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Abstract

The new decomposition, Symmetric and Triangular Decomposition (S&T), has
been proposed by Golub and Yuan in [12], with the objective of doing decomposi-
tion for nonsingular and nonsymmetric matrices. From this decomposition, every
nonsingular matrix can be presented by a product of one symmetric matrix and one
triangular matrix. Furthermore, the symmetric matrix in this decomposition can
be positive definite. They have proposed two numerical algorithms with the same
feature for the decomposition. For the sake of numerical stability, we modify the
Golub-Yuan algorithm here. We do numerical tests for Golub-Yuan algorithm and
our modified algorithm. We display here the numerical performance of one of these
algorithms for some famous test matrices. All tests are compared with LU decompo-
sition without pivoting. For the symmetric matrices, the results are compared also
with Cholesky decomposition. To compare the results, we emphasize some of the
most common matrices recommended by Gregory and Karney in [14], and also by
Nicholas in [17, 18].

It follows from our numerical tests that the modified S&T algorithm presented
here is stable for sparse matrices whose leading principal submatrices are nonsingular.
For dense matrices our modifications give some results much better than original
Golub-Yuan algorithm.



Resumo

A nova decomposicao, Decomposicdo Simétrica e Triangular (S&T), foi proposto
por Golub e Yuan em [12], com o objetivo de fazer decomposi¢do em matrizes non-
singular e ndo simétrica. Desta decomposi¢do, toda matriz nonsingular pode ser
apresentada pelo produto de uma matriz simétrica e uma matriz triangular. Além

disso, a matriz simétrica nesta decomposi¢cdo pode ser positiva definida. Eles pro-

puseram dois algoritmos numéricos com as mesmas caracteristicas para fazer esta
decomposigdo. Por causa da instabilidade numérica, nés fizemos modificacoes em um
dos algoritmos. Fizemos vérios testes numéricos para o algoritmo do Golub-Yuan
e nosso algoritmo modificado. Nés mostramos aqui o desempenho numérico de um
destes algoritmos para alguns matrizes testes famosas. Todos os testes foram com-
parados com a decomposicao LU sem pivoteamento. Para as matrizes simétricas, os
resultados foram comparados também com a decomposicao Cholesky. Para comparar
os resultados, nés utilizamos algumas das matrizes mais comuns recomendados por
Gregory e Karney em [14], e também por Nicholas em [17, 18].

Os nossos experimentos numéricos mostram que o algoritmo S&T modificado é
estdvel para matrizes esparsas cujos submatrizes principais sdo nonsingular. Para ma-
trizes densas nossas modificagdes apresentaram resultados melhores que o Algoritmo

proposto por Golub and Yuan.



Chapter 1
Introduction

Our purpose in this dissertation is to investigate the numerical behaviour of the
new decomposition for nonsingular, nonsymmetric and especially ill-conditioned ma-

trices, as follows
TA=S8=LL", (1.1)

where T and L are the lower triangular matrices and S is the symmetric and positive
definite matrix. The transformation (1.1) has the focus in the solution of the linear
system

Az = b, (1.2)

where A is a n X n matrix, b is a given column vector of size n and z is the solution,
which can be found by iterative or direct method.

This method, (Symmetric and Triangular Decomposition - S&T), has been pro-
posed by Golub and Yuan in {12, 13]. We propose a modified algorithm and compare
the modified S&T algorithm with original Golub-Yuan S&T algorithm and LU de-
composition without pivoting, and for particular case of symmetric matrix, with the
Cholesky decomposition without pivoting, because they are well-known, similar, and
very important in several scientific and engineering applications.

The S&T method was created by the idea of transforming a matrix A in a sym-

metric positive definite matrix (1.1). It is well-known that a symmetric and positive



defined matrix is very nice for matrix computation and has many advantages. In
many applications, it is easy to treat with symmetric or symmetric and positive def-
inite systems.

When A4 is symmetric and positive definite, the Conjugate Gradient (CG) method
[15] is an effective and widely used technique. However, when A is nonsymmetric,
to find the solution of the linear system (1.2) by iterative methods is considerably
more difficult. The convergence behavior of the iterative method depends on the
spectral properties of the linear system. For difficult problems, the algorithms may
not converge due to accumulated round-off errors [29, pp. 49]. These things motivate

us to analyze the numerical stability of the S&T decomposition.

1.1 LU decomposition

The LU decomposition is the most common used method for the matrix decompo-
sition. It is often desirable to adopt a different perspective on processing the matrix
A. The LU Decomposition is a dynamic process of transforming the matrix A in the
product of two triangular special matrices with very nice properties. That is, A can
be numerically factored into two separate triangular matrices, one is lower triangular,

L, with unit diagonal elements and an other upper triangular, U, that is
A=LU. (1.3)

- The decomposition of matrices in triangular matrices takes advantages because
the triangular matrices have important properties in linear algebra that minimize so
much computational cost as the number of operations required by machines in the
resolution of the linear system (1.1). This method, however, is unstable for arbitrary
matrices. For example, it leads to the breakdown when the diagonal elements of the
matrix are near to zero. Qur work here is only dealt with numerical behaviour of
the S&T decomposition without pivoting. For example, from our tests our work is

more useful for totally positive! matrices that the exact triangular factors have only

1Totally positive matrices are defined as those for which the determinant of every submatrix is



positive entries, considering that pivoting’s strategy for S&T decomposition will be

our future research issue.

1.2 Cholesky decomposition

When a matrix is symmetric, we can simplify the calculations of the decomposi-
tion LU significantly, by taking into advantages of the symmetry. Numerically, the
symmetric positive definite matrices are rather special, which occur quite frequently
in some applications, so their special factorizations is called Cholesky decomposition.
Instead of seeking arbitrary lower and upper triangular factors L and U, Cholesky’s
decomposition constructs a lower triangular matrix L, and LT can itself serve as the

upper triangular part. In other words, we replace equation (1.3) by
A=LLT. (1.4)

This factorization is sometimes referred to as ”taking the square root” of the matrix
A.

The Cholesky algorithm requires about n®/6 executions of the inner loop (con-
sisting of one multiply and one subtract), half of the number of executions required

to do the same work by using LU decomposition.

1.3 Sparse matrices

The sparse matrices arise frequently in the discretization of partial differential
equations by finite elements and finite difference methods (see, [5, Chapter 6]). Most
of the authors consider a sparse matrix whose nonzero elements consist of a relatively
small number (about 10%) of total elements. The theory of sparse matrices is widely
used and we will not give details here (for more information see [3]). For special sparse

matrices such as tridiagonal matrix, pentadiagonal matrix, block matrix etc, the S&T

positive.



decomposition presents better results, (see Chapter 5.1). Since the leading principal
submatrices are nonsingular, we can decompose the matrix A in the form (1.1) without
harming the sparsity of the matrix too much. We take some test matrices from the
Harwell-Boeing Sparse Matrix Collection, which has excellent test sparse matrices,
largely drawn from practical problems (see, [22]). Figure (1.1) illustrates the sparsity
patterns for matrix L, when the S&T method is applied for Wathen’s matrix, see the

results in the Chapter 5.2.

T,
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Figure 1.1: Sparsity patterns of the nonzero elements of the factor L of S&T decom-
position, L and U of LU decomposition for Wathen’s matrix

Note that the sparsity and the amount of nonzero elements from the factor L of
S&T is exactly the same as L of LU, but the factor U has more nonzero elements
than factor L. For tridiagonal matrices, the factor L of S&T, L and U of LU, yield
a bidiagonal matrix.

The tests here for sparse matrices are just to show the numerical performance of
the method.

In general, most of the iterative methods work very well for the solution of sparse



linear systems, usually using the preconditioning technique [3], because these systems
are almost always sensitive (ill-conditioned), that is, a small variation in the coeffi-
cients of the matrix (and sometimes also in the vector b) will cause large variation
in the solution of the system. The S&T method can also be used as preconditioner.
Golub and Yuan have given some examples in [12].

Direct methods for sparse systems depend crucially on the precise pattern of
sparsity of the matrix. For sparse matrices, one usually requires pivoting strategy
(interchange of rows or columns) in the stage of the decomposition of the matrix to
avoid breakdown. It is important to control the storage of the elements to keep the
sparsity, besides of avoid in the possible fill-in. In particular, the LU decomposition
and Cholesky decomposition methods have variant versions with pivoting. The direct
methods are not recommended to solve large sparse systems, if A becomes large, direct
methods typically become very expensive and inefficient; one find the ” exact” solution
in finite arithmetic operations, but the roundoff errors will increase and the storage
requirement will be quite big. On the other hand, there are many techniques for
the iterative methods to accelerate the convergence and to reduce the roundoff errors
with cheap cost [25, 3]. In Chapter 5 we show the numerical results of the S&T
decomposition for some sparse matrices.

The remainder of this dissertation is arranged as follows. In Chapter 2, we give the
main idea of the S&T decomposition. We present the theorem and two algorithms:
Golub-Yuan algorithm and our modified algorithm. We still do some comments about
the test matrices. In Chapters 3 and 4, we present the numerical results for selected
well-conditioned dense matrices and ill-conditioned dense matrices respectively. In
Chapter 5, we show the results for some special matrices. Finally, in Chapter 6, we

give some conclusions and suggestions for future work.



Chapter 2

S&T decomposition

2.1 Main idea

Many problems in numerical mathematics are modeled in terms of a system of
linear equations. For instance, numerical methods for partial or ordinary differential
equations and integral equations appeared in several problems of Physics, Engineering

and the Image processing. Some practical problems are the following:
e airplane wing design;
e radar cross-section studies;
e flow around ships and other off-shore constructions;
e diffusion of solid bodies in a liquid;
e noise reduction; and
e diffusion of light through small particles.

One of the most common problems in real situations is to find the solution of n
linear equations with n unknowns in the from of (1.2), and in most of the cases

n is very large. In general, to find the solution of these linear systems is not an



easy task, specially if the coefficients matrix is very sensitive. A typical approach to
solve such systems is to use LU decomposition which involves the roundoff error in
some sense. Nicholas has done a analysis and proposed several ways to calculate and
analyze the computational errors in [18] and his several papers can be found in his
web site "hittp://www.ma.man.ac.uk/~higham/pap-le.html”. This will help to study
the numerical behaviour of the S&T decomposition.

The S&T decomposition is based on the construction by block-wise of two ma-
trices 7' and L (both lower triangulars). The matrix T', generated, has the power to
transform the matrix A in a lower triangular matrix L such that the product of L by
its transpose is symmetric and positive definite (SPD), that is, given a n X n non-
symmetric and nonsingular matrix A, we get a sequence of lower triangular matrix
Ly, whose product by its transpose, LT, gives us a SPD matrix Sy, starting from the
construction of a triangular matrix Ty multiplied by matrix Ag, that is, in the end of

the process we obtain

TA=LLT
where LLT = S, or
tin Qi1 ... Qin In lh .. I
tnl [ tnn anl . nw ann ln]_ «aaw lnn lnn

The matrix S is positive definite if we can make the decomposition in such a
way that the elements of the diagonal of L are all positive, that is, ;; > 0 for all

1=1,2,...,n. This idea is similar to the form of work of the algorithm of Cholesky.

THEOREM 2.1.1 For every nonsingular and nonsymmetric n X n matriz A, whose
leading principal submatrices are nonsingular, there exist a triangular matriz T and

a symmetric and positive definite matriz S such that

|[TA=S=LL"| (2.1)

Proof: The proof is given in [12]. |


http://www.ma.man.ac.uk/~higham/pap-le.html%e2%80%9d
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The S&T decomposition obtains the matrices 7" and L in block-wise, as follows:

Let A be n X n nonsingular and nonsymmetric matrix, then

A
A= |CE (2.2)
Opy1| ©
where A is nonsingular.
Then, we can write the lower triangular T' and L as follows
T | 0
T=|—* (2.3)
trer | B
and
L |0
L= (2.4)
l£+1 T
From (2.2), (2.3) and (2.4), we write the system
Tk 0 Ak Ak+1 _ Lk 0 L{ lk+1 (2 5)
tia B dp, o Gy T U '
where
Ly O LT 1
¢ A (2.6)
o 7 0 T

By multiplication of matrices in (2.5), we obtain

Ak = TEILkL{
liv1 = Li'Teapn
torr = TELFT(lerr — BLE'GF

’ =T ~Tr—1
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where L;TL;'Ty = A}
The element, 3, of the diagonal of the matrix T, are arbitrary variables, but we
choose B # 0 such that

~T r-Tr-1
(o — Gy Ly Ly Tiar+1)

5 >0 (2.7)

The elements, 7, of the diagonal of matrix L, represented by root square of the

expression (2.7) must be larger than zero for all k.

2.2 Algorithms

For the decomposition of the matrix A as a product of a lower triangular matrix
T and a symmetric and positive definite matrix S = LLT, we make several numerical
tests to evaluate the behavior of the algorithm proposed in [12] and we verify that one
of the reasons that can cause instability in the decomposition process is the variation
of the diagonal elements of the submatrix Ly or T;. Golub and Yuan propose that the
elements tgy1 541, (8 = tpy14+1), are free, just considering that should be different
from zero. However, by making an inversion in the algorithm, we verified that we can
leave lg 11541, (T = lpt1,4+1), @5 a free variables instead of 541 g1

We note that for most dense matrices lg41 541 elements approach zero, which is the
source of instability of the decomposition. To avoid this, we look for alternative forms

to guarantee the continuity of the decomposition and to minimize the rounding errors.

For example, we control the difference s = ag41 k41 — f,f +1lk+41, such as [s| < 10718 to
avoid the elements l;; x+1 close to zero. A similar behavior occurs with the matrix
T;. In each step of the algorithm we should choose lzy1x+1 > 0 such that Ty is
nonsingular. Therefore, since the decomposition is not unique, we can take values
B = tgi1,k41 (Or for lp 41 k41 = /7, depended on the case) such that the decomposition
presents best stability.

Algorithm for S&T decomposition by Golub-Yuan is the following:
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ALGORITHEM 2.2.1 (Golub-Yuan S&T)
Set #1; such that #;1a1; > 0 and = Viiai;
Fork=1,...,n—1

— 71
lg1 = Lk Tyag 41,
. T
kg1 = Ly Gy,

_ T
§ = Qk41,k+1 — lk+1lk+1:

Choose tj11 k11 # 0 such that T = tg41.+15 > 0 (or large enough)
lhy1k41 = VT
Ty = T;?L;T(lkﬂ - tk+1,k+1ik+1)

End

With above considerations, we obtain the modified algorithm for the S&T decom-

position.
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ALGORITHM 2.2.2 (Modified S&T)
Set t1; such that t;1a1; > 0, l11 = V11611, 0 = 1078 and choose guess initial = 1;
Fork=1,...,n—-1
levr = Ly ' Thag,
zk+1 = L;lfl,{+1,

_ 7T
8= Ok+1,k+1 — lk+1lk+l7

if [s|] <6
tk+1,k+1 =1
else

th1k+1 = sign(s)n

update 7 such that [ 441 > 0
T = tpy1,k+18

end

lhs1 o1 =T

tir =TT LT (loyr — terpsaless)

End

REMARK 2.2.1 In each step of the decomposition, these two algorithms request the
resolution of two linear systems and consequently are necessary the calculation of two

triangular inverse.

Computational Cost

S&T
These two algorithms require 2n3/3 operations. Figure 2.1 shows the way as

Algorithms 2.2.1 and 2.2.2 to make the decomposition. The solution of each
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triangular system Ly = b and L7z = y requires n?/2 flops. So, the solution of
the positive definite system Az = b using the S&T algorithm requires 2n3/3 +

O(n?) arithmetic operations.

Cholesky
The Cholesky algorithm requires n3/6 flops to compute L, one-half of the num-
ber of flops required to do same job using LU decomposition. Note that the
process also requires n square roots. The solution of each triangular system
Ly = brand LTz = y requires n?/2 flops. Thus, the solution of the positive
definite system Az = b using the Cholesky algorithm requires n?®/6 + O(n?)

flops and n square roots.

LU
The LU decomposition without pivoting requires about n2/3 flops and the solu-
tion of each triangular system Ly = b and Uz = y needs only n?/2 flops (same
as that of Cholesky and S&T), the total flop count for solving the linear system

Az = b by Gaussian elimination is about n®/3 + O(n?).

We note that the S&T decomposition is about twice more expensive than LU
decomposition and about four time more expensive than Cholesky decomposition.

The cost of the S&T decomposition is larger because of construction of the matrix 7.

2.3 Test matrices

In many applications in mathematics and engineering, the underlying physical
properties of the problem introduce various patterns of structure into arising matrices.
As the method here is not sufficiently advanced, in terms of stability, our test problems
are still restricted. The chosen test matrices were obtained from the literature. We
try to cover dense and sparse matrices with some type of structure. Gregory and
David provided a large collection of test matrices (see,[14]). A important collection

of test matrices, is ” The Test Matrix Toolbox”, developed by Nicholas in conjunction
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k 1 2 3 n—1
1 x| x b'e

2 X X X

3 X X X
n—1

Figure 2.1: Manner of S&T decomposition

with his book Accuracy and Stability of Numerical Algorithms [18]. This collection
has important matrices arising from the practical problems, and gives fundamental
information on each matrix. He suggests 58 parametrized test matrices, which are
mostly square, dense, nonrandom, and of arbitrary dimension. The collection includes
known-inverse, known-eigenvalue; ill-conditioned, rank deficient, symmetric, positive
definite, orthogonal, defective, involuntary, and totally positive matrices. We tested
many of these matrices. We also tested some sparse matrices of the Horwell-Boing
collection that is one of the most important collections of sparse matrices.

The codes for the algorithms presented in this dissertation are implemented in
MATLAB which has unit roundoff u = 273 ~ 1.11x107!%, and are given in Appendix
A. The MATLAB M-file for LU decomposition was obtained from [9]. All tests
were run on a single processor Intel Pentium(III) 700 MHz with 128MB of RAM
memory. CPU times are collected in the experiments and are used to measure the
time of occupations of the machine. For each matrix (except for Moler Matrix) a
table is built to show the relative error and the CPU time for each method taking

n = 50,100, ..., 500, except for Wathen’s and Poisson’s sparse matrix that have the
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order of the matrices. To facilitate the analysis of the convergence of the algorithms,
the figures are also given with the curves to describe the relative errors for n =

1,2,3...,500. We measure the relative error as follows

e For S&T decomposition

A—-TLLY||r
res(T,L,LT) = I
8L =y,
algorithms (2.2.1) and (2.2.2)
e For LU decomposition
|IA—LU||r
res(L,U) = ————
0=
e For Cholesky decomposition
A—LLT||F
res(L,LT) = L————
B2 ="y

Where ||.||r denote the Frobenius norm. We choose Frobenius norm, because it

is widely used and more suitable for measure approximation of matrices.



Chapter 3

Well-Conditioned dense matrices

3.1 Diagonally dominant matrix

In general, the class of diagonally dominant matrices, for row or column, is well-
conditioned. The iterative methods are almost stable and obtain a good approximate
solution of the system in a few iterations with respect to the size of the system.

We say that a n X n matrix A is strongly row diagonally dominant if

n
laij| > Z laij], for all ¢ (3.1)
J#i
A column diagonally dominant matrix is similarly defined.

A column diagonally dominant matrix, like a symmetric and positive definite
matrix, possesses the attractive property that row interchange is not necessary at
any step during whole Gaussian elimination. The pivot element is already in the
right place. Thus, at the first step, a;; being the largest in magnitude of all elements
in the first column, no row interchange is necessary.

Our test matrix was built by taking random entries, from an uniform distribution
with mean zero and variance one, N(—1,1), generated by MATLAB’s randn function.
Table 3.1 and Figure 3.1 show the performance of the algorithms. The update of

tg+1,6+1 Was made with § = ||Lg41||2- Note that the S&T decomposition is stable

17



LU S&T M-S&T

n | CPUtime res(L,U) | CPUtime res(7,L,LT) res(T,L,L")
50 0.05 1.43e-16 0.05 3.64e-16 3.32e-16
100 0.33 2.21e-16 0.33 4.66e-16 3.32e-16
150 0.88 2.45e-16 1.48 5.72e-16 3.35e-16
200 1.6 2.71e-16 4.12 6.14e-16 3.59e-16
250 3.3 3.0le-16 8.89 7.29¢e-16 4.01e-16
300 456 3.29e-16 16.3 8.26e-16 4.06e-16
350 7.87 3.55e-16 26.7 8.65e-16 4.28e-16
400 12.1 3.86e-16 40.7 8.75e-16 4.49e-16
450 15.5 4.13e-16 58.8 8.96e-16 4.56e-16
500 22.2  4.33e-16 66.7 1.02e-15 4.76e-16

for this matrix. The modified S&T algorithm gives us residual smaller than S&T

algorithm.

Table 3.1: Performance for diagonally dominant matrix

Relative error
3

L 1 ‘
50 100 150

I
200

.
250
Matrix size

I i
300 350 400 450 500

Figure 3.1: Relative error for diagonally dominant matrix
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LU S&T S&T

n | CPUtime res(L,U) | CPUtime res(T,L,LT) res(T,L,L")
50 0.11 1.27e-14 0 7.32e-10 3.45e-10
100 0.28 2.45e-14 0.28 2.47e-08 5.86e-09
150 0.66 8.8le-14 1.27 1.15e-07 5.94e-08
200 143 2.30e-13 3.92 2.49e-07 1.17e-07
250 3.08 3.31e-13 9.17 3.62e-07 1.58e-07
300 4.28 4.20e-13 15 5.4e-07 2.19e-07
350 6.21 4.68e-13 26.7 6.43e-06 1.94e-06
400 8.46 5.28e-13 35.2 1.02e-05 3.08e-06
450 14.5 5.92e-13 57.8 1.22e-05 3.93e-06
500 32.7 6.53e-13 66.6 1.39e-05 4.98e-06

Table 3.2: Performance for matrix with random entries
3.2 Random matrix

The random matrix chosen here, is a n X n matrix A with random entries, chosen
from an uniform distribution with mean zero and variance one, N(0, 1), generated by
MATLAB’s randn function. Random matrices are always the favorite test matrices
in test algorithm. Various results are known about the behaviour of matrices with
random entries from the normal distribution. Some works have been published cov-
ering characteristics and details of this kind matrices, see, for example, the Doctor
thesis of Alan Edelman [8] and [18, p. 517]. The results of our tests are in Table 3.2
and the curves of the relative error in Figure 3.2, respectively. The actualization of

tk+1,k+1 Was made with 7 = || Lgi1]|e-

3.3 Symmetric positive definite matrix

Here we choose a symmetric positive definite Moler matrix [16] defined by An(6) =
Cn(0)TC,(9), where C,,(0) is a unit upper triangular with all ¢; ; elements, ¢ # j, equal
to 8. To construct this matrix we take § = —2 as in [6, 7] and to ensure stability in

the decomposition, we update txi1x+1 as follows

tht1,k+1 = sign(s)n (3.2)
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Figure 3.2: Relative error for Random matrix

where 7 is the infinity norm of the row of L in the step k, that is, n = ||Lgy1||co- The
idea here is to control elements #x41x+1 to assure the stability of the decomposition
and to get the possible better choices for L and T. We tested the modified S&T
algorithm and original S&T algorithm with several negative integer values 6. In this
case, T is identify, and L is unit triangular. The relative error obtained is zero and
CPU time is 66,7 seconds. Therefore, the decomposition for Moler matrix is stable for
parameter § < 0 and integer. When we choose the parameter § > 0 or non integer,
the relative errors of modified S&T and Golub-Yuan S&T algorithms are similar to
that at in LU decomposition, but not better. The Cholesky method is stable and

makes the decomposition with relative error zero in 49 seconds.



Chapter 4

Ill-conditioned dense matrices

4.1 Hilbert matrix

The Hilbert matrix is a classic test matrix and one of the most famous ill-
conditioned matrices. The (4,7) elements of this matrix are all in the form z‘T}iT’
with (i, =1,2,...,n), the elements of the inverse are integers and known explicitly
[14]. Tt was widely used in the 1950s and 1960s for testing inversion algorithms and
the solution of linear equation. For this problem, even for small n, both the condition
number and numerical stability will be in the very bad situations. For example, Table
4.1 displays that for n = 20, cond(Hayg) already reaches 1.0675¢ + 019" continuing to

grow at an exponential rate, that is, cond(H,) =~ €3, when n is very large [26].

n Cond(H,)
2 19.2815
3 524.0568
4 | 1.5514e+4-004
5 | 4.7661e+005
20 | 1.0675e+019

Table 4.1: Condition number of the Hilbert matrix

1These numbers were obtained with the MATLAB M-file cond
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This matrix is common to appear in practical problems of adjustment of curves by
a polynomial for the method of the least squares. Forsythe and Moler [10] dedicate
a chapter to the Hilbert matrix, to describe the underlying least square problem and
discuss numerical computation of the inverse. Although many researchers use this
matrix for testing algorithms, Nicholas [19] affirms that the Hilbert matrix is not ideal
because of symmetric and positive definite and totally positive. More details about
this matrix, including an asymptotic formula for cond(H,,), can be found in Gregory
and Karney [14, pp. 33-38, 66-73], [18, pp. 514], [2, pp. 206], [5, Chapter 6] and
[26, 4].

Note that for n = 500, the relative error is in the order of 0.000197 for the S&T
decomposition and 7.92e—17 for the LU decomposition as seen in Table 4.2. Although
relative error of the S&T decomposition is bigger than that of the LU decomposition,
for this matrix we obtain a condition number 3.12e + 08 for the factor L of the S&T
algorithm, less than 2.08e + 12 for the factor L and 8.16e + 20 for the factor U of LU.
The S&T decomposition offers better conditioned triangular approximation matrices.

Here, we update n by n = ||Lx41||/2k, k =1,2,...,n — 1, to control the diagonal
elements of the matrices L and T'. Table 4.2 and Figure 4.1 display the convergence of
the method. The modified Algorithm 2.2.2 accelerated the convergence of the method

significantly.
LU S&T M-S&T

n | CPUtime res(L,U) | CPUtime res(Z,L,LT) res(T,L,L")
50 0.06 5.14e-17 0.05 2.27e-06 3.39e-07
100 0.38 5.83e-17 0.28 0.0452 3.31e-07
150 1.04 6.31le-17 1.27 0.274 1.4e-06
200 1.37 6.66e-17 3.57 379 3.43e-06
250 247 6.94e-17 7.74 2.74e+03 1.47e-05
300 6.7 7.2e-17 14.1 5.92e+03 5.04e-05
350 10  7.41e-17 23.2 9.41e+03 7.9e-05
400 14.6 7.6e-17 35.3 1.51e+04 0.000126
450 19.9 7.76e-17 50.8 7.13e+04 0.000157
500 29.3 7.92e-17 65.4 1.69e+05 0.000197

Table 4.2: Performance of the methods for Hilbert matrix
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Figure 4.1: Relative residual for for Hilbert matrix

4.2 Lotkin matrix

Lotkin matrix is a special case of the Hilbert matrix whose first row altered
to all ones. This matrix is nonsymmetric, ill-conditioned, and has many negative
eigenvalues with small magnitude. The inverse has integer entries and is known
explicitly, see [17]. Table 4.3 and Figure 4.2 illustrate the behaviour of the algorithms.
In this case, the updating of the elements tx41,+1, is made as in 4.1. Note that also
in this case, our modifications improve the relative residual significantly compared
with the Golub-Yuan algorithm. From this results, the LU decomposition is still
better. But the result of the modified S&T algorithm is reasonably accepted for real

applications.



LU S&T M-S&T

n | CPUtime res(L,U) | CPUtime res(T,L,LT) res(T,L,LT)
50 0.05 3.84e-17 0.06 1.99e-05 6.7e-07
100 0.11  3.92e-17 0.29 0.000797 6.7e-07
150 0.66 4.0le-17 1.37 0.00141 8.12e-07
200 1.59  4.04e-17 3.46 0.445 1.07e-06
250 3.18  4.07e-17 7.47 30.4 1.38e-06
300 5.99 4.09e-17 13.6 461 2.28e-06
350 9.01 4.12-17 22.2 5.37e4+03 5.65e-06
400 13.8 4.15e-17 33.7 4.29e+04 1.04e-05
450 19.5  4.17e-17 50.3 2.16e+05 2.03e-05
200 26.8 4.18e-17 66.9 2.36e+-06 6.31e-05

Table 4.3: Relative error for Lotkin matrix
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Figure 4.2: Relative error for Lotkin matrix
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Chapter 5

Special matrices

5.1 Sparse matrices

For the sparse matrices (Poisson, Wathen, Dorr and Toeplitz Tridiagonal), we
allocated ourselves a fixed value, 7 = 2, for the elements of the diagonal of the matrix
T. Therefore, all elements t;. 441 are equal to 2 except £;; and f5. This is the
best alternative we found to guarantee a relative error as small as that of the LU

decomposition for our experiments.

5.1.1 Poisson’s matrix

Block tridiagonal matrix from Poisson’s equation (sparse) is a kind of matrices that
arises in linear equations obtained by discretizing certain elliptic partial differential
equations and has the pentadiagonal matrix form. In general, these equations are
subject to boundary conditions at the outer boundary of the range. There are no
initial conditions, as Wave or Diffusion equations. Hence, they can not be solved
by adapting the methods for simple differential equations. Here, we consider the
block tridiagonal (sparse) matrix of order n? resulting from discretizing Poisson’s

equation

2T 0T
W‘i‘gyg = f(z,y)
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where (z,y) € @ = (0,1) x (0,1). The five point finite difference method gener-
ates a block tridiagonal SPD coefficient matrix. This matrix is usually in the well-
conditioned category. For more details, see [11, 21, 9] and [5, Chapter 6]. The results
are given in Table 5.1. Figure 5.1 and Figure 5.2 illustrates the sparsity pattern. We
note that the method is stable for this type of matrices. Although the modifications
to update the elements ¢4 k41 is not good, the relative error is smaller than that of

the LU decompositon when n = 232

LU S&T M-S&T
n | CPUtime res(L,U) | CPUtime rtes(T,L,LT) res(T,L,LT)
7 0.05 9.87e-17 0.05 9.35e-17 1.24e-16
10 0.28 9.17e-17 0.28 1.35e-17 1.22e-16
12 0.87 1.19e-16 1.1 1.21e-16 1.20e-16
14 2.37 1.3le-16 3.24 1.25e-16 1.33e-16
16 9.28 1.32e-16 8.07 1.35e-16 1.35e-16
18 11 1.56e-16 17.7 1.36e-16 1.41e-16
20 21 1.58e-16 33.5 1.38e-16 1.53e-16
22 37.3 1.65e-16 58.9 1.36e-16 1.41e-16
23 48.9 1.64e-16 73.5 1.48e-16 1.44e-16

Table 5.1: Relative error for Poisson’s matrix

Relative error
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Figure 5.1: Curve of residual error for Poisson’s matrix
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5.1.2 Wathen matrix

Wathen’s matrix is a Finite Element matrix (sparse, random entries) for two-
dimensional finite elements discretisation on an uniform cartesian mesh with ! nodes
in the z-direction and m nodes in the y-direction where n = 3lm+2[+2m+1. Ais
precisely the consistent mass matrix for a regular ! by m grid of 8-node (serendipity)
elements in the plane. A is symmetric positive definite for any positive values of the
density (I, m) which are randomly chosen in our test. In particular, if D = diag(4),
then the eigenvalues of D' A lie in (0.25,4.5) for any positive integers ! and m and
any densities, see [28]. In our test we construct the matrix A by taking I = m. See the
performance of the algorithms in Table 5.2 and in Figure 5.3 and the sparsity pattern
in Figure 5.4. Here, we get better results than that by using LU decomposition in
the two versions of S&T. For the Cholesky decomposition, the relative error and CPU
time 1.51e — 016 and 0.66 seconds, respectively. So, the relative error of the modified
S&T decomposition is smaller than that of the Cholesky decomposition.



40
96
133
225
280
341
408
481
560

LU

CPUtime res(L,U)
0.06 9.17e-17
0.22 1.42e-16
0.49 1.35e-16
1.87 1.32e-16
3.3 1.27e-16
5.5 1.38e-16
9.27 1.33e-16
134 1.34e-16
23.4 1.27e-16

S&T M-S&T |
CPUtime res(T, L, LT) res(T,L,LT)
0 1.14e-16 1.11e-16
0.22 1.16e-16 1.02e-16
0.82 1.31e-16 1.23e-16
5.22 1.37e-16 1.27e-16
11.3 1.09e-16 1.27e-16
20.7 1.40e-16 1.32e-16
36.5 1.39e-16 1.29¢-16
58.9 1.61e-16 1.42e-16
93.2 1.48e-16 1.30e-16

Table 5.2: Relative error for Wathen matrix

5.1.3 CDDE1 - Matrix Market

28

This test matrix is from the following constant-coefficient convection diffusion equa-

tion, which is widely used for testing and analyzing numerical methods for the solution

of linear system of equations. The equation is

—Au+2p1ug +2pauy —psu = f in Q
g on 0}

u

where p;, po e ps are positive constants. Discretization by the finite difference

schemes with a 5-point stencil on a uniform m x m grid gives rise to a sparse linear

system of equations

Au=1>

where A is of order m? and u and b are now vectors of size m2. Centered differences

are used for the first derivatives. If the grid points are numbered using the row-wise
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Figure 5.3: Relative error for Wathen’s matrix

natural ordering, then A is a block tridiagonal matrix of the form

T B+ 1)1
(-6+0)I T  (B+D1I

(B+ 1)1
(-B+1I T

with

v—1
—v—-1 4—-0

where 3 = pih,y = pah,0 = psh® and h =1/(n + 1).
This is a Model 2-D Convection Diffusion Operator (CDDE1) test and the matrix
is extracted from the Harwell Boeing Collection [22], and we use the Matrix Market
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Figure 5.4: Sparsity pattern of the Wathen matrix.

format. It is a real nonsymmetric matrix. For our experiments, we take n = 500, so

2404 nonzeros elements arise in the matrix, p; = 1, p» = 2, p3s = 30, where
p1 is the coefficient of 2u, in differential operator;
p2 is the coefficient of 2u, in differential operator;
p3 is the coefficient of —u in differential operator

Our modifications do not make a lot of difference with respect to Golub-Yuan al-
gorithm. But the relative error in the decomposition of this matrix made by modified
S&T or S&T algorithm is smaller than that of the LU decomposition. This illustrates
the efficiency of the method for these structured matrices.

The sparsity pattern is in Figure 5.6 and the results of the methods are shown in

Table 5.3 and Figure 5.5, respectively.



LU M-S&T

n | CPUtime res(L,U) | CPUtime res(T,L,L") res(T,L, L)
50 0.05 7.92e-17 0.06 1.17e-16 1.20e-16
100 044 1.53e-16 0.44 1.52e-16 1.49¢e-16
150 1.53 1.71le-16 1.27 1.75e-16 1.67e-16
200 3.18 1.82e-16 3.46 1.84e-16 1.78e-16
250 6.21 1.85e-16 7.31 1.88e-16 1.85e-16
300 10.6 1.88e-16 13.3 1.94e-16 1.86e-16
350 16.5 1.9e-16 21.8 1.97e-16 1.91e-16
400 24.3 1.87e-16 33.2 1.97e-16 1.91e-16
450 34 1.89%e-16 47.8 1.97e-16 1.95e-16
500 46  1.93e-16 66.2 1.97e-16 1.97e-16

31

Table 5.3: Relative error for CDDE1 - Matrix Market

5.1.4 Diagonally dominant Dorr matrix

The Dorr matrix D, (c) [17, 16], which was also used in [6, 7], is a nonsymmetric, row

diagonally dominant, tridiagonal M-matrix'. D,(a) has diagonal dominance factors

‘dzi — ‘dz‘,z‘—l - di,i+1i = (n + 1)205, for 2= 1,2, ..,
Y=
0, otherwise

This matrix is ill-conditioned for small values of the parameter o when o > 0. Figure
5.7 illustrates the relative error for Dorr matrix. The Table 5.4 gives the behaviour to
the algorithms. The LU decomposition works very well for this matrix. Here, we use
7 = ||Lg41]|| for update t11+1. The modified S&T algorithm has residual as good
as the Golub-Yuan algorithm.

1We say that a matrix is a M-matrix if a;; < 0 for all ¢ different from j and all the eigenvalues
of A have nonnegative real part. Equivalently, a matrix is a M-matrix if a;; < 0 for all ¢ different

from j and all the elements of A~! are nonnegative.
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Figure 5.5: Relative error for CDDE1 - Matrix Market

5.2 Toeplitz Matrices

Here, we study the case where A is a Toeplitz matrices. These matrices arise in many
applications, such as deconvolution and signal processing, communications engineer-
ing, and statistics [1]. In several situations, matrices arise in block structure, too such
as diffusion of solid bodies in a liquid, noise reduction, diffusion of light through small
particles. More details about Toeplitz matrices can be found in [24].

A Toeplitz matrix has constant diagonals. In other words, A;; depends only on

(¢ — 7) and is defined as follows

An(a) = (@ij)ij=m

where a;, is the kth Fourier Coefficient of a,

1
1 2 , .
Gk = 5= / ’ a(e®)e *0df |, k=0,+1,42,43,...

N

The Toeplitz matrix has the form
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5.2.1 Prolate matrix

Prolate matrix is symmetric, ill-conditioned Toeplitz matrix. This is the typical
case arising in signal processing applications. It was first studied by Slepian in the
1950’s at Bell Labs. In 1993 Varah also studied this matrix, see [27]. The Prolate
matrix is a symmetric Toeplitz matrix given by A(c).

If 0 < @ < 1/2 then

e A is positive definite

e the eigenvalues of A are all distinct, lie in (0, 1), and tend to cluster around 0
and 1.



LU S&T M-S&T

n | CPUtime res(L,U) | CPUtime res(T,L,L") res(T,L,L")
50 0.05 0 0.06 1.68e-13 1.36e-13
100 0.27 0 0.28 3.20e-13 3.97e-13
150 0.66 0 1.26 5.77e-13 9.85e-13
200 1.43 0 3.4 7.40e-13 7.04e-13
250 2.63 0 8.02 7.98e-13 8.57e-13
300 4.17 0 13.8 8.33e-13 8.85e-13
350 6.27 0 22.7 9.17e-13 9.16e-13
400 8.9 0 41.4 9.58e-13 8.72e-13
450 12.2 0 51.3 9.73e-13 9.38e-13
500 16.2 0 69.2 9.52e-13 9.49e-13

Table 5.4: Convergence of the decomposition for Dorr matrix

34

In our tests we consider o defaults to 0.125. For this value of «, the Prolate matrix

is very ill-conditioned with condition number for Asp(c) about 2.20e + 18. The

eigenvalues also lie in (0,1). The diagonal elements of the matrix T' are updated by

n = ||Lg+1]|- Table 5.5 shows the convergence of the method when increasing the

order of matrix and Figure 5.8 gives the curve of the relative error. Although the
modified S&T and Golub-Yuan S&T are not good for the matrices, modified S&T

algorithm does improve the numerical stability.

LU S&T M-S&T

n | CPUtime res(L,U) | CPUtime res(T,L,LT) res(T,L,L")
20 0.05 2.45e-16 0.06 0.306 1.57e-06
100 0.27 7.21e-16 0.28 0.353 2.23e-05
150 0.76 1.2e-16 1.32 0.569 0.000132
200 1.59 1.02e-15 3.52 0.794 0.000202
230 2.52 9.28e-15 7.63 1.17 0.000227
300 4.11  9.89%-15 14 5.02 0.0003
350 6.1 9.77e-15 23 16.8 0.00083
400 8.78 9.57e-15 33.6 22.1 0.000942
450 12.2  9.34e-15 48.2 27.2 0.000962
500 15.3 9.13e-15 66.6 31.5 0.000969

Table 5.5: Relative error for Prolate matrix
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Figure 5.7: Curve of relative error of the Dorr matrix

5.2.2 Circulant matrix

Circulant matrices are special Toeplitz matrices where the diagonals wrap around.
This matrix has the property that each row is obtained from the previous one by
cyclically permuting the entries one step forward. The circulant linear system also
can be resolved by using FFT with good stability (see, [18],p.468).

One application of circulant linear systems is in the proconditioned conjugate
gradient method for solving Toeplitz systems. G. Strang [23] was the first to propose
circulant preconditioner for solving Toeplitz systems. Huckle [20] does an analysis on
iterative method for solving linear Toeplitz equations and shows different ways to get
improved preconditioned conjugate gradient algorithms.

The eigensystem of A is explicitly known: If ¢ is a n-th root of unity, then the inner
product of v with w = (1,,1%,...,#") is an eigenvalue of A and w = (n,n—1,...,1)T
is an eigenvector A, where v is the first row of the matrix A, see [17]. See the results

of the methods for this matrix in Table 5.6 and the curve in Figure 5.9.
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Figure 5.8: Curve of relative error for Prolate Matrix

5.2.3 Toeplitz tridiagonal matrix

The special case of a system of linear equations is tridiagonal, that is, it has
nonzero elements only on the diagonal plus or minus one column. It occurs frequently.
The common systems are banded diagonal, with nonzero elements only along a few
diagonal lines adjacent to the main diagonal (above and below). For tridiagonal
sets, the procedures of the LU decomposition, forward and back-substitution each
takes only O(n) operations, and the whole solution can be encoded very concisely.
Naturally, one does not reserve storage for the full n x n matrix, but only for the
nonzero components, stored as three vectors. The solution using the S&T method is
also found in only O(n) operations with forward and back-substitution. The scheme of
storage doesn’t need to be full, because the decomposition preserve the most sparsity
of the original matrix. We can see more information in [17]. The test matrix which
we use here is also suggested by Matrix Market [22].

The tridiagonal matrix has the form



LU S&T M-S&T
n | CPUtime res(L,U) | CPUtime res(T,L,L") res(T,L,L")
50 06 1.42e15 0 3.5e-13 4.83e-14
100 0.16 2.95e-15 0.28 2.16e-12 3.43e-13
150 0.71  4.52e-15 1.26 6.17e-12 7.89¢-13
200 1.59 6.0le-15 3.51 1.17e-11 1.56e-12
250 3.57  7.7e-15 7.68 1.99e-11 2.69e-12
300 6.42 9.22e-15 14.1 3.41e-11 4.45e-12
350 10.4  1.09e-14 23 4.89%e-11 5.92e-12
400 154 1.23e-14 35 6.87e-11 9.37e-12
450 22.3  1l.4e-14 53.4 9.11e-11 1.2e-11
500 30.5 1.57e-14 67.7 1.23e-10 1.58e-11

Table 5.6: Relative error for Circulant matrix

di
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dn |
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(5.1)

where ¢, d, and e are all scalars. This matrix has feature the tridiagonal Toeplitz

matrix of order n with subdiagonal elements c, diagonal elements d, and superdiagonal

elements e. The eigenvalues are d + 24/(ce) cos(km/(n + 1)), where k = 1,2...n. A

is a symmetric positive definite M-matrix as the form

(5.2)

To test Algorithms 2.2.1 and 2.2.2, we take the tridiagonal Toeplitz matrix in
(5.1), with e = 3, d = 2 e ¢ = —1. The two versions of the S&T method yield very

good results, although the LU decomposition still have smaller error. We also test
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Figure 5.9: Residual error for Circulant matrix

for the case in that 7" is a symmetric positive definite matrix, that is, Tsg(—1,2, —1)
and get relative errors 1.22e — 16 in 0 seconds, 6.18e — 17, with 68.9 seconds and
0 with 26.5 seconds, for the Cholesky?, S&T and LU decomposition, respectively.
The performance of the algorithms is in Table 5.7 and Figure 5.10. Note that for
this matrix our modification are worse than Golub-Yuan S&T algorithm, but the

Golub-Yuan S&T algorithm is as good as the LU decomposition.

2For Cholesky were used the MATLAB built-in function chol.



LU S&T M-S&T

n | CPUtime res(L,U) | CPUtime res(T,L,LT) res(T,L,L")
50 0.05 1.46e-17 0.06 7.85e-16 7.99e-16
100 0.17 1.03e-17 0.27 6.97e-16 1.15e-15
150 0.61 8.41e-18 1.21 6.15e-16 1.47e-15
200 1.54 7.28e-18 3.46 5.69e-16 1.7e-15
250 3.13 6.51e-18 7.52 5.4e-16 1.93e-15
300 5.54 5.94e-18 13.9 5.19e-16 2.13e-15
350 9.12 5.5e-18 23.5 5.04e-16 2.32e-15
400 13.4 5.14e-18 34.7 4.93e-16 2.51e-15
450 19.3 4.85e-18 50.8 4.84e-15 2.69e-15
500 26.5 4.6e-18 67.3 4.76e-17 2.79¢-15

Table 5.7: Relative error for Tridiagonal Toeplitz matrix (sparse)

Figure 5.10: Curve of relative error for Tridiagonal Toeplitz matrix (sparse)
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Chapter 6
Conclusions and future work

The numerical tests in this dissertation showed the efficiency of the new decom-
position of matrices (S&T), proposed by Golub and Yuan in [12]. For the sake of
numerical stability, we modify the Golub-Yuan S&T algorithm here. We tested sev-
eral types of matrices for the Golub-Yuan algorithm and our modified algorithm. The
current algorithm does not give the numerical stability as good as LU decomposition
for our test matrices. In some cases, especially when the matrix is sparse and pos-
sesses structures as in Chapter 5, the algorithm can produce as small error as that by
the competitive methods. The modified algorithm does improve the numerical sta-
bility by our tests, specially for very ill-conditioned matrices such as Hilbert, Lotkin
and Prolate matrix. In terms of our numerical experiments, the S&T decomposition
is stable in some sense for many real applications even it is not as good as the LU
(or Cholesky) decomposition for some types of matrices. Of course, the algorithm
still needs improvement to get better numerical stability, which is our future research

issue.

Future work

e To apply the S&T decomposition and to try to improve the solution of the

system Az = b using the iterative refinement.
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To research the possibility to apply the pivoting technique in the S&T method.

To develop the incomplete decomposition to apply to sparse matrices with strat-

egy of fill-in reduction and to compare with other methods.
To do tests in eigenvalues and eigenvectors problems.
Analysis of roundoff errors.

Numerical Analysis and instability for n >> 500



Appendix A
Implementation

Implementation of the Algorithm 2.2.1.

function styuan

% S&T Decomposition

A This routine decomposes the matrix A in the form T*A=S=LxL’

% Where,

% T is lower triangular matrix, L is the factor of Cholesky
% S is symmetric positive definite matrix.

%
[A,0P,gsi]=testes; % function with test matrices
n=length(A);

T(1,1)=A(1,1);

L(1,1)=sqrt(T(1,1)*A(1,1));

for k=1:n-1
L(k+1,1:k) = (L(1:k,1:RK)\(T(1:k,1:k)*A(1:k,k+1)))’;
LL = L(1:k,1:k)\A(k+1,1:k)’;
s = A(k+1,k+1) - L(k+1,1:k)*LL;
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if abs( s ) < 0.1e-18
T(k+1,k+1) = 1;
else

T(k+1,k+1) = sign( s );

end

L(k+1,k+1) = sqrt( T(k+1,k+1)*s );

T(k+1,1:k) = (T(1:k,1:k)’>*(L(1:k,1:k)’\(L(k+1,1:k)’>-T(k+1,k+1)*LL)))’;
end
timeST=toc;

RelativeErrorST=norm(A-T\LxL’,’fro’)/norm(A, ’fro’);

Implementation of the Algorithm 2.2.2.

function mSt

% Modified S&T Decomposition

% This routine decomposes the matrix A in the form T*A=S=Lx*L’

h with actualization of the elements of the diagonal of T.

% Where,

% T is lower triangular matrix, L is the factor of Cholesky
% S is symmetric positive definite matrix.

%
[A,0P,op,etal=testes; % Function with test matrices
n=length(4);
T(1,1)=A(1,1);
L(1,1)=sqrt(T(1,1)*A(1,1));
flops(0);
tic for k=1:n-1
L(k+1,1:k) = (L(1:k,1:R)\(T(1:k,1:k)*A(1:k,k+1)))’;
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LL = L(1:k,1:k)\A(k+1,1:k)’;
s = A(k+1,k+1) - L(k+1,1:k)*LL;

if abs( s ) < 0.1e-18 % tolerance to avoid breakdown problems
T(k+1,k+1) = 1;
else

T(k+1,k+1) = sign( s )x*eta;

% Take the matrix and makes the appropriate updating
if op==2 | op==15
eta = norm(L(k+1,1:k))/2%k;
elseif op==5 | op==13 | op==14 | op==21
eta = norm(L(k+1,:),1);
elseif op==1 | op==18
eta = norm(L(k+1,:));
elseif op==8 | op==17 | op==28
eta = 2;
end
end
L(k+1,k+1) = sqrt( T(k+1,k+1)*s );
T(k+1,1:k) = (T(1:k,1:k)’*(L{(1:k,1:k)’\(L(k+1,1:k)’>-T(k+1,k+1)*LL)))*;
end
tST=toc;
f1pST=flops;

erSTr = norm(A-T\L*L’, ’fro’)/norm(A,’fro’); % verify the error
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