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What isjazz, Mr. Armstrong?

My dear lady, as long as you have to ask that 

question, you wid neverknowit.
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RESUMO

Os problemas de localização de instalações (facility location) possuem várias 
aplicações como em telecomunicações, distribuição e transporte industrial. Um dos 
problemas de localização de instalações mais conhecido é o problema das p-medianas 
(HAKIMI, 1965) e (REVELLE, 1970). Neste trabalho é apresentada uma aplicação do 
problema das p-medianas capacitado a um problema real. É proposto um algoritmo 
que otimiza a designação de candidatos ao vestibular para os locais de provas mais 
próximos de suas residências. Para resolver o problema das p-medianas capacitado são 
propostas duas heurísticas modernas adaptadas ao problema. A primeira é baseada em 
um algoritmo genético simples que utiliza os operadores genéticos usuais e um 
operador heurístico chamado “hipermutação direcionada”. A segunda heurística 
proposta é baseada em busca tabu e usa memória de curto e de longo prazo para 
controlar a busca. Também utiliza uma estratégia de oscilação e tempo tabu aleatório 
para tentar evitar a repetição de soluções. As duas heurísticas propostas são utilizadas 
para resolver o problema real mencionado anteriormente, caracterizado como das p- 
medianas capacitado.

Palavras-chave: localização de instalações, p-medianas, designação, algoritmos 
genéticos, busca tabu.
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ABSTRACT

Facility location problems have several applications in telecommunications, 
distribution and industrial transportation. One of the most well known facility 
location problems is the p-median problem (HAKIMI, 1965), (REVELLE, 1970). 
This work presents an application of the capacitated p-median problem to a real- 
world problem. This work proposes an algorithm that optimizes the designation of 
candidate students (who have to pass a university admission exam) to exam 
facilities closer to their residences. In order to solve the capacitated p-median 

problem we propose two modem heuristics adapted to the problem. The first one is 
based on a simple genetic algorithm that uses both conventional genetic operators 
and a new heuristic operator called “directed hipermutatiori\ The second one is 
based on tabu search and uses both short-term and long-term memory to control the 
search. It also uses an oscillation strategy and random tabu tenure in an attempt to 
avoid the generation o f repeated Solutions. The two proposed heuristics are used to 
solve the above-mentioned real-world problem, cast as a capacitated p-median 
problem.

Keywords: facility location, p-median, designation, genetic algorithms, tabu search.
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1 INTRODUÇÃO

Os problemas de localização de instalações (facility location) possuem várias 

aplicações como em telecomunicações, distribuição e transporte industrial. Um dos 

problemas de localização de instalações mais conhecido é o problema das p-medianas 

(HAKIMI, 1965) e (REVELLE, 1970). Este problema consiste em localizar p  

instalações em um espaço considerado (espaço euclidiano, por exemplo) que devem 

atender a n pontos de demanda de tal forma que a soma das distâncias percorridas de 

cada ponto de demanda até a instalação mais próxima seja minimizada.

No caso do problema das p-medianas não-capacitado, considera-se que cada 

instalação candidata a mediana pode atender a um número ilimitado de pontos de 

demanda. No caso do problema das p-medianas capacitado, cada instalação candidata 

a mediana possui uma capacidade limite fixa e não pode atender a mais pontos de 

demanda do que sua capacidade permite (TRAGANTALERNGSAK et al., 1999). O 

problema das p-medianas pertence a uma classe de problemas chamados NP-hard 

(KARIV e HAKIMI, 1979) (até o momento, não foi encontrado um algoritmo que os 

resolva de forma exata cujo número de operações seja limitado por um polinômio no 

número de dados do problema). Consequentemente, até mesmo as heurísticas 

especializadas em resolver estes problemas requerem considerável esforço 

computacional. Uma das heurísticas mais conhecidas para resolver o problema das p- 

medianas é o algoritmo de TEITZ e BART (1968). Esta heurística é baseada na 

substituição de medianas na solução e seu objetivo é, a partir de uma solução inicial, 

melhorar o valor da função objetivo a cada iteração. Esta heurística é fácil de ser 

implementada e produz boas soluções para problemas pequenos, principalmente 

quando aplicada várias vezes ao mesmo problema com diferentes soluções iniciais.

Recentemente muitos pesquisadores têm focalizado suas pesquisas em 

desenvolver heurísticas modernas para resolver o problema das p-medianas. Em geral, 

estas heurísticas podem gerar resultados melhores do que uma heurística que
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simplesmente substitui medianas na solução. Algumas heurísticas modernas como os 

algoritmos genéticos e busca tabu têm demonstrado que são adequadas para o 

problema das p-medianas (ERK.UT, em fase de publicação). Os algoritmos genéticos 

são algoritmos computacionais de busca baseados nos mecanismos de evolução natural 

e na genética e podem ser aplicados com sucesso a inúmeros problemas combinatórios 

(GOLDBERG, 1994). A busca tabu é uma heurística computacional de busca e utiliza 

uma “memória” que tenta impedir que a busca fique restrita a uma determinada área 

do espaço de busca considerado (GLOVER, 1995).

1.1 ESTRUTURA DO TRABALHO

Na seção 2 o problema das p-medianas e p-medianas capacitado são 

formalmente apresentados. Na seção 3 são apresentados os métodos utilizados para a 

implementação de dois algoritmos propostos no presente trabalho para resolver o 

problema das p-medianas capacitado. Na seção 4 são feitas referências a alguns 

trabalhos anteriormente publicados sobre localização de instalações, algoritmos 

genéticos e busca tabu aplicados ao problema das p-medianas. Na seção 5 são 

propostos os algoritmos utilizados no presente trabalho para resolver o problema das 

p-medianas capacitado. Na seção 6 os algoritmos desenvolvidos no presente trabalho 

são submetidos a testes computacionais. Na seção 7 são feitas a análise dos resultados 

obtidos nos testes computacionais da seção 6 e as conclusões do presente trabalho.



3

2 DESCRIÇÃO DO PROBLEMA DAS P-MEDIANAS

Esta seção é o ponto de partida desse trabalho. Nela, o problema de 

localização de instalações chamado problema das p-medianas é definido. Esta 

definição é estendida a um caso particular do problema das p-medianas chamado 

problema das p-medianas capacitado. É feita também a descrição de um problema real 

que pode ser interpretado como um modelo real do problema das p-medianas 

capacitado.

2. 1 PROBLEMA DAS P-MEDIANAS

O objetivo do problema das p-medianas é determinar p  instalações em um 

conjunto predefinido com n (n > p) instalações candidatas que deverão atender a um 

conjunto existente de demandas de forma que, a soma total das distâncias percorridas 

de cada ponto de demanda até a instalação mais próxima seja a mínima possível. As p  

instalações que pertencerem a uma solução qualquer para o problema são chamadas de 

medianas (por isso, p-medianas).

2.1.1 Definição do Problema das p-medianas

Considerando-se todos os vértices de um grafo dado como potenciais 

medianas, o problema das p-medianas pode ser definido como segue: seja G = (V, A) 

um grafo não direcionado onde V são os vértices e A as arestas. Deve-se encontrar um 

conjunto de vértices Vp c  V (conjunto de medianas) com cardinalidade p, tal que a 

soma das distâncias de cada vértice restante em {V -  Vpj (conjunto das demandas) até 

seu vértice mais próximo em Vp seja a mínima possível.

É apresentada a seguir uma formulação do problema das p-medianas como 

um problema de Programação Inteira, desenvolvida por REVELLE e SWAIN (1970). 

Esta formulação permite que cada vértice do grafo seja considerado, ao mesmo tempo,
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como demanda e instalação (potencial mediana), embora em muitos casos demandas e 

instalações pertençam a conjuntos disjuntos.

M i n Ê Ê a i d ü x ü (2.1.1)
<=i j = i

sujeito a:

È x ^ l ,  i = 1, 2 ,..., n (2.1.2)
j = i

Xij<yj, i ,j  = 1 , 2 , ( 2 . 1 . 3 )

t . y , = p  (2.i.4)
j = i

Xij, yj 6 {0, 1}, i, j = 1, 2 ,..., n (2.1.5)

onde,

n = número total de vértices do grafo

a. = demanda do vértice j.

djj = distância do vértice i ao vértice j.

p = número de instalações utilizadas como medianas.

A função objetivo (2.1.1) minimiza a soma das distâncias (com pesos) dos 

vértices de demanda até o conjunto de medianas. O conjunto de restrições (2.1.2) 

garante que todos os vértices demanda serão designados para exatamente uma única 

mediana. O conjunto de restrições (2.1.3) proíbe que um vértice demanda seja 

designado para uma instalação que não esteja selecionada como mediana. O número 

total de vértices medianas (instalações selecionadas) é definido pela restrição (2.1.4) 

como sendo igual a p. A  restrição (2.1.5) garante que os valores das variáveis de 

decisão x e y sejam binários (0 ou 1).

í 1, se o vértice i for designado para a instalação j 
1J [ 0, caso contrário

í 1, se o vértice j for uma instalação utilizada como mediana 
[ 0, caso contrário
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2.1.2 Problema das p-medianas Capacitado

Considerando-se todos os vértices de um grafo dado como potenciais 

medianas, o problema das p-medianas capacitado pode ser definido como segue: seja 

G = (V, A) um grafo não direcionado onde V são os vértices, todos com restrições de 

capacidade, e A as arestas. Deve-se encontrar um conjunto de vértices Vp c  V 

(conjunto de medianas) com cardinalidade p, tal que a soma das distâncias de cada 

vértice restante em { V -  Vp) (conjunto das demandas) até seu vértice mais próximo em 

Vp seja a mínima possível. Além disso, deve-se garantir que todos os pontos de 

demanda sejam atendidos sem que as restrições de capacidade das instalações 

medianas sejam violadas.

Em relação ao problema das p-medianas, o problema das p-medianas 

capacitado possui as seguintes restrições adicionais:

a) cada instalação pode suprir apenas um número limitado de demandas 

(restrições de capacidade);

b) todos os pontos de demanda devem ser atendidos dentro das capacidades das 

respectivas instalações selecionadas como medianas.

2.3 ALGORITMO DE TEITZEBART

Uma das heurísticas mais conhecidas para o problema das p-medianas é a 

desenvolvida por TEITZ e BART (1968) e é conhecida como algoritmo das p- 

m edianas de T E IT Z  e BART. Esta heurística é baseada na substituição de vértices e 

seu objetivo é, a partir de uma solução inicial, melhorar o valor da função objetivo a 

cada iteração. Esta heurística é fácil de ser implementada e produz boas soluções para 

problemas pequenos, principalmente quando aplicada várias vezes ao mesmo 

problema com diferentes soluções iniciais.
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Considerando-se todos os vértices de um grafo dado como potenciais 

medianas, o algoritmo de TEITZ e BART para o problema das p-medianas pode ser 

explicado como segue: seja G = (V, A) um grafo não direcionado onde V são os 

vértices e A as arestas. Seja v; um vértice qualquer pertencente a V. Chama-se núm ero 

de transm issão à soma das menores distâncias existentes entre o vértice vt e todos os 

outros vértices do grafo.

Seja n o número total de vértices do grafo, o número de transmissão é dado por: 

c t ( v í )  =  X  w j  d ( v »  vj ) >  v »  vj  e  V  ( 2 . 3 . 1 )

j=i

onde,

d(v„ Vj) é a menor distância entre vl e vy e Wj é um peso associado ao vértice vy.

Assim, vm é uma mediana se, entre todos os vértices do grafo, é aquele que 

produz a menor soma total das distâncias desde si próprio até cada um dos outros 

vértices do grafo.

Ou seja:

a(vm) = mínimo[a(v/)], V vt e V. (2.3.2)

Para o problema de encontrar p-medianas (p > 1), seja Vp c  V e \Vp\ = p, 

calcula-se:

d(Vp, vj) = mínimo[d(v;, vy)], V v,- e  Vp, vy e V (2.3.3)

e

G(VP) = Ê  Wj ã(Vp, V]), V Vj s  V. (2.3.4)
j = l



7

Um conjunto de p  vértices é a solução ótima para o problema das p-medianas 

se, entre todos os outros conjuntos de p  vértices do grafo, é aquele que produz a menor 

distância total desde si próprio até todos os outros vértices do grafo. Portanto, deve-se ter:

o(Vp_solução_ótima) = mínimo[<j(^)], V (2.3.5)

O objetivo do algoritmo de TEITZ e BART é, portanto, encontrar um 

conjunto Vp em V, para o qual o número de transmissão seja mínimo.

2.3.1 Procedimentos Básicos do Algoritmo das p-medianas de Teitz e Bart

São descritos a seguir os procedimentos básicos executados pelo algoritmo 

das p-medianas de TAITZ e BART.

Passo 0

Selecione aleatoriamente um conjunto Vp a  V, com \VP\ = p  para formar uma 

solução inicial para o problema.

Passo 1

Rotule todos os vértices v; e  {V -  Vp} como “não analisados”.

Passo 2

Enquanto existirem vértices não analisados em { V -  Vp} faça:

Selecione um vértice não analisado v, e {V -  Vp} , e calcule a redução Ag do

número de transmissão, para todos os vértices vy pertencentes a Vp, ou seja:

Ag = cr( Vp) -  a(Vp u  {V;} -  {vy}), V vy e Vp. (2.3.6)

Faça Ag_máxim0 =  máximo[Ày], para todo Ag calculado anteriormente. 

Se Ag_màximo > 0 então:

Faça Vp = (Vp u  {v,} -  {v,}) e insira vy em { V -  Vp}.

Rotule vj como “analisado”.

Caso contrário continue.

Rotule V; como “analisado”.



Se durante a execução do Passo 2, houver alguma modificação no conjunto Vp, 

então:

Volte ao Passo 2 e continue a execução do algoritmo.

Caso contrário, PARE e apresente o conjunto Vp como uma solução aproximada 

para o problema das p-medianas.

Fim.

A seguir é descrito um problema real que pode ser interpretado como um 

exemplo concreto do problema das p-medianas capacitado.

2.4 UM PROBLEMA REAL

No ano de 1912 foi fundada na cidade de Curitiba (PR) a Universidade 

Federal do Paraná (UFPR) -  a Universidade mais antiga do Brasil. Nestes 88 anos a 

instituição evoluiu abrindo novos cursos, ganhando reconhecimento nacional e 

internacional através de suas pesquisas e pesquisadores e estreitando suas relações 

com a sociedade através da extensão. Atualmente a instituição mantém 61 opções de 

cursos de graduação, 84 de especialização, 37 de mestrado e 21 de doutorado.

O concurso vestibular é a principal via de ingresso aos cursos de graduação 

ofertados pela UFPR. A seleção de candidatos para ingresso nos cursos de graduação 

da UFPR é realizada mediante concurso vestibular, que consiste na aplicação de 

provas que avaliam conhecimentos do ensino médio ou curso equivalente. Podem 

candidatar-se às vagas os interessados que estejam cursando a última série do ensino 

médio ou aqueles que já  possuem certificado de conclusão do ensino médio ou curso 

equivalente.

Passo 3

8
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O setor responsável pela organização do concurso vestibular da UFPR é a 

Comissão Central do Concurso Vestibular (CCCV) instituída em caráter permanente 

desde 1973. Desde então, a CCCV vem aprimorando a forma do processo seletivo do 

vestibular, sempre buscando selecionar o candidato melhor preparado, ofertando 

serviços ao estudante dentro dos melhores padrões de segurança e qualidade.

Para o concurso vestibular 2001 a aplicação das provas será realizada em oito 

diferentes cidades conforme a tabela 2.1, ficando a critério do candidato a escolha da 

cidade onde deseja realizar as provas. A constituição das turmas e dos locais de provas 

nas respectivas cidades onde as provas serão realizadas são de exclusiva 

responsabilidade da CCCV e serão conhecidos pelos candidatos mediante edital 

divulgado na data e nos locais previstos no Guia do Candidato.

TABELA 2.1 - CIDADES ONDE SERÃO APLICADAS AS PROVAS 
DO VESTIBULAR 2001 DA UFPR

CIDADE UF
Curitiba PR
Ponta Grossa PR
Cascavel PR
Londrina PR
Maringá PR
Palotina PR
Pato Branco PR
Joinville SC

Até o presente ano não existia por parte da CCCV nenhum método específico 

para a designação dos candidatos ao vestibular aos locais provas; nem para a 

determinação destes locais dentro da cidade. Em geral, a designação dos candidatos 

era feita de forma aleatória e a seleção dos locais de provas considerava apenas atender 

a demanda total de candidatos. Evidentemente, os locais eram selecionados de tal 

forma que não ocorresse uma grande concentração de locais de provas muito 

próximos.

Para o concurso vestibular 2001, foi proposta uma otimização na designação 

dos candidatos ao vestibular aos locais de provas. O objetivo foi designar o maior 

número possível dos candidatos inscritos para realizar as provas em Curitiba e que
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apresentaram endereço de residência no município de Curitiba para os locais de provas 

mais próximos de suas residências. Desta forma, de um total de 38.711 candidatos 

inscritos para realizar provas em Curitiba, 19.710 foram designados através de um 

algoritmo proposto no presente trabalho chamado “algoritmo da designação dos 

candidatos aos locais de provas” (DeCan) que é apresentado na seção 5. Este algoritmo 

otimiza a designação dos candidatos ao vestibular aos locais de provas mais próximos 

de suas residências.

A diferença entre os 38.711 candidatos inscritos e 19.710 submetidos a 
designados através do DeCan deve-se aos seguintes fatores:

a) alguns candidatos portadores de deficiência física necessitam de designação 
especial e foram designados pela própria CCCV;

b) alguns candidatos apresentaram endereços de outros municípios (por 
exemplos, região metropolitana, outras cidades ou estados) diferentes de 
Curitiba, e tiveram que ser designados pela CCCV;

c) alguns candidatos apresentaram endereços do município de Curitiba mas 
com dados incorretos o que impossibilitou a localização dos mesmos no 
mapa digitalizado do município de Curitiba e portanto também foram 
designados pela CCCV.

Para atender os 38.711 candidatos ao vestibular 2001 que farão provas em 

Curitiba a CCCV selecionou 26 locais de provas, todos dentro do município de 

Curitiba entre 43 locais disponíveis para a realização das provas no mesmo município. 

A seleção dos 26 locais de provas foi realizada somente com base na experiência 

pessoal dos membros da CCCV sem a utilização de qualquer método computacional a 

não ser a intuição humana. A tabela 2.2 apresenta os 26 locais de provas selecionados 

e utilizados para a designação dos 38.711 candidatos ao vestibular 2001 da UFPR. Nas 

capacidades dos locais apresentados na tabela 2.2 já  estão descontados os 19.001 

candidatos classificados num dos três casos citados anteriormente e que foram 

designados para os locais de provas pela própria CCCV.
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TABELA 2.2 - OS 26 LOCAIS UTILIZADOS PARA A DESIGNAÇÃO DE 
38.711 CANDIDATOS AO VESTIBULAR 2001 DA UFPR

LOCAL NOME DA INSTITUIÇÃO CAPACIDADE RESTANTE
1 UFPR - Centro Politécnico 1973
2 PUC -  Pontifícia Univ. Católica 7837
3 Col. Estadual Rio Branco 4
4 Col. Estadual do Paraná 123
5 Col. Nossa Senhora Medianeira 1232
6 UFPR - Setor de Ciências Agrárias 1300
7 Col. Estadual Leôncio Correia 1265
8 UFPR -  Edifício Dom Pedro I - Reitoria 2
9 UFPR -  Edifício Dom Pedro II - Reitoria 4
10 Fund. Estudos Sociais PR - Fesp 290
11 Col. Est. Prof. Loureiro Fernandes 1020
12 Esc. Municipal Pref. Omar Sabbag 960
13 Col. Est. Prof.a. M. Aguiar Teixeira 630
14 UFPR - Depto. de Educação Física 480
15 Col. Padre João Bagozzi 2165
16 Col. Estadual Pedro Macedo 780
17 Instituto de Educação do Paraná 3
18 Col. Estadual Cecília Meireles 1064
19 Escola Social Madre Clélia 1025
20 Col. Estadual Paula Gomes 880
21 Colégio Paranaense 1114
22 UFPR - Setor C. Saúde - Sede Botânico 770
23 Colégio Militar de Curitiba 1348
24 Esc. Est. República O. do Uruguai 710
25 Colégio Estadual Paulo Leminski 1259
26 UFPR - C. Ciências Florestais e Madeira 590
SOMA DAS CAPACIDADES RESTANTES 28828

São apresentados a seguir alguns dos procedimentos referentes a obtenção 

dos dados necessários para a designação dos 19.710 candidatos ao vestibular 2001 

designados, a pedido da CCCV, pelo algoritmo proposto na seção 5. Estes 

procedimentos antecederam a aplicação dos métodos utilizados no presente trabalho 

para a real designação dos candidatos apresentada na seção 6 assim como para a 

realização de todos os testes computacionais descritos também na seção 6.
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2.4.1 Obtenção dos Dados do Problema Real

Uma empresa de informática que desenvolveu um mapa digitalizado do 

município de Curitiba calculou e forneceu as coordenadas geográficas da residência de 

cada um dos 19.710 candidatos e de cada um dos locais de provas em relação ao 

mesmo mapa. As coordenadas referentes às residências dos candidato foram 

calculadas com base no endereço declarado pelo candidato por ocasião da sua 

inscrição para o concurso vestibular.

Obtidas as coordenadas das residências de todos os candidatos e dos locais 

de provas foi calculada a matriz das distâncias retangulares entre a residência de cada 

candidato e os locais conforme ilustra a tabela 2.3. Foi utilizada a distância retangular 

e não a euclidiana porque segundo ERKUT (Comunicação pessoal do autor, 06 de 

setembro de 2000) como dentro da maioria das cidades não se pode viajar sempre em 

linha reta a distância euclidiana, em geral, avalia de forma imprecisa a distância real 

percorrida. O ideal seria utilizar a distância real, levando-se em conta o verdadeiro 

caminho percorrido, mas, estes dados são difíceis de serem obtidos. A distância 

retangular também é imprecisa na avaliação da distância percorrida mas, na média, 

tende a se aproximar um pouco mais da distância real percorrida.

TABELA 2.3 - MATRIZ DE DISTÂNCIAS RESIDÊNCIA DOS CANDIDATOS X LOCAIS 
DE PROVAS

RESIDÊNCIAS/
CANDIDATOS

LOCAIS DE PROVAS

1 2 3 k
1 distância(l,l) distância(l,2) distância(l,3) distância(l,k)
2 distância(2,l) distância(2,2) distância(2,3) distância(2,k)
3 distância(3,l) distância(3,2) distância(3,3) distância(3,k)
... ... ... ... ...

n distância(n,l) distância(n,2) distância(n,3) distância(n,k)

Cada local de provas pode atender apenas um número limitado de candidatos 

e a respectiva limitação de capacidade varia de acordo com cada local. Com base nas 

distâncias fornecidas pela matriz de distâncias calculada, cada candidato foi designado 

para o local de provas mais próximo de sua residência que dispunha de vaga. A ordem
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em que os candidatos foram designados para os locais de provas foi definida pelo 

algoritmo DeCan, que é apresentado na seção 5.

Do que foi dito anteriormente, convém observar que: o que caracteriza o 

problema real descrito como um modelo do problema das p-medianas capacitado são 

os seguintes fatores:

a) pode-se considerar o conjunto dos 43 locais disponíveis para a realização das 

provas do vestibular em Curitiba como sendo o conjunto V (com, \V\ = 43) de 

todas as instalações candidatas a mediana (locais de provas);

b) seja Vp cz V (com, j Vp\ = 26) o conjunto formado pelos 26 locais de provas 

selecionados;

c) cada um dos 43 possíveis locais de provas pode atender apenas a um número 

limitado de candidatos (restrições de capacidade);

d) se o objetivo for selecionar o conjunto Vp cz V que minimiza a soma das 

distâncias percorridas por todos os candidatos até os locais de provas mais 

próximos possíveis de suas residências, então, o problema pode ser resolvido 

como um problema das p-medianas capacitado.

São apresentados a seguir os métodos utilizados no presente trabalho para a 

implementação dos algoritmos propostos na seção 5 para a resolução do problema das 

p-medianas capacitado e do problema real descrito anteriormente.
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3 MÉTODOS UTILIZADOS

Esta seção é a base dos estudos desenvolvidos no presente trabalho; é o 

terreno onde se desenvolve praticamente toda a pesquisa. Primeiramente, o algoritmo 

que foi utilizado como modelo para a implementação do algoritmo DeCan proposto no 

presente trabalho é apresentado. Em seguida, são introduzidas as duas heurísticas 

computacionais de busca implementadas na seção 5 para resolver o problema das p- 

medianas capacitado.

3.1 ALGORITMO DE GILLETT E JOHNSON

Definidos todos os locais de provas que serão utilizados pode-se aplicar para 

a designação dos candidatos aos respectivos locais de provas o algoritmo proposto por 

GILLETT e JOHNSON (1973) (BODIN et al., 1983) adaptado para esta situação em 

que as capacidades dos referidos locais devem ser consideradas.

Inicialmente, todos os pontos (residências dos candidatos) encontram-se sem 

designação. Para cada ponto i seja Lj(i) o local de provas mais próximo a i, e L2(i) o 

segundo local mais próximo a i.
L,(i)

Para cada ponto i, a razão: r(i) = —-—  é calculada e todos os pontos são
l 2 (0

colocados numa “lista de designação” em ordem crescente pelos valores de r(i). A 

designação começa pelos primeiros elementos da lista (pontos com menor razão r(i)), e 

é feita obedecendo-se a capacidade dos locais de provas. Durante a designação sempre 

que um candidato é designado para um local de provas com as vagas esgotadas 

(evidentemente sem sucesso), a razão r(i) é recalculada para todos os pontos que ainda 

não foram designados considerando-se apenas os locais de provas cujas vagas não 

estejam esgotadas. Estes pontos são novamente colocados na “lista de designação” em
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ordem crescente pelos valores de r(i) e a designação continua até que todos os pontos 

sejam designados para algum local de provas.

Através do cálculo da razão r(z) procura-se conhecer a “urgência” de se fazer 

a designação de um candidato em relação aos demais, pois, quanto menor for o valor 

de r(z), maior é a urgência já  que o segundo local mais próximo fica em posição bem 

pior para o candidato em relação ao primeiro.

O algoritmo que acabou de ser descrito será implementado na seção 5 com 

algumas modificações. As modificações realizadas são examinadas com detalhes e 

visam tomá-lo mais eficiente para efetuar a designação de candidatos ao vestibular aos 

locais de provas.

3.2 ALGORITMOS GENÉTICOS

Nesta seção, é introduzido o conceito de algoritmos genéticos: o que são, 

qual sua origem, e em que são diferentes de outras heurísticas de busca, são tópicos 

abordados.

3.2.1 O que são Algoritmos Genéticos?

Algoritmos Genéticos (AGs) são algoritmos computacionais de busca 

baseados nos mecanismos de evolução natural e na genética. Em AGs, uma população 

de possíveis soluções para o problema em questão evolui de acordo com operadores 

probabilísticos concebidos a partir de metáforas biológicas, de modo que há uma 

tendência de que, na média, os indivíduos representem soluções cada vez melhores à 

medida que o processo evolutivo continua (GOLDBERG, 1986a).
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Embora Charles Darwin tenha formulado a Teoria da Evolução no final do 

século passado, foi só recentemente que se tentou idealizar um modelo matemático do 

processo evolutivo. Nos anos 60, John Holland, da Universidade de Michigan, 

começou a definir as bases de algoritmos de otimização de inspiração genética. Seu 

trabalho culminou na publicação do livro Adaptation in Natural and Artificial Systems 

(HOLLAND, 1975). Livro este, que é hoje muito citado mas pouquíssimo lido, foi 

pouco divulgado na época, em grande parte devido ao estilo pesado, com notação 

pouco criteriosa e excessivamente complexa. Felizmente, Holland e seus muitos 

discípulos, quase todos seus alunos de pós-graduação, continuaram sua linha de 

investigação, publicando resultados com alguma timidez mas com perseverança 

(TANOMARU, 1995).

A grande popularidade que os AGs atingiram deve-se a dois importantes 

fatores: a publicação de um livro tutorial sobre AGs por um dos alunos de doutorado 

de Holland, David Goldberg, um pesquisador extremamente ativo e com excelente 

potencial didático, e às Conferências Internacionais sobre algoritmos genéticos. Essas 

conferências eram realizadas a cada dois anos nos Estados Unidos desde 1985 até 

1997, e atualmente são realizadas anualmente como parte de uma conferência mais 

ampla na área de algoritmos evolucionários. Os AGs pertencem à classe dos 

algoritmos probabilísticos de busca e otimização, embora não sejam aleatórios. 

Utiliza-se o conceito de probabilidade, mas AGs não são buscas aleatórias. Pelo 

contrário, os AGs dirigem a busca para regiões do espaço de busca onde é “provável” 

que os pontos ótimos estejam.

3.2.2 Qual a Origem dos AGs?
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3.2.3 Conceitos Fundamentais e Terminologia

A forte inspiração dos Algoritmos Genéticos na teoria da evolução das 

espécies e na genética natural toma importante uma revisão da terminologia comum a 

esta teoria e aos AGs. A nível biológico, um indivíduo é formado por um conjunto de 

cromossomos. No entanto, pode-se fazer uma analogia entre indivíduo e cromossomo, 

tendo em vista que um indivíduo pode ser formado por apenas um cromossomo, o que 

é comum em AGs. Assim, os dois termos são utilizados indistintamente. O presente 

trabalho utilizará o termo indivíduo como sinônimo do termo biológico cromossomo. 

Porém, na literatura é comum aparecer o termo em inglês string como sinônimo de 

cromossomo e indivíduo.

O primeiro passo para aplicação de AGs a um problema é representar cada 

possível solução no espaço de busca como uma seqüência de símbolos (cromossomo) 

gerados a partir de um alfabeto finito A. No caso mais simples, usa-se o alfabeto 

binário ou seja A = {0, 1}, mas, no caso geral, tanto o método de representação quanto 

o alfabeto genético dependem das características do problema.

Um cromossomo é composto por genes, sendo que cada gene possui um 

local fixo no cromossomo. Este local é denominado locus. Cada gene pode assumir um 

valor pertencente a um certo conjunto de valores, os quais são denominados alelos. Em 

termos de AGs, o cromossomo corresponde ao indivíduo, e este é representado por 

uma seqüência de genes (um string) de comprimento finito. O termo alelo refere-se a 

um valor dentro o conjunto de valores possíveis de serem atribuídos a um determinado 

gene, ou seja, é um valor (0 ou 1 no caso mais simples). Os conceitos mencionados são 

ilustrados pela figura 3.1.



TABELA 3.1 - RELAÇÃO DA TERMINOLOGIA DOS AGs COM 
A BIOLOGIA

BIOLOGIA ALGORITMOS GENETICOS
cromossomo indivíduo ou string
gene gene, ou bit (no caso binário)
alelo valor do gene, ou do bit (no caso binário)
locus posição de um gene específico no indivíduo ou string
genótipo indivíduo candidato a solução x
fenótipo valor da função f(x) para um dado indivíduo

Tendo definido a representação cromossômica para o problema, gera-se um 
conjunto de possíveis soluções, chamadas de soluções-candidatas, um conjunto de 
soluções codificadas de acordo com a representação selecionada correspondendo a 
uma população de indivíduos. AGs são algoritmos iterativos e, em geral, após um 

certo número de iterações (ou gerações) toda a população terá sido modificada, 

embora nem todos os indivíduos de uma população sejam necessariamente “filhos” de 
indivíduos da população anterior.

18
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genótipo = 1.24 + 0.23 + 1.22 + 1.21 + 0.2° = 22 

fenótipo = valor de f(22)

FIGURA 3.1 - REPRESENTAÇÃO DE UM CROMOSSOMO NA BIOLOGIA E EM AGs

Ao conjunto de cromossomo, genes e alelos denomina-se genótipo e às 

características conferidas por estes, denomina-se fenótipo. No contexto dos AGs, o 

genótipo é a variável independente x da função objetivo f(x), e o fenótipo é a variável 

dependente ou valor da função f(x). Um resumo comparativo entre a terminologia 

utilizada em AGs e na Biologia é apresentada na tabela 3.1.
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3.2.4 Em que os AGs Diferem de outras Heurísticas de Busca?

Embora possam parecer simplistas do ponto de vista biológico, os AGs são 

suficientemente complexos para fornecer mecanismos de busca adaptativos poderosos 

e robustos.

Segundo GOLDBERG (1986a) em seu livro especializado sobre o assunto, 

de modo geral AGs têm as seguintes características:

a) operam numa população (conjunto) de pontos no espaço de busca, e não a 

partir de um único ponto;

b) operam num espaço de soluções codificadas, e não no espaço de busca 

diretamente;

c) necessitam somente de informações sobre o valor de uma função objetivo 

para cada membro da população, e não requerem que a função seja 

diferenciável, ou contínua;

d) usam transições (mudança de um estado para outro) probabilísticas, e não 

regras determinísticas.

3.2.5 Inicialização de um Algoritmo Genético

Na maior parte das aplicações, uma população de P  indivíduos é gerada 

aleatoriamente ou através de algum processo heurístico.

Como no caso da Biologia, não há evolução sem variedade. Ou seja, a teoria 

da seleção natural “lei do mais forte”, necessita que os indivíduos tenham diferentes 

graus de adaptação ao ambiente em que vivem. De acordo com isso, é importante que 

a população inicial cubra a maior área possível do espaço de busca.
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3.2.6 Avaliação da Adaptabilidade (fitness)

Os AGs necessitam da informação do valor de uma função objetivo para 

cada membro da população. Nos casos mais simples, usa-se justamente o valor da 

função que se quer maximizar (ou minimizar). A função objetivo fornece, para cada 

indivíduo, uma medida de quão bem adaptado ao ambiente ele está, ou seja, quanto 

melhor o valor da função objetivo, maiores são as chances do indivíduo sobreviver no 

ambiente, reproduzir-se e gerar descendentes passando parte de seu material genético 

às gerações posteriores.

A avaliação de cada indivíduo resulta num valor que, em inglês, é 

denominado fitness (aptidão ou adaptabilidade).

3.2.7 Seleção

A seleção basicamente tem por objetivo fazer com que os indivíduos mais 

adaptados da geração anterior tenham maior probabilidade de participarem do 

processo que irá formar a nova população.

Em geral, gera-se uma população temporária de P  indivíduos extraídos com 

probabilidade proporcional à adaptação relativa (fitness) de cada indivíduo na 

população, ou seja, a probabilidade de seleção de um indivíduo, em geral, é dada por:

onde f(x) é o valor da função de adaptabilidade (em geral a função objetivo) e xÍ5 xk 

são as soluções candidatas (indivíduos) e: i e {1,2 ,... P). 

Com base na fórmula (3.2.1) de probabilidade, selecionam-se P  indivíduos. 

Neste processo, indivíduos com baixa adaptação terão alta probabilidade de

(3.2.1)p  _  f ( x k )
SEL_X t  P >

Ê f(xi)i = l
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desaparecerem da população, ou seja, serem extintos, ao passo que indivíduos mais 

adaptados terão grandes chances de sobreviverem. Os indivíduos selecionados são 

então submetidos a operadores genéticos, conforme discutido a seguir.

3.2.8 Operadores Genéticos (OGs)

Basicamente há três tipos principais de operadores genéticos comuns aos 

AGs. A reprodução, o cruzamento e a mutação que são discutidos a seguir.

3.2.8.1 Reprodução

O processo de reprodução consiste simplesmente em copiar integralmente 

um indivíduo selecionado para a próxima geração. Em geral um indivíduo selecionado 

pode ser reproduzido ou sofrer cruzamento, conforme discutido a seguir.

3.2.8.2 Cruzamento

O OG denominado cruzamento, em AGs corresponde a uma generalização 

do que ocorre na reprodução sexuada. O cruzamento é típico de seres mais evoluídos, 

e se dá pela aproximação dos cromossomos de dois indivíduos (pais) selecionados, que 

trocam entre si partes de seus cromossomos. Este processo deve gerar dois novos 

indivíduos diferentes, mas que ainda guardam influências dos pais. Não é sempre que 

o cruzamento é efetuado, por isso é definida uma probabilidade de cruzamento, 

representando a proporção aproximada da população que sofrerá cruzamento. Os pares 

(pais) que não sofrerem cruzamento são copiados integralmente para a nova população 

como filhos, aplicando-se o operador de reprodução. O cruzamento é realizado com 

probabilidade P cruz- Assim, dentre n indivíduos selecionados, aproximadamente 

P cruz x n sofrerão cruzamento, enquanto (1 -  P cruz ) x n  serão reproduzidos.
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A troca de partes do cromossomo pode ser realizada de várias formas. 

Basicamente tem-se o cruzamento uniforme, cruzamento com 1- partição, cruzamento 

com 2 - partições e cruzamento com n - partições.

O cruzamento uniforme consiste no emparelhamento dos dois cromossomos 

pais, e então os genes em cada locus do cromossomo são trocados de acordo com uma 

probabilidade predefinida (por exemplo, 50%). Esse processo é ilustrado na figura 3.2.

GENES SORTEADOS PARA TROCA FILHOS GERADOS

FIGURA 3.2 - EXEMPLO DE CRUZAMENTO UNIFORME

O cruzamento com 1 - partição consiste na escolha aleatória de somente um 

ponto de corte. Todo o material genético dos pais existente à direita (ou à esquerda) 

deste ponto é trocado, conforme ilustrado na figura 3.3.

FIGURA 3.3 - EXEMPLO DE CRUZAMENTO COM 1 - PARTIÇÃO

No caso do cruzamento com 2 - partições, há a escolha aleatória de dois 

pontos de corte. Todo o material genético dos pais existente entre os dois pontos de 

corte são trocados, e o restante é mantido inalterado, conforme ilustrado na figura 3.4.

PONTO DE CORTE FILHOS GERADOS

Filho 1 

Filho 2

Pai 1 

Pai 2

Pail 

Pai 2

Filho 1 

Filho 2
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PONTOS DE CORTE FILHOS GERADOS

FIGURA 3.4 - EXEMPLO DE CRUZAMENTO COM 2 - PARTIÇÕES

Já o cruzamento com n - partições consiste de n cruzamentos com 2 - 

partições. Pode-se considerar os cruzamentos com 1 e 2 - partições como casos 

particulares do cruzamento de n - partições.

3.2.8.3 Mutação

O OG de mutação é necessário para a introdução e manutenção da 

diversidade genética da população, alterando arbitrariamente um ou mais componentes 

de um cromossomo. Basicamente, seleciona-se uma posição num cromossomo e 

muda-se o valor do gene correspondente aleatoriamente para um outro alelo (valor) 

possível. O processo é geralmente controlado por um parâmetro fixo Pmut que indica a 

probabilidade de um indivíduo sofrer mutação.

Desta forma, a mutação assegura que a probabilidade de se chegar a qualquer 

ponto do espaço de busca nunca será zero, além de ajudar a controlar o problema de 

convergência para máximos (ou mínimos) locais.

Dentre os principais mecanismos de alteração genética que recebem o nome 

global de mutação, um dos mais utilizados é a troca simples, ou inversão de bit (no 

caso do alfabeto binário), conforme ilustrado na figura 3.5.

ANTES DA MUTAÇÃO DEPOIS DA MUTAÇÃO

Gene sorteado para mutação Gene trocado

FIGURA 3.5 - EXEMPLO DE MUTAÇÃO POR TROCA SIMPLES

Pai 1 

Pai 2

Filho 1 

Filho 2
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3.2.9 Condição de Término

Para problemas de otimização o ideal seria que o algoritmo terminasse assim 

que o ponto ótimo fosse descoberto. Já no caso de funções multimodais, um ponto 

ótimo pode ser o suficiente, mas pode haver situações onde todos ou o maior número 

possível de pontos ótimos sejam desejados. Um problema prático é que, na maioria 

dos casos de interesse, não se pode afirmar com certeza se um dado ponto ótimo 

corresponde a um ótimo global. Como conseqüência, normalmente utiliza-se o critério 

do número máximo de gerações ou tempo limite de processamento para um AG. Outro 

critério plausível é parar o algoritmo usando a idéia de estagnação, ou seja, quando não 

se observa melhoria da população depois de várias gerações consecutivas, o algoritmo 

encerra o processamento. Para se avaliar a estagnação um método que pode ser 

utilizado é comparar o desvio padrão dos valores de adaptação dos indivíduos da 

população atual com a anterior.

3.2.10 Convergência Prematura

Utilizando-se o modelo de AG simples para a otimização de funções 

multimodais, um fenômeno que se observa com freqüência é que o AG pode 

convergir muito rapidamente (em algumas dezenas de gerações) para um ponto de alta 

qualidade, mas não o ótimo global, num fenômeno denominado convergência 

prematura (embora o OG mutação tente evitar isso).

3.2.11 Parâmetros dos Operadores Genéticos

Num AG básico, o usuário deve definir o tamanho da população, P, além das 

probabilidades de cruzamento e mutação, respectivamente, P cruz e  P m u t - Em AGs 

mais sofisticados, há ainda mais parâmetros, comprometendo parte da robustez dos 

algoritmos. Infelizmente, não há regras claras para a escolha desses parâmetros 

(variam de acordo com as características do problema).
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3.2.11.1 Tamanho P  da população

Quanto ao parâmetro P, a intuição indica que “quanto maior for a população, 

melhor”, uma vez que, em última análise, com uma população inicial cobrindo todo o 

espaço de busca, a solução ótima seria obtida na primeira geração. Na prática, é óbvio, 

deve-se limitar o tamanho da população para reduzir o tempo de processamento. 

Normalmente, valores da ordem de 50 a 200 cromossomos resolvem a maior parte dos 

problemas, mas, populações maiores podem ser necessárias para problemas mais 

complexos (TANOMARU, 1995).

3.2.11.2 Probabilidades de cruzamento e de mutação

Em relação às probabilidades de cruzamento e mutação, estudos empíricos 

têm mostrado que bons resultados geralmente são obtidos com valor alto para a 

probabilidade de cruzamento P cruz ^  0,7 (70%) e baixo valor para a probabilidade de 

mutação P m ut  ^  0,01 (1%). Definida a probabilidade de cruzamento, a probabilidade 

de reprodução estará automaticamente definida como sendo: Prep = (1 -  P cruz)  já  que, 

em geral, ou o indivíduo será reproduzido ou sofrerá cruzamento (P cruz +  P r e p =  !)•

3.2.12 Critérios de Seleção

O método de seleção mais conhecido em AGs é o chamado método da roleta, 

que simula uma roleta fictícia, com base na adaptabilidade (fitness) do indivíduo 

relativamente à população.

Existem basicamente dois métodos empregadas no processo de seleção, a 

roleta simples e o ranking, conforme discutido a seguir.
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Cada indivíduo da população anterior terá uma probabilidade de ser sorteado 

proporcional a sua adaptação, conforme mostrado na tabela 3.2.

3.2.12.1 Roleta simples

TABELA 3.2 - DADOS PARA ROLETA SIMPLES
INDIVÍDUOS ADAPTAÇAO % DO TOTAL

x4 201 91
x2 10 5
x3 7 3
xl 2 1

TOTAL 220 100%

A roleta simples causa uma alta pressão seletiva sobre os indivíduos da 

população, pois o indivíduo mais adaptado (no exemplo da tabela 3.2) terá uma relação 

de 91:1 de ser sorteado (selecionado) em relação ao menos adaptado.

A pressão seletiva está implicitamente relacionada com a diversidade da 

população. Alta pressão seletiva tende a fazer a diversidade cair rapidamente, levando 

a população a convergir em poucas gerações, o que pode resultar em convergência 

prematura para um máximo (ou mínimo) local.

3.2.12.2 Ranking

A técnica de ranking também apresenta os indivíduos ordenados conforme a 

adaptação de cada indivíduo. Contudo, em ranking cada indivíduo recebe uma nota 

sendo que o menos adaptado recebe a nota 1 e o mais adaptado fica com nota igual ao 

tamanho da população (distância de 1 entre cada vizinho). Esse método é uma forma 

de ranking (ordenação), pois a probabilidade de um indivíduo ser selecionado depende 

apenas de seu ranking, e não do valor absoluto de sua adaptabilidade. A tabela 3.3 

apresenta os dados de quatro indivíduos ordenados para seleção segundo os critérios 

de ranking.
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TABELA 3.3 - DADOS PARA RANKING
INDIVÍDUOS ADAPTAÇAO DISTANCIA/ %

x4 201 4 (40%)
x2 10 3 (30%)
x3 7 2 (20%)
xl 2 1 (10%)

TOTAL 220 100%

Os gráficos de setor 3.1 comparam a roleta simples x ranking com base nos 

dados das tabelas 3.2 e 3.3.

GRÁFICOS 3.1 - COMPARAÇÃO ROLETA SIMPLES X RANKING

3.2.13 Método do Estado Estável

Ao invés de substituir toda a população de uma vez, este modelo considera 

que somente alguns indivíduos da população devem ser substituídos a cada geração. 

No caso mais simples, insere-se apenas um indivíduo por vez no lugar do pior 

indivíduo da população atual.
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Nesta seção, é introduzido o conceito de busca tabu: o que é busca tabu, qual 

sua origem, e como funciona, são tópicos abordados.

3.3.1 O que é Busca Tabu?

Segundo GLOVER e LAGUNA (1997) em seu livro especializado no 

assunto: busca tabu é uma heurística computacional de busca conhecida por 

geralmente superar o problema da convergência local em problemas de otimização.

3.3.2 Origem da Busca Tabu

A heurística busca tabu (BT) é relativamente recente, teve origem em 

meados da década de 70. A forma modema de BT é devida aos trabalhos 

desenvolvidos por GLOVER, embora outros como HANSEN (1986) e LAGUNA 

(1991) tenham desenvolvido importantes estudos que contribuíram para melhorar o 

desempenho dessa heurística. BT ainda é pesquisada ativamente e continua evoluindo 

e melhorando.

3.3.3 Como funciona a Heurística Busca Tabu?

A palavra “tabu” sugere algo proibido, ou pelo menos inibido. A heurística 

BT básica emprega restrições tabu para inibir certos movimentos e alguns 

procedimentos denominados critérios de aspiração são utilizados para decidir quando 

movimentos classificados como tabu podem ser executados. Desta forma, BT conduz a 

busca para áreas ainda não analisadas do espaço de busca, tendendo a evitar a 

convergência da solução para um máximo (ou mínimo) local. As restrições tabu são 

geralmente controladas por uma lista que memoriza os últimos movimentos 

executados. O tempo que um movimento deve permanecer nesta lista, em geral, está

3.3 BUSCA TABU
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relacionado com o número de iterações do algoritmo e com o número de movimentos 

possíveis a partir da solução candidata atual (solução que está sendo analisada). A 

implementação de um algoritmo BT básico envolve decidir como os movimentos 

(geração de novas soluções) são realizados, a definição dos critérios de aspiração e 

como é feito o gerenciamento da memória dos movimentos, além de outros detalhes e 

técnicas que são brevemente discutidas a seguir.

3.3.4 Busca através das Soluções Vizinhas

BT pode ser convenientemente caracterizada como sendo uma busca através 

das soluções vizinhas (GLOVER, 1991). Cada solução x e  X  tem um conjunto 

associado de soluções vizinhas V(x) c  X  chamadas soluções vizinhas ax. Toda solução 

x ’ e  F(x) pode ser gerada a partir de x por um certo tipo de operação denominada 

movimento. Normalmente em BT, soluções vizinhas são simétricas, ou seja, x’ é 

solução vizinha a x se, e somente se, x é solução vizinha a x \

3.3.5 Critérios de Aspiração

Os critérios de aspiração são introduzidos em BT para determinar quando 

uma restrição tabu pode ser quebrada. Ou seja, a restrição é ignorada e o movimento, 

mesmo classificado como proibido, é executado. Um critério de aspiração bastante 

utilizado é o de ignorar a restrição tabu sempre que a solução formada por um 

determinado movimento proibido for melhor que a melhor solução encontrada até o 

momento. A aplicação adequada desses procedimentos é fundamental para se atingir 

altos níveis de performance em BT.
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3.3.6 Estratégia da Oscilação

Um procedimento bastante utilizado em BT é a estratégia da oscilação. 

Consiste em admitir a oscilação entre soluções factíveis e infactíveis durante o 

processo de busca. Considerar soluções infactíveis é um outro meio de tentar escapar 

de ótimos locais. Além disso, o fato de permitir temporariamente soluções infactíveis 

tende a dirigir a busca mais rapidamente para soluções factíveis cada vez melhores.

3.3.7 Algumas Iterações de um Algoritmo BT Elementar

Os problemas de permutação formam uma importante classe dos problemas 

de otimização. Para exemplificar as idéias básicas sobre BT são apresentadas algumas 

iterações de um algoritmo BT elementar aplicado a um problema de permutação 

fictício.

3.3.7.1 Apresentando o problema fictício

Considere o problema de se determinar a ordem em que devem ser colocados 

num módulo de isolamento 7 filtros isolantes, todos com propriedades distintas, de tal 

forma que o isolamento obtido seja o máximo possível. O isolamento é medido através 

de uma função de isolamento F, que mede o sinal de saída através do módulo de 

isolamento. A ordem em que são colocados os filtros isolantes influi no isolamento 

obtido.
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Suponha que uma solução inicial gerada aleatoriamente para o problema 

proposto esteja representada na figura 3.6, onde 1, 2, ...,7 representam respectivamente 

cada um dos filtros isolantes do problema em questão.

Módulo

FIGURA 3.6 - UMA SOLUÇÃO INICIAL

Novas soluções são geradas a partir da solução atual por um “movimento” 

que consiste na troca de posição entre dois filtros no módulo. Os filtros que são 

trocados num movimento são selecionados ao acaso. Os movimentos são 

representados através de pares de filtros, como por exemplo, [5, 6], que indica a 

mudança das posições dos filtros 5 e 6 entre si (ver figura 3.7). Note que por essa 

definição o movimento é simétrico, no sentido que os pares [5, 6] e [6, 5] representam 

a mesma mudança.

FIGURA 3.7 - EXECUÇÃO DO MOVIMENTO [5, 6] GERANDO UMA NOVA SOLUÇÃO

A cada iteração, cinco novas soluções são geradas aleatoriamente dentre 

todos os movimentos possíveis e ordenadas pelos valores da função de isolamento F  

da melhor para a pior. Uma lista de memória (lista tabu) armazenará cada movimento 

executado que deverá permanecer nesta lista durante as três próximas iterações. 

Enquanto um determinado movimento permanecer na lista tabu será considerado
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proibido e só poderá ser executado se este resultar num valor de isolamento melhor 

que o melhor valor obtido em todas as iterações anteriores (critério de aspiração). 

Como se deseja maximizar a função F, procura-se sempre o maior valor de troca 

possível.

São utilizados nos esquemas abaixo um asterisco (*) para representar um 

movimento que será executado e a letra (T) maiúscula para representar um movimento 

classificado como tabu.

3.3.7.2 As iterações do problema fictício

Iteração 0

Solução inicial

F=  10

lista tabu 
2 3 4 5 6 7

5 candidatos 
valor da troca

ESQUEMA 3.1 - ITERAÇÃO 0

Na iteração (0), representada pelo esquema 3.1, uma solução inicial para o 

problema foi gerada aleatoriamente. Em seguida, partindo-se sempre da solução inicial 

foram executados ao acaso cinco movimentos (troca de posição entre dois filtros). Para 

cada nova solução gerada pelos movimentos foi calculado o valor da função de 

isolamento F. Os movimentos foram ordenados do melhor (primeiro da lista de 

candidatos) para o pior (último da lista de candidatos) de acordo com os valores 

obtidos no cálculo da função de isolamento. Nesta iteração (0), o movimento [5, 4] do 

topo da lista de candidatos foi escolhido para gerar a próxima solução porque dentre os 

5 movimentos gerados foi o que produziu o melhor valor para a função de isolamento.
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Solução inicial

Iteração 1

F =  16

lista tabu 
2 3 4 5 6 7

5 candidatos 
valor da troca

ESQUEMA 3.2 - ITERAÇÃO 1

O esquema 3.2 referente a iteração (1) mostra que, o movimento [5, 4] foi 

executado e incluído na lista tabu. O valor da solução atual é o valor da anterior 

acrescido do valor da troca executada. Além disso, a célula (4, 5) da lista tabu passa a 

conter o valor 3, que representa o número de iterações que o movimento [5, 4] 

permanecerá na lista tabu. Foram executados novamente cinco movimentos ao acaso a 

partir da solução atual. Os movimentos foram ordenados pelo valor da função de 

isolamento e novamente o movimento do topo da lista de candidatos [3, 1] foi 

escolhido para gerar a próxima solução.

Iteração 2

Solução inicial

F=  18

lista tabu 
2 3 4 5 6 7

5 candidatos 
valor da troca

ESQUEMA 3.3 - ITERAÇÃO 2
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Pelo esquema 3.3 pode-se notar que, o valor da célula (4, 5) da lista tabu foi 

reduzido em uma unidade, já  que uma iteração foi completada. Dentre os cinco 

movimentos gerados na iteração atual (2), o movimento do topo da lista de soluções 

candidatas é o movimento [1 ,3] mas, este está classificado como tabu (foi executado 

na iteração anterior) e não será executado. Então, o segundo “melhor” movimento da 

lista de candidatos [2, 4] será o movimento executado para gerar a próxima solução.

Iteração 3

Solução inicial

F =  14

lista tabu 
2 3 4 5 6 7

ESQUEMA 3.4 - ITERAÇÃO 3

5 candidatos 
valor da troca

Conforme mostra o esquema 3.4, a solução atual tem valor inferior ao das 

duas iterações anteriores. Isto devido a um movimento com valor de troca negativo ter 

sido executado. Permitir que movimentos que causem prejuízo no valor da função 

objetivo sejam executados ajuda a evitar a convergência da solução para um ótimo 

local. Além disso, permite a avaliação de áreas do espaço de busca que de outra forma 

talvez não fossem avaliadas. A lista tabu tem agora 3 movimentos registrados. Nesta 

iteração (3), o movimento do topo da lista de candidatos é [4, 5] que está na lista tabu 

(proibido). Acontece que este movimento produz na função de isolamento um valor 

melhor que qualquer valor obtido até o momento. Portanto, a proibição será ignorada e 

o movimento será executado (critério de aspiração).
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Solução inicial

Iteração 4

F = 20

lista tabu 
2 3 4 5 6 7

5 candidatos 
valor da troca

ESQUEMA 3.5. ITERAÇÃO 4

Note pelo esquema 3.5 que a célula (4, 5) da lista tabu voltou a receber o 

valor 3, já  que o movimento [4, 5] foi executado novamente. A solução da iteração 

atual (4) tem o melhor valor obtido até o momento, e a lista tabu tem agora 3 dos 21 

movimentos possíveis classificados como tabu. As iterações continuam até que um 

critério de parada seja satisfeito (como por exemplo, um número fixo de iterações ser 

completado).

A seguir, é feita uma revisão da literatura sobre localização de instalações, 

algoritmos genéticos e busca tabu aplicados ao problema das p-medianas.
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4 REVISÃO DA LITERATURA

Esta seção faz referência a alguns trabalhos anteriormente publicados ou 

desenvolvidos sobre localização de instalações e principalmente sobre algoritmos 

genéticos e busca tabu aplicados ao problema das p-medianas.

4.1 LOCALIZAÇÃO DE INSTALAÇÕES

Os problemas de localização de instalações têm recebido considerável 

atenção de pesquisadores de diversas áreas. RÒNNQVIST et al. (1999) desenvolveram 

uma heurística para resolução de problemas de localização de instalações em que cada 

ponto de demanda é atendido por uma única instalação. A heurística é baseada na 

repetição de um algoritmo matching e basicamente resolve uma série de problemas 

matching até que um critério de convergência predefinido seja satisfeito. SYAM 

(1997) propôs uma resolução para o problema de localização de instalações baseada 

em Relaxação Lagrangeana. TRAGANTALERNGSAK et al. (1999) desenvolveram 

um algoritmo Branch and Bound baseado em Relaxação Lagrangeana para resolver 

problemas de localização de instalações onde as instalações possuem diferentes níveis 

hierárquicos. DREZNER (1995) apresenta uma coleção de problemas de localização 

de instalações enfocando suas diferentes abordagens e métodos de solução.

4.2 ALGORITMOS GENÉTICOS

HOSAGE e GOODCHILD (1986) (H&G) parecem ter sido os primeiros a 

desenvolver um algoritmo genético para o problema das p-medianas. Os operadores 

genéticos utilizados neste algoritmo foram os usuais dos AGs (reprodução, cruzamento 

e mutação). No AG apresentado por H&G, cada possível solução para o problema 

(indivíduo) é representada por uma seqüência de números binários (0 ou 1). Cada 

dígito indica se a instalação correspondente à posição do dígito em questão é uma 

mediana “1” ou não é uma mediana “0”. Se o número de l ’s nesta seqüência não for
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igual a p , a solução é considerada infactível e uma penalidade (proporcional à 

violação das restrições) é imposta à solução. O algoritmo desenvolvido por H&G foi 

testado em um problema que seleciona 3 medianas entre 20 possíveis (isto é, n = 20 e 

p  = 3) e com população inicial P = 25 para quatro números diferentes de gerações 

(120, 150, 180 e 210). Foram utilizados 100 grafos distintos gerados aleatoriamente e a 

solução ótima foi encontrada 69, 85, 84 e 89 vezes para cada nível de geração. A 

princípio pode parecer, pelos testes realizados, que o algoritmo de H&G garante 

relativamente um bom desempenho pois, encontrou a solução ótima entre 70% e 90% 

dos casos. Porém, o algoritmo trabalha com uma representação binária de tamanho n 

(número de instalações candidatas a mediana), e esta não é uma boa representação. 

Não apenas desperdiça memória, como também requer operações desnecessárias para 

a realização do cruzamento entre os pais e para o cálculo do valor do função objetivo. 

O problema utilizado para teste possui apenas 1140 soluções possíveis (C 320). Ainda, o 

algoritmo gera e avalia 2905 soluções, não necessariamente distintas, para 120 

gerações e 5065 para 210 gerações. Embora o problema tenha apenas 1140 soluções, o
Ofialgoritmo busca pela solução num espaço com 2 possibilidades, definidas por todos 

os números de 20 dígitos binários. Certamente, a grande maioria (aproximadamente 

99,9%) das soluções geradas são infactíveis para o problema das p-medianas e o 

algoritmo desperdiça tempo analisando-as.

DIBBLE e DENSHAM (D&D) (1993) relataram a aplicação de um AG que 

desenvolveram para o problema das p-medianas. Neste AG, foi proposta uma 

representação cromossômica mais adequada para o problema das p-medianas. Cada 

indivíduo possui exatamente p  genes, e cada gene pode representar o valor 

correspondente ao número da instalação que se deseja inserir na solução. Utilizaram 

apenas os operadores genéticos usuais dos AGs. O AG desenvolvido por D&D foi 

aplicado a um problema em que teve que selecionar 9 medianas entre 150 possíveis foi 

utilizada uma população inicial de P  = 1000 indivíduos e 150 gerações. Os resultados 

obtidos nessa aplicação foram comparados com os obtidos para o mesmo problema 

resolvido pelo algoritmo de Teitz e Bart. No entanto, o tempo de processamento do
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AG de D&D foi bem maior que o do algoritmo de Teitz e Bart e as soluções 

encontradas foram praticamente as mesmas para os dois algoritmos.

MORENO-PEREZ et al. (M-P&al) (1994) também desenvolveram um AG 

para o problema das p-medianas. Neste AG, a representação cromossômica é idêntica 

a do algoritmo de D&D descrito anteriormente. Foram utilizados apenas os operadores 

genéticos usuais dos AGs. O que diferencia o algoritmo proposto por M-P&al dos 

outros anteriormente apresentados é a existência de múltiplos grupos de populações 

(colônias) e a troca de soluções candidatas entre estes grupos (migração) colocadas em 

uma população paralela. Este método ajuda a evitar a convergência da solução para um 

máximo (ou mínimo) local. Por outro lado, a utilização simultânea de várias 

populações toma a implementação do algoritmo complicada e seu processamento 

demorado. Infelizmente, é difícil avaliar a relativa eficiência desse algoritmo em 

relação a outros, uma vez que os autores não implementaram nenhuma comparação 

para o algoritmo.

NUNES (1998) e SAMPAIO (1999) utilizaram um AG para o problema das 

p-medianas que foi proposto por MAYERLE (1994). Neste AG, a representação 

cromossômica é idêntica a do algoritmo de D&D descrito anteriormente. Quanto aos 

operadores genéticos, o algoritmo utiliza o operador genético de cmzamento e um 

operador de correção chamado “operador de mutação”. A ressalva nesse algoritmo é 

que o cruzamento entre os pais permite a duplicação de genes (medianas repetidas na 

solução), o que quando acontece, toma a nova solução gerada infactível. Para corrigir 

estas soluções infactíveis o operador genético de correção é acionado. Esse operador 

troca aleatoriamente o valor de um dos genes duplicados por outro que não faça parte 

da solução que será corrigida. O problema é que, sempre que o número de uma 

mediana estiver ocorrendo em quase todos os indivíduos da população, esse número 

tenderá a ser duplicado em alguns indivíduos como resultado do cmzamento. Portanto, 

o número de “correções” realizadas aumentará, o que pode fazer a busca ficar um tanto 

quanto aleatória, desviando-se assim do objetivo dos AGs e, possivelmente da solução 

ótima procurada.
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ERKUT et al. (em fase de publicação) desenvolveram um AG para o 

problema das p-medianas. Neste algoritmo, cada indivíduo também possui exatamente 

p  genes que representam um conjunto de p  medianas selecionadas. O algoritmo traz 

além dos operadores genéticos usuais outros como, por exemplo, o String-of-Change 

Operator sugerido independentemente por BOOKER (1987) e FAIRLEY (1991). Esse 

operador utiliza um “string de mudança”, que consiste em um vetor binário gerado 

para cada par de pais selecionados para o cruzamento. Os cromossomos pais são 

submetidos a um operador chamado ou exclusivo (a expressão “a ou exclusivo ò” é 

definida como sendo 1 se a ^  b e 0 caso contrário). Para exemplificar, o vetor binário 

correspondente aos pais [10, 9, 12, 24, 7, 3] e [10, 9, 7, 8, 12, 3] seria [0, 0, 1, 1, 1, 0]. 

Ou seja, 0 se os genes de mesma posição nos pais representarem a mesma mediana e 1 

caso contrário. Para evitar que os filhos gerados sejam idênticos aos pais, somente os 

genes entre o primeiro e o último 1 nos respectivos pais devem ser selecionados como 

pontos de cruzamento. Com base em testes comparativos realizados, o algoritmo 

demonstrou ser eficiente, embora, segundo o próprio autor, leva muito tempo para 

obter boas soluções.

4.3 BUSCA TABU

São apresentadas a seguir as idéias gerais resumidas de dois artigos sobre 

busca tabu aplicada ao problema das p-medianas.

O primeiro, é um artigo escrito por GLOVER (não publicado), onde a 

estrutura básica de seu algoritmo BT é a seguinte: considere o conjunto V de todas as 

instalações candidatas para o problema em questão e Vp c  V com | Vp\ = p  o conjunto 

inicial de medianas selecionadas ao acaso. Cada “movimento” é um procedimento que 

consiste em adicionar, retirar ou trocar em Vp a mediana que resultar no melhor valor 

para a nova solução. Estes movimentos são executados em seqüência e, desta forma, 

haverá uma variação no número de medianas em Vp, ou seja:

p - \ < \ V p\ < p + \ .
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Este fenômeno é chamado de “estratégia da oscilação” e além de ajudar a 

evitar a convergência para uma solução local, conduz com maior rapidez a busca para 

soluções factíveis cada vez melhores.

A “lista tabu” memoriza a iteração em que cada mediana foi adicionada à 

solução e proíbe, durante um certo número de iterações subsequentes, que esta possa 

ser novamente adicionada. O “critério de aspiração” utilizado é permitir a quebra da 

restrição tabu se a qualidade da nova solução gerada por um movimento proibido 

superar a qualidade da melhor solução encontrado até o momento. O autor não chegou 

a implementar o método, apenas descreveu os passos necessários para sua 

implementação.

O segundo artigo mencionado é de ROLLAND et al. (1996). O 

funcionamento básico do algoritmo BT descrito nesse artigo é semelhante ao do 

algoritmo descrito anteriormente, exceto que são considerados apenas dois tipos de 

movimento: adicionar e retirar medianas em uma solução. Além disso, a ordem em 

que estes movimentos são executados é aleatória. Desta forma, o algoritmo pode numa 

iteração retirar uma mediana da solução e na iteração seguinte retirar outra novamente. 

O mesmo vale para o caso de adicionar. Em outras palavras, haverá uma oscilação 

maior que p  ±1 no número de medianas da “solução-atual”. Este algoritmo foi 

aplicada a 100 problemas testes. Os testes foram realizados com 8 diferentes grafos 

para problemas pequenos (de 13 a 100 vértices) e 4 para problemas grandes (200 a 500 

vértices). Cada vértice foi considerado, ao mesmo tempo, como demanda e potencial 

mediana. Todos os grafos foram gerados aleatoriamente. Os pesos associados a cada 

vértice foram definidos por números aleatórios gerados entre 0 e 100. Para cada grafo 

o problema foi resolvido para diversos valores de p. Os resultados foram comparados 

em termos de qualidade da solução e tempo de processamento, com os obtidos para os 

mesmos problemas resolvidos por outras duas heurísticas para o problema das p- 

medianas. Uma desenvolvida por GOODCHILD e NORONHA (1983) chamada de 

NS e a outra desenvolvida por DENSHAM e RUSHTON (1992) chamada de GRIA. 

Para os problemas pequenos (de 13 a 100 vértices) a solução ótima também foi 

calculada via programação linear. Nos experimentos com os problemas pequenos, a
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heurística BT encontrou a solução ótima em 66% dos testes contra 48% para GRIA e 

39% para NS. Em termos de qualidade da solução, BT foi melhor que ou igual a NS 

em 97% dos testes e melhor que ou igual a GRIA em 92% dos testes. Em relação ao 

tempo de processamento BT foi, na média, mais rápida que as outras duas heurísticas. 

Para os problemas grandes (de 200 a 500 vértices) BT encontrou a melhor solução 

entre as heurísticas em 91% dos testes e foi mais rápida em todos testes com os 

problemas grandes.
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5 IMPLEMENTAÇÃO DOS MÉTODOS UTILIZADOS

Esta seção trata da implementação proposta no presente trabalho de cada um 

dos métodos descritos na seção 3, começando com o algoritmo que faz a designação 

de candidatos ao vestibular aos locais provas.

5.1 ALGORITMO PARA DESIGNAÇÃO DE CANDIDATOS AO VESTIBULAR

A forma básica do DeCan é semelhante a do algoritmo proposto por 

GILLETT e JOHNSON (1973) (BODIN et al., 1983) descrito na seção 3. Difere 

basicamente no cálculo realizado para a ordenação da “lista de designação”, conforme 

apresentado a seguir.

Inicialmente, todos os pontos (residências dos candidatos) encontram-se sem 

designação. Para cada ponto i seja Li(i) o local de provas mais próximo a i, e L2(i) o 

segundo local mais próximo a i.

Para cada ponto i, a diferença: d(i) = L2(i) -  Li(i) é calculada e todos os 

pontos são colocados numa “lista de designação” em ordem decrescente pelos valores 

de d(i). A designação começa pelos primeiros elementos da lista (pontos com maior 

diferença d(i)), e é feita obedecendo-se a capacidade dos locais de provas. Durante a 

designação sempre que a última vaga restante em um determinado local de provas for 

preenchida a diferença d(i) será recalculada para todos os pontos que ainda não foram 

designados considerando-se apenas os locais de provas cujas vagas não estejam 

esgotadas. Estes pontos são novamente colocados na “lista de designação” em ordem 

decrescente pelos valores de d(i) e a designação continuará até que todos os pontos 

tenham sido designados para algum local de provas.

O que justifica ter-se optado pelo cálculo da diferença ao invés da razão entre 

o primeiro e o segundo locais de provas mais próximos da residência do candidato é o 

seguinte fato: suponha-se que para dois candidatos quaisquer os dois locais de provas 

mais próximos de suas residências sejam os locais A q B. A residência do primeiro
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candidato está a lOOm do local A e a 300m do local B. A residência do segundo 

candidato está a 500m do local A e 900m do local B. Se o local A só puder aceitar mais 

um candidato, pelo cálculo da razão o primeiro candidato seria designado para o local 

A e percorreria lOOm enquanto o segundo candidato seria designado para o local B e 

teria que percorrer 900m o que resultaria num acréscimo de lOOOm na soma total das 

distâncias percorridas. Já pelo cálculo da diferença o primeiro candidato seria 

designado para o local B e percorreria 300m enquanto o segundo candidato seria 

designado para o local A e percorreria 500m o que resultaria num acréscimo de 800m 

na soma total das distâncias percorridas. Percebe-se que, com a utilização do cálculo 

da diferença a designação dos candidatos aos locais de provas ocorre de forma mais 

“justa” do que no caso do cálculo da razão.

Quando o objetivo for minimizar a soma total das distâncias percorridas o 

cálculo da diferença será sempre apropriado, conforme demonstrado a seguir:

Sejam i e j dois candidatos quaisquer “competindo” pelos mesmos locais L] e 

L2 onde L\ e L2 são, nesta ordem, respectivamente o primeiro e o segundo locais de 

provas mais próximos tanto para i quanto para j. Ainda, Li possui apenas mais uma 

vaga.

Sejam Li(i), L2(i), L }0  e L2(j) respectivamente as distâncias dos candidatos i 

e j aos locais Li e L2. Consideram-se duas hipóteses (a) e (b):

a) a menor soma das distância é obtida se o candidato i for designado para o

local Li e o candidato j para o local L2, o que implicaria em:

Lj(i) + L2(j) < L jO) + L2(i) (5.1.1)

Através de operações matemáticas a inequação (5.1.1) pode ser transformada

em:

L2( i ) - L 1( i ) > L 2( j ) - L 1G) (5.1.2)
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A inequação (5.1.2) é exatamente a comparação entre os resultados do 

cálculo da diferença realizado para os candidatos i e j. Seguindo-se os 

critérios do algoritmo da designação proposto neste trabalho, como o 

resultado da diferença foi maior para o candidato i ele será designado 

primeiro. O que considerando-se apenas os dois candidatos garante que i seja 

designado para Li, atendendo-se a condição proposta em (a).

b) a menor soma das distância é obtida se o candidato j for designado para o 

local Lj e o candidato i para o local L2, o que implicaria em:

Através de operações matemáticas a inequação (5.1.3) pode ser transformada 

em:

A inequação (5.1.4) é exatamente a comparação entre os resultados do 

cálculo da diferença realizado para os candidatos i e j. Seguindo-se os 

critérios do algoritmo da designação proposto neste trabalho, como o 

resultado da diferença foi maior para o candidato j ele será designado 

primeiro. O que considerando-se apenas os dois candidatos garante que j seja 

designado para Li, atendendo-se a condição proposta em (b).

Lj(j) +  L2(i) < L !(i) +  L2(j) (5.1.3)

L2( j ) - L i ( j )  > L 2( i ) - L i ( i ) (5.1.4)
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5.1.1 Procedimentos Básicos do DeCan

Os procedimentos executados pelo DeCan proposto no presente trabalho são 

descritos através dos passos a seguir.

Passo 1

Para todo ponto i não designado, faça:

Encontre Li(i) e L2(i) respectivamente o primeiro e o segundo locais de provas 

mais próximos da residência do candidato i cujas capacidades não estejam 

esgotadas.

Calcule a diferença: d(i) = L2(i) -  Lj(i) e coloque o ponto i na “lista de 

designação” pela ordem decrescente dos valores de d(i).

Faça candidato_atual = primeiro candidato da “lista de designação”.

Passo 2

Enquanto existirem pontos sem designação, faça:

Designe o candidato_atual para o local de provas mais próximo de sua residência 

que dispuser de vaga.

Diminua uma unidade da capacidade do local de provas para o qual o 

candidato_atual foi designado.

Identifique o candidato atual como designado. 

candidato_atual = próximo candidato da “lista de designação”.

Se a capacidade do respectivo local de provas que recebeu o candidato_atual 

ficou esgotada (igual a zero), então:

Volte ao passo 1 e recalcule a “lista de designação”.

Caso contrário, continue.

Fim.
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5.1.2 Melhorias no Resultado Final do DeCan

Tanto no algoritmo de GILLETT e JOHNSON (1973) (BODIN et a l, 1983) 

(descrito na seção 3) quanto no DeCan descrito anteriormente podem haver erros na 

designação dos candidatos como por exemplo: se houver empate no cálculo da 

diferença (ou da razão) para dois ou mais pontos (candidatos), estes serão designados 

apenas de acordo com a ordem em que os cálculos foram realizados. Ou seja, se forem 

calculados os valores da diferença para os pontos i, j ou k, nesta ordem, e todos os 

cálculos resultarem no mesmo valor, os três pontos serão colocados na “lista de 

designação” na ordem: primeiro i, depois j, e por último k. Mesmo que a ordem de 

designação dos candidatos seja recalculada quando um candidato ocupar a última vaga 

de um local de provas, pode acontecer que: o ponto i, primeiro que será designado, 

ocupe a última vaga do primeiro local mais próximo aos pontos i, j, e k e que o ponto j 

ocupe a última vaga do segundo local de provas mais próximo aos pontos i, j, e k. 

Desta forma, o ponto k, na melhor das hipóteses, será designado para o terceiro local 

de provas mais próximo a k. Porém, a distância entre o segundo e o terceiro locais de 

provas mais próximos ao ponto k pode ser muito maior que as mesmas distâncias para 

os candidatos i e j, mas, este fato não foi considerado. Talvez, seja justificada até 

mesmo a troca da designação do ponto k com a designação do ponto i ou j ou até 

mesmo com algum outro ponto que já  tenha sido designado.

O fato de se determinar a ordem de designação dos candidatos levando-se em 

conta apenas a distância entre os dois primeiros locais de provas mais próximos pode 

gerar erros de designação, principalmente para aqueles candidatos que forem 

designados por último. Por outro lado, não há vantagem em se calcular as distâncias 

entre o segundo e terceiro, terceiro e quarto, etc. locais de provas mais próximos para 

cada candidato uma vez que, não se pode prever qual será o candidato designado para 

um determinado local de provas e nem mesmo quando um determinado local de 

provas terá suas vagas esgotadas.
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Para corrigir alguns eventuais erros que podem acontecer na designação dos 

candidatos aos locais de provas pelo DeCan desenvolveu-se a chamada “análise pós- 

processamento”, que é apresentada a seguir.

5.1.2.1 Análise pós-processamento

Terminada a designação de todos os candidatos aos locais de provas, será 

feita uma busca em todos os locais de provas à procura dos candidatos que não foram 

designados para o primeiro local de provas mais próximo de suas residências. Estes 

candidatos são então colocados em uma “lista de troca”. Em seguida, para cada um dos 

candidatos da “lista de troca” é feita uma pesquisa em todos os locais de provas cujas 

vagas estejam esgotadas considerando-se a possibilidade de trocar cada candidato que 

estiver num destes locais com o candidato da “lista de troca” analisado. A troca que 

mais reduzir a soma total das distâncias percorridas é realizada. Caso não haja redução 

em nenhuma troca analisada o candidato da “lista de troca” permanecerá no local onde 

está. Um ponto que deve ser esclarecido é que não há necessidade de considerar locais 

que ainda possuam vagas, pois, caso um destes fosse uma opção melhor, o DeCan já 

teria se encarregado de fazer a designação do candidato para o local, já  que este 

dispunha de vagas.

Trocar dois candidatos significa simplesmente inverter os locais de provas 

para os quais ambos foram inicialmente designados, ou seja, o candidato X (candidato 

da “lista de troca”) passa a ocupar a posição do candidato Y no local de provas onde Y 

está e vice versa. Para evitar que o candidato Y seja “punido” sendo obrigado a ocupar 

uma vaga num local que pode não ser uma boa opção para ele, é considerada a 

hipótese de se transferir Y para cada um dos locais de provas que possua pelo menos 

uma vaga disponível. Além disso, de qualquer forma o candidato Y é automaticamente 

inserido na “lista de troca” e terá futuramente outra possibilidade de melhorar sua 

situação.
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5.1.2.1.1 Procedimentos básicos da análise pós-processamento

A análise pós-processamento é executada somente depois que todos os 

candidatos foram designados para os locais de provas e consiste dos passos 

apresentados a seguir.

Passo 1

Registre na “lista de troca” todos os candidatos que não foram designados para o 

primeiro local de provas mais próximo de suas residências.

Faça candidato_atual = primeiro candidato da “lista de troca”.

Passo 2

Enquanto existir candidato não analisado na “lista de troca” faça:

Analise a possibilidade de trocar o candidato_atual com cada um dos candidatos 

que estejam em locais de provas cujas vagas estejam esgotadas.

Passo 3

Se existir alguma troca observada no passo 2 que resulte em redução da soma total 

das distâncias percorridas, então:

Execute a troca que mais reduzir o valor da soma total das distâncias percorridas. 

Faça candidato_atual = próximo candidato da “lista de troca”.

Vá para o passo 4.

Caso contrário:

Faça candidato_atual = próximo candidato da “lista de troca”.

Volte ao passo 2.

Passo 4

Para o candidato que foi trocado com o candidato_atual, faça:

Analise a possibilidade de transferi-lo do novo local onde ele está para cada um 

dos locais de provas que ainda possui pelo menos uma vaga.

Insira o candidato na lista de troca para que este tenha ainda outra chance de 

melhorar sua designação.
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Se existir alguma transferência observada no passo 4 que resulte em redução da 

soma total das distâncias percorridas, então:

Execute a transferência que mais reduzir o valor total da soma total das distâncias 

percorridas.

Volte ao passo 2.

Fim.

5.2 ALGORITMO GENÉTICO PROPOSTO (AGpMcap)

Nesta seção, são apresentados os aspectos computacionais do algoritmo 

genético proposto no presente trabalho para o problema das p-medianas capacitado.

Observe que dado um conjunto Vp c  V com exatamente p  medianas, não se 

pode garantir que Vp possa atender a todo o conjunto de demandas. Caso a soma das 

capacidades das instalações medianas contidas em Vp seja inferior ao número total de 

demandas o conjunto Vp em questão será considerado uma solução infactível para o 

problema das p-medianas capacitado e não poderá ser utilizado, pois, não atende a 

todos os pontos de demanda. Portanto, para preservar a clareza dos procedimentos do 

AGpMcap que são explicados a seguir, deve-se considerar que qualquer conjunto Vp a  V com 

exatamente p  instalações medianas pode atender a todo o conjunto de demandas. Na 

prática uma forma simples de garantir que qualquer conjunto Vp c  V possa atender a 

todo o conjunto de demandas é determinar p  da seguinte forma:

Primeiramente as n instalações candidatas são colocadas em uma lista pela 

ordem crescente de suas capacidades. Em seguida, considera-se p  igual ao menor 

número de instalações da primeira da lista em diante cuja soma das capacidades seja 

igual a ou maior que o número total de demandas. Desta forma, qualquer conjunto com 

p  instalações selecionadas entre as n instalações candidatas poderá sempre atender a 

todo o conjunto de demandas.

Passo 5
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5.2.1 Representação Cromossômica

Foi utilizada a representação cromossômica proposta por DIBBLE e 

DENSHAM (1993). Cada indivíduo (ou cromossomo) possui exatamente p  genes, e o 

alelo de cada gene representa o valor correspondente a uma instalação utilizada como 

mediana. Por exemplo, considere que para um determinado problema com 15 

instalações (possíveis medianas) representadas respectivamente pelos números 1,2, ...,15 se 

deseje selecionar exatamente 5 medianas. Segundo a representação utilizada, o 

indivíduo [2, 7, 5, 15, 10] representa uma solução para o problema em que as 

instalações 2, 5, 7, 1 0 e l 5  são instalações selecionadas como medianas. Durante todo 

o AGpMcap o genoma é interpretado como um conjunto de genes, no sentido 

matemático de conjuntos, onde não há elementos repetidos e não há ordenação entre os 

elementos. Definida a representação dos indivíduos, será formada uma população de 

possíveis soluções para iniciar a resolução do problema, conforme discutido a seguir.

5.2.2 Tamanho da População

O tamanho P  da população utilizada em um AG pode variar de acordo com 

as características de cada problema. Para o AGpMcap o número de indivíduos da 

população será estimado através da seguinte fórmula proposta por ERKUT (em fase de 

publicação):

(5.2.1)

onde k > 1 é um número natural determinado pelo usuário, n é o número total de 

instalações candidatas,/? é o número de medianas que se deseja selecionar e o símbolo 

[_bj significa o maior inteiro menor que b. Como os genes dos cromossomos filhos são 

determinados através da “mistura” entre os genes dos cromossomos pais, se uma das 

instalações de uma solução ótima não estiver presente nos genes dos cromossomos da

P =  k . -  , 
. P.
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população inicial, o algoritmo terá menor probabilidade de encontrar aquela solução 

ótima para o problema. Uma população com P  indivíduos possui um total de P. p  

genes. Se este número for igual a k .n  cada instalação candidata a mediana, em média, 

deverá aparecer k  vezes entre os P. p  genes da população inicial. Certamente, as 

instalações candidatas que não estiverem presentes entre os genes dos indivíduos da 

população inicial poderão ser inseridas na população por operadores como por 

exemplo, mutação. Porém, quanto maior for o valor atribuído a k  mais reduzida ficará 

a probabilidade de uma determinada instalação não estar presente na população inicial.

Segundo ERKUT (em fase de publicação), no caso de se determinar o 

tamanho da população pela fórmula (5.2.1), a probabilidade de uma instalação não 

estar presente na população inicial pode ser estimada pela fórmula:

(5.2.2)

Assim, pode-se escolher um valor para k  suficientemente alto para que o 

valor da fórmula (5.2.2) seja pequeno, ou menor que um valor predefinido pelo 

usuário.

Definido o tamanho P  da população, são gerados aleatoriamente P 

indivíduos para formar a população inicial. Em seguida, o grau de adaptação destes 

indivíduos é avaliado conforme discutido a seguir.

5.2.3 Avaliação do Indivíduo (fitness)

Depois de gerada a população inicial, é calculada a fitness de cada indivíduo 

que é o valor da função objetivo correspondente à solução (conjunto de medianas) que 

o indivíduo representa. Em seguida, todos os indivíduos são colocados em uma lista R 

pela ordem crescente do valor da fitness de cada indivíduo gerado. Para reduzir o

- k.n
p . _  n ~ 1r FNST NAO_PRESENTE--------------- •

n
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tempo de processamento, no AGpMcap a jitness de cada indivíduo é fornecida pelo 

algoritmo simplificado da designação dos candidatos aos locais de provas que será 

apresentado a seguir. Neste algoritmo simplificado, os candidatos ao vestibular são 

designados para o primeiro local de provas mais próximo que dispuser de vaga e na 

ordem estabelecida pelo cálculo da diferença. A designação não é interrompida quando 

um local de provas tem suas vagas esgotadas e a análise pós-processamento não é 

executada. Ao final do AGpMcap para a melhor solução encontrada será aplicado o 

DeCan completo.

5.2.3.1 Procedimentos básicos do DeCan simplificado

Os procedimentos básicos executados pelo DeCan simplificado são descritos 

através dos passos a seguir.

Passo 1
Para todo ponto i não designado, faça:

Encontre Lj(i) e L2(i) respectivamente o primeiro e o segundo locais de provas 
mais próximos da residência do candidato i cujas capacidades não estejam 
esgotadas.
Calcule a diferença: d(i) = L2(i) -  Li(i) e coloque o ponto i na “lista de 
designação” pela ordem decrescente dos valores de d(i).

Faça candidato_atual = primeiro candidato da “lista de designação”.

Passo 2

Enquanto existirem pontos sem designação, faça:

Designe o candidato_atual para o local de provas mais próximo de sua residência 

que dispuser de vaga.

Diminua uma unidade da capacidade do local de provas para o qual o 

candidato_atual foi designado.

Identifique o candidato_atual como designado. 

candidato_atual = próximo candidato da “lista de designação”.

Fim.
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Durante a execução do AGpMcap, como o objetivo do problema das p- 

medianas é minimizar a soma total das distâncias percorridas, são considerados mais 

adaptados os indivíduos que possuírem os menores valores da fitness e estes terão 

maior probabilidade de serem selecionados para cruzamento ou reprodução, conforme 

discutido a seguir.

5.2.4 Seleção dos Cromossomos Pais

Depois que os indivíduos estiverem ordenados na população, a seleção de 

cada cromossomo pai que irá sofrer cruzamento ou reprodução é realizada com base 

numa fórmula proposta por MAYERLE (1996). Esta fórmula foi ligeiramente 

modificada mas, assim como a original, privilegia a escolha de indivíduos com melhor 

fitness, isto é:

(5.2.3)

onde R é uma lista R = (rl5 r2, ..., rp), com P  cromossomos colocados em ordem 

crescente pelo valor da fitness, md e  [0, 1) é um número aleatório uniformemente 

distribuído e o símbolo [bj significa o maior inteiro menor que b. Esta fórmula (5.2.3) 

retoma um número natural aleatório igual a posição na lista R do cromossomo que será 

selecionado. Apesar de ser aleatório, o número retomado pela fórmula (5.2.3) tem 

maior tendência de selecionar os primeiros elementos da lista R (melhores indivíduos 

da lista). Depois que os cromossomos pais forem selecionados, são submetidos a uma 

comparação que resultará em dois vetores de troca, conforme discutido a seguir.

-1 + J l  + 4 .m d(P 2 + P )  
Select(R) = j r j e R / j  = i >----------1------— ---------   L
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5.2.5 V etores de Troca

A ntes que o operador genético de cruzamento ou a reprodução seja aplicada, 

para evitar que um  gene possa ficar duplicado nos filhos gerados pelos pais 

selecionados são criados dois vetores de troca (um para cada pai) pelo seguinte 

critério:

Para todo gene do pai 1 um a consulta (da esquerda para a direita) é feita com  

o objetivo de saber se  no pai 2 ex iste um gene com  o m esm o valor. Se o gene 

analisado do pai 1 não existir no pai 2, será copiado para o vetor de troca do pai 1. Isto 

sign ifica  que se  este gene for transferido para o pai 2 não ficará duplicado, pois, não 

existe no pai 2. O mesmo procedimento é  realizado pata o pai 2. Exemplo: sejam os pais [1,2,3,4,5] e 

[2, 5 ,9 , 10, 12] seus respectivos vetores de troca são: vp} =  [1, 3 ,4] e vp2 =  [9,10, 12]. D epois de 

identificados os genes que podem  ser trocados entre os pais, o operador de cruzamento 

ou o operador de reprodução é aplicado conform e discutido a seguir.

5 .2 .6  Operador G enético de Cruzamento

Não foi utilizada uma probabilidade fixa para o operador genético de 

cruzamento. O cruzamento entre os pais ocorre sempre que existir pelo menos um 

gene para troca nos vetores vp} e vp2 e é realizado da seguinte forma: um número 

natural aleatório c que pode variar de 1 até (|vp| -  1) é gerado para determinar quantos 

genes dos vetores de troca vp; e vp2 serão transferidos para os pais. Em seguida, os c 

primeiros genes do vetor vpj são transferidos para o pai 2 colocados da esquerda para a 

direita e os c primeiros genes do vetor vp2 são transferidos para o pai 1 também 

colocados da esquerda para a direita. Desta forma, dois novos indivíduos (filhos) são 

gerados com a vantagem de que não haverá genes duplicados em nenhum dos filhos. 

Para cada um dos filhos gerados pelo cruzamento é calculado o valor d&fitness. Para o 

processo de evolução da população foi utilizado o “método do estado estável”. Ou 

seja, o melhor filho gerado é inserido na lista R no lugar do último indivíduo, mas,
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somente se possuir uma fitness melhor que a do último indivíduo da lista. O outro filho 

gerado também é inserido no lugar do penúltimo indivíduo da lista R se possuir uma 

fitness melhor que este. Em seguida, a lista R é reordenada pela ordem crescente do 

valor da fitness dos indivíduos da lista. Caso nenhum dos filhos possua uma fitness 

melhor que a do último indivíduo da lista R, nenhum deles será inserido na lista. Se 

não existirem genes distintos entre os pais selecionados, o operador genético de 

cruzamento não será aplicado. Neste caso, será aplicado o operador genético de 

reprodução que é discutido a seguir.

5.2.7 Operador Genético de Reprodução

Em relação ao operador genético de reprodução comum utilizado em AGs, o 

operador genético de reprodução utilizado no AGpMcap foi ligeiramente modificado. 

No AGpMcap este operador copia integralmente apenas o primeiro pai selecionado 

para a lista R e o coloca no lugar do último indivíduo da lista. Em seguida, a lista R é 

reordenada pela ordem crescente do valor àa. fitness dos indivíduos da lista. Note que 

se fosse aplicado o cruzamento entre dois pais que possuem exatamente os mesmos 

genes, os filhos gerados seriam idênticos aos pais. Já que o operador de cruzamento 

requer um número maior de operações, a aplicação do operador de reprodução neste 

caso agiliza a execução do algoritmo além de evitar que dois indivíduos iguais sejam 

eventualmente inseridos na população (lista R).

5.2.8 Operador de Mutação

Em relação ao operador genético de mutação comum utilizado em AGs, o 

operador genético de mutação utilizado no AGpMcap foi ligeiramente modificado. No 

AGpMcap este operador poderá ser aplicado logo após a seleção dos pais e antes do 

cruzamento ou reprodução. A probabilidade de ocorrer mutação é definida por um 

número fixo (por exemplo 1%). Para exemplificar, considere que a probabilidade de 

mutação seja de 0,01. Será sorteado um número aleatório pertencente ao intervalo
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numérico [0, 1], se este número for menor que ou igual a 0,01, a mutação será aplicada 

a cada um dos pais selecionados da seguinte forma: um gene do primeiro pai é 

escolhido ao acaso e seu valor é substituído por outro também escolhido ao acaso que 

não esteja presente no pai que esta sofrendo mutação. O mesmo procedimento é 

aplicado ao segundo pai. Em seguida os pais são submetidos ao cruzamento ou 

reprodução. Note que o operador genético de mutação altera o código genético dos 

pais antes que estes sejam cruzados ou reproduzidos. Caso o número aleatório sorteado 

determine que a mutação não deva ser aplicada os pais selecionados não sofrerão 

nenhuma modificação e participarão intactos do processo de cruzamento ou 

reprodução.

5.2.9 Hipermutação Direcionada

A hipermutação direcionada é um operador heurístico proposto neste 

trabalho, e é baseado no domínio (conhecimento) do problema. Seu objetivo principal 

é fornecer de maneira rápida características que possam contribuir para a evolução da 

população. Este operador é executado uma vez logo após a geração da população 

inicial e depois disso terá uma probabilidade fixa de ocorrer (por exemplo 0,5%) a 

cada iteração (geração de filhos) do processo evolutivo pelo “método do estado 

estável” . Consiste em selecionar aleatoriamente uma porcentagem (por exemplo 10%) 

dos indivíduos da população atual e tentar melhorar a fitness de cada um dos 

indivíduos selecionados experimentando trocar o valor de cada um dos genes do 

indivíduo por valores (instalações candidatas) que não estejam presentes no indivíduo. 

As trocas que mais contribuírem para a melhoria da qualidade (valor da fitness) do 

indivíduo são realizadas. Em seguida, a lista R é reordenada pela ordem crescente do 

valor da fitness dos indivíduos da lista.

O AGpMcap prossegue por algumas iterações executando os procedimentos 

descritos anteriormente até que uma condição de término seja verificada, conforme 

discutido a seguir.
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5.2.10 Condição de Térraino

No AGpMcap a condição de término utilizada é a de um número fixo de 

iterações ser completado. Uma iteração completa corresponde a seleção dos pais e a 

aplicação dos operadores (não necessariamente todos) descritos nos itens anteriores. A 

iteração termina quando um ou os dois novos indivíduos depois de avaliados são 

inseridos (ou não) na lista R. Quando dois novos pais forem selecionados, terá se 

iniciado uma nova iteração. Os procedimentos básicos do AGpMcap são apresentados 

a seguir.

5.2.11 Procedimentos Básicos do AGpMcap

Primeiramente é definida a notação utilizada para os parâmetros do 

AGpMcap e em seguida cada etapa da implementação do algoritmo é explicada.

5.2.11.1 N otação utilizada

P = Tamanho da população.

T = Número da iteração atual.

Máx_iter = Número máximo de iterações.

P m u t  = Probabilidade de ocorrer mutação.

P h i p e r m u t _ d i r e c  = Probabilidade de ocorrer a hipermutação direcionada.

H = Número de indivíduos da população que serão selecionados a cada vez que a 

hipermutação direcionada for aplicada.

Lista R = População atual.
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Passo 0 (Inicialização do algoritmo)

Defina os valores de Máx_iter, P m u T, P H i p e r m u t _ d i r e c  e H .

Atribua um valor inteiro positivo para k  e determine o número P  de indivíduos da 

população através da fórmula (5.2.1).

Gere aleatoriamente uma lista R com P  indivíduos.

Avalie os P  indivíduos e ordene a lista R pela ordem crescente do valor da fitness 

dos indivíduos da lista.

Faça T = 0.

Através da fórmula (5.2.3) selecione H indivíduos da lista R para aplicar a 

hipermutação direcionada.

Para cada um dos H indivíduos selecionados faça:

Experimente trocar o valor de cada gene do indivíduo por cada um dos valores 

possíveis que não estejam presentes no indivíduo.

Realize as trocas que mais contribuírem para a melhoria da fitness do indivíduo 

(se existirem).

Se alguma troca foi realizada, então:

Reavalie o indivíduo calculando sua fitness.

Depois que todos os indivíduos selecionados sofreram a hipermutação direcionada, 

reordene a lista R pela ordem crescente do valor da fitness dos indivíduos da lista. 

Passo 1 (Seleção dos indivíduos pais)

Faça T = T + 1.

Enquanto T < Máx_iter, faça:

Selecione dois indivíduos da lista R  através da fórmula (5.2.3).

Caso contrário, apresente o primeiro indivíduo da lista R como uma solução 

aproximada para o problema das p-medianas capacitado.

Passo 2 (Operador de mutação)

Sorteie um número aleatório m d e  [0,1].

Se m d < Pmutj então:

5.2.11.2 O AGpMcap passo a passo
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Escolha aleatoriamente um gene do pai 1 e aplique mutação ao gene.

Escolha aleatoriamente um gene do pai 2 e aplique mutação ao gene.

Caso contrário, vá direto ao passo 3.

Passo 3 (Vetor de troca e operador de cruzamento)

Gere os vetores de troca vp} e vp2 respectivamente para o primeiro e o segundo pai 

selecionados.

Se existe em vp} pelo menos um gene para troca, então:

Sorteie um número natural c entre 1 e (|vp| -  1).

Transfira os c primeiros genes do vetor vp} para o pai 2 da esquerda para a direita 

e transfira os c primeiros genes do vetor vp2 para o pai 1 também da esquerda 

para a direita.

Avalie os dois filhos gerados através do cálculo da fitness de cada um deles.

Se o melhor filho gerado possuir uma fitness melhor que a do último indivíduo 

da lista R, então:

Insira o melhor filho gerado na lista R no lugar do último indivíduo da lista R. 

Se o outro filho gerado possuir uma fitness melhor que a do penúltimo 

indivíduo da lista R, então:

Insira este filho na lista R no lugar do penúltimo indivíduo da lista.

Caso contrário, continue.

Reordene a lista R pela ordem crescente do valor da fitness dos indivíduos da 

lista.

Vá direto ao passo 5.

Caso contrário, vá ao passo 5.

Caso contrário, vá ao passo 4.

Passo 4 (Operador de reprodução)

Copie integralmente apenas o primeiro pai selecionado para a lista R no lugar do 

último indivíduo da lista.

Reordene a lista R pela ordem crescente do valor da fitness dos indivíduos da lista. 

Passo 5 (hipermutação direcionada)

Sorteie um número aleatório md e [0,1].
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Se m d  <  P h i p e r m u t _ d i r e c ,  então:

Através da fórmula (5.2.3) selecione H indivíduos da lista R para aplicar a 

hipermutação direcionada.

Para cada um dos indivíduos selecionados faça:

Experimente trocar o valor de cada gene do indivíduo por cada um dos valores 

possíveis que não estejam presentes no indivíduo.

Realize as trocas que mais contribuírem para a melhoria da fitness do 

indivíduo (se existirem).

Reavalie o indivíduo calculando seu valor áà fitness.

Depois que todos os indivíduos selecionados sofreram a hipermutação direcionada, 

reordene a lista R pela ordem crescente do valor da fitness dos indivíduos da lista. 

Volte ao passo 1.

Fim.

5.3 HEURÍSTICA BUSCA TABU PROPOSTA (BTpMcap)

Nesta seção, são apresentados os aspectos computacionais da heurística 

busca tabu proposta no presente trabalho para o problema das p-medianas capacitado.

Para preservar a clareza dos procedimentos da heurística BTpMcap que são 

explicados a seguir, assim como na seção anterior, deve-se considerar que qualquer 

conjunto Vp a  V com exatamente p  instalações medianas pode sempre atender a todo o 

conjunto de demandas.

5.3.1 Solução Inicial

Seja V o conjunto de todas as instalações medianas possíveis e Vp c  V de tal 

forma que (p -  1 < \Vp\ < p  + 1). Inicialmente um conjunto Vp c  V é gerado 

aleatoriamente com exatamente p  instalações medianas. Este conjunto é uma solução 

inicial para o problema das p-medianas. Em seguida, novas soluções são geradas 

conforme discutido a seguir.
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5.3.2 Movimentos e Restrições Tabu

Na heurística BTpMcap, a geração de novas soluções tem seu foco principal 

em analisar a cada iteração uma solução vizinha à solução corrente. As soluções 

vizinhas são geradas basicamente por três tipos de movimentos: adicionar (ADD), 

retirar (DROP) ou trocar (SWAP) uma instalação candidata na solução corrente.

Os movimentos ADD, DROP e SWAP responsáveis por gerar novas 

soluções funcionam da seguinte forma:

a) ADD: O movimento ADD chamado “construtivo” consiste basicamente em 

selecionar uma instalação candidata do conjunto {V- Vp} e colocá-la em Vp 

de tal forma que o valor da nova solução obtida seja o melhor possível;

b) DROP: O movimento DROP chamado “destrutivo” seleciona a instalação 

mediana que retirada de Vp não tome Vp infactível (sem capacidade de suprir 

todo o conjunto de demandas) e que resulte no menor prejuízo possível para 

a solução e “devolve” esta instalação para o conjunto {V - Vp}, retirando-a 

de Vp;

c) SWAP: O movimento SWAP consiste em trocar a instalação de Vp que 

substituída por outra do conjunto {V - Vp} resulte no melhor resultado 

possível para a solução atual e que não tome Vp infactível. Este movimento é 

executado sempre que se tiver | Vp\ = p  entre a alternância da execução dos 

movimentos ADD e DROP.
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5.3.2.1 Procedimento Escolha_Movimento passo a pass o

A execução dos movimentos é iniciada logo após uma solução inicial 

aleatória Vp com exatamente p  medianas ter sido gerada e a seqüência da execução dos 

movimentos será descrita a seguir.

Passo 1 (movimento DROP)

Retire de Vp e devolva a {V-Vp} a instalação mediana que resultar na melhor 

solução possível (obs.: Vp deve continuar atendendo todo o conjunto de demandas).

Passo 2 (movimento ADD)

Adicione a Vp a instalação mediana de {V-Vp} que resultar na melhor solução 

possível.

Passo 3 (movimento SWAP)

Troque a instalação mediana de Vp que substituída por outra de {V-Vp} resulte na 

melhor solução possível (obs.: Vp deve continuar atendendo todo o conjunto de 

demandas).

Passo 4 (movimento ADD)

Adicione a Vp a instalação mediana de {V-Vp} que resultar na melhor solução 

possível.

Passo 5 (movimento DROP)

Retire de Vp e devolva a {V-Vp} a instalação mediana que resultar na melhor 

solução possível (obs.: Vp deve continuar atendendo todo o conjunto de demandas).

Passo 6 (movimento SWAP)

Troque a instalação mediana de Vp que substituída por outra de {V-Vp} resulte na 

melhor solução possível (obs.: Vp deve continuar atendendo todo o conjunto de 

demandas).

Volte ao passo 1.

Fim.
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Para reduzir o tempo de processamento, na BTpMcap a qualidade (valor) de 

cada possível solução analisada será fornecida pelo mesmo algoritmo simplificado da 

designação dos candidatos aos locais de provas utilizado para calcular a fitness nos 

AGs, já  que cada possível solução para o BTpMcap também representa um conjunto 

de instalações candidatas a locais de provas. Ao final da BTpMcap para a melhor 

solução encontrada será aplicado o DeCan completo.

5.3.3 Restrições Tabu

As restrições tabu são impostas somente aos movimentos ADD e SWAP. Isto 

é, quando uma instalação candidata for adicionada ou trocada em Vp será classificada 

como tabu. O tempo que uma instalação candidata permanecerá classificada como 

tabu, mensurado em termo de número de iterações, será calculado da seguinte forma: 

Seja Add_tempo(v;) o número da última iteração em que a instalação v, foi 

adicionada ou trocada em Vp no lugar de outra, Iteração_atual o número da iteração 

atual e Tempo tabu o número de iterações que uma instalação candidata permanecerá 

classificada como tabu, tem-se que para toda instalação v,:

a) se Add_tempo(v,) > Iteração_atual - Tempo_tabu, a instalação v; é 

considerada tabu;

b) caso contrário a instalação v; não é considerada tabu.

Neste trabalho, o Tempo_tabu não é fixo (varia em uma unidade para mais 

ou para menos sempre que não houver melhoria na solução corrente durante por 

exemplo, 20% do número total de iterações do algoritmo). Testes empíricos mostraram 

que, quando diferentes valores para Tempo_tabu podem ser determinados de forma 

aleatória a eficiência da heurística BTpMcap aumenta.
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5.3.4 Critérios de Aspiração (Critérios para cancelamento das restrições tabu)

Em BT os critérios de aspiração são regras que determinam quando uma 

restrição tabu pode ser “quebrada” e um movimento classificado como tabu pode ser 

realizado. Em geral, isto acontece quando o movimento considerado, de alguma forma, 

conduz a busca para uma solução de alta qualidade. Na heurística BTpMcap é 

utilizado apenas um critério de aspiração baseado em duas condições.

Ou seja, um movimento classificado como tabu pode ser realizado se:

a) a solução obtida com o movimento for uma solução factível (| Vp\ = p), e;

b) a solução gerada pelo movimento for melhor que a melhor solução

encontrada pela busca até o momento.

Se as duas condições do critério de aspiração forem verdadeiras qualquer 

movimento classificado como tabu pode ser realizado. Com a intenção de diversificar 

a busca, além das restrições tabu é considerada ainda a freqüência com que as 

instalações foram adicionadas ou trocadas em Vp durante o processo de busca, 

conforme discutido a seguir.

5.3.5 Diversificação e Memória de Longo Prazo

A diversificação é utilizada na heurística BTpMcap para escapar de soluções 

ótimas locais e é ativada pela chamada “memória de longo prazo”. No presente 

trabalho, a memória de longo prazo é uma lista que armazena a freqüência (número de 

vezes) que cada instalação candidata foi adicionada ou trocada em Vp. Esta freqüência 

é representada por Freq(vz).
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r  ____

E utilizada uma fimção de penalização denotada por II, onde: 

n o o  = &.Freq(v;), (5.3.1)

e k  é uma constante arbitrária. A penalização (5.3.1) é somada à distância de v, até 

todos os pontos de demanda sempre que a instalação v, é adicionado ou inserida em 

Vp. Desta forma, procura-se inibir a escolha de instalações freqüentemente 

selecionadas. Esta estratégia promove uma diversificação na busca e tende a 

investigar áreas pouco exploradas do espaço de busca.

O parâmetro k  é escolhido de tal forma que a penalização tenha um impacto 

significativo sobre a função objetivo.

Na heurística aqui apresentada foi utilizado k  = Máximo {d(E, vy)} fixo 

durante todo o algoritmo e para todo ponto v, pertencente ao conjunto de demandas 

onde d(V, vj) é a distância do ponto de demanda Vj até sua instalação mais próxima.

De forma resumida, a ação da diversificação nos procedimentos ADD e 

SWAP é a seguinte:

a) para cada instalação candidata v, c  {V-Vp} adicionado ou trocada em Vp 

calcule a função de penalização (5.3.1);

b) para todo ponto de demanda v; que for designado para a instalação v„ faça: 

d(vz-, vj) = d(V;, Vj) + n(v,) e então calcule o valor da solução;

c) escolha a instalação candidata v,- c  {V-Vpj que adicionado ou trocada em Vp 

resultou na melhor solução possível (considerando-se a penalização 

imposta), efetue o movimento considerado e calcule o valor da solução atual 

(agora sem a penalização).
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Note que a seqüência de movimentos ADD e DROP não geram sempre 

soluções factíveis, ou seja \Vp\ não é necessariamente igual a. p. A  aceitação temporária 

destas soluções infactíveis é um outro meio de escapar de ótimos locais. Embora possa 

parecer o contrário, desta forma, o algoritmo tende a direcionar a busca mais 

rapidamente para soluções factíveis cada vez melhores. Esta estratégia chamada de 

“oscilação” no presente trabalho foi implementada da seguinte forma:

Partindo-se da solução inicial aleatória com exatamente p  instalações 

medianas aplica-se o movimento DROP que retira uma instalação mediana deixando 

Vp com p  -  1 medianas. Em seguida é aplicado o movimento ADD que adiciona uma 

mediana fazendo com que Vp volte a conter exatamente p  instalações medianas. Como 

\Vp\ = p , o próximo movimento executado é o movimento SWAP que troca uma 

mediana de Vp por outra do conjunto {V-Vp} mantendo o conjunto Vp com 

exatamente p  medianas. Em seguida é aplicado o movimento ADD que adiciona uma 

instalação mediana fazendo agora com que Vp passe a conter p  + 1 medianas. 

Novamente é aplicado o movimento DROP que reduzirá novamente o número de 

instalações medianas em Vp de p  + 1 para p  instalações. O próximo movimento 

aplicado é o movimento SWAP e em seguida o processo é reiniciado com aplicação do 

movimento DROP e a seqüência de movimentos descrita anteriormente é executada 

até que uma condição de término seja verificada (por exemplo, um número máximo de 

iterações ser completado).

A melhor solução factível gerada é armazenada e considerada como a 

solução factível corrente. Esta solução será apresentada como uma solução 

aproximada para o problema das p-medianas ao final da execução da heurística 

BTpMcap. Os procedimentos básicos realizados durante a execução da BTpMcap são 

apresentados a seguir.

5.3.6 Estratégia da Oscilação
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5.3.7 Procedimentos Básicos da Heurística BTpMcap

Primeiramente é definida a notação utilizada para os parâmetros da 

BTpMcap e em seguida cada etapa da implementação desta heurística é explicada.

5.3.7.1 N otação utilizada

Max_iterações = Número máximo de iterações.

Iteração atual = Número equivalente a iteração atual.

Tempo_tabu = Número de iterações tabu.

Add_tempo(v/) = Número da iteração em que a instalação candidata v, foi adicionada 

ou inserida em Vp.

Freq(vz) - Número de vezes que a instalação candidafa vz foi adicionada ou inserida em Vp. 

k  = Maior distância de um ponto de demanda vy até sua instalação mais próxima. 

Estabilidade = Número máximo de iterações suportadas sem melhoria na solução.

Sem melhoria = Número de iterações sem melhoria na solução corrente.

5.3.7.2 A heurística BTpMcap passo a passo 

Passo 0

Defina Max_iterações, T em potabu, Estabilidade e calcule k.

Gere aleatoriamente um conjunto Vp a  V com p  instalações medianas, avalie Vp e 

considere o conjunto Vp como a solução corrente para o problema.

Faça Iteração_atual = 0.

Sem_melhoria = 0.

Passo 1

Faça Iteração_atual = Iteração_atual + 1.

Enquanto Iteração_atual < Max_iterações, faça:

Execute o procedimento Escolha_Movimento.

Se o movimento executado foi ADD ou SWAP, então:
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Addtempo(Ví) = Iteração_atual.

Freq(v;) = Freq(v;) + 1.

Vá para o passo 2.

Caso contrário, apresente a solução corrente como uma solução aproximada para o 

problema das p-medianas.

Passo 2

Calcule o valor da nova solução.

Passo 3

Se | Vp\ = p  e a solução atual é melhor que a solução corrente, então:

Atualize a solução corrente.

Passo 4

Se não houve melhoria na solução corrente, então:

Semjmelhoria = Sem melhoria + 1.

Caso contrário, Sem_melhoria = 0.

Passo 5

Se Sem_melhoria = Estabilidade, então:

Atribua aleatoriamente um novo valor para Tempo tabu.

Volte ao passo 1.

Fim.
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6 TESTES COMPUTACIONAIS E RESULTADOS

Nesta seção, já  de posse da noção geral dos algoritmos propostos neste 

trabalho, primeiramente são apresentados os resultados reais obtidos com a designação 

dos 19.710 candidatos ao vestibular 2001 da UFPR pelo algoritmo DeCan e utilizados 

pela CCCV. Porém, a primazia será concedida às simulações computacionais 

realizadas com as heurísticas AGpMcap e BTpMcap que focalizam a seleção de 26 

locais de provas dentre 43 locais disponíveis de tal forma que a soma das distâncias 

percorridas pelos mesmos 19.710 candidatos ao vestibular 2001 da UFPR seja 

minimizada. Todos os dados utilizados nas simulações realizadas são verdadeiros.

6.1 RESULTADOS COMPUTACIONAIS OBTIDOS PELO DeCan

Para o processamento do DeCan foi utilizado um computador Pentium III 
550 MHz com 128 megabytes de RAM. O DeCan opera de forma determinística, ou 

seja, para um mesmo conjunto de locais de provas (não importando a ordem dos 
locais) cada candidato é designado sempre para o mesmo local de provas e na mesma 
ordem de designação. Como no problema real abordado os 26 locais de provas já  

estavam determinados, o DeCan foi aplicado, a pedido da CCCV, para efetuar a 
designação dos 19.710 candidatos ao vestibular 2001 para os 26 locais de provas 
mencionados na seção 2. Os resultados reais obtidos e utilizados pela CCCV no 
concurso vestibular 2001 estão na tabela 6.1.

Uma nova simulação da designação destes 19.710 candidatos ao vestibular 

2001 para os mesmos 26 locais foi feita. Nesta nova simulação o algoritmo DeCan 

foi alterado. Ao invés de utilizar o cálculo da diferença, o DeCan utilizou o cálculo 

da razão conforme discutido na seção 5. Desta forma, foi possível comparar os 

resultados obtidos pelo DeCan no caso da utilização do cálculo da diferença 

proposta no presente trabalho e no caso da utilização do cálculo da razão proposta 

por GILLET e JOHNSON (1973) apresentado na seção 3. A tabela 6.2 apresenta os 

resultados obtidos pelo DeCan nesta nova simulação computacional realizada com o 

DeCan alterado para utilizar o cálculo da razão ao invés da diferença.
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TABELA 6.1 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO DeCan E UTILIZADOS 
PELA CCCV - UFPR NO VESTIBULAR 2001

ITENS AVALIADOS DADOS NUMÉRICOS
Total de candidatos designados 19.710
Total de locais de provas utilizados 26
Tempo de processamento do DeCan 00:09:29 (h:m:s)
Distância média percorrida pelos candidatos 3.549,12 m
Soma total das distâncias percorridas 69.953.098,10 m
Menor distância percorrida por um candidato 30,94 m
Distância do local mais próximo para o candidato do item anterior 30,94 m
Distância do local mais distante para o candidato do item anterior 15.668,67 m
Maior distância percorrida por um candidato 19.917,74 m
Distância do local mais próximo para o candidato do item anterior 18.393,04 m
Distância do local mais distante para o candidato do item anterior 27.275,02 m
Total de candidatos designados para o primeiro local mais próximo 10.499 (53%)
Total de candidatos designados para o segundo local mais próximo 3.452(18%)
Total de candidatos designados para o terceiro local mais próximo 1.154 (6%)
Total de candidatos designados para o (4o, etc.) locais mais próximos 4.605 (23%)

SOMA TOTAL 19.710 (100%)

TABELA 6.2 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO DeCan ALTERADO 
PARA O CÁLCULO DA RAZÃO

ITENS AVALIADOS DADOS NUMÉRICOS
Total de candidatos designados 19.710
Total de locais de provas utilizados 26
Tempo de processamento do DeCan 00:09:29 (h:m:s)
Distância média percorrida pelos candidatos 3.617,00 m
Soma total das distâncias percorridas 71.291.068,33 m
Menor distância percorrida por um candidato 24,82 m
Distância do local mais próximo para o candidato do item anterior 24,82 m
Distância do local mais distante para o candidato do item anterior 12.330,68 m
Maior distância percorrida por um candidato 20.698,52 m
Distância do local mais próximo para o candidato do item anterior 19.173,82 m
Distância do local mais distante para o candidato do item anterior 28.055,80 m
Total de candidatos designados para o primeiro local mais próximo 10.089 (51%)
Total de candidatos designados para o segundo local mais próximo 3.103 (16%)
Total de candidatos designados para o terceiro local mais próximo 1.468 (7%)
Total de candidatos designados para o (4o, etc.) locais mais próximos 5.050 (26%)

SOMA TOTAL 19.710 (100%)
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Vale ressaltar que, como os candidatos designados pela CCCV foram 

designados por primeiro, alguns locais de provas (respectivamente os locais: 3, 8, 9 e 

17, ver tabela 2.2 seção 2) ficaram com poucas vagas disponíveis. O fato de haver 

locais com um número muito reduzido de vagas disponíveis prejudica as estatísticas do 

resultado final obtido pelo DeCan. Para exemplificar suponha que as residências de 

500 candidatos estejam mais próximas do local 8 (UFPR -  Edifício Dom Pedro I -  

Reitoria) que possui apenas 2 vagas disponíveis. Destes 500 candidatos certamente 

498 não serão designados para o primeiro local de provas mais próximo, o que 

diminuirá a porcentagem de candidatos designados para o primeiro local mais próximo 

e aumentará a porcentagem de candidatos designados para os outros locais. Para 

evidenciar a real eficiência do DeCan e afirmar o que foi dito, os 4 locais com menor 

capacidade foram desconsiderados e uma simulação da designação dos 19.710 

candidatos ao vestibular 2001 foi refeita considerando-se apenas os 22 locais de provas 

restantes. Os resultados obtidos estão na tabela 6.3 e podem ser comparados com os 

resultados da tabela 6.2.

TABELA 6.3 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO DeCan EXCLUINDO-SE
4 LOCAIS COM POUCAS VAGAS

ITENS AVALIADOS DADOS NUMÉRICOS
Total de candidatos designados 19.710
Total de locais de provas utilizados 22
Tempo de processamento do DeCan 00:09:10 (h:m:s)
Distância média percorrida pelos candidatos 3.550,18 m
Soma total das distâncias percorridas 69.973.959,16 m
Menor distância percorrida por um candidato 30,94 m
Distância do local mais próximo para o candidato do item anterior 30,94 m
Distância do local mais distante para o candidato do item anterior 15.668,67 m
Maior distância percorrida por um candidato 19.917,74 m
Distância do local mais próximo para o candidato do item anterior 18.393,04 m
Distância do local mais distante para o candidato do item anterior 27.275,02 m
Total de candidatos designados para o primeiro local mais próximo 10.828 (55%)
Total de candidatos designados para o segundo local mais próximo 4.003 (20%)
Total de candidatos designados para o terceiro local mais próximo 1.495 (8%)
Total de candidatos designados para o (4o, etc.) locais mais próximos 3.384 (17%)

SOMA TOTAL 19.710 (100%)



72

Evidentemente, se no caso real os 26 locais de provas utilizados estivessem 

com todas as vagas originais disponíveis a designação dos 19.710 candidatos ao 

vestibular 2001 designados pelo DeCan teria sido bem mais satisfatória. Os resultados 

de uma simulação do DeCan aplicado aos 19.710 candidatos considerando-se os 26 

locais com todas as vagas disponíveis são apresentados a seguir. Primeiramente, a 

tabela 6.4 apresenta a relação dos 26 locais utilizados com suas respectivas 

capacidades totais (antes das designações feitas pela CCCV).

TABELA 6.4 - OS 26 LOCAIS UIWZADOS PARA A DESIGNAÇÃO DOS 19.710 CANDIDATOS 
ATRAVÉS DO DeCan COM SUAS RESPECTIVAS CAPACIDADES TOTAIS

LOCAL NOME DA INSTITUIÇÃO CAPACIDADE TOTAL
1 UFPR - Centro Politécnico 3829
2 PUC - Pontifícia Univ. Católica 7837
3 Col. Estadual Rio Branco 935
4 Col. Estadual do Paraná 1865
5 Col. Nossa Senhora Medianeira 1240
6 UFPR - Setor de Ciências Agrárias 1300
7 Col. Estadual Leôncio Correia 1265
8 UFPR - Edifício Dom Pedro I - Reitoria 1155
9 UFPR - Edifício Dom Pedro II - Reitoria 1195
10 Fund. Estudos Sociais PR - Fesp 885
11 Col. Est. Prof. Loureiro Fernandes 1020
12 Esc. Municipal Pref. Omar Sabbag 1230
13 Col. Est. Prof.a. M. Aguiar Teixeira 630
14 UFPR - Depto. de Educação Física 485
15 Col. Padre João Bagozzi 2340
16 Col. Estadual Pedro Macedo 1305
17 Instituto de Educação do Paraná 1035
18 Col. Estadual Cecília Meireles 1000
19 Escola Social Madre Clélia 1025
20 Col. Estadual Paula Gomes 880
21 Colégio Paranaense 1114
22 UFPR - Setor C. Saúde - sede Botânico 770
23 Colégio Militar de Curitiba 1348
24 Esc. Est. República O. do Uruguai 725
25 Colégio Estadual Paulo Leminski 1259
26 UFPR - C. Ciências Florestais e Madeira 590

SOMA DAS CAPACIDADES 38262
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A tabela 6.5 apresenta os resultados obtidos pelo DeCan aplicado a situação 

em que foram considerados novamente os mesmos 19.710 candidatos ao vestibular 

2001 e os 26 locais com as capacidades totais.

TABELA 6.5 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO DeCan PARA 26 LOCAIS 
COM AS CAPACIDADES TOTAIS

ITENS AVALIADOS DADOS NUMÉRICOS
Total de candidatos designados 19.710
Total de locais de provas utilizados 26
Tempo de processamento do DeCan 00:08:7 (h:m:s)
Distância média percorrida pelos candidatos 2.993,91 m
Soma total das distâncias percorridas 59.009.874,76 m
Menor distância percorrida por um candidato 24,43 m
Distância do local mais próximo para o candidato do item anterior 24,43 m
Distância do local mais distante para o candidato do item anterior 10.389,40 m
Maior distância percorrida por um candidato 19.173,82 m
Distância do local mais próximo para o candidato do item anterior 19.173,82 m
Distância do local mais distante para o candidato do item anterior 28.055,80 m
Total de candidatos designados para o primeiro local mais próximo 14.541 (74%)
Total de candidatos designados para o segundo local mais próximo 4.157 (21%)
Total de candidatos designados para o terceiro local mais próximo 883 (4%)
Total de candidatos designados para o (4o, etc.) locais mais próximos 129 (1%)

SOMA TOTAL 19.710 (100%)

A seguir são realizadas novas simulações computacionais da designação dos

19.710 candidatos ao vestibular 2001 para 26 locais de provas. Porém, os 26 locais 

utilizados são selecionados dentre os 43 locais de provas disponíveis em Curitiba para 

a realização das provas do vestibular da UFPR, e para isto são utilizadas as heurísticas 

AGpMcap e BTpMcap.

6.2 TESTES COMPUTACIONAIS DAS HEURÍSTICAS AGpMcap E BTpMcap

Para testar a eficiência das heurísticas AGpMcap e BTpMcap foram 

realizadas simulações computacionais utilizando-se os dados do vestibular 2001 da 

UFPR. O objetivo destas simulações foi selecionar 26 locais de provas entre 43

possíveis (C“ = 421.171.648.758 combinações possíveis) e efetuar a designação dos
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19.710 candidatos ao vestibular 2001 da UFPR. A tabela 6.6 mostra a relação dos 43 

locais de provas que constam na relação da UFPR como locais disponíveis para a 

realização das provas em Curitiba e que são utilizados nas simulações computacionais 

seguintes. Evidentemente, os 26 locais que foram fixados como locais de provas para o 

vestibular 2001 pelos membros da CCCV (conforme discutido na seção 2) estão entre 

os 43 locais utilizados nestas simulações. Todos os 43 locais foram considerados com 

suas capacidades totais. Logo, os resultados desta seção não podem ser diretamente 

comparados com os resultados das tabelas 6.1, 6.2 e 6.3, mas podem ser comparados 

com os resultados da tabela 6.5. As simulações foram realizadas em um computador 

Pentium III 550 MHz com 128 megabytes de RAM.

TABELA 6.6 - RELAÇÃO DOS 43 LOCAIS DE PROVAS UTILIZADOS 
NAS SIMULAÇÕES (continua)

LOCAL NOME DA INSTITUIÇÃO CAPACIDADE
1 UFPR - Centro Politécnico 3829
2 PUC - Pontifícia Univ. Católica 7837
3 Col. Est. Hildebrando de Araújo 720
4 Col. Estadual Rio Branco 935
5 Col. da Polícia Militar 595
6 Col. Estadual do Paraná 1865
7 Col. Nossa Senhora Medianeira 1240
8 UFPR - Setor de Ciências Agrárias 1300
9 Col. Estadual Leôncio Correia 1265
10 Esc. Estadual Prof. Brandão 560
11 Esc. Est. Tiradentes 550
12 Col. Marista Santa Maria 1800
13 UFPR -  Edifício Dom Pedro I - Reitoria 1155
14 UFPR -  Edifício Dom Pedro II - Reitoria 1195
15 Fund. Estudos Sociais PR - Fesp 885
16 Col. Est. Prof. Loureiro Fernandes 1020
17 Esc. Municipal Pref. Omar Sabbag 1230
18 Col. Est. Prof.a. M. Aguiar Teixeira 630
19 UFPR - Depto. de Educação Física 485
20 Col. Est. Pres. Lamenha Lins 500
21 Col. Padre João Bagozzi 2340
22 Col. Estadual Pedro Macedo 1305
23 Instituto de Educação do Paraná 1035
24 Col. Est. Prieto Martinez 480
25 Col. Est. Júlia Wanderley 670
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TABELA 6.6 - RELAÇÃO DOS 43 LOCAIS DE PROVAS UTILIZADOS
NAS SIMULAÇÕES (conclusão)

LOCAL NOME DA INSTITUIÇÃO CAPACIDADE
26 Col. Estadual Cecília Meireles 1000
27 Col. Est. Guaíra 650
28 Esc. Est. Isolda Schmid 450
29 Col. Sagrado Coração de Jesus 800
30 Col. Est. Prof. Elias Abrahão 680
31 Col. Est. Segismundo Falarz 690
32 Col. Est. Prof. Victor do Amaral 690
33 Escola Social Madre Clélia 1025
34 Col. Estadual Paula Gomes 880
35 Instituto Politécnico Estadual 650
36 Esc. Est. Amâncio Moro 660
37 Colégio Paranaense 1114
38 UFPR - Setor C. Saúde - Sede Botânico 770
39 Colégio Militar de Curitiba 1348
40 Esc. Est. República 0 . do Uruguai 725
41 Colégio Estadual Paulo Leminski 1259
42 Uniandrade -  Campus João Negrão 1430
43 UFPR - C. Ciências Florestais e Madeira 590
SOMA DAS CAPCIDADES DE 1 ATE 43 50837

A seguir são apresentados os resultados obtidos nos testes computacionais 

realizados com o AGpMcap.

6.2.1 Resultados Computacionais Obtidos pelo AGpMcap

O AGpMcap foi submetido a duas simulações computacionais para 

selecionar 26 locais de provas dentre os 43 apresentados na tabela 6.6. Na primeira 

simulação realizada foi utilizado o AGpMcap como descrito na seção 5 (completo). Já 

na segunda simulação realizada o operador denominado “Hipermutação direcionada” 

proposto neste trabalho, foi “desligado”. Ou seja, na segunda simulação realizada este 

operador não foi executado nenhuma vez durante todo o processamento do AGpMcap. 

O objetivo foi verificar a influência deste operador no AGpMcap. A seguir, são 

apresentados os parâmetros atribuídos ao AGpMcap para a realização da primeira 

simulação e em seguida a tabela 6.7 apresenta os resultados obtidos na primeira 

simulação.
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Tamanho da população = 100.

Número máximo de iterações = 1.000.

Probabilidade de ocorrer mutação = 0,01 (1%).

Probabilidade de ocorrer a Hipermutação direcionada = 0,005 (0,5%). 

Número de indivíduos que sofrerão hipermutação = 1 0  (10% da população).

TABELA 6.7 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO AGpMcap NA PRIMEIRA 
SIMULAÇÃO (COM HIPERMUTAÇÃO DIREC.)

ITENS AVALIADOS DADOS NUMÉRICOS
DADOS GERAIS

Total de candidatos designados 19.710
Total de locais de provas utilizados 43
Total de locais de provas selecionados 26
Tempo de processamento do AGpMcap 01:43:34 (h:m:s)
Número de ocorrências da Hipermutação direcionada 05

RESULTADOS OBTIDOS
Distância média percorrida pelos candidatos 2.333,50 m
Soma total das distâncias percorridas 45.993.335,75 m
Menor distância percorrida por um candidato 13,33 m
Distância do local mais próximo para o candidato do item anterior 13,33 m
Distância do local mais distante para o candidato do item anterior 10.624,54 m
Maior distância percorrida por um candidato 16.400,27 m
Distância do local mais próximo para o candidato do item anterior 16.400,27 m
Distância do local mais distante para o candidato do item anterior 32.430,81 m
Total de candidatos designados para o primeiro local mais próximo 16.264 (83%)
Total de candidatos designados para o segundo local mais próximo 2.057 (9%)
Total de candidatos designados para o terceiro local mais próximo 496 (3%)
Total de candidatos designados para o (4o, etc.) locais mais próximos 893 (5%)

SOMA TOTAL 19.710 (100%)

A tabela 6.8 apresenta a relação dos 26 locais de provas selecionados pelo 

AGpMcap nesta primeira simulação.
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TABELA 6.8 - RELAÇÃO DOS 26 LOCAIS DE PROVAS SELECIONADOS PELO
AGpMcap NA PRIMEIRA SIMULAÇÃO REALIZADA

LOCAL NOME DA INSTITUIÇÃO CAPACIDADE
1 UFPR - Centro Politécnico 3829
2 Col. Estadual Rio Branco 935
3 Col. da Polícia Militar 595
4 Col. Nossa Senhora Medianeira 1240
5 Col. Estadual Leôncio Correia 1265
6 Esc. Estadual Prof. Brandão 560
7 Col. Marista Santa Maria 1800
8 UFPR- Edifício Dom Pedro II - Reitoria 1195
9 Col. Est. Prof. Loureiro Fernandes 1020
10 Esc. Municipal Pref. Ornar Sabbag 1230
11 Col. Padre João Bagozzi 2340
12 Col. Estadual Pedro Macedo 1305
13 Instituto de Educação do Paraná 1035
14 Col. Est. Prieto Martinez 480
15 Col. Est. Júlia Wanderley 670
16 Col. Estadual Cecília Meireles 1000
17 Col. Est. Guaíra 650
18 Esc. Est. Isolda Schmid 450
19 Col. Est. Segismundo Falarz 690
20 Col. Est. Prof. Victor do Amaral 690
21 Escola Social Madre Clélia 1025
22 Col. Estadual Paula Gomes 880
23 Esc. Est. Amâncio Moro 660
24 Colégio Paranaense 1114
25 Uniandrade - Campus João Negrão 1430
26 UFPR - C. Ciências Florestais e Madeira 590

SOMA DAS CAPACIDADES 28678

A seguir são apresentados os parâmetros atribuídos ao AGpMcap para a 

realização da segunda simulação e a tabela 6.9 apresentando os resultados obtidos na 

segunda simulação realizada com o AGpMcap.

Tamanho da população = 100.

Número máximo de iterações = 12.100.

Probabilidade de ocorrer mutação = 0,01 (1%).

Probabilidade de ocorrer a Hipermutação direcionada = 0 (0%).

Número de indivíduos que sofrerão Hipermutação = 0 (0%).
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TABELA 6.9 - RESULTADOS COMPUTACIONAIS OBTIDOS PELO AGpMcap NA SEGUNDA 
SIMULAÇÃO (SEM HIPERMUTAÇÃO DIREC.)

ITENS AVALIADOS DADOS NUMÉRICOS
DADOS GERAIS

Total de candidatos designados 19.710
Total de locais de provas utilizados 43
Total de locais de provas selecionados 26
Tempo de processamento do AGpMcap 01:43:21 (h:m:s)
Número de ocorrências da Hipermutação direcionada 00 (zero)

RESULTADOS OBTIDOS
Distância média percorrida pelos candidatos 2.400,43 m
Soma total das distâncias percorridas 47.312.540,92 m
Menor distância percorrida por um candidato 57,49 m
Distância do local mais próximo para o candidato do item anterior 57,49 m
Distância do local mais distante para o candidato do item anterior 12.598,50 m
Maior distância percorrida por um candidato 16.400,27 m
Distância do local mais próximo para o candidato do item anterior 16.400,27 m
Distância do local mais distante para o candidato do item anterior 32.430,81 m
Total de candidatos designados para o primeiro local mais próximo 15.595 (79%)
Total de candidatos designados para o segundo local mais próximo 2.486 (13%)
Total de candidatos designados para o terceiro local mais próximo 655 (3%)
Total de candidatos designados para o (4o, etc.) locais mais próximos 974 (5%)

SOMA TOTAL 19.710(100%)

A tabela 6.10 apresenta a relação dos 26 locais de provas selecionados pelo 

AGpMcap nesta segunda simulação.

TABELA 6.10 - RELAÇÃO DOS 26 LOCAIS DE PROVAS SELECIONADOS 
PELO AGpMcap NA SEGUNDA SIMULAÇÃO (continua)

LOCAL NOME DA INSTITUIÇÃO CAPACIDADE
1 UFPR - Centro Politécnico 3829
2 Col. Estadual do Paraná 1865
3 Col. Nossa Senhora Medianeira 1240
4 UFPR - Setor de Ciências Agrárias 1300
5 Col. Estadual Leôncio Correia 1265
6 Col. Marista Santa Maria 1800
7 Fund. Estudos Sociais PR - Fesp. 885
8 Esc. Municipal Pref. Omar Sabbag 1230
9 UFPR - Depto. de Educação Física 485
10 Col. Est. Pres. Lamenha Lins 500
11 Col. Padre João Bagozzi 2340
12 Col. Estadual Pedro Macedo 1305
13 Instituto de Educação do Paraná 1035
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TABELA 6.10 - RELAÇÃO DOS 26 LOCAIS DE PROVAS SELECIONADOS
PELO AGpMcap NA SEGUNDA SIMULAÇÃO (conclusão)

LOCAL NOME DA INSTITUIÇÃO CAPACIDADE
14 Col. Est. Prieto Martinez 480
15 Col. Est. Júlia Wanderley 670
16 Col. Estadual Cecília Meireles 1000
17 Col. Est. Guaíra 650
18 Esc. Est. Isolda Schmid 450
19 Col. Sagrado Coração de Jesus 800
20 Col. Est. Prof. Elias Abrahão 680
21 Col. Est. Prof. Victor do Amaral 690
22 Escola Social Madre Clélia 1025
23 Col. Estadual Paula Gomes 880
24 Instituto Politécnico Estadual 650
25 Esc. Est. Amâncio Moro 660
26 Colégio Paranaense 1114

SOMA DAS CAPACIDADES 28828

A seguir, são apresentados os resultados computacionais obtidos nas 

simulações realizadas com a BTpMcap.

6.2.2 Resultados Computacionais Obtidos pela BTpMcap

A BTpMcap foi submetida a uma simulação computacional em que 
selecionou 26 locais de provas entre os mesmos 43 locais utilizados nas simulações do 
AGpMcap. Primeiramente são apresentados os parâmetros atribuídos à BTpMcap para 

a realização da simulação e em seguida a tabela 6.11 apresenta os resultados obtidos 

na simulação.

Número máximo de iterações = 150.

Número de iterações tabu =10.

Número máximo de iterações suportadas sem melhoria na solução = 30 (20%).
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TABELA 6.11 - RESULTADOS COMPUTAaONAIS OBTIDOS PELA BTpMcap NA SMUIAÇÃO REALIZADA
ITENS AVALIADOS DADOS NUMÉRICOS

DADOS GERAIS
Total de candidatos designados 19.710
Total de locais de provas utilizados 43
Total de locais de provas selecionados 26
Tempo de processamento da BTpMcap 01:23:37 (h:m:s)
Total de iterações completadas 150

RESULTADOS OBTIDOS
Distância média percorrida pelos candidatos 2367,34 m
Soma total das distâncias percorridas 46.660.204,66 m
Menor distância percorrida por um candidato 139,75 m
Distância do local mais próximo para o candidato do item anterior 139,75 m
Distância do local mais distante para o candidato do item anterior 16.458,98 m
Maior distância percorrida por um candidato 16.400,27 m
Distância do local mais próximo para o candidato do item anterior 16.400,27 m
Distância do local mais distante para o candidato do item anterior 32.430,81 m
Total de candidatos designados para o primeiro local mais próximo 16.064 (82%)
Total de candidatos designados para o segundo local mais próximo 1.652 (8%)
Total de candidatos designados para o terceiro local mais próximo 802 (4%)
Total de candidatos designados para o (4o, etc.) locais mais próximos 1.192 (6%)

SOMA TOTAL 19.710 (100%)

A tabela 6.12 apresenta a relação dos 26 locais de provas selecionados pela 

BTpMcap na simulação computacional realizada.

TABELA 6.12 - RELAÇÃO DOS 26 LOCAIS DE PROVAS SELECIONADOS 
PELA BTpMcap NA SIMULAÇÃO REALIZADA (continua)

LOCAL NOME DA INSTITUIÇÃO CAPACIDADE
1 Col. Est. Hildebrando de Araújo 720
2 Col. Estadual Rio Branco 935
3 Col. Nossa Senhora Medianeira 1240
4 Col. Estadual Leôncio Correia 1265
5 Esc. Estadual Prof. Brandão 560
6 Col. Marista Santa Maria 1800
7 UFPR - Edifício Dom Pedro II - Reitoria 1195
8 Col. Est. Prof. Loureiro Fernandes 1020
9 Esc. Municipal Pref. Ornar Sabbag 1230
10 Col. Est. Pres. Lamenha Lins 500
11 Col. Padre João Bagozzi 2340
12 Col. Estadual Pedro Macedo 1305
13 Instituto de Educação do Paraná 1035
14 Col. Est. Prieto Martinez 480
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TABELA 6.12 - RELAÇÃO DOS 26 LOCAIS DE PROVAS SELECIONADOS
PELA BTpMcap NA SIMULAÇÃO REALIZADA (conclusão)

LOCAL NOME DA INSTITUIÇÃO CAPACIDADE
15 Col. Est. Júlia Wanderley 670
16 Col. Estadual Cecília Meireles 1000
17 Esc. Est. Isolda Schxnid 450
18 Col. Sagrado Coração de Jesus 800
19 Col. Est. Prof. Elias Abrahão 680
20 Col. Est. Segismundo Falarz 690
21 Col. Est. Prof. Victor do Amaral 690
22 Escola Social Madre Clélia 1025
23 Col. Estadual Paula Gomes 880
24 Esc. Est. Amâncio Moro 660
25 Esc. Est. República O. do Uruguai 725
26 Colégio Estadual Paulo Leminski 1259

SOMA DAS CAPACIDADES 25154

A seguir, é feita uma breve análise dos resultados obtidos pelas heurísticas 

AGpMcap e BTpMcap nas simulações computacionais descritas anteriormente. São 

apresentadas também as conclusões do presente trabalho e algumas sugestões para 

trabalhos futuros.
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7 ANÁLISE DOS RESULTADOS E CONCLUSÕES

Esta seção tem por objetivo fornecer a análise dos resultados apresentados nas 

seções anteriores destacando o desempenho das técnicas apresentadas no presente 

trabalho. Sugestões para aprimorar a resolução do problema das p-medianas e do 

problema real descrito também são fornecidas.

7.1 ANÁLISE DOS RESULTADOS OBTIDOS PELO AGpMcap

O objetivo das simulações computacionais realizadas com o AGpMcap foi 
demonstrar o poder da heurística denominada algoritmos genéticos. Desta forma, não se 
teve a preocupação de realizar dezenas de simulações nem de submeter o algoritmo a um 
longo tempo de processamento para forçar o surgimento de boas soluções. Considerando- 
se P  = 100, ao gerar a população inicial o AGpMcap analisa um total de 100 soluções. Em 
1.000 iterações são gerados aproximadamente 2.000 novos indivíduos. A cada vez que o 
operador de hipermutação direcionada foi acionado, considerando-se os parâmetros 

utilizados na primeira simulação realizada, foram analisadas 4.420 soluções. Como 
durante todo o processamento da primeira simulação o operador de hipermutação 
direcionada foi acionado 5 vezes, foram analisadas mais 22.100 soluções. Portanto, na 
primeira simulação realizada durante todo o processamento o AGpMcap analisou um total 
de aproximadamente 24.200 soluções (não necessariamente distintas) entre as 

421.171.648.758 soluções distintas possíveis para o problema considerado. Como o 

problema real considerado só é resolvido uma vez por ano, não haveria problema algum 

se o AGpMcap fosse executado durante algumas horas ou até mesmo dias para resolvê-lo. 

Na solução encontrada pelo AGpMcap na primeira simulação, 83% dos candidatos foram 

designados para o primeiro local mais próximo de suas residências. Evidentemente, 

dificilmente este número seria igual a 100% a não ser que as capacidades dos locais de 

provas fossem ilimitadas. Ainda, 92% dos candidatos foram designados para o primeiro 

ou segundo locais mais próximos de suas residências.
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Na segunda simulação realizada, o objetivo foi verificar o efeito do operador de 
hipermutação direcionada no AGpMcap. Como durante o processamento desta segunda 
simulação este operador não foi acionado nenhuma vez, o número total de iterações teve 
que ser aumentado para que o algoritmo analisasse o mesmo número de soluções 
analisadas na primeira simulação. O tempo total de processamento foi praticamente igual 
ao tempo de processamento da primeira simulação realizada. A solução obtida foi inferior 
à obtida na primeira simulação. Considerando-se os resultados obtidos pela segunda 

simulação, 79% dos candidatos seriam designados para o primeiro local de provas mais 
próximo de suas residências e 92% para o primeiro ou segundo locais mais próximos. O 
fato da obtenção do bom resultado na segunda simulação deve-se exclusivamente ao 
poder dos algoritmos genéticos, já  que, em última análise, sem o operador de 
hipermutação direcionada o AGpMcap opera basicamente como um AG convencional. 
Com base nos resultados obtidos nas duas simulações computacionais a utilização do 
operador de hipermutação direcionada proposto neste trabalho, é bastante vantajosa. Este 

operador tem a capacidade de analisar e melhorar um grande número de soluções durante 
a execução do AGpMcap, o que tende a direcionar a população de soluções-candidatas 
para níveis cada vez mais elevados de adaptação ao problema. Um fato importante é que a 
média das distâncias percorridas pelos candidatos até os locais de provas foi menor na 
primeira simulação computacional realizada com o AGpMcap, o que indica a vantagem 
da utilização do operador de hipermutação direcionada.

7.2 ANÁLISE DOS RESULTADOS OBTIDOS PELA BTpMcap

O objetivo da simulação computacional realizada com a BTpMcap foi 

demonstrar o poder da heurística busca tabu. Desta forma, não se teve a preocupação de 

realizar dezenas de simulações nem de submeter o algoritmo a um longo tempo de 

processamento para forçar o surgimento de boas soluções. Considerando-se os parâmetros 

utilizados e os dados da simulação realizada, a BTpMcap analisou 1 solução inicial, 26 ou 

27 soluções a cada movimento DROP realizado, 17 ou 18 soluções a cada movimento 

ADD e 442 soluções a cada movimento SWAP num total de aproximadamente 24.301 

soluções (não necessariamente distintas) durante o processamento das 150 iterações
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completadas. Em relação ao tempo de processamento a BTpMcap demorou 
aproximadamente lh20min para finalizar o processamento. Na solução encontrada pela 
BTpMcap 82% dos candidatos foram designados para o primeiro local mais próximo de 
suas residências e 90% para o primeiro ou segundo locais mais próximos.

7.3 COMPARANDO AGpM capE BTpMcap

Em relação a qualidade da solução nas simulações computacionais realizadas o 
AGpMcap com o operador de hipermutação direcionada obteve uma solução melhor que 
a BTpMcap. Durante todo o processamento o AGpMcap analisou um total de 24.200 

soluções contra 24.300 soluções analisadas pela BTpMcap. Com relação ao tempo de 

processamento a BTpMcap foi aproximadamente vinte minutos mais rápida que o 
AGpMcap e analisou 100 soluções a mais. Os resultados das simulações computacionais 
realizadas no presente trabalho são apresentados na tabela 7.1.

TABELA 7.1 - RESULTADOS OBTIDOS NAS SIMULAÇÕES COMPUTACIONAIS 
REALIZADAS COM O AGpMcap E A BTpMcap

DADOS ANALISADOS
AGpMcap 

com hipermutaçâo 
direcionada

AGpMcap 
sem hipermutaçâo 

direcionada
BTpMcap

Total de candidatos designados 19.710 19.710 19.710

Total de locais de provas utilizados 43 43 43

Total de locais de provas selecionados 26 26 26

Tempo de processamento 01:43:34 (h:m:s) 01:43:21 (h:m:s) 01:23:37 (h:m:s)

Número de soluções analisadas 24.200 24.200 24.300

Distância média percorrida pelos candidatos 2.333,50 m 2.400,43 m 2367,34 m

Soma total das distâncias perconidas 45.993.335,75 m 47.312.540,92 m 46.660.204,66 m

Menor distância percorrida por um candidato 13,33 m 57,49 m 139,75 m

Distância do local mais próximo para o candidato do item anterior 13,33 m 57,49 m 139,75 m

Distância do local mais distante para o candidato do item anterior 10.624,54 m 12.598,50 m 16458,98 m

Maior distância percorrida por um candidato 16.400,27 m 16.400,27 m 16.400,27 m

Distância do local mais próximo para o candidato do item anterior 16.400,27 m 16.400,27 m 16.400,27 m

Distância do local mais distante para o candidato do item anterior 32.430,81 m 32.430,81 m 32.430,81 m

Total de candidatos designados para o primeiro local mais próximo 16.264(83%) 15.595 (79%) 16.064 (82%)

Total de candidatos designados paia o segundo local mais próximo 2.057(9%) 2.486(13%) 1.652 (8%)

Total de candidatos designados para o terceiro local mais próximo 496(3%) 655 (3%) 802 (4%)

Total de candidatos designados para o (4o, etc.) locais mais próximos 893 (5%) 974 (5%) 1.192 (6%)
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7.4 CONCLUSÕES

No presente trabalho, foram aplicados os princípios básicos das heurísticas 

busca tabu e algoritmos genéticos para desenvolver duas heurísticas capazes de resolver o 

problema de localização de instalações denominado problema das p-medianas capacitado. 

O objetivo principal foi explorar as características de cada uma das heurísticas utilizadas e 

demonstrar que ambas podem gerar boas soluções quando bem aplicadas ao problema das 

p-medianas capacitado. Foi também desenvolvido um algoritmo capaz de otimizar a 

designação de candidatos ao vestibular aos locais de provas mais próximos de suas 

residências. Foram realizados testes computacionais para verificar a eficiência das 

heurísticas desenvolvidas. Nos testes computacionais realizados, com relação à qualidade 

da solução encontrada a heurística AGpMcap, aperfeiçoada com o uso do operador de 

hipermutação direcionada proposto neste trabalho, obteve maior êxito que a heurística 

BTpMcap, pois, conseguiu encontrar uma solução de melhor qualidade. Com base nos 

resultados obtidos nos testes computacionais realizados, as duas heurísticas desenvolvidas 

demonstraram que é possível otimizar de forma simples e bem sucedida a seleção dos 

locais de provas onde os candidatos ao vestibular deverão realizar provas. Esta otimização 

pode propiciar maior comodidade para os candidatos que terão oportunidade de realizar as 

provas em locais próximos às suas residências.

7.5 SUGESTÕES PARA TRABALHOS FUTUROS

Com o propósito de aprimorar os resultados e métodos apresentados neste 

trabalho, seguem algumas sugestões que poderão servir para trabalhos futuros.

a) com referência ao problema das p-medianas, uma opção seria a de pesquisar 

novas heurísticas que se adaptem ao problema e aplicá-las para resolvê-lo. Uma 

heurística recente que pertence aos algoritmos evolucionários chamada Scatter
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Search e sua forma generalizada chamada Path Relinking poderia ser uma das 

heurísticas pesquisada. Segundo GLOVER (1999) para alguns problemas 

combinatórios esta heurística tem demonstrado resultados superiores aos dos 

algoritmos genéticos e busca tabu;

b) os resultados obtidos pelo algoritmo da designação dos candidatos ao vestibular 

aos locais de provas desenvolvido no presente trabalho (DeCan) foram bastante 

satisfatórios mas, por uma simples falta de tempo, não foi possível aprimorar 

mais este algoritmo. No entanto, a intuição indica que o potencial do mesmo 

ainda não foi totalmente explorado. Uma sugestão seria a de aperfeiçoar este 

algoritmo que poderia servir não só para a designação de candidatos aos locais 

de provas mas que fosse capaz de otimizar, por exemplo, a distribuição de 

produtos industriais a pontos de demanda considerando-se múltiplos depósitos;

c) com relação ao problema real resolvido no presente trabalho, seleção de locais 

de provas e designação dos candidatos ao vestibular para os locais de provas, o 

problema poderia ser analisado de forma mais completa. Poderia ser prevista, 

por exemplo, a otimização do percurso seguido pelos veículos que realizam a 

entrega das provas nos locais selecionados. Outro fator que poderia ser 

considerado é o de encontrar soluções de boa qualidade para os candidatos mas 

com o menor número possível de locais de provas utilizados.
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