodo de um ano

FONTE: Adaptado de Brasil (1997).

QUADRO 5 — Valores dos parametros estipulados pela Resolugdo CONAMA n° 357/2005 para Aguas

Doces de Classe 4.

Parametros Valores Maximos Permitido
pH Entre 6 e 9
OD Superior a 2 mg/L

FONTE: Adaptado de Brasil (1997).

Os QUADROS 2, 3, 4 e 5 mostram parametros que sao universais para a boa
qualidade da agua independente da classe (por exemplo, o pH deve se manter entre
6 e 9 para todas as classes) e parametros que possuem maior ou menor rigor
dependendo da classe do corpo hidrico. O parametro DBO é um exemplo que se
torna menos rigoroso conforme aumenta-se a classe, tendo um limite de 3 mg/L na
classe 1 e ndo possuindo limite na classe 4.

O enquadramento de corpos hidricos em cada classe € uma tarefa realizada
entre Poder Executivo e sociedade, resultando no Plano de Recursos Hidricos da
bacia hidrologica em questdo. O enquadramento e sua manutencao sdo essenciais

para garantir a gestao publica e saude da populagao. Um rio de Classe 1 ndo podera
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ter uma grande fonte poluidora, visto que o despejo desse efluente altera os
parametros de qualidade da agua, modificando a classe do rio e consequentemente
Seus usos.

De maneira complementar, a Resolugado CONAMA n° 430/2011 permite, em
carater excepcional e temporario, o langamento de efluentes em desacordo com as
condicbes e padrbes estabelecidos, desde que se leve em conta os seguintes
requisitos:

| — comprovagéo de relevante interesse publico, devidamente motivado;

Il — atendimento ao enquadramento do corpo receptor e as metas
intermediarias e finais, progressivas e obrigatorias;

Il — realizagdo de estudo ambiental tecnicamente adequado, as expensas
do empreendedor, responsavel pelo langamento;

IV — estabelecimento de tratamento e exigéncias para este langamento;

V — fixagdo de prazo maximo para o langamento, prorrogavel a critério do
6rgdo ambiental competente enquanto durar a situacdo que justificou a
excepcionalidade aos limites estabelecidos nesta forma; e

VI — estabelecimento de medidas que visem neutralizar os eventuais efeitos
do langamento excepcional. (BRASIL, 2011, Art. 6°).

Também, a referida resolugdo, no seu Art. 7°, § 1°, detalha que “o 6rgao
ambiental competente podera exigir, nos processos de licenciamento ou de sua
renovacao, a apresentacao de estudo de capacidade de suporte do corpo receptor”.
Tanto para o estudo ambiental tecnicamente adequado quanto para o estudo de
capacidade de suporte do corpo receptor indicado no Art. 7°, a modelagem
matematica da qualidade da agua é de suma importancia, pois permite o
entendimento e a comunicacgao cientifica clara e objetiva entre o 6rgdo competente e

0 usuario do corpo hidrico.

2.3 MODELAGEM DA QUALIDADE DA AGUA

Os modelos matematicos para simulagdo da qualidade da agua sao um
conjunto de equagdes que, ao serem resolvidas, fornecem a distribuicdo espacial e
temporal dos componentes dos corpos hidricos, bem como permite avaliar
quantitativamente parametros que influenciam na qualidade da agua. Bons modelos
matematicos sdo aqueles que sio representativos da realidade e depois das
equagdes serem resolvidas, e 0 modelo calibrado, pode-se tragar cenarios futuros e
passados em funcédo dos valores de entrada que sejam prescritos. Assim, zonas de
mistura, disperséo de poluentes e capacidade de suporte do corpo hidrico podem

ser calculadas e previstas em simulagao.
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Para estruturar o entendimento de modelos matematicos, Garcia (2013)
classifica-os de acordo com alguns critérios:

e Estético x Dinémico: referente a variacéo temporal do modelo.

e Linear x Nao-linear: referente as equacdes constitutivas do modelo
(relacao entre variaveis de entrada e saida).

e Paramétricos x Nao-paramétricos: referente se o modelo utiliza em sua
estrutura um conjunto de parametros.

e Deterministico x Estocastico: referente ao calculo (pontual ou por
probabilidade) das variaveis.

Os modelos de qualidade da agua possuem um longo periodo de evolucgao,
comecando em 1925 com o classico estudo de Streeter e Phelps de controle de
poluicdo do rio Ohio, até modelos de acoplamento utilizando redes neurais. O
progresso dos modelos abrange a analise uni e multifatorial da qualidade da agua,
modelos estaticos e dinamicos, lineares e n&o-lineares, deterministicos e
estocasticos, modelos de fonte unica e fontes dispersas e simulagdes em 0, 1,2 e 3
dimensodes.

Até 2013, mais de 100 modelos de qualidade da agua haviam sido
desenvolvidos, cada um com seus proprios coeficientes, dimensdes, cinética de
reacoes e necessidade de dados de entrada. A literatura divide o desenvolvimento
dos modelos de qualidade da agua em 3 grandes momentos que serao detalhados a
seguir (WANG, 2013).

2.3.1 O primeiro estagio (1925 — 1965)

Nesse estagio os modelos de qualidade da agua focam principalmente nas
interacdes entre os diferentes componentes da qualidade da agua de rios afetados
por fontes poluidoras como industrias (WANG, 2013).

O modelo de Streeter e Phelps € um sistema estacionario unidimensional
simples entre OD e DBO e atingiu grande sucesso na predicdo e resolugao de
problemas ligados a poluicdo da qualidade das aguas de rios e estuarios. A partir
desse modelo, diversas modificagcdes sao feitas de maneira a melhorar o modelo.
Thomas (1948, apud WANG, 2013), por exemplo, propés que a DBO nao era
apenas reduzida a partir do consumo de oxigénio, mas também a partir da

floculagao e deposic¢ao no leito do corpo hidrico.



31

2.3.2 O estagio de desenvolvimento (1965 - 1995)

Diversos progressos em relagdo a modelagem da qualidade da agua foram
conquistados no periodo. O modelo unidimensional foi adaptado para duas
dimensdes e houve a possibilidade de simulagao da qualidade da agua em lagos e
golfos. Modelos com sistemas nao-lineares comegaram a ser desenvolvidos entre
1970 e 1975, levando em conta os ciclos do nitrogénio e fosforo e a dinamica
organica de fitoplancton e zooplancton, focando principalmente na relagéo entre o
crescimento bioldgico e a disponibilidade de luz solar, temperatura e nutrientes na
agua. A resolugao desses modelos toma em conta os métodos de diferenca finita e
elemento finito por causa de suas ndo-linearidades (WANG, 2013).

Apo6s 1975, o numero de variaveis nos modelos aumentou significativamente
e surgem modelos com trés dimensdes que levam em conta o modo hidrodindmico e
a dindmica de sedimentos dos corpos hidricos. Outro grande desenvolvimento foi a
utilizacdo de modelos de bacias hidrograficas juntamente com os modelos de
qualidade da agua para considerar fontes dispersas de poluicdo. Nesse contexto
diversos modelos surgem como os modelos QUAL, modelo MIKE11 e modelos
WASP (WANG, 2013).

2.3.3 O estagio de aprofundamento (apds 1995)

Com o avango das politicas ambientais, as fontes difusas de poluicdo
reduzem consideravelmente. Porém, comegou a se entender que parte consideravel
dos compostos organicos, metais pesados e compostos de nitrogénio encontrados
nos corpos hidricos advinha da deposicao atmosférica. Apesar de diversos modelos
ja preverem essa deposicdo atmosférica diretamente nos corpos hidricos,
fendbmenos como a deposigao atmosférica em solo e consequente arraste desses
poluentes para os corpos hidricos ndo era levado em conta. Nesse estagio, inicia-se
a integracdo de modelos de qualidade da agua com modelos de poluicdo do ar para
avaliar a contribuigdo da posigédo atmosférica de poluentes (WANG, 2013).

Modelos como o EFDC, QUASAR, QUAL 2K, SWAT, MIKE21 e MIKE31
possuem a capacidade de simular complexas interrelacbes que afetam a qualidade

da agua. O modelo INCA, por exemplo, possui uma modelagem da qualidade da
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agua baseada nos efeitos atmosféricos, quantidade de nitrogénio no solo, formas de

uso da terra na bacia hidrografica e a prépria hidrologia do local (WANG, 2013).

2.3.4 Contexto Geral

Portanto, fica clara a enorme diversidade de modelos matematicos para a
simulagdo da qualidade da agua variando em complexidade, abrangéncia e
precisao. No QUADRO 6 encontram-se o0s principais modelos utilizados

mundialmente.

QUADRO 6 - Principais modelos de qualidade da agua e suas caracteristicas.

Modelos | Versdes do Modelo Caracteristicas

Streeter- Modelo S-P Esse modelo é unidimensional, estatico e se

Phelps | Modelo DBO-OD de | baseia no balango do oxigénio e numa reagao

Thomas de primeira ordem de consumo de matéria
organica.

QUAL QUAL | Os modelos QUAL s&o unidimensionais e

QUAL 1l adequados para rios com afluentes e para
QUALZ2E fontes difusas de poluigdo, incluem modelos
QUAL 2K estaticos e dindmicos.

WASP WASP 1 -7 Os modelos WASP sao adequados para
simulagdo de  rios, lagos,  estuarios,
reservatorios a partir da modelagem em 1, 2 ou
3 dimensoes.

QUASAR | Modelo QUASAR | O modelo QUASAR ¢é adequado para
modelagem do oxigénio dissolvido em grandes

rios.
MIKE MIKE11 Os modelos MIKE sao adequados para
MIKE21 simulagcdo da qualidade das aguas de rios e
MIKE31 estuarios em 1,2 ou 3 dimensoes.
BASINS BASINS 1 -4 Os modelos BASINS sao sistemas

multiobjetivos de  analise ambiental e
adequados para anadlise da qualidade da agua
em bacias hidrogréficas.

EFDC Modelo EFDC O modelo EFDC ¢ adequado para simulacido da
qualidade das aguas em rios, lagos,
reservatorios e estuarios em 1,2 ou 3
dimensdes.

FONTE: Adaptado de WANG (2013).
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2.3.5 Escolha do modelo matematico

Para a selecdao apropriada de um modelo matematico para simular a
qualidade da agua de um rio, varios aspectos devem ser considerados para
assegurar uma representagao precisa do sistema. Em primeiro lugar, é essencial
avaliar a complexidade do sistema em estudo e a disponibilidade de dados. Modelos
mais simples, como o modelo de Streeter-Phelps, podem ser adequados para
situacbes em que a compreensao dos processos € mais direta e dados detalhados
sdo limitados. Por outro lado, para ambientes mais complexos e dados extensos,
modelos mais avangados, como os modelos EFDC, que consideram fatores como a
ocupacao do solo, podem oferecer representagdes mais precisas.

A escolha do modelo também deve levar em conta os objetivos especificos da
simulagao, seja para prever cenarios futuros, avaliar a eficacia de intervengbes ou
entender os impactos de diferentes fontes de poluicdo. Além disso, a capacidade
computacional disponivel e a facilidade de interpretagcdo dos resultados também
desempenham um papel importante na escolha do modelo mais adequado para
simulagdes de qualidade da agua em rios.

Nesse sentido, avaliando a disponibilidade dos dados existentes e a
complexidade e escopo que se pretende alcancar, o modelo de Streeter-Phelps é
escolhido como modelo matematico para a simulagdo da qualidade d’agua do rio

Pequeno.

2.3.6 Modelo de Streeter e Phelps

O modelo parte do principio tedrico que a condigdo de um rio poluido, a
qualquer momento, é fungdo do balanco entre o oxigénio disponivel na agua e a
demanda de consumo de oxigénio a partir da matéria organica presente no rio. Essa
demanda é o resultado de uma reacgao bioquimica e tende a ser satisfeita com o
passar do tempo com o consumo do oxigénio dissolvido na agua que, por sua vez, &
reabastecido por um fluxo de oxigénio advindo da atmosfera. O entendimento
desses dois conceitos sao chave para o estudo da autodepuracdo de um rio
(STREETER; PHELPS, 1925).
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O modelo estabelece que a variagdo da DBO remanescente (dL) em um

dD
infinitésimo de tempo (dt) € negativamente igual a taxa de desoxigenagao (Ttl ,

como mostra a equagao (7):

a, _ 4P (7)
dt dt

em que L € a DBO remanescente e K, é o coeficiente de desoxigenagéo K, em dia™.
Ainda em seu estudo, Streeter e Phelps (1925) definem a equagéo

governante da reaeragao através da equacgao (8):

dDZ . (8)
- = K,D

dD
sendo d—tz a taxa de reaeracgao, D € o déficit de oxigénio dissolvido (diferenca entre

a concentragdo de saturagdo e a concentragcao de oxigénio dissolvido no rio - em
mg/L) e K, o coeficiente de reaeragao (dia™).

De acordo com a base tedrica (os dois fluxos governantes séo o consumo de
oxigénio a partir da oxidagao da matéria organica e o influxo de oxigénio advindo da

atmosfera), tem-se que a variagao total do déficit de oxigénio dissolvido (%) € o

balango entre consumo e reaeragao de oxigénio ou em forma de equacgao:

%zKL—KD 9)
t 1 2

A equacao (9) se caracteriza como uma equacao diferencial linear de primeira

ordem nao-homogénea, que possui forma geral:

@4 py =g (10)
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em que dy, dx, y, P e Q sao parametros genéricos. A resolugcéo dessa equagao

conduz a equacao geral da variagao do déficit de oxigénio, mostrada na equacao

(11):

KL K.t Kt Kt
D =—— *(e Y—e 2)+Doe : (11)

em que Dt € o déficit de oxigénio dissolvido em um instante t, L0 € a DBO inicial e DO

€ o déficit de oxigénio dissolvido no tempo t=0.
Considerando que o déficit de oxigénio € a diferenca entre a concentragéo de
oxigénio na saturagdo e a concentragdo de oxigénio dissolvido num dado momento,

reescreve-se a equacgao (11), como mostrado em Von Sperling (2014):

K L

= -1
0D, = 0D — o

* (e_Kllt — e_Kzlt) — (ODS — ODO)e_KZ't (12)

em que:
OD; — concentracao de oxigénio dissolvido no instante t (mg/L)
OD, — concentrac&o de oxigénio dissolvido na saturagdo (mg/L)
OD, — concentracao de oxigénio dissolvido inicial (mg/L)

t — tempo (dia)

A equacado (12) é a forma usual que a equacdo de Streeter-Phelps é

apresentada.

2.3.6.1 Coeficiente de desoxigenagao — K, e coeficiente de remogédo de DBO efetiva

no rio — Ky

O coeficiente K, geralmente, é obtido em condigdes de laboratério e depende
das caracteristicas da matéria organica, temperatura e presenga de substancias
inibidoras. Quanto maior o valor de K;, mais rapida sera a decomposi¢cao da matéria
organica na amostra de interesse (VON SPERLING, 2014).

Porém, ao comparar o coeficiente de desoxigenacdo obtido através de
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exames em laboratério com o valor observado no curso d’agua, tem-se, na maioria
das vezes, valores diferentes. Isso se deve ao fato de que no curso d’agua, outros
processos de decomposi¢cao da matéria organica entram em agéo, como a remogao
de DBO pelo lodo de fundo. Assim, o coeficiente de remocao de DBO efetiva no rio —
Ky incorpora esses outros processos de oxidagdao da DBO no rio. De modo geral, o
valor de Ky sempre sera maior ou igual ao valor de K; (VON SPERLING, 2014).

Uma das principais razdes do coeficiente de decomposicdo de matéria
organica ser maior em rios do que nos testes de laboratoério se deve ao fato de que a
biomassa (bactérias) que cresce aderida a um suporte é mais efetiva na
decomposi¢cdo da matéria organica do que a biomassa dispersa. Esse fendmeno
ajuda a explicar, também, o fato de que rios rasos (menor volume de agua por
unidade de area) possuem um coeficiente de decomposigdo de matéria organica
maior que rios mais profundos (maior volume de agua por unidade de area) (VON
SPERLING, 2014).

De maneira geral, o QUADRO 7 apresenta um resumo das faixas de valores

dos coeficientes K, e K.

QUADRO 7 - Valores tipicos do coeficiente K, e K, em dia™' (base e, 20°C)

Origem K, Ky (rio)
(laboratorio) | Rios rasos* | Rios profundos*

Curso d’agua recebendo esgoto bruto concentrado 0,35-0,45 | 0,50-1,00 0,35-0,50
Curso d’agtja recebendo esgoto bruto de baixa 030 0,40 | 0,40- 0,80 0,30 - 0,45
concentragcao

Curso d’agua recebendo efluente primario 0,30-0,40 | 0,40-0,80 0,30-0,45
Curso d’agua recebendo efluente secundario 0,12-0,24 | 0,12-0,24 0,12-0,24
Curso d’agua com aguas limpas 0,08-0,20 | 0,08-0,20 0,08 - 0,20

*Rios rasos: profundidade inferior a 1,5m e rios profundos: profundidade inferior a 1,5m.
Fonte: adaptado de VON SPERLING (2014).

Para ilustrar o efeito dos diferentes valores do coeficiente de decomposigcao
de matéria organica, a equagao (7) é integrada entre os limites L=L, e L=L; e t=0 e

t=t, resultando na equacéo (13):

(13)
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Ao plotar a equacdo (13), para diferentes valores de coeficiente de

decomposicédo de matéria organica, gera-se a FIGURA 2.

FIGURA 2 - Exemplo de consumo de matéria organica para diferentes valores de K.

— K:=0,10
9 — K;=0,40

K1=0,75
— K;=1,00

DBO (mg/L)

o

Tempo (dia)

Fonte: Autor (2025).

A FIGURA 2 mostra a evolugdo da DBO em relagédo ao tempo para diferentes
valores de K;, sendo que valores menores de K, indicam um consumo mais lento de
matéria organica, o que é evidenciado por uma menor variagdo de DBO ao longo do
tempo quando comparado com K, maiores, em que a DBO chega préximo a zero
mais rapidamente (consumo de matéria organica mais rapido). De forma analoga, a

mesma representacao e légica se aplica para o parametro K.

2.3.6.2 Coeficiente de reaeracgao - K,

Quando um gas esta em contato com um liquido, iniciam-se os fenébmenos de
transferéncia de massa da fase liquida para gasosa e vice-versa até atingir-se o
equilibrio, ou seja, os fluxos nas duas dire¢cdes sdo de mesma magnitude, entrando
no que se chama de equilibrio. A concentragao do gas na fase liquida no equilibrio é
chamada de concentracao de saturacdo (VON SPERLING, 2014).
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Se, por alguma razado, a concentragdo do gas no liquido diminua, um maior
fluxo de transferéncia de massa se dara da fase gasosa para a fase liquida e esse é
0 principio que rege o processo de reaeragao atmosférica nos corpos hidricos (VON
SPERLING, 2014). A determinacdo experimental de K, € complexa e por isso,
usualmente, utilizam-se métodos aproximados para calculo desse coeficiente, como

as funcoes apresentadas no QUADRO 8.

QUADRO 8 - Coeficiente K, (dia™) sequndo dados hidraulicos do curso d’agua (base e, 20°C)

Pesquisador Férmula* Faixa de aplicacao aproximada
O’Connor e Dobbins (1958) 3 93y05H-15 0,6m < H <4,0m
’ 0,05m/s < v <0,8m/s
Churchill et al. (1962) 5 OvO-O7H-167 0,6m<H<4,0m
’ 0,8m/s <v <1,5m/s
Owens et al. (apud Branco, 1978) 5 3067185 0,iIm<H<0,6m
’ 0,05m/s <v<1,5m/s

v=velocidade do custo d’agua (m/s), H=altura da lamina d’agua (m)
Fonte: adaptado de VON SPERLING (apud Covar, apud EPA, 1985).

As férmulas do QUADRO 8 correlacionam os dados hidraulicos de um corpo
hidrico com o valor esperado de K, e sua exibigdo grafica esta representada na
FIGURA 3. Observa-se uma “descontinuidade” dos pontos de K,, exatamente nos
limites de aplicagdo das formulas. Por fim, o valor do coeficiente K, tem uma
influéncia maior nos resultados do balangco de oxigénio dissolvido, ou seja,
usualmente o modelo de Streeter-Phelps é mais sensivel ao valor de K, do que de
Ki/Kyq (VON SPERLING,2014).



FIGURA 3 - Coeficiente K, em fungéo da profundidade e velocidade do corpo hidrico a partir das
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férmulas de O’Connor e Dobbins (1958), Churchill et al. (1962) e Owens et al. (apud Branco, 1978)
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Fonte: Autor (2025).

2.3.6.3 Correcgao dos coeficientes pela temperatura

A temperatura tem uma grande influéncia, tanto no metabolismo microbiano,

quanto na velocidade dos processos de absorgdo do oxigénio na agua. Assim, os

préprios coeficientes de desoxigenagao e reaeragao variam conforme a temperatura.

Von Sperling (2014) apresenta a equacao (14) para realizar esse ajuste:

- K a(temp—ZO)

temp

onde:
Keemp = Coeficiente Ky, Ky, ou K, (dia™) ajustado pela temperatura
K = Coeficiente K, K,, ou K, (dia™) a 20°C

(14)
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a = coeficiente de temperatura, 1,047 para K; e Ky 1,024 para K, (VON
SPERLING apud EPA, 1987)

temp = temperatura do liquido em graus Celsius
2.3.6.4 Modelo de Streeter-Phelps modificado

Com base nos estudos de Von Sperling (2014), reescreve-se a equagao de
Streeter-Phelps para considerar o coeficiente K; como o coeficiente de

desoxigenacgao do corpo hidrico, como € apresentado na equagao (15):

B KL, o —K;gt =K -K,t (15)
0D,= 0D — 5= (e " —e *)= (0D — 0D e

2.3.7 Consideracdes sobre a aplicacao de modelos matematicos

Para que a simulagdao matematica possa ser utilizada como instrumento de
apoio a tomada de decisdo em conformidade com a legislagdo, é fundamental
realizar a calibracdo do modelo e uma analise de risco e sensibilidade dos
resultados obtidos. A calibragdo tem como objetivo ajustar os parametros do modelo
a realidade fisica, quimica e biolégica dos recursos hidricos, permitindo assim a
obtencdo de resultados mais precisos e confiaveis para decisbes embasadas
(PAULA, 2011 apud BATISTA; CABRAL, 2017).

Entretanto, criticas ao uso desses modelos na avaliacdo da qualidade da
agua sao frequentemente destacadas na literatura. Essas criticas surgem
principalmente durante a validagdo do modelo, etapa que busca confirmar o ajuste
dos parametros calibrados. A complexidade dos sistemas hidricos naturais, a
variabilidade dos dados obtidos no processo de coleta e a precisao das estimativas
sao fatores que dificultam essa etapa. Além disso, os corpos d’agua naturais estao
em continua transformacao, o que exige ajustes periddicos na descrigado, validagcao
dos modelos e nos valores utilizados para atender os critérios metodoldgicos
(RAMIN et al., 2012 apud BATISTA; CABRAL, 2017).
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Com o intuito de quantificar o risco da modelagem matematica, uma
abordagem a partir da estatistica bayesiana sera realizada. Como a acuracia de um

modelo ambiental nunca sera perfeita, a presente pesquisa visa mensurar o risco.

2.4 METODOS ESTATISTICOS

A importancia desse tépico pode ser ilustrada a partir do escrito por O’Hagan
(1994, apud PAULINO et al., 2018):

“O problema fundamental para qual o estudo da estatistica é direcionado é o
da inferéncia. Alguns dados sao observados e ndés queremos fazer
afirmacoes, inferéncias, sobre uma ou mais caracteristicas desconhecidas

do sistema fisico cujo gerou esses dados.”

Desde a coleta dos dados até seu tratamento e analise, a estatistica € uma
ferramenta poderosa que permite entender melhor o sistema que os criou. Na
atualidade, duas abordagens se destacam: a estatistica classica e a estatistica
bayesiana. Tanto uma quanto a outra tem por objetivo inferir sobre a populagéo (ou
alguma de suas caracteristicas) a partir de amostras coletadas. A FIGURA 4

representa melhor a diferenga entre as duas abordagens.

FIGURA 4 - Esquema das distribui¢cdes inferenciais bayesiana e classica, respectivamente.

P
flzle) ___-
- f'19)
e
] X

Fonte: adaptado de PAULINO et al. (2018).
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A figura é analisada por partes: na parte superior se apresenta o paradigma
bayesiano: os valores de interesse 6 (8 € conjunto ©) sdo condicionados pelo valor
particular da amostra observada x (x € espago amostral []) que é fixa. Ou seja, a
partir da amostra observada, faz-se a inferéncia do parametro 8, uma variavel
aleatéria e desconhecida (premissa importante da estatistica bayesiana). Nesse
sentido, os graus de credibilidade e as probabilidades calculadas pela inferéncia
bayesiana respondem diretamente a pergunta sobre o parametro de interesse 0
(PAULINO et al., 2018).

Na parte inferior se apresenta o paradigma classico: o espago amostral [1 é
gerado a partir do parametro 6 (6 € conjunto ©) que € fixo e desconhecido. As
amostras (que sao as variaveis aleatorias) x, X’ € X” s&0 as possiveis observagdes
que se podem coletar. A partir desse entendimento, os intervalos de confianca e as
probabilidades da inferéncia classica dizem respeito aos dados e ao espacgo
amostral e ndo ao parametro 0 diretamente (PAULINO et al., 2018).

Além dessa diferenga entre a estatistica classica e a estatistica bayesiana,
outra se faz importante. Na estatistica classica, a probabilidade tem uma
interpretacéo frequencista, ou seja, considerando que um experimento aleatorio seja
realizado n vezes e n, seja a quantidade de vezes que um evento A ocorre, a
probabilidade de A — P(A) — é dada pela férmula (PAZ, 2018)

P(A) =+ (16)

ou seja, por definigdo, a probabilidade é entendida em situagbes em que se possa
repetir o experimento aleatério indefinidas vezes nas mesmas condi¢cdes e
circunstancias (PAULINO et al., 2018).

Na estatistica bayesiana, a probabilidade tem uma interpretagcdo chamada de
subjetiva, ou seja, a probabilidade mede o grau de credibilidade que alguém atribui a
uma hipotese na posse de evidéncias. Diferentes pessoas podem possuir diferentes
graus de credibilidade para uma mesma hipotese e a inferéncia bayesiana tende a
corrigir essa credibilidade a partir da analise dos dados coletados. Uma vantagem
dessa interpretacdo € que ela se aplica a situagdes nao repetitivas como explicita
PAULINO et al. (2018):
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“[...] s6 em termos subjetivos pode avaliar-se a probabilidade de a inflagéo
no proximo ano nao exceder 3%, a probabilidade de a taxa de crescimento
do PIB no préoximo ano estar compreendida entre 2% e 3%, a probabilidade

de a taxa interna de rendibilidade de um projeto exceder 10%, etc., etc.”

Por fim, a interpretacdo subjetiva ou personalista necessita de coeréncia
interna para que seja possivel utiliza-la. Essa coeréncia é obtida quando as
seguintes condi¢cdes sdo atendidas (EDWARDS et al., 1963 apud PAULINO et al.,
2018):

o 0<P(A)<P(Q)=1
e P(AUB)= P(A)+ P(B)
e ANB =0

Sendo Q o espaco fundamental ndo-vazio que se encontra os eventos A e B.

Assim, mesmo partindo de interpretagdes subjetivas, a estatistica bayesiana
se ancora em principios matematicos rigorosos, assegurando a consisténcia dos
resultados e tornando suas inferéncias tado objetivas quanto os métodos classicos,
ainda que em uma perspectiva diferente (PAULINO et al., 2018).

A discussdo sobre as vantagens e limitagdes entre os métodos classicos e
bayesianos até hoje é motivo de impasse na comunidade cientifica. No entanto, ao
longo do desenvolvimento deste trabalho, a natureza flexivel e interpretativa da
inferéncia bayesiana se mostrou particularmente atrativa, permitindo integrar
incertezas e conhecimento prévio de forma transparente e intuitiva. Assim, a adogao
dessa abordagem reflete tanto uma decisdo fundamentada no contexto do estudo

quanto uma afinidade desenvolvida com o método durante o processo académico.
2.4.1 Estatistica Bayesiana

A origem da inferéncia bayesiana pode ser encontrada na obra do reverendo
Thomas Bayes intitulada “An Essay Towards Solving a Problem in the Doctrine of
Chances”, qual traz a equagao conhecida como Teorema de Bayes (PAULINO et al.,
2018).

P(B14)P(4) (17)

P(AJB) )
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em que A, € a variavel de interesse, P(A)) a probabilidade a priori de ocorrer A, B um
outro acontecimento qualquer, P(B) a probabilidade de ocorrer B, P(A|B) a
probabilidade a posteriori de ocorrer A, dado B, P(B|A)) a probabilidade de ocorrer B
dado A.

Em sua forma para densidade de probabilidades, o Teorema de Bayes toma a

forma da equacao (18).

h(8]x) = L) geq (18)
£ f(x|0)h(6)d6

em que 0 é o parametro de interesse com valor desconhecido, h(8) a fungédo de
probabilidade a priori de 6, h(6|x) a fungdo de probabilidade a posteriori de 6 dado x,
x os dados coletados, f(x|0) a fungado de densidade de probabilidade de x dado 6, Q
um espago amostral ndo vazio e © € o conjunto chamado espago-parametro. A partir
do teorema de Bayes, dois conceitos chaves aparecem: a distribuicao a priori - h(0)
e a distribuicdo a posteriori - h(8]x).

A distribuicdo a priori se incorpora na analise exprimindo informacgdes
anteriores possuidas por alguém (dados da literatura, informacbes advindas de
especialistas, dados de regras heuristicas) caso ela seja informativa. Caso contrario,
chamamos essa distribuicdo de n&o-informativa, a qual traz pouca ou nenhuma
informacéo anterior para analise. Vale destacar que a distribuicdo a priori € um dos
pontos mais controversos da teoria bayesiana (PAULINO et al., 2018).

A distribuicao a posteriori € um elemento fundamental para toda a inferéncia
bayesiana e quantifica as informag¢des contidas nos dados obtidos bem como todo o
conhecimento acumulado sobre a variavel de interesse (a partir da distribuicdo a
priori) (PAULINO et al., 2018).

2.4.2 Intervalos de credibilidade
Os intervalos de credibilidade sao um conceito crucial na estatistica

bayesiana para expressar a incerteza sobre os parametros de interesse.

Diferentemente dos intervalos de confianga da estatistica classica, que tém uma
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interpretacdo baseada em amostras repetidas, os intervalos de credibilidade
fornecem uma probabilidade direta sobre o parametro desconhecido. Por exemplo,
um intervalo de credibilidade de 95% indica que ha uma probabilidade de 95% de
que o verdadeiro valor do parametro esteja dentro do intervalo, considerando as
informacgdes disponiveis no modelo e nos dados. Essa interpretagao intuitiva deriva
do fato de que a estatistica bayesiana trata os parametros como variaveis aleatoérias
e calcula probabilidades diretamente sobre eles, com base na distribuicdo a
posteriori (PAULINO et al., 2018).

Dado um parametro 0 e a distribuigdo a posteriori h(6|x), R(x) é o intervalo de

credibilidade y para 0 se

(19)
P[OER(X)|x] = [ h(8|x)dO>y
R(x)

em que R(x) é o intervalo de credibilidade e y a probabilidade desse intervalo de
credibilidade (PAULINO et al., 2018).

2.4.3 Estrutura bayesiana para o modelo Streeter-Phelps

O trabalho de Liu et al. (2011) demonstra a utilizacdo do modelo de
Streeter-Phelps para o calculo do volume de hipdxia da baia de Chesapeake a partir
de uma analise bayesiana das incertezas. Para tal, ele considera as seguintes
premissas:

e O modelo apresenta erro € com distribuicdo normal N(0, 0?)
® O parametro OD; € normalmente distribuido - N(u, 0?)
Tomando suas premissas como verdadeiras, pode-se reescrever o modelo

de Streeter-Phelps para a equacéo (20).

_ KdLo " —Kd.t —Kz.t —Kz.t (20)
0D, = 0D — 5= (e " —e )= (0D~ 0D )Je " +e

A equacéo (20) foi utilizada para modelar o rio Pequeno.
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2.4.4 Distribuicoes estatisticas

As distribui¢cdes estatisticas constituem uma das bases da modelagem de
fendbmenos aleatdrios e representam como os dados observados ou os parametros
desconhecidos se comportam em um espaco amostral. No contexto da inferéncia
bayesiana, as distribuicbes estatisticas possuem um papel central, pois definem
tanto a distribuicdo a priori quanto a distribuicdo a posteriori dos parametros, sendo
fundamentais para quantificar incertezas e integrar o conhecimento prévio aos dados
observados (GELMAN et al., 2023).

Esta secdo apresenta uma introducao as distribuicbes estatisticas, com
enfoque especial nas distribuicbes uniforme, normal, gama e beta, todas

amplamente utilizadas em estudos de modelagem probabilistica modernos.

2.4.4.1 Conceitos Gerais Sobre Distribuicoes de Probabilidade

De acordo com GELMAN et al. (2023), as distribuigdes podem ser
classificadas em:

e Distribuicbes Discretas: Representam variaveis aleatorias que assumem
valores finitos ou contaveis, como o numero de eventos em um intervalo fixo de
tempo ou espaco.

e Distribuicbes Continuas: Representam variaveis aleatdrias que assumem
valores em um intervalo continuo, como medi¢gdes de concentracao, temperaturas e
outras variaveis fisicas.

No contexto da inferéncia bayesiana, as distribuicbes servem para construir
as funcdes de densidade de probabilidade (f.d.p) ou fungcbdes de probabilidade (f.p),
que sao utilizadas para modelar o comportamento probabilistico de fenébmenos ou

parametros incertos.
2.4 .4.2 Distribuigao Uniforme
A distribuicao uniforme é utilizada para representar variaveis aleatérias com

igual probabilidade de ocorréncia em um intervalo definido [a,b]. Sua fungédo de

densidade de probabilidade (f.d.p.) é:
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1

fx) =—— a<x<bh (21)

e Parametros: a (limite inferior) e b (limite superior).
e Aplicagdes: E amplamente usada como distribuicdo a priori ndo-informativa
na estatistica bayesiana, quando ndo ha informagdes prévias sobre os

parametros.
2.4.4.3 Distribuicdo Normal (Gaussiana)
A distribuicdo normal € a mais conhecida das distribuicbes continuas e

descreve fendbmenos naturais cuja variabilidade é centrada em torno de uma média.

Sua f.d.p. é dada por:

(22)

_ 1 D
f(x)_\/mexp( _202 )' 0 < Xx < ©

e Parametros: |1 - média e 0 - desvio padréo.

e Aplicagdes: E amplamente utilizada em modelagem ambiental, como a
concentragdo média de oxigénio dissolvido em rios, medigdes de pH e
temperaturas ao longo do tempo. Em inferéncia bayesiana, a normal é
frequentemente utilizada como distribuicdo a posteriori quando a distribuicao
dos dados é simétrica (GELMAN et al., 2023).

2.4.4 .4 Distribuigao Lognormal

A distribuigdo lognormal € uma distribuicdo continua, cujo logaritmo natural

segue uma distribuigdo normal. Sua f.d.p. € dada por:

1

In x—p)* 23
[ 0)=——exp(- 52, x > 0 (9)
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e Parametros: |1 - média e o - desvio padréo.

e Aplicagcoes: Representagcdo de variaveis relacionadas a processos de

crescimento, como tamanhos populacionais e rendimentos.

2.4.4.5 Distribuicado Gama

A distribuicdo gama € uma distribuicdo continua definida apenas para valores
positivos. Ela é especialmente util quando se deseja modelar incertezas em

variaveis positivas com caudas assimétricas. Sua f.d.p. é dada por:

“ a—1 —px (24)
f(x, a, ﬂ)z%x e ,x>0

e Parametros: a - parametro de forma e 8 - parametro de taxa.

e Aplicagoes: Representacao de séries de OD e DBO (XUE, 2011).
2.4.5 Testes estatisticos

O teste Qui-quadrado € um método estatistico usado para comparar
distribuicbes observadas com distribuicdes esperadas, avaliando a consisténcia

entre elas. Sua formula esta na equacgao (25).

(0 —E)? (25)
2 _ —t v
em que O, € o valor observado na categoria i e E; € o valor esperado na categoria i.
O valor de XZ calculado é comparado a distribuicdo XZ com os devidos graus

de liberdade e se toma a decisao:

e Se x? calculado é maior ou igual ao x? tabelado: Rejeita-se Hs.

e Se x? calculado é menor que o x? tabelado: N3o rejeita-se H,.
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Sendo H, a hipétese nula de que ha aderéncia a distribuicido especificada
(BARBETTA et al., 2008).

2.4.6 Métodos de Monte Carlo

Para cenarios multidimensionais cuja solucdo analitica € de dificil
determinacao ou até mesmo impossivel, o experimento de Monte Carlo é uma
alternativa apropriada de resolugdo. Esses métodos se baseiam em simulagdes
estocasticas que reproduzem os valores da distribuicdo de probabilidade de uma
variavel e se baseiam em dois grandes conceitos: a Lei Forte dos Grandes Numeros
e a geragao de numeros (pseudo)aleatérios (PAULINO et al., 2018).

A Lei Forte dos Grandes Numeros prevé como certo que a média de uma
sequéncia de variaveis aleatérias independentes e identicamente distribuidas
converge para a meédia populacional g, quando a quantidade de observagdes de
uma amostra tende ao infinito (UFSC, 2021). Exposta matematicamente, a Lei Forte

dos Grandes Numeros pode ser representada pela expressao seguinte:

(. s ) (26)
Pl lim —=p|=1

n— o

Sendo P a probabilidade do evento, S, o somatério das variaveis aleatérias e n o
numero de observagdes de uma amostra.

Uma aplicagao ilustrativa da Lei Forte dos Grandes Numeros € o calculo do
namero pi - &, por meio de simulagdes Monte Carlo. Gera-se uma amostra com
diversas coordenadas bidimensionais aleatérias no intervalo [0,1]. A distancia de
cada ponto ao centro (0,0) é calculada e classifica-se o ponto como dentro ou fora
de um circulo unitario (raio=1). A razao entre o numero de pontos dentro do circulo

(NA) e 0 numero total de pontos gerados (NT) € usada para estimar a area relativa do

circulo. A partir desses dados, € possivel deduzir o calculo de z, mostrado abaixo:

N, (27)
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Na FIGURA 5, observa-se a convergéncia da estimativa para o valor real de =
a medida que aumenta-se o tamanho da amostra.

A geracédo de numeros (pseudo)aleatérios € de extrema importancia, pois 0s
métodos de Monte Carlo se baseiam em repeticdes de amostragem aleatodria: varias
amostras sdo geradas de forma aleatdria e se realiza a analise estatistica a fim de
se obter um entendimento melhor do sistema em estudo. Os métodos de Monte
Carlo nao precisam estritamente de numeros aleatérios para serem uteis, diversas
técnicas deterministicas que geram numeros pseudoaleatérios (nUmeros que se
comportam de forma aleatoria, porém s&do gerados deterministicamente) ja foram
utilizadas com sucesso, valendo a pena citar o método do meio do quadrado
utilizado por von Neumann nas simulagdées de Monte Carlo no projeto da construgao
da bomba nuclear (METROPOLIS, 1987).

FIGURA 5 - Exemplo da Lei Forte dos Grandes Numeros

= Aproximacdo == pi(3,14159)

0 1000 2000 3000 4000 5000
Tamanho da amostra

Fonte: Autor (2025).

2.4.6.1 Algoritmo NUTS (No-U-Turn Sampler)

O algoritmo NUTS (No-U-Turn Sampler) € uma extensdo do método de Monte
Carlo Hamiltoniano (HMC), projetado para superar uma limitagdo importante do
HMC: a necessidade de ajustar manualmente o numero de passos e o tamanho do
passo (step size). O NUTS resolve isso ao determinar adaptativamente o numero de

passos a serem dados durante cada iteracao.
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Desenvolvido por Matthew D. Hoffman e Andrew Gelman (2014), o NUTS é
amplamente utilizado em inferéncia bayesiana para amostragem eficiente de
distribuicbes a posteriori. Ele utiliza o gradiente da fungdo de probabilidade para
explorar eficientemente o espaco de parametros, permitindo amostragem de alta
dimensionalidade e complexidade. Esse algoritmo é empregado em ferramentas de
modelagem estatistica.

Por fim, os métodos de Monte Carlo podem ser resumidos em trés etapas
principais:

e Geracdo de dados de entrada aleatdrios ou pseudoaleatérios conforme a
distribuicao de interesse.

e Simulagdo do modelo com base nesses dados.

e Analise estatistica dos resultados para inferir propriedades do sistema em
estudo.

Esses métodos se destacam pela flexibilidade e aplicabilidade, tornando-se

ferramentas indispensaveis em diversos campos cientificos.
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3 MATERIAIS E METODOS

3.1 AREA DE ESTUDO

A bacia hidrografica do rio Pequeno faz parte da bacia hidrografica do rio
Iguacu e esta compreendida integralmente nos limites do municipio de Sao José
dos Pinhais. A area de drenagem total € de 132,92 km? tendo como limites: ao
norte a bacia do rio Itaqui, ao sul a bacia do rio Miringuava, a leste o relevo
montanhoso da Serra do Mar e a oeste o rio Iguagu. O mapa da bacia pode ser visto
na FIGURA 6.

FIGURA 6 - Estado do Parana e a localizagdo da bacia hidrografica do Rio Pequeno.
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Fonte: Autor (2025).

O Rio Pequeno possui 56,7 km de extensao, nascendo na Serra do Mar e
com foz no rio Iguagu. No rio, situam-se 3 estacdes fluviométricas, fonte dos dados
dessa dissertacao (as estacdes podem ser vistas com mais clareza na FIGURA 7):

e Estacdo 65009900 (BR-277) esta localizada a 4,8 km da nascente do rio

Pequeno e possui uma area a montante de 15,58 km?2.
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e Estacdo 65010000 (Fazendinha) esta localizada a 47,0 km da nascente e
possui uma area a montante de 105,58 km?.

e Estacdo 65010050 (Proximo a foz) esta localizada na foz do rio, proximo do
seu desague no rio Iguagu e possui uma area a montante de 132,92 km?2.
Adicionalmente, a empresa Renault do Brasil (Renault) disponibilizou as

medi¢cdes realizadas no rio Pequeno, o qual passa proximo do seu complexo

industrial em Sao José dos Pinhais (disponibilizadas no ANEXO 1).

FIGURA 7 - Rio Pequeno, as 3 estagdes fluviométricas e o ponto de medi¢cao da Renault.
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Fonte: Autor (2025).

Todas as 3 estagbdes fazem a mensuragao de vazao, temperatura, DBO e OD
do rio, enquanto a Renault faz apenas medicbes de DBO e OD. A obtencado dos
dados das estacbes foi realizada pelo Sistema Nacional de Informacgbes sobre
Recursos Hidricos (SNIRH), a partir da plataforma HIDROWEB".

O periodo historico e a quantidade de medi¢cdes sdo mostradas no QUADRO

9 para cada uma das estacbes. Como a estagao Fazendinha é aquela que possui a

' Disponivel em: https://www.snirh.gov.br/hidroweb/serieshistoricas.
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maior série temporal e maior frequéncia de medi¢des, suas medi¢cdes servirdao como
base para caracterizagao de algumas caracteristicas do Rio Pequeno.

Para a obtencdo de dados espaciais e hidraulicos do rio Pequeno, os
shapefiles disponibilizados pelo Instituto Agua e Terra - IAT? foram utilizados como

base de dados.

QUADRO 9 - Resumo dos dados das estacoes fluviométricas do rio Pequeno.

Tipo do dado Est. 65009900 Medicoes Est. 65010000 Est. 65010050
(BR-277) Renault (Fazendinha) (Proximo a foz)

Periodo historico das 2010 - 2012 - 1955-2024 2010
medicoes de vazao
Quantidade de medicdes de 10 - 24.182 1
vazao
Periodo historico das
medicdes da qualidade 1985-2011 2016 - 2020 1984-2023 1996-2011
d’agua
Quantidade de medigdes da 204 10 353 156
qualidade d’agua

Fonte: Autor (2025).
3.1.1 Enquadramento

A partir da criagdo do Plano da Bacia do Alto Iguagu, enquadra-se o rio
Pequeno como Classe 2, o que possibilita seu uso para consumo humano (apos
tratamento convencional), irrigagdo de hortalicas, pesca, entre outros, e que limita a
concentracédo de DBO no rio para um valor maximo de 5 mg/L e uma OD nao inferior
a 5 mg/L (PARANA, 2014).

3.1.2 Vazao e vazao especifica

Um dado crucial para caracterizar recursos hidricos € a curva de
permanéncia, que informa o percentual de tempo em que o rio esta com uma
determinada vazao. Por exemplo, se um rio apresenta uma vazao de 1,0 m3/s para
um tempo de permanéncia de 90%, significa dizer que 90% do tempo, o rio esta com
uma vazao igual ou maior que 1,0 m?/s.

Para plotar a curva de permanéncia do rio Pequeno, utilizou-se todo o

histérico de dados de vazao disponivel da estacdo Fazendinha (24.182 pontos de

2 Disponivel em: https://www.iat.pr.gov.br/Pagina/Mapas-e-Dados-Espaciais
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1955 a 2024) e como linha de tendéncia, utiliza-se uma equacéo logaritmica, sendo

que a equacgao ajustada € a

Vazio = 0,462 — 2,32In(Permanéncia) (28)

possuindo um R? de 0,994, o que indica uma o6tima representatividade dos dados.
Tanto a curva de permanéncia quanto sua linha de tendéncia sdo mostradas na
FIGURA 8.

FIGURA 8 - Vazao em relagao ao tempo de permanéncia do rio Pequeno.
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Fonte: Autor (2025).

3.1.3 Velocidade do Rio Pequeno

A velocidade € obtida através das medi¢coes de vazao e area molhada do
corpo hidrico nas estagdes fluviométricas, nos paragrafos seguintes encontram-se
mais detalhes dessa variavel para as 3 estacdes fluviométricas do rio Pequeno.

A estagdo BR-277 conta com 10 medigdes de velocidade e vazao entre os
anos de 2010 e 2012. As FIGURAS 9 e 10 representam, respectivamente, o

histograma das velocidades registradas e a relagao entre vazao e velocidade.
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FIGURA 9 - Histograma das velocidades medidas na estagdo BR-277 do rio Pequeno.
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Pela histograma da FIGURA 9, nota-se uma frequéncia maior de velocidade ao

entorno de 0,7 m/s enquanto uma frequéncia menor para valores acima de 0,9 m/s.

FIGURA 10 - Relacao entre velocidade e vazao do Rio Pequeno na estacao BR-277.
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Fonte: Autor (2025).

O grafico comparativo de vazao e velocidade da FIGURA 10 usualmente é

utilizado para se chegar a uma regressao que representa a variagao da velocidade
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em funcdo da vazao, visto que esses dois parametros sédo correlacionados. Porém,
pela dispersdo dos dados, as regressbes das fungbes linear, exponencial,
polinomial, logaritmica e série de poténcias foram testadas e nenhuma apresentou
R2 maior que 0,14, motivo pelo qual ndo se usara uma regressao para descrever o
conjunto de dados.

A estacao Fazendinha conta com 579 medigbes de velocidade e vazao entre
os anos de 1955 e 2024. As FIGURAS 11 e 12 representam, respectivamente, o

histograma das velocidades registradas e a relacao entre vazao e velocidade.

FIGURA 11 - Histograma das velocidades medidas na estagdo Fazendinha do rio Pequeno.
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Fonte: Autor (2025).

O histograma da FIGURA 11 expde uma frequéncia maior de observagbes de
velocidade da estacdo Fazendinha entre o intervalo de 0,1 e 0,35 m/s, porém nao

evidencia nenhuma tendéncia central das observacgoes,
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FIGURA 12 - Relagao entre velocidade e vazao do Rio Pequeno na estagao Fazendinha.
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Fonte: Autor (2025).

Na FIGURA 12 plota-se as observacdes da estagcdo Fazendinha a partir da
vazao e velocidade de modo a identificar uma funcéo de regressao representativa ao
conjunto de dados. A regressao foi testada com as fungdes linear, exponencial,
polinomial, logaritmica e série de poténcias e nenhuma apresentou R? maior que
0,27, motivo pelo qual ndo se usara uma regressao para descrever o conjunto de
dados.

A estacdo Proximo a Foz conta com 1 medicao de velocidade em 2010. Ela
pode ser vista, juntamente com as principais estatisticas das outras estagdes na
TABELA 1:

TABELA 1 - Estatisticas das medicdes de velocidade do rio Pequeno.

_ ~ Estacao Estacéo
Estatisticas Estacdo BR-277 Fazenginha Préximoga Foz
Quantidade de medicdes 10 579 1
Velocidade média (m/s) 0,67 0,25 0,17
Velocidade maxima (m/s) 1,02 0,62 0,17
Velocidade minima (m/s) 0,39 0,06 0,17
Desvio Padrao (m/s) 0,18 0,10 -

Fonte: Autor (2025).



3.1.4 Temperatura do rio Pequeno
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Para a caracterizagdo da temperatura no rio Pequeno, utilizam-se os dados

disponiveis das 3 estagbes do rio, abrangendo o periodo de 1984 até 2023, como

mostrado nas FIGURAS 13, 14 e 15.

FIGURA 13 - Histograma da temperatura (°C) do rio Pequeno na estagédo BR-277.
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Fonte: Autor (2025).

A FIGURA 13 traz o histograma da temperatura do rio Pequeno na estagao

BR-277, que conta com 147 medi¢cdes de temperatura entre os anos de 1985 e

2011. Observa-se uma tendéncia central na dispersédo dos dados.
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FIGURA 14 - Histograma da temperatura (°C) do rio Pequeno na estagéo Fazendinha.

60

50 -

0 #'.—Il'II—III'—.-'L'_
10 15 20 25 30

Temperatura

Densidade
o 3 5

=
[
i

Fonte: Autor (2025).

A FIGURA 14 traz o histograma da temperatura do rio Pequeno na estagao
Fazendinha, que conta com 259 medicbes de temperatura entre os anos de 1984 e

2023. Observa-se uma tendéncia central na dispersao dos dados.

FIGURA 15 - Histograma da temperatura (°C) do rio Pequeno na estagao Proximo a Foz.
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A FIGURA 15, por sua vez, traz o histograma da temperatura do rio Pequeno

na estacao Proximo a Foz, que conta com 118 medicbes de temperatura entre os

anos de 1996 e 2011. Observa-se uma tendéncia central na disperséo dos dados.

A TABELA 2 traz um resumo das principais estatisticas da temperatura do rio

Pequeno nas 3 estacbes. Mesmo com intervalos de tempo e quantidade de

observacoes diferentes, nota-se uma temperatura média préxima entre as estagoes,

TABELA 2 - Estatisticas das medi¢des de temperatura do rio Pequeno.

Estatisticas Estacdo BR-277 FaEZSetﬁgﬁ%a PréEiSrLaogzoFoz
Quantidade de medigdes 147 259 118
Temperatura média (°C) 17,2 17,7 17,6
Temperatura maxima (°C) 29,0 29,5 28,0
Temperatura minima (°C) 6,8 6,9 0,0

Desvio Padrao (°C) 8,0 9,2 7,6

Fonte: Autor (2025).

3.1.5 OD na saturagao (ODy)

A variavel OD na saturacao € uma medida calculada a partir da temperatura e
pressdo pelas equagdes (1) e (2). Considerando uma pressao de 0,9 atm?® no rio
Pequeno e as medi¢des de temperatura das 3 estagdes, chega-se nas FIGURAS 16,
17 e 18 que apresentam o histograma da OD de saturacédo do rio Pequeno nas 3
estacoes.

A FIGURA 16 apresenta os dados de OD na saturacado calculados para a
estacdo BR-277, como os pontos calculados sao provenientes das observagdes de
temperaturas ilustradas na FIGURA 13, observa-se similaridade entre os perfis de

temperatura e OD na saturacéo.

% Considera-se como aproximagdo da pressdo do rio Pequeno a pressdo média de 1981 a
2020 presente nas bases do INMET. Disponivel em: https://portal.inmet.gov.br/normais
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FIGURA 16 - Histograma da OD na saturagéo do rio Pequeno na estagdo BR-277.
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Fonte: Autor (2025).

A FIGURA 17 apresenta os dados de OD na saturacido calculados para a
estacdo Fazendinha, que possui uma tendéncia central da mesma maneira que as

observacoes de temperatura presentes na FIGURA 14.

FIGURA 17 - Histograma da OD na saturagao do rio Pequeno na estagéo Fazendinha.
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Fonte: Autor (2025).
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Por fim, a FIGURA 18 apresenta os dados de OD na saturacdo calculados

para a estacdo Proximo a Foz, a partir das observacbes de temperatura

apresentadas na FIGURA 15.

FIGURA 18 - Histograma da OD na saturagéo do rio Pequeno na estagéo Préximo a Foz.
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Fonte: Autor (2025).

As FIGURAS 16, 17 e 18 possuem um formato muito parecido com os

histogramas de temperatura, porém ao inverso, o que evidencia que quanto maior a

temperatura menor sera a OD na saturagao e vice-versa. De maneira complementar,

um resumo das principais estatisticas do parametro OD na saturacao nas 3 estacoes

pode ser encontrado na TABELA 3.

TABELA 3 - Estatisticas dos calculos de OD na saturagéo do rio Pequeno.

Estatisticas Estacdo BR-277 F:isétﬁgie]rm()r\a PréEﬁ%%QZOFoz
Quantidade de pontos 147 259 118
OD, média (mg/L) 8,7 8,6 8,7
ODg maxima (mg/L) 11,0 11,0 13,2
OD; minima (mg/L) 6,9 6,9 7,0
Desvio Padrao (mg/L) 0,6 0,7 0,9

Fonte: Autor (2025).
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3.1.6 OD do rio Pequeno

O rio Pequeno possui registros de medicdes de OD nas trés estagdes
fluviométricas, abrangendo o periodo de 1984 a 2023 e na Renault, abrangendo o
periodo de 2016 a 2020. Os histogramas apresentados nas FIGURAS 19, 20, 21 e
22 refletem os dados das bases fornecidas pelo SNIRH e pela Renault, exceto por
dois valores da estagdo Fazendinha (19,0 mg/L e 92,0 mg/L), que foram excluidos

por serem considerados outliers.

FIGURA 19 - Histograma das medigdes de OD (mg/L) do rio Pequeno na estagcao BR-277.
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A FIGURA 19 exibe o histograma das 137 observacdes de OD na estagao
BR-277 de 1991 a 2011, em que a maioria das observacdes estdo entre o intervalo
de 4 e 12 mg/L.
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FIGURA 20 - Histograma das medigdes de OD (mg/L) do rio Pequeno na estagdo Fazendinha.
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Fonte: Autor (2025).

A FIGURA 20 exibe o histograma das 242 observacdes de OD na estagao
Fazendinha de 1984 a 2023, em que os dados apresentam uma tendéncia central

em torno do valor de 7,0 mg/L.

FIGURA 21 - Histograma das medigdes de OD (mg/L) do rio Pequeno na Renault.
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A FIGURA 21 exibe o histograma das 10 observagbes de OD da Renault
entre os anos de 2016 e 2020, em que os dados estao contidos no intervalo de 5,0 a
8,0 mg/L.

FIGURA 22 - Histograma das medi¢des de OD (mg/L) do rio Pequeno na estacdo Proximo a Foz.
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Fonte: Autor (2025).

A FIGURA 22 exibe o histograma das 116 observacées de OD na estagao
Préoximo a Foz de 1996 a 2011, em que a maior parte das observagdes estdo entre o
intervalo de 4 e 10 mg/L

O resumo das observagdes do parametro OD do rio Pequeno pode ser
encontrado na TABELA 4, em que se observa um alto nivel de OD no trecho inicial
do rio, uma concentragcao reduzida de OD no ponto de medicao da Renault e na
estacdo Fazendinha, aumentando a concentracdo desse parametro no trecho

préximo a foz do rio.
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TABELA 4 - Estatisticas das medi¢gbes de OD do rio Pequeno.

Estatisticas Estacao Medigcdes Estagéo ,E_stagéo
BR-277 Renault Fazendinha | Préximo a Foz
Quantidade de pontos 137 10 240 116
OD média (mg/L) 8,1 6,5 71 7,4
OD maxima (mg/L) 12,2 7,7 10,5 12,2
OD minima (mg/L) 0,0 5,1 3,6 3,6
Desvio Padrao (mg/L) 1,4 1,2 1,1 1,4

Fonte: Autor (2025).

3.1.7 DBO do rio Pequeno

O rio Pequeno possui registros de medicbes de DBO nas trés estacdes
fluviométricas, abrangendo o periodo de 1984 a 2023 e na Renault, abrangendo o
periodo de 2016 a 2020. Os histogramas apresentados nas FIGURAS 23, 24, 25 e

26 refletem os dados das bases fornecidas pelo SNIRH e pela Renault.

FIGURA 23 - Histograma das medi¢des de DBO (mg/L) do rio Pequeno na estagdo BR-277.
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Fonte: Autor (2025).

A FIGURA 23 apresenta o histograma das 143 observagdes de DBO da
estacao BR-277 de 1991 e 2011, em que observa-se uma forte assimetria a direita

na distribuicdo dos dados.
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FIGURA 24 - Histograma das medigdes de DBO (mg/L) do rio Pequeno na estagédo Fazendinha.
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A FIGURA 24 apresenta o histograma das 244 observagdes de DBO da
estacdo Fazendinha de 1984 e 2023, em que observa-se uma forte assimetria a

direita na distribuicdo dos dados.

FIGURA 25 - Histograma das medigdes de DBO (mg/L) do rio Pequeno na estagéo Fazendinha.
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A FIGURA 25 exibe o histograma das 10 observagdes de DBO da Renault
entre os anos de 2016 e 2020, em que observa-se a maior quantidade de

observagdes no inicio do histograma, na faixa de 2,0 a 4,0 mg/L de DBO.

FIGURA 26 - Histograma das medi¢des de DBO (mg/L) do rio Pequeno na estacao Préximo a Foz.
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Fonte: Autor (2025).

A FIGURA 26 apresenta o histograma das 117 observagcbes de DBO da
estacao Préximo a Foz de 1996 e 2011, em que observa-se uma forte assimetria a
direita na distribuicdo dos dados.

O resumo das observagdes do parametro DBO do rio Pequeno pode ser
encontrado na TABELA 5.

TABELA 5 - Estatisticas das medicdes de DBO do rio Pequeno.

Estatisticas Estacao Medigcdes Estagéo ,Efstagéo
BR-277 Renault Fazendinha | Préximo a Foz
Quantidade de pontos 142 10 244 117
DBO média (mg/L) 2,6 5,3 3,1 3,3
DBO maxima (mg/L) 14,0 12,5 25,0 25,0
DBO minima (mg/L) 1,0 2,0 1,0 1,0
Desvio Padrao (mg/L) 2,0 4,2 29 3,3

Fonte: Autor (2025).
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Quando compara-se as médias de DBO ao longo do corpo hidrico que estéao
na TABELA 5, observa-se uma baixa quantidade de carga organica na sesséo inicial

do rio, tendo como ponto de maior quantidade de DBO as medi¢cdes na Renault.

3.2 METODOLOGIA PARA MODELAGEM MATEMATICA

3.2.1 Escolha dos pontos para calibragdo do modelo

Pelo processo de autodepuragdo de um corpo hidrico, espera-se que a DBO
seja gradualmente consumida, resultando em uma redug¢do de sua concentragao ao
longo do tempo. Para o parametro OD, é esperado um comportamento inicial de
breve diminuigdo de concentragdo, devido ao consumo de matéria organica, seguido
por um aumento progressivo da concentracdo em direcdo a saturacdo pelos
processos de reaeracao (VON SPERLING, 2014).

Contudo, entre as estagdes BR-277 e Fazendinha, observa-se um padrao
oposto: um aumento na concentracdo média de DBO acompanhado por uma
reducdo média de OD. Essa diminuigdo do OD sugere um consumo continuo de
matéria organica, cuja concentracdo deveria diminuir a medida que o rio avanga em
direcdo a estacido Fazendinha.

Os sistemas abertos, como corpos hidricos, estdo sujeitos a inumeras
influéncias externas que nem sempre podem ser monitoradas ou controladas. Para
minimizar os impactos dessas influéncias externas e permitir uma caracterizacéo
mais precisa do rio, essa pesquisa escolheu o trecho entre a Renault do Brasil e a

estacao Fazendinha para a calibragdo dos parametros K, e K, da equacgao (19).

3.2.2 Distribuicao a priori h(0)

Para calculo da distribuicdo a priori, faz-se inicialmente uma analise dos
possiveis valores dos coeficientes através da literatura. A partir da QUADRO 7, e
considerando que o rio Pequeno ndo possui henhuma outorga para langamento de
efluente, seleciona-se o intervalo de curso d’agua com aguas limpas entre 0,08 a
0,20 d' como valor possivel do coeficiente K.

Para identificar a distribuigao a priori do coeficiente K,, utiliza-se o QUADRO 8

como referencial tedrico. Com os dados da estacdo Fazendinha, calculou-se o
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coeficiente K, para os diferentes registros de cota e velocidade, obtendo a FIGURA
27.

FIGURA 27 - Histograma dos valores calculados de K, na estagdo Fazendinha.

160
140 4
120 4
100
80 1
60
N
20 1
e =__
1 2 3 4 5 3] 7 8 9

Frequéncia

o—————— 7 T/ 1 1 T 71— 1 —1

0 10
K

Fonte: Autor (2025).

A FIGURA 27 mostra os diferentes valores de K, através de sua estimativa
através dos registros da estagdo Fazendinha. Sua distribuicdo € assimétrica a direita
e ndo possui valores negativos, com valores variando de 0,7 a 9,4.

Com base nas caracteristicas dos dados e nos valores estimados, foram
testadas diversas distribuicdes estatisticas quanto a sua aderéncia aos dados
observados. Entre elas, a distribuicdo lognormal — com média y = 2,344 e desvio
padrao o =1,413 — apresentou o melhor ajuste.

O teste de Kolmogorov—Smirnov indicou que nao se deve rejeitar a hipétese
nula de que os dados seguem essa distribuicdo, o que reforca a adequagcao do
modelo lognormal. A comparagao entre as fungdes de distribuicdo cumulativa

empirica e teodrica pode ser visualizada na FIGURA 28.
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FIGURA 28 - Histograma dos valores calculados de K, na estagao Fazendinha.
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Fonte: Autor (2025).

3.3 FERRAMENTAS PARA PROGRAMACAO E MODELAGEM

O cédigo fonte desta dissertagao se encontra no ANEXO 2 e foi desenvolvido
em linguagem Python, através da plataforma Google Colab*. Essa escolha se deve a
sua flexibilidade, ambiente em nuvem e a integracao simplificada com bibliotecas de
andlise de dados e modelagem estatistica. Complementarmente, a 1A ChatGPT® foi
utilizada como suporte consultivo, principalmente na formulagao de cédigos base.
O resumo das principais bibliotecas de Python necessarias as estimativas se
encontra abaixo:
1. PyMC: biblioteca principal para modelagem estatistica bayesiana, permitindo
a construcdo de modelos probabilisticos complexos e execugao de
inferéncias de maneira eficiente por meio de métodos de amostragem como
os Métodos de Monte Carlo (MMC).
NumPy: biblioteca para manipulagao de arrays e calculos numéricos.
3. SciPy: aplicada no ajuste de distribuicbes e na realizacdo de testes

estatisticos, como qui-quadrado.

4 Google Colab pode ser acessado através do link: https://colab.research.google.com/
° |A ChatGPT pode ser acessada através do link: https://chatgpt.com/
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4. Matplotlib: biblioteca para geragdo de graficos personalizados, incluindo

histogramas comparativos entre os dados observados e modelados.
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4 RESULTADOS E DISCUSSAO

4.1 ANALISE DA QUALIDADE DO RIO PEQUENO

Antes de adentrar na modelagem e calibragédo de parametros, vale a pena
analisar as medi¢gées de OD e DBO ao longo do rio Pequeno e entender como essas
medi¢des se confrontam perante os limites legais. Desde a nascente até sua foz, o
rio Pequeno possui um enquadramento de Classe 2, ou seja, deve possuir um OD
nao inferior a 5 mg/L e uma DBO de, no maximo, 5 mg/L. Para essa analise, plota-se
as FIGURAS 29 e 30, nas quais se encontram todas as medi¢cdes de OD e DBO,

comparadas com o limite legal, respectivamente.

FIGURA 29 - Histograma de todas as medigdes de OD no rio Pequeno em relagao ao limite legal.
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FIGURA 30 - Histograma de todas as medigdes de DBO no rio Pequeno em relagao ao limite legal.
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Uma simples observacdo das FIGURAS 29 e 30 confirma que, de fato, ha
momentos em que o rio esta fora do seu enquadramento. Mais precisamente, 2,5%
das medicdes de OD e 11% das medigbes de DBO estéo fora dos limites legais do
seu enquadramento de Classe 2.

Para se ter mais clareza de como o processo de autodepuracdo no rio

acontece, faz-se a modelagem da equacéao (20).

4.2 DADOS DE ENTRADA

Para calibrar os parametros Ky e K, do modelo de Streeter-Phelps, algumas
premissas e valores sao utilizados como entrada para a simulagao:

e Trecho de estudo: a simulacido é realizada entre a estacdo Fazendinha e o
ponto de medi¢cdo da Renault, totalizando 5,3 km de trajeto;

e Temperatura do rio Pequeno: foram considerados todos os pontos de
temperatura do rio Pequeno medidos na estacdo Fazendinha,;

e Pressao no rio Pequeno: considera-se uma pressao constante de 0,9 atm
em todo o percurso do rio;

e Tempo de percurso: razao entre distancia e os pontos de velocidade;
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e Velocidade: considera-se todos os pontos de velocidade medidos na estacéo
Fazendinha;

e Distribuicdo a priori K, distribuicdo normal que possui 95% de
probabilidade em estar entre o intervalo de 0,08 a 0,20 d! (u=0,014 e ¢=0,03);

e Distribuigao a priori K,: distribuicdo lognormal com os parametros p = 2,34 e
0 =1,413;

e LO: utilizacdo de uma distribuicido gama ajustada (¢=1,932 e 5=0,362) aos
pontos de medi¢cdo de DBO das medigdes da Renault;

e ODO: utilizagdo de uma distribuicdo normal ajustada (u=6,5 e 0=1,2) aos
pontos de medigdo da Renault;

e DBO observada: as medi¢des da estagcao Fazendinha;

e OD observada: as medi¢des da estacao Fazendinha;

e Experimento de Monte Carlo: experimento realizado através do algoritmo de
amostragem NUT-S, com 5.000 amostras sendo 500 usadas para amostra

inicial que foram descartadas.

4.3 CALIBRACAO DOS PARAMETROS K, E K,

A insercdo dos dados de entrada no cédigo que esta no ANEXO 2 gera as
FIGURAS 31 e 32, que respectivamente, trazem a representacdo do método de
Monte Carlo e a calibragdo dos parametros K; e K, e a comparagao entre as
distribuicdes a priori e a posteriori desses parametros.

A FIGURA 31 apresenta do seu lado esquerdo as distribuicbes a posteriori
dos parametros K, e K,, sendo que o parametro K, possui uma média entre 1,35 e
1,40 com uma boa simetria. O parametro K,, por sua vez, possui uma média entre
4,0 e 6,0 com uma assimetria a direita. O lado direito apresenta as amostras da
cadeia de Markov do experimento de Monte Carlo que indica, para os dois casos,
estabilidade (ao oscilar ao entorno de um valor médio), auséncia de tendéncias e
uma mistura boa, oscilando com uma boa amplitude.

Complementarmente, a FIGURA 32 mostra as distribuicbes a priori e
posteriori dos parametros K, e K,. A diferenga das distribuicdes azul e laranja mostra
o0 processo de atualizacdo dos parametros em face aos dados e ao processo

bayesiano.
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FIGURA 31 - Representagdo do método de Monte Carlo e parametros K, e K, calibrados para os
dados do rio Pequeno.
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Fonte: Autor (2025).

FIGURA 32 - Comparacgéao entre as distribuicbes a priori e a posteriori dos parametros K, e K,.
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Fonte: Autor (2025).

De maneira resumida, a TABELA 6 apresenta as principais estatisticas dos

parametros K, e K, calibrados.
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TABELA 6 - Estatisticas dos parametros K, e K, calibrados.

Estatisticas Ky K,
Média 1,36 5,50
Desvio padrao 0,02 0,82
HDI 3% 1,32 4,05
HDI 97% 1,40 7,04

Fonte: Autor (2025).

A TABELA 6 apresenta os valores médios, os desvios padrao e os intervalos
de maior densidade (HDI) de 94% para os parametros K; e K,. Os resultados
evidenciam uma diferenga significativa no grau de incerteza associado a cada
parametro, com o K. apresentando tanto um desvio padrao quanto uma amplitude do
HDI consideravelmente maiores que os do K,. Isso indica que a estimativa de K: é
mais incerta, refletindo maior variabilidade em comparagao ao K.

Por fim, para garantir que a calibragdo do modelo representa os dados do rio
Pequeno, a comparagao entre o modelo ajustado e os dados observados é

imprescindivel.

4.4 COMPARAGCAO ENTRE MODELO E DADOS OBSERVADOS

ApoOs a calibragdo dos parametros Ky e K, o proximo passo € verificar a
adequacido do modelo aos dados coletados no trecho entre a Renault do Brasil e a
estacdo Fazendinha. Essa verificagao da adequacéao consiste em comparar os perfis
simulados de OD e DBO com as respectivas observagcbes obtidas em campo,
permitindo avaliar a capacidade preditiva do modelo de Streeter-Phelps.

A comparacao entre os valores observados e modelados é mostrada nas
FIGURAS 33 e 34 para o perfil de concentragdo de OD e DBO, respectivamente. A
comparagao é realizada com os dados que o modelo bayesiano traz como resultado

e os dados observados na estagdo Fazendinha.



FIGURA 33 - Comparacgao entre o perfil de OD na estagdo Fazendinha observado e modelado.
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FIGURA 34 - Comparacéo entre o perfil de DBO na estacao Fazendinha observado e modelado.

Fonte: Autor (2025).
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A avaliagdo da precisdo do modelo foi realizada por meio do teste de

aderéncia do qui-quadrado, aplicado aos perfis simulados de DBO e OD. Esse teste
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tem o objetivo de verificar se ha evidéncia estatistica de que as distribuicoes
simuladas diferem significativamente das observadas.

A hipotese nula (H,) do teste € de que ndo ha diferenga significativa entre as
distribuicbes observada e simulada e a hipétese alternativa (H,) é de que ha
diferenca significativa entre as distribuicbes observada e simulada. O teste foi
parametrizado com um nivel de significancia de 0,05, ou seja, admite-se uma
probabilidade de 5% de rejeitar erroneamente a hipétese nula (erro do Tipo I). A
partir das distribuicbes observadas e simuladas, utiliza-se a equacgao (23) para
calcular a estatistica qui-quadrado que esta na TABELA 7, juntamente com os
valores criticos de qui-quadrado, com um nivel de significancia (a) de 0,05 e grau de
liberdade (GL) igual a 8.

TABELA 7 - Estatistica qui-quadrado dos perfis de OD e DBO simulados e observados e valores
qui-quadrado criticos.

Teste oD DBO
Qui-quadrado (calculado) 0,06 0,89
Qui-quadrado tabelado (a=0,05 e GL=8) 15,51 15,51

Fonte: Autor (2025).

Ao comparar os valores da TABELA 7, observa-se que os valores calculados
estdo bem abaixo do valor critico (15,51). Essa constatagao implica que néo se
rejeita a hipotese nula, o que é indicativo de uma boa concordancia entre as

distribuicées simuladas de OD e DBO em relagao as observacoes.

4.5 SIMULAGCAO DOS PERFIS DE OD E DBO AO LONGO DO RIO

Com os parametros do modelo calculados, € possivel realizar a simulagao da
OD e DBO do Rio Pequeno ao longo do trajeto do ponto de medi¢cdo da Renault a
estacdo Fazendinha. As FIGURAS 35 e 36 apresentam essas simulagdes, incluindo
os intervalos de credibilidade associados as estimativas. Importante salientar que os
intervalos de credibilidade representam a regido dentro da qual se espera que o
valor verdadeiro esteja, com uma determinada probabilidade, ou seja, para um
intervalo de credibilidade de 99% é possivel afirmar que ha 99% de chance do valor
de concentragcdo de OD esteja dentro do intervalo mostrado, dadas as informacdes
disponiveis.
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FIGURA 35 - Perfil de OD modelado entre o ponto de medi¢gao Renault e a estagdo Fazendinha e seu
intervalo de credibilidade de 99%.
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Fonte: Autor (2025).

FIGURA 36 - Perfil de DBO modelado entre o ponto de medicao Renault e a estagdo Fazendinha e
seu intervalo de credibilidade de 71%.
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Para a simulacéo do perfil de OD, o intervalo de credibilidade foi estabelecido
de forma a atingir exatamente o limite legal de 5 mg/L no ponto x = 5,3 km,
correspondente a estagdo Fazendinha. Isso significa que, com base nas incertezas
incorporadas ao modelo, a OD permanecera acima do valor minimo exigido pela
legislacdo em 99% dos cenarios simulados — o que evidencia um cenario hidrico
em que o processo de autodepuracao garante os niveis de oxigénio adequados.

Ja para a DBO, o mesmo procedimento de simulagao indica que apenas 71%
dos cenarios permanecem abaixo do valor maximo permitido de 5 mg/L no mesmo
ponto. A escolha de apresentar esse percentual reflete o fato de que, mesmo com os
mesmos parametros calibrados, a incerteza associada a remog¢ao de carga orgéanica

€ maior, o que indica um risco no atendimento aos padrdes legais.

4.6 SIMULACAO DE LANCAMENTO PONTUAL NO RIO PEQUENO

Com os parametros do modelo calculados, foi possivel realizar simulagdes
adicionais para avaliar o comportamento do rio Pequeno sob condi¢gdes de estresse,
representadas por langcamentos pontuais de efluentes com diferentes concentracbes
de DBO e OD.

As FIGURAS 37 e 38 ilustram os perfis simulados de OD e DBO ao longo do
rio considerando quatro cenarios em que a DBO inicial do rio, imediatamente apds o
langamento de efluentes, € de 2 mg/L, 10 mg/L, 25 mg/L e 50 mg/L. Para esse
exercicio, os valores médios de velocidade, OD na saturacdo, K, e K, foram

utilizados, considerando o rio no seu limite legal para a OD inicial (5mg/L).
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FIGURA 37 - Perfil de OD modelado entre o ponto de medi¢do Renault e a estagdo Fazendinha.
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FIGURA 38 - Perfil de DBO modelado entre o ponto de medi¢ado Renault e a estagdo Fazendinha.
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As simulagdes foram concebidas de modo a investigar a resiliéncia do
processo de autodepuragao diante de diferentes cargas organicas, ou seja, a

capacidade do rio de recuperar sua qualidade apés um langamento pontual de
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poluicdo. Como mostrado na FIGURA 37, mesmo no cenario mais extremo
(concentragao inicial do rio de DBO de 50 mg/L), o rio demonstra capacidade de
recuperagao, com a OD retornando a valores acima do limite legal apds
aproximadamente 30 km. Nos cenarios de menor carga (2, 10 e 25 mg/L), a variagao
da OD ao longo do trecho € pequena, indicando boa capacidade de assimilacéo e
reaeragao do sistema.

Entretanto, os resultados da FIGURA 38 revelam um cenario mais critico para
a DBO. Apenas nos cenarios com DBO inicial de 5, 10 e 25 mg/L o rio consegue
reduzir a concentragcdo de DBO abaixo do limite legal de 5 mg/L ao longo dos 30 km
simulados. No cenario de 50 mg/L, a carga organica excede a capacidade de
autodepuragéo nesse intervalo, permanecendo acima dos limites legais até o final do
trecho.

Esses resultados reforcam a necessidade de controle rigoroso dos
langcamentos pontuais de carga organica, especialmente em trechos onde o oxigénio
dissolvido ja se encontra proximo aos limites criticos. A simulagdo também
demonstra o potencial do modelo de Streeter-Phelps com abordagem bayesiana
como ferramenta preditiva e de apoio a tomada de decisdo na gestao ambiental da

bacia do rio Pequeno.

4.7 ANALISE CRITICA DOS RESULTADOS

A aplicagdo do modelo de Streeter-Phelps com abordagem bayesiana
demonstrou sua utilidade ao fornecer uma visao probabilistica da autodepuragao do
rio Pequeno. Apesar da boa concordancia entre os dados observados e simulados,
rio Pequeno € um sistema aberto, sujeito a diversas influéncias ndo controladas e
monitoradas, o que gera incertezas nos parametros calibrados (como cargas
pontuais e difusas de poluigdo). Essa limitacado é esperada devido a complexidade
dos sistemas naturais e reforca a necessidade de incorporar fontes adicionais de
dados.

A analise evidenciou que o rio Pequeno, mesmo sob pressdo ambiental,
mantém sua capacidade de autodepuragdo na maior parte do tempo, garantindo
concentragbes de oxigénio dissolvido (OD) acima do limite legal em 99% dos
cenarios simulados. No entanto, para a Demanda Bioquimica de Oxigénio (DBO), a

conformidade é de apenas 71% dos cenarios simulados. Esses resultados indicam a
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necessidade de monitoramento em relagcdo aos langamentos pontuais néo
outorgados e a gestédo das atividades na bacia hidrografica.

A inclusdo de outros coeficientes, como os de sedimentacdo e consumo
bentdnico, poderia refinar ainda mais as estimativas da DBO, especialmente em
areas com deposicao significativa de matéria organica.

O teste de aderéncia do Qui-quadrado contribuiu para validar a precisdo do
modelo. A abordagem bayesiana mostrou-se particularmente eficaz ao integrar
incertezas e atribuir probabilidades para os parametros modelados, 0 que agrega

transparéncia e robustez ao processo de tomada de decisdo ambiental.
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5 CONCLUSAO

O modelo modificado de Streeter-Phelps apresentou boa aderéncia aos
dados observados, permitindo a simulagéo realista da concentracédo de OD e DBO
ao longo do rio Pequeno. A utilizagdo da inferéncia bayesiana destacou-se por
possibilitar a quantificacdo das incertezas nos parametros modelados, fornecendo
uma analise robusta e transparente para a gestdo ambiental. Apesar disso, a
inclusdo de outros coeficientes, como os de sedimentacdo e consumo bentdnico,
poderia melhorar ainda mais a representacado da dinamica da DBO.

Os resultados reforcam a aplicabilidade do modelo Streeter-Phelps como uma
ferramenta importante para a gestdo da qualidade da agua em rios, devido a sua
simplicidade e facilidade de aplicagdo (necessitando apenas dados basicos do rio).
A abordagem adotada mostrou que, mesmo em cenarios de estresse ambiental, o
rio Pequeno possui significativa capacidade de autodepuragao, atendendo os limites
legais em grande parte dos casos. No entanto, para cenarios mais desafiadores, a
conformidade em relagcdo a legislagdo fica comprometida e exige intervencoes
externas e melhorias no manejo da bacia.

Sugere-se como proximos passos a adigao de outros coeficientes no modelo
de Streeter-Phelps, além da aplicacdo de modelos mais complexos, como o
QUAL-UFMG, que permitem simular ndo apenas as variaveis OD e DBO, mas
também a concentracdo de nutrientes como nitrogénio e fésforo.

As limitacdes deste estudo estdo relacionadas principalmente a auséncia de
dados mais recentes e a dificuldade de considerar fontes difusas de poluicédo, além
da simplicidade relativa do modelo adotado em comparacdo com modelos mais
avangados. Contudo, essas limitagbes também representam oportunidades para
estudos futuros, que poderiam integrar informagdes sobre fontes difusas, impactos
climaticos e variaveis nao consideradas, permitindo uma representacdo mais

abrangente da dinamica dos recursos hidricos.
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ANEXO 1

As medigdes de DBO e OD disponibilizadas pela Renault do Brasil do rio

Pequeno entre 2016 e 2020 se encontram abaixo.

Data (mzll;fgz) Oxigénio Dissolvido (mg/L)
8/11/2016 2 7,3
8/11/2016 3,5 7,7

11/27/2017 2 5,2
11/27/2017 2 5,3
11/29/2018 11,15 7,2
11/29/2018 12,45 7,36
9/16/2019 2,5 7

9/16/2019 9,83 7,8
11/3/2020 2 5,19
11/3/2020 6 5,11
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ANEXO 2

import pymc as pm

import numpy as np

import matplotlib.pyplot as plt

import arviz as az

import scipy.stats as ss

from scipy.stats import lognorm

from scipy.stats import gamma

import matplotlib.pyplot as plt

from scipy.stats import chisquare, ks_2samp
from scipy.stats import t

from scipy.stats import gmc # Médulo para Quasi-Monte Carlo methods

ODS = np.array([10.95, 10.95, 10.66, 10.43, 10.40, 10.02, 9.88, 9.86, 9.74, 9.70,
9.70, 9.70, 9.70, 9.61, 9.61, 9.53, 9.53, 9.50, 9.48, 9.48, 9.48,9.48, 9.48, 9.48, 9.34,
9.30, 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, 9.28, 9.21, 9.19,
9.19, 9.17, 9.15,9.15, 9.11, 9.10, 9.08, 9.08, 9.08, 9.08, 9.08, 9.08, 9.08, 9.08, 9.08,
9.08, 9.08, 9.08, 9.08, 9.08, 9.08, 9.08, 9.08, 9.08, 9.08,9.08, 9.08, 9.08, 9.08, 9.08,
9.08, 9.06, 9.06, 9.06, 9.04, 9.04, 9.04, 9.02, 9.02, 9.02, 9.02, 9.02, 9.02, 9.00, 8.98,
8.98, 8.96,8.96, 8.94, 8.90, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88, 8.88,
8.88, 8.88, 8.88, 8.88, 8.85, 8.85, 8.83, 8.81, 8.79,8.75, 8.73, 8.73, 8.72, 8.72, 8.72,
8.70, 8.70, 8.70, 8.70, 8.70, 8.70, 8.63, 8.63, 8.61, 8.61, 8.61, 8.61, 8.59, 8.59, 8.57,
8.57,8.57, 8.54, 8.52, 8.52, 8.52, 8.52, 8.52, 8.52, 8.52, 8.52, 8.52, 8.52, 8.52, 8.52,
8.52, 8.52, 8.50, 8.49, 8.45, 8.45, 8.43, 8.42,8.38, 8.37, 8.35, 8.35, 8.35, 8.35, 8.35,
8.35, 8.35, 8.35, 8.35, 8.35, 8.35, 8.35, 8.35, 8.32, 8.32, 8.30, 8.27, 8.27, 8.25, 8.25,
8.23, 8.23, 8.22, 8.20, 8.20, 8.18, 8.18, 8.18, 8.18, 8.18, 8.18, 8.18, 8.17, 8.15, 8.15,
8.15, 8.13, 8.12, 8.12, 8.09, 8.09, 8.09,8.07, 8.05, 8.05, 8.04, 8.02, 8.02, 8.02, 8.02,
8.02, 8.02, 8.02, 8.02, 8.02, 8.02, 8.02, 8.01, 8.01, 8.01, 8.01, 7.99, 7.99, 7.99,7.99,
7.98,7.98,7.98, 7.98, 7.96, 7.95, 7.95, 7.93, 7.92, 7.90, 7.90, 7.88, 7.88, 7.87, 7.87,
7.87,7.84,7.84,7.81,7.75, 7.72,7.72,7.72,7.72,7.72,7.72, 7.68, 7.65, 7.58, 7.58,
7.58,7.52,7.30,7.18,7.17,7.15,7.11, 7.05, 6.86))

OD_observed_t1 = np.array([10.5, 10.5, 10.3, 10.3, 9.76, 9.76, 9.4, 9.3, 9.3, 9.2, 9.0,
8.98, 8.96, 8.9,8.9,8.7,8.7, 8.7, 8.6, 8.6, 8.6, 8.6, 8.6,8.6, 8.6, 8.5, 8.5, 8.5, 8.5, 8.5,
8.4,84,84,683,8.3,8.28,8.2,8.18, 8.1, 8.1, 8.1, 8.02, 8.0, 8.0, 8.0, 8.0, 8.0,8.0,
80,79,79,79,79,79,79,79,79,79,79,7.88,7.82,7.82,7.8,7.8,7.8,7.8,
78,78,7.78,7.76, 77,77, 77,77, 7.7,77,7.7,7.7,7.64,76,7.6,7.5,7.5, 7.5,
75,75 75,7574, 74,74, 74,74,74,7.4,7.36,7.3,7.3,7.3,7.3,7.3,7.3,7.3,
73,73,72,72,72,72,7.18,7.18,718,71,71,71,7.1,71,7.1,7.1,7.08,7.06,
7.06,7.02,7.0,7.0,7.0,7.0,7.0,7.0,7.0,7.0,6.97,6.9,6.9,6.9,6.9,6.9,6.9, 6.9,
6.9,6.9,6.8,668,66.8,6.86.8,6.8,6.8,68,6.7,6.7,6.7,6.7,6.7,6.7,6.7,6.7, 6.7,
6.6, 6.6, 6.6, 6.6, 6.6, 6.6, 6.5, 6.5, 6.5, 6.5, 6.5,6.48,6.47,6.4,6.4,6.4,6.4, 6.4, 6.4,
6.4,6.4,6.3,6.3,6.3,6.3,6.3,6.3,6.3,6.2,6.2,6.14, 6.14, 6.14, 6.1, 6.1,6.1, 6.1,
6.0, 6.0, 6.0, 6.0, 6.0,6.0,5.98,5.98,5.9,5.9,59,59,59,59,59,59,5.9,5.9,
5.9,5.84,5.84,58,5.6,5.6,5.6,5.6,5.6,552,552,55,55,55,54,54,54,5.3,
5.3,5.3,5.3,5.27,5.2,4.9, 4.8, 3.9, 3.6])

DBO_observed t

_t1 =np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0, 1.0, 1.0, 1.0,1.0, 1.0, 1.0, 1.0, 1.0,
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1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0,1.0,1.0,1.1,1.5,1.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
2.0,20,20,20,2.0,2.0,2.0,2.0,2.0,2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
20,20,20,20,20,20,20,2.0,20,2.0,2.0, 2.0, 2.0, 2.0, 2.0, 2.0,2.0, 2.0, 2.0,
2.0,20,20,20,20,20,2.0,2.0,2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
20,20,2.0,20,20,21,21,21,21,21,21,2.2,23,2.3,24,2.4,24,25, 2.5,
25,26,26,2.7,2.7, 29 29 30 30 30 3030 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.5,3.7,
3.7,3.8,3.9,39,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0, 4.0,
40,41,41,46,48,484.9,5.0,5.0,5.0,5.0,5.0,5.0,5.0,6.0,6.0, 6.0, 6.0, 6.0,
6.0,6.0,6.0,6.2,6.2,6.2,7.0,7.0,7.0,7.0, 7.0, 8.0, 8.0,8.0, 8.0, 9.0, 10.0, 10.0,

12.0, 12.0, 18.0, 23.0, 25.0])

velocidade=[0.06,0.06,0.07,0.07,0.06,0.06,0.08,0.08,0.08,0.08,0.23,0.23,0.23,0.23,0.
09,0.09,0.09,0.09,0.11,0.11,0.24,0.24,0.24,0.24,0.1,0.1,0.09,0.09,0.09,0.09,0.08,0.08
,0.08,0.08,0.11,0.11,0.11,0.11,0.08,0.08,0.11,0.11,0.11,0.11,0.24,0.24,0.11,0.11,0.11,
0.11,0.45,0.45,0.44,0.44,0.45,0.45,0.45,0.45,0.45,0.45,0.45,0.45,0.26,0.26,0.26,0.26,
0.11,0.11,0.11,0.11,0.34,0.34,0.34,0.34,0.11,0.11,0.34,0.34,0.34,0.34,0.34,0.34,0.34,
0.34,0.34,0.34,0.26,0.26,0.27,0.27,0.27,0.27,0.28,0.28,0.1,0.1,0.11,0.11,0.11,0.11,0.1
2,0.12,0.12,0.12,0.15,0.15,0.43,0.43,0.42,0.42,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.
14,0.45,0.45,0.44,0.44,0.11,0.11,0.13,0.13,0.13,0.13,0.14,0.14,0.13,0.13,0.13,0.13,0.
33,0.33,0.36,0.36,0.36,0.36,0.14,0.14,0.28,0.28,0.24,0.24,0.21,0.21,0.14,0.14,0.39,0
.39,0.39,0.39,0.14,0.14,0.14,0.14,0.14,0.14,0.21,0.21,0.21,0.21,0.21,0.21,0.15,0.15,
0.41,0.41,0.41,0.41,0.3,0.3,0.17,0.17,0.33,0.33,0.31,0.31,0.21,0.21,0.21,0.21,0.12,0.
12,0.25,0.25,0.25,0.25,0.25,0.25,0.31,0.31,0.31,0.31,0.14,0.12,0.12,0.13,0.13,0.17,0
.17,0.15,0.15,0.11,0.11,0.18,0.18,0.25,0.25,0.25,0.25,0.28,0.28,0.14,0.14,0.14,0.14,0
.31,0.31,0.31,0.31,0.31,0.31,0.16,0.16,0.16,0.16,0.25,0.25,0.25,0.25,0.25,0.25,0.31,
0.31,0.31,0.31,0.16,0.16,0.26,0.26,0.26,0.26,0.29,0.29,0.17,0.17,0.14,0.14,0.15,0.15
,0.17,0.17,0.17,0.17,0.16,0.16,0.16,0.16,0.16,0.16,0.16,0.16,0.26,0.26,0.26,0.26,0.1
4,0.14,0.24,0.24,0.47,0.47,0.47,0.47,0.25,0.25,0.47,0.31,0.31,0.31,0.31,0.15,0.15,0.
15,0.15,0.47,0.26,0.26,0.26,0.26,0.25,0.25,0.25,0.25,0.32,0.32,0.31,0.31,0.18,0.18,0
.18,0.18,0.18,0.18,0.18,0.18,0.25,0.25,0.25,0.25,0.16,0.16,0.16,0.16,0.22,0.18,0.18,
0.16,0.16,0.22,0.46,0.14,0.14,0.17,0.17,0.17,0.17,0.17,0.17,0.28,0.28,0.28,0.28,0.28
,0.28,0.27,0.27,0.27,0.27,0.37,0.37,0.28,0.28,0.28,0.28,0.23,0.23,0.19,0.19,0.27,0.2
7,0.16,0.16,0.17,0.17,0.17,0.17,0.24,0.24,0.24,0.24,0.22,0.22,0.18,0.18,0.17,0.17,0.
41,0.34,0.34,0.34,0.34,0.19,0.19,0.19,0.19,0.35,0.35,0.35,0.35,0.19,0.19,0.24,0.24,0
.18,0.18,0.21,0.21,0.37,0.24,0.24,0.37,0.36,0.36,0.36,0.36,0.41,0.41,0.24,0.24,0.2,0.
2,0.19,0.19,0.19,0.19,0.18,0.18,0.4,0.15,0.15,0.2,0.2,0.16,0.16,0.21,0.21,0.19,0.19,0
.19,0.19,0.26,0.26,0.26,0.26,0.25,0.25,0.18,0.18,0.27,0.27,0.27,0.27,0.26,0.26,0.25,
0.23,0.23,0.35,0.35,0.19,0.19,0.22,0.22,0.2,0.2,0.19,0.19,0.37,0.37,0.18,0.18,0.18,0.
18,0.43,0.43,0.53,0.53,0.27,0.27,0.23,0.23,0.27,0.27,0.18,0.18,0.42,0.42,0.24,0.24,0
.37,0.37,0.28,0.28,0.28,0.28,0.24,0.24,0.24,0.24,0.24,0.24,0.24,0.24,0.25,0.25,0.22,
0.22,0.28,0.28,0.3,0.3,0.29,0.29,0.4,0.4,0.31,0.31,0.26,0.26,0.22,0.22,0.31,0.31,0.31
,0.31,0.24,0.24,0.54,0.54,0.31,0.31,0.31,0.31,0.29,0.29,0.29,0.29,0.31,0.31,0.27,0.2
7,0.31,0.31,0.3,0.3,0.31,0.31,0.26,0.26,0.26,0.26,0.27,0.27,0.27,0.27,0.27,0.27,0.33,
0.33,0.33,0.33,0.33,0.34,0.34,0.34,0.34,0.26,0.26,0.31,0.31,0.31,0.31,0.29,0.29,0.35
,0.35,0.37,0.37,0.37,0.37,0.39,0.39,0.35,0.35,0.35,0.35,0.35,0.35,0.52,0.52,0.62,
0.62]

num_combinations = 700

sampler = gmc.LatinHypercube(d=4, seed=42)
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sample_unit_cube = sampler.random(n=num_combinations)
combined_samples = np.zeros((num_combinations, 4))
for i in range(num_combinations):
idx1 = int(np.floor(sample_unit_cubeli, 0] * len(ODS)))
idx2 = int(np.floor(sample_unit_cubeli, 1] * len(OD_observed t1)))
idx3 = int(np.floor(sample_unit_cube[i, 2] * len(DBO_observed _t1)))
idx4 = int(np.floor(sample_unit_cubeli, 3] * len(velocidade)))

combined_samples]i, 0] = ODSJidx1]
combined_samples|i, 1] = OD_observed_t1[idx2]
combined_samples]|i, 2] = DBO_observed t1[idx3]
combined_samples]i, 3] = velocidade[idx4]

sample_ODS = combined_samples[:, 0]

sample_OD_observed t1 = combined_samples[:, 1]

sample_DBO_observed_t1 = combined_samples|:, 2]

sample_velocidade = combined_samples|:, 3]
OD_observed_t1_orig = np.array([10.5, 10.5, 10.3, 10.3, 9.76, 9.76, 9.4, 9.3, 9.3, 9.2,
9.0, 8.98, 8.9¢6, 8.9, 8.9,8.7,8.7, 8.7, 8.6, 8.6, 8.6, 8.6, 8.6,8.6, 8.6, 8.5, 8.5, 8.5, 8.5,
8.5,84,84,84,8.3,8.3,8.28,8.2,8.18, 8.1, 8.1, 8.1, 8.02, 8.0, 8.0, 8.0, 8.0, 8.0,
8.0,8.0,79,79,79,79,79,79,79,79,79,7.9,7.88,7.82,7.82,7.8,7.8,7.8,
78,78,78,7.78,776,7.7,7.7, 7.7, 7.7, 77,77, 7.7,7.7,7.64,7.6,7.6,7.5, 7.5,
75,7575 75,75 74,74, 74,74,74,74,7.4,7.36,7.3,7.3,7.3,7.3,7.3,7.3,
73,73,73,72,72,72,72,7.18,718,718,71,71,71,71,71,7.1,7.1, 7.08,
7.06, 7.06,7.02,7.0,7.0,7.0,7.0,7.0,7.0,7.0,7.0,6.97,6.9,6.9,6.9,6.9, 6.9, 6.9,
6.9,6.9,6.9,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.7,6.7,6.7,6.7,6.7,6.7,6.7, 6.7,
6.7, 6.6, 6.6, 6.6, 6.6, 6.6, 6.6, 6.5, 6.5, 6.5, 6.5, 6.5,6.48,6.47,6.4,6.4,6.4, 6.4, 6.4,
6.4,6.4,6.4,6.3,6.3,6.3,6.3,6.3,6.3,6.3,6.2,6.2,6.14,6.14,6.14, 6.1, 6.1, 6.1,
6.1, 6.0, 6.0,6.0,6.0,6.0,6.0,5.98,5.98,5.9,5.9,5.9,5.9,5.9,59,59,59,5.9,
59,59, 5.84,584,58,5.6,5.6,5.6,5.6, 56,552,552, 55,55,55,54,54,54,
5.3,5.3,5.3,5.3,5.27,5.2,4.9,4.8, 3.9, 3.6)])
DBO_observed_t1_orig = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0, 1.0, 1.0,1.0, 1.0, 1.0, 1.0,
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0,1.0,1.0,1.0,1.0, 1.1, 1.5, 1.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
20,20,20,20,20,2.0,2.0,2.0,2.0, 20,20, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
2.0,20,20,20,20,2.0,2.0,2.0,2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,2.0, 2.0,
2.0,20,20,20,20,20,2.0,2.0,2.0,2.0,2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
20,20,20,20,20,2.0,21,21,21,21,21,21,22,23,2.3,2.4,24,2.4, 2.5,
25,25,26,26,2.7,2.7, 29 29 30 30 30 3030 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.5,
3.7,3.7,3.8,3.9,3.9,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0, 4.0,
4.0,4.0,41,41,46,48,4.8,4.9,5.0,5.0,5.0,5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0,
6.0,6.0,6.0,6.0,6.2,6.2,6.2,7.0,7.0,7.0,7.0,7.0, 8.0, 8.0,8.0, 8.0, 9.0, 10.0, 10.0,

12.0, 12.0, 18.0, 23.0, 25.0])

OD_observed_t1 = np.array(sample_OD_observed_t1)
DBO_observed_t1 = np.array(sample_DBO_observed t1)
ODS = np.array(sample_ODS)



OD_observed_t1 = np.array(sample_OD_observed _t1)

DBO_observed _t1 = np.array(sample_DBO_observed t1)
velocidade=np.array(sample_velocidade)

velocidade=np.array(velocidade)

distancia=5.3

ajuste_de_unidade=(24*3.6)

t1 = distancia/velocidade/ajuste_de_unidade

#t1 = np.random.uniform(low=0.05, high=0.25, size=min_len)

# Ajustar ao menor tamanho comum

min_len = min(len(ODS), len(OD_observed_t1), len(DBO_observed _t1),len(t1))

def stratified_sampling(array, target_size):
sorted_array = np.sort(array)
bins = np.linspace(0, len(sorted_array), target_size + 1, dtype=int)
sampled = [np.mean(sorted_array[bins[i]:bins][i + 1]]) for i in range(len(bins) - 1)]
return np.array(sampled)

ODS = stratified_sampling(ODS, min_len)

OD_observed_t1 = stratified_sampling(OD_observed_t1, min_len)
DBO_observed t1 = stratified_sampling(DBO_observed_t1, min_len)
t1 = stratified_sampling(t1, min_len)

# Distribuicbes para DBO2 e OD2

rng = np.random.default_rng()

LO = gamma.rvs(a=1.9320, scale=2.7655, size=min_len)
ODO = t.rvs(df=10, loc=6.5, scale=1.2, size=min_len)

# Funcobes de Streeter-Phelps para OD e DBO
def streeter_phelps_od(t, LO, ODS, ODO, Kd, K2):
term1 = ODS
term2 = (Kd * LO) / (K2 - Kd) * (np.exp(-Kd * t) - np.exp(-K2 * t))
term3 = (ODS - ODO0) * np.exp(-K2 * 1)
return term1 - term2 - term3

def streeter_phelps_dbo(t, LO, Kd):
return LO * np.exp(-Kd * t)

# Modelo Bayesiano e Amostragem
with pm.Model() as model:
# Priors
Kd = pm.Normal("Kd", mu=0.12, sigma=0.03)
#Kd = pm.Uniform("Kd", lower=0.1, upper=20)
K2 = pm.Lognormal("K2", mu=np.log(2.0065), sigma=0.5580)

# Modelos deterministicos
OD_model_t1 = streeter_phelps_od(t1, LO, ODS, ODO0, Kd, K2)
DBO_model_t1 = streeter_phelps_dbo(t1, LO, Kd)

# Verossimilhanga
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pm.Normal("OD_obs_t1", mu=OD_model_t1, sigma=5,
observed=0D_observed_t1)

pm.Gamma("DBO_obs_t1", mu=DBO_model_t1, sigma=2,
observed=DBO_observed_t1)

# Amostragem
trace = pm.sample(5000, tune=500, return_inferencedata=True)
prior_samples = pm.sample_prior_predictive(500)

# Resultados
ax=az.plot_trace(trace, var_names=["Kd", "K2"], figsize=(6.3, 3.78),
compact=True, # Reduz espaco para ocultar rastreamento
combined=True, # Combina todas as cadeias
)

for axes in ax.flatten(): # lterar pelos eixos gerados

for line in axes.get_lines():

line.set_linestyle("-") # Define linha sdlida

plt.tight_layout(pad=0.5) # Ajusta o layout
plt.show()
# Amostragem preditiva posterior
posterior_predictive = pm.sample_posterior_predictive(trace, model=model)
# Histogramas das distribuicoes a PRIORI de Kd e K2
kd_prori = prior_samples.prior["Kd"].values.flatten()
k2_priori = prior_samples.prior["K2"].values.flatten()

# Extracao de valores preditivos

od_posterior = posterior_predictive.posterior_predictive["OD_obs_t1"].mean(axis=(0,
1)) # Média sobre chain e draw

dbo_posterior =
posterior_predictive.posterior_predictive['DBO_obs_t1"].mean(axis=(0, 1)) # Média
sobre chain e draw

# Criando o grafico

plt.figure(figsize=(6.3, 3.78))

plt.hist(OD_observed_t1, bins=int(np.ceil(1 + 3.322 *
np.log10(len(OD_observed_t1_orig)))), alpha=0.5, label="OD Observado",
color="blue",density=True)

plt.hist(od_posterior, bins=int(np.ceil(1 + 3.322 *
np.log10(len(OD_observed_t1_orig)))), alpha=0.5, label="OD Modelado",
color="orange", density=True)

plt.xlabel("OD")

plt.ylabel("Densidade")

plt.legend()

plt.tight_layout()

plt.show()

# Histograma para DBO

plt.figure(figsize=(6.3, 3.78))

plt.hist(DBO_observed_t1, bins=int(len(DBO_observed_t1_orig)**0.5), alpha=0.5,
label="DBO Observado", color="blue",density=True)
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plt.hist(dbo_posterior, bins=int(len(DBO_observed_t1_orig)**0.5), alpha=0.5,
label="DBO Modelado", color="orange", density=True)

plt.xlabel("DBO")

plt.ylabel("Densidade")

plt.legend()

plt.tight_layout()

plt.show()

# Funcao para plotar distribuigcdes a priori e a posteriori
def plot_priors_and_posteriors(prior_samples, trace, variable_name, ax):
""" Plota as distribui¢des a priori e a posteriori."""
bins=int(len(DBO_observed t1)**0.5)
#bins=int(np.ceil(1 + 3.322 * np.log10(len(DBO_observed_1t1))))
# Prior
ax.hist(prior_samples, bins=bins, density=True, alpha=0.5, label="A priori",
color="blue")
# Posterior
posterior_samples = trace.posterior[variable_name].values.flatten()
ax.hist(posterior_samples, bins=bins, density=True, alpha=0.5, label="A
posteriori", color="orange")
# Adicionar legenda somente para K2
if variable_name == "K2":
ax.legend()

# Criando o grafico

fig, axes = plt.subplots(1, 2, figsize=(6.3, 3.78))
variables = ["Kd", "K2"]

priors = [kd_prori, k2_priori]

for ax, var, prior in zip(axes.ravel(), variables, priors):
plot_priors_and_posteriors(prior, trace, var, ax)
ax.set_title(var, fontsize=12) # Adiciona o titulo do eixo individual

plt.tight_layout()
plt.show()



