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RESUMO

Os problemas de localizagdo de instalagdes (facility location) possuem varias
aplicagBes como em telecomunicagdes, distribuigdo e transporte industrial. Um dos
problemas de localizagsio de instalagdes mais conhecido é o problema das p-medianas
(HAKIMI, 1965) e (REVELLE, 1970). Neste trabalho é apresentada uma aplicagio do
problema das p-medianas capacitado a um problema real. E proposto um algoritmo
que otimiza a designag@o de candidatos ao vestibular para os locais de provas mais
préximos de suas residéncias. Para resolver o problema das p-medianas capacitado séo
propostas duas heuristicas modernas adaptadas ao problema. A primeira é baseada em
um algoritmo genético simples que utiliza os operadores genéticos usuais € um
operador heuristico chamado “hipermutacfio direcionada”. A segunda heuristica
proposta € baseada em busca tabu e usa memoria de curto e de longo prazo para
controlar a busca. Também utiliza uma estratégia de oscilagio e tempo tabu aleatério
para tentar evitar a repeticdo de solugdes. As duas heuristicas propostas sdo utilizadas
para resolver o problema real mencionado anteriormente, caracterizado como das p-
medianas capacitado.

Palavras-chave: localizagdo de instalagdes, p-medianas, designagdo, algoritmos
genéticos, busca tabu.
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ABSTRACT

Facility location problems have several applications in telecommunications,
distribution and industrial transportation. One of the most well known facility
location problems is the p-median problem (HAKIMI, 1965), (REVELLE, 1970).
This work presents an application of the capacitated p-median problem to a real-
world problem. This work proposes an algorithm that optimizes the designation of
candidate students (who have to pass a university admission exam) to exam
facilities closer to their residences. In order to solve the capacitated p-median
problem we propose two modern heuristics adapted to the problem. The first one is
based on a simple genetic algorithm that uses both conventional genetic operators
and a new heuristic operator called “directed hipermutation”. The second one is
based on tabu search and uses both short-term and long-term memory to control the
search. It also uses an oscillation strategy and random tabu tenure in an attempt to
avoid the generation of repeated solutions. The two proposed heuristics are used to
solve the above-mentioned real-world problem, cast as a capacitated p-median

problem.

Keywords: facility location, p-median, designation, genetic algorithms, tabu search.
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1 INTRODUCAO

Os problemas de localizagfo de instalagdes (facility location) possuem varias
aplicagdes como em telecomunicagdes, distribui¢do e transporte industrial. Um dos
problemas de localizag@o de instalagdes mais conhecido é o problema das p-medianas
(HAKIMI, 1965) e (REVELLE, 1970). Este problema consiste em localizar p
instalacGes em um espago considerado (espago euclidiano, por exemplo) que devem
atender a n pontos de demanda de tal forma que a soma das distancias percorridas de
cada ponto de demanda até a instalag8o mais préxima seja minimizada.

No caso do problema das p-medianas nfo-capacitado, considera-se que cada
instalagdo candidata a mediana pode atender a um mimero ilimitado de pontos de
demanda. No caso do problema das p-medianas capacitado, cada instala¢fo candidata
a mediana possui uma capacidade limite fixa e ndo pode atender a mais pontos de
demanda do que sua capacidade permite (TRAGANTALERNGSAK et al., 1999). O
problema das p-medianas pertence a uma classe de problemas chamados NP-hard
(KARIV e HAKIMI, 1979) (até o momento, néo foi encontrado um algoritmo que os
resolva de forma exata cujo niimero de operagdes seja limitado por um polinémio no
nimero de dados do problema). Consequentemente, até mesmo as heuristicas
especializadas em resolver estes problemas requerem consideravel esforgo
computacional. Uma das heuristicas mais conhecidas para resolver o problema das p-
medianas é o algoritmo de TEITZ e BART (1968). Esta heuristica é baseada na
substituicio de medianas na solugio e seu objetivo é, a partir de uma solug#o inicial,
melhorar o valor da fungfo objetivo a cada iteragdo. Esta heuristica é facil de ser
implementada e produz boas solugbes para problemas pequenos, principalmente
quando aplicada varias vezes ao mesmo problema com diferentes solugdes iniciais.

Recentemente muitos pesquisadores tém focalizado suas pesquisas em
desenvolver heuristicas modernas para resolver o problema das p-medianas. Em geral,

estas heuristicas podem gerar resultados melhores do que uma heuristica que



simplesmente substitui medianas na solu¢fo. Algumas heuristicas modernas como os
algoritmos genéticos e busca tabu t&ém demonstrado que sfo adequadas para o
problema das p-medianas (ERKUT, em fase de publicagéo). Os algoritmos genéticos
'sdo algoritmos computacionais de busca baseados nos mecanismos de evolu¢o natural
e na genética e podem ser aplicados com sucesso a iniimeros problemas combinatérios
(GOLDBERG, 1994). A busca tabu ¢ uma heuristica computacional de busca e utiliza
uma “memoria” que tenta impedir que a busca fique restrita a uma determinada area

do espago de busca considerado (GLOVER, 1995).

1.1 ESTRUTURA DO TRABALHO

Na se¢io 2 o problema das p-medianas e p-medianas capacitado sfo
formalmente apresentados. Na se¢fio 3 sdo apresentados os métodos utilizados para a
implementacdo de dois algoritmos propostos no presente trabalho para resolver o
problema das p-medianas capacitado. Na sec@o 4 sdo feitas referéncias a alguns
trabalhos anteriormente publicados sobre localizagdo de instalagdes, algoritmos
genéticos € busca tabu aplicados ao problema das p-medianas. Na secdo 5 séo
propostos os algoritmos utilizados no presente trabalho para resolver o problema das
p-medianas capacitado. Na se¢@o 6 os algoritmos desenvolvidos no presente trabalho
sdo submetidos a testes computacionais. Na segéo 7 sdo feitas a andlise dos resultados

obtidos nos testes computacionais da se¢io 6 € as conclusdes do presente trabalho.



2 DESCRICAO DO PROBLEMA DAS P-MEDIANAS

Esta se¢do ¢ o ponto de partida desse trabalho. Nela, o problema de
localizagdo de instalagdes chamado problema das p-medianas ¢ definido. Esta
defini¢dio ¢ estendida a um caso particular do problema das p-medianas chamado
problema das p-medianas capacitado. E feita também a descrigio de um problema real
que pode ser interpretado como um modelo real do problema das p-medianas

capacitado.

2.1 PROBLEMA DAS P-MEDIANAS

O objetivo do problema das p-medianas ¢ determinar p instala¢gBes em um
conjunto predefinido com » (n > p) instalagdes candidatas que deverdo atender a um
conjunto existente de demandas de forma que, a soma total das distincias percorridas
de cada ponto de demanda até a instalag@o mais proxima seja a minima possivel. As p
instalagdes que pertencerem a uma solugéo qualquer para o problema sdo chamadas de

medianas (por isso, p-medianas).
2.1.1 Defini¢do do Problema das p-medianas

Considerando-se todos os vértices de um grafo dado como potenciais
medianas, o problema das p-medianas pode ser definido como segue: seja G = (¥, 4)
um grafo ndo direcionado onde V s@o os vértices e 4 as arestas. Deve-se encontrar um
conjunto de vértices ¥, < V' (conjunto de medianas) com cardinalidade p, tal que a
soma das distancias de cada vértice restante em {V' - V,} (conjunto das demandas) até
seu vértice mais proximo em V), seja a minima possivel.

E apresentada a seguir uma formulagio do problema das p-medianas como
um problema de Programacio Inteira, desenvolvida por REVELLE ¢ SWAIN (1970).

Esta formulagio permite que cada vértice do grafo seja considerado, ao mesmo tempo,



como demanda e instalagdo (potencial mediana), embora em muitos casos demandas e

instala¢Ges pertengam a conjuntos disjuntos.

Min Z}:1 a, d, x, @.1.1)
i1 e

sujeito a:

S x,=1,i=1,2,.,n 2.1.2)

=

X<V, ,j=1,2,..,n (2.1.3)

g yi=P (2.1.4)

Xi, ¥i € 10, 1}, ,j=1,2, .., n (2.1.5)

onde,

n = numero total de vértices do grafo
a; = demanda do vértice j.
d;; = distancia do vértice i ao vértice j.

p =ntmero de instalagGes utilizadas como medianas.

i =

1, se o vérticei for designado para a instalacio j
X. =
0, caso contrario

{ 1, se o vértice j for uma instalaco utilizada como mediana

y4 = , .
710, caso contrario

A fungdo objetivo (2.1.1) minimiza a soma das distdncias (com pesos) dos
vértices de demanda até o conjunto de medianas. O conjunto de restricdes (2.1.2)
garante que todos os vértices demanda serdo designados para exatamente uma tnica
mediana. O conjunto de restrigdes (2.1.3) proibe que um vértice demanda seja
designado para uma instalagdo que nfio esteja selecionada como mediana. O nimero
total de vértices medianas (instalagGes selecionadas) € definido pela restrigdo (2.1.4)
como sendo igual a p. A restricdo (2.1.5) garante que os valores das variaveis de

decisdo x e y sejam binarios (0 ou 1).



2.1.2 Problema das p-medianas Capacitado

Considerando-se todos os vértices de um grafo dado como potenciais
medianas, o problema das p-medianas capacitado pode ser definido como segue: seja
G = (¥, 4) um grafo nfo direcionado onde ¥ so os vértices, todos com restri¢des de
capacidade, e 4 as arestas. Deve-se encontrar um conjunto de vértices V, < V
(conjunto de medianas) com cardinalidade p, tal que a soma das distincias de cada
vértice restante em {V' — V,} (conjunto das demandas) até seu vértice mais proximo em
V, seja a minima possivel. Além disso, deve-se garantir que todos os pontos de
demanda sejam atendidos sem que as restricdes de capacidade das instalagdes

medianas sejam violadas.

Em relagio ao problema das p-medianas, o problema das p-medianas

capacitado possui as seguintes restri¢gdes adicionais:

a) cada instalagio pode suprir apenas um ndimero limitado de demandas

(restrigOes de capacidade);

b) todos os pontos de demanda devem ser atendidos dentro das capacidades das

respectivas instalagdes selecionadas como medianas.

2.3 ALGORITMO DE TEITZ E BART

Uma das heuristicas mais conhecidas para o problema das p-medianas ¢ a
desenvolvida por TEITZ ¢ BART (1968) ¢ é conhecida como algoritmo das p-
medianas de TEITZ e BART. Esta heuristica ¢ baseada na substituicdo de vértices e
seu objetivo ¢, a partir de uma solu¢fo inicial, melhorar o valor da fungéo objetivo a
cada iteragdo. Esta heuristica ¢ facil de ser implementada e produz boas solugdes para
problemas pequenos, principalmente quando aplicada varias vezes ao mesmo

problema com diferentes solugdes iniciais.



Considerando-se todos os vértices de um grafo dado como potenciais
medianas, o algoritmo de TEITZ ¢ BART para o problema das p-medianas pode ser
explicado como segue: seja G = (¥, 4) um grafo n3o direcionado onde ¥V sdo os
vértices e 4 as arestas. Seja v; um vértice qualquer pertencente a V. Chama-se niimero
de transmissiio a soma das menores distdncias existentes entre o vértice v; € todos 0s

outros vértices do grafo.

Seja n o numero total de vértices do grafo, o nimero de transmisséo € dado por:

n

o(v) = Z w; d(v, v), v, vie V (2.3.1)

j=1
onde,
d(v;, v;) é a menor distancia entre v; € v; € w; € um peso associado ao vértice ;.

Assim, v,, ¢ uma mediana se, entre todos os vértices do grafo, ¢ aquele que
produz a menor soma total das distancias desde si proprio até cada um dos outros
vértices do grafo.

Ou seja:

o(v,) = minimo[c(v;)], V v; € V. (2.3.2)

Para o problema de encontrar p-medianas (p > 1), seja V, c V e |V,| = p,

calcula-se:

d(V,, v;) = minimo[d(v;, v)], Vvi€ V), v; € V (2.3.3)

€

o)=Y wdV,v), Ve V. (2.3.4)
j=1



Um conjunto de p vértices € a solugZio étima para o problema das p-medianas
se, entre todos os outros conjuntos de p vértices do grafo, é aquele que produz a menor

distancia total desde si proprio até todos os outros vértices do grafo. Portanto, deve-se ter:

o(Vy sotugao_siima) = minimo[c(V,)], V V, < V. (2.3.5)

O objetivo do algoritmo de TEITZ e BART ¢, portanto, encontrar um

conjunto ¥, em ¥, para o qual o nimero de transmiss&o seja minimo.

2.3.1 Procedimentos Basicos do Algoritmo das p-medianas de Teitz e Bart

S&o descritos a seguir os procedimentos basicos executados pelo algoritmo

das p-medianas de TAITZ e BART.

Passo 0
Selecione aleatoriamente um conjunto V, < V, com |V,| = p para formar uma
solucdo inicial para o problema.
Passo 1
Rotule todos os vértices v; € {V' - V,} como “ndo analisados”.
Passo 2
Enquanto existirem vértices ndo analisados em {V -V} faga:
Selecione um vértice no analisado v; € {V — V,}, e calcule a redugéo A; do
numero de transmissao, para todos os vértices v; pertencentes a V), ou seja:
Aj=o( V)= oV, U {vi} = (v}, Vv, € ¥, (2.3.6)
Faga A paximo = maximo[A;], para todo A; calculado anteriormente.
Se Ajj maximo > 0 €ntdo:
Faca V,=(V, U {vi} — {vj}) einsiray; em {V-V,}.
Rotule v; como “analisado”.

Caso contrario continue.

Rotule v; como “analisado”.



Passo 3

Se durante a execugéo do Passo 2, houver alguma modificagdo no conjunto ¥,
entdo:

Volte ao Passo 2 e continue a execu¢do do algoritmo.
Caso contrario, PARE e apresente o conjunto ¥, como uma solugio aproximada
para o problema das p-medianas.

Fim.

A seguir € descrito um problema real que pode ser interpretado como um

exemplo concreto do problema das p-medianas capacitado.

2.4 UM PROBLEMA REAL

No ano de 1912 foi fundada na cidade de Curitiba (PR) a Universidade
Federal do Parand (UFPR) — a Universidade mais antiga do Brasil. Nestes 88 anos a
mnstituicdo evoluiu abrindo novos cursos, ganhando reconhecimento nacional e
internacional através de suas pesquisas e pesquisadores e estreitando suas relagdes
com a sociedade através da extensdo. Atualmente a instituicdo mantém 61 opgGes de
cursos de graduagio, 84 de especializacdo, 37 de mestrado e 21 de doutorado.

O concurso vestibular ¢ a principal via de ingresso aos cursos de graduago
ofertados pela UFPR. A selec#o de candidatos para ingresso nos cursos de graduacio
da UFPR ¢ realizada mediante concurso vestibular, que consiste na aplicacdo de
provas que avaliam conhecimentos do ensino médio ou curso equivalente. Podem
candidatar-se &s vagas os interessados que estejam cursando a tiltima série do ensino
médio ou aqueles que j& possuem certificado de conclusio do ensino médio ou curso

equivalente.



O setor responsavel pela organizagdo do concurso vestibular da UFPR ¢ a
Comissdo Central do Concurso Vestibular (CCCV) instituida em carater permanente
desde 1973. Desde entdo, a CCCV vem aprimorando a forma do processo seletivo do
vestibular, sempre buscando selecionar o candidato melhor preparado, ofertando
servigos ao estudante dentro dos melhores padrbes de seguranca e qualidade.

Para o concurso vestibular 2001 a aplicagdo das provas seré realizada em oito
diferentes cidades conforme a tabela 2.1, ficando a critério do candidato a escolha da
cidade onde deseja realizar as provas. A constitui¢do das turmas e dos locais de provas
nas respectivas cidades onde as provas serfio realizadas sdo de exclusiva
responsabilidade da CCCV e serfio conhecidos pelos candidatos mediante edital

divulgado na data e nos locais previstos no Guia do Candidato.

TABELA 2.1 - CIDADES ONDE SERAO APLICADAS AS PROVAS
DO VESTIBULAR 2001 DA UFPR

CIDADE UF
Curitiba PR
Ponta Grossa PR
Cascavel PR
Londrina PR
Maringa PR
Palotina PR
Pato Branco PR
Joinville SC

Até o presente ano nfo existia por parte da CCCV nenhum método especifico
para a designagdo dos candidatos ao vestibular aos locais provas; nem para a
determinagdo destes locais dentro da cidade. Em geral, a designacdo dos candidatos
era feita de forma aleatéria e a selegdo dos locais de provas considerava apenas atender
a demanda total de candidatos. Evidentemente, os locais eram selecionados de tal
forma que ndo ocorresse uma grande concentra¢do de locais de provas muito
proximos.

Para o concurso vestibular 2001, foi proposta uma otimizag@o na designagéo
dos candidatos ao vestibular aos locais de provas. O objetivo foi designar o maior

numero possivel dos candidatos inscritos para realizar as provas em Curitiba e que
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apresentaram endereco de residéncia no municipio de Curitiba para os locais de provas
mais proximos de suas residéncias. Desta forma, de um total de 38.711 candidatos
inscritos para realizar provas em Curitiba, 19.710 foram designados através de um
algoritmo proposto no presente trabalho chamado “algoritmo da designagio dos
candidatos aos locais de provas” (DeCan) que € apresentado na se¢do 5. Este algoritmo
otimiza a designag@o dos candidatos ao vestibular aos locais de provas mais préximos

de suas residéncias.

A diferenca entre os 38.711 candidatos inscritos € 19.710 submetidos a

designados através do DeCan deve-se aos seguintes fatores:

a) alguns candidatos portadores de deficiéncia fisica necessitam de designagio
especial e foram designados pela prépria CCCV;,

b) alguns candidatos apresentaram enderecos de outros municipios (por
exemplos, regido metropolitana, outras cidades ou estados) diferentes de

Curitiba, e tiveram que ser designados pela CCCV;

c) alguns candidatos apresentaram enderecos do municipio de Curitiba mas
com dados incorretos o que impossibilitou a localizagdo dos mesmos no
mapa digitalizado do municipio de Curitiba e portanto também foram
designados pela CCCV.

Para atender os 38.711 candidatos ao vestibular 2001 que farfio provas em
Curitiba a CCCV selecionou 26 locais de provas, todos dentro do municipio de
Curitiba entre 43 locais disponiveis para a realizagiio das provas no mesmo municipio.
A selegéo dos 26 locais de provas foi realizada somente com base na experiéncia
pessoal dos membros da CCCV sem a utilizagéo de qualquer método computacional a
néo ser a intuicdo humana. A tabela 2.2 apresenta os 26 locais de provas selecionados
e utilizados para a designac@o dos 38.711 candidatos ao vestibular 2001 da UFPR. Nas
capacidades dos locais apresentados na tabela 2.2 ja estdo descontados os 19.001
candidatos classificados num dos trés casos citados anteriormente e que foram
designados para os locais de provas pela propria CCCV.



TABELA 2.2 - OS 26 LOCAIS UTILIZADOS PARA A DESIGNACAO DE
38.711 CANDIDATOS AO VESTIBULAR 2001 DA UFPR

LOCAL NOME DA INSTITUICAO CAPACIDADE RESTANTE
1 UFPR - Centro Politécnico 1973
2 PUC - Pontificia Univ. Catélica 7837
3 Col. Estadual Rio Branco 4
4 Col. Estadual do Parana 123
5 Col. Nossa Senhora Medianeira 1232
6 UFPR - Setor de Ciéncias Agrarias 1300
7 Col. Estadual Ledncio Correia 1265
8 UFPR - Edificio Dom Pedro I - Reitoria 2
9 UFPR - Edificio Dom Pedro II - Reitoria 4
10 |Fund. Estudos Sociais PR - Fesp 290
11 |Col. Est. Prof. Loureiro Fernandes 1020
12 |Esc. Municipal Pref. Omar Sabbag 960
13 |Col. Est. Prof.a. M. Aguiar Teixeira 630
14  |UFPR - Depto. de Educagio Fisica 480
15  |Col. Padre Jodo Bagozzi 2165
16  |Col. Estadual Pedro Macedo 780
17 |Instituto de Educacgio do Parana 3
18  |Col. Estadual Cecilia Meireles 1064
19  i{Escola Social Madre Clélia 1025
20  |Col. Estadual Paula Gomes 880
21 |Colégio Paranaense 1114
22 |UFPR - Setor C. Satde - Sede Botanico 770
23 |Colégio Militar de Curitiba 1348
24  |Esc. Est. Republica O. do Uruguai 710
25  |Colégio Estadual Paulo Leminski 1259
26 |UFPR - C. Ciéncias Florestais ¢ Madeira 590
SOMA DAS CAPACIDADES RESTANTES 28828

S&o apresentados a seguir alguns dos procedimentos referentes a obtencio
dos dados necessarios para a designacdo dos 19.710 candidatos ao vestibular 2001
designados, a pedido da CCCV, pelo algoritmo proposto na segdo 5. Estes
procedimentos antecederam a aplicagdo dos métodos utilizados no presente trabalho

para a real designagdo dos candidatos apresentada na seg¢do 6 assim como para a

realizagdo de todos os testes computacionais descritos também na se¢@o 6.

11
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2.4.1 Obtengdo dos Dados do Problema Real

Uma empresa de informatica que desenvolveu um mapa digitalizado do
municipio de Curitiba calculou e forneceu as coordenadas geograficas da residéncia de
cada um dos 19.710 candidatos e de cada um dos locais de provas em relagio ao
mesmo mapa. As coordenadas referentes as residéncias dos candidato foram
calculadas com base no enderego declarado pelo candidato por ocasiio da sua
inscrigdo para o concurso vestibular.

Obtidas as coordenadas das residéncias de todos os candidatos e dos locais
de provas foi calculada a matriz das distdncias retangulares entre a residéncia de cada
candidato e os locais conforme ilustra a tabela 2.3. Foi utilizada a distincia retangular
e ndo a euclidiana porque segundo ERKUT (Comunicacdo pessoal do autor, 06 de
setembro de 2000) como dentro da maioria das cidades néo se pode viajar sempre em
linha reta a distancia euclidiana, em geral, avalia de forma imprecisa a distincia real
percorrida. O ideal seria utilizar a distincia real, levando-se em conta o verdadeiro
caminho percorrido, mas, estes dados sdo dificeis de serem obtidos. A distancia
retangular também € imprecisa na avalia¢do da distincia percorrida mas, na média,

tende a se aproximar um pouco mais da distancia real percorrida.

TABELA 2.3 - MATRIZ DE DISTANCIAS RESIDENCIA DOS CANDIDATOS X LOCAIS

DE PROVAS
RESIDENCIAS/ LOCAIS DE PROVAS
CANDIDATOS
1 2 3 k
1 distancia(1,1) | distancia(1,2) | distancia(1,3) distancia(1,k)
2 distdncia(2,1) | distancia(2,2) | distancia(2,3) disténcia(2,k)
3 distancia(3,1) | distancia(3,2) | distancia(3,3) distancia(3,k)
n distancia(n,1) | distancia(n,2) | distancia(n,3) distancia(n,k)

Cada local de provas pode atender apenas um numero limitado de candidatos
¢ a respectiva limitag@o de capacidade varia de acordo com cada local. Com base nas
distancias fornecidas pela matriz de disténcias calculada, cada candidato foi designado

para o local de provas mais préximo de sua residéncia que dispunha de vaga. A ordem
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em que os candidatos foram designados para os locais de provas foi definida pelo

algoritmo DeCan, que ¢€ apresentado na segéo 5.

Do que foi dito anteriormente, convém observar que: o que caracteriza o
problema real descrito como um modelo do problema das p-medianas capacitado sdo

os seguintes fatores:

a) pode-se considerar o conjunto dos 43 locais disponiveis para a realizagdo das
provas do vestibular em Curitiba como sendo o conjunto ¥ (com, |V] = 43) de

todas as instalagdes candidatas a mediana (locais de provas);

b) seja Vp < V (com, |Vp| = 26) o conjunto formado pelos 26 locais de provas

selecionados;

c¢) cada um dos 43 possiveis locais de provas pode atender apenas a um numero

limitado de candidatos (restri¢des de capacidade);

d) se o objetivo for selecionar o conjunto Vp < V que minimiza a soma das
distancias percorridas por todos os candidatos até os locais de provas mais
proéximos possiveis de suas residéncias, entfo, o problema pode ser resolvido

como um problema das p-medianas capacitado.

Sdo apresentados a seguir os métodos utilizados no presente trabalho para a
implementagéo dos algoritmos propostos na segfio S para a resolu¢éo do problema das

p-medianas capacitado e do problema real descrito anteriormente.



14

3 METODOS UTILIZADOS

Esta secdo ¢ a base dos estudos desenvolvidos no presente trabalho; é o
terreno onde se desenvolve praticamente toda a pesquisa. Primeiramente, o algoritmo
que foi utilizado como modelo para a implementag&o do algoritmo DeCan proposto no
presente trabalho € apresentado. Em seguida, s8o introduzidas as duas heuristicas
computacionais de busca implementadas na sego 5 para resolver o problema das p-

medianas capacitado.

3.1 ALGORITMO DE GILLETT E JOHNSON

Definidos todos os locais de provas que serdo utilizados pode-se aplicar para
a designacdo dos candidatos aos respectivos locais de provas o algoritmo proposto por
GILLETT e JOHNSON (1973) (BODIN et al., 1983) adaptado para esta situagdo em
que as capacidades dos referidos locais devem ser consideradas.

Inicialmente, todos os pontos (residéncias dos candidatos) encontram-se sem
designacgdo. Para cada ponto i seja Li(i) o local de provas mais préximo a 1, e L,(i) o

segundo local mais préximo a i.
L

NG

Para cada ponto i, a razdo: (i) = )
2 1

¢ calculada e todos os pontos s&o

colocados numa “lista de designacfio” em ordem crescente pelos valores de r(i). A
designagio comeca pelos primeiros elementos da lista (pontos com menor razdo (i), e
¢ feita obedecendo-se a capacidade dos locais de provas. Durante a designagéo sempre
que um candidato ¢ designado para um local de provas com as vagas esgotadas
(evidentemente sem sucesso), a razio 1(i) € recalculada para todos os pontos que ainda
ndo foram designados considerando-se apenas os locais de provas cujas vagas ndo

estejam esgotadas. Estes pontos s30 novamente colocados na “lista de designag¢éo” em
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ordem crescente pelos valores de 1(i) e a designaco continua até que todos os pontos

sejam designados para algum local de provas.

Através do calculo da razéo r(i) procura-se conhecer a “urgéncia” de se fazer
a designac¢do de um candidato em relagio aos demais, pois, quanto menor for o valor
de (i), maior € a urgéncia ja que o segundo local mais préximo fica em posigdo bem
pior para o candidato em relagéo ao primeiro.

O algoritmo que acabou de ser descrito sera implementado na se¢do 5 com
algumas modificagBes. As modifica¢Ses realizadas sdo examinadas com detalhes e
visam torna-lo mais eficiente para efetuar a designagdo de candidatos ao vestibular aos

locais de provas.

3.2 ALGORITMOS GENETICOS

Nesta se¢do, ¢ introduzido o conceito de algoritmos genéticos: o que s#o,
qual sua origem, e em que sdo diferentes de outras heuristicas de busca, sdo tépicos

abordados.

3.2.1 O que s@o Algoritmos Genéticos?

Algoritmos Genéticos (AGs) sdo algoritmos computacionais de busca
baseados nos mecanismos de evolugio natural e na genética. Em AGs, uma populagéo
de possiveis solugdes para o problema em questéo evolui de acordo com operadores
probabilisticos concebidos a partir de metaforas bioldgicas, de modo que hd uma
tendéncia de que, na média, os individuos representem solu¢des cada vez melhores

medida que o processo evolutivo continua (GOLDBERG, 1986a).
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3.2.2 Qual a Origem dos AGs?

Embora Charles Darwin tenha formulado a Teoria da Evolugdo no final do
século passado, foi s6 recentemente que se tentou idealizar um modelo matematico do
processo evolutivo. Nos anos 60, John Holland, da Universidade de Michigan,
comegou a definir as bases de algoritmos de otimizag8io de inspiragdo genética. Seu
trabalho culminou na publicagéo do livro Adaptation in Natural and Artificial Systems
(HOLLAND, 1975). Livro este, que ¢ hoje muito citado mas pouquissimo lido, foi
pouco divulgado na época, em grande parte devido ao estilo pesado, com notagio
pouco criteriosa € excessivamente complexa. Felizmente, Holland e seus muitos
discipulos, quase todos seus alunos de pds-graduag@io, continuaram sua linha de
investigacdo, publicando resultados com alguma timidez mas com perseveranca
(TANOMARU, 1995).

A grande popularidade que os AGs atingiram deve-se a dois importantes
fatores: a publicagdo de um livro tutorial sobre AGs por um dos alunos de doutorado
de Holland, David Goldberg, um pesquisador extremamente ativo e com excelente
potencial didatico, e as Conferéncias Internacionais sobre algoritmos genéticos. Essas
conferéncias eram realizadas a cada dois anos nos Estados Unidos desde 1985 até
1997, e atualmente s@o realizadas anualmente como parte de uma conferéncia mais
ampla na area de algoritmos evoluciondrios. Os AGs pertencem & classe dos
algoritmos probabilisticos de busca e otimizagdo, embora ndo sejam aleatorios.
Utiliza-se o conceito de probabilidade, mas AGs nfo sfo buscas aleatdrias. Pelo

contrario, os AGs dirigem a busca para regides do espago de busca onde ¢ “provavel”

que os pontos dtimos estejam.
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3.2.3 Conceitos Fundamentais e Terminologia

A forte inspiragdao dos Algoritmos Genéticos na teoria da evolugio das
espécies € na genética natural torna importante uma revisdo da terminologia comum a
esta teoria € aos AGs. A nivel biolégico, um individuo é formado por um conjunto de
cromossomos. No entanto, pode-se fazer uma analogia entre individuo e cromossomo,
tendo em vista que um individuo pode ser formado por apenas um cromossomo, o que
¢ comum em AGs. Assim, os dois termos sfo utilizados indistintamente. O presente
trabalho utilizard o termo individuo como sinénimo do termo bioldgico cromossomo.
Porém, na literatura é comum aparecer o termo em inglés string como sindnimo de

cromossomo e individuo.

O primeiro passo para aplicagdo de AGs a um problema é representar cada
possivel solugdo no espago de busca como uma seqiiéncia de simbolos (cromossomo)
gerados a partir de um alfabeto finito A. No caso mais simples, usa-se o alfabeto
binario ou seja A = {0, 1}, mas, no caso geral, tanto o método de representagdo quanto
o alfabeto genético dependem das caracteristicas do problema.

Um cromossomo ¢ composto por genes, sendo que cada gene possui um
local fixo no cromossomo. Este local ¢ denominado locus. Cada gene pode assumir um
valor pertencente a um certo conjunto de valores, os quais s3o denominados alelos. Em

termos de AGs, o cromossomo corresponde ao individuo, e este é representado por
uma seqiiéncia de genes (um string) de comprimento finito. O termo alelo refere-se a
um valor dentro o conjunto de valores possiveis de serem atribuidos a um determinado
gene, ou seja, € um valor (0 ou 1 no caso mais simples). Os conceitos mencionados sio

ilustrados pela figura 3.1.
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Biologia Algoritmos Genéticos
Cromossomo individuo (string)
locus 1\ I° gene\
A GTTTC]AJ'\ 1]0]1] 1l01,\
N  alelo N , > valor do gene
~
S genes S genes

genétipo =1.2"+0.2° +1.22+1.2' +02°=22

fenétipo = valor de f(22)

FIGURA 3.1 - REPRESENTACAO DE UM CROMOSSOMO NA BIOLOGIA E EM AGs

Ao conjunto de cromossomo, genes ¢ alelos denomina-se gendtipo e as
caracteristicas conferidas por estes, denomina-se fenétipo. No contexto dos AGs, o
genotipo ¢ a variavel independente x da fungio objetivo f(x), e o fendtipo ¢ a variavel
dependente ou valor da fungdo f(x). Um resumo comparativo entre a terminologia

utilizada em AGs e na Biologia ¢ apresentada na tabela 3.1.

TABELA 3.1 - RELACAO DA TERMINOLOGIA DOS AGs COM

A BIOLOGIA

BIOLOGIA ALGORITMOS GENETICOS
cromossomo |individuo ou string
gene gene, ou bit (no caso binario)
alelo valor do gene, ou do bit (no caso binario)
locus posi¢do de um gene especifico no individuo ou string
genotipo individuo candidato a soluggo x
fenétipo valor da fun¢o f(x) para um dado individuo

Tendo definido a representagfio cromossdmica para o problema, gera-se um
conjunto de possiveis solugdes, chamadas de solugdes-candidatas, um conjunto de
solugdes codificadas de acordo com a representac@o selecionada correspondendo a
uma populagfio de individuos. AGs sfo algoritmos iterativos e, em geral, apds um
certo numero de iteragdes (ou geragdes) toda a populagdo terd sido modificada,
embora nem todos os individuos de uma populagdo sejam necessariamente “filhos” de
individuos da populagéo anterior.
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3.2.4 Em que os AGs Diferem de outras Heuristicas de Busca?

Embora possam parecer simplistas do ponto de vista bioldgico, os AGs sdo
suficientemente complexos para fornecer mecanismos de busca adaptativos poderosos

e robustos.

Segundo GOLDBERG (1986a) em seu livro especializado sobre o assunto,

de modo geral AGs tém as seguintes caracteristicas:

a) operam numa populacéo (conjuntb) de pontos no espago de busca, € ndo a

partir de um tnico ponto;

b) operam num espaco de solugdes codificadas, e ndo no espago de busca

diretamente;

c) necessitam somente de informacdes sobre o valor de uma fungio objetivo
para cada membro da populacdo, ¢ nfo requerem que a fungdo seja

diferenciavel, ou continua;

d) usam transi¢Ges (mudan¢a de um estado para outro) probabilisticas, e nao

regras deterministicas.

3.2.5 Inicializagdo de um Algoritmo Genético

Na maior parte das aplicagdes, uma populagdo de P individuos é gerada
aleatoriamente ou através de algum processo heuristico.

Como no caso da Biologia, nfio hé evolugéo sem variedade. Ou seja, a teoria
da selecdo natural “lei do mais forte”, necessita que os individuos tenham diferentes
graus de adaptagdo ao ambiente em que vivem. De acordo com isso, é importante que

a populagdo inicial cubra a maior 4rea possivel do espago de busca.
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3.2.6 Avalia¢do da Adaptabilidade (fitness)

Os AGs necessitam da informag@o do valor de uma fungfo objetivo para
cada membro da populagio. Nos casos mais simples, usa-se justamente o valor da
funcdo que se quer maximizar (ou minimizar). A fun¢io objetivo fornece, para cada
individuo, uma medida de quio bem adaptado ao ambiente ele estd, ou seja, quanto
melhor o valor da func¢éo objetivo, maiores sdo as chances do individuo sobreviver no
ambiente, reproduzir-se e gerar descendentes passando parte de seu material genético

as geragdes posteriores.

A avaliagdo de cada individuo resulta num valor que, em inglés, é

denominado fitness (aptiddo ou adaptabilidade).
3.2.7 Selecgdo

A selecdo basicamente tem por objetivo fazer com que os individuos mais
adaptados da gerag@io anterior tenham maior probabilidade de participarem do
processo que ird formar a nova populaggo.

Em geral, gera-se uma populag@o temporaria de P individuos extraidos com
probabilidade proporcional a adaptagdio relativa (fitness) de cada individuo na

popula¢do, ou seja, a probabilidade de selegdo de um individuo, em geral, é dada por:

Peer x, =‘E€('M"s (3.2.1)
> fix)

onde f(x) € o valor da fungZo de adaptabilidade (em geral a funcdo objetivo) € x;, Xy

sdo as solucdes candidatas (individuos) e: 1 € {1, 2, ... P}.

Com base na férmula (3.2.1) de probabilidade, selecionam-se P individuos.

Neste processo, individuos com baixa adaptacdo terfio alta probabilidade de
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desaparecerem da populagfio, ou seja, serem extintos, ao passo que individuos mais
adaptados terdo grandes chances de sobreviverem. Os individuos selecionados sdo

entdo submetidos a operadores genéticos, conforme discutido a seguir.

3.2.8 Operadores Genéticos (OGs)

Basicamente hé trés tipos principais de operadores genéticos comuns aos

AGs. A reprodug@o, o cruzamento e a mutacio que séo discutidos a seguir.

3.2.8.1 Reprodugéo

O processo de reprodugéo consiste simplesmente em copiar integralmente
um individuo selecionado para a proxima gerag¢do. Em geral um individuo selecionado

pode ser reproduzido ou sofrer cruzamento, conforme discutido a seguir.

3.2.8.2 Cruzamento

O OG denominado cruzamento, em AGs corresponde a uma generalizagio
do que ocorre na reprodugdo sexuada. O cruzamento ¢ tipico de seres mais evoluidos,
e se da pela aproximag&o dos cromossomos de dois individuos (pais) selecionados, que
trocam entre si partes de seus cromossomos. Este processo deve gerar dois novos
individuos diferentes, mas que ainda guardam influéncias dos pais. Ndo € sempre que
o cruzamento € efetuado, por isso € definida uma probabilidade de cruzamento,
representando a proporgdo aproximada da populagdo que sofrera cruzamento. Os pares
(pais) que n#o sofrerem cruzamento s3o copiados integralmente para a nova populacio
como filhos, aplicando-se o operador de reproducdo. O cruzamento é realizado com
probabilidade Pcryz. Assim, dentre n individuos selecionados, aproximadamente

Pcruz X 1 sofrerdo cruzamento, enquanto (1 — Pcryz ) X 7 serdo reproduzidos.
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A troca de partes do cromossomo pode ser realizada de varias formas.
Basicamente tem-se o cruzamento uniforme, cruzamento com 1- parti¢do, cruzamento

com 2 - parti¢des e cruzamento com n - parti¢des.
O cruzamento uniforme consiste no emparelhamento dos dois cromossomos
pais, e entdo os genes em cada locus do cromossomo sio trocados de acordo com uma

probabilidade predefinida (por exemplo, 50%). Esse processo € ilustrado na figura 3.2.

GENES SORTEADOS PARA TROCA FILHOS GERADOS

Pail|1l1|1|111|1|1[1|----1l loJ1]1/1]0]0]1]1] Filho1

Pai2 [0/oJoJoJo]o]o]o] Eu-~->|1|o|o|ol111]0|o| Filho 2

$ t 4 $ +4

FIGURA 3.2 - EXEMPLO DE CRUZAMENTO UNIFORME

O cruzamento com 1 - particdo consiste na escolha aleatdria de somente um
ponto de corte. Todo o material genético dos pais existente 4 direita (ou a esquerda)

deste ponto é trocado, conforme ilustrado na figura 3.3.

PONTO DE CORTE FILHOS GERADOS
Pail [1[1[1]t]tf1]1]1]-y [1]1]1j1]1]0]0]0] Fihol
Pai2 [0]o]oJoJofo]JoJo]  T—p» [o0Jo]ofof0]1]1][1] Filho2

FIGURA 3.3 - EXEMPLO DE CRUZAMENTO COM 1 - PARTICAO

No caso do cruzamento com 2 - parti¢des, ha a escolha aleatéria de dois
pontos de corte. Todo o material genético dos pais existente entre os dois pontos de

corte sdo trocados, e o restante ¢ mantido inalterado, conforme ilustrado na figura 3.4.
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PONTOS DE CORTE FILHOS GERADOS

Pail [1[1[L1[1|T[T]1]T1] mnp [T]T[O0JO[T]1[1]1] Filho1l

Pai2 [0]0]0]0|0J0]0]0]  ‘t---» [0]O|1[1]0]0]0]0] Filho2

FIGURA 3.4 - EXEMPLO DE CRUZAMENTO COM 2 - PARTICOES

Ja o cruzamento com n - partigGes consiste de n cruzamentos com 2 -
particdes. Pode-se considerar os cruzamentos com 1 e 2 - partigdes como casos

particulares do cruzamento de n - parti¢des.

3.2.8.3 Mutagdo

O OG de mutagdo € necessario para a introdugdo e manutengdo da
diversidade genética da populac@o, alterando arbitrariamente um ou mais componentes
de um cromossomo. Basicamente, seleciona-se uma posigdo num Cromossomo e
muda-se o valor do gene correspondente aleatoriamente para um outro alelo (valor)
possivel. O processo € geralmente controlado por um pardmetro fixo Pyyr que indica a
probabilidade de um individuo sofrer mutag3o.

Desta forma, a mutagéo assegura que a probabilidade de se chegar a qualquer
ponto do espago de busca nunca sera zero, além de ajudar a controlar o problema de
convergéncia para maximos (ou minimos) locais.

Dentre os principais mecanismos de alteragdo genética que recebem o nome
global de mutag@o, um dos mais utilizados € a troca simples, ou inversdo de bit (no

caso do alfabeto bindrio), conforme ilustrado na figura 3.5.

ANTES DA MUTACAO DEPOIS DA MUTACAO
[1{of1fofof1] [1[0f0[0[0[T]
Gene sorteado para mutacgfo Gene trocado

FIGURA 3.5 - EXEMPLO DE MUTAGAO POR TROCA SIMPLES
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3.2.9 Condigéo de Término

Para problemas de otimizagéo o ideal seria que o algoritmo terminasse assim
que o ponto 6timo fosse descoberto. J& no caso de fun¢des multimodais, um ponto
6timo pode ser o suficiente, mas pode haver situagdes onde todos ou o maior nimero
possivel de pontos 6timos sejam desejados. Um problema pratico é que, na maioria
dos casos de interesse, ndo se pode afirmar com certeza se um dado ponto 6timo
corresponde a um 6timo global. Como conseqiiéncia, normalmente utiliza-se o critério
do nimero maximo de geragdes ou tempo limite de processamento para um AG. Outro
critério plausivel € parar o algoritmo usando a idéia de estagnago, ou seja, quando ndo
se observa melhoria da populacdo depois de varias geragGes consecutivas, o algoritmo
encerra o processamento. Para se avaliar a estagnacdo um método que pode ser
utilizado € comparar o desvio padrio dos valores de adaptacdo dos individuos da

populagdo atual com a anterior.

3.2.10 Convergéncia Prematura

Utilizando-se o modelo de AG simples para a otimiza¢io de fungdes
multimodais, um fendmeno que se observa com freqiiéncia é que o AG pode
convergir muito rapidamente (em algumas dezenas de geragGes) para um ponto de alta
qualidade, mas n3o o o6timo global, num fendmeno denominado convergéncia

prematura (embora o OG mutac@o tente evitar isso).

3.2.11 Parametros dos Operadores Genéticos

Num AG basico, o usuario deve definir o tamanho da populagdo, P, além das
probabilidades de cruzamento e mutagfio, respectivamente, Peryz € Pyyr. Em AGs
mais sofisticados, hd ainda mais pardmetros, comprometendo parte da robustez dos
algoritmos. Infelizmente, nio h4 regras claras para a escolha desses pardmetros

(variam de acordo com as caracteristicas do problema).
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3.2.11.1 Tamanho P da populagio

Quanto ao pardmetro P, a intui¢&o indica que “quanto maior for a populagio,
melhor”, uma vez que, em tltima andlise, com uma populaggo inicial cobrindo todo o
espago de busca, a solugdo 6tima seria obtida na primeira geragdo. Na pratica, é 6bvio,
deve-se limitar o tamanho da populagdo para reduzir o tempo de processamento.
Normalmente, valores da ordem de 50 a 200 cromossomos resolvem a maior parte dos

problemas, mas, populagdes maiores podem ser necessarias para problemas mais

complexos (TANOMARU, 1995).

3.2.11.2 Probabilidades de cruzamento e de mutagdo

Em relag¢do as probabilidades de cruzamento e mutacéo, estudos empiricos
tém mostrado que bons resultados geralmente sdo obtidos com valor alto para a
probabilidade de cruzamento Peryz = 0,7 (70%) e baixo valor para a probabilidade de
mutagido Pyt < 0,01 (1%). Definida a probabilidade de cruzamento, a probabilidade
de reprodug@o estard automaticamente definida como sendo: Prep = (1 — Pcruz) ja que,

em geral, ou o individuo sera reproduzido ou sofrera cruzamento (Pcryz + Prep = 1).

3.2.12 Critérios de Selegio

O método de selegdo mais conhecido em AGs é o chamado método da roleta,
que simula uma roleta ficticia, com base na adaptabilidade (fitness) do individuo

relativamente a populagéo.

Existem basicamente dois métodos empregadas no processo de selecdo, a

roleta simples e o ranking, conforme discutido a seguir.
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3.2.12.1 Roleta simples

Cada individuo da populago anterior tera uma probabilidade de ser sorteado

proporcional a sua adaptagio, conforme mostrado na tabela 3.2.

TABELA 3.2 - DADOS PARA ROLETA SIMPLES

INDIVIDUOS | ADAPTACAO | % DO TOTAL
x4 201 91
x2 10 5
x3 7 3
x1 2 1
TOTAL 220 100%

A roleta simples causa uma alta pressfo seletiva sobre os individuos da
populagéo, pois o individuo mais adaptado (no exemplo da tabela 3.2) terd uma relacio
de 91:1 de ser sorteado (selecionado) em relagdio ao menos adaptado.

A pressdo seletiva estad implicitamente relacionada com a diversidade da
populagdo. Alta pressio seletiva tende a fazer a diversidade cair rapidamente, levando
a populagdo a convergir em poucas geragdes, o que pode resultar em convergéncia

prematura para um maximo (ou minimo) local.

3.2.12.2 Ranking

A técnica de ranking também apresenta os individuos ordenados conforme a
adaptagdo de cada individuo. Contudo, em ranking cada individuo recebe uma nota
sendo que o menos adaptado recebe a nota 1 e o mais adaptado fica com nota igual ao
tamanho da populagdo (distdncia de 1 entre cada vizinho). Esse método é uma forma
de ranking (ordenagio), pois a probabilidade de um individuo ser selecionado depende
apenas de seu ranking, e ndo do valor absoluto de sua adaptabilidade. A tabela 3.3
apresenta os dados de quatro individuos ordenados para selecdo segundo os critérios

de ranking.



TABELA 3.3 - DADOS PARA RANKING

INDIVIDUOS | ADAPTACAO |DISTANCIA/ %
x4 201 4 (40%)
X2 10 3 (30%)
X3 7 2 (20%)
X1 2 1(10%)
TOTAL 220 100%

Os graficos de setor 3.1 comparam a roleta simples x ranking com base nos

dados das tabelas 3.2 € 3.3.

ROLETA SIMPLES
1%
3%1
5%,

91%

RANKING

10%
40% 20%

30%

GRAFICOS 3.1 - COMPARACAO ROLETA SIMPLES X RANKING

3.2.13 Método do Estado Estavel

Ao invés de substituir toda a populacdo de uma vez, este modelo considera
que somente alguns individuos da populagio devem ser substituidos a cada geracéo.

No caso mais simples, insere-se apenas um individuo por vez no lugar do pior

individuo da populagéo atual.
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3.3 BUSCA TABU

Nesta segdo, € introduzido o conceito de busca tabu: o que é busca tabu, qual

sua origem, e como funciona, sfo tépicos abordados.

3.3.1 O que é Busca Tabu?

Segundo GLOVER e LAGUNA (1997) em seu livro especializado no
assunto: busca tabu ¢ uma heuristica computacional de busca conhecida por

geralmente superar o problema da convergéncia local em problemas de otimizag&o.

3.3.2 Origem da Busca Tabu

A heuristica busca tabu (BT) € relativamente recente, teve origem em
meados da década de 70. A forma moderna de BT é devida aos trabalhos
desenvolvidos por GLOVER, embora outros como HANSEN (1986) e LAGUNA
(1991) tenham desenvolvido importantes estudos que contribuiram para melhorar o
desempenho dessa heuristica. BT ainda ¢ pesquisada ativamente e continua evoluindo

e melhorando.

3.3.3 Como funciona a Heuristica Busca Tabu?

A palavra “tabu” sugere algo proibido, ou pelo menos inibido. A heuristica
BT basica emprega restrigdes tabu para inibir certos movimentos e alguns
procedimentos denominados critérios de aspirag8o sfo utilizados para decidir quando
movimentos classificados como tabu podem ser executados. Desta forma, BT conduz a
busca para areas ainda ndo analisadas do espago de busca, tendendo a evitar a
convergéncia da solucdo para um méximo (ou minimo) local. As restri¢des tabu sdo
geralmente controladas por uma lista que memoriza os ultimos movimentos

executados. O tempo que um movimento deve permanecer nesta lista, em geral, esta
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relacionado com o nimero de iteragdes do algoritmo e com o numero de movimentos
possiveis a partir da solu¢do candidata atual (solugdo que estd sendo analisada). A
implementacdo de um algoritmo BT basico envolve decidir como os movimentos
(geragdo de novas solugdes) sdo realizados, a defini¢do dos critérios de aspiragdo e
como ¢ feito o gerenciamento da memoria dos movimentos, além de outros detalhes e

técnicas que sdo brevemente discutidas a seguir.

3.3.4 Busca através das Solu¢Oes Vizinhas

BT pode ser convenientemente caracterizada como sendo uma busca através
das solugdes vizinhas (GLOVER, 1991). Cada solugdo x € X tem um conjunto
associado de solugdes vizinhas V(x) < X chamadas solugdes vizinhas a x. Toda solugéo
x’ € WV(x) pode ser gerada a partir de x por um certo tipo de operacdo denominada
movimento. Normalmente em BT, solu¢Ges vizinhas sdo simétricas, ou seja, x° é

solucdo vizinha a x se, e somente se, x € solugdo vizinha a x’.

3.3.5 Crnitérios de Aspiragéo

Os critérios de aspiragdo s@o introduzidos em BT para determinar quando
uma restri¢do tabu pode ser quebrada. Ou seja, a restrigio € ignorada e o movimento,
mesmo classificado como proibido, é executado. Um critério de aspira¢do bastante
utilizado € o de ignorar a restri¢do tabu sempre que a solugdo formada por um
determinado movimento proibido for melhor que a melhor solu¢éio encontrada até o
momento. A aplicagiio adequada desses procedimentos ¢ fundamental para se atingir

altos niveis de performance em BT.
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3.3.6 Estratégia da Oscilag¢do

Um procedimento bastante utilizado em BT ¢é a estratégia da oscilacio.
Consiste em admitir a oscilagdo entre solugdes factiveis e infactiveis durante o
processo de busca. Considerar solugdes infactiveis é um outro meio de tentar escapar
de o6timos locais. Além disso, o fato de permitir temporariamente solugdes infactiveis

tende a dirigir a busca mais rapidamente para solugdes factiveis cada vez melhores.

3.3.7 Algumas Iteracdes de um Algoritmo BT Elementar

Os problemas de permutagio formam uma importante classe dos problemas
de otimizagdo. Para exemplificar as idéias basicas sobre BT sdo apresentadas algumas
iteragdes de um algoritmo BT elementar aplicado a um problema de permutagio

ficticio.

3.3.7.1 Apresentando o problema ficticio

Considere o problema de se determinar a ordem em que devem ser colocados
num modulo de isolamento 7 filtros isolantes, todos com propriedades distintas, de tal
forma que o isolamento obtido seja 0 maximo possivel. O isolamento é medido através
de uma fungdio de isolamento F, que mede o sinal de saida através do moédulo de
isolamento. A ordem em que s#o colocados os filtros isolantes influi no isolamento

obtido.



31

Suponha que uma solugdo inicial gerada aleatoriamente para o problema
proposto esteja representada na figura 3.6, onde 1, 2, ...,7 representam respectivamente

cada um dos filtros isolantes do problema em questZo.

Médulo
A

- N
(2[5[7[3[4]6]1]

FIGURA 3.6 - UMA SOLUCAO INICIAL

Novas solugbes sdo geradas a partir da solugdo atual por um “movimento”
que consiste na troca de posi¢do entre dois filtros no moédulo. Os filtros que sdo
trocados num movimento sdo selecionados ao acaso. Os movimentos s30
representados através de pares de filtros, como por exemplo, [5, 6], que indica a
mudanca das posi¢gdes dos filtros 5 e 6 entre si (ver figura 3.7). Note que por essa
defini¢do o movimento € simétrico, no sentido que os pares [5, 6] e [6, 5] representam

a mesma mudanga.

—>[2]5[7[3]4[6[1]

FIGURA 3.7 - EXECUGAO DO MOVIMENTO [5, 6] GERANDO UMA NOVA SOLUCAO

A cada iteragfio, cinco novas solugdes sdo geradas aleatoriamente dentre
todos os movimentos possiveis e ordenadas pelos valores da funcio de isolamento F
da melhor para a pior. Uma lista de memoria (lista tabu) armazenara cada movimento
executado que devera permanecer nesta lista durante as trés proximas iteragdes.

Enquanto um determinado movimento permanecer na lista tabu serd considerado
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proibido e s6 podera ser executado se este resultar num valor de isolamento melhor
que o melhor valor obtido em todas as iteragdes anteriores (critério de aspiracio).
Como se deseja maximizar a fungdio F, procura-se sempre o maior valor de troca

possivel.
Sdo utilizados nos esquemas abaixo um asterisco (*) para representar um
movimento que serd executado e a letra (T) maitiscula para representar um movimento

classificado como tabu.

3.3.7.2 As iteragdes do problema ficticio

Iteraciao 0
Solugio inicial lista tabu 5 candidatos
2 3 4 5 6 7 valor da troca
2373[4[6]1] 1] 54 ] 6 |*
74 | 4
F=10 3 3,6 2
4 2,3 0
5 4,1 -1
6

ESQUEMA 3.1 - ITERACAO 0

Na iteracdo (0), representada pelo esquema 3.1, uma solucgdo inicial para o
problema foi gerada aleatoriamente. Em seguida, partindo-se sempre da solugéo inicial
foram executados ao acaso cinco movimentos (troca de posigéo entre dois filtros). Para
cada nova solu¢do gerada pelos movimentos foi calculado o valor da funcdo de
isolamento F. Os movimentos foram ordenados do melhor (primeiro da lista de
candidatos) para o pior (ultimo da lista de candidatos) de acordo com os valores
obtidos no célculo da fung@o de isolamento. Nesta iteragéo (0), o movimento [5, 4] do
topo da lista de candidatos foi escolhido para gerar a préxima solu¢&o porque dentre os

5 movimentos gerados foi o que produziu o melhor valor para a fungio de isolamento.
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Iteracdo 1
Solugio inicial lista tabu 5 candidatos
2 3 4 5 6 7 valor da troca

ZT4T735611] 1] 3512 |*

2 2,3 1

F=16 3 36 | -1

4] 3 7,1 -2

5 6,1 -4

6

ESQUEMA 3.2 - ITERACAO 1

O esquema 3.2 referente a iteragdo (1) mostra que, o movimento [5, 4] foi
executado e incluido na lista tabu. O valor da solu¢do atual é o valor da anterior
acrescido do valor da troca executada. Além disso, a célula (4, 5) da lista tabu passa a
conter o valor 3, que representa o numero de iteragdes que o movimento [5, 4]
permanecera na lista tabu. Foram executados novamente cinco movimentos ao acaso a
partir da solugdo atual. Os movimentos foram ordenados pelo valor da fungdo de
isolamento e novamente o movimento do topo da lista de candidatos [3, 1] foi

escolhido para gerar a proxima solugio.

Iteracéo 2
Solug#o inicial lista tabu 5 candidatos
2 3 4 5 6 7 valor da troca

(2]4]7]1]5]6]3] 1 3 1,3 | -2 |T
2 24 | 4 |*

F=18 3 7,6 | -6
4 2 45 | -7 |T

5 53 | -9

6

ESQUEMA 3.3 - ITERACAO 2
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Pelo esquema 3.3 pode-se notar que, o valor da célula (4, 5) da lista tabu foi
reduzido em uma unidade, j4 que uma iteragio foi completada. Dentre os cinco
movimentos gerados na iteragdo atual (2), o movimento do topo da lista de solugdes
candidatas ¢ o movimento [1, 3] mas, este esta classificado como tabu (foi executado
na iteragdo anterior) e ndo serd executado. Entdo, o segundo “melhor” movimento da

lista de candidatos [2, 4] serd o movimento executado para gerar a préxima solucao.

Iteracio 3
Solucdo inicial lista tabu 5 candidatos
2 3 4 5 6 7 valor da troca

14|2]7]1]5]6]3| 1| 2 45 | 6 |T*
2 3 5,3 2
F=14 3 7,1 0

41 1 1,3 | 3T
[ 26 | -6
6

ESQUEMA 3.4 - ITERACAO 3

Conforme mostra o esquema 3.4, a solugdo atual tem valor inferior ao das
duas iteragGes anteriores. Isto devido a um movimento com valor de troca negativo ter
sido executado. Permitir que movimentos que causem prejuizo no valor da fungéo
objetivo sejam executados ajuda a evitar a convergé€ncia da solugdo para um 6timo
local. Além disso, permite a avaliag@o de areas do espago de busca que de outra forma
talvez ndo fossem avaliadas. A lista tabu tem agora 3 movimentos registrados. Nesta
iteragdo (3), o movimento do topo da lista de candidatos € [4, 5] que est4 na lista tabu
(proibido). Acontece que este movimento produz na funcéo de isolamento um valor

melhor que qualquer valor obtido até o momento. Portanto, a proibic&@o sera ignorada e

o movimento sera executado (critério de aspiragéo).
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Iteracgéio 4
Solug3o inicial lista tabu 5 candidatos
2 3 4 5 6 7 valor da troca
]5}2}711|4|6]3} 1| 1 7,1 6 |*
2 2 43 | -3
F=20 3 6,3 | -5
4| 3 54 | 6 |T
5 26 | -8
6

ESQUEMA 3.5. ITERACAO 4

Note pelo esquema 3.5 que a célula (4, 5) da lista tabu voltou a receber o
valor 3, j4 que o movimento [4, 5] foi executado novamente. A solugdo da iteracdo
atual (4) tem o melhor valor obtido até o momento, ¢ a lista tabu tem agora 3 dos 21
movimentos possiveis classificados como tabu. As itera¢des continuam até que um

critério de parada seja satisfeito (como por exemplo, um ntiimero fixo de iteracBes ser

completado).

A seguir, € feita uma revis@o da literatura sobre localizagdo de instalag3es,

algoritmos genéticos e busca tabu aplicados ao problema das p-medianas.
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4 REVISAO DA LITERATURA

Esta secdo faz refer€ncia a alguns trabalhos anteriormente publicados ou
desenvolvidos sobre localizagdo de instalagGes e principalmente sobre algoritmos

genéticos e busca tabu aplicados ao problema das p-medianas.

4.1 LOCALIZACAO DE INSTALACOES

Os problemas de localizacdo de instalagdes t€m recebido consideravel
atencdo de pesquisadores de diversas areas. RONNQVIST et al. (1999) desenvolveram
uma heuristica para resoluc@o de problemas de localizagio de instalagdes em que cada
ponto de demanda ¢ atendido por uma tnica instalagdo. A heuristica ¢ baseada na
repeticdo de um algoritmo matching e basicamente resolve uma série de problemas
matching até que um critério de convergéncia predefinido seja satisfeito. SYAM
(1997) propds uma resolugéio para o problema de localizagdo de instalagdes baseada
em Relaxa¢do Lagrangeana. TRAGANTALERNGSAK et al. (1999) desenvolveram
um algoritmo Branch and Bound baseado em Relaxagdo Lagrangeana para resolver
problemas de localizagdo de instalagGes onde as instala¢des possuem diferentes niveis
hierarquicos. DREZNER (1995) apresenta uma colec@o de problemas de localizagio

de instalagdes enfocando suas diferentes abordagens ¢ métodos de solugio.

4.2 ALGORITMOS GENETICOS

HOSAGE ¢ GOODCHILD (1986) (H&G) parecem ter sido os primeiros a
desenvolver um algoritmo genético para o problema das p-medianas. Os operadores
genéticos utilizados neste algoritmo foram os usuais dos AGs (reprodug8o, cruzamento
e mutagdo). No AG apresentado por H&G, cada possivel solugdo para o problema
(individuo) € representada por uma seqiiéncia de nimeros binarios (0 ou 1). Cada
digito indica se a instalagéo correspondente a posi¢do do digito em questdo é uma

mediana “1” ou ndo ¢ uma mediana “0”. Se o niimero de 1’s nesta seqiiéncia néo for
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igual a p, a solugdo ¢ considerada infactivel ¢ uma penalidade (proporcional a
violagdo das restrigdes) ¢ imposta a solugio. O algoritmo desenvolvido por H&G foi
testado em um problema que seleciona 3 medianas entre 20 possiveis (isto €, n =20 e
p = 3) e com populagdo inicial P = 25 para quatro nimeros diferentes de geracdes
(120, 150, 180 e 210). Foram utilizados 100 grafos distintos gerados aleatoriamente e a
solug¢do 6tima foi encontrada 69, 85, 84 e 89 vezes para cada nivel de geragdo. A
principio pode parecer, pelos testes realizados, que o algoritmo de H&G garante
relativamente um bom desempenho pois, encontrou a solugo 6tima entre 70% e 90%
dos casos. Porém, o algoritmo trabalha com uma representagio binaria de tamanho »
(nimero de instalagdes candidatas a mediana), e esta ndo € uma boa representacio.
N&o apenas desperdiga memoria, como também requer operacdes desnecessarias para
a realizagdo do cruzamento entre os pais ¢ para o calculo do valor do fungio objetivo.
O problema utilizado para teste possui apenas 1140 solugdes possiveis (C},). Ainda, o
algoritmo gera e avalia 2905 solugbes, ndo necessariamente distintas, para 120
geragdes € 5065 para 210 geragdes. Embora o problema tenha apenas 1140 solugdes, o
algoritmo busca pela solugio num espago com 2%° possibilidades, definidas por todos
os numeros de 20 digitos binarios. Certamente, a grande maioria (aproximadamente
99,9%) das solugdes geradas s@o infactiveis para o problema das p-medianas e o
algoritmo desperdica tempo analisando-as.

DIBBLE e DENSHAM (D&D) (1993) relataram a aplicagdo de um AG que
desenvolveram para o problema das p-medianas. Neste AG, foi proposta uma
representacdo cromossdmica mais adequada para o problema das p-medianas. Cada
individuo possui exatamente p genes, ¢ cada gene pode representar o valor
correspondente ao numero da instalagdo que se deseja inserir na solugdo. Utilizaram
apenas os operadores genéticos usuais dos AGs. O AG desenvolvido por D&D foi
aplicado a um problema em que teve que selecionar 9 medianas entre 150 possiveis foi
utilizada uma populagdo inicial de P = 1000 individuos e 150 geragdes. Os resultados
obtidos nessa aplicaciio foram comparados com os obtidos para o mesmo problema

resolvido pelo algoritmo de Teitz e Bart. No entanto, o tempo de processamento do
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AG de D&D foi bem maior que o do algoritmo de Teitz e Bart e as solugdes
encontradas foram praticamente as mesmas para os dois algoritmos.

MORENO-PEREZ et al. (M-P&al) (1994) também desenvolveram um AG
para o problema das p-medianas. Neste AG, a representagdo cromossémica € idéntica
a do algoritmo de D&D descrito anteriormente. Foram utilizados apenas os operadores
genéticos usuais dos AGs. O que diferencia o algoritmo proposto por M-P&al dos
outros anteriormente apresentados € a existéncia de multiplos grupos de populagdes
(colonias) e a troca de solugdes candidatas entre estes grupos (migrago) colocadas em
uma populagéo paralela. Este método ajuda a evitar a convergéncia da solugdo para um
méximo (ou minimo) local. Por outro lado, a utiliza¢do simultinea de varias
populagdes torna a implementagdo do algoritmo complicada e seu processamento
demorado. Infelizmente, € dificil avaliar a relativa eficiéncia desse algoritmo em
relacdo a outros, uma vez que os autores ndo implementaram nenhuma comparagio
para o algoritmo.

NUNES (1998) e SAMPAIO (1999) utilizaram um AG para o problema das
p-medianas que foi proposto por MAYERLE (1994). Neste AG, a representacdo
cromossOmica € idéntica a do algoritmo de D&D descrito anteriormente. Quanto aos
operadores genéticos, o algoritmo utiliza o operador genético de cruzamento e um
operador de correcdo chamado “operador de mutagdo”. A ressalva nesse algoritmo €
que o cruzamento entre os pais permite a duplicagio de genes (medianas repetidas na
solugdo), o que quando acontece, torna a nova solugdo gerada infactivel. Para corrigir
estas solugdes infactiveis o operador genético de corregdo € acionado. Esse operador
troca aleatoriamente o valor de um dos genes duplicados por outro que nfo faga parte
da solu¢do que sera corrigida. O problema é que, sempre que o mimero de uma
mediana estiver ocorrendo em quase todos os individuos da populacgo, esse nimero
tenderd a ser duplicado em alguns individuos como resultado do cruzamento. Portanto,
o nimero de “corregdes” realizadas aumentara, o que pode fazer a busca ficar um tanto
quanto aleatdria, desviando-se assim do objetivo dos AGs e, possivelmente da soluco

6tima procurada.
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ERKUT et al. (em fase de publicagdo) desenvolveram um AG para o
problema das p-medianas. Neste algoritmo, cada individuo também possui exatamente
p genes que representam um conjunto de p medianas selecionadas. O algoritmo traz
além dos operadores genéticos usuais outros como, por exemplo, o String-of-Change
Operator sugerido independentemente por BOOKER (1987) e FAIRLEY (1991). Esse
operador utiliza um “s#ring de mudanca”, que consiste em um vetor binario gerado
para cada par de pais selecionados para o cruzamento. Os cromossomos pais sdo
submetidos a um operador chamado ou exclusivo (a expressdo “a ou exclusivo b” é
definida como sendo 1 se a # b e 0 caso contrario). Para exemplificar, o vetor binario
correspondente aos pais [10, 9, 12,24, 7,3]¢e[10,9,7, 8, 12, 3] seria [0, 0, 1, 1, 1, 0].
Ou seja, 0 se os genes de mesma posicdo nos pais representarem a mesma mediana e 1
caso contrario. Para evitar que os filhos gerados sejam idénticos aos pais, somente os
genes entre o primeiro € o ultimo 1 nos respectivos pais devem ser selecionados como
pontos de cruzamento. Com base em testes comparativos realizados, o algoritmo
demonstrou ser eficiente, embora, segundo o proprio autor, leva muito tempo para

obter boas solugdes.
4.3 BUSCA TABU

Sé@o apresentadas a seguir as idéias gerais resumidas de dois artigos sobre

busca tabu aplicada ao problema das p-medianas.

O primeiro, € um artigo escrito por GLOVER (nfio publicado), onde a
estrutura basica de seu algoritmo BT ¢é a seguinte: considere o conjunto V' de todas as
instalagbes candidatas para o problema em questdo e ¥, ¥ com |V,| = p o conjunto
inicial de medianas selecionadas ao acaso. Cada “movimento” é um procedimento que
consiste em adicionar, retirar ou trocar em V), a mediana que resultar no melhor valor
para a nova solugdo. Estes movimentos s@o executados em seqiiéncia e, desta forma,

havera uma variagdo no nimero de medianas em V), ou seja:

p-1<|V,|<p+ 1L
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Este fendmeno é chamado de “estratégia da oscilagdo” e além de ajudar a
evitar a convergeéncia para uma solugfo local, conduz com maior rapidez a busca para

solugdes factiveis cada vez melhores.

A “lista tabu” memoriza a iteragdo em que cada mediana foi adicionada &
solucéo e proibe, durante um certo nimero de iteragGes subsequentes, que esta possa
ser novamente adicionada. O “critério de aspirag@o” utilizado € permitir a quebra da
restricdo tabu se a qualidade da nova solucido gerada por um movimento proibido
superar a qualidade da melhor solu¢éo encontrado até o momento. O autor ndo chegou
a implementar o método, apenas descreveu o0s passos necessarios para sua
implementacéo.

O segundo artigo mencionado ¢ de ROLLAND et al. (1996). O
funcionamento basico do algoritmo BT descrito nesse artigo ¢ semelhante ao do
algoritmo descrito anteriormente, exceto que sio considerados apenas dois tipos de
movimento: adicionar e retirar medianas em uma solu¢do. Além disso, a ordem em
que estes movimentos séo executados € aleatdria. Desta forma, o algoritmo pode numa
iteragfo retirar uma mediana da solug&o e na iteragdo seguinte retirar outra novamente.
O mesmo vale para o caso de adicionar. Em outras palavras, haverd uma oscilagio
maior que p *1 no nimero de medianas da “solucdo-atual”. Este algoritmo foi
aplicada a 100 problemas testes. Os testes foram realizados com § diferentes grafos
para problemas pequenos (de 13 a 100 vértices) e 4 para problemas grandes (200 a 500
vértices). Cada vértice foi considerado, a0 mesmo tempo, como demanda e potencial
mediana. Todos os grafos foram gerados aleatoriamente. Os pesos associados a cada
vértice foram definidos por nimeros aleatérios gerados entre 0 ¢ 100. Para cada grafo
o problema foi resolvido para diversos valores de p. Os resultados foram comparados
em termos de qualidade da solugio e tempo de processamento, com os obtidos para os
mesmos problemas resolvidos por outras duas heuristicas para o problema das p-
medianas. Uma desenvolvida por GOODCHILD ¢ NORONHA (1983) chamada de
NS e a outra desenvolvida por DENSHAM ¢ RUSHTON (1992) chamada de GRIA.
Para os problemas pequenos (de 13 a 100 vértices) a solugdo Otima também foi

calculada via programacio linear. Nos experimentos com os problemas pequenos, a
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heuristica BT encontrou a solug@o 6tima em 66% dos testes contra 48% para GRIA e
39% para NS. Em termos de qualidade da solugdo, BT foi melhor que ou igual a NS
em 97% dos testes e melhor que ou igual a GRIA em 92% dos testes. Em relagio ao
tempo de processamento BT foi, na média, mais rapida que as outras duas heuristicas.
Para os problemas grandes (de 200 a 500 vértices) BT encontrou a melhor solugio
entre as heuristicas em 91% dos testes e foi mais rapida em todos testes com os

problemas grandes.
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5 IMPLEMENTACAO DOS METODOS UTILIZADOS

Esta segdo trata da implementagfo proposta no presente trabalho de cada um
dos métodos descritos na se¢do 3, comegando com o algoritmo que faz a designagéo

de candidatos ao vestibular aos locais provas.
5.1 ALGORITMO PARA DESIGNACAO DE CANDIDATOS AO VESTIBULAR

A forma basica do DeCan ¢ semelhante a do algoritmo proposto por
GILLETT e JOHNSON (1973) (BODIN et al., 1983) descrito na se¢do 3. Difere
basicamente no calculo realizado para a ordenagio da “lista de designa¢do”, conforme

apresentado a seguir.

Inicialmente, todos os pontos (residéncias dos candidatos) encontram-se sem
designagdo. Para cada ponto i seja Li(i) o local de provas mais préximo a i, e L,(i) o
segundo local mais préximo a i.

Para cada ponto 1, a diferenca: d(i) = L,(i) — L1(i) é calculada e todos os
pontos s@o colocados numa “lista de designagZo” em ordem decrescente pelos valores
de d(i). A designag@o comega pelos primeiros elementos da lista (pontos com maior
diferenca d(i)), e € feita obedecendo-se a capacidade dos locais de provas. Durante a
designag@o sempre que a tltima vaga restante em um determinado local de provas for
preenchida a diferenca d(i) sera recalculada para todos os pontos que ainda ndo foram
designados considerando-se apenas os locais de provas cujas vagas ndo estejam
esgotadas. Estes pontos sdo novamente colocados na “lista de designa¢@o” em ordem
decrescente pelos valores de d(i) e a designagdo continuara até que todos os pontos
tenham sido designados para algum local de provas.

O que justifica ter-se optado pelo célculo da diferenca ao invés da razéo entre
o primeiro e o segundo locais de provas mais préximos da residéncia do candidato é o
seguinte fato: suponha-se que para dois candidatos quaisquer os dois locais de provas

mais proximos de suas residéncias sejam os locais 4 e B. A residéncia do primeiro
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candidato estd a 100m do local 4 e a 300m do local B. A residéncia do segundo
candidato esta a 500m do local 4 € 900m do local B. Se o local A sé puder aceitar mais
um candidato, pelo célculo da raz&o o primeiro candidato seria designado para o local
A e percorreria 100m enquanto o segundo candidato seria designado para o local B e
teria que percorrer 900m o que resultaria num acréscimo de 1000m na soma total das
distdncias percorridas. Ja pelo calculo da diferenga o primeiro candidato seria
designado para o local B e percorreria 300m enquanto o segundo candidato seria
designado para o local 4 e percorreria 500m o que resultaria num acréscimo de 800m
na soma total das distincias percorridas. Percebe-se que, com a utilizag8o do célculo
da diferen¢a a designagdo dos candidatos aos locais de provas ocorre de forma mais
“Justa” do que no caso do calculo da razdo.

Quando o objetivo for minimizar a soma total das distincias percorridas o

célculo da diferencga sera sempre apropriado, conforme demonstrado a seguir:

Sejam 1 e j dois candidatos quaisquer “competindo” pelos mesmos locais L, e
L, onde L, e L, s@o, nesta ordem, respectivamente o primeiro € o segundo locais de
provas mais préximos tanto para i quanto para j. Ainda, L; possui apenas mais uma
vaga.

Sejam L(1), Ly(1), L(j) e L,(j) respectivamente as distancias dos candidatos i

e j aos locais L, e L,. Consideram-se duas hipédteses (a) e (b):

a) a menor soma das distancia é obtida se o candidato i for designado para o

local L, e o candidato j para o local L,, o que implicaria em:

Ly(i) + LoG) < LiG) + La(i) (5.1.1)

Através de operagdes matematicas a inequagfo (5.1.1) pode ser transformada

cm:

L,(1) - Li() > LoG) - L) (5.1.2)
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A inequagdo (5.1.2) € exatamente a comparagdo entre os resultados do
calculo da diferenca realizado para os candidatos 1 e j. Seguindo-se os
critérios do algoritmo da designagdo proposto neste trabalho, como o
resultado da diferenga foi maior para o candidato i ele serd designado
primeiro. O que considerando-se apenas os dois candidatos garante que i seja

designado para L, atendendo-se a condigfo proposta em (a).

b) a menor soma das distdncia € obtida se o candidato j for designado para o

local L; e o candidato 1 para o local L,, o que implicaria em:

L1G) + Ly() <Li() + L) (5.1.3)

Através de operagOes matematicas a inequagéo (5.1.3) pode ser transformada

cm.

L2() - L:0) > Lo() - Li(3) (5.1.4)

A inequacdo (5.1.4) é exatamente a comparacdo entre os resultados do
calculo da diferenca realizado para os candidatos i e j. Seguindo-se os
critérios do algoritmo da designa¢do proposto neste trabalho, como o
resultado da diferenga foi maior para o candidato j ele sera designado

primeiro. O que considerando-se apenas os dois candidatos garante que j seja

designado para L;, atendendo-se a condigio proposta em (b).
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Procedimentos Bésicos do DeCan

Os procedimentos executados pelo DeCan proposto no presente trabalho séo

descritos através dos passos a seguir.

Passo 1

Para todo ponto 1 nfo designado, faca:

Encontre L;(1) e Ly(i) respectivamente o primeiro e o segundo locais de provas
mais proximos da residéncia do candidato i cujas capacidades ndo estejam
esgotadas.

Calcule a diferenga: d(i) = L,(i) — L;(i) e coloque o ponto i na “lista de
designagdo” pela ordem decrescente dos valores de d(i).

Faga candidato_atual = primeiro candidato da “lista de designacdo”.

Passo 2

Enquanto existirem pontos sem designag@o, faga:

Fim.

Designe o candidato_atual para o local de provas mais proximo de sua residéncia
que dispuser de vaga.
Diminua uma unidade da capacidade do local de provas para o qual o
candidato_atual foi designado.
Identifique o candidato atual como designado.
candidato_atual = préximo candidato da “lista de designagéo™.
Se a capacidade do respectivo local de provas que recebeu o candidato_atual
ficou esgotada (igual a zero), entdo:

Volte ao passo 1 e recalcule a “lista de designagéo”.

Caso contrario, continue.
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5.1.2 Melhorias no Resultado Final do DeCan

Tanto no algoritmo de GILLETT e JOHNSON (1973) (BODIN et al., 1983)
(descrito na segd@o 3) quanto no DeCan descrito anteriormente podem haver erros na
designag@o dos candidatos como por exemplo: se houver empate no calculo da
diferen¢a (ou da razdo) para dois ou mais pontos (candidatos), estes serdo designados
apenas de acordo com a ordem em que os calculos foram realizados. Ou seja, se forem
calculados os valores da diferenga para os pontos i, j ou k, nesta ordem, e todos os
calculos resultarem no mesmo valor, os trés pontos serdo colocados na “lista de
designag@o” na ordem: primeiro i, depois j, € por ultimo k. Mesmo que a ordem de
designag@o dos candidatos seja recalculada quando um candidato ocupar a tltima vaga
de um local de provas, pode acontecer que: o ponto i, primeiro que sera designado,
ocupe a ultima vaga do primeiro local mais proximo aos pontos i, j, e k e que o ponto j
ocupe a ultima vaga do segundo local de provas mais préximo aos pontos i, j, € k.
Desta forma, o ponto k, na melhor das hipéteses, serd designado para o terceiro local
de provas mais proximo a k. Porém, a disténcia entre o segundo e o terceiro locais de
provas mais préximos ao ponto k pode ser muito maior que as mesmas distdncias para
os candidatos i e j, mas, este fato ndo foi considerado. Talvez, seja justificada até
mesmo a troca da designagio do ponto k com a designagdo do ponto i ou j ou até

mesmo com algum outro ponto que ja tenha sido designado.

O fato de se determinar a ordem de designacdo dos candidatos levando-se em
conta apenas a distancia entre os dois primeiros locais de provas mais préximos pode
gerar erros de designagfio, principalmente para aqueles candidatos que forem
designados por tltimo. Por outro lado, n3o h4 vantagem em se calcular as distancias
entre o segundo e terceiro, terceiro e quarto, etc. locais de provas mais proximos para
cada candidato uma vez que, néo se pode prever qual serd o candidato designado para
um determinado local de provas € nem mesmo quando um determinado local de

provas tera suas vagas esgotadas.
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Para corrigir alguns eventuais erros que podem acontecer na designagédo dos
candidatos aos locais de provas pelo DeCan desenvolveu-se a chamada “analise pos-

processamento”, que € apresentada a seguir.

5.1.2.1 Anélise pds-processamento

Terminada a designagdo de todos os candidatos aos locais de provas, sera
feita uma busca em todos os locais de provas a procura dos candidatos que ndo foram
designados para o primeiro local de provas mais préximo de suas residéncias. Estes
candidatos s@o entdo colocados em uma “lista de troca”. Em seguida, para cada um dos
candidatos da “lista de troca” € feita uma pesquisa em todos os locais de provas cujas
vagas estejam esgotadas considerando-se a possibilidade de trocar cada candidato que
estiver num destes locais com o candidato da “lista de troca” analisado. A troca que
mais reduzir a soma total das distancias percorridas é realizada. Caso ndo haja redugio
em nenhuma troca analisada o candidato da “lista de troca” permanecera no local onde
esta. Um ponto que deve ser esclarecido € que ndo ha necessidade de considerar locais
que ainda possuam vagas, pois, caso um destes fosse uma opgdo melhor, o DeCan ja
teria se encarregado de fazer a designacdo do candidato para o local, jA que este
dispunha de vagas.

Trocar dois candidatos significa simplesmente inverter os locais de provas
para os quais ambos foram inicialmente designados, ou seja, o candidato X (candidato
da “lista de troca”) passa a ocupar a posigao do candidato Y no local de provas onde Y
esta e vice versa. Para evitar que o candidato Y seja “punido” sendo obrigado a ocupar

uma vaga num local que pode ndo ser uma boa opgdo para ele, é considerada a
hipétese de se transferir Y para cada um dos locais de provas que possua pelo menos
uma vaga disponivel. Além disso, de qualquer forma o candidato Y é automaticamente
inserido na “lista de troca” e tera futuramente outra possibilidade de melhorar sua

situagdo.
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5.1.2.1.1 Procedimentos basicos da analise pos-processamento

A analise pds-processamento ¢ executada somente depois que todos os
candidatos foram designados para os locais de provas e consiste dos passos

apresentados a seguir.

Passo 1
Registre na “lista de troca” todos os candidatos que nZo foram designados para o
primeiro local de provas mais préximo de suas residéncias.
Faga candidato_atual = primeiro candidato da “lista de troca”.
Passo 2
Enquanto existir candidato n3o analisado na “lista de troca” faca:
Analise a possibilidade de trocar o candidato_atual com cada um dos candidatos
que estejam em locais de provas cujas vagas estejam esgotadas.
Passo 3
Se existir alguma troca observada no passo 2 que resulte em redugio da soma total
das distancias percorridas, entdo:
Execute a troca que mais reduzir o valor da soma total das distincias percorridas.
Faca candidato_atual = préximo candidato da “lista de troca”.
V4 para o passo 4.
Caso contrario:
Faca candidato_atual = proximo candidato da “lista de troca”.
Volte ao passo 2.

Passo 4
Para o candidato que foi trocado com o candidato_atual, faca:
Analise a possibilidade de transferi-lo do novo local onde ele esta para cada um
dos locais de provas que ainda possui pelo menos uma vaga.
Insira o candidato na lista de troca para que este tenha ainda outra chance de

melhorar sua designagéo.
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Passo 5
Se existir alguma transferéncia observada no passo 4 que resulte em reducio da
soma total das distancias percorridas, entdo:
Execute a transferéncia que mais reduzir o valor total da soma total das distancias
percorridas.
Volte ao passo 2.

Fim.
5.2 ALGORITMO GENETICO PROPOSTO (AGpMcap)

Nesta secdo, sdo apresentados os aspectos computacionais do algoritmo

genético proposto no presente trabalho para o problema das p-medianas capacitado.

Observe que dado um conjunto ¥p < ¥ com exatamente p medianas, nio se
pode garantir que Vp possa atender a todo o conjunto de demandas. Caso a soma das
capacidades das instalagGes medianas contidas em Vp seja inferior ao nimero total de
demandas o conjunto Vp em questdo serd considerado uma solugo infactivel para o
problema das p-medianas capacitado e ndo podera ser utilizado, pois, ndo atende a
todos os pontos de demanda. Portanto, para preservar a clareza dos procedimentos do
AGpMcap que sio explicados a seguir, deve-se considerar que qualquer conjunto ¥p < ¥ com
exatamente p instalagdes medianas pode atender a todo o conjunto de demandas. Na
pratica uma forma simples de garantir que qualquer conjunto ¥p — V possa atender a
todo o conjunto de demandas ¢ determinar p da seguinte forma:

Primeiramente as » instala¢des candidatas sdo colocadas em uma lista pela
ordem crescente de suas capacidades. Em seguida, considera—se p igual ao menor
numero de instalagdes da primeira da lista em diante cuja soma das capacidades seja
igual a ou maior que o niimero total de demandas. Desta forma, qualquer conjunto com
p instalagdes selecionadas entre as # instalagdes candidatas podera sempre atender a

todo o conjunto de demandas.
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5.2.1 Representagdo Cromossdmica

Foi utilizada a representagdo cromossOmica proposta por DIBBLE e
DENSHAM (1993). Cada individuo (ou cromossomo) possui exatamente p genes, € 0
alelo de cada gene representa o valor correspondente a uma instalagdo utilizada como
mediana. Por exemplo, considere que para um determinado problema com 15
instalagdes (possiveis medianas) representadas respectivamente pelos numeros 1, 2, ..,15 se
deseje selecionar exatamente 5 medianas. Segundo a representagdo utilizada, o
individuo [2, 7, 5, 15, 10] representa uma solu¢do para o problema em que as
instalagdes 2, 5, 7, 10 e 15 séo instalagGes selecionadas como medianas. Durante todo
o AGpMcap o genoma ¢ interpretado como um conjunto de genes, no sentido
matematico de conjuntos, onde nfio ha elementos repetidos € ndo ha ordenagdo entre os
elementos. Definida a representagdo dos individuos, sera formada uma populagdo de

possiveis solugdes para iniciar a resolugéo do problema, conforme discutido a seguir.
5.2.2 Tamanho da Populacéo

O tamanho P da populagéo utilizada em um AG pode variar de acordo com
as caracteristicas de cada problema. Para o0 AGpMcap o niimero de individuos da

populagéo sera estimado através da seguinte formula proposta por ERKUT (em fase de

publicagdo):

P=i.

onde £ > 1 é um mimero natural determinado pelo usuério, n é o numero total de

P—J, (5.2.1)
P

instalagSes candidatas, p € o nimero de medianas que se deseja selecionar e o simbolo
b | significa o maior inteiro menor que b. Como os genes dos cromossomos filhos séo

determinados através da “mistura” entre os genes dos cromossomos pais, se uma das

instala¢Ges de uma solugéo 6tima néo estiver presente nos genes dos cromossomos da
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populagdo inicial, o algoritmo terd menor probabilidade de encontrar aquela solugio
6tima para o problema. Uma populagdo com P individuos possui um total de P. p
genes. Se este numero for igual a k. » cada instalagdo candidata a mediana, em média,
devera aparecer k vezes entre os P. p genes da populagdo inicial. Certamente, as
instalagdes candidatas que ndo estiverem presentes entre os genes dos individuos da
populagdo inicial poderdo ser inseridas na populagio por operadores como por
exemplo, mutag¢do. Porém, quanto maior for o valor atribuido a & mais reduzida ficara

a probabilidade de uma determinada instalag&o nfio estar presente na populago inicial.

Segundo ERKUT (em fase de publicacdo), no caso de se determinar o
tamanho da populagéo pela formula (5.2.1), a probabilidade de uma instalagdo nio

estar presente na populag@o inicial pode ser estimada pela férmula:

k.n
n-1

PINST NAO_PRESENTE = (5.2.2)

Assim, pode-se escolher um valor para k suficientemente alto para que o
valor da formula (5.2.2) seja pequeno, ou menor que um valor predefinido pelo

usuario.

Definido o tamanho P da populagdo, sdo gerados aleatoriamente P
individuos para formar a populagio inicial. Em seguida, o grau de adaptag@o destes

individuos ¢ avaliado conforme discutido a seguir.

5.2.3 Avaliag8o do Individuo (fitness)

Depois de gerada a populagio inicial, € calculada a fitness de cada individuo
que € o valor da fungéo objetivo correspondente a solugéo (conjunto de medianas) que
o individuo representa. Em seguida, todos os individuos sfo colocados em uma lista R

pela ordem crescente do valor da fitness de cada individuo gerado. Para reduzir o
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tempo de processamento, no AGpMcap a fitness de cada individuo é fornecida pelo
algoritmo simplificado da designag¢@o dos candidatos aos locais de provas que sera
apresentado a seguir. Neste algoritmo simplificado, os candidatos ao vestibular sio
designados para o primeiro local de provas mais proximo que dispuser de vaga e na
ordem estabelecida pelo célculo da diferenga. A designagdo ndo € interrompida quando
um local de provas tem suas vagas esgotadas ¢ a analise pds-processamento ndo é
executada. Ao final do AGpMcap para a melhor solugdo encontrada sera aplicado o

DeCan completo.

5.2.3.1 Procedimentos basicos do DeCan simplificado

Os procedimentos bésicos executados pelo DeCan simplificado séo descritos

através dos passos a seguir.

Passo 1
Para todo ponto 1 n#o designado, faga:
Encontre L(i) e L,(i) respectivamente o primeiro € o segundo locais de provas
mais proximos da residéncia do candidato i cujas capacidades ndo estejam
esgotadas.
Calcule a diferenga: d(1) = L,(i) — L;(i) e coloque o ponto i na “lista de
designag@o” pela ordem decrescente dos valores de d(i).
Faca candidato_atual = primeiro candidato da “lista de designag&o”.
Passo 2
Enquanto existirem pontos sem designago, faca:
Designe o candidato_atual para o local de provas mais préximo de sua residéncia
que dispuser de vaga.
Diminua uma unidade da capacidade do local de provas para o qual o
candidato_atual foi designado.
Identifique o candidato atual como designado.
candidato_atual = préximo candidato da “lista de designag&o”.
Fim.
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Durante a execugdo do AGpMcap, como o objetivo do problema das p-
medianas é minimizar a soma total das distincias percorridas, sio considerados mais
adaptados os individuos que possuirem os menores valores da fitness e estes terio
maior probabilidade de serem selecionados para cruzamento ou reprodugdo, conforme

discutido a seguir.

5.2.4 Selegdo dos Cromossomos Pais

Depois que os individuos estiverem ordenados na populagio, a selegdo de
cada cromossomo pai que ird sofrer cruzamento ou reprodugo € realizada com base
numa formula proposta por MAYERLE (1996). Esta férmula foi ligeiramente
modificada mas, assim como a original, privilegia a escolha de individuos com melhor

fitness, isto é:

-1+4/1+4.md(P* + P)
2 b

Select(R)=41;€R/j=P- (5.2.3)

onde R € uma lista R = (1}, 13, ..., 1,), com P cromossomos colocados em ordem
crescente pelo valor da fitness, rnd € [0, 1) é um niimero aleatério uniformemente
distribuido e o simbolo |b | significa o maior inteiro menor que b. Esta férmula (5.2.3)
retorna um numero natural aleatdrio igual a posi¢éo na lista R do cromossomo que sera
selecionado. Apesar de ser aleatdrio, o niimero retornado pela férmula (5.2.3) tem
maior tendéncia de selecionar os primeiros elementos da lista R (melhores individuos
da lista). Depois que os cromossomos pais forem selecionados, sio submetidos a uma

comparag@o que resultard em dois vetores de troca, conforme discutido a seguir.
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5.2.5 Vetores de Troca

Antes que o operador genético de cruzamento ou a reprodugio seja aplicada,
para evitar que um gene possa ficar duplicado nos filhos gerados pelos pais

selecionados sdo criados dois vetores de troca (um para cada pai) pelo seguinte

critério:

Para todo gene do pai 1 uma consulta (da esquerda para a direita) ¢ feita com
o objetivo de saber se no pai 2 existe um gene com o mesmo valor. Se o gene
analisado do pai 1 nfo existir no pai 2, sera copiado para o vetor de troca do pai 1. Isto
significa que se este gene for transferido para o pai 2 nfo ficara duplicado, pois, ndo
existe no pai 2. O mesmo procedimento € realizado para o pai 2. Exemplo: sejam os pais [1, 2, 3,4, 5] e
[2,5,9, 10, 12] seus respectivos vetores de troca sdo: vp; =[1, 3, 4] e wp, = [9, 10, 12]. Depois de
identificados os genes que podem ser trocados entre os pais, o operador de cruzamento

ou o operador de reprodug@o € aplicado conforme discutido a seguir.

5.2.6 Operador Genético de Cruzamento

Nao foi utilizada uma probabilidade fixa para o operador genético de
cruzamento. O cruzamento entre os pais ocorre sempre que existir pelo menos um
gene para troca nos vetores vp; € vp, € € realizado da seguinte forma: um numero
natural aleatério ¢ que pode variar de 1 até (jvp| — 1) € gerado para determinar quantos
genes dos vetores de troca vp; e vp, serdo transferidos para os pais. Em seguida, os ¢
primeiros genes do vetor vp, sdo transferidos para o pai 2 colocados da esquerda para a
direita € os ¢ primeiros genes do vetor vp, sdo transferidos para o pai 1 também
colocados da esquerda para a direita. Desta forma, dois novos individuos (filhos) sdo
gerados com a vantagem de que ndo havera genes duplicados em nenhum dos filhos.
Para cada um dos filhos gerados pelo cruzamento é calculado o valor da fitness. Para o
processo de evolugdo da populagdo foi utilizado o “método do estado estavel”. Ou

seja, 0 melhor filho gerado ¢ inserido na lista R no lugar do ultimo individuo, mas,
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somente se possuir uma fitness melhor que a do tltimo individuo da lista. O outro filho
gerado também ¢ inserido no lugar do peniltimo individuo da lista R se possuir uma
fitness melhor que este. Em seguida, a lista R é reordenada pela ordem crescente do
valor da fitness dos individuos da lista. Caso nenhum dos filhos possua uma fitness
melhor que a do ultimo individuo da lista R, nenhum deles sera inserido na lista. Se
ndo existirem genes distintos entre os pais selecionados, o operador genético de
cruzamento ndo sera aplicado. Neste caso, serd aplicado o operador genético de

reprodug@o que € discutido a seguir.

5.2.7 Operador Genético de Reprodugéo

Em relagdo ao operador genético de reproducio comum utilizado em AGs, o
operador genético de reproducido utilizado no AGpMcap foi ligeiramente modificado.
No AGpMocap este operador copia integralmente apenas o primeiro pai selecionado
para a lista R e o coloca no lugar do ultimo individuo da lista. Em seguida, a lista R é
reordenada pela ordem crescente do valor da fitness dos individuos da lista. Note que
se fosse aplicado o cruzamento entre dois pais que possuem exatamente 0s mesmos
genes, os filhos gerados seriam idénticos aos pais. Ja4 que o operador de cruzamento
requer um numero maior de operagdes, a aplicagdo do operador de reprodugdo neste
caso agiliza a execu¢fio do algoritmo além de evitar que dois individuos iguais sejam

eventualmente inseridos na populagéo (lista R).

5.2.8 Operador de Mutagio

Em relacdo ao operador genético de mutagio comum utilizado em AGs, o
operador genético de mutagfio utilizado no AGpMcap foi ligeiramente modificado. No
AGpMcap este operador podera ser aplicado logo apés a selecdio dos pais e antes do
cruzamento ou reprodugdo. A probabilidade de ocorrer mutagio ¢ definida por um
numero fixo (por exemplo 1%). Para exemplificar, considere que a probabilidade de

mutacdo seja de 0,01. Serd sorteado um numero aleatorio pertencente ao intervalo



56

numeérico [0, 1], se este niimero for menor que ou igual a 0,01, a mutag3o serd aplicada
a cada um dos pais selecionados da seguinte forma: um gene do primeiro pai é
escolhido ao acaso e seu valor € substituido por outro também escolhido ao acaso que
ndo esteja presente no pai que esta sofrendo mutagdo. O mesmo procedimento é
aplicado ao segundo pai. Em seguida os pais sfio submetidos ao cruzamento ou
reprodug@o. Note que o operador genético de mutagio altera o cddigo genético dos
pais antes que estes sejam cruzados ou reproduzidos. Caso o nimero aleatério sorteado
determine que a mutacdo ndo deva ser aplicada os pais selecionados ndo sofrerdo
nenhuma modificagdo e participardo intactos do processo de cruzamento ou

reproducio.

5.2.9 Hipermutagéo Direcionada

A hipermutagdo direcionada é um operador heuristico proposto neste
trabalho, e € baseado no dominio (conhecimento) do problema. Seu objetivo principal
¢ fornecer de maneira rapida caracteristicas que possam contribuir para a evolugio da
populagdo. Este operador ¢ executado uma vez logo apds a geragdo da populagio
inicial e depois disso terd uma probabilidade fixa de ocorrer (por exemplo 0,5%) a

3

cada iteragdo (geragdo de filhos) do processo evolutivo pelo “método do estado

estavel”. Consiste em selecionar aleatoriamente uma porcentagem (por exemplo 10%)
dos individuos da populagdo atual e tentar melhorar a fitness de cada um dos
individuos selecionados experimentando trocar o valor de cada um dos genes do
individuo por valores (instalagdes candidatas) que nfo estejam presentes no individuo.
As trocas que mais contribuirem para a melhoria da qualidade (valor da fitness) do
individuo sfo realizadas. Em seguida, a lista R é reordenada pela ordem crescente do
valor da fitness dos individuos da lista.

O AGpMcap prossegue por algumas iteragdes executando os procedimentos
descritos anteriormente até que uma condigdo de término seja verificada, conforme

discutido a seguir.
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5.2.10 Condicéo de Término

No AGpMcap a condigdo de término utilizada é a de um numero fixo de
iteragdes ser completado. Uma iteragdo completa corresponde a selegdo dos pais € a
aplicagdo dos operadores (ndo necessariamente todos) descritos nos itens anteriores. A
iteracdo termina quando um ou os dois novos individuos depois de avaliados sdo
inseridos (ou ndo) na lista R. Quando dois novos pais forem selecionados, tera se
iniciado uma nova iteracdo. Os procedimentos bésicos do AGpMcap sdo apresentados

a seguir.

5.2.11 Procedimentos Basicos do AGpMcap

Primeiramente é definida a notagdo utilizada para os parimetros do

AGpMcap e em seguida cada etapa da implementag@o do algoritmo é explicada.

5.2.11.1 Notagdo utilizada

P = Tamanho da populagdo.

T = Numero da iteragdo atual.

Max_iter = Numero maximo de iteracdes.

Pyvur = Probabilidade de ocorrer mutag@o.

Pupermut prec = Probabilidade de ocorrer a hipermutagéo direcionada.

H = Numero de individuos da populagdo que serdo selecionados a cada vez que a

hipermutagéo direcionada for aplicada.

Lista R = Populag@o atual.
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5.2.11.2 O AGpMcap passo a passo

Passo 0 (Inicializagio do algoritmo)
Defina os valores de Max_iter, Py, Pampermur pirec € H .
Atribua um valor inteiro positivo para k e determine o mimero P de individuos da
populagdo através da férmula (5.2.1).
Gere aleatoriamente uma lista R com P individuos.
Avalie os P individuos e ordene a lista R pela ordem crescente do valor da fitness
dos individuos da lista.
Faga T =0.
Através da formula (5.2.3) selecione H individuos da lista R para aplicar a
hipermutagio direcionada.
Para cada um dos H individuos selecionados faca:
Experimente trocar o valor de cada gene do individuo por cada um dos valores
possiveis que ndo estejam presentes no individuo.
Realize as trocas que mais contribuirem para a melhoria da fitness do individuo
(se existirem).
Se alguma troca foi realizada, entgo:
Reavalie o individuo calculando sua fitness.
Depois que todos os individuos selecionados sofreram a hipermutagdo direcionada,
reordene a lista R pela ordem crescente do valor da fitness dos individuos da lista.
Passo 1 (Selegéo dos individuos pais)
FacaT=T+ 1.
Enquanto T < Méx_iter, faga:
Selecione dois individuos da lista R através da formula (5.2.3).
Caso contrario, apresente o primeiro individuo da lista R como uma solugdo
aproximada para o problema das p-medianas capacitado.

Passo 2 (Operador de mutagZo)
Sorteie um numero aleatdrio rnd € [0, 1].

Se rnd < Py, entdo:
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Escolha aleatoriamente um gene do pai 1 e aplique mutacéo ao gene.
Escolha aleatoriamente um gene do pai 2 e aplique mutagfo ao gene.
Caso contrario, va direto ao passo 3.
Passo 3 (Vetor de troca e operador de cruzamento)
Gere os vetores de troca vp; e vp, respectivamente para o primeiro e o segundo pai
selecionados.
Se existe em vp; pelo menos um gene para troca, entdo:
Sorteie um nuimero natural ¢ entre 1 e (jvp| — 1).
Transfira os ¢ primeiros genes do vetor vp; para o pai 2 da esquerda para a direita
e transfira os ¢ primeiros genes do vetor vp, para o pai 1 também da esquerda
para a direita.
Avalie os dois filhos gerados através do calculo da fitness de cada um deles.
Se o melhor filho gerado possuir uma fitness melhor que a do ultimo individuo
da lista R, entéo:
Insira o melhor filho gerado na lista R no lugar do ultimo individuo da lista R.
Se o outro filho gerado possuir uma fitness melhor que a do pentltimo
individuo da lista R, entfo:
Insira este filho na lista R no lugar do pentiltimo individuo da lista.
Caso contrario, continue.
Reordene a lista R pela ordem crescente do valor da fitness dos individuos da
lista.
Va direto ao passo 5.
Caso contrario, va ao passo 5.
Caso contrario, va ao passo 4.

Passo 4 (Operador de reprodug&o)
Copie integralmente apenas o primeiro pai selecionado para a lista R no lugar do
ultimo individuo da lista.
Reordene a lista R pela ordem crescente do valor da fitness dos individuos da lista.

Passo 5 (hipermutaggo direcionada)

Sorteie um numero aleatério md € {0, 1].
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Se md < Pyrpermut DIREC, €DtEO!
Através da formula (5.2.3) selecione H individuos da lista R para aplicar a
hipermutacdo direcionada.
Para cada um dos individuos selecionados faca:
Experimente trocar o valor de cada gene do individuo por cada um dos valores
possiveis que néo estejam presentes no individuo.
Realize as trocas que mais contribuirem para a melhoria da fitness do
individuo (se existirem).
Reavalie o individuo calculando seu valor da fitness.
Depois que todos os individuos selecionados sofreram a hipermutagio direcionada,
reordene a lista R pela ordem crescente do valor da fitness dos individuos da lista.
Volte ao passo 1.

Fim.
5.3 HEURISTICA BUSCA TABU PROPOSTA (BTpMcap)

Nesta segdo, s@o apresentados os aspectos computacionais da heuristica
busca tabu proposta no presente trabalho para o problema das p-medianas capacitado.

Para preservar a clareza dos procedimentos da heuristica BTpMcap que s&o
explicados a seguir, assim como na se¢do anterior, deve-se considerar que qualquer
conjunto Vp < ¥V com exatamente p instalagdes medianas pode sempre atender a todo o

conjunto de demandas.

5.3.1 Solug3o Inicial

Seja V o conjunto de todas as instalagdes medianas possiveis e Vp < V de tal
forma que (p — 1 < |Vp| < p + 1). Inicialmente um conjunto Vp < V é gerado
aleatoriamente com exatamente p instalagdes medianas. Este conjunto é uma solugdo
inicial para o problema das p-medianas. Em seguida, novas solugGes sdo geradas

conforme discutido a seguir.
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5.3.2 Movimentos e Restrigbes Tabu

Na heuristica BTpMcap, a geragdo de novas solugdes tem seu foco principal
em analisar a cada iteragdo uma solucdo vizinha a solucdo corrente. As solugdes
vizinhas sdo geradas basicamente por trés tipos de movimentos: adicionar (ADD),
retirar (DROP) ou trocar (SWAP) uma instalagdo candidata na solugo corrente.

Os movimentos ADD, DROP e SWAP responsaveis por gerar novas

solugdes funcionam da seguinte forma:

a) ADD: O movimento ADD chamado “construtivo” consiste basicamente em
selecionar uma instalagio candidata do conjunto {V— Vp} e coloca-la em Vp

de tal forma que o valor da nova solugéo obtida seja o melhor possivel,

b) DROP: O movimento DROP chamado “destrutivo” seleciona a instalagdo
mediana que retirada de Vp n#o torne Vp infactivel (sem capacidade de suprir
todo o conjunto de demandas) e que resulte no menor prejuizo possivel para

a solugdio ¢ “devolve” esta instalacdo para o conjunto {V— Vp}, retirando-a

de Vp;

c) SWAP: O movimento SWAP consiste em trocar a instalagdo de Vp que
substituida por outra do conjunto {V~ Fp} resulte no melhor resultado
possivel para a solugdo atual e que n3o tome Vp infactivel. Este movimento €
executado sempre que se tiver |Fp| = p entre a alternéncia da execugéo dos

movimentos ADD e DROP.
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5.3.2.1 Procedimento Escolha Movimento passo a passo

A execugdo dos movimentos ¢é iniciada logo apos uma solugdo inicial
aleatoria Fp com exatamente p medianas ter sido gerada e a seqiiéncia da execugdo dos

movimentos sera descrita a seguir.

Passo 1 (movimento DROP)
Retire de Vp e devolva a {V-Vp} a instalagdo mediana que resultar na melhor
solugdo possivel (obs.: Vp deve continuar atendendo todo o conjunto de demandas).

Passo 2 (movimento ADD)
Adicione a Vp a instalagio mediana de {/-Vp} que resultar na melhor solucéo
possivel.

Passo 3 (movimento SWAP)
Troque a instalacdo mediana de Vp que substituida por outra de {V~Fp} resulte na
melhor solugdo possivel (obs.: Vp deve continuar atendendo todo o conjunto de
demandas).

Passo 4 (movimento ADD)
Adicione a Vp a instalagdo mediana de {V~Fp} que resultar na melhor solugio
possivel.

Passo 5 (movimento DROP)
Retire de Vp e devolva a {V-Vp} a instalagio mediana que resultar na melhor
solug@o possivel (obs.: ¥p deve continuar atendendo todo o conjunto de demandas).

Passo 6 (movimento SWAP)
Troque a instalag@o mediana de Vp que substituida por outra de {V~Vp} resulte na
melhor solugdo possivel (obs.: Vp deve continuar atendendo todo o conjunto de

demandas).

Volte ao passo 1.

Fim.
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Para reduzir o tempo de processamento, na BTpMcap a qualidade (valor) de
cada possivel solugéo analisada sera fornecida pelo mesmo algoritmo simplificado da
designa¢do dos candidatos aos locais de provas utilizado para calcular a fitness nos
AGs, ja que cada possivel solugéo para 0 BTpMcap também representa um conjunto
de instalagdes candidatas a locais de provas. Ao final da BTpMcap para a melhor

solug@o encontrada sera aplicado o DeCan completo.

5.3.3 Restrigdes Tabu

As restrigdes tabu séo impostas somente aos movimentos ADD e SWAP. Isto
€, quando uma instalag@o candidata for adicionada ou trocada em Vp seré classificada
como tabu. O tempo que uma instalagdo candidata permanecera classificada como
tabu, mensurado em termo de numero de iteragGes, sera calculado da seguinte forma:

Seja Add_tempo(v;) o nimero da ultima iteragdo em que a instalagdo v; foi
adicionada ou trocada em Vp no lugar de outra, Iteragdo atual o nimero da iteracéo
atual e Tempo_tabu o numero de iteragdes que uma instalagdo candidata permanecera

classificada como tabu, tem-se que para toda instalag&o v;:

a) se Add tempo(v;) > Iteragdo_atual - Tempo tabu, a instalagio v, ¢

considerada tabu;

b) caso contréario a instala¢io v; ndo é considerada tabu.

Neste trabalho, o Tempo_tabu n@o ¢ fixo (varia em uma unidade para mais
ou para menos sempre que nfo houver melhoria na solugdo corrente durante por
exemplo, 20% do numero total de iteragdes do algoritmo). Testes empiricos mostraram
que, quando diferentes valores para Tempo_tabu podem ser determinados de forma

aleatoria a eficiéncia da heuristica BTpMcap aumenta.
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5.3.4 Critérios de Aspiragdo (Critérios para cancelamento das restrigdes tabu)

Em BT os critérios de aspiragiio s@o regras que determinam quando uma
restri¢éo tabu pode ser “quebrada” e um movimento classificado como tabu pode ser
realizado. Em geral, isto acontece quando o movimento considerado, de alguma forma,
conduz a busca para uma solugdo de alta qualidade. Na heuristica BTpMcap é

utilizado apenas um critério de aspira¢ido baseado em duas condigdes.

Ou seja, um movimento classificado como tabu pode ser realizado se:

a) a solug@o obtida com o movimento for uma solugéo factivel (|Vp| = p), e;

b) a solucdo gerada pelo movimento for melhor que a melhor solugéo

encontrada pela busca até o momento.

Se as duas condigdes do critério de aspiragdo forem verdadeiras qualquer
movimento classificado como tabu pode ser realizado. Com a inten¢8o de diversificar
a busca, além das restrigdes tabu € considerada ainda a freqiiéncia com que as
instalagdes foram adicionadas ou trocadas em Fp durante o processo de busca,

conforme discutido a seguir.

5.3.5 Diversificagdo € Memoria de Longo Prazo

A diversificagfio € utilizada na heuristica BTpMcap para escapar de solugdes
Otimas locais e é ativada pela chamada “meméria de longo prazo”. No presente
trabalho, a memoria de longo prazo € uma lista que armazena a freqiiéncia (nimero de
vezes) que cada instalagiio candidata foi adicionada ou trocada em Vp. Esta freqiiéncia

¢ representada por Freq(v;).
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E utilizada uma fungfio de penalizagio denotada por 11, onde:
Il(v)) = k.Freq(v,), (5.3.1)

¢ k € uma constante arbitraria. A penalizag¢do (5.3.1) é somada a distdncia de v; até
todos os pontos de demanda sempre que a instalag@o v; ¢ adicionado ou inserida em
Vp. Desta forma, procura-se inibir a escolha de instalagdes freqiientemente
selecionadas. Esta estratégia promove uma diversificagio na busca e tende a
investigar areas pouco exploradas do espaco de busca.

O parametro £ € escolhido de tal forma que a penalizagdo tenha um impacto
significativo sobre a func¢éo objetivo.

Na heuristica aqui apresentada foi utilizado k¥ = Maéximo{d(V, v)} fixo
durante todo o algoritmo e para todo ponto v; pertencente ao conjunto de demandas
onde d(V, v)) € a distincia do ponto de demanda v; até sua instalagio mais préxima.

De forma resumida, a agdo da diversificagdo nos procedimentos ADD e

SWAP ¢ a seguinte:

a) para cada instalagdo candidata v; — {}V-Fp} adicionado ou trocada em Fp

calcule a fungéo de penalizagdo (5.3.1);

b) para todo ponto de demanda v; que for designado para a instalagdo v;, faga:

d(v;, vj) =d(v; v;) + I1(v;) e entdo calcule o valor da solugéo;

c) escolha a instalago candidata v; ¢ {V~Fp} que adicionado ou trocada em Vp
resultou na melhor solugdo possivel (considerando-se a penalizagdo
imposta), efetue o movimento considerado e calcule o valor da solugio atual

(agora sem a penalizagdo).
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5.3.6 Estratégia da Oscilagio

Note que a seqiiéncia de movimentos ADD e DROP ndo geram sempre
solugdes factiveis, ou seja |Vp| ndo € necessariamente igual a p. A aceitagdo temporaria
destas solugdes infactiveis € um outro meio de escapar de 6timos locais. Embora possa
parecer o contrario, desta forma, o algoritmo tende a direcionar a busca mais
rapidamente para solugdes factiveis cada vez melhores. Esta estratégia chamada de
“oscilagdo” no presente trabalho foi implementada da seguinte forma:

Partindo—se da solucdo inicial aleatdéria com exatamente p instalagGes
medianas aplica—se o movimento DROP que retira uma instalagdo mediana deixando
Vp com p — 1 medianas. Em seguida ¢ aplicado o movimento ADD que adiciona uma
mediana fazendo com que Vp volte a conter exatamente p instalagdes medianas. Como
|[Vp| = p, o préoximo movimento executado é o movimento SWAP que troca uma
mediana de Vp por outra do conjunto {V-Vp} mantendo o conjunto Vp com
exatamente p medianas. Em seguida é aplicado o movimento ADD que adiciona uma
instalagdo mediana fazendo agora com que Vp passe a conter p + 1 medianas.
Novamente ¢ aplicado o movimento DROP que reduzird novamente o ntimero de
instalagdes medianas em Vp de p + 1 para p instalagdes. O préximo movimento
aplicado € o movimento SWAP e em seguida o processo ¢ reiniciado com aplicagdo do
movimento DROP e a seqiiéncia de movimentos descrita anteriormente é executada
até que uma condicdo de término seja verificada (por exemplo, um nimero maximo de
itera¢Bes ser completado).

A melhor solugdo factivel gerada ¢ armazenada e considerada como a
solugio factivel corrente. Esta solugfio sera apresentada como uma solugio
aproximada para o problema das p-medianas ao final da execugdo da heuristica
BTpMecap. Os procedimentos basicos realizados durante a execugdo da BTpMcap sdo

apresentados a seguir.
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5.3.7 Procedimentos Basicos da Heuristica BTpMcap

Primeiramente € definida a notagdo utilizada para os parimetros da

BTpMcap e em seguida cada etapa da implementagfio desta heuristica é explicada.

5.3.7.1 Notagdo utilizada

Max_iteragdes = Numero maximo de iteragGes.

Iteragdo_atual = Numero equivalente a iteragéo atual.

Tempo_tabu = Numero de iteragSes tabu.

Add_tempo(v;) = Numero da iteragdo em que a instala¢io candidata v; foi adicionada
ou inserida em F/p.

Freq(v;) = Numero de vezes que a instalacio candidata v; foi adicionada ou inseridaem 7p.

k = Maior distancia de um ponto de demanda v; até sua instalagio mais proxima.

Estabilidade = Numero maximo de itera¢gdes suportadas sem melhoria na solugio.

Sem_melhoria = Numero de iterages sem melhoria na solugdo corrente.

5.3.7.2 A heuristica BTpMcap passo a passo

Passo 0

Defina Max _iteragoes, Tempo_tabu, Estabilidade e calcule k.
Gere aleatoriamente um conjunto Vp < V com p instalagbes medianas, avalie Vp e
considere o conjunto ¥p como a solugdo corrente para o problema.
Faca Iteragdo atual = 0.
Sem_melhoria = 0.
Passo 1
Faca Iteracdo_atual = Iteragdo_atual + 1.
Enquanto Iteragdo atual < Max_iteracdes, faga:
Execute o procedimento Escolha Movimento.

Se o movimento executado for ADD ou SWAP, entio:
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Add _tempo(v;) = Iteracdo_atual.
Freq(v;) = Freq(v;) + 1.
Va para o passo 2.
Caso contrario, apresente a solugéo corrente como uma solugio aproximada para o
problema das p-medianas.
Passo 2
Calcule o valor da nova solug3o.
Passo 3
Se |Vp| = p e a solugdo atual ¢ melhor que a solugdo corrente, entdo:
Atualize a solugéo corrente.
Passo 4
Se ndo houve melhoria na solugéo corrente, entdo:
Sem_melhoria = Sem_melhoria + 1.
Caso contrario, Sem_melhoria = 0.
Passo 5
Se Sem_melhoria = Estabilidade, entdo:
Atribua aleatoriamente um novo valor para Tempo_tabu.
Volte ao passo 1.

Fim.
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6 TESTES COMPUTACIONAIS E RESULTADOS

Nesta se¢@o, ja de posse da nogdo geral dos algoritmos propostos neste
trabalho, primeiramente sdo apresentados os resultados reais obtidos com a designacgéo
dos 19.710 candidatos ao vestibular 2001 da UFPR pelo algoritmo DeCan e utilizados
pela CCCV. Porém, a primazia serd concedida as simulagdes computacionais
realizadas com as heuristicas AGpMcap ¢ BTpMcap que focalizam a selegéo de 26
locais de provas dentre 43 locais disponiveis de tal forma que a soma das distancias
percorridas pelos mesmos 19.710 candidatos ao vestibular 2001 da UFPR seja

minimizada. Todos os dados utilizados nas simulagdes realizadas sdo verdadeiros.

6.1 RESULTADOS COMPUTACIONAIS OBTIDOS PELO DeCan

Para o processamento do DeCan foi utilizado um computador Pentium III
550 MHz com 128 megabytes de RAM. O DeCan opera de forma deterministica, ou
seja, para um mesmo conjunto de locais de provas (nfio importando a ordem dos
locais) cada candidato ¢ designado sempre para o mesmo local de provas e na mesma
ordem de designa¢io. Como no problema real abordado os 26 locais de provas ja
estavam determinados, o DeCan foi aplicado, a pedido da CCCV, para efetuar a
designagdo dos 19.710 candidatos ao vestibular 2001 para os 26 locais de provas
mencionados na se¢do 2. Os resultados reais obtidos e utilizados pela CCCV no

concurso vestibular 2001 estdo na tabela 6.1.

Uma nova simulagdo da designagio destes 19.710 candidatos ao vestibular
2001 para os mesmos 26 locais foi feita. Nesta nova simulagdo o algoritmo DeCan
foi alterado. Ao invés de utilizar o calculo da diferenca, o DeCan utilizou o célculo
da razdo conforme discutido na segfio 5. Desta forma, foi possivel comparar os
resultados obtidos pelo DeCan no caso da utilizagdo do calculo da diferenca
proposta no presente trabalho e no caso da utilizagéo do célculo da razio proposta
por GILLET e JOHNSON (1973) apresentado na segéio 3. A tabela 6.2 apresenta os
resultados obtidos pelo DeCan nesta nova simulagdo computacional realizada com o

DeCan alterado para utilizar o célculo da razdo ao invés da diferenga.
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TABELA 6.1 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO DeCan E UTILIZADOS

PELA CCCV - UFPR NO VESTIBULAR 2001

ITENS AVALIADOS DADOS NUMERICOS
Total de candidatos designados 19.710
Total de locais de provas utilizados 26
Tempo de processamento do DeCan 00:09:29 (h:m:s)
Distancia média percorrida pelos candidatos 3.549,12m
Soma total das distancias percorridas 69.953.098,10 m
Menor distancia percorrida por um candidato 30,94 m
Disténcia do local mais préximo para o candidato do item anterior 30,94 m
Distancia do local mais distante para o candidato do item anterior 15.668,67 m
Maior disténcia percorrida por um candidato 19.917,74 m
Distancia do local mais préximo para o candidato do item anterior 18.393,04 m
Distancia do local mais distante para o candidato do item anterior 27.275,02m
Total de candidatos designados para o primeiro local mais préximo 10.499 (53%)
Total de candidatos designados para o segundo local mais préximo 3.452 (18%)

Total de candidatos designados para o terceiro local mais proximo

1.154 (6%)

Total de candidatos designados para o (4°, etc.) locais mais préximos

4,605 (23%)

SOMA TOTAL

19.710 (100%)

TABELA 6.2 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO DeCan ALTERADO

PARA O CALCULO DA RAZAO
ITENS AVALIADOS DADOS NUMERICOS

Total de candidatos designados 19.710
Total de locais de provas utilizados 26
Tempo de processamento do DeCan 00:09:29 (h:m:s)
Distancia média percorrida pelos candidatos 3.617,00 m
Soma total das disténcias percorridas 71.291.068,33 m
Menor distancia percorrida por um candidato 2482 m
Distancia do local mais préximo para o candidato do item anterior 24,82 m
Distancia do local mais distante para o candidato do item anterior 12.330,68 m
Maior distincia percorrida por um candidato 20.698,52 m
Distéancia do local mais préximo para o candidato do item anterior 19.173,82 m
Distancia do local mais distante para o candidato do item anterior 28.055,80 m
Total de candidatos designados para o primeiro local mais préximo 10.089 (51%)

Total de candidatos designados para o segundo local mais proximo

3.103 (16%)

Total de candidatos designados para o terceiro local mais proximo

1468 (7%)

Total de candidatos designados para o (4°, etc.) locais mais proximos

5.050 (26%)

SOMA TOTAL

19.710 (100%)
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Vale ressaltar que, como os candidatos designados pela CCCV foram
designados por primeiro, alguns locais de provas (respectivamente os locais: 3, 8,9 e
17, ver tabela 2.2 secéo 2) ficaram com poucas vagas disponiveis. O fato de haver
locais com um numero muito reduzido de vagas disponiveis prejudica as estatisticas do
resultado final obtido pelo DeCan. Para exemplificar suponha que as residéncias de
500 candidatos estejam mais préximas do local 8 (UFPR — Edificio Dom Pedro I —
Reitoria) que possui apenas 2 vagas disponiveis. Destes 500 candidatos certamente
498 ndo serdo designados para o primeiro local de provas mais préximo, o que
diminuira a porcentagem de candidatos designados para o primeiro local mais préximo
e aumentard a porcentagem de candidatos designados para os outros locais. Para
evidenciar a real eficiéncia do DeCan e afirmar o que foi dito, os 4 locais com menor
capacidade foram desconsiderados ¢ uma simulagdo da designag¢do dos 19.710
candidatos ao vestibular 2001 foi refeita considerando-se apenas os 22 locais de provas
restantes. Os resultados obtidos estfio na tabela 6.3 e podem ser comparados com os

resultados da tabela 6.2.

TABELA 6.3 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO DeCan EXCLUINDO-SE
4 LOCAIS COM POUCAS VAGAS

ITENS AVALIADOS DADOS NUMERICOS

‘Total de candidatos designados 19.710
Total de locais de provas utilizados 4 22
Tempo de processamento do DeCan 00:09:10 (h:m:s)
Distancia média percorrida pelos candidatos 3.550,18 m
Soma total das distdncias percorridas 69.973.959,16 m
Menor distincia percorrida por um candidato 30,94 m
Distancia do local mais préximo para o candidato do item anterior 30,94 m
Distancia do local mais distante para o candidato do item anterior 15.668,67 m
Maior distancia percorrida por um candidato 19.917,74 m
Distancia do local mais préximo para o candidato do item anterior 18.393,04 m
Distancia do local mais distante para o candidato do item anterior 27.275,02 m
Total de candidatos designados para o primeiro local mais proximo 10.828 (55%)
Total de candidatos designados para o segundo local mais préximo 4.003 (20%)
Total de candidatos designados para o terceiro local mais proximo 1.495 (8%)
Total de candidatos designados para o (4°, etc.) locais mais préximos 3.384 (17%)

SOMA TOTAL 19.710 (100%)
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Evidentemente, se no caso real os 26 locais de provas utilizados estivessem
com todas as vagas originais disponiveis a designagdo dos 19.710 candidatos ao
vestibular 2001 designados pelo DeCan teria sido bem mais satisfatoria. Os resultados
de uma simulagio do DeCan aplicado aos 19.710 candidatos considerando-se os 26
locais com todas as vagas disponiveis sdo apresentados a seguir. Primeiramente, a
tabela 6.4 apresenta a relagdo dos 26 locais utilizados com suas respectivas

capacidades totais (antes das designacdes feitas pela CCCV).

TABELA 64-0S 26 LOCAIS UTILIZADOS PARA A DESIGNACAODOS 19.710 CANDIDATOS
ATRAVES DO DeCan OOM SUAS RESPECTIVAS CAPACIDADES TOTAIS

LOCAL NOME DA INSTITUICAO CAPACIDADE TOTAL
1 UFPR - Centro Politécnico 3829
2 PUC - Pontificia Univ. Catdlica 7837
3 Col. Estadual Rio Branco 935
4 Col. Estadual do Parana 1865
5 Col. Nossa Senhora Medianeira 1240
6 UFPR - Setor de Ciéncias Agrarias 1300
7 Col. Estadual Leoncio Correia 1265
8 UFPR - Edificio Dom Pedro I - Reitoria 1155
9 UFPR - Edificio Dom Pedro II - Reitoria 1195
10  {Fund. Estudos Sociais PR - Fesp 885
11 |Col. Est. Prof. Loureiro Fernandes 1020
12 |Esc. Municipal Pref. Omar Sabbag 1230
13 ICol. Est. Prof.a. M. Aguiar Teixeira 630
14 |UFPR - Depto. de Educagéo Fisica 485
15 }Col. Padre Jodo Bagozzi 2340
16  |Col. Estadual Pedro Macedo 1305
17  |Instituto de Educagdo do Parand 1035
18 |Col. Estadual Cecilia Meireles 1000
19  |Escola Social Madre Clélia 1025

20 |Col. Estadual Paula Gomes 880
21 |Colégio Paranaense 1114
22 |UFPR - Setor C. Satide - sede Botanico 770
23 |Colégio Militar de Curitiba 1348
24 |Esc. Est. Republica O. do Uruguai 725
25  |Colégio Estadual Paulo Leminski 1259
26 |[UFPR - C. Ciéncias Florestais e Madeira 590
SOMA DAS CAPACIDADES 38262
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A tabela 6.5 apresenta os resultados obtidos pelo DeCan aplicado a situagéo
em que foram considerados novamente os mesmos 19.710 candidatos ao vestibular

2001 e os 26 locais com as capacidades totais.

TABELA 6.5 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO DeCan PARA 26 LOCAIS
COM AS CAPACIDADES TOTAIS

ITENS AVALIADOS DADOS NUMERICOS

Total de candidatos designados 19.710
Total de locais de provas utilizados 26
Tempo de processamento do DeCan 00:08:7 (h:m:s)
Distancia média percorrida pelos candidatos 2.99391m
Soma total das distancias percorridas 59.009.874,76 m
Menor distancia percorrida por um candidato 24,43 m
Distincia do local mais préximo para o candidato do item anterior 2443 m
Distancia do local mais distante para o candidato do item anterior 10.389,40 m
Maior distancia percorrida por um candidato 19.173,82 m
Distancia do local mais proximo para o candidato do item anterior 19.173,82 m
Distancia do local mais distante para o candidato do item anterior 28.055,80 m
Total de candidatos designados para o primeiro local mais préximo 14.541 (74%)
Total de candidatos designados para o segundo local mais préximo 4.157 (21%)
Total de candidatos designados para o terceiro local mais proximo 883 (4%)
Total de candidatos designados para o (4°, etc.) locais mais proximos 129 (1%)

SOMA TOTAL 19.710 (100%)

A seguir sdo realizadas novas simulages computacionais da designacgio dos
19.710 candidatos ao vestibular 2001 para 26 locais de provas. Porém, os 26 locais
utilizados s#o selecionados dentre os 43 locais de provas disponiveis em Curitiba para
a realizag@o das provas do vestibular da UFPR, e para isto sdo utilizadas as heuristicas

AGpMcap e BTpMcap.
6.2 TESTES COMPUTACIONAIS DAS HEURISTICAS AGpMcap E BTpMcap

Para testar a eficiéncia das heuristicas AGpMcap e BTpMcap foram
realizadas simulagdes computacionais utilizando-se os dados do vestibular 2001 da

UFPR. O objetivo destas simulagdes foi selecionar 26 locais de provas entre 43

possiveis (Cl= 421.171.648.758 combinagdes possiveis) e efetuar a designagdo dos
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19.710 candidatos ao vestibular 2001 da UFPR. A tabela 6.6 mostra a rela¢do dos 43
locais de provas que constam na relagio da UFPR como locais disponiveis para a
realizagdo das provas em Curitiba e que sdo utilizados nas simulagdes computacionais
seguintes. Evidentemente, os 26 locais que foram fixados como locais de provas para o
vestibular 2001 pelos membros da CCCV (conforme discutido na se¢o 2) estdo entre
os 43 locais utilizados nestas simulagGes. Todos os 43 locais foram considerados com
suas capacidades totais. Logo, os resultados desta se¢@o nao podem ser diretamente
comparados com os resultados das tabelas 6.1, 6.2 e 6.3, mas podem ser comparados
com os resultados da tabela 6.5. As simulagGes foram realizadas em um computador

Pentium III 550 MHz com 128 megabytes de RAM.

TABELA 6.6 - RELACAO DOS 43 LOCAIS DE PROVAS UTILIZADOS

NAS SIMULACOES (continua)
LOCAL NOME DA INSTITUICAO CAPACIDADE

1 UFPR - Centro Politécnico 3829
2 PUC - Pontificia Univ. Cat6lica 7837
3 Col. Est. Hildebrando de Aravjo 720
4 Col. Estadual Rio Branco 935
5 Col. da Policia Militar 595
6 Col. Estadual do Parana 1865
7 Col. Nossa Senhora Medianeira 1240
8 UFPR - Setor de Ciéncias Agrarias 1300
9 Col. Estadual Leéncio Correia 1265
10  |Esc. Estadual Prof. Brandio 560
11 Esc. Est. Tiradentes 550
12 Col. Marista Santa Maria 1800
13 |UFPR - Edificio Dom Pedro I - Reitoria 1155
14 |UFPR - Edificio Dom Pedro II - Reitoria 1195
15  |Fund. Estudos Sociais PR - Fesp 885
16  |Col. Est. Prof. Loureiro Fernandes 1020
17 [Esc. Municipal Pref. Omar Sabbag 1230
18  |Col. Est. Prof.a. M. Aguiar Teixeira 630
19  |{UFPR - Depto. de Educag@o Fisica 485
20  |Col. Est. Pres. Lamenha Lins 500
21 |Col. Padre Jodo Bagozzi 2340
22 |Col. Estadual Pedro Macedo 1305
23 |Instituto de Educac8o do Parana 1035
24 |Col. Est. Prieto Martinez 480
25  |Col. Est. Julia Wanderley 670
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TABELA 6.6 - RELACAO DOS 43 LOCAIS DE PROVAS UTILIZADOS

NAS SIMULACOES (concluszo)
LOCAL NOME DA INSTITUICAO CAPACIDADE

26  |Col. Estadual Cecilia Meireles 1000
27  |Col. Est. Guaira 650
28  |Esc. Est. Isolda Schmid 450
29 Col. Sagrado Coragio de Jesus 800
30 |Col. Est. Prof. Elias Abrahdo 680
31  |Col. Est. Segismundo Falarz 690
32 |Col. Est. Prof. Victor do Amaral 690
33 |Escola Social Madre Cléha 1025
34  |Col. Estadual Paula Gomes 880
35 Instituto Politécnico Estadual 650
36 {Esc. Est. Amancio Moro 660
37  |Colégio Paranaense 1114
38 |UFPR - Setor C. Satude - Sede Botanico 770
39  |Colégio Militar de Curitiba 1348
40  |Esc. Est. Reptblica O. do Uruguai 725
41  |Colégio Estadual Paulo Leminski 1259
42  {Uniandrade — Campus Jofo Negrio 1430
43 UFPR - C. Ciéncias Florestais e Madeira 590

SOMA DAS CAPCIDADES DE 1 ATE 43 50837

A seguir sdo apresentados os resultados obtidos nos testes computacionais

realizados com o AGpMcap.

6.2.1 Resultados Computacionais Obtidos pelo AGpMcap

O AGpMcap foi submetido a duas simulagdes computacionais para
selecionar 26 locais de provas dentre os 43 apresentados na tabela 6.6. Na primeira
simulagéo realizada foi utilizado o AGpMcap como descrito na segdo 5 (completo). Ja
na segunda simulagéo realizada o operador denominado “Hipermutacio direcionada”
proposto neste trabalho, foi “desligado”. Ou seja, na segunda simulagZo realizada este
operador néo foi executado nenhuma vez durante todo o processamento do AGpMcap.
O objetivo foi verificar a influéncia deste operador no AGpMcap. A seguir, sdo
apresentados os pardmetros atribuidos ao AGpMcap para a realizagdo da primeira
simulacdo e em seguida a tabela 6.7 apresenta os resultados obtidos na primeira

simulacéo.
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Tamanho da populagdo = 100.

Numero maximo de iteragdes = 1.000.

Probabilidade de ocorrer mutagio = 0,01 (1%).

Probabilidade de ocorrer a Hipermutag&o direcionada = 0,005 (0,5%).
Numero de individuos que sofrerdo hipermutagdo = 10 (10% da populagio).

TABELA 6.7 - RESULTA]?OS COMPUTACIONAIS OBTIDOS PELO AGpMcap NA PRIMEIRA
SIMULACAO (COM HIPERMUTACAO DIREC.)

ITENS AVALIADOS DADOS NUMERICOS
DADOS GERAIS
Total de candidatos designados 19.710
Total de locais de provas utilizados 43
Total de locais de provas selecionados 26
Tempo de processamento do AGpMcap 01:43:34 (h:m:s)
Numero de ocorréncias da Hipermutag@o direcionada 05
RESULTADOS OBTIDOS
Distancia média percorrida pelos candidatos 2.333,50m
Soma total das distincias percorridas 45.993.335,75 m
Menor distancia percorrida por um candidato 13,33m
Distancia do local mais préximo para o candidato do item anterior 13,33 m
Disténcia do local mais distante para o candidato do item anterior 10.624,54 m
Maior distancia percorrida por um candidato 16.400,27 m
Distancia do local mais préximo para o candidato do item anterior 16.400,27 m
Distancia do local mais distante para o candidato do item anterior 32.430,81m
Total de candidatos designados para o primeiro local mais proximo 16.264 (83%)
Total de candidatos designados para o segundo local mais préximo 2.057 (9%)
Total de candidatos designados para o terceiro local mais proximo 496 (3%)
Total de candidatos designados para o (4°, etc.) locais mais préximos 893 (5%)
SOMA TOTAL 19.710 (100%)

A tabela 6.8 apresenta a relagéo dos 26 locais de provas selecionados pelo

AGpMcap nesta primeira simulagéo.
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TABELA 6.8 - RELAGCAO DOS 26 LOCAIS DE PROVAS SELECIONADOS PELO
AGpMcap NA PRIMEIRA SIMULACAO REALIZADA

LOCAL NOME DA INSTITUICAO CAPACIDADE
1 UFPR - Centro Politécnico 3829
2 Col. Estadual Rio Branco 935
3 Col. da Policia Militar 595
4 Col. Nossa Senhora Medianeira 1240
5 Col. Estadual Ledncio Correia 1265
6 Esc. Estadual Prof. Brandio 560
7 Col. Marista Santa Maria 1800
8 UFPR- Edificio Dom Pedro II - Reitoria 1195
9 Col. Est. Prof. Loureiro Fernandes 1020
10 |{Esc. Municipal Pref. Omar Sabbag 1230
11 {Col. Padre Jodo Bagozzi 2340
12 |Col. Estadual Pedro Macedo 1305
13 |Instituto de Educagfo do Parana 1035
14  [Col. Est. Prieto Martinez 480
15 |Col. Est. Julia Wanderley 670
16  |Col. Estadual Cecilia Meireles 1000
17  ICol. Est. Guaira 650
18  |Esc. Est. Isolda Schmid 450
19  [Col. Est. Segismundo Falarz 690
20 |Col. Est. Prof. Victor do Amaral 690
21  |Escola Social Madre Clélia 1025
22 |Col. Estadual Paula Gomes 880
23 Esc. Est. Améancio Moro 660
24  |Colégio Paranaense 1114
25  [Uniandrade - Campus Jodo Negrio 1430
26 |UFPR - C. Ciéncias Florestais e Madeira 590

SOMA DAS CAPACIDADES 28678

A seguir sdo apresentados os parametros atribuidos ao AGpMcap para a
realizagdo da segunda simulagéo e a tabela 6.9 apresentando os resultados obtidos na

segunda simulag8o realizada com o AGpMcap.

Tamanho da populagéo = 100.

Numero maximo de iteragdes = 12.100.

Probabilidade de ocorrer mutagéo = 0,01 (1%).

Probabilidade de ocorrer a Hipermutagéo direcionada = 0 (0%).

Numero de individuos que sofrerdo Hipermutagdo = 0 (0%).



78

TABELA 6.9 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO AGpMcap NA SEGUNDA
SIMULACAO (SEM HIPERMUTACAO DIREC.)

ITENS AVALIADOS DADOS NUMERICOS
DADOS GERAIS
Total de candidatos designados 19.710
Total de locais de provas utilizados 43
Total de locais de provas selecionados 26
Tempo de processamento do AGpMcap 01:43:21 (h:m:s)
Numero de ocorréncias da Hipermutagio direcionada 00 (zero)
RESULTADOS OBTIDOS
Distincia média percorrida pelos candidatos 2.400,43 m
Soma total das distincias percorridas 47.312.540,92 m
Menor distancia percorrida por um candidato 57,49 m
Distancia do local mais préximo para o candidato do item anterior 57,49 m
Distancia do local mais distante para o candidato do item anterior 12.598,50 m
Maior distdncia percorrida por um candidato 16.400,27 m
Distancia do local mais préximo para o candidato do item anterior 16.400,27 m
Distancia do local mais distante para o candidato do item anterior 32.430,81 m
Total de candidatos designados para o primeiro local mais préximo 15.595 (79%)
Total de candidatos designados para o segundo local mais préximo 2.486 (13%)
Total de candidatos designados para o terceiro local mais préoximo 655 (3%)
Total de candidatos designados para o (4°, etc.) locais mais proximos 974 (5%)
SOMA TOTAL 19.710 (100%)

A tabela 6.10 apresenta a relagdo dos 26 locais de provas selecionados pelo

AGpMcap nesta segunda simulag@o.

TABELA 6.10 - RELACAO DOS 26 LOCAIS DE PROVAS SELECIONADOS
PELO AGpMcap NA SEGUNDA SIMULACAO (continua)

LOCAL NOME DA INSTITUICAO CAPACIDADE
1 UFPR - Centro Politécnico 3829
2 Col. Estadual do Parana 1865
3 Col. Nossa Senhora Medianeira 1240
4  {UFPR - Setor de Ciéncias Agrarias 1300
5  |Col. Estadual Leoncio Correia 1265
6  |Col. Marista Santa Maria 1800
7  [Fund. Estudos Sociais PR - Fesp. 885
8  |Esc. Municipal Pref. Omar Sabbag 1230
9  |UFPR - Depto. de Educaggo Fisica 485
10 |Col. Est. Pres. Lamenha Lins 500
11 |{Col. Padre Jodo Bagozzi 2340
12 |Col. Estadual Pedro Macedo 1305
13 |Instituto de Educagio do Parana 1035
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TABELA 6.10 - RELAGCAO DOS 26 LOCAIS DE PROVAS SELECIONADOS
PELO AGpMcap NA SEGUNDA SIMULACAO (conclusio)

LOCAL NOME DA INSTITUICAO CAPACIDADE
14  |Col. Est. Prieto Martinez 480
15 |Col. Est. Julia Wanderley 670
16  |Col. Estadual Cecilia Meireles 1000
17  |Col. Est. Guaira 650
18  {Esc. Est. Isolda Schmid 450
19 |Col. Sagrado Coraggo de Jesus 800
20  |Col. Est. Prof. Elias Abrahio 680
21  |Col. Est. Prof. Victor do Amaral 690
22 |Escola Social Madre Clélia 1025
23 |Col. Estadual Paula Gomes 880
24  |Instituto Politécnico Estadual 650
25  |Esc. Est. Amancio Moro 660
26  |Colégio Paranaense 1114

SOMA DAS CAPACIDADES 28828

A seguir, s@o apresentados os resultados computacionais obtidos nas

simulagdes realizadas com a BTpMcap.

6.2.2 Resultados Computacionais Obtidos pela BTpMcap

A BTpMcap foi submetida a uma simulagio computacional em que
selecionou 26 locais de provas entre os mesmos 43 locais utilizados nas simulagées do
AGpMcap. Primeiramente sio apresentados os pardmetros atribuidos a BTpMcap para
a realizag@o da simulagfio ¢ em seguida a tabela 6.11 apresenta os resultados obtidos

na simulag@o.

Numero maximo de iteragoes = 150.
Numero de iteragdes tabu = 10.

Numero maximo de iteragdes suportadas sem melhoria na solugdo = 30 (20%)).
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TABELA 6.11 - RESULTADOS COMPUTACIONAIS OBTIDOS PELA BTpMcap NA SIMULACAOREALIZADA

ITENS AVALIADOS DADOS NUMERICOS
DADOS GERAIS
Total de candidatos designados 19.710
Total de locais de provas utilizados 43
Total de locais de provas selecionados 26
Tempo de processamento da BTpMcap 01:23:37 (h:m:s)
Total de iteragées completadas 150
RESULTADOS OBTIDOS
Distancia média percorrida pelos candidatos 2367,34 m
Soma total das distancias percorridas 46.660.204,66 m
Menor distincia percorrida por um candidato 139,75 m
Distancia do local mais préximo para o candidato do item anterior 139,75 m
Distancia do local mais distante para o candidato do item anterior 16.458,98 m
Maior distancia percorrida por um candidato 16.400,27 m
Distancia do local mais proximo para o candidato do item anterior 16.400,27 m
Distancia do local mais distante para o candidato do item anterior 32.430,81 m
Total de candidatos designados para o primeiro local mais préximo 16.064 (82%)
Total de candidatos designados para o segundo local mais préximo 1.652 (8%)
Total de candidatos designados para o terceiro local mais préximo 802 (4%)
Total de candidatos designados para o (4°, etc.) locais mais proximos 1.192 (6%)
SOMA TOTAL 19.710 (100%)

A tabela 6.12 apresenta a relacdo dos 26 locais de provas selecionados pela

BTpMcap na simulagdo computacional realizada.

TABELA 6.12 - RELACAO DOS 26 LOCAIS DE PROVAS SELECIONADOS
PELA BTpMcap NA SIMULACAO REALIZADA (continua)

LOCAL NOME DA INSTITUICAO CAPACIDADE
1 Col. Est. Hildebrando de Aratjo 720
2 Col. Estadual Rio Branco 935
3 Col. Nossa Senhora Medianeira 1240
4 Col. Estadual Ledncio Correia 1265
5  |Esc. Estadual Prof. BrandZo 560
6  |Col. Marista Santa Maria 1800
7  |UFPR - Edificio Dom Pedro II - Reitoria 1195
8 Col. Est. Prof. Loureiro Fernandes 1020
9  |Esc. Municipal Pref. Omar Sabbag 1230
10  [Col. Est. Pres. Lamenha Lins 500
11 {Col. Padre Jo3o Bagozzi 2340
12 |Col. Estadual Pedro Macedo 1305
13 |Instituto de Educac¢do do Parana 1035
14  |Col. Est. Prieto Martinez 480
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TABELA 6.12 - RELACAO DOS 26 LOCAIS DE PROVAS SELECIONADOS
PELA BTpMcap NA SIMULACAO REALIZADA (conclusgo)

LOCAL NOME DA INSTITUICAO CAPACIDADE
15 |Col. Est. Julia Wanderley 670
16  |Col. Estadual Cecilia Meireles 1000
17  |Esc. Est. Isolda Schmid 450
18  |Col. Sagrado Coragéo de Jesus 800
19  |Col. Est. Prof. Elias Abrahfo 680
20  |Col. Est. Segismundo Falarz 690
21 |Col. Est. Prof. Victor do Amaral 690
22  |Escola Social Madre Clélia 1025
23 Col. Estadual Paula Gomes 880
24  |Esc. Est. Amancio Moro 660
25  |Esc. Est. Republica O. do Uruguai 725
26  |Colégio Estadual Paulo Leminski 1259

SOMA DAS CAPACIDADES 25154

A seguir, € feita uma breve andlise dos resultados obtidos pelas heuristicas
AGpMcap e BTpMcap nas simulagdes computacionais descritas anteriormente. Sdo
apresentadas também as conclusdes do presente trabalho e algumas sugestdes para

trabalhos futuros.
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7 ANALISE DOS RESULTADOS E CONCLUS@ES

Esta secdo tem por objetivo fornecer a analise dos resultados apresentados nas
segdes anteriores destacando o desempenho das técnicas apresentadas no presente
trabalho. Sugestdes para aprimorar a resolugdo do problema das p-medianas e do

problema real descrito também sdo fornecidas.

7.1 ANALISE DOS RESULTADOS OBTIDOS PELO AGpMcap

O objetivo das simulagbes computacionais realizadas com o AGpMcap foi
demonstrar o poder da heuristica denominada algoritmos genéticos. Desta forma, n3o se
teve a preocupacio de realizar dezenas de simula¢gdes nem de submeter o algoritmo a um
longo tempo de processamento para forgar o surgimento de boas solugdes. Considerando-
se P =100, ao gerar a populagéo inicial o AGpMcap analisa um total de 100 solu¢des. Em
1.000 iteracdes sdo gerados aproximadamente 2.000 novos individuos. A cada vez que o
operador de hipermutagdo direcionada foi acionado, considerando-se os paridmetros
utilizados na primeira simulagdo realizada, foram analisadas 4.420 solugdes. Como
durante todo o processamento da primeira simulagdo o operador de hipermutagéo
direcionada foi acionado 5 vezes, foram analisadas mais 22.100 solug¢des. Portanto, na
primeira simulag&o realizada durante todo o processamento o AGpMcap analisou um total
de aproximadamente 24.200 solugSes (nZo necessariamente distintas) entre as
421.171.648.758 solugdes distintas possiveis para o problema considerado. Como o
problema real considerado s € resolvido uma vez por ano, ndo haveria problema algum
se 0 AGpMcap fosse executado durante algumas horas ou até mesmo dias para resolvé-lo.
Na solugfo encontrada pelo AGpMcap na primeira simulagéo, 83% dos candidatos foram
designados para o primeiro local mais proximo de suas residéncias. Evidentemente,
dificilmente este nimero seria igual a 100% a n#o ser que as capacidades dos locais de
provas fossem ilimitadas. Ainda, 92% dos candidatos foram designados para o primeiro

ou segundo locais mais préximos de suas residéncias.
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Na segunda simulag¢@o realizada, o objetivo foi verificar o efeito do operador de
hipermutagédo direcionada no AGpMcap. Como durante o processamento desta segunda
simulagdo este operador ndo foi acionado nenhuma vez, o numero total de iteragdes teve
que ser aumentado para que o algoritmo analisasse o mesmo numero de solugdes
analisadas na primeira simulagdo. O tempo total de processamento foi praticamente igual
ao tempo de processamento da primeira simulagdo realizada. A solugdo obtida foi inferior
a obtida na primeira simulagdo. Considerando-se os resultados obtidos pela segunda
simulag@o, 79% dos candidatos seriam designados para o primeiro local de provas mais
proximo de suas residéncias e 92% para o primeiro ou segundo locais mais proximos. O
fato da obtencfio do bom resultado na segunda simulagdo deve-se exclusivamente ao
poder dos algoritmos genéticos, ja que, em ultima analise, sem o operador de
hipermutacdo direcionada o AGpMcap opera basicamente como um AG convencional.
Com base nos resultados obtidos nas duas simulagdes computacionais a utilizagdo do
operador de hipermutagéo direcionada proposto neste trabalho, € bastante vantajosa. Este
operador tem a capacidade de analisar € melhorar um grande nimero de solugdes durante
a execucdo do AGpMcap, o que tende a direcionar a populacdo de solug¢des-candidatas
para niveis cada vez mais elevados de adaptagdo ao problema. Um fato importante é que a
média das distancias percorridas pelos candidatos até os locais de provas foi menor na
primeira simulagdo computacional realizada com o AGpMcap, o que indica a vantagem

da utilizag@o do operador de hipermutagio direcionada.
7.2 ANALISE DOS RESULTADOS OBTIDOS PELA BTpMcap

O objetivo da simulagdio computacional realizada com a BTpMcap foi
demonstrar o poder da heuristica busca tabu. Desta forma, nfo se teve a preocupacio de
realizar dezenas de simulagdes nem de submeter o algoritmo a um longo tempo de
processamento para forgar o surgimento de boas solugdes. Considerando-se os pardmetros
utilizados ¢ os dados da simulagéo realizada, a BTpMcap analisou 1 solug#o inicial, 26 ou
27 solugdes a cada movimento DROP realizado, 17 ou 18 solugdes a cada movimento
ADD e 442 solugdes a cada movimento SWAP num total de aproximadamente 24.301
solugdes (ndo necessariamente distintas) durante o processamento das 150 iteragdes
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completadas. Em relagdo ao tempo de processamento a BTpMcap demorou
aproximadamente 1h20min para finalizar o processamento. Na solugio encontrada pela
BTpMcap 82% dos candidatos foram designados para o primeiro local mais préximo de

suas residéncias € 90% para o primeiro ou segundo locais mais proximos.

7.3 COMPARANDO AGpMcap E BTpMcap

Em relagdo a qualidade da solugdo nas simulagdes computacionais realizadas o
AGpMcap com o operador de hipermutagio direcionada obteve uma solugdo melhor que
a BTpMcap. Durante todo o processamento o AGpMcap analisou um total de 24.200
solugdes contra 24.300 solugBes analisadas pela BTpMcap. Com relagdo ao tempo de
processamento a BTpMcap foi aproximadamente vinte minutos mais rapida que o
AGpMcap e analisou 100 solugdes a mais. Os resultados das simula¢Ses computacionais

realizadas no presente trabalho so apresentados na tabela 7.1.

TABELA 7.1 - RESULTADOS OBTIDOS NAS SIMULACOES COMPUTACIONAIS
REALIZADAS COM O AGpMcap E A BTpMcap

AGpMcap AGpMcap
DADOS ANALISADOS com hipermutag3o § sem hipermutagio BTpMcap
direcionada direcionada

Total de candidatos designados 19.710 19.710 19.710
Total de locais de provas utilizados 43 43 43
Total de locais de provas selecionados 26 26 26
Tempo de processamento 01:43:34 (homs) | 01:43:21 ¢hemis) | 01:23:37 (hmis)
Ntimero de solugdes analisadas 24.200 24.200 24.300
Distincia média percorrida pelos candidatos 2.333,50m 2.400,43 m 2367,34m
Soma total das distincias percorridas 45993.335,75m | 47.312.540,92m } 46.660.204,66 m
Menor distincia percorrida por um candidato 13,33 m 5749 m 139,75 m
Distincia do local mais proximo para o candidato do item anterior 13,33 m 57,49 m 139,75 m
Distincia do local mais distante para o candidato do item anterior 10.624,54 m 12.598,50 m 16458,98 m
Maior distancia percorrida por um candidato 16.400,27 m 16.400,27 m 16.400,27 m
Distincia do local mais préximo para o candidato do item anterior 16.400,27 m 16.400,27 m 16,400,227 m
Distincia do local mais distante para o candidato do item anterior 32.430,81 m 32.430,81m 32.430,81 m
Total de candidatos designados para o primeiro local mais proximo 16.264 (83%) 15.595 (79%) 16.064 (82%)
Total de candidatos designados para o segundo local mais proximo 2.057 (9%) 2.486 (13%) 1.652 (8%)
Total de candidatos designados para o terceiro local mais proximo 496 (3%) 655 (3%) 802 (4%)
Total de candidatos designados para o (4°, etc.) locais mais proximos 893 (5%) 974 (5%) 1.192 (6%)
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7.4 CONCLUSOES

No presente trabalho, foram aplicados os principios basicos das heuristicas
busca tabu e algoritmos genéticos para desenvolver duas heuristicas capazes de resolver o
problema de localizag@o de instalagdes denominado problema das p-medianas capacitado.
O objetivo principal foi explorar as caracteristicas de cada uma das heuristicas utilizadas e
demonstrar que ambas podem gerar boas solugdes quando bem aplicadas ao problema das
p-medianas capacitado. Foi também desenvolvido um algoritmo capaz de otimizar a
designagdo de candidatos ao vestibular aos locais de provas mais proximos de suas
residéncias. Foram realizados testes computacionais para verificar a eficiéncia das
heuristicas desenvolvidas. Nos testes computacionais realizados, com relagdo a qualidade
da solugdo encontrada a heuristica AGpMcap, aperfeigoada com o uso do operador de
hipermutacdo direcionada proposto neste trabalho, obteve maior éxito que a heuristica
BTpMcap, pois, conseguiu encontrar uma solu¢io de melhor qualidade. Com base nos
resultados obtidos nos testes computacionais realizados, as duas heuristicas desenvolvidas
demonstraram que ¢é possivel otimizar de forma simples e bem sucedida a selegdo dos
locais de provas onde os candidatos ao vestibular deverdo realizar provas. Esta otimizagéo
pode propiciar maior comodidade para os candidatos que terdo oportunidade de realizar as

provas em locais préximos as suas residéncias.

7.5 SUGESTOES PARA TRABALHOS FUTUROS

Com o propdsito de aprimorar os resultados e métodos apresentados neste

trabalho, seguem algumas sugestdes que poderfio servir para trabalhos futuros.

a) com referéncia ao problema das p-medianas, uma opgdo seria a de pesquisar
novas heuristicas que se adaptem ao problema e aplica-las para resolvé-lo. Uma

heuristica recente que pertence aos algoritmos evolucionarios chamada Scatter
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Search e sua forma generalizada chamada Path Relinking poderia ser uma das
heuristicas pesquisada. Segundo GLOVER (1999) para alguns problemas
combinatoérios esta heuristica tem demonstrado resultados superiores aos dos

algoritmos genéticos e busca tabu;

b) os resultados obtidos pelo algoritmo da designagéo dos candidatos ao vestibular
aos locais de provas desenvolvido no presente trabalho (DeCan) foram bastante
satisfatorios mas, por uma simples falta de tempo, ndo foi possivel aprimorar
mais este algoritmo. No entanto, a intui¢do indica que o potencial do mesmo
ainda nfo foi totalmente explorado. Uma sugestfo seria a de aperfeigoar este
algoritmo que poderia servir ndo sé para a designagdo de candidatos aos locais
de provas mas que fosse capaz de otimizar, por exemplo, a distribui¢do de

produtos industriais a pontos de demanda considerando-se miltiplos depdsitos;

c) com relag@o ao problema real resolvido no presente trabalho, sele¢do de locais
de provas e designag@o dos candidatos ao vestibular para os locais de provas, o
problema poderia ser analisado de forma mais completa. Poderia ser prevista,
por exemplo, a otimizag@o do percurso seguido pelos veiculos que realizam a
entrega das provas nos locais selecionados. Outro fator que poderia ser
considerado é o de encontrar solugées de boa qualidade para os candidatos mas

com o menor numero possivel de locais de provas utilizados.
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