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A bstract

The new decomposition, Symmetric and Triangular Decomposition (S&T% has 
been proposed by Golub and Yuan in [12], with the objective of doing decomposi­
tion for nonsingular and nonsymmetric matrices. From this decomposition, every 
nonsingular matrix can be presented by a product of one symmetric matrix and one 
triangular matrix. Furthermore, the symmetric matrix in this decomposition can 
be positive definite. They have proposed two numerical algorithms with the same 
feature for the decomposition. For the sake of numerical stability, we modify the 
Golub-Yuan algorithm here. We do numerical tests for Golub-Yuan algorithm and 
our modified algorithm. We display here the numerical performance of one of these 
algorithms for some famous test matrices. Ali tests are compared with LU decompo­
sition without pivoting. For the symmetric matrices, the results are compared also 
with Cholesky decomposition. To compare the results, we emphasize some of the 
most common matrices recommended by Gregory and Karney in [14], and also by 
Nicholas in [17, 18].

It follows from our numerical tests that the modified S&T algorithm presented 
here is stable for sparse matrices whose leading principal submatrices are nonsingular. 
For dense matrices our modifications give some results much better than original 
Golub-Yuan algorithm.
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R esum o

A nova decomposição, Decomposição Simétrica e Triangular (S&T), foi proposto
por Golub e Yuan em [12], com o objetivo de fazer decomposição em matrizes non-
singular e não simétrica. Desta decomposição, toda matriz nonsingular pode ser
apresentada pelo produto de uma matriz simétrica e uma matriz triangular. Além
disso, a matriz simétrica nesta decomposição pode ser positiva definida. Eles pro-

/
puseram dois algoritmos numéricos com as mesmas características para fazer esta 
decomposição. Por causa da instabilidade numérica, nós fizemos modificações em um 
dos algoritmos. Fizemos vários testes numéricos para o algoritmo do Golub-Yuan 
e nosso algoritmo modificado. Nós mostramos aqui o desempenho numérico de um 
destes algoritmos para alguns matrizes testes famosas. Todos os testes foram com­
parados com a decomposição LU sem pivoteamento. Para as matrizes simétricas, os 
resultados foram comparados também com a decomposição Cholesky. Para comparar 
os resultados, nós utilizamos algumas das matrizes mais comuns recomendados por 
Gregory e Kamey em [14], e também por Nicholas em [17, 18].

Os nossos experimentos numéricos mostram que o algoritmo S&T modificado é 
estável para matrizes esparsas cujos submatrizes principais são nonsingular. Para ma­
trizes densas nossas modificações apresentaram resultados melhores que o Algoritmo 
proposto por Golub and Yuan.
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Chapter 1

Introduction

Our purpose in this dissertation is to investigate the numerical behaviour of the 
new decomposition for nonsingular, nonsymmetric and especially ill-conditioned ma- 

trices, as follows
T A  = S  = LLt , (1.1)

where T  and L are the lower triangular matrices and S  is the symmetric and positive 
definite matrix. The transformation (1.1) has the focus in the solution of the linear 
system

Ax =  6, (1.2)

where A  is a n  x n  matrix, b is a given column vector of size n and x  is the solution, 
which can be found by iterative or direct method.

This method, (Symmetric and Triangular Decomposition - S&T), has been pro- 
posed by Golub and Yuan in [12, 13]. We propose a modified algorithm and compare 
the modified S&T algorithm with original Golub-Yuan S&T algorithm and LU  de­
composition without pivoting, and for particular case of symmetric matrix, with the 
Cholesky decomposition without pivoting, because they are well-known, similar, and 
very important in several scientific and engineering applications.

The S&T method was created by the idea of transforming a matrix A  in a sym­
metric positive definite matrix (1.1). It is well-known that a symmetric and positive

3
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defined matrix is very nice for matrix computation and has many advantages. In 
many applications, it is easy to treat with symmetric or symmetric and positive def- 

inite systems.
When A  is symmetric and positive definite, the Conjugate Gradient (CG) method

[15] is an eífective and widely used technique. However, when A  is nonsymmetric, 
to find the solution of the linear system (1.2) by iterative methods is considerably 
more difficult. The convergence behavior of the iterative method depends on the 
spectral properties of the linear system. For difficult problems, the algorithms may 
not converge due to accumulated round-off errors [29, pp. 49]. These things motivate 
us to analyze the numerical stability of the S&T decomposition.

1.1 L U  decom position

The LU  decomposition is the most common used method for the matrix decompo­
sition. It is often desirable to adopt a different perspective on processing the matrix 
A. The LU  Decomposition is a dynamic process of transforming the matrix A  in the 
product of two triangular special matrices with very nice properties. That is, A  can 
be numerieally factored into two separate triangular matrices, one is lower triangular, 
L , with unit diagonal elements and an other upper triangular, U, that is

A  =  LU. (1.3)

The decomposition of matrices in triangular matrices takes advantages because 
the triangular matrices have important properties in linear algebra that minimize so 
much computational cost as the number of operations required by machines in the 
resolution of the linear system (1.1). This method, however, is unstable for arbitrary 
matrices. For example, it leads to the breakdown when the diagonal elements of the 
matrix are near to zero. Our work here is only dealt with numerical behaviour of 
the S&T decomposition without pivoting. For example, from our tests our work is 
more useful for totally positive1 matrices that the exact triangular factors have only

1Totally positive matrices are defined as those for which the determinant of every submatrix is
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positive entries, considering that pivoting’s strategy for S&T decomposition will be 

our future research issue.

1.2 Cholesky decom position

When a matrix is symmetric, we can simplify the caleulations of the decomposi­
tion LU significantly, by taking into advantages of the symmetry. Numerically, the 
symmetric positive definite matrices are rather special, which occur quite frequently 
in some applications, so their special factorizations is called Cholesky decomposition. 
Instead of seeking arbitrary lower and upper triangular factors L and Z7, Cholesky’s 
decomposition constructs a lower triangular matrix L , and LT can itself serve as the 
upper triangular part. In other words, we replace equation (1.3) by

A = LLt . (1.4)

This factorization is sometimes referred to as ” taking the square root” of the matrix 
A.

The Cholesky algorithm requires about n3/ 6 executions of the inner loop (con- 
sisting of one multiply and one subtract), half of the number of executions required 
to do the same work by using LU decomposition.

1.3 Sparse matrices

The sparse matrices arise frequently in the discretization of partial differential 
equations by finite elements and finite difference methods (see, [5, Chapter 6]). Most 
of the authors consider a sparse matrix whose nonzero elements consist of a relatively 
small number (about 10%) of total elements. The theory of sparse matrices is widely 
used and we will not give details here (for more information see [3]). For special sparse 
matrices such as tridiagonal matrix, pentadiagonal matrix, block matrix etc, the S&T
positive.
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decomposition presents better results, (see Chapter 5.1). Since the leading principal 
submatrices are nonsingular, we can decompose the matrix A  in the form (1.1) without 
harming the sparsity of the matrix too much. We take some test matrices from the 
Harwell-Boeing Sparse Matrix Collection, which has excellent test sparse matrices, 
largely drawn from practical problems (see, [22]). Figure (1.1) illustrates the sparsity 
patterns for matrix L, when the S&T method is applied for Wathen’s matrix, see the 
results in the Chapter 5.2.

Figure 1.1: Sparsity patterns of the nonzero elements of the factor L of S&T decom­
position, L and U of LU  decomposition for Wathen’s matrix

Note that the sparsity and the amount of nonzero elements from the factor L  of 
S&T is exactly the same as L of LU, but the factor U has more nonzero elements 
than factor L. For tridiagonal matrices, the factor L  of S&T, L  and U of LU, yield 
a bidiagonal matrix.

The tests here for sparse matrices are just to show the numerical performance of 
the method.

In general, most of the iterative methods work very well for the solution of sparse
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linear systems, usually using the preconditioning technique [3], because these systems 
are almost always sensitive (ill-conditioned), that is, a small variation in the coeffi- 
cients of the matrix (and sometimes also in the vector b) will cause large variation 
in the solution of the system. The S&T method can also be used as preconditioner. 
Golub and Yuan have given some examples in [12].

Direct methods for sparse systems depend crucially on the precise pattern of 
sparsity of the matrix. For sparse matrices, one usually requires pivoting strategy 
(interchange of rows or columns) in the stage of the decomposition of the matrix to 
avoid breakdown. It is important to control the storage of the elements to keep the 
sparsity, besides of avoid in the possible fill-in. In particular, the LU decomposition 
and Cholesky decomposition methods have variant versions with pivoting. The direct 
methods are not recommended to solve large sparse systems, if A  becomes large, direct 
methods typically become very expensive and inefficient; one find the ”exact” solution 
in finite arithmetic operations, but the roundoff errors will increase and the storage 
requirement will be quite big. On the other hand, there are many techniques for 
the iterative methods to accelerate the convergence and to reduce the roundoff errors 
with cheap cost [25, 3]. In Chapter 5 we show the numerical results of the S&T 
decomposition for some sparse matrices.

The remainder of this dissertation is arranged as follows. In Chapter 2, we give the 
main idea of the S&T decomposition. We present the theorem and two algorithms: 
Golub-Yuan algorithm and our modified algorithm. We still do some comments about 
the test matrices. In Chapters 3 and 4, we present the numerical results for selected 
well-conditioned dense matrices and ill-conditioned dense matrices respectively. In 
Chapter 5, we show the results for some specia! matrices. Finally, in Chapter 6 , we 
give some conclusions and suggestions for future work.



Chapter 2 

S&T decom position

2.1 Main idea

Many problems in numérica! mathematics are modeled in terms of a system of 
linear equations. For instance, numerical methods for partial or ordinary differential 
equations and integral equations appeared in several problems of Physics, Engineering 
and the Image processing. Some practical problems are the following:

•  airplane wing design;

•  radar cross-section studies;

•  flow around ships and other off-shore constructions;

•  diffusion of solid bodies in a liquid;

•  noise reduction; and

•  diffusion of light through small particles.

One of the most common problems in real situations is to find the solution of n 
linear equations with n unknowns in the from of (1.2), and in most of the cases 
n  is very large. In general, to find the solution of these linear systems is not an

8
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easy task, specially if the coefficients matrix is very sensitive. A typical approach to 
solve such systems is to use LU decomposition which involves the roundoff error in 
some sense. Nicholas has done a analysis and proposed several ways to calculate and 
analyze the computational errors in [18] and his several papers can be found in his 
web site ”http://www.ma.man.ac.uk/~higham/pap-le.html”. This will help to study 

the numerical behaviour of the S&T decomposition.
The S&T decomposition is based on the construction by block-wise of two ma­

trices T  and L  (both lower triangulars). The matrix T, generated, has the power to 
transform the matrix A in a lower triangular matrix L  such that the product of L by 
its transpose is symmetric and positive definite (SPD), that is, given a n  x n non- 
symmetric and nonsingular matrix A, we get a sequence of lower triangular matrix 
Lk whose product by its transpose, L j, gives us a SPD matrix Sfc, starting from the 

construction of a triangular matrix Tk multiplied by matrix Ak, that is, in the end of 
the process we obtain

T A  =  LLt

where LLT =  5, or

The matrix S  is positive definite if we can make the decomposition in such a 
way that the elements of the diagonal of L are ali positive, that is, k j  > 0 for ali 
i =  1 ,2 , . . . ,  n. This idea is similar to the form of work of the algorithm of Cholesky.

T heorem 2.1.1 For every nonsingular and nonsymmetric n  x n matrix A, whose 
leading principal submatrices are nonsingular, there exist a triangular matrix T  and 
a symmetric and positive definite matrix S  such that

T A  = S  = LLt

Proof: The proof is given in [12].

(2 .1)

□

http://www.ma.man.ac.uk/~higham/pap-le.html%e2%80%9d


The S&T decomposition obtains the matrices T  and L  in block-wise, as follows: 

Let A  be n  x n nonsingular and nonsymmetric matrix, then

where Ak is nonsingular.
Then, we can write the lower triangular T  and L  as follows

and

From (2.2), (2.3) and (2.4), we write the system

where

By multiplication of matrices in (2.5), we obtain
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where LkTL ^T k  =  Ak x.
The element, /?, of the diagonal of the matrix T, are arbitrary variables, but we 

choose f3 ^  0 such that

(q — ajç+lLkTLk 1Tkak+i) ^  ^ (2 7)
P

The elements, r , of the diagonal of matrix L , represented by root square of the 
expression (2.7) must be larger than zero for ali k.

2.2 Algorithms

For the decomposition of the matrix A  as a product of a lower triangular matrix 
T  and a symmetrie and positive definite matrix 5  =  LLT, we make several numerical 
tests to evaluate the behavior of the algorithm proposed in [12] and we verify that one 
of the reasons that can cause instability in the decomposition process is the variation 
of the diagonal elements of the submatrix Lk or T*. Golub and Yuan propose that the 

elements tk+i}k+i, (P — h+i,k+i)’ are fr e e 5 just considering that should be different 
from zero. However, by making an inversion in the algorithm, we verified that we can 

leave lk+i,k+u (r  =  4 +i,ah-i)j as a free variables instead of
We note that for most dense matrices lk+i,k+i elements approach zero, which is the 

source of instability of the decomposition. To avoid this, we look for alternative forms 

to guarantee the continuity of the decomposition and to minimize the rounding errors. 

For example, we control the difference s =  a,k+i,k+i ~  ÍT+A+1? such as |s| < IO" 18 to 
avoid the elements h+ije+i close to zero. A similar behavior occurs with the matrix 
Tfc. In each step of the algorithm we should choose lk+ijc+i > 0 such that T* is 
nonsingular. Therefore, since the decomposition is not unique, we can take values 
P = tk+i,k+i (or for lk+i,k+i — y/r, depended on the case) such that the decomposition 
presents best stability.

Algorithm for S&T decomposition by Golub-Yuan is the following:
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Algorithm 2.2.1 (Golub-Yuan S&T)
Set tu  such that tu a u  > 0 and In — y/tnãn',

For k = 1, . . . ,  n — 1

lk+1 ~  -bfc

~  ^k  ®r+i’

5 =  0>k+l,k+í lkJr]}kJcl')

Choose tk+i,k+i such that r  =  tk+i,k+is > 0 (or large enough)

h+i,k+i — y/r

tk+i =  Tk Lk {lk+1 ~  tk+l,k+lík+l)

End

With above considerations, we obtain the modified algorithm for the S&T decom­

position.
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Algorithm 2.2.2 (Modified S&T)
Set ín  such that tuo>u > 0, ln  =  y/tnãn , S =  10~18 and choose guess initial rj = 1; 

For k = 1, . . .  , n — 1

1 =  Tkttfe+i)

lk+i = Lk ajz+i,

S — ®fe+l,fc+l

if |s| < #

^ A H -l,k + l =  1

else

tk+i,k+i = sign(s)r]
update r) such that fe+i^+i > 0

T =  tk+l,k+lS

end

h+ijs+i = y f t

t k + l  = : i^k+1 ~~ t k + l , k + l l k + l )

End

Remark 2.2.1 In each step of the decomposition, these two algorithms request the 
resolution of two linear systems and consequently are necessary the calculation of two 
triangular inverse.

Com putational Cost 

S&T
These two algorithms require 2n3/3  operations. Figure 2.1 shows the way as 
Algorithms 2 .2.1 and 2.2.2 to make the decomposition. The solution of each
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triangular System Ly = b and LTx =  y requires n2/ 2 flops. So, the solution of 

the positive definite system Ax  =  b using the S&T algorithm requires 2n3/S  +  

0 (n2) arithmetic operations.

Cholesky
The Cholesky algorithm requires n3/ 6 flops to compute L, one-half of the num- 
ber of flops required to do same job using LU decomposition. Note that the 
process also requires n square roots. The solution of each triangular system 
Ly — b and LTx =  y requires n2/ 2 flops. Thus, the solution of the positive 
definite system Ax  =  b using the Cholesky algorithm requires n3/ 6 +  0 (n 2) 
flops and n square roots.

LU
The LU  decomposition without pivoting requires about n3/ 3 flops and the solu­
tion of each triangular system Ly =  b and Ux — y needs only n2 /2  flops (same 
as that of Cholesky and S&T), the total flop count for solving the linear system 
Ax  =  b by Gaussian elimination is about n3/ 3 +  0{n2).

We note that the S&T decomposition is about twice more expensive than LU 
decomposition and about four time more expensive than Cholesky decomposition. 
The cost of the S&T decomposition is larger because of construction of the matrix T.

2.3 Test matrices

In many applications in mathematics and engineering, the underlying physical 
properties of the problem introduce various patterns of structure into arising matrices. 
As the method here is not sufficiently advanced, in terms of stability, our test problems 
are still restricted. The chosen test matrices were obtained from the literature. We 
try to cover dense and sparse matrices with some type of structure. Gregory and 
David provided a large collection of test matrices (see, [14]). A important collection 
of test matrices, is ”The Test Matrix Toolbox”, developed by Nicholas in conjunction
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Figure 2.1: M anner o f S&T decom position

with his book Accuracy and Stability of Numerical Algorithms [18]. This collection 
has important matrices arising from the practical problems, and gives fundamental 
information on eaeh matrix. He suggests 58 parametrized test matrices, which are 
mostly square, dense, nonrandom, and of arbitrary dimension. The collection includes 
known-inverse, known-eigenvalue; ill-conditioned, rank deficient, symmetric, positive 
definite, orthogonal, defective, involuntary, and totally positive matrices. We tested 
many of these matrices. We also tested some sparse matrices of the Horwell-Boing 
collection that is one of the most important collections of sparse matrices.

The codes for the algorithms presented in this dissertation are implemented in 
MATLAB which has unit roundoff u =  2~53 «  1.11 x 10-16, and are given in Appendix 
A. The MATLAB M-file for LU decomposition was obtained from [9]. Ali tests 
were run on a single processor Intel Pentium (III) 700 MHz with 128MB of RAM 

memory. CPU times are collected in the experiments and are used to measure the 
time of occupations of the machine. For each matrix (except for Moler Matrix) a 
table is built to show the relative error and the CPU time for each method taking 
n — 50,100,. . . ,  500, except for Wathen’s and Poisson’s sparse matrix that have the
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order of the matrices. To facilitate the analysis of the convergence of the algorithms, 
the figures are also given with the curves to describe the relative errors for n — 
1,2 , 3 . . . ,  500. We measure the relative error as follows

• For S&T decomposition

res(T, L, L1) =

Where ||.||f  denote the Frobenius norm. We choose Frobenius norm, because it 
is widely used and more suitable for measure approximation of matrices.



Chapter 3 

W ell-Conditioned dense m atrices

3.1 Diagonally dominant matrix

In general, the class of diagonally dominant matrices, for row or column, is well- 
conditioned. The iterative methods are almost stable and obtain a good approximate

A column diagonally dominant matrix is similarly defined.
A column diagonally dominant matrix, like a symmetric and positive definite 

matrix, possesses the attractive property that row interchange is not necessary at 
any step during whole Gaussian elimination. The pivot element is already in the 
right place. Thus, at the first step, an  being the largest in magnitude of ali elements 
in the first column, no row interchange is necessary.

Our test matrix was built by taking random entries, from an uniform distribution 
with mean zero and variance one, N (—1,1), generated by MATLAB’s ran d n  function. 
Table 3.1 and Figure 3.1 show the performance of the algorithms. The update of 

tk+i,ah-i was made with rj — \\Lk+i\\2- Note that the S&T decomposition is stable

solution of the system in a few iterations with respect to the size of the system. 
We say that a n  x n matrix A  is strongly row diagonally dominant if

(3.1)

17
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LU S&T M-S&T
n CPUtime res(T, U) CPUtime res(T, L, LT) res(T, l/j Lt )
50 0.05 1.43e-16 0.05 3.64e-16 3.32e-16
100 0.33 2.21e-16 0.33 4.66e-16 3.32e-16
150 0.88 2.45e-16 1.48 5.72e-16 3.35e-16
200 1.65 2.71e-16 4.12 6.14e-16 3.59e-16
250 3.3 3.01e-16 8.89 7.29e-16 4.01e-16
300 4.56 3.29e-16 16.3 8.26e-16 4.06e-16
350 7.87 3.55e-16 26.7 8.65e-16 4.28e-16
400 12.1 3.86e-16 40.7 8.75e-16 4.49e-16
450 15.5 4.13e-16 58.8 8.96e-16 4.56e-16
500 22.2 4.33e-16 66.7 1.02e-15 4.76e-16

Table 3.1: Performance for diagonally dominant matrix

for this matrix. The modified S&T algorithm gives us residual smaller than S&T 
algorithm.

Figure 3.1: Relative error for diagonally dominant matrix
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n
LU

CPUtime res (L, 17) CPUtime
S&T 

res(T, L, LT)
S&T 

res(T, L, LT)
50 0.11 1.27e-14 0 7.32e-10 3.45e-10
100 0.28 2.45e-14 0.28 2.47e-08 5.86e-09
150 0.66 8.81e-14 1.27 1.15e-07 5.94e-08
200 1.43 2.30e-13 3.52 2.49e-07 1.17e-07
250 3.08 3.31e-13 9.17 3.62e-07 1.586-07
300 4.28 4.20e-13 15 5.4e-07 2.19e-07
350 6.21 4.68e-13 26.7 6.43e-06 1.94e-06
400 8.46 5.28e-13 35.2 1.02e-05 3.08e-06
450 14.5 5.92e-13 57.8 1.22e-05 3.93e-06
500 32.7 6.53e-13 66.6 1.396-05 4.98e-06

Table 3.2: Performance for matrix with random entries

3.2 Random matrix

The random matrix chosen here, is a n x n  matrix A  with random entries, chosen 
from an uniform distribution with mean zero and variance one, N (0, 1), generated by 
MATLAB’s ran d n  function. Random matrices are always the favorite test matrices 
in test algorithm. Various results are known about the behaviour of matrices with 
random entries from the normal distribution. Some works have been published cov- 
ering charaeteristics and details of this kind matrices, see, for example, the Doctor 
thesis of Alan Edelman [8] and [18, p. 517]. The results of our tests are in Table 3.2 
and the curves of the relative error in Figure 3.2, respectively. The aetualization of 

tk+íM1 was made with rj =  ||L*+i||2-

3.3 Sym m etric positive definite m atrix

Here we choose a symmetric positive definite Moler matrix [16] defined by An{9) =  
Cn(9)TCn(0) , where Cn(9) is a unit upper triangular with ali Cíj elements, i ^  j ,  equal 
to 9. To construct this matrix we take 9 =  — 2 as in [6 , 7] and to ensure stability in 
the decomposition, we update tk+i,k+i as follows

=  sign(s)r} (3.2)
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Figure 3.2: Relative error for Random matrix

where 77 is the infinity norm of the row of L  in the step k, that is, 77 =  ||Tah-i||oc- The 
idea here is to control elements tk+i,k+i to assure the stability of the decomposition 
and to get the possible better choices for L and T. We tested the modified S&T 
algorithm and original S&T algorithm with several negative integer vaiues 9. In this 
case, T  is identify, and L is unit triangular. The relative error obtained is zero and 
CPU time is 66,7 seconds. Therefore, the decomposition for Moler matrix is stable for 
parameter 9 < 0 and integer. When we choose the parameter 9 > 0 or non integer, 
the relative errors of modified S&T and Golub-Yuan S&T algorithms are similar to 
that at in LU decomposition, but not better. The Cholesky method is stable and 
makes the decomposition with relative error zero in 49 seconds.



Chapter 4

Ill-conditioned dense m atrices

4.1 Hilbert m atrix

The Hilbert matrix is a classic test matrix and one of the most famous ill- 
conditioned matrices. The (i,j)  elements of this matrix are ali in the form v+j r ] ,

with (i , j  = 1 , 2, . . .  ,n), the elements of the inverse are integers and known explicitly
[14]. It was widely used in the 1950s and 1960s for testing inversion algorithms and 
the solution of linear equation. For this problem, even for small n, both the condition 
number and numerical stability will be in the very bad situations. For example, Table

4.1 displays that for n = 20, cond(iÍ2o) already reaches 1.0675e -1- 0191 continuing to 
grow at an exponentia! rate, that is, cond(iíTl) «  e3*5”, when n is very large [26].

n Cond(Hn)
2 19.2815
3 524.0568
4 1.5514e+004
5 4.7661e+005

20 1.0675e+019

Table 4.1: Condition number of the Hilbert matrix

1These numbers were obtained with the MATLAB M-file cond

21
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This matrix is common to appear in practical problems of adjustment of curves by 
a polynomial for the method of the least squares. Forsythe and Moler [10] dedicate 
a chapter to the Hilbert matrix, to describe the underlying least square problem and 
discuss numerical computation of the inverse. Although many researchers use this 
matrix for testing algorithms, Nicholas [19] affirms that the Hilbert matrix is not ideal 
because of symmetric and positive definite and totally positive. More details about 
this matrix, including an asymptotic formula for cond(ifn), can be found in Gregory 
and Karney [14, pp. 33-38, 66-73], [18, pp. 514], [2, pp. 206], [5, Chapter 6] and 
[26, 4].

Note that for n =  500, the relative error is in the order of 0.000197 for the S&T 
decomposition and 7.92e—17 for the LU decomposition as seen in Table 4.2. Although 
relative error of the S&T decomposition is bigger than that of the LU decomposition, 
for this matrix we obtain a condition number 3.12e -1- 08 for the factor L of the S&T 
algorithm, less than 2.08e + 12 for the factor L and 8.16e +  20 for the factor U of LU. 
The S&T decomposition offers better conditioned triangular approximation matrices.

Here, we update rj by 7? =  ||Lfc+i||/2A;, k =  1,2 , . . . ,  n — 1, to control the diagonal 
elements of the matrices L and T. Table 4.2 and Figure 4.1 display the convergence of 
the method. The modified Algorithm 2 .2.2 accelerated the convergence of the method 

significantly.

LU S&T M-S&T
n CPU time res(L, U) CPUtime res (T ,L ,L t ) res(T,L,LT)
50 0.06 5.14e-17 0.05 2.27e-06 3.39e-07
100 0.38 5.83e-17 0.28 0.0452 3.31e-07
150 1.04 6.31e-17 1.27 0.274 1.4e-06
200 1.37 6.66e-17 3.57 379 3.43e-06
250 2.47 6.94e-17 7.74 2.74e+03 1.47e-05
300 6.7 7.2e-17 14.1 5.92e4“03 5.04e-05
350 10 7.41e-17 23.2 9.41e+03 7.9e-05
400 14.6 7.6e-17 35.3 1.51e+04 0.000126
450 19.9 7.76e-17 50.8 7.13e+04 0.000157
500 29.3 7.92e-17 65.4 1.69e+05 0.000197

Table 4.2: Performance of the methods for Hilbert matrix



23

Figure 4.1: Relative residual for for Hilbert matrix

4.2 Lotkin matrix

Lotkin matrix is a special case of the Hilbert matrix whose first row altered 
to ali ones. This matrix is nonsymmetric, ill-conditioned, and has many negative 
eigenvalues with small magnitude. The inverse has integer entries and is known 
explicitly, see [17]. Table 4.3 and Figure 4.2 illustrate the behaviour of the algorithms. 
In this case, the updating of the elements tk+ije+i, 18 made as in 4.1. Note that also 
in this case, our modifications improve the relative residual significantly compared 
with the Golub-Yuan algorithm. From this results, the LU decomposition is still 
better. But the result of the modified S&T algorithm is reasonably accepted for real 
applications.
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LU S&T M-S&T
n CPUtime res (L, U) CPUtime res (T, L ,L t ) res(T, L, LT)
50 0.05 3.84e-17 0.06 1.99e-05 6.7e-07
100 0.11 3.92e-17 0.29 0.000797 6.7e-07
150 0.66 4.01e-17 1.37 0.00141 8.12e-07
200 1.59 4.04e-17 3.46 0.445 1.07e-06
250 3.18 4.07e-17 7.47 30.4 1.38e-06
300 5.99 4.09e-17 13.6 461 2.28e-06
350 9.01 4.12e-17 22.2 5.37e+03 5.65e-06
400 13.8 4.15e-17 33.7 4.29e+04 1.04e-05
450 19.5 4.17e-17 50.3 2.16e-j-05 2.03e-05
500 26.8 4.18e-17 66.9 2.36e+06 6.31e-05

Table 4.3: Relative error for Lotkin matrix

Figure 4.2: Relative error for Lotkin matrix



Chapter 5 

Special m atrices

5.1 Sparse matrices

For the sparse matrices (Poisson, Wathen, Dorr and Toeplitz Tridiagonal), we 
allocated ourselves a fixed value, 77 =  2, for the elements of the diagonal of the matrix 
T. Therefore, ali elements í^+i^+i are equal to 2 except tu  and í22- This is the 
best altemative we found to guarantee a relative error as small as that of the LU 
decomposition for our experiments.

5.1.1 Poisson’s m atrix

Block tridiagonal matrix from Poisson’s equation (sparse) is a kind of matrices that 
arises in linear equations obtained by discretizing certain elliptic partial differential 
equations and has the pentadiagonal matrix form. In general, these equations are 
subject to boundary conditions at the outer boundary of the range. There are no 
initial conditions, as Wave or Diffusion equations. Hence, they can not be solved 
by adapting the methods for simple differential equations. Here, we consider the 
block tridiagonal (sparse) matrix of order n2 resulting from discretizing Poisson’s 
equation

d2T  d2T
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where (x,y) € O =  (0,1) x (0,1). The five point finite difference method gener- 
ates a block tridiagonal SPD coeffieient matrix. This matrix is usually in the well- 
conditioned eategory. For more details, see [11, 21, 9] and [5, Chapter 6]. The results 
are given in Table 5.1. Figure 5.1 and Figure 5.2 illustrates the sparsity pattern. We 
note that the method is stable for this type of matrices. Although the modifications 
to update the elements ífc+i^+i is not good, the relative error is smaller than that of 

the LU decompositon when n =  232.

n
LU

CPUtime res(L, U) CPUtime
S&T 

res(T, L ,L T)
M-S&T 

res(T, T, LT)
7 0.05 9.87e-17 0.05 9.35e-17 1.24e-16
10 0.28 9.17e-17 0.28 1.35e-17 1.22e-16
12 0.87 1.19e-16 1.1 1.21e-16 1.20e-16
14 2.37 1.31e-16 3.24 1.25e-16 1.33e-16
16 5.28 1.32e-16 8.07 1.35e-16 1.35e-16
18 11 1.56e-16 17.7 1.36e-16 1.41e-16
20 21 1.58e-16 33.5 1.38e-16 1.53e-16
22 37.3 1.65e-16 58.9 1.36e-16 1.41e-16
23 48.9 1.64e-16 73.5 1.48e-16 1.44e-16

Table 5.1: Relative error for Poisson’s matrix

Figure 5.1: Curve of residual error for Poisson’s matrix
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Figure 5.2: Sparsity pattern of the Poisson’s matrix.

5.1.2 W athen m atrix

Wathen’s matrix is a Finite Element matrix (sparse, random entries) for two- 
dimensional finite elements discretisation on an uniform cartesian mesh with l nodes 
in the x-direction and m  nodes in the ?/-direction where n  =  3Im + 21 + 2m  4-1. A is 
precisely the consistent mass matrix for a regular l by m  grid of 8-node (serendipity) 
elements in the plane. A  is symmetric positive definite for any positive values of the 
density (l ,m ) which are randomly chosen in our test. In particular, if D — diag(A), 
then the eigenvalues of D~lA  lie in (0.25,4.5) for any positive integers l and m  and 
any densities, see [28]. In our test we construct the matrix A  by taking l = m. See the 
performance of the aigorithms in Table 5.2 and in Figure 5.3 and the sparsity pattern 
in Figure 5.4. Here, we get better results than that by using LU decomposition in 
the two versions of S&T. For the Cholesky decomposition, the relative error and CPU 
time 1.51e — 016 and 0.66 seconds, respectively. So, the relative error of the modified 
S&T decomposition is smailer than that of the Cholesky decomposition.
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n
LU

CPUtime res(T, U) CPUtime
S&T 

res (T ,L ,L t )
M-S&T 

res(T, T, LT)
40 0.06 9.17e-17 0 1.14e-16 l.lle-16
96 0.22 1.42e-16 0.22 1.16e-16 1.02e-16
133 0.49 1.35e-16 0.82 1.31e-16 1.23e-16
225 1.87 1.32e-16 5.22 1.37e-16 1.27e-16
280 3.3 1.27e-16 11.3 1.09e-16 1.27e-16
341 5.5 1.38e-16 20.7 1.40e-16 1.32e-16
408 9.27 1.33e-16 36.5 1.39e-16 1.29e-16
481 13.4 1.34e-16 58.9 1.61e-16 1.42e-16
560 23.4 1.27e-16 93.2 1.48e-16 1.30e-16

Table 5.2: Relative error for Wathen matrix

5.1.3 CDDE1 - M atrix Market

This test matrix is from the following constant-coefficient convection diffusion equa­
tion, which is widely used for testing and analyzing numerical methods for the solution 
of linear system of equations. The equation is

—Au +  2píUx +  2^2% -  P3U = f  in Q

u = g on dQ

where pi, p2 e P3 are positive constants. Discretization by the finite difference 
schemes with a 5-point stencil on a uniform m  x m  grid gives rise to a sparse linear 
system of equations

Au  =  b

where A  is of order m 2 and u and b are now vectors of size m 2. Centered differences
are used for the first derivatives. If the grid points are numbered using the row-wise
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Figure 5.3: Relative error for Wathen’s matrix

natural ordering, then A is a block tridiagonal matrix of the form

with

where f3 = p\h, 7  =  p2h , cr =  p3h2 and h =  l / ( n  +  1).
This is a Model 2-D Convection Diffusion Operator (CDDE1) test and the matrix 

is extracted from the Harwell Boeing Collection [22], and we use the Matrix Market
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Figure 5.4: Sparsity pattern of the Wathen matrix.

format. It is a real nonsymmetric matrix. For our experiments, we take n  =  500, so 
2404 nonzeros elements arise in the matrix, p\ =  1, p2 =  2, p3 =  30, where

pi is the coefficient of 2ux in differential operator;

P2 is the coefficient of 2uy in differential operator;

Ps is the coefficient of —u in differential operator

Our modifications do not make a lot of difference with respect to Golub-Yuan al­
gorithm. But the relative error in the decomposition of this matrix made by modified 
S&T or S&T algorithm is smaller than that of the LU decomposition. This illustrates 
the efficiency of the method for these structured matrices.

The sparsity pattern is in Figure 5.6 and the results of the methods are shown in 
Table 5.3 and Figure 5.5, respectively.
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n
LU

CPUtime res(L, U) CPUtime
S&T 

res (T, L, LT)
M-S&T 

res (T, L ,L t )
50 0.05 7.92e-17 0.06 1.17e-16 1.20e-16
100 0.44 1.53e-16 0.44 1.52e-16 1.49e-16
150 1.53 1.71e-16 1.27 1.75e-16 1.67e-16
200 3.18 1.82e-16 3.46 1.84e-16 1.78e-16
250 6.21 1.85e-16 7.31 1.88e-16 1.85e-16
300 10.6 1.88e-16 13.3 1.94e-16 1.86e-16
350 16.5 1.9e-16 21.8 1.97e-16 1.91e-16
400 24.3 1.87e-16 33.2 1.97e-16 1.91e-16
450 34 1.89e-16 47.8 1.97e-16 1.95e-16
500 46 1.93e-16 66.2 1.97e-16 1.97e-16

Table 5.3: Relative error for CDDE1 - Matrix Market

5.1.4 Diagonally dominant Dorr m atrix

The Dorr matrix Dn(a) [17, 16], which was also used in [6, 7], is a nonsymmetric, row 
diagonally dominant, tridiagonal M-matrix1. Dn(a) has diagonal dominance factors

! \d{\ | —i | =  (n T l) ck, for i 1 ,2, . . . ,  n

0, otherwise

This matrix is ill-conditioned for small values of the parameter a  when a  > 0. Figure
5.7 illustrates the relative error for Dorr matrix. The Table 5.4 gives the behaviour to
the algorithms. The LU  decomposition works very well for this matrix. Here, we use
rj = ||Tfc+i|| for update tk+i,k+i- The modified S&T algorithm has residual as good
as the Golub-Yuan algorithm.

1We say that a matrix is a M-matrix if < 0 for ali i different from j  and ali the eigenvalues 
of A have nonnegative real part. Equivalently, a matrix is a M-matrix if < 0 for ali i different 
from j  and ali the elements oi A~x are nonnegative.
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Figure 5.5: Relative error for CDDE1 - Matrix Market

5.2 Toeplitz M atrices

Here, we study the case where A  is a Toeplitz matrices. These matrices arise in many 
applications, such as deconvolution and signal processing, Communications engineer- 
ing, and statistics [1]. In several situations, matrices arise in block structure, too such 
as diffusion of solid bodies in a liquid, noise reduction, diffusion of light through small 
particles. More details about Toeplitz matrices can be found in [24].

A Toeplitz matrix has constant diagonais. In other words, depends only on 

(i — j)  and is defined as follows

An(à) =  (ai-j)i j=i  

where a* is the kth  Fourier Coefficient of a,

i  r ^
ak = ~  a(eid) e 'ik0de , k =  0, ±1, ±2, ±3 , . . .

2TC J - \

The Toeplitz matrix has the form
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Figure 5.6: Sparsity pattern of the CDDE1 - Matrix Market

An(d) —

ao a_i 

Q>i a0

®re—2 
1

....................  ® 1 — n

0*2—n 
a_i : 

di do d—i 
d± dQ

5.2.1 Prolate m atrix

Prolate matrix is symmetric, ill-conditioned Toeplitz matrix. This is the typical 
case arising in signal processing applications. It was first studied by Slepian in the 
1950’s at Bell Labs. In 1993 Varah also studied this matrix, see [27]. The Prolate 
matrix is a symmetric Toeplitz matrix given by A(a).

If 0 < a < 1/2 then

• A is positive definite

•  the eigenvalues of A  are ali distinct, lie in (0,1), and tend to cluster around 0 

and 1.
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n
LU

CPU time res (L,U) CPUtime
S&T 

res(T, L, LT)
M-S&T 

res(T, L, LT)
50 0.05 0 0.06 1.68e-13 1.36e-13
100 0.27 0 0.28 3.20e-13 3.97e-13
150 0.66 0 1.26 5.77e-13 5.85e-13
200 1.43 0 3.4 7.40e-13 7.04e-13
250 2.63 0 8.02 7.98e-13 8.57e-13
300 4.17 0 13.8 8.33e-13 8.85e-13
350 6.27 0 22.7 9.17e-13 9.166-13
400 8.9 0 41.4 9.58e-13 8.72e-13
450 12.2 0 51.3 9.73e-13 9.38e-13
500 16.2 0 69.2 9.52e-13 9.49e-13

Table 5.4: Convergence of the decomposition for Dorr matrix

In our tests we consider a  defaults to 0.125. For this value of a, the Prolate matrix 
is very ill-conditioned with condition number for A 50Q(a) about 2.20e +  18. The 
eigenvalues also lie in (0,1). The diagonal elements of the matrix T  are updated by 
7} = ||Ljfc+i||. Table 5.5 shows the convergence of the method when increasing the 
order of matrix and Figure 5.8 gives the curve of the relative error. Although the 
modified S&T and Golub-Yuan S&T are not good for the matrices, modified S&T 
algorithm does improve the numerical stability.

n
LU

CPUtime res(L, U)
S&T

CPUtime res (T ,L ,L T)
M-S&T 

res (T ,L ,L T)
50 0.05 2.45e-16 0.06 0.306 1.57e-06
100 0.27 7.21e-16 0.28 0.353 2.23e-05
150 0.76 1.2e-16 1.32 0.569 0.000132
200 1.59 1.02e-15 3.52 0.794 0.000202
250 2.52 9.28e-15 7.63 1.17 0.000227
300 4.11 9.89e-15 14 5.02 0.0003
350 6.1 9.77e-15 23 16.8 0.00083
400 8.78 9.57e-15 33.6 22.1 0.000942
450 12.2 9.34e-15 48.2 27.2 0.000962
500 15.3 9.13e-15 66.6 31.5 0.000969

Table 5.5: Relative error for Prolate matrix
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Figure 5.7: Curve of relative error of the Dorr matrix

5.2.2 Circulant matrix

Cireulant matrices are special Toeplitz matrices where the diagonais wrap around. 
This matrix has the property that each row is obtained from the previous one by 
cyclically permuting the entries one step forward. The circulant linear system also 
can be resolved by using FFT with good stability (see, [18],p.468).

One application of circulant linear systems is in the proconditioned conjugate 
gradient method for solving Toeplitz systems. G. Strang [23] was the first to propose 
circulant preconditioner for solving Toeplitz systems. Huckle [20] does an analysis on 
iterative method for solving linear Toeplitz equations and shows different ways to get 
improved preconditioned conjugate gradient algorithms.

The eigensystem of A  is explicitly known: If t  is a n-th root of unity, then the inner 
product of v with w = (1, t, t2, . . . ,  tn) is an eigenvalue of A  and w — (n,n — 1 , . . . ,  l ) r  
is an eigenvector A, where v is the first row of the matrix A, see [17]. See the results 
of the methods for this matrix in Table 5.6 and the curve in Figure 5.9.
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5.2.3 Toeplitz tridiagonal m atrix

The special case of a system of linear equations is tridiagonal, that is, it has 
nonzero elements only on the diagonal plus or minus one column. It oecurs frequently. 
The common systems are banded diagonal, with nonzero elements only along a few 
diagonal lines adjacent to the main diagonal (above and below). For tridiagonal 
sets, the procedures of the LU  decomposition, forward and back-substitution each 
takes only 0 (n) operations, and the whole solution can be encoded very concisely. 
Naturally, one does not reserve storage for the full n x n matrix, but only for the 
nonzero components, stored as three vectors. The solution using the S&T method is 
also found in only 0(n)  operations with forward and back-substitution. The scheme of 
storage doesn’t need to be full, because the decomposition preserve the most sparsity 
of the original matrix. We can see more information in [17]. The test matrix which 
we use here is also suggested by Matrix Market [22].

The tridiagonal matrix has the form

Figure 5.8: Curve of relative error for Prolate Matrix
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n
LU

CPUtime res(T, U) CPUtime
S&T 

res(T, L ,L t )
M-S&T 

res(T, L, LT)
50 0.6 1.42e-15 0 3.5e-13 4.83e-14
100 0.16 2.95e-15 0.28 2.16e-12 3.43e-13
150 0.71 4.52e-15 1.26 6.17e-12 7.89e-13
200 1.59 6.01e-15 3.51 1.17e-ll 1.56e-12
250 3.57 7.7e-15 7.68 1.99e-ll 2.69e-12
300 6.42 9.22e-15 14.1 3.41e-ll 4.45e-12
350 10.4 1.09e-14 23 4.89e-ll 5.92e-12
400 15.4 1.23e-14 35 6.87e-ll 9.37e-12
450 22.3 1.4e-14 53.4 9.11e-ll 1.2e-ll
500 30.5 1.57e-14 67.7 1.23e-10 1.58e-ll

Table 5.6: Relative error for Circulant matrix

(5.1)

where c, d, and e are ali scalars. This matrix has feature the tridiagonal Toeplitz 
matrix of order n with subdiagonal elements c, diagonal elements d, and superdiagonal 

elements e. The eigenvalues are d +  2y/(ce) cos(A:7r/(n +  1)), where k = 1 ,2 . . .  n. A  
is a symmetric positive definite M-matrix as the form

(5.2)

To test Algorithms 2.2.1 and 2.2.2, we take the tridiagonal Toeplitz matrix in
(5.1), with e =  3, d =  2 e c =  -1 . The two versions of the S&T method yield very 
good results, although the LU decomposition still have smaller error. We also test
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Figure 5.9: Residual error for Circulant matrix

for the case in that T  is a symmetric positive definite matrix, that is, T50o(—1 ,2 ,-1 )
and get relative errors 1.22e — 16 in 0 seconds, 6.18e — 17, with 68.9 seconds and
0 with 26.5 seconds, for the Cholesky2, S&T and LU  decomposition, respectively. 
The performance of the algorithms is in Table 5.7 and Figure 5.10. Note that for 
this matrix our modification are worse than Golub-Yuan S&T algorithm, but the 
Golub-Yuan S&T algorithm is as good as the LU decomposition.

2For Cholesky were used the MATLAB built-in function chol.
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LU S&T M-S&T
n CPUtime res(T, U) CPUtime res(T, L, LT) res (T ,L ,L T)
50 0.05 1.46e-17 0.06 7.85e-16 7.99e-16
100 0.17 1.03e-17 0.27 6.97e-16 1.15e-15
150 0.61 8.41e-18 1.21 6.15e-16 1.47e-15
200 1.54 7.28e-18 3.46 5.69e-16 1.7e-15
250 3.13 6.51e-18 7.52 5.4e-16 1.93e-15
300 5.54 5.94e-18 13.9 5.19e-16 2.13e-15
350 9.12 5.5e-18 23.5 5.04e-16 2.32e-15
400 13.4 5.14e-18 34.7 4.93e-16 2.51e-15
450 19.3 4.85e-18 50.8 4.84e-15 2.69e-15
500 26.5 4.6e-18 67.3 4.76e-17 2.79e-15

Table 5.7: Relative error for Tridiagonal Toeplitz matrix (sparse)

Figure 5.10: Curve of relative error for Tridiagonal Toeplitz matrix (sparse)



Chapter 6

Conclusions and future work

The numerical tests in this dissertation showed the efficiency of the new decom­
position of matrices (S&T), proposed by Golnb and Yuan in [12]. For the sake of 

numerical stability, we modify the Golub-Yuan S&T algorithm here. We tested sev- 
eral types of matrices for the Golub-Yuan algorithm and our modified algorithm. The 
current algorithm does not give the numerical stability as good as LU decomposition 
for our test matrices. In some cases, especially when the matrix is sparse and pos- 
sesses structures as in Chapter 5, the algorithm can produce as small error as that by 
the competitive methods. The modified algorithm does improve the numerical sta­
bility by our tests, specially for very ill-conditioned matrices such as Hilbert, Lotkin 
and Prolate matrix. In terms of our numerical experiments, the S&T decomposition 
is stable in some sense for many real applications even it is not as good as the LU 
(or Cholesky) decomposition for some types of matrices. Of course, the algorithm 
still needs improvement to get better numerical stability, which is our future research 
issue.

Future work

•  To apply the S&T decomposition and to try to improve the solution of the 
system Ax  =  b using the iterative refinement.
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• To research the possibility to apply the pivoting technique in the S&T method.

•  To develop the incomplete decomposition to apply to sparse matrices with strat- 
egy of fill-in reduction and to compare with other methods.

•  To do tests in eigenvalues and eigenvectors problems.

• Analysis of roundoff errors.

•  Nnmerical Analysis and instability for n »  500



A ppendix A  

Im plem entation

Implementation of the Algorithm 2.2.1.
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