
A R T U R  L O U R I V A L

C U R l

20 (



ARTUR LOURIVAL DA FONSECA MACHADO

PESQUISA OPERACIONAL APLICADA À ANÁLISE DE PORTFÓLIO

Dissertação apresentada como requisito 
parcial à obtenção do grau de Mestre em 
Ciências. Curso de Pós-Graduação em 
Métodos Numéricos em Engenharia, área de 
concentração Programação Matemática. 
Setores de Tecnologia e de Ciências Exatas, 
Universidade Federal do Paraná.
Orientador: Prof. Dr. Celso Carnieri

CURITIBA
2001



ARTUR LOURIVAL DA FONSECA MACHADO

PESQUISA OPERACIONAL APLICADA 
À ANÁLISE DE PORTFÓLIO

Dissertação aprovada como requisito parcial para obtenção do grau de Mestre em Ciências no 

curso de Pós-Graduação em Métodos Numéricos em Engenharia - Programação Matemática 

da Universidade Federal do Paraná, pela seguinte banca examinadora:

Orientador:
Prof. Dr. Celso Cam ieri 
Departam ento delVlatemátj. , UFPR

Prof. Dr. Alceu Souza 
D epartam ento de Ciências Econômicas, UFPR

Universidade Tuiuti do Paraná, UTP

Curitiba. 27 de ju lho  de 2 0 0 1.



SUMÁRIO

L IST A  D E F IG U R A S ...................................................................................................................V
L IS T A  D E T A B E L A S ...................................................................................................................V
L IS T A  D E  A B R E V IA T U R A S ....................................................................................................V
L IS T A  D E S ÍM B O L O S ................................................................................................................VI
R E S U M O .......................................................................................................................................... VII
A B S T R A C T .................................................................................................................................... V III
1. IN T R O D U Ç Ã O ....................................................................................................................... 9
2. A N Á L IS E  DE P O R T F Ó L IO ............................................................................................ 10

2.1. I n t r o d u ç ã o ...........................................................................................................................10
2.2. R e t o r n o  e R isco  d e  A t iv o s ............................................................................................12
2.3. R e t o r n o  e V a r iâ n c ia  d e  um  p o r t f ó l i o .................................................................. 15
2.4. R e d u ç ã o  d a  V a r iâ n c ia  p e la  D iv e r s i f i c a ç ã o  d e  A t iv o s .................................15
2.5. T e o r ia  d a  U t i l id a d e  e F r o n t e i r a  d e  E f ic i ê n c ia ................................................. 17
2.6. R a z ã o  df. S h a r p e .................................................................................................................20
2.7. M o d e lo s  d e  P r e c i f i c a ç ã o  d e  A t iv o s  F in a n c e i r o s ............................................21
2.8. Ca p it a l a s s e t Pr ic in g m o d e i . - C A P M ....................................................................... 21
2.9. ARBIIRAGEPRICING TH EO RY-APT ................................................................................. 25

3. P E S Q U IS A  O P E R A C IO N A L  NA A N Á L IS E  DE P O R T F Ó L IO ...................... 28
3.1. Pr o g r a m a ç ã o  L in e a r ..................................................................................................... 28

3.1.1. Condições de Otimalidade em PL................................................................................. 30
3.2. P r o g r a m a ç ã o  Q u a d r ã t i c a ..........................................................................................32

3.2.1. Condições de Otimalidade em Q P ................................................................................ 33
3.3. A ju s te  d e  u m a  D is t r ib u iç ã o  E s t a t í s t i c a  p a r a  um a A m o s t r a .....................34

4. M O D E L O S  D E O T IM IZ A Ç Ã O  EM  A N Á L IS E  DE P O R T F Ó L IO ................ 37
4.1. M o d e lo  d e  M éd ia  - V a r iâ n c ia  (M V ) ....................................................................... 37

4.1.1. Algoritmo do Modelo MV de M arkowitz.................................................................. 39
4.1.2. Exemplo para o modelo M V..........................................................................................42
4.1.3. Implementação Computacional do Modelo MV........................................................ 48

4.2. M o d e lo  d e  M éd ia  - V a l o r  so b  R i s c o .......................................................................50
4.2.1. Valor sob R isco................................................................................................................50
4.2.2. O Modelo Média - Valor sob Risco (M V aR)............................................................. 52
4.2.3. Implementação computacional do Modelo M V aR ................................................... 52

5. A P L IC A Ç Ã O  D O S M O D E L O S ....................................................................................... 54
5.1. Seleç ã o  de  At iv o s .............................................................................................................54
5.2. Retornos e Matriz de Covariâncias..............................................................................56
5.3. Modelo de Média-Variância (M V )................................................................................. 56
5.4. Modelo de Média - Valor sob Risco (MVaR )............................................................. 57

6. C O N C L U S Ã O ..........................................................................................................................60
R E F E R Ê N C IA S ................................................................................................................................62
A N E X O S ...............................................................................................................................  64



A G R A D EC IM EN TO S

Ao professor Celso Carnieri, pela orientação para a realização deste trabalho.

Aos professores do curso, Alceu Souza, Anselmo Chaves Neto, Jiahong Yun, 

Jin Yun Yuan, Maria Teresinha Ams Steiner, Ricardo Mendes Jr., Rubens 

Rohles Ortega, pelos ensinamentos valiosos.

Ao prof. Carlos Henrique e aos colegas Rui, Inácio, Manoel, Ingrid, Elizabeth, 

com quem pude contar e cujo convívio foi propício à conclusão do curso.

A Diretoria da UNICENTRO, Diretoria de Pós-Graduação e Departamento de 

Ciências Exatas e Naturais, pela oportunidade e apoio durante o curso.

A coordenação do curso e funcionários do CESEC/UFPR.

À CAPES, pelo apoio na forma de Bolsa de Estudos.

À minha família.



V

LISTA DE FIG URAS

Figura 1: Curva de Mercado de Capitais............................................................................ 17
Figura 2: Risco e Retornos Logarítmicos dos Ativos...................................................... 54
Figura 3: Risco e Retornos Percentuais - 63 Ativos........................................................55
Figura 4: Risco e Retorno Semanal - 146 Ativos............................................................. 55
Figura 5: Fronteira de Eficiência para 63 a tivos..................................................................57
Figura 6 : Fronteira de Eficiência para Retornos Percentuais - 63 A tivos....................... 92
Figura 7: Valor Normal Esperado para Probabilidades - Portfólios I a 3 ......................... 93
Figura 8 : Valor Normal Esperado para Probabilidades - Portfólios 60 a 6 2 .................... 94

LISTA DE TA BELA S

Tabela 1: Valor sob Risco para Retornos Logaritinicos e Percentuais............................ 58
Tabela 2: Portfólios Eficientes pelo critério Média - Variância...................................... 77
Tabela 3: Portfólios Eficientes pelo critério MV - Retornos Percentuais....................... 78
Tabela 4: Relação das Empresas de Ativos Utilizados.......................................................79
Tabela 5: Composição dos Portfólios do modelo MV - 63 ativos...................................82
Tabela 6 : Retornos Logarítmicos e Percentuais de 63 A tivos..........................................87
Tabela 7: Desvio Padrão dos Retornos - 63 Ativos............................................................ 88
Tabela 8 . Retornos Logarítmicos de 146 Ativos.................................................................88
Tabela 9: Assimetria e Curtose dos retornos de Portfólios MV....................................... 90
Tabela 10: Teste K-S para normalidade dos retornos de Portfólios M V........................... 91

LISTA DE A B R E V IA TU R A S

APT: Arbitrcige Pricing Theory
CAPM: Capita/ Assei Pricing Modei.
Ibovespa: índice da Bolsa de Valores do Estado de São Paulo.
M V : Mean-1 ariance.
VaR: l alue at Risk.



VI

LISTA DE SÍM BO LO S

A: matriz de dimensão p x n, dos coeficientes de p restrições,

b: vetor de dimensão p, dos "recursos" das restrições.

M: matriz de dimensão (n+q+p) x (n+q+p) composta pelas matrizes L, A , A, com

as demais entradas de valor nulo, utilizada no Algoritmo da Linha Crítica, de 

Markowitz.

R  Conjunto de números reais.

R: Vetor de dimensão n+q+p, com as n primeiras coordenadas dadas pelo vetor p..

S: Vetor de dimensão n+q+p, com as p últimas coordenadas dadas pelo vetor b

/?'. Espaço de dimensão n.

rx: vetor de retornos de um portfólio x, dada por rx = X.x, e com dimensão igual

ao número de cotações disponíveis, m. 

rt: Retomo histórico de um portfólio x no instante t, t-ésima coordenada de rx.

St: cotação de um ativo, no instante t.

x: vetor de dimensão n, define as frações de orçamento destinadas a cada ativo,

também chamado de portfólio x.

X: matriz de dimensão m x n, para m cotações de n ativos

p: vetor de dimensão n, da esperança matemática para os retornos de n ativos

Xe: parâmetro "tradeoff" entre retorno e risco.

X: vetor de dimensão p, de Multiplicadores de Lagrange, no Algoritmo de

Markowitz.

X: matriz de covariâncias dos retornos dos n ativos, de dimensão n x n.

Op: desvio padrão dos retornos de um portfólio.

a  a . desvio padrão dos retornos de um ativo A.

Ga,b: covariância entre os retornos dos ativo A e B.

Nota: Neste trabalho é utilizado o sistema inglês de escrita numérica.



R E S U M O

O presente trabalho trata da utilização da técnica de Programação Matemática da 
Pesquisa Operacional para a Análise de Portfólio com otimização da relação risco - retorno 
em carteiras de investimentos. São construídos portfólios otimizados segundo o critério de 
dominância de Pareto, para um parâmetro "Iradeoff" entre risco e retorno. Fazendo-se variar 
este parâmetro entre a máxima aversão, com portfólios de mínimo risco, à mínima aversão, 
com portfólios de máximo retorno, é obtido um conjunto de portfólios eficientes estratégicos 
a partir dos quais é construída a Fronteira de Eficiência dos Portfólios. Os modelos utilizados 
são o de Média-Variância (MV) proposto por Harry M. Markowitz (1959) e um modelo com 
base na metodologia de Valor sob Risco de J. P. Morgan (1994), supondo retornos dos 
portfólios modelados por uma distribuição log-normal e, portanto, não considerados 
derivativos e commodities. São utilizadas taxas de retorno correspondentes aos preços diários 
de fechamento de 63 ativos negociados na Bolsa de Valores do Estado de São Paulo - 
Bovespa - no período de 03/10/1997 a 29/12/2000, obtidos através do banco virtual 
www.lnvestShop.com.br. O modelo MV é formulado como um problema paramétrico de 
programação quadrática, sujeito a restrições lineares incluindo a restrição de orçamento, com 
solução através do algoritmo da Linha Crítica, proposto por Markowitz, baseado na técnica de 
Multiplicadores de Lagrange. O modelo MVaR corresponde a um problema de programação 
não linear com risco calculado pela metodologia VaR (Value at Risk), sujeito às mesmas 
restrições do modelo MV, acrescentada uma restrição para retornos iguais aos obtidos no 
modelo MV, permitindo a comparação dos dois modelos. A solução do modelo MVaR, para 
retornos normalmente distribuídos, é equivalente à do modelo de MV, que proporciona 
portfólios com mínima variância, sobre a qual é realizado o cálculo do risco pela metodologia 
VaR. Como os modelos utilizados supõem que ao menos os retornos dos portfólios sejam 
normalmente distribuídos, é verificada a qualidade do ajuste destes retornos à distribuição de 
Gauss. Os algoritmos são implementados nos programas Maple e Lingo.

http://www.lnvestShop.com.br


A B S T R A C T

The present work is about the use o f some Operational Research techniques to perform 
Portfolio Analysis with optimization o f the relationship between risk and retum in wallets of 
investments. Optimal Portfolios are built according to the approach o f Pareto, for a parameter 
"tradeoff" between risk and return. Making to vary this parameter among the maximum 
aversion, with portfolios o f minimum risk, to the minimum aversion, with portfolios o f 
maximum return, it is obtained a group o f strategic efficient portfolios starting from which the 
Efficient Frontier o f Portfolios is built. The used models are the Mean-variance (MV) 
proposed by Harry M. Markowitz (1959) and a model o f Mean - Value at Risk (MVaR), for 
retums o f the portfolios modeled by a lognormal distribution and, therefore, not considered 
derivative and commodities. The used retums correspond to daily closing prices o f 63 assets 
negotiated in the stock exchange o f the State o f São Paulo - Bovespa - in the period from 
03/10/1997 to 29/12/2000, obtained through the virtual bank www.lnvestShop.com.br. The 
model MV is formulated as a parametric problem of quadratic programming, subject to lineal 
constrains including the budget restriction, with solution through the Criticai Line algorithm, 
proposed by Markowitz, based on the Lagrange Multipliers technique. The model MVaR 
corresponds to a problem o f non-lineal programming with risk calculated by the VaR 
methodology (Value at Risk), subject to the same restrictions o f the model MV, added a 
restriction for the same retums to the obtained in the model MV, allowing the comparison of 
the two models. The solution o f the model MVaR, for lognormal retums, it is equivalent to 
the one o f the MV model, which provides portfolios with minimum variance, on which the 
calculation o f the risk is accomplished by the VaR methodology. As the used models suppose 
at least that the retums o f the portfólios are lognormal distributed, the fitting o f a Gauss's 
distribution is verifíed for these retums. The algorithms are implemented in the programs 
Maple and Lingo.

http://www.lnvestShop.com.br


1. IN T R O D U Ç Ã O

Este trabalho trata da utilização da técnica de Programação Matemática na análise de 

portfólio para otimização da relação risco-retorno em modelos matemáticos de administração 

de carteiras de investimento, visando à obtenção de portfólios eficientes para os diferentes 

graus de aversão ao risco, isto é, a Fronteira de Eficiência, para portfólios construídos a partir 

de 63 ativos negociados na Bovespa, no período de 03/10/1997 a 29/12/2000.

O capítulo II trata de algumas definições da Análise de Portfólio, como o retorno e a 

incerteza (ou risco) de ativos e portfólios, modelagem log-normal para retornos, 

quantificação do risco pela variância dos retornos, benefícios da diversificação de 

investimentos, a função utilidade que leva em conta o grau de aversão ao risco de cada 

investidor, a modelagem de Problema Paramétrico de Programação Quadrática para 

determinar portfólios estratégicos a partir dos quais é obtida a Fronteira de Eficiência.

No capítulo III são abordados os problemas de Programação Linear (PL) e 

Programação Quadrática (PQ) e suas formas paramétricas (PPL e PPQ) utilizados na 

modelagem de problemas que visam à otimização da relação risco-retorno na seleção de 

portfólios, a técnica de Multiplicadores de Lagrange e, ainda, verificação do ajuste de um 

conjunto de dados a uma distribuição estatística.

O capítulo IV apresenta o modelo de Média-Variância (MV) proposto por Harry M 

Markowitz (1959), primeiro modelo de administração de carteiras de investimentos de risco 

baseado na Estatística, tendo sido criado na década de 50 e o modelo MVaR como uma 

aplicação direta da metodologia de mensuração de risco (variância) do modelo MV, para 

obtenção da Fronteira de Eficiência para risco dado pela metodologia de Valor sob Risco - 

VaR, desenvolvida por J. P. Morgan, publicada em 1994.

No capítulo V são apresentadas as aplicações do modelo MV de Markowitz e MVaR 

com base na metodologia de quantificação de risco de J. P. Morgan, onde são utilizados 

retornos históricos de 63 ativos negociados na Bolsa de Valores do Estado de São Paulo, entre 

as datas de 03/09/97 a 29/12/00 (848 dias úteis), obtidos do banco virtual InvestShop.com.br. 

A metodologia utilizada para tratamento dos dados é apresentada no decorrer do capítulo.

No capítulo VI são debatidos os resultados obtidos quanto à sua aplicabilidade na 

construção de portfólios, aos benefícios obtidos e quanto às suposições necessárias às 

metodologias de mensuração de risco utilizadas. São ainda apresentadas sugestões para 

trabalhos futuros.



2. A N Á L IS E  D E  P O R T F Ó L IO

2.1. Introdução

Para exercer uma oportunidade de investimento, empresas sem disponibilidade de caixa

podem contratar empréstimo, emitir papéis como ações, debêntures, etc. Em contrapartida,

pessoas físicas e jurídicas podem interessar-se por estes títulos, como forma de obter retornos

para seus recursos disponíveis.

Esses títulos, ou ativos, possuem algumas características que permitem avaliar sua

utilidade de uma perspectiva do investidor, e que se constituem em apelos econômicos para

benefícios futuros. Em títulos federais, há o apelo do fluxo de pagamentos futuros pré-

especifícados; fundos de investimentos e subscrições de ações representam apelos a dividendos

futuros e participação em ativos de empresas ou corporações. Outras formas de investimentos

são encontradas no mercado financeiro, tais como derivativos (ex. opções), commodities (ex.

mercado de futuros), etc.

Os ativos financeiros podem ser caracterizados por dois aspectos importantes: risco e

retomo. DOWD (1999, p. 3), relata a preocupação com o risco:

"Everything changes, and changes can be good or bad fo r  those affected by them. 
Chatige therefore leads to risk, lhe prospect o fgain  or loss, and risk (or, more precisely, 
the risk o f  loss) is something that we mu st ali come to terms with (. . .) It means that we 
mu st manage risk: we must decide what risks to avoid, and how we can avoid them; 
what risks to accept, and on what terms to accept them; what new risks to take on; and  
so on".

A decisão entre investir em determinado ativo A , com alto retorno esperado e alto risco 

(variabilidade), e em um ativo B, com baixo retomo esperado, mas com baixo risco, requer um 

critério de ajuste entre retomo esperado e risco.

MARKOWITZ (1959), desenvolveu um modelo de análise da relação risco-retorno 

baseado em informações históricas sobre ativos, onde as informações necessárias para escolher 

o melhor portfólio para quaisquer níveis de risco estão contidas em três parâmetros estatisticos: 

média, desvio padrão (ou variância) e correlações (ou covariâncias).

. Segundo GOETZMANN (1998), embora não requeira informações sobre política de 

dividendos, lucros, participação no mercado, estratégia, qualidade de administração, ou seja, 

nenhuma informação com que analistas do mercado financeiro preocupam-se, o modelo de 

Markowitz alterou a forma com que estes tomam suas decisões, não necessariamente



seguindo à risca suas recomendações, mas utilizando-o como forma de avaliar riscos básicos e 

relações risco-retorno.

Modelos como o CAPM (Capital Assei Pricing Model) desenvolvido por William F. 

Sharpe (1964) e o APT (Arbitrage Pricing Theory) desenvolvido por Ross (1976), a partir do 

modelo de Markowitz, têm como objetivo determinar o risco de um portfólio em relação a 

fatores mensuráveis direta ou indiretamente, com o estabelecimento de retornos adequados 

aos níveis de risco.

O CAPM considera na escolha de ativos uma medida da sensibilidade das flutuações 

de suas taxas de retorno em relação às flutuações de um portfólio de mercado (ex.: Ibovespa, 

como aproximação), através de fatores de mensuração de risco chamados betas (P) de ativos, 

calculados a partir das covariâncias destes ativos em relação ao portfólio de mercado.

ROSS (1976) argumenta que betas são somente pontos de partida, e que os retornos de 

ativos são relacionados a fatores macroeconômicos, responsáveis pela variabilidade global do 

mercado. Os fatores de risco são identificados com o estudo da estrutura de covariâncias (ou 

correlações) dos retornos através de técnicas como a de Análise Fatorial (ver Johnson, 1998) e 

Análise de Regressão.

Uma técnica bastante conhecida para classificar oportunidades de investimento, para 

diferentes retornos esperados e respectivos riscos, é a da Razão de Sharpe, que permite a 

classificação de ativos comparando-se as razões entre seus retornos diferenciais em relação a 

um portfólio benchmark e a variabilidade desses retornos.

Segundo DOWD (1999), a Razão de Sharpe tem algumas vantagens como fornecer 

informações suficientes para a escolha (ex ante) ou avaliação (ex post) entre dois 

investimentos, sem ambigüidade por duas possíveis classificações: 1 ) pelo desempenho dos 

retornos e 2 ) pelas posições do risco, mas relata problemas de correlação dos retornos de 

ativos com o portfólio do investidor. Dados dois ativos A e B  classificados pela Razão de 

Sharpe, onde A  tem melhor desempenho e correlação de retornos positiva com o portfólio, 

mas B  apresenta retornos com correlação negativa com o portfólio, então a compra do ativo A 

faz aumentar o risco do portfólio, enquanto B  proporciona redução de risco.

DOWD propõe a utilização da Regra de Sharpe Generalizada, que não apresenta os 

problemas de correlação1, e pode ser calculado para risco dado pela metodologia VaR em 

substituição ao desvio padrão.

1 A Razão dc Sharpe de um ativo não considera a correlação deste atiro com o portfólio do investidor, 
somente com um portfólio de mercado (bcnclunark).
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DOWD relata a técnica de Valor sob Risco - VaR (Value at Risk), como em crescente 

utilização na análise de ativos financeiros em mercado de risco. Entre as formas de avaliação 

do Valor sob Risco, encontram-se as metodologias de VaR paramétrico ou analítico, que parte 

da suposição de distribuição Gaussiana dos retornos e a Simulação Histórica e com as 

técnicas de Monte Cario.

Estabelecida uma forma para a quantificação do risco, a próxima etapa corresponde à 

construção de portfólios que, por algum critério específico, são os melhores entre todos os 

portfólios possíveis. Investidores racionais, segundo MARKOWITZ (1959), devem ter como 

medida do benefício a ser obtido com a aplicação em ativos, não somente a taxa de retorno. 

Devem considerar, também, os níveis de risco a que seus recursos estarão expostos

Para as preferências de diferentes investidores, correspondem várias predisposições ao 

risco, alguns ávidos por retorno, outros mais conservadores. A cada nível de predisposição ao 

risco, corresponde um parâmetro “tra d eo ff entre risco e retorno

Entre os objetivos de um modelo de análise de portfólio, está o de obter portfólios 

otimizados, segundo o critério de dominância2, para cada parâmetro de aversão ao risco. Este 

objetivo está explícito no modelo MV e também em modelos MVaR, com a construção da 

Fronteira de Eficiência dos portfólios.

Nos modelos APT e CAPM, esta característica está implícita na formação de 

portfólios, mas suas essências estão nos chamados P (betas) de ativos, ou seja, em identificar 

índices de sensibilidade, para as variações dos retornos em ativos, devidos a variações no 

mercado. Nestes modelos o objetivo é a diversificação de ativos para proteção contra 

oscilações correlacionadas com o mercado ou com os fatores de risco deste mercado.

2.2. R etorno e R isco de A tivos

O valor mais esperado para as taxas centesimais de retorno (rt) de ativos financeiros 

corresponde à média geométrica dos fatores (1 + rt) (com t dado normalmente em meses, 

semanas ou dias) subtraída da unidade. A média geométrica substitui cada um dos fatores, ao 

longo de vários períodos, por um fator que produz a mesma variação final

2 Em condições norinais. investidores devem adotar o crilério de dominância de Parelo na escolha de 
seus portfólios. isto é. preferir portfólios com  menor risco, entre dois portfólios de mesmo relomo e. por outro 
lado. preferir portfólios com  maior retomo, entre portfólios com igual risco.
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Dados os retornos percentuais de um ativo em m períodos, {n, . rmj, o valor mais 

esperado (rG) para os retornos deste ativo para um período é dado por

onde rt = (St/St-i)-l, com St a cotação do ativo no t-ésimo período

Um exemplo com dois períodos com taxas de retorno de -20%(perda) e 25%(ganho) 

mostra que a média aritmética (2.5%) não representa adequadamente o valor mais esperado, 

mas sim a média geométrica (0 .0%) dos fatores ( 1 + rt), subtraída da unidade.

Uma transformação logarítmica aplicada aos fatores (1 + rt) = (S(/Sm), permite obter a 

Esperança Matemática dos retornos logarítmicos (p =///(l + rG)) e a matriz de Covariâncias em 

conformidade com os resultados de Estimadores de Máxima Verossimilhança3 da Estatística:

Esta transformação corrige o problema de equivalência de taxas negativas e positivas, 

pois uma taxa logarítmica positiva é exatamente a mesma para repor a perda de uma negativa.

Dessa forma a transformação proporciona adequação para obtenção da função 

distribuição de probabilidade e função de probabilidade acumulada onde retornos negativos 

têm a mesma importância que positivos. Como exemplo, para os retornos rH n(l-20% ) e 

r2=ln(l+25%), as probabilidades P[ln(0.8) < r < 0] e P[0 < r < ln( 1.25)] apresentam intervalos 

com a mesma variação e têm a mesma importância, em contraposição às probabilidades 

P[-20% < r < 0] e P[0 < r < 25%].

Substituindo In(l+rt) = ln(St/St-i), pode-se obter (2) a partir das cotações St:

A esperança matemática dos retornos apresenta características como incerteza, pois as 

forças econômicas não são entendidas suficientemente bem para permitir previsões Além 

disso, influências não econômicas podem mudar o curso de fatores dados como certos.

Em Decisões Financeiras, considera-se o risco como “o grau de incerteza a respeito de 

um evento”, ou como a “possibilidade de perda” .

Nas técnicas matemáticas de Análise de Portfólio deseja-se estabelecer portfólios

3 As estatísticas média e variância amostrai (.* e s )  são estimativas dos parâmetros populacionais (p c 
ct). que maximizam a probabilidade, ou densidade de probabilidade para variável contínua, de ser obtida a 
amostra observada. Ver Johnson. 1998. pág. 182.

m 1 m

( l )
1 1

P = —  E  ln(l + rt )
m t=t (2)

P = — Z N s t ) - ln (S t_j)]=> p =  — [ln(Sm) -  In(S0)] (3)
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ótimos em relação à performance passada de séries temporais dos retornos. Nesse sentido, o 

risco está presente principalmente na variabilidade das taxas de remuneração de um ativo 

financeiro, sobre qual retorno pode-se esperar em performance futura

A série histórica de retornos de um ativo é resumida por um valor mais esperado. 

Deve-se estudar a distribuição dos valores históricos para saber-se o intervalo no qual espera- 

se que ocorra esse valor. Em Probabilidade, para uma população normalmente distribuída, 

esse intervalo é dado em termos de Desvios Padrão, onde aproximadamente 68.26%, 

(95.44%, 99.74%) dos dados encontram-se no intervalo entre a média menos um, (dois, três) 

desvios padrão e a média mais um, (dois, três) desvios padrão.

Assim, quanto maior o desvio padrão (o), maior o intervalo onde é provável que o 

valor mais esperado dos retornos possa oscilar, o que pode ser caracterizado como uma 

medida do risco associado ao ativo. A variância (a 2) dos retornos do i-ésimo ativo é dada por:

i m

onde rtj  = ln(St+ij/Stj) são os retornos logarítmicos e ps é o retorno esperado do i-ésimo ativo.

O risco de um portfólio não é dado somente pela soma dos riscos individuais dos 

ativos que o compõem, mas também pela soma das covariâncias entre estes ativos. A 

covariância entre os retornos do i-ésimo ativo com os retornos do j-ésimo ativo é dada por:

1 m
° i j  = ~ Mi)(r‘-J (5)

Entre outras formas de se medir o risco, podemos citar a correlação dos retornos dos 

ativos com algum índice de mercado, como o Ibovespa (ver Anexo IV), e também sua 

decomposição em conjuntural, ou aquele que é explicado pelas variações no índice de 

mercado, e específico, que é próprio do ativo e não correlacionado com o mercado.

Alguns modelos como EWM \{Exponenlialy Weighted Moving Average) e GARCH4 

(Generalized Autorregressive Conditional Heleroskedastic) constituem-se em alternativas 

mais robustas para avaliação de variância, estimando-a como variável ao longo do tempo, isto 

é, considerando a existência de Heterocedasticidade.

A determinação de grupos de ativos que se apresentam correlacionados por "fatores de 

mercado", embora esses fatores não sejam diretamente mensuráveis, através da técnica de

4 Uma equação GARCH de ordein (p.q) assume que a variância local dos termos de erro no instante t é 
linearmente dependente nos quadrados dos últimos p valores dos termos de erro e dos últimos q valores das 
variâncias locais. Quando q é zero. o modelo reduz-se a um modelo de ARCH.
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Análise Fatorial, constitui-se em técnica de mensuração do risco. Esta técnica pode apresentar 

vantagens, uma vez que identifica riscos relacionados a fatores não mensuráveis, mesmo 

quando não considerados todos ativos existentes, além de proporcionar redução da estrutura 

do problema, que passa a ser tratado com um número menor de variáveis que representam 

esses fatores.

2.3. Retorno e V ariância de um Portfólio

Seja X(m x„) a matriz de retornos históricos em m períodos para n ativos e x o vetor de 

dimensão definida pelo número de ativos cuja i-ésima coordenada define a fração de 

orçamento destinada ao i-ésimo ativo.

Os retornos históricos de um portfólio x, em m períodos, correspondem às 

coordenadas do vetor rp = X.x. Estas coordenadas correspondem a uma amostra de tamanho 

m da variável aleatória rt = X,.x, onde Xt é a t-ésima linha da matriz X

Um portfólio x = c tem retorno esperado pp = E(X.c) e variância o 2p = V(X.c) 

calculados sobre a amostra de tamanho m da variável aleatória r, e dados por (ver Johnson, 

pág. 148):

[ip = E(rp) = E(Xc) = c’E(X) = c'.(i (6)

a 2p = V(Xc) = c’V(X)c = cT c  (7)

onde p = E(X) e l  = V(X) são o vetor da esperança matemática e a matriz de covariâncias,

respectivamente, dos retornos logarítmicos dos ativos que compõem o portfólio.

2.4. Redução da Variância peia D iversificação de Ativos

Segundo MARKOWITZ (1959) a diversificação de investimentos para compor um 

portfólio traz alguns benefícios:

a) Redução da variância (risco), mantendo o mesmo nível de retorno;

b) Aumento de retorno, com o mesmo nível de variância (risco)

A composição de um portfólio é obtida pela aplicação de percentual do orçamento em 

cada ativo disponível. Os benefícios ocorrem devido às oscilações em sentidos contrários nos 

retornos (correlações negativas), de forma alternada ao longo do tempo e as variações tendem 

a se anular.
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Portfólios diversificados normalmente apresentam desvio padrão menor que a média

ocorre para ativos que apresentam correlação positiva igual à unidade, (perfeitamente 

correlacionados).

Um exemplo com dois ativos, com retornos esperados dados por p  = [ 15%, 10%], 

variâncias dadas por o 2a = 80%2, o 2a -  30%2 e covariância o \b  -  40%2. O retorno e a 

variância de um portfólio x = [0.6, 0.4], são dados por:

Isto é, temos um retorno igual à média ponderada dos retornos dos ativos A e B, e

para um coeficiente de correlação Pab = 40 / (8012* 3 0 '2) = 0.8.

Quanto mais próximo da unidade for o coeficiente de correlação, mais próximo da

E um desvio padrão para o portfólio de o p = 3.175%.

A diversificação apresenta-se como uma forma de redução de risco.

O gerenciamento de Carteiras de Investimento pela determinação de portfólios com 

ativos diversificados diminui a incerteza (variabilidade) quanto à taxa de retorno que melhor 

representa a performance passada.

Este benefício deve ser interpretado com cautela, devido às duas projeções para a 

performance futura, a partir da passada, supostas no modelo: taxas de retorno e correlações, 

para os ativos que compõem o portfólio. A diversificação não garante os benefícios, mas 

corresponde à escolha com melhor desempenho em performance passada: espera-se que um

ponderada pelas participações, dos desvios padrões dos ativos que o compõem. A exceção

HP = [0.6, 0.4].[ 15%, 10%]' = 13.00%

r Í80 40T1
0.6 0.4]
1 ]_40 30JL<

0.6 ,
04  = 52.80% ^ o p = 7.266%

desvio padrão menor que a média ponderada (7.746) dos desvios padrões dos ativos A e B,

média ponderada dos desvios padrões será o desvio padrão do portfólio. 

Para correlações negativas, como Pab = -0.2 (oah = -10) tem-se:

O desvio padrão é ainda menor, ou seja, a p = 5.367%.

À medida que o coeficiente de correlação aproxima-se de - 1 , temos cada vez maior 

redução no desvio padrão. Para Pab = -1, (üab s  - 49), tem-se:
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ativo com melhor desempenho (maior retorno) no passado seja também o de melhor 

desempenho no futuro, e também que as oscilações mantenham-se aproximadamente como 

nos dados históricos, mantendo também o nível de risco.

Além das características citadas, deve-se considerar que existem correlações dos ativos 

de um portfólio com ativos que não fazem parte do portfólio ou da análise, por não 

apresentarem cotações disponíveis, ou não terem sido negociados no período. Estas 

correlações não são captadas pelo modelo.

2.5. Teoria da Utilidade e Fronteira de Eficiência

Conforme SECURATO (1996), uma curva de equilíbrio que pode ser útil a uma 

grande maioria dos investidores do mercado de capitais, é a chamada Curva de Mercado de 

Capitais (CMC, Fig. 1 ), que relaciona diversos níveis de retorno a níveis de risco; estes níveis 

de risco são dispostos a partir de Títulos Federais e Cadernetas de Poupança como de risco 

zero, às ações ordinárias e preferenciais de empresas, como de risco máximo. A classificação, 

segundo o autor, não é fixa, podendo ter seu posicionamento alterado com a conjuntura dos 

ativos.

CMC.

A Ç Õ E S  P R E F E R E N C I A I S  

A Ç Õ E S  O R O I N A R I A S  

F I N A N C I A M E N T O  DE O P Ç Õ E S - A Ç Õ E S  

F I N A N C I A M E N T O  O E  O P Ç Õ E S  - O UR O  

D E B É N T U R E S  - 2 *  L I N H A  

' O E B É N T U R E S -  I» L I N H A  

' O U R O  -  D Ó L A R  

C D B  -  2 *  L I N H A  

C D B  -  I »  L I N H A  

F U N D O S  M Ú T U O S  

" T Í T U L O S  F E D E R A I S

Risco

Figura 1: Curva de Mercado de Capitais

A Curva de Mercado de Capitais pode ser interpretada como uma curva de 

indiferença, ou de equilíbrio, informando o retorno esperado para cada nível de risco.
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Quando o risco é pequeno, um aumento de risco AV é aceito para se obter um retorno 

adicional Ar; para risco mais alto, maior retorno adicional é requerido para compensar o 

mesmo aumento de risco AV.

Uma função que relaciona os retornos r para cada nível de risco V é chamada função 

utilidade.

Uma função utilidade do investidor - U(r) - deve receber gradativamente menor 

acréscimo para um mesmo acréscimo de retorno, à medida que o risco se eleva, desde que 

para maiores retornos tem-se maior risco. Isto é, deve ser uma função crescente a taxas 

decrescentes:

U(r) > 0 e crescente;

U'(r) > 0 e decrescente;

U"(r) < 0 e crescente, tendendo assintoticamente a zero.

Uma forma muito adotada para obtenção de maior retorno e redução de risco é a da 

diversificação de ativos, com análise da relação risco-retorno. A função utilidade mais 

freqüentemente utilizada neste caso, segundo DAS (1998), é uma função utilidade 

exponencial que tem a forma:

U(r) = 1 - exp(-Àr) (8)

onde X é um parâmetro de aversão ao risco, U(r) retorna o nível de utilidade para a variável 

taxa de retomo do portfólio (r), e r é obtida como combinação linear das taxas de retorno dos 

ativos, com coeficientes dados pelas participações dos ativos no portfólio.

Esta função tem as características necessárias para uma função utilidade, e pode 

adaptar-se a todos os tipos de investidores, bastando variar o parâmetro de aversão ao risco X.

O valor da função utilidade U(r) depende da distribuição de probabilidade dos retornos 

f(r). Para maximizar o valor esperado da função utilidade, é necessário que:

Max E[U(r)] = Max Xr)) / f c ^

ou

Min E[U(r)] = Min £Je( ̂  f (r) dr
A função a ser minimizada é, em Estatística, a Função Geradora de Momentos,

avaliada em -X.

Para o caso normal:



MGFn (-X) = exp(-X|iP + (ào )2/2) (9)

Como MGFn é dada por uma exponencial, basta minimizar o expoente, para obter o 

mínimo da MGFN:

Min -Xpi> + (-À )W 2

ou

Max jip - Xo2/2 (10)

Para retornos históricos de um portfólio com distribuição de probabilidades 

aproximadamente normal, r~N(|_ip,a), a função utilidade U(r) = pp - }.n2/2 é a do modelo de

Markowitz.

O problema de escolha entre n ativos disponíveis, definindo as frações Xj de orçamento

destinadas a cada ativo, foi formulado por Markowitz como um problema de programação

quadrática (PQ), cujo objetivo é maximizar o valor esperado da função utilidade exponencial 

do investidor, satisfazendo a restrição de orçamento

O retorno do portfólio no t-ésimo período (performance passada) é dado pela variável 

aleatória rt = Xtx, onde X, é o t-ésimo vetor linha da matriz X de ordem (m x n) que define 

uma amostra de tamanho m  do vetor multivariadoy  = [Xti. Xt2, ..., Xln]' de retornos dos ativos. 

Então o retorno esperado e a variância do portfólio, ou seja, da variável aleatória r( são dados 

pelas formulações em (6) e (7):

P p  =  x ’ P

a P = x T x

O problema de seleção de portfólio de Markowitz, sujeito à restrição de orçamento 

(xi + X2 + ... + x„ = 1) e demais restrições (Ax < b), é definido no Problem a PI a seguir:

Minimizar (1/2) x'Zx - À.i;x'p.

Sujeito a: = ^

Ax < b

Xj > 0 Vi

Este problema (P l)  tem duas outras formas equivalentes, ou seja, maximizar o retorno 

esperado dado por pp = x'p., sujeito a um valor fixo para a variância, ou minimizar a variância
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dada por o" -  x'Xx, sujeito a um valor fixo para o retorno, ambos também sujeitos às

restrições de orçamento e de não negatividade

A condição de não negatividade também é referida como condição de legitimidade do 

portfólio. Caso não satisfeita esta condição, tem-se portfolios financiados, ou "alavancados".

Para cada valor fixo do retorno esperado, ou da variância, corresponde um valor do 

parâmetro de aversão ao risco na formulação que visa maximizar a função utilidade do 

investidor.

Um conjunto de portfolios na fronteira do conjunto de portfólios factíveis, com retorno 

máximo para cada nível de risco dado pela variância, é chamado de Fronteira de Eficiência de 

Markowitz. Na representação do Risco-Retorno em um plano x-v. nesta ordem, não é 

possível encontrar Portfólios acima da Fronteira de Eficiência e portfólios abaixo desta são 

dominados pelos Portfólios Eficientes de Markowitz.

2.6. Razão de Sharpe

A escolha entre alternativas de investimentos que apresentam diferentes retornos com 

diferentes níveis de risco exige uma forma de ajuste entre retornos e seus níveis de risco A 

performance de ativos e portfólios também pode ser avaliada com o estabelecimento de uma 

medida do retomo obtido para cada nível de risco.

Segundo DOWD (1999), estas duas formas de avaliação obtidas com o ajuste de risco, 

para retornos esperados (avaliação ex atile, com parâmetros estimados) ou para performance 

obtida (avaliação ex post), permitem a escolha entre oportunidades de investimento ou a 

avaliação de sua performance, sem ambigüidade por duas possíveis classificações, pela 

performance dos retornos e pelas posições de risco.

Seja xp um portfólio com retornos históricos n> e xb um portfólio benchmark com 

retornos re e os retornos diferenciais r» = rp - m entre os dois portfólios A razão de Sharpe é 

definida como o quociente entre o valor esperado (p») e o desvio padrão esperado (on) do 

retorno diferencial:

SR = p d / od O 1)

Esta razão capta o retorno diferencial esperado por unidade de risco associado com 

este retomo diferencial. Ou seja a classificação pela SR leva em conta ambos retorno 

diferencial entre os portfólios e risco do diferencial associado.

Na avaliação de performance, os parâmetros po e od são conhecidos (não estimados).
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2.7. M odelos de Precificação de A tivos Financeiros

Fundamentos mais elaborados para cálculo do ircideoff entre risco e retorno são 

encontrados no Capital Assei Pricing M odel (CAPM) criado por William F. Sharpe (1960) e 

no Arbitrage Pricing ITteory (APT), por ROSS (1965). Nestes modelos, construídos a partir 

do modelo MV, o risco é decomposto em duas parcelas, uma delas relacionada ao mercado e 

outra própria do ativo ou portfólio.

Estes modelos têm como assertiva que, embora forças específicas de ativos ou ramo de 

atividade possam influenciar os retornos de um ativo individual, seus efeitos tendem a 

cancelarem-se em portfólios amplamente diversificados, ou seja, pode-se aproximadamente 

eliminar o risco próprio característico de cada empresa ou ramo de atividade.

Contudo, forças econômicas influenciam os retornos de todos os ativos em conjunto e 

este risco não é eliminado pela diversificação. Esta é a parcela do risco pela qual deve ser 

exigida recompensa adicional, ou seja, maior retomo para maior exposição ao risco.

O CAPM prevê a influência de somente um tipo de risco não diversificável sobre o 

retorno esperado de um ativo, relacionado ao índice de mercado, suposto eficiente para o 

modelo Média-Variância.

O modelo APT, mais geral, não fixa a exposição a somente um fator de risco, não fixa 

seu número ou mesmo exige sua prévia definição. Os fatores originam-se em mudanças não 

antecipadas na confiança de investidores, taxas de juros, inflação, atividade/negócio, índice de 

mercado, etc.

Um ativo ou portfólio tem sua exposição a forças econômicas de mercado medida por 

betas, que identificam seu comportamento ou perfil (variabilidade e performance) em relação 

ao risco sistemático. O padrão de exposição de um portfólio é definido pela exposição dos 

ativos selecionados para compô-lo.

2.8. Capital Asset Pricing Model - CAPM

O Modelo de Precificação de Ativos Financeiros (Capital Asset Pricing Model - 

CAPM), criado por William F. Sharpe (1964), prevê a influência de somente um tipo de risco 

não diversificável sobre o retorno esperado de um ativo, relacionado ao mercado. Seu modelo 

estabelece que o índice de mercado é, por si só, eficiente para o modelo Média- Variância, ou 

seja, que proporciona máximo retorno esperado para cada nível de risco



SECURATO (1996) apresenta o modelo CAPM, onde os retornos rt de um portfólio 

são aproximados por um modelo de regressão linear

r, = a  + Pr, + s ,  (12)

onde rt é o retomo para o fator de risco, et denota a parcela de retorno específica do ativo ou 

portfólio, 3  é a sensibilidade do portfólio ao fator de risco, sendo estimado pela razão entre a 

covariância do portfólio com o fator de risco e a variância do fator de risco.

Desenvolvido por William Sharpe (1964), e com modificações por Lintner (1965) e 

Mossim (1966), o CAPM {Capital Assei Pricing M odel ou Modelo de Precificação de Ativos 

Financeiros) é um dos chamados modelos de equilíbrio. O CAPM assume algumas 

suposições, tais como:

- Investidores no mercado se comportam racionalmente, usando um mesmo modelo 

de decisão, o modelo de Markowitz;

- Existe um ativo sem risco, acessível a todos os investidores, que podem tomá-lo 

emprestado, ou nele investir com uma mesma taxa de retorno Pf;

- Todos os investidores estão de acordo quanto ao retorno esperado e à matriz de 

covariâncias dos retornos dos ativos de risco do mercado, ou seja, que a fronteira 

de eficiência é única.

- Sob condições de equilíbrio, todos os ativos estão presentes no portfólio de 

mercado.

A partir dessas hipóteses, o modelo calcula propriedades de pontos de equilíbrio do 

mercado e estabelece uma relação entre o retorno esperado de determinado ativo A e a parcela

de seu risco não diversificável, ou seja, a parcela do risco que é correlacionada com a carteira

de mercado M.

Uma carteira C, composta pelo ativo A e pela carteira de mercado, com frações co e (1 -

o), respectivamente, tem retorno pc e risco Oc dados por:

Pc = co.pA + (l-co).(iM (13)

CTc = to2. o\ + (1 -to)2. crM + 2co(l-co).cov(rA,rM) (14)

onde

Pa e crj são o retorno esperado e a variância do ativo A;

Pm  e g 2m são o retomo esperado e a variância da carteira de mercado M.

O ativo A naturalmente faz parte da Carteira de Mercado.
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A carteira C, com frações (co, 1-co) para A e M , altera a carteira de mercado, que passa 

a ter maior participação do ativo A. Para manter o equilíbrio de mercado, deve-se ter o  = 0, 

onde a procura pelo ativo A permanece em proporções de sua participação no mercado, e C = 

M

As taxas de variação em pc e se, em relação à participação do ativo A na carteira C, 

são dadas por:

ôur
,v (15)

cm

d a c _ 2.m.a] -  2(1 -  m)o'M + 2(1 -  2c7).cov(r,,/\/ ) 

2yjm2<j2 + ( 1  - m ) 2a 2u + 2m(l -  m ).cov(rn /\,)

O coeficiente angular da reta tangente à equação risco-retorno das carteiras formadas 

de ativos A e M é calculado como o quociente entre 15 e 16. Para co = 0, tem-se:

— — — — j-  (17)

(16)

C0V( VA , ) -  0 M

A razão recompensa-variabilidade de Sharpe para a carteira C é calculada em relação a 

um ativo livre de risco F (<3f = 0, com retorno Pf) e dada por:

( juc - juf )

<jc

Para a máxima razão recompensa-variabilidade, deve-se ter:
^ _

OJUc , , V O c
CRV A ° c  ̂ OCJU c  _  o m ____________________ (j m  _

d m cr2

CJLlr

d m /  (Vc - V r )  
a c

Para co = 0 (C = M):

( Mm  ~ M f ) (18)

d m

As carteiras C' formadas por F e por M são pontos de uma reta de coeficiente angular 

RVm, o u  seja:
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pc  = p F + ^ — & à .o c.

Assim, a equação da reta que passa por pF e Pm será tangente em p M à hipérbole 

formada pelas carteiras do tipo C.

Igualando as expressões (17) e (18), temos a Equação Fundamental do CAPM:

Mm  _  (M m Mf  )
cov( rA , r\ i ) -  CC/ cr

°M
\f

cov( r  | , i\ f )
Ma =  M f  +  t - ^ - X M m ~  Mf  )

°M

M a =  M f  + P a X M m ~  M f ) (19)
O retomo esperado para um ativo A deve ser composto por uma parcela de retorno 

esperado para um ativo livre de risco, acrescido de uma segunda parcela calculada sobre o 

retomo diferencial deste ativo em relação ao mercado, proporcional ao índice de sensibilidade 

do ativo ao mercado.

Os índices de sensibilidade (fi) podem ser obtidos com a regressão da variável rA de 

retornos do ativo A com a variável explicativa tm de retornos da carteira de mercado:

r,\ = aA + bArM + sA (20)

onde:

rA= retornos históricos do ativo A;

tm= retornos históricos da carteira de mercado M;

aA = constante da regressão do ativo A;

sA = erro da regressão de rA com tm, onde E(eA) = 0.

Aplicando o operador esperança matemática à equação (20), tem-se a equação 

característica do ativo A:

Pa = aA + bAp\i

A variância total do ativo A pode ser decomposta em uma parcela correspondente à 

sua correlação com o mercado (b~. ), e outra não correlacionada, que é própria desse ativo

( s 2 ):
2 / ■*  ̂ i 2

°A = hA ■ ° \ t  + eA

A covariância entre os retornos rA e tm é dada por: 

cov(rA, rM) = cov(aA + bA.rM + eA, rM) ->

4
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cov(rA, rM) = cov(aA, rM) +cov(bA.rM, rM) + cov(eA, rM) 

onde cov(aA, r.\i) = 0 (aA constante) e cov(sA, rN() = 0 (parte da variância não captada pelo 

modelo de mercado), que resulta:

cov(rA, rM) = cov(bA.r\i, rM) = bA a :t

Então:

_ cov( rA, ru ) bA . a 2u _
P a----------- 5--------- ------ 5—  ~ n.\

CT,t 1 ^  M

Vemos que o CAPM não capta o risco próprio, somente o sistemático ou conjuntural, 

e que pode ser explicado pelo modelo de regressão linear.

Da equação característica do ativo A, 

pA -  aA + PaUm

Se o ativo A tem comportamento igual ao de M, temos Pm -  PmPm Pm = 1 

Comportamento de ativos, conforme o valor de seu [3:

a) pA = Pm = 1

O ativo A tem o mesmo comportamento do mercado;

b) Pa > Pm = 1

O ativo A tem comportamento "agressivo" em relação ao mercado;

c) pA < Pm = 1

O ativo A tem comportamento "defensivo" em relação ao mercado.

PA > 0 : e reage com fração da variação de mercado

Pa < 0 : e reage de forma contrária às variações de mercado

pA = 0 : é indiferente às variações de mercado.

Obtidos os betas dos ativos, a partir dos dados históricos, pode-se escolher os ativos

para compor uma carteira, de maneira a diversificá-la em relação ao risco sistemático ou

conjuntural e que pode ser explicado pelo modelo de regressão.

2.9. Arbitrage Pricing Theory - A PT

Segundo ROSS, ROLL e BURMEISTER (1998), o APT segue-se de dois postulados 

básicos: 1. "Os retornos são gerados por um modelo de k fatores" da forma:

rj(t) - E[ri(t)] = pi,f,(t) + ... + pikfk(t) + Si(t) (21)
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onde

rj(t) = retorno do ativo i ao final do período t,

E[ri(t)] = retorno esperado no início do t-ésimo período;

Pij = medida da exposição ao risco, ou beta do ativo i ao fator j (j = 1 , .... k);

fj = carregamento do j-ésimo fator de risco;

£j(t) = retomo residual não explicado pelos fatores, próprio do i-ésimo ativo;

A esperança matemática dos fatores e dos resíduos é nula:

E[fi(t)] = E[8i(t)] = 0, V i = 1, 2, ..., n

Os retornos residuais não são correlacionados com os fatores:

Cov[8j(t), fi(t)] = 0, V j=  1 , 2 , . . . ,k

Finalmente, os fatores e os resíduos são não correlacionados ao longo do tempo: 

Cov[fj(t), fj(f)] = Cov[8j(t), Sj(t')] = 0, V j = 1, 2, ..., k e para todo t * f.

Estas condições implicam que os retornos são gerados por um modelo fatorial linear.

Fatores de risco podem ser correlacionados (ex inflação e taxas de juros), bem como 

os retornos residuais (ex. os retornos de empresas de determinado setor industrial), ou seja, 

co v ( f j ,  fj) e co v (S í ,  Sj) podem ser não nulos.

2. "A receita de um portfólio de arbitragem é nula".

Devido à competição em mercados financeiros, investidores não podem ganhar retorno 

positivo sobre qualquer combinação de ativos sem submeter-se a algum risco e sem fazer 

algum investimento líquido. Trata-se de um conceito de equilíbrio com implicações nas áreas 

da economia financeira, além da determinação de preços.

Em um portfólio de arbitragem, com as seguintes características:

1 . x'1 = 0, valor investido igual a zero (1 = vetor de elementos unitários);

2 . x'p = 0, imune a todas as taxas de risco de mercado;

3 . Var(x'a)^0, quase livre de risco próprio (a = vetor de retornos esperados dos ativos); 

o retorno esperado deve ser nulo, do contrário seria possível ganhar dinheiro sem risco:

x'E[a] = 0

Dados os Postulados 1. e 2„ o teorema principal do APT é de que existem k + 1 

escalares, nem todos nulos, tal que o retorno esperado do i-ésimo ativo é aproximado por Po 

mais a soma sobre j de Pij Pj.

A condição de equilíbrio, a partir das características 1 e 2 e de (22) é expressa como: 

x'[l p] = 0 ^  x'E[ri(t)] = 0
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isto é, o retorno esperado E[rj(t)] de um ativo deve ser combinação linear dos fatores de risco.

Conforme Chen, Ingersole (1983), Dybvig (1983), a aproximação é válida exatamente: 

E[ri(t)] = P 0 + Pü.P, + ... + Pik.Pk (22)

onde Pj é o preço (ou prêmio) do j-ésimo fator de risco.

A correspondência de maior exposição (maior beta) para maior retorno, eqüivale ao 

tradeoff do modelo MV de Markowitz

Substituindo (22) em (21), tem-se a equação do modelo APT:

r i í O - P ^ Z M P j + W J  + M t) (23)
i i

Um portfólio perfeitamente diversificado (sp(t) = 0), sem exposição a fatores (PPj = 0 

para todo j = 1, 2, . . ., k) isto é, com risco zero, tem retorno Po. Então P0 deve ser o retorno 

esperado de um ativo livre de risco, ou zero beta.

Segundo ROSS, ROLL e BURMEISTER, neste ponto, o APT e o CAPM têm sua 

diferença. No CAPM, o retorno adicional para um ativo é igual ao produto do beta do ativo 

pelo retomo adicional esperado sobre o índice de mercado, mesmo para a versão multifatorial 

do CAPM. Para que o CAPM seja válido, algumas restrições sobre os Pj  devem verificar-se, e 

em testes estatísticos tem sido repetidamente rejeitadas em favor do APT. Para a 

implementação do APT, segundo os autores, pode-se utilizar um índice para o retorno livre de 

risco, (citando o índice 30-day Treasury Bill) e as alternativas para estimar o modelo são:

1. Cálculo dos fatores de risco f( t) , fj(t), ..., fk(t) usando técnicas estatísticas como 

Análise Fatorial ou Componentes Principais;

2. Os k fatores podem ser substituídos por k portfólios bem diversificados;

3. Teoria econômica e conhecimento de mercados financeiros, para especificar k 

fatores de risco que possam ser mensurados a partir de dados macroeconômicos e financeiros

A primeira alternativa é útil para determinar o número de fatores necessários, no 

entanto proporciona dificuldade de interpretação econômica dos fatores, que sofrem mudança 

com o tempo. A segunda e terceira alternativas estão relacionadas a análises econômicas.

A seleção de um conjunto de fatores macroeconômicos deve proporcionar fácil 

interpretação econômica, e que explique o máximo possível as variações nos retornos.

Estimativas EWMA ou GARCH para os betas proporcionam betas de mercado 

variáveis com o tempo, sendo um grande avanço sobre betas de valores constantes usualmente 

obtidos a partir de fontes de dados padrão.



3. PESQ U ISA  O PE R A C IO N A L  NA A N Á LISE  DE PO RTFÓ LIO

Entre as técnicas de otimização empregadas na Análise de Portfólio, destaca-se a 

Programação Matemática, com a Programação Linear (PL) e Programação Quadrática (PQ). 

Modelos para redução de risco dado pela variância normalmente resultam em Problemas de 

Programação Quadrática Paramétrica. Outros modelos são construídos como problemas de PL, 

ou reduzidos a problemas PL por linearização. Um modelo mais simples para a determinação 

de portfólios ótimos, visando somente à maximização do retorno e sujeito a restrições lineares é 

formulado como um problema de PL

A Estatística também é utilizada, com os testes para verificação da qualidade do ajuste 

da distribuição dos retornos de ativos e portfólios a uma distribuição estatística. Entre estes 

testes pode-se citar o QQ-Plot para identificar a Gaussianidade de uma amostra multivariada e o 

teste K-S de Kolmogorov-Smirnov, para amostra univariada. Análise Fatorial e Análise de 

Componentes Principais também são utilizadas com objetivo de substituir a análise de ativos 

pela análise de grupos de ativos e, ainda, identificar fatores de risco comuns a esses grupos.

3.1. Program ação Linear

Problemas que podem ser descritos por uma função objetivo linear, a ser maximizada ou 

minimizada, satisfazendo restrições lineares de igualdade e/ou desigualdade constituem-se em 

problemas de Programação Linear (PL). Sua forma padrão é apresentada no Problema P2 a 

seguir:

Maximizar z = c'x

Sujeito a Ax < b (P2)

Xj > 0 V i = 1, 2, ..., n

onde c 6 R" é o vetor de custos, b e Rm é o vetor de "recursos", A € M(m x n) é a matriz dos 

coeficientes das restrições, a qual é suposto que tem linhas linearmente independentes, ou seja, 

que não existem restrições redundantes.

Um método bastante eficiente para solução do problema PL foi desenvolvido por 

George B. Dantzig (1947), e chamado simplex. Contribuições para o aprimoramento deste 

algoritmo ocorreram com:

- Dantzig, Orchard-Hays,Wolfe (1953/1954), com a elaboração do simplex revisado;
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- Lemke(1954) com a Teoria da Dualidade e o algoritmo dual simplex;

- Beale(1955), Dantzig, Orden e Wolfe (1955), co m  a criação de regras 

lexicográficas para solução de problemas de degeneração e iterações cíclicas;

- Klee(1972), Minty(1972) com o estudo da complexidade de algoritmos simplex 

para o comportamento do pior caso;

- Dantzig, Van Slyke (1967), com a criação do chamado (Jeneralized Upper Hound 

Algorithm  (GUB);

- Markowitz (1954), com fíasis faciorizalion and the eliminaiionform qf íhe inverse 

(EFI), mais tarde também tratados por Beale(197l), Hellerman e Rarick (1971/72)

Outros desenvolvimentos para solução de problemas LP são encontrados, como o 

método SSX (spar.se simplex), e o método de pontos interiores.

A descrição do simplex revisado pode ser encontrada em MURTY (1976), ou 

ZIONTS (1974). Para aplicação do método simplex revisado, é suposto que o problema 

apresente-se na forma padrão, isto é, somente com restrições de igualdade Para as restrições 

de desigualdade, são acrescentadas variáveis auxiliares, que assumem a diferença quando a 

restrição é satisfeita com folga; neste caso são chamadas variáveis de folga.

O problema P2, com variáveis de folga para restrições de desigualdade, e

considerando que maximizar c'x é equivalente a minimizar - c'x, é apresentado no Problema

P3 a seguir:

Minimizar z = -c'x

Sujeito a Ax + Hs = b (P3)

Xj > 0, V i = 1 , 2, ..., n 

sj > 0, V j = 1 , 2 , ..., p

Se p = m, H é a matriz identidade de ordem m e tem-se uma base factível formada por 

variáveis de folga, na forma canônica para início do método simplex

Se p < m, pode-se obter uma base factivel inicial usando a rotina Pricing Oui, que 

consiste em subtrair múltiplos adequados das (m-p) linhas (restrições de igualdade), da linha 

de custos (c1), de forma que m destes custos sejam atualizados para valor zero, desde que 

resulte na forma canônica para o início do método simplex.

Outras rotinas para obter a base canônica inicial consistem em formar uma base com 

variáveis artificiais. O método Big-M acrescenta variáveis artificiais com alto custo (M) à 

função objetivo, de modo que estas não retornem à base após sua saída
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Definida uma base factível inicial com variáveis básicas xu. nas iterações do método 

Simplex Revisado é avaliado se alguma variável não básica (em x \) pode acrescentar valor à 

função objetivo. Esta avaliação é obtida com as considerações a seguir 

O sistema de equações das restrições é decomposto na forma:

B.XB + N.XN = b x B = B ''b  - B ' ' N x n

onde B e N são matrizes formadas por colunas da matriz de restrições, correspondentes às 

variáveis básicas xB e não básicas xn.

Os conjuntos de variáveis, básicas e não básicas, são dados por:

Jb = {i tal que x* está na base} (J b -  {3,5}, se X3 e X5 são variáveis da base).

Jn = {i tal que x; não está na base}

Então a função objetivo z = -c'[xn x.v]' = cb'xb + C\'xn pode ser escrita como: 

z =  cb '(B  'b  - B ' ]N x n )  +  c \ ' x n  

z =  CB’B"'b +  ( c x 1 -  c b . B ' ' N ) x \

Se todas as componentes em n = ( c . \ f -  c b . B ‘\ N )  são positivas, então nenhuma variável 

não básica que entrar na base pode acrescentar valor à função objetivo e a solução ótima foi 

encontrada. Se algum k-, < 0, então uma variável não básica xj entra na base, satisfazendo:

Xj = {Xj, i e  Jn , tal que 7q é mínimo}

A variável Xk a ser substituída, deve ser a que gera menor valor para a que entra:

Xk = {xj, i e  Jb , tal que bj/ai.j é mínimo, j determinado no passo anterior}.

Para os valores de bi e ay atualizados, isto é, dados por bj = [B''b]i e ai.k = [ B 1 A k,]i.k. 

Para a nova base, Jb = Jb + {j} - {k }, repete-se a avaliação para 7i, até que se verifique 

7tj > 0 Vj. A solução corresponde ao conjunto de variáveis em Jb , com valor xb = B ''b

3.1.1. C ondições de O tim alidade em PL

BERTSEKAS (2001) apresenta as condições de otimalidade para problemas de PL, 

que podem ser obtidas da Teoria de Otimização com Restrições. Somente as condições de 

primeira ordem - condições de Karush-Kuhn-Tucker (KKT) - são necessárias A  

convexidade do problema de PL garante que estas condições são suficientes para um mínimo 

global, bem como se pode mostrar que as de segunda ordem não são necessárias por um 

simples argumento - a Hessiana do Lagrangeano de problemas de PL é nula



As condições KKT requerem independência linear dos vetores gradiente das restrições 

ativas. Porém, para qualificação de restrições, o resultado continua a valer para restrições 

com vetores gradiente linearmente dependentes, uma vez que são lineares, caso do problema 

dePL.

Decompondo o vetor de multiplicador de Lagrange para o problema de PL em dois 

vetores 7t e s, onde 7t e  Rm é o vetor de multiplicadores para as restrições de igualdade Ax = 

b, enquanto s e  R"é o vetor de multiplicadores para as restrições de não negatividade Xj > 0 

Usando a definição de Função Lagrangeana, obtemos L(x, 7t, s) para o problema PL: 

L(x, 71, s) = c'x - 7t'(Ax - b) - s'x

As condições necessárias de primeira ordem de Karush-Kuhn-Tucker para que x* seja 

uma solução do problema de PL são de que existam vetores k  e s  tais que:

A'tc +  s  =  c  (i)

A x = b (ii)

x > 0  (iii)

s > 0  (iv)

XjSj > 0, i = 1, 2 ,. . ., n (v)

A interpretação da última condição é essencialmente que ao menos um dos 

componentes x* e Si deve ser zero para cada i = 1, 2, ..., n. Esta condição é também escrita na 

forma x's = 0, e referida como condição de complementaridade. (Obs : devido à condição de 

não negatividade para x e s, ambas as formas são idênticas).

Seja (x*, 7t*, s*) um vetor satisfazendo às condições de KKT. e combinando-se a 

primeira, quarta e quinta condições, encontra-se que: 

c'x* = (A'7C* + s*)'x* = (Ax*)'7t* = b'7t*

Como pode ser visto, b'7C é a função objetivo para o problema dual do problema LP,

assim, a identidade c'x* = b'7i* indica que os objetivos primai e dual são iguais para o vetor

(x, 7t, s) que satisfaz as condições KKT.

Para provar que as condições KKT de primeira ordem são suficientes para que x* seja 

a solução global do problema LP, seja X| outra solução factível, tal que Axi = b e xi > 0. 

Então:

c'xi = (A7I* + S*)'xi = b'7C* + x'iS* > b'7C* = c'x*

onde a desigualdade é válida, pois xi > 0 e s* > 0
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Esta última desigualdade informa que nenhum outro ponto factível pode ter um valor 

menor que c'x*. Além disto, o ponto X| é ótimo se e somente se: 

x'is* = 0

desde que, do contrário, a desigualdade ( b ' 7C* +  x's* >  b '7t * )  é estrita O u  seja, quando s * j  >  0, 

então se deve ter x, = 0 para todas as soluções do problema LP.

3.2. Program ação Q uadrática

Problemas gerais de programação quadrática (PQ) têm uma função objetivo quadrática 

e estão sujeitos a restrições lineares ou quadráticas. Uma classe mais específica de problemas 

quadráticos trata-se de problemas quadráticos convexos, na qual se encontra a dos problemas 

de análise de portfólio. Um problema quadrático primai é definido como a seguir:

Minimize z = y x 'E x - c , x

Sujeito a: A x  = b (P4)

.Vi > 0, V i

onde c é um vetor de constantes, x é o  vetor de variáveis de decisão, ambos de dimensão //, b 

é o vetor de "recursos" ou disponibilidades das restrições, de dimensão p  e A é a matriz de 

coeficientes das restrições, de dimensão p  x n. I  é uma matriz positiva semidefinida5 de 

dimensão n x n.

A correlação perfeita entre dois ativos, ou entre dois grupos de ativos, também gera I  

positiva semidefinida, uma vez que as correlações destes dois ativos (ou grupos de ativos) 

com os demais ativos diferem apenas por um mesmo multiplicador. Se as correlações entre 

estes ativos (grupos de ativos) for negativa, um portfólio legítimo terá V(x) = 0. Caso 

contrário, somente portfólios ilegítimos (alavancados, ou financiados) terão variância nula.

A matriz S será positiva-definida quando excluida a possibilidade dos recursos serem 

aplicados em um ativo com variabilidade zero (caixa) e inexistência de grupos de ativos com 

retornos dados por C.L. de outros ativos, devido a x'Ex corresponder à variância do portfólio 

x, supondo-se positiva.

5 x " L x > 0 \ / x e  Rn
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Problemas de Programação Quadrática Paramétricos:

São problemas da forma:

Minimize z = c '.x  +  AxT x + y x \E .x

Sujeito a: A  x  = b (P5)

jfj > 0 V i 

Ainin — A. < A-max
onde c,A:,^lefc são definidos em P4; e e d  são vetores de parâmetros de ajustes; e tem 

dimensão m  e d, dimensão n.

Este problema PQ paramétrico envolve a solução de uma família de problemas PQ, 

onde A. é um parâmetro da função objetivo que pode tomar quaisquer valores não negativos 

entre A^m e Ânáx-

Problemas paramétricos de Programação Quadrática (PPQ) podem ser usados para 

calcular a Fronteira de Eficiência para carteiras de investimentos. Proporciona estratégia 

ótima para investimentos para diversos níveis de risco quadrático, e variação de recursos ou 

disponibilidades para as restrições lineares.

3.2.1. C ondições de O tim alidade em Q P

Condições de otimalidade em QP podem ser encontradas em ROCKAFELLAR(1997):

Multiplicadores de Lagrange

Sejam as funções f: /? " -> /?  e h : /?"-> /? , i = 1, 2,..., m, e o problema com restrições 

de igualdade da forma:

minimizar f(x)

sujeito a hj(x) = 0, i= l ,2 , . . . ,  m

O Teorema de multiplicadores de Lagrange para este problema estabelece que, sob

suposições apropriadas, para um dado mínimo local x , existem escalares A.j, i = 1 , 2 , ..., m, 

chamados Multiplicadores de Lagrange, tais que:

W f x V ^ V M * ) ^

Estas n equações, junto com as m restrições hj(x ) = 0, formam um sistema de n + m 

equações com n + m incógnitas dadas pelo vetor x e os multiplicadores A.j. Desta forma o
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problema de otimização com restrições tem solução através da solução de um sistema de 

equações (lineares ou não lineares, dependendo de f(x) e h|(x)).

Para uma função convexa, a ser minimizada satisfazendo um conjunto de restrições 

lineares, um ponto extremo corresponde ao extremo global. Isto fica estabelecido no teorema 

de Kuhn-Tucker a seguir (para demonstração, ver ROCKAFELLAR, 1997, pág. 273-290):

Teorema de Kuhn-Tucker: Seja (P) um problema ordinário convexo satisfazendo as 

hipóteses de extremo limitado e existência de ao menos uma solução factível na região 

delimitada pelas restrições, isto é, que existe um vetor de Kuhn-Tucker para (P). Então para 

que determinado vetor x* seja uma solução ótima de (P), é necessário e suficiente que exista 

um vetor u* tal que (u*,x*) seja um ponto de sela do Lagrangeano de (P). Equivalentemente, 

x* é uma solução ótima se, e somente se existem multiplicadores de Lagrange Aj, os quais, 

junto com x* satisfazem as condições de Kuhn-Tucker para (P).

Para o modelo de Markowitz (Problema Pl), o ponto crítico da função Lagrangeana 

corresponde ao ponto de mínimo global:

f  V('/2.x'lx - AExp) + AV(Ax-b) = 0  (A e<Rm)

|  Ax = b
J  Xx - TieM + AA = 0

| Ax = b (Sl)

este sistema (S l) corresponde ao sistema de equações lineares do método da Linha Crítica de 

Markowitz:

M
1

>
1

X ~o‘ l-i+ Ag
A 0 A b 0 (S2)

Fixando-se Ae ou x, o sistema linear acima fica determinado. O Problema de 

Programação Quadrática assim definido é um Problema Paramétrico de Programação 

Quadrática (PPQ).

3.3. A juste de uma D istribuição Estatística para uma Am ostra

A função densidade normal n-dimensional para um vetor aleatório x = [xi, X2, ... x„] 

tem a forma

/Y vt - ______ í______  -(v-ít/)'X(v-/i)/2
J  {X) i 11/2 ( t í )

( 2 ^ ) ' ,/2 | I |
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onde n  é o  vetor de médias amostrais e l a  matriz de covariâncias, respectivamente, de uma 

amostra de tamanho m do vetor aleatório x.

Diz-se que o vetor aleatório x tem distribuição normal multivariada, e denota-se 

x~iVp(n, X), analogamente à função densidade de probabilidade para o caso univariado.

Para uma distribuição normal n-dimensional, o elipsóide de valores x satisfazendo:

(X  -  JH ) 'Z _1 (X  -  H )  < x l  (CL) (12)

tem probabilidade 1-a (JOHNSON, 1998, pág. 164, 194).

Desta forma, aproximadamente 50% das observações de uma amostra do vetor 

multivariado x devem satisfazer a desigualdade ( 1 2 ), para a  = 0.5, caso contrário, a suposição 

de normalidade é suspeita.

Um método mais formal para identificar se um conjunto de dados apresenta 

distribuição normal é baseada nas distâncias quadráticas generalizadas:

d /  = (xk - iDT^Xk - p), j = 1, 2, ..., m (13)

onde xk são observações do vetor multivariado x. Cada uma das distâncias dj2 deve comportar- 

se aproximadamente como uma variável y 2. A construção do gráfico dos pares (qc.n,dj2), com 

qc,n((j-l/2 )/m) = x2n((m-j+l/2 )/m), onde qc,n((j-l/2 )/m) é o 100(j- l/2 )/m quantil de uma 

distribuição qui-quadrado com m graus de liberdade, deve apresentar-se aproximadamente 

linear a partir da origem, com inclinação 1. Um comportamento curvo sugere falta de ajuste 

para normalidade.

A construção do gráfico qui-quadrado é obtida como segue:

a) Ordenar as distâncias dadas em (13) da menor para a maior;

b) Dispor os pares (qc,n, dj2) em um plano x-y.

A importância da verificação de normalidade para uma amostra X reside em que todas 

as informações sobre os verdadeiros parâmetros populacionais (p. e I )  deste conjunto de 

dados estão contidas nos Estimadores de Máxima Verossimilhança dados pela média amostrai 

e pela matriz de covariâncias amostrais, para dados com distribuição normal.

Técnicas de análise baseadas em p  e X podem estar ignorando outras informações 

amostrais úteis, para dados que não se apresentam normalmente distribuídos.

A verificação do ajuste de uma amostra de uma variável aleatória univariada a uma 

distribuição normal, pode ser obtida por testes como y .  Outro teste utilizado é o K-S de 

Kolmogorov-Smirnov, que calcula a máxima distância entre a distribuição teórica ajustada
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aos dados e a distribuição normal para as estatísticas média e desvio padrão amostrai ( x  e s )  

da amostra. Existem valores tabelados para estas distâncias, e respectivos valores-p para suas 

ocorrências. Sc o valor-p do teste para uma amostra é menor que 0.1(10%  de probabilidade), 

então deve-se rejeitar a hipótese de que a amostra provenha de uma distribuição normal. (Ver 

Mood, pág. 508-510).

Além da verificação da qualidade do ajuste com os testes x e K-S, as estatísticas 

baseadas em momentos de terceira e quarta ordem, ou seja, assimetria e curtose, também 

podem ser utilizadas, embora, conforme MOOD (pág. 76-77), não proporcionem informações 

precisas sobre a forma das curvas das funções densidade de probabilidade. Mood apresenta 

um exemplo onde duas distribuições bastante diferentes têm os mesmos valores para os quatro 

primeiros momentos. Neste caso, a avaliação da qualidade do ajuste dos dados à função 

densidade de probabilidade normal é mais reveladora que o cálculo do terceiro e quarto 

momentos.

Segundo DAS (1998), a suposição de retornos logarítmicos normalmente distribuídos 

é extensamente utilizada, e outros critérios paia determinação de portfólios ótimos como 

retornos ajustados a outras distribuições como a Gama, são raramente vistos, devido a duas 

razões principais: I) a distribuição normal para retornos logarítmicos é a que melhor

descreve a distribuição de retornos observados e II) somente a distribuição normal pode ser 

generalizada para problemas multivariados sem resultar em demasiada complexidade 

matemática.

Para DOWD, ao assumir um modelo que pressupõe retornos normalmente 

distribuídos, deve-se sempre verificar se o portfólio construído atende tal suposição. Alerta, 

ainda, que a utilização de approach normal leva a perdas de precisão e ao aumento de 

complexidade quando tratando de posições de risco não lineares em seus fatores (como 

exemplo avaliando opções) ou quando os fatores de risco são, por si próprios, não normais



4. M O D EL O S DE O T IM IZA Ç Ã O  EM A N Á LISE  DE PO RTFÓ LIO

4, L M odelo de M édia - Variância (MV )

Trata-se de um modelo de seleção de portfólios com aplicação de métodos matemáticos

para a otimização da relação risco-retorno na formação de carteiras de investimentos,

desenvolvido por Harry M. Markowitz (1959), a partir de suas considerações sobre The Theorv

o f  Investment Value, de John Burr William6:

"Since future dividends are uncertain, I interpreted IVilliams proposal 1o be to value a 
stock by its expected future dividends. Mui i f  lhe invesfor 11 ere only interested in 
expected values o f  securities, lie or she would only be interested in the expected value o f  
the portfólio; and Io maximize the expected value o f  a portfólio one need invesl on/v in a 
single security. This. /  knew. u m  not the uay invesfors d id  or should acf. lnvestors 
diversify because they are concerned with risk as welf as return. I ariance carne to mind 
as a measure o f  risk. lhe  fac t lhat portfolio variance de pende d  on security covariances 
added to the plausihility o f  the approach. Since íhere were two cnteria, risk and return. 
it lira  natural to assume lhat investors selected from  the set n f  Faceto optimai risk- 
return combinations " (Autobiography o f  Harry M. Markowitz, 1999).

O modelo de Markowitz resulta na construção de portfólios cujos pares Média- 

Variância (ou Retorno-Risco) satisfazem ao critério de otimalidade da reiação risco-retorno. 

Um portfólio eficiente, segundo esse critério, apresenta o maior retorno entre os portfólios com 

o mesmo risco, e o menor risco entre portfólios com o mesmo retorno

O risco é quantificado pela variância dos retornos históricos dos ativos, mais 

precisamente pela variância da variável aleatória definida como a soma ponderada dos retornos 

históricos dos ativos, onde os fatores de ponderação são as participações de cada ativo no 

portfólio. Desta forma, as correlações entre os retornos dos ativos são fatores de redução da 

variabilidade, para portfólios diversificados (ver 2.4).

Segundo DOWD (1999), a ampla diversificação de ativos com retornos estatisticamente 

independentes entre si para compor os portfólios faz com que a variável aleatória de retornos 

históricos do portfólio apresente distribuição aproximadamente normal

Esta propriedade permite a utilização do modelo MV, ainda que os retornos dos ativos 

não apresentem distribuição normal multivariada

6 'Th. D. thesis at H a n a r d  in 1937. (...) Work nn how to value financia! assetc. / ..) A n  csnm alc that ptfers inlrinsic 
value and  it is ca iled  the 'D ividend Di.sc.nunt \ íodel' which is s titt used lodav hv professinnat investors nn the 
institutional side o fm arkels. ". Unazon.com: huving info. Ver (Williams. 1997).
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Para atender o objetivo de maximizar o retorno e minimizar o risco, Markowitz tem 

suas bases na Teoria da Utilidade e a aversão ao risco. Sua função objetivo é a Função 

Utilidade (ver 2.5. Teoria da Utilidade e Fronteira de Eficiência) e as restrições de seu 

modelo são as habituais, ou seja, a de orçamento e demais restrições de composição de 

carteiras, como percentuais máximos e mínimos a serem aplicados em determinado grupo de 

ativos, etc.

A formulação do modelo de Markowitz é apresentada a seguir.

Dados n ativos e suas m taxas de retorno, o modelo de Markowitz visa determinar 

portfólios x g /?" cuja performance passada apresente mínima variância (x’Lx) para cada 

retomo esperado x'n e /?".

Min (l/2 )x ’£x -  Àex'h

S. a Ax = b (P5)

x; > 0 Vi= 1, ..., n.
onde:

- à,e e  R é um parâmetro de aversão ?o risco, variando de 0 (máxima aversão ao

risco), onde o Problema de Programação Quadrática (QP) determina uma solução

com mínima variância, a um valor M grande o suficiente para determinar o ponto 

de máximo retomo (mínima aversão ao risco).

- I  e  M(n x n) é a matriz de covariâncias dos retornos;

- n  g R" é o vetor de retornos esperados;

- b  g  Rp é o vetor de “recursos”;

- A g M(p x n) é a matriz de coeficientes das restrições e inclui as restrições de

orçamento e de composição da carteira, a seguir:

a) de orçamento: xi + X2 + ... + xn = 1;

b) composição da carteira: Aix < b, podendo ser do tipo percentuais 

máximos/mínimos, integralidade, grupos de ativos por suas correlações, 

variáveis binárias, entre outras;

Para q restrições de desigualdade, são adicionadas q variáveis de folga, ou residuais. 

Assim, a matriz S deverá ser aumentada de q linhas e colunas nulas. O vetor x, que representa 

o portfólio, tem (n+q) coordenadas.

Aplicando o método de Multiplicadores de Lagrange:

V (l/2 x lx  - Xexji) + XV (Ax  - b) = 0  ( à g  Rp)
Ax = b (S3)
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Que resulta no sistema que pode ser escrito na forma:

X A r X ‘o '
T ^  f

A  0 A b 0 (S4)

f azendo R' - |0  b] e S' = [fi ü], e M - de ordem (n+p+q) por (n+p+q) - a matriz que 

multiplica o vetor [x X,]'. temos.

M.
A

R + l ES (SS)

O sistema linear (S5) fica determinado, uma vez fixado ou x Fixando um portfólio 

inicial X(i com máximo retorno (Q. máximo em P5), pode-se avaliar o sistema S5 para a 

entrada ou saída de uma variável na composição deste portfólio inicial, aceitando a entrada ou 

saída da variável que proporciona menor redução possível no parâmetro Como será visto 

no item 4.1.1 a seguir, o valor de Xi-; para x0 é infinito, então a primeira entrada ou saida de 

variável da base será para o maior valor real de X\..

4.1.1. Algoritmo do Modelo M V de M arkowitz

A solução do sistema S5, determinando os portfólios estratégicos x, para os diferentes 

valores do parâmetro de aversão ao risco Ai;, foi estabelecida por MARKOWITZ (1959) com 

o Algoritmo da Linha Crítica, cujos passos são dados a seguir:

Passo I: Obter o portfólio de maior retorno x = x+, isto é, a solução do Problema de 

Programação Linear (LP) que maximiza o retorno (x'ji) sujeito às restrições (Ax = b; xs > 0). 

As variáveis não nulas em x+ são referidas como variáveis básicas (///) e as nulas, como 

não-básicas (out)

Passo 2: Determinar a matriz das variáveis básicas, isto é, determinar as linhas e 

colunas da matriz ÍM que devem ter seus valores reduzidos a zero, para que a solução do 

sistema seja a obtida Para isto faz-se linhas e colunas de variáveis out iguais ao vetor nulo, 

exceto para as intersecções destas linhas e colunas, que recebem o valor unitário, o que resulta 

na matriz M

Para definição da matriz N(I), é calculada a inversa da ma; . M que deve ter os 

elementos que receberam v alor unitário no passo anterior reduzidos ao valor nulo.

A determinação de M ’ é facilitada com:
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1) Eliminar as linhas e colunas de M correspondentes às variáveis on»

2) Inverter a matriz resultante;

3) Inserir as linhas e colunas retiradas, com zeros

Para o caso de p > 1, o cálculo de M pode ser obtido por:

y a t  ~ 
m  = A r o

A  0 0 4 7 )-1 - ( À 7 y ' Z A ]

O sistema S5, com a matriz M substituída por M , ao ser multiplicada pela matriz

A matriz N (l) corresponde à inversa da base. Poderá ter linhas e colunas nulas 

retiradas, resultando em um sistema formado somente pelas variáveis /'/?, ou básicas.

Adotando a notação de Markowitz, com T (l) = N(1)R e U (l) = N(1)S, temos a 

primeira Linha Crítica:

Neste ponto, somente X varia com Xe, x  se mantém constante

Passo 3: Determinar valores de Xf. onde a primeira Linha Crítica intercepta cada linha 

:rítica associada às variáveis ouí, com as seguintes três propriedades:

a) todas as variáveis in na primeira LC continuam ///;

b) uma variável adicional torna-se /'//;

c) todas as demais variáveis permanecem out.

A interseção é determinada em:

N (l), resulta na equação à qual Markowitz chama de Linha Crítica associada ao vetor [x+ À.]'

X  = N ( I ) R  +  X F j N ( I ) S
X (S6)

X  =  T ( l )  +  À . E U ( 1 )  
K

(S7)

M j ^ _ Pj -̂e paraj = 1, 2, . ., (n+q) (I)

X  =  T ( k )  +  À K U ( k )
X

(II)

De I e II, e considerando que Mj é a j-ésima linha de M, temos:

Se p.j -  MjU(k) = 0, não há interseção.
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A interseção mais próxima (que proporciona menor redução em A,e) define a variável 

que será adicionada às variáveis da base no próximo passo 

à,k = max{ A.Ej, paraj £j}

Se Xe < 0, o problema terminou e x° corresponde ao portfólio de máximo retorno e 

também mínima variância.

Se Xe > 0 Xj entra na base (j = jk). Como xH permanece constante quando varia, o 

novo portfólio terá duas coordenadas não nulas.

Passo 4: Fórmula para a nova linha crítica, associada à variável Xjk 

As atualizações necessárias para N(k) são.

B = N (k-l) CJ (CJ é a j-ésima coluna da matriz M).

c = M jj -  B C’

N(k)ij = <
- B ,

Bt B ;
N(k)„ + - ^ - L

p a r a  i =  j =  j k 

p a r a  i  *  j k 

p a r a  i  *  j k . j  j  j h

N(k).R + ÁKN(k).S

Passo 5: Linha Crítica primeiro interceptada pela LC atual, à medida que Xy, decresce 

É necessário verificar somente as interseções com as variáveis que ainda não pertenceram às 

variáveis in. Neste passo, temos três possibilidades com o decréscimo de Xy;.

1) Xf.(íh) > Ê(oiit), faz-se então A.f. = A.e(í„) e vai para o passo 6.

2) Xe(í„> < Xe(o„o, faz-se então Xe = ^E(o»t) e volta ao passo 4.

4) À.E = 0, o portfólio de mínima variância foi encontrado e o problema terminou

onde

X.i■(in) max{ À.| j = Tj / Uj; A,|.j > 0, j e J }

Mj.T(k) . . , ,
ÀE(out) = max{ ^  , ;yfjU('k )]- ParaJ €J e ainda nao

Passo 6: Portfólio com o valor de Àe que anula a i-ésima variável na base:

Para atualizar N(k) - >  N(k+1), substitui-se a linha e coluna da agora variável o u t  (xj) 

por zeros. Completar a atualização com

N(k+l)jj = N(k)jj -  N(k)iCjk).N(k)0k)i/N(k)CjkKjk) para as linhas não zeradas.

c

c

c
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A fórmula para a nova linha crítica é determinada com

■■N(k + [).R + À l.:N ( k  + \) ,S

Retorna ao passo 5.

Os procedimentos descritos determinam soluções intermediárias estratégicas, às quais 

correspondem valores distintos do parâmetro de aversão ao risco (X k). Fazendo-se variar este 

parâmetro de aversão ao risco (Xk), o sistema linear tem sucessivas soluções no intervalo de 

variação.

Se dois portfólios subseqüentes atendem à condição de eficientes, a combinação 

convexa destes também atenderá. Basta verificar que a combinação convexa também é 

solução do sistema de equações S5 resultante da aplicação do método de multiplicadores de 

Lagrange ao problema P5.

Um portfólio X3, com retorno intermediário pr entre dois portfólios estratégicos de 

retornos pi e p2, pode ser obtido através da combinação convexa entre estes portfólios:

X3 = X.x2 + (1 - X).xi

onde X é dado pelo quociente X = (p i-pp)/(pi-p2) e tem retorno pp e variância Vfxi) = X 3 M . X 3 .

4.1.2. Exem plo para 0 m odelo M V

Dada a matriz de covariâncias dos retornos (£), o vetor de valor mais esperado dos 

retornos logarítmicos (p.) e a formulação do modelo MV a seguir, obter os Portfólios 

Estratégicos (x», xi, ... ) e construir a Linha Crítica de Markowitz.

'  0.366444 0.006895 -  0.010103 "0.032054"

1 = 0.006895 0.470944 -0.0001 18 JU = 0.063906

-0.010103 -0.000118 0.279217 0.050033

Problema P:

Minimizar (l/2)x'Ex - Xk..x'p

Sujeito a x'u = 1 (u <= R" é o vetor de elementos unitários)

Xj > 0 V i (i = 1, 2, 3)

Aplicando-se o método de Multiplicadores de Lagrange:

V((l/2)x'Zx - XE. x'p) - XV( x'u - 1) = 0 

x'u = 1
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ou

Que resulta no sistema de equações: 

Ix  + ÀU = 

u'x = 1

Na forma matricial:

u \ r , i ~(f
+ ÃE.=:

u' 1 0

" 0.366444 0.006895 -  0.010103 V x, 0“ 0.032054
0.006895 0.470944 -0.000118 1 _ 0

+ Ã l:. 0.063906
-0.010103 -  0.000118 0.279217 1 0 0.050033

" h 1 1 J 0 À_ 1 0

(S8)

(P6)

Passo 1: Portfólio de maior retorno, satisfazendo às restrições dadas:

Max x'n

S. a: x'u = 1

xj > 0 V i.

Para o caso de somente uma restrição, a de orçamento, o portfólio inicial (Passo 1) é 

formado inteiramente pelo ativo de maior retorno entre os ativos disponíveis. x° = [ 0 1 0]

O retorno deste portfólio é dado por:

0.032054
fipi = x (i = [0 1 0], 0.063906

0.050033
f.iP1 = 0.063906

Passo 2: Para que o sistema S8, acima, tenha como resultado o portfólio x°, efetuamos 

alterações na matriz M, obtendo a matriz M  no sistema S9:

(S9)

A solução em [x° X] é obtida fazendo-se o produto à esquerda pela matriz NI -  M ] 1 

para ambos os lados da igualdade do sistema S9; as interseções de linhas e colunas de 

variáveis não-básicas da matriz NI são substituídas pelo elemento nulo

"1 0 0” "o' x \ "o^ "0.032054“

0 0.470944 0 1 X 1 __
0

+  .
0.063906

0 0 1 0 ^3 0 0.050033

[0 1 o' 0
-  A _

1 0

N ( \ ) . R  + Ã,.:N ( \ ) S
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NI

0 0 0 0

0 0 0 I

0 0 0 0

() I 0  - .4 7 0 9 4 4

*1~

ooo

0
X- 0 0 0 1 0~ = + Ãr ■
X, 0 0 0 0 0
Ã 0 1 0 -.470944 1

0 0 0 
0 0 0 
0 0 0 

0 1 0
0

.470944

"0.032054"

0.063906
0.050033

0

x / ' " 0 " 0 "

x2 1 0
= + À/-

x3 0 0

Al J ..470944J 063 906.

(1X1)

Markowitz denomina a equação encontrada de Linha Crítica associada a variável x2.

Passo 3:

Substituindo a solução obtida (LC1) para o portfólio x°, no sistema S8, obtemos os 

valores de Ap para a entrada das variáveis xi e x.v A menor redução em /\p será a que define a 

variável a entrar. A variável x2 ainda não é candidata a sair da base, pois entrou na iteração 

anterior.

"  ^  0.366444 .006895 -.010103 I
.006895 .470944 -  0001 18 1

-0010103-.000118 .279217 1 
1 I 1 0

0
.470944

0
0
0

.063906

032054
063906
050033

0

(SI0)

A primeira e terceira equações do sistema determinam os valores de Ap na interseção 

da Linha Crítica (LC) associada à variável x2 (/2) com as LC associadas as variáveis x, e x< 

Ci.2 e l\ j).

/, 2: 0.0068950 - 0.470944 + Ap 0.063906 = AK.0.032054 -> ly = 14.568912 

/, X -0.0001 18 - 0.470944 + Ap.0.063906 = X, .0.050033 -> Ar "= 33.955309 

O maior Xp ocorre para a entrada na base da variável x.v Lste valor de Xp corresponde 

ao parâmetro de aversão ao risco a partir do qual, para valores decrescentes, o portfólio passa 

a ter uma fração de seu orçamento destinado ao ativo representado pela variáv el xÍT reduzindo 

assim a participação de x2.
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Passo 4:

Procede-se novamente como no passo 2, agora com x2 e x.t na base:

"l 0 0" ~0~ .032054
0 .470944 -.000118 1 -V\ 0 .063906— + Ar - .
0 -.000118 .279217 I *3 0 r.

.050033
0 1 1 0 A 1 0

(SI! )

Determinamos N(2) = A7,'1 

~0 0 

0 1.332627929

0 -1.332627929

.0 .3722496225

N2  :=

0 0

.3722496225

.6277503775

1.332627929

1.332627929

6277503775 -.1752346517,

N(2) também poderia ser obtida com os procedimentos do Passo 4, no item 4 .1.2.

*3
A

x l  

x2 

x3 

XI

~o~ 0.032054

= N(  2)-
0

+ A, , -N(2)- 0.063906
0 0.050033
1 0

" 0 " " 0 “

.3722496225 .01848754726
— + Xi,-

.6277503775 -.01848754726

1752346517, _.05519721902,

(LC2)

Para Xe = 33.95530887, obtém-se novamente a solução para o portfólio x°:

Passo 5:

Semelhante ao passo 3, substitui-se a solução obtida (LC2) no sistema (S8), 

determinando Xe para a entrada da variável xi. A variável x.i, que entrou na base na iteração 

anterior, não é candidata a sair. A saída da variável x2 é avaliada fazendo-se x2 = 0 em LC2.

.366444 .006895 -.010103 1 

.006895 .470944 -.000118 1 
-0010103-.000118 .279217 1 

1 1 1 0

0
.3722496225
.6277503775

'  0 ” 0 '.032054
.01848755 0 .063906

+ Ar . — + Arh -.01848755 0 050033
.05519722 1 0

(S 12)

Vi
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Da primeira equação do sistema S 12. obtemos os valores de para a entrada da 

variável xi,

! 123: -n 179010153 + A.K,0.055511470 = UC). 032054 -> 7641264

A saída da variável x2 é avaliada quanto ao valor que Xy assume quando ,\2 = 0 em

LC2:

I n .  X y  = -0.3722496225 / 0.01848754726 -» X y  -  -20 135 I 5 1 

Estes valores de X y  (7.631264 e -20.135154) correspondem as interseções da LC /23 

com as LCs I n3 e In.

O maior X y  corresponde à entrada na base da variável xi. Então xi entra na base.

O portfólio x1 pode ser determinado substituindo-se o valor de Xy no problema (P), ou 

na LC obtida no passo 4 anterior.

Obtém-se x1 = [0 0.513333 0.486667],

Passo 6:

Procede-se novamente como no passo 2 com xi, x2 e x< na base. O sistema de 

equações corresponde ao sistema inicial (S8):

'  0.366444 0.006895 - 0  010103 T -L "0 0 032054

0.006895 0.470944 - 0  0001 18 l — 0
+ Ár . 0.063906

-0.010103 -0.0001 18 0.279217 l X, 0 0.050033

[ i 1 i 1 ~o À 1 0

O produto da inversa da matriz IY1, pelo sistema S I3, resulta na LC associada ás 

variáveis xi, x2 e x?:

'  xl .3261581654 " -.04273972943 ~

x2 .2434492304 .03536553618
- + X /,■

x 3 .4303926037 .00737419325

_ XI _ 1168490287 _ _ 04754637349 _

Para a saída de ambas as variáveis x2 e x3 tem-se Xy negativo.

X y 2 =  -0.2434492304 / 0.03536553618 

Xy3  = -0.4303926037 / -0.00737419325 

Então Xh anula-se antes destas variáveis saírem da base O ultimo portfólio é obtido 

com À-E = 0 na equação LC3.
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x2 = [0.326158 0.243449 0.430393]

Este ponto apresenta mínima variância, e o algoritmo da LC chegou ao fim.

A saída da variável xi não é avaliada, pois entrou na iteração anterior - assume valores 

positivos a partir de Â,E < 7.631264.

Para contemplar uma situação não encontrada no exemplo acima, caso xj não tivesse 

entrado na iteração anterior, não caberia avaliar sua saída, pois o portfólio composto por x2 e X3

seria obtido novamente. Neste caso, o valor de Xt  seria maior que o que decidiu a iteração

anterior. Este critério pode ser utilizado para não incluí-lo entre os valores de A.E das outras 

variáveis, dos quais o maior decide a variável a entrar ou sair.

Além disso, se duas variáveis candidatas a entrar na base apresentam o mesmo valor de 

à ,e , então ambas devem entrar na base e, portanto deve-se aceitar Xe menor do que ou igual ao 

que decidiu a iteração anterior, mas somente para a entrada de variáveis à base. E ambas estas 

variáveis não devem sair da base em uma próxima iteração.

Também é necessário o controle de variáveis que saíram da base, não devendo ser 

avaliada a hipótese de entrar novamente, exceto variáveis de folga, para restrições compostas 

por mais de uma variável.

Portfólios com retorno compreendido entre os retornos de dois portfólios estratégicos 

são determinados pela combinação convexa entre estes, conforme a seguir:

Dados os portfólios estratégicos x° = [0, 1, 0] e x1 = [0, 0.513333, 0.486667] com 

retornos |ípi = 0.063906 e pi-2 = 0.057154, obter um portfólio com retorno pi> = 0.06 e avaliar 

seu risco.

Cálculo de X:

X = (0.063906 - 0.06) / (0.063906 - 0.057154) = 0.5784952607 

Combinação convexa, para o portfólio x3:

x3 = X.x +{\-X).x° = [0, 0.7184654473, 0.2815345527]

Retorno e variância:

Pi>3 = x3'p. = 0.060000

V(x3) = x3'.S.x3 = 0.2651812862
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4.1.3. Implementação Computacional do Modelo MV  

Identificação das variáveis:

n, m - número de ativos disponíveis e número de períodos de seus retornos; 

p, q -número de restrições e de variáveis auxiliares, para restrições desigualdade; 

x  e  -  vetor correspondente ao portfólio, ou seja, que deline as parcelas .Vj de um 

orçamento unitário destinadas ao i-ésimo ativo

p  e t f 1 - vetor de retornos esperados (esperança matemática) dos n ativos;

£  e  M(n x n) - Matriz de covariâncias dos 11 ativos;

A  g  M(p x  n) - Matriz dos coeficientes das p  restrições; 

b g R p - vetor de "recursos" das restrições;

M g  M(n+p+q x  n+p+q) - matriz composta correspondente à  matriz de coeficientes n o  

sistema de equações do método de Multiplicadores de Eagrange;

R g M(n+p x 1) - matriz composta onde as n primeiras coordenadas têm valor nulo e as 

demais correspondem ao vetor b;

S g M(n+p x 1) - matriz composta onde as n primeiras coordenadas correspondem ao 

vetor p. e as demais têm valor nulo;

PE g M(n+p x npj;) - matriz de Portfólios eficientes estratégicos, onde ni>j, é o número 

de portfólios estratégicos que serão determinados. Esta matriz é redimensionada para 

registrar a cada iteração o novo portfólio estratégico determinado;

J - Conjunto de variáveis na base(///), em uma dada iteração;

JX  - conjunto de variáveis />? até a iteração atual; após saírem não retornam à base;

JIN  - conjunto de variáveis /'// que passaram a fazer parte da base na iteração anterior, 

não podendo deixar a base na iteração atual;

VA - conjunto de variáveis auxiliares, ou de folga;

LKA - à.k do portfólio eficiente estratégico imediatamente anterior A entrada ou saida 

de variáveis não poderá ser com Xi-j maior que LKA.

Passos para determinação dos portfólios eficientes:

1. Cálculo dos retornos logarítmicos e da Matriz de covariâncias dos retornos;

2. Cálculo do portfólio de maior retorno para início do algoritmo MV;

3. Aplicação do algoritmo MV, com obtenção de porttólios estratégicos;

4. Determinação da Fronteira de Eficiência, a partir de Combinação C onvexa de pares 

de portfólios estratégicos.
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Retornos Logarítmicos (p.) e Matriz de Covariâncias (£):

Os códigos em linguagem de programação Maple são apresentados no Anexo I.

Algoritmo para o cálculo do parâmetro Xy

LC = M.(T + A,e . U ) - A . f, S  
LK = -3000 
IK = 0
Para i = 1 até n + q

Se i g J então ! x, não está na base
Se i g JX então ! Xj ainda não foi básica

LKK = {Xy tal que LC[i]=0): ! LC[i] avalia ÀF, para Xj.
Se (LKK > LK e LKK <= LKA) então 

LK = LKK
IK = i ! Xy, para Xj entrar =LKK

Senão
!Já foi base e não é variável auxiliar

Senão
Se i g JIN então ! xj não entrou na iteração anterior

Se U[i,l] * 0 então
LKK = - T[i, I J/U[i, 1J

Senão
LKK = 1021 ! Não intercepta nenhuma LC

Se (LKK > LK e LKK <= LKA) então 
LK = LKK
IK = i ! X y  para x; sair =LKK

Senão
! x[i] Entrou na Iteração Anterior 

Fim do Se 
Fim do Se 

Próximo i
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4.2. Modelo de Média - Valor sob Risco

4.2.1. V alo r sob Risco

DOWD (1999) apresenta a metodologia de Valor sob Risco (VaR) correspondente à 

máxima perda esperada em um dado período, para um nível de confiança estatístico

perdas monetárias, desenvolvida por J. P. Morgan em 1994.

O período de tempo pode ser dado em dias, semanas, meses, etc.. e o nível de confiança, 

90%, 95%, 99%, ou outro desejado.

O VaR de um portfólio (ou de um ativo) pode ser definido em termos de valores 

absolutos de perda, ou em termos de perdas relativas à renda média esperada. Alternativamente, 

pode-se definir VaR como a máxima perda esperada com um dado nível de confiança, em 

relação ao valor do portfólio ao final do periodo de aplicação.

A variância de um portfólio informa somente quanto de variabilidade apresenta o 

retorno esperado, mas não informa o valor da perda esperada em termos monetários; então uma 

medida focalizada nos a%  piores resultados, ou seja, a probabilidade nas caudas da distribuição 

de probabilidades dos retornos, apresenta-se mais adequada. Pode-se definir VaR como a 

máxima perda esperada em ( I -a% ) dos casos, para um nível de confiança a .

Ao especificar a ,  obtém-se um valor de corte para os retornos, separando ( !00-a)%  dos 

dados correspondentes a retornos aceitáveis, dos a %  restantes, não aceitáveis.

Pode-se, também, estabelecer um valor de corte e determinar a probabilidade de ocorrer 

retorno menor

Seja W o valor inicial do portfólio e r o retorno; seja também r* um v alore de corte para 

o retorno, isto é, são aceitos portfólios com valores esperados acima deste corte.

Supondo-se conhecida a distribuição de probabilidades dos retornos. fir), entao para 

retornos centesimais, tem-se.

O valor de r*, para dados não padronizados, pode ser obtido calculando-se a inversa da 

função distribuição de probabilidade acumulada

Para retornos normalmente distribuídos, o valor de corte do retorno r* ou do nível de 

confiança a ,  são facilmente encontrados, dados pela relação:

especificado. É uma medida do risco de portfólios que indica o valor máximo esperado de
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r* = p. + zo

Resultante das propriedades de P[Z < (r*-p)/a] = a , onde z reflete o nível de confiança, 

assumindo valor do 1.65 para 95%, por exemplo, e obtido de tabelas da distribuição normal 

padronizada; z está relacionado à probabilidade de eventos nas caudas da distribuição, o que 

permite definir VaR em termos dos parâmetros z e a ,  para o nível de confiança a  desejado 

VaR = -zaw  (vr = valor inicial do portfólio)

Como medida estimada, o VaR verdadeiro não é conhecido, uma vez que o  e p  são 

estimados. A utilidade do VaR estimado depende de sua precisão. Se a precisão é alta, então 

VaR é altamente informativa; caso não seja, as informações são vagas ou de nenhuma valia.

Para avaliar a precisão, uma maneira natural é a construção de intervalo de confiança, 

que sob a suposição de retornos normalmente distribuídos, é de fácil obtenção.

Para uma população (de retornos) normalmente distribuída, o VaR verdadeiro é igual a 

(-zcw), onde w é o valor inicial do portfólio. Mas para valores amostrais e também por tratar-se 

de projeção a partir da análise de performance passada para apoio em decisões futuras, deve-se 

considerar o verdadeiro parâmetro ct como desconhecido ou impreciso.

Em amostras de tamanho n, a partir de uma distribuição normal, a variável

(n -l)s2/o 2

2 2 ' . a . 2 'tem distribuição x com (n-1) graus de liberdade, onde s é a variância amostrai e a  e a

variância populacional desconhecida. Desta forma, existe (100-a)%  de probabilidade de que a 2

esteja entre x2o.o25 e %2o.9i 5, então o intervalo de confiança para ct2 deve ser:

2 2 

(/7 -  1)—4----<Cj2 —
X  0.915 X  0.025

O intervalo de confiança para VaR, é dado por:

(n-1) „ (n-1)z - s  • tr h—— - < VaR = - z c u ’ < - z  • s • u’ ---------
Xo.975 \ Xo.()25

O VaR de um portfólio é menor que a soma de VaR dos ativos individuais que o 

compõem, isto é, VaR é reduzido pela principio da diversificação. Isto pode ser observado pela 

decomposição do VaR de portfólios em seus constituintes: 

o 2p = x£x’ = xaR ox’ ->

VaRp = -zapH = -zfxoRax ]12 ir ->

VaRp = -a[xEx’]’ 2.W = [VaR.R.VaR]12



onde VaR corresponde ao vetor cuja i-ésima coordenada corresponde ao VaR do i-ésimo ativo. 

Assim, para estimar o VaRp de um portfólio, são necessárias estimai ivas de fatores como 

volatiüdades (o). Correlações (R), ou ambos fatores combinados na matriz de covariâncias £, e 

dos fatores de escala, ou ponderações em x, além do valor do portfólio a

4.2.2. O Modelo Média - Valor sob Risco (M VaR)

Segundo DUARTE (1999), um algoritmo para gerar a Fronteira de Eficiência com risco 

dado pelo Valor sob Risco pode ser aproximado pelo modelo M-V de Markowitz Neste 

modelo se obtém a mensuração do risco pela metodologia VaR, e uma função utilidade com um 

parâmetro de Iradeoff entre retorno (pp = p'x) e valor sob risco (VaR ~ z.V(x), para retornos 

com distribuição normal), deve ser otimizada segundo o critério de dominância:

Maximizar U = p ’ x + z.V(x)

Sujeito a x'u = 1 (P4)

1 x = b

Xj > 0 Vi

onde z reflete o nível de confiança desejado (por ex., -1.65 para 95%), X é um parâmetro de 

aversão ao risco, característico para cada investidor e V(x) = x'Exé a variância do portfólio

4.2.3. Implem entação com putacional do M odelo MV aR

O modelo MVaR corresponde a um problema de programação não linear, sujeito a 

restrições lineares, com solução obtida através do programa Lingo

O Anexo III apresenta o modelo implementado.

Os dados para este modelo consistem em vetor de retornos logarítmicos, matriz de 

covariâncias e vetor de retornos dos portfólios obtidos com o modelo MV, convertidos do 

programa Maple para arquivos excel(.xls):
! Matriz de covariâncias e vetor de retornos;

MC = 0OLE(’C:\MC.XLS', 'MC');
RET = 0OLEÍ'C:\VR.XLS', ’V R ');

! Retornos Logarítmicos de Portfólios;
RLH - 0OLE ( 'C:\RLtI.XLS', ' PLM' ) ;
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As soluções obtidas são exportadas para um arquivo excel, com a inclusão de nome para 

o intervalo onde são colocados os resultados: Inserir/Nome/Definir, Nome = "1NV" e Intervalo 

= "=IN V ! $ A$ í : $B K S 1".

! Resultados exportados para arquivo excel;
@OLE( ' C : \ VARMV. X L S 1, ' I NV_MV' )  = I NV;

A cada solução com o programa Lingo, o resultado (portfólio) é armazenado em uma 

segunda planilha "PortfMV".



5. A P L IC A Ç Ã O  DOS M O D E L O S

5.1. Seleção de A tivos

São utilizados os preços de 63 ativos negociados na Bolsa de Valores do Estado de São 

Paulo (BOVESPA), obtidos através do banco virtual wvvw.investsliop com, cujos nomes 

encontram-se listados na Tabela 4, em anexo

Foram selecionados ativos que apresentaram cotações diárias completas no período de 

03/10/1997 a 29/12/2000 (848 dias úteis), permitindo a construção da matriz de covariâncias 

com a interpolação de alguns poucos dados não disponíveis dentro do intervalo utilizado

Os dados listados pelo banco virtual corresponderam aos de Maiores Volumes, Maiores 

Altas e Maiores Baixas, negociados na Bovespa.

Com o auxílio da planilha de cálculos Microsoft Excel, são organizados os dados 

referentes a cotações das ações e gravados em um arquivo ( csv), para o programa Maple.

O cálculo dos retornos logarítmicos esperados e da matriz de covariâncias é realizado 

com o programa Maple, com os códigos/algoritmos descritos no A n e x o  I

Como primeira análise, os resultados de retornos logarítmicos esperados e desvio padrão 

(Risco DP) dos retornos dos ativos são listados na Tabela 6e Tabela 7 dos anexos A Figuras 2 

e Figura 3 a seguir apresentam a dispersão dos dados em planos Risco-Retorno, para 63 ativos 

com 848 cotações diárias.

0.012

0.010

z 0.008

|  0.006 O
1 0.004 

0.002 

0.000

R i s c o  e  R e t o r n o  d e  A t iv o s

- 0.002

>
. . V  ♦

0.00 0.10 0.20 0.30
Risco - DP

0 40 0.50

Figura 1: Risco e Retornos Logarítmicos dos Ativos

http://www.investsliop
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Risco e Retorno de Ativos

1.4

Risco DP

Figura 3: Risco e Retornos Percentuais - 63 Ativos

A classificação para alguns dos ativos pelo critério riscos(maior para menor) resulta 

Ativos: 19, 25, 57, 35 e 63. Com classificação pelo retorno(maior para menor), resulta em 

Ativos: 25, 63, 19, 57 e 35. A construção da Fronteira de Eficiência permite classificação de 

portfólios sem esta ambigüidade.

Os retornos logarítmicos semanais esperados e respectivo desvio padrão, para os 146 

ativos, são listados na Tabela 8 dos anexos. A Figura 4 a seguir apresenta a dispersão dos 

dados no plano Risco-Retorno, para 146 ativos com 170 cotações semanais.

Figura 4: Risco e Retorno Semanal - 146 Ativos
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5.2. R eto rn o s  e M a tr iz  d e  C o v a r iâ n c ia s

Os retorne esperados e matriz de covariâncias são calculados a partir da matriz de 

cotações, utilizando o programa Maple, cujo código/algoritmo encontra-se 110 Anexo I.

O vetor de retornos (|i) e a matriz de covariâncias (E) e o tamanho da amostra (n) são 

gravados em arquivos para utilização no modelo de Markowitz

5.3. M o d e lo  d e  M éd ia -V a r iâ n c ia  (M V )

A determinação da Fronteira de Eficiência para o modelo Média-Variância é realizada 

conforme o algoritmo descrito em 4 .1.1, implementado em linguagem de programação Maple.

Os dados de entrada para o modelo MV são:

- 11 = 63 ativos com retornos diários em 847 dias úteis;

-  p  restrições sendo q  delas do tipo desigualdades;

- p. = vetor de valor esperado dos retornos dos ativos eficientes;

- A = matriz dos coeficientes das restrições;

- E = matriz de covariâncias dos retornos logarítmicos.

O primeiro passo determina o portfólio de máximo retorno, com a solução de upt 

problema de Programação Linear. Utilizando um modelo com somente a restrição de 

orçamento, o primeiro portfólio é composto inteiramente pelo ativo de numero 25, com retorno 

|Ap = 0.012272 e risco o  = 0.33186. Os portfólios das 61 iterações seguintes correspondem aos 

que proporcionam a menor redução no parâmetro Ek "tradeoff" entre retorno e risco (menor 

redução no retorno), para a entrada ou saída de uma variável da base.

Os cálculos são efetuados nos programas Maple e Lingo, conforme o algoritmo descrito 

em 4.1.1 e código descrito no Anexo II e Anexo III.

Os resultados de Risco e Retorno Logarítmico dos Portfólios Eficientes Estratégicos

encontram-se na Tabela 2 (anexo). Estes resultados estão representados em termos de valor

mais esperado dos retornos logarítmicos.

Os valores usuais de retornos percentuais diários são obtidos através da transformação 

(EP= 100[exp(Ei) -  1J) e desvio padrão dos retornos percentuais (DPp -  100[exp(DP) 1J) e

apresentados na Tabela 3 (anexo).

O gráfico da Fronteira de Eficiência é apresentado na Figura 5 a seguir.
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Fronteira de Eficiência

0.014

Risco (Desvio Padrão)

Figura 5: Fronteira de Eficiência para 63 ativos

De posse dos portfólios estratégicos determinados (Tabela 5 anexo), são calculados o 

Risco e Retorno, utilizando-se as fórmulas (7) e (8): jip = c’ p  e op = cT c

5.4. Modelo de M édia - Valor sob Risco (M VaR)

O modelo MVaR é implementado com o objetivo de verificar o VaR para cada retorno de 

portfólios estratégicos determinados no modelo Média - Variância de Markowitz, permitindo a 

comparação da eficiência dos portfólios obtidos a partir das duas metodologias de quantificação 

do risco.

O modelo MVaR implementado em Lingo (ver Anexo IV) é apresentado a seguir: 

Minimizar VaR

Sujeito a x'.u = 1

VaR = z*(x'Zx)l/2

x 'n  = R(j), (j = 1,2, ..., 62 retornos de portfólios MV) 

xj > 0 V i = 1 ,2 ,..., 63 

Os resultados (Risco, Retorno) do modelo MVaR, para retornos iguais aos obtidos com 

portfólios MV são apresentados na tabela a seguir, e apresentam poucas alterações em relação 

aos resultados do modelo MV, como esperado, pois para a mínima variância tem-se também o 

mínimo desvio padrão utilizado para obter VaR
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As diferenças entre os portfólios obtidos no modelo MV e MVaR são mínimas, (0,03% 

para ativos ausentes no modelo MV) podendo ser atribuídas a efeitos de arredondamento O 

gráfico da Fronteira te Eficiência para o modelo MVaR é idêntico ao do modelo MV, razão 

pela qual não é apresentado.

Os valores de VaR para os portfólios MV são apresentados na Tabela I a seguir, onde 

VaR representa a máxima perda esperada com 95% de probabilidade e YaR.% corresponde a 

VaR em valores percentuais

Tabela 1: Valor sob Risco para Retornos Logarítmicos e Percentuais

Portf VaR VaR% Portf VaR VaR% Portf VaR VaR%
1 0.547 42.14 22 0.038 3.69 43 0.019 1.90
2 0.221 19.80 23 0.037 3.63 44 0.019 1.88
3 0.203 18.36 24 0.037 3.62 45 0.019 1.86
4 0.195 17.76 25 0.036 3.58 46 0.019 I 84
5 0.191 17.40 26 0.034 3.34 47 0.018 1 78
6 0.153 14.17 27 0.033 3.22 48 0.017 1.64
7 0.148 13.76 28 0.033 3.22 49 0.016 1.63
8 0.136 12.70 29 0.032 3.18 50 0.016 1.59
9 0.129 12.09 30 0.032 3 10 51 0.016 1.55
10 0.114 10.79 31 0.031 3.01 52 0.016 1.55
11 0.081 7.80 32 0.029 2.84 53 0.016 1.54
12 0.065 6.27 33 0.025 2.51 54 0.015 1.48
13 0.064 6.20 34 0.025 2.51 55 0.015 1 46
14 0.063 6.08 35 0.025 2.45 56 0.015 1.44
15 0.061 5.93 36 0.024 2.39 57 0.014 1.44
16 0.052 5.06 37 0.024 2.35 58 0.014 1 42
17 0.050 4.86 38 0.024 2.35 59 0.014 1.42
18 0.049 4.83 39 0.022 2.18 60 0.014 1.42
19 0.049 4.74 40 0.021 2.09 61 0.014 1.42
20 0.042 4.07 41 0.021 2.06 62 0.014 1.42
21 0.040 3.89 42 0.020 1.97

Para os retornos percentuais, podemos identificar o elevado grau de risco associado aos 

ativos em análise, uma vez que se trata de retornos diários.

Com o cálculo de assimetria e curtose dos retornos dos portfólios, conforme a Tabela 7 

dos anexos, podemos avaliar se os dados apresentam-se aproximadamente distribuídos de 

acordo com uma curva normal. A assimetria é encontrada somente nos dois primeiros portfólios 

com valores 20.77 e 4.08(o padrão é zero), indicando assimetria à direita, com excesso de dados 

à esquerda, indicando que o modelo MV está sub-avaliando o risco. O cálculo de curtose indica 

que os dados apresentam-se demasiadamente centrados com valores 540.9, 187.3 para os 

primeiros portfólios a 6.23 e 6.07 para os dois últimos.
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O teste K-S de Kolmogorov-Smirnov, para verificar a hipótese de ajuste dos dados à 

distribuição normal, apresentou valores-p menores que 0.01 para todos os portfólios, ou seja, as 

variáveis retomo histórico de cada portfólio dadas por combinação linear dos retornos dos 

ativos com coeficientes as frações de orçamento aplicada em cada ativo, não podem ser 

adequadamente modeladas pela curva de Gauss.



6. CO NC LU SÃ O

A construção de portfólios amplamente diversificados proporciona uma espécie de 

proteção contra flutuações imprevisíveis nos retornos, devido ao efeito da diversificação, com 

redução do risco.

A diversificação com o modelo de Média-Variância de Markowitz, com otimização do 

parâmetro tradeoff entre risco e retomo proporciona melhor resultado, comparado à 

diversificação aleatória, pois permite a escolha entre os portfólios diversificados, daqueles que 

tem menor variância para cada nível de risco, e também corresponde à escolha cujos retornos 

esperados apresentam maior probabilidade de ocorrência, levando-se em conta a performance 

passada.

Como resultado do modelo MV, são obtidos os portfólios eficientes estratégicos como 

soluções de um sistema de equações lineares para cada parâmetro de aversão ao risco. As 

combinações convexas entre duas soluções consecutivas também são portfólios eficientes, 

proporcionando portfólios adequados aos mais diversos níveis de aversão ao risco. O conjunto 

de portfólios e suas combinações convexas correspondem à Fronteira de Eficiência dos 

portfólios, onde não é possível obter um portfólio com maior retorno para determinado nível de 

risco, bem como não é possível obter um portfólio com menor risco, para determinado retomo 

esperado.

A análise é adequada, também, para diferentes orçamentos, onde a inclusão de restrições 

de valor mínimo a aplicar em cada ativo, ou grupos de ativos, gera portfólios com menor 

número de ativos, de mais fácil administração, embora a curva da fronteira de eficiência possa 

deslocar-se com algum aumento de risco.

Como os modelos MV e MVaR apresentados neste trabalho partem da suposição de 

retornos modelados pela distribuição de probabilidades normal, a qualidade de ajuste dos 

retornos dos portfólios eficientes estratégicos obtidos à distribuição normal foi testada. Segundo 

MOOD, quando esta suposição não se verifica, pode levar à perda de informações 

significativas.

Para o conjunto de dados utilizados, foi possível verificar que, para maior diversificação 

tem-se gradativamente melhor ajuste, como pode ser observado nos valores de assimetria e 

principalmente de curtose para os portfólios eficientes (Tabela 9) e valores normais esperados 

para probabilidades (Figuras 7 e 8 nos anexos). Esta observação está de acordo com DOWD 

(1999, p. 87, 93) sobre a tendência à distribuição normal para portfólios amplamente 

diversificados, devido ao efeito do Teorema Central do Limite, da Estatística.
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Sob a hipótese de que os retornos dos portfólios eficientes possam ser ajustados pela 

distribuição de probabilidades normal, a solução do modelo não linear MVaR, que tem risco 

calculado com base na variância, é equivalente à do modelo MV. A metodologia MVaR pode 

ser considerada uma extensão natural do modelo de Markowitz, ao menos para retornos com 

distribuição aproximadamente normal. A utilidade do modelo MVaR, está em que estabelece 

um valor máximo para a perda de valor monetário esperada em um horizonte de tempo, para 

determinado nível de confiança estatístico.

Sugestões para trabalhos futuros.

1. Implementação do Modelo MVaR fatorial, determinando a máxima perda esperada, 

com risco dado por combinação linear de fatores de mercado.

2. Construção de portfólios com o uso da Razão de Sharpe Generalizada, proposta por 

DOWD, que tem a propriedade de levar em conta as correlações de ativos com o portfólio do 

investidor, adequado para mudança em posições de risco.

3. Utilizar metodologia mais robusta para estimação de volatiüdades e correlações, 

permitindo variação de volatilidade ao longo do tempo, bem como atribuição de ponderação 

maior para valores mais recentes: Os modelos de estimadores com média móvel ponderada 

(EWMA - Exponentially Wighted Moving Avercige) e Autoregressivo Generalisado com 

Heterocedasticidade Condicional (GARCH - Gemralised auloregiessive condiíioual 

heteroskedastic), embora, segundo DOWD, as correlações no modelo GARCH apresentem 

dificuldades com o número de parâmetros crescendo exponencialmente com o número de 

correlações.
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Anexo I: Program ação em Linguagem Maple para Retornos e Covariâncias

1. Lê o arq jívo de preços:

y  restart:with(linalg):
>  read("Cotacoes.txt"): tt "Retorna a matriz de A de Cotações"

2. Divide a matriz A em Matrizes A |l |  até A|5j, para sexta(l) a quinta(5):

> N[1]:=170:N[2]:=170:N[3]:=170:N[4]:=169:N[5]:=169:
>  for i from 1 to 5 do
> AS[i]:=matrix(N[i],n,0):
y kk:=0.
y for j from i to m by 5 do
V.r kk:=kk+l:
y for k from 1 to 63 do
y AS[i][kk,k]:=A[j,
y od:

V 
V

o o-

od:

3. Cálculo do Vetor de Retornos Logarítmicos Esperados:

> VMA:=proc()
> global vr: local i j :  vr:=matrix(n, I):
> for i from 1 to n do
> vr[i, l]:=(ln(A[m,i])-ln(A[ 1 ,i]))/(m -1):
> od:
> end:

4. Interpolação Geométrica para Dados Não informados:

> INTG:=proc(jj,ii)
> global A: local K, Kl, MK: K:=jj:
> while A[K,ii]=0 do
^  K:=K+1:
y  od:
> M K:=(A[K,ii]/A[jj-l,ii])A(l/(K -jj+ l)):
y  for Kl from jj to K-l do
y  A[Kl,ii]:=A[KI-l,ii]*MK:
y  od:
y  end:
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Programação em Linguagem Maple para Retornos e Covariâncias

5. Retornos Logarítmicos Históricos - matrix RLiN (847 x 63 ou 170 x 63):

^  RLÜü:=proc()
'r global A, RL local i, j, k, vri.
> RL:=matrix(n,ni-l):
"r for i from 1 to n do
> vri:=vr[i, 1],
"r for j from 2 to m do
> if A[j,i]=0 then
> INTG(j,i).
> fi:
> RL[i,j-l]:=ln(A[j,i])-ln(A[j-l,i]):
>  od:
>■ od:
'r end:

6. Cálculo da Matriz de Covariâncias dos Retornos

> MCA:=proc()
>  global Sigma, A: local i, j, k, vri, S l, DESV:
> DESV:=matrix(n,m-l):
>  for i from 1 to n do
> vri:=vr[i, 1],
> for j from 2 to m do
> if A[j,i]=0 then
> INTG(j,ij
r" fi:
> DESV[i,j-l]:=ln(A[j,i])-ln(A[j-l,i])-Vri:
> od:
> od: Sl :=matrix(n,n,0):
>  for i from 1 to n do
'r for j from i to n do
> for k from 1 to m-1 do
>  S 1 [i j]:=DESV[i,k]*DESV[j,k]+S 1 [i,j]:
> od:
> Sl[j,i]:=Sl[i,j]:
> od:
>  od: Sigm a:=evalm (Sl/(m -l.0)):
> end:

Programação em Linguagem Maple para Retornos e Covariâncias 

Principal

7. Vetor de Retornos Logarítmicos para Preços da matriz A(63 x m, 146 x m)

> #A:=evalm(AS[l]):m:=rowdim(A); #Matrizes de Retornos Semanais 2a a 6;'
>  T_INl:=time():
> RLOG():



> print(MTempo de cálculo (s) = ",time()-T_INI);
> save(RL,"RLN146.LN"): #Resultado Retornos Logarítmicos.

"Tempo de cálculo (s) = ", 3.714

Vetor de Retornos(LN) Esperados e Matriz de Covariâncins:

'r T_lNI:=time():
> VMA():
> MCA():
>  printÇTempo Cálculo (s) ^  ",time()-T INI);
>  mu~evalm(vr):MC:^evalm(Sigma):
> save(n,mu,"MED146 LN"):
> save(MC,"MC146.LN"):

"Tempo CálcuIo (s) = ", 121.370
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Anexo II: Modelo MV de Markowitz no programa Maple

In ic ia l ização :

Iniciar:

r- restart: with(linalg) : with (simplex) : q:=0: p:=l:
"r ImpITER:=0: #1 => Mostra Iterações:

Dados

Vetor de Retornos e Matriz de Covariâncias:
"r read ( "RET . LN" ) : read ( "MC . LN" ) : n : =rowd i.rn CMC) :

Conjunto de Variáveis de Restrições e Vetor de "Recursos":

> V R [1]:={1}: V R [2]:={2}: V R [3]:={3}:
> b :=matrix(p,1, [1]) : #b:=matrix(p,1, [0 . 5,0 . 9,0.9,1]) :

Variáveis e Matrizes do modelo MV
> A :=matrix(p,n+q,0) : V A : = {}: V R [p ] : = í í : 
r  for i from 1 to n do
> VR[p]:= VR[p] union {!}:
> end d o :
'r for i from 1 to p do 
A for j in V R [i] do
^ A [i,j]:-1:
r  end d o :
r- end d o :
'r for i from 1 to q do
> A[i,n+i]:=1: VA:= VA union {n+i}:
r- end do:
> M :=copyinto(MC,matrix(n+p+q,n+p+q,0) , 1, 1) :
> M :=copyinto(A,M,n+p,1):
r  M :=copyinto(transpose(A),M,1,n+p): N I :=evalm(M):
'r R:=matrix (n+p+q, 1, 0) : R:-copyinto (b, R, n+qr 1, 1) :
r  S :=copyinto(mu,matrix(n+p+q, 1, 0) , 1, 1) :
> X :=matrix(n+q+p, 1) :
r  for i from 1 to n+q do
> X[i,1]:=x[i]:
> end d o :
>+ for i from n+q+1 to n+q-^p do
> X [ i,1] :=lambda[i-n-q] :
> end do: JAUX:={}: LK:=0:
> V L :=matrix(0,1,0) :

Procedures:



Modelo MV de Markowitz no program a Maple

Inversão da matriz M~, Equações e Linha Crítica
y  M N :=proc()

global Ml, Nl, N2, T, U: local i,j: 
r  K l : ova 1m.(M) :
y  N 2 :=evalm(Nl):
y  for i from 1 to n+q do:
y  if member(i,J)=false then
y  for j from 1 to n+p + q do
> M1 [ i , j ] : = 0 :
> Ml[j,i]:=0:
y  o d :
y  M l [i,i] :=1:
> f i :
y  o d :
y  N l :=inverse(Ml):
y  for i from 1 to n do
> if member(i,J)=false then
y  N l [i,i]:=0:
y  f i :
y  o d :
y  T :=multiply(Nl, R) :U:=multiply(Nl,S) :
y  if ImpITER = 1 then
'> print(evalm(X) =evalm (Nl) * (evalm(P> t-
> lambda[E]*evalm(S)));
y  print(evalm(X)=evalm(T)+lambda[E ]* evalm(U) )
> f i : 
y  end:

Cálculo de lambda[E] para entrada ou saída de variáveis
y  LAMBDA:=proc()
> global lambda,LC,LK,IK,JIN,JAUX,J,XX,LKA,VL:
"r local i, LKK:
"y LC : =evalm (mui tiply (M, T+lambda [E ] *evalm (U) ) -
y  lambda[E]*evalm(S)):
y L K :=-3000: IK:=0:
y  for i from 1 to n+q do
y  if member(i,J)=false then
y  if member(i,JAUX)=false then
y  LKK:=solve(LC[i,1]=0,lambda[E ]):
y  if (LKK > LK and LKK <= LKA) then
> L K :=LKK: IK:=i:
y  f i :
'y #print(x[i],' lambda [E, ENTRAR] ' -LKK) ;
y  else
'y #print (x [i] , "JÁ FOI BASE"):

Modelo MV de M arkowitz no program a Maple



if member(i,JIN)=false then
> if U[i,1] <> 0 then
> LKK:=-T[i,1]/U[i,1]:
> else
A LKK: =10/'21:

fi:
> if (LKK > LK and LKK <= LKA) then
> L K :=LKK: IK:=i:
> f i :
> #print(x[i],'lambda[E,SAIR]'=LKK):
> else
> #print(x[i],"Entrou Iteração Anterior")
> f i :
r- fi :
> o d :
> LKA:=LK:
> if LK > 0 then
> if member(IK,J)=false then
> JIN:={IK}:
> J := J union {IK}:
> print(x[IK],"Entra na B a s e " l a m b d a [ E ] '=LK
> else
> if member(IK,VA)=false then
> JAUX:= JAUX union {IK}:
> f i :
> J:= J minus {IK}:
> print(x[IK],"Sai da Base", 1lambda[E]'=LK):
> JIN:={}:
> fi :
> print('J'=J):

V L :=extend(VL,1,0,LK):
> else
> print("Variável",IK,"gera",'lambda[E]'=0):
> print("Fim das Iterações. MÍNIMO ENCONTRADO"):
>

oIIXAl

fi :
> end:

Restrições
> REST:=proc()
> global consts: local AX,RHSV,i,AR: consts:=f}:
> AR:=extend(A,0,p,0): AX:=multiply(AR,X):
> for i from 1 to p do

Modelo MV de Markowitz no program a Maple
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P consts:= consts union { evalm (AX f i , 1 ] ) =b [ i, 1 ] } ;
P o d : 
r  end:

PPL - Portíòlio de maior retorno:
P  PPL : =proc ( )

P  global Soluc, consts: local Z, S F * :

P SR :=extend(mu,p t q,0,0):
P Z : = multiply(transpose(SR),X'[!,]]:
P Soluc : =maximize (Z, consts, N0NNEGATT.7E) ;
P  end :

Conjunto J de variáveis IN e Soluções ordenadas:
> CJVIN:=proc()
> global XX, J, JIM:
P  local i, k:
P XX:=matrix(n+q,1 ):J:={}:
P for k from 1 to n+q do
P for i from 1 to n+q do
P if Ihs(Soluc[k]) = X[i,l] then
P XX [ i,1] :=evalf(rhs(Soluc[k 1; ) :
P if XX[i , 1 ] 0 then
P J : =  J  union {i }:
P f  i :
P f i :
r  o d :
P o d :
P JIN:=J: print('J '=J):
P end:

Conjunto de portfólios estratégicos!matriz PE)
P  PPE:=proc()
> global XX, PE, PXA, N_IT: local i:
> PE :=evalm(PXA):
P XX:=evalm(multiply(NI,R)+LK+multiply(NI,S));
P for i from 1 to n+q do
> PE[i,N_IT]:=XX[i,1]:
P o d :
P PXA:=extend(PE,0,1,0):
P if LKA > 0 then
P N_IT:=N_IT+1:
P f i :
P end:

Modelo MV de Markowitz no programa Maple

Inicializa variáveis de controle da LC



> INIC_LC:=proc()
> global N_IT, LKA, PXA:
> PXA:=matrix(n+q,1,0):
> M_IT:=1:LKA:=10 ̂ 2 0:
> unassign('PE'):
> end:

Principal:

Inicializa Variáveis, Restrições, Portfólio Inicial e Conjunto J
> INIC_LC();
> RESTO;
> PPL () ;
> CJVIN() ;

Iterações até Mínima Variância
> Timelni:=time();
> while LKA > 0 do
> M N (): LAMBDA(): PPE(): 
r- o d :
> PPE () :
> print(N_IT,"Iterações, pm ", time()-Timelni," s.")

Salva Conjunto de Portfólioes Estratégicos
> save(PE,"PE146.FIN");

Fronteira de Eficiência:
Portfólios Eficientes e Combinações Convexas

"r NPI:=1: #Número de pontos como combinacão convexa
> Digits:=7:
> PFE:=matrix(n,NPI*N_IT):
> for i from 1 to n do
> kk:=0:
> for j from 1 to N_IT do
> for k from 1 to NPI do
>  k k : = k k + l :
^ PFE fi,kk] :=(NPI + l-k)*PE[i,j]/NPI+(k—1) +
> PE[i,j+1]/NPI:
> o d :
'r o d :
> PFE[i,NPI*N_IT]:=PE[i,N_IT]
> o d :
> PFE:=evalm(PFE):

Modelo MV de Markowitz no programa Maple

Risco-Retorno
> RR:=matrix(NPI*N IT,2)
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> for i from 1 to NPI+N_IT do
r  RR [ i, 1 ] : =sqrt (mui tiply (mui tiply- (c J i;FE,i),

MC),c o l (PFE,i))); 
r  R R [i,2] :=multiply(c o l (PFE,i) , m u ) f1J ; 
r- o d :
> RR:=evalm(RR);

Fronteira de Eficiência
r  with(plottools):
> AA: = [RR[1,1] , RR[1, 2]] :
r  for i from 2 to NPI*N_IT do 

AA:=AA,[RR[i,1],RR[i,2 ]];
r  o d :
r  AB : =curve ( [7\A] ) :
r- plots [display] (AB, title="Fronteira de Eficiência 146 

Ativos",labels=[Risco DP,Retorno Semanal]);



74

Anexo III: Modelo MV no program a Lingo

MODEL: ! Média - Variância - MV
! Determinar portfólios com mínima Variân via 
! para cada nível de retorno;

SETS :

ATIVOS/1..63/: INV, RET;
COV(ATIVOS,ATIVOS): MC;
LAMBDAS /1..62/: LKMV;

ENDSETS

DATA:

! Orçamento disponível;
VJ = 1.0;

! Matriz de covariâncias, vetor de retornos e de Lambdas,
MC = @OLE( ’C 
RET = @OLE( ’C 
LKMV = 0OLE( 'C

\MC.XLS', 'MC'); 
WR.ZLS', 'VP'); 
\LKMV.XLS', 'LKMV');

END DATA

! FUNÇÃO OBJETIVO;
[Funcao Objetivo] Min = SD2/2 - LKMV(1)*XMU;

! Restrição de Orçamento;
0SUM(ATIVOS: INV) = W;

! Valor do portfólio;
XMU = 0SUM(ATIVOS: INV * RET);

! Desvio Padrão;
SD2 = (0SUM(COV(I,J): INV(I) * INV(J) * MC(I,Jj));

END



Anexo IV: Modelo MVaR 110 programa Lingo

Média - Valor sob Risco - MVaR
Determinar portfólios que minimizam o 'alor sob risco, 
com probabilidade "alfa" de ser excedido, para cada 
retorno obtido no modelo MV;

ENDSETS

DATA:

! Portfólio MV sendo analisado (1 a 62);
K = 1;

! Orçamento disponível;
W = 1 . 0 ;

! Risco com probabilidade alfa de VaP. ser excedido; 
alfa = 0.05;

! Matriz de covariâncias, vetor de retornos e de Lcddas;
MC = 0OLE('C:\MC.XLS', 'M C ');
RET - @OLE('C:\VR.XLS’, 'Y R ’);

! Retornos Logarítmicos de Portfólios;
P.LM = 0OLE ( 'C:\RLM.XLS', ' RLN ' ) ;

! Resultados exportados para arquivo excel;
0OLE( ’C:\VARMV.XLS’, 'IMVMV') = IMV;

EMDDATA

! FUNÇÃO OBJETIVO;
[Funcao_Objetivo] Min = VaP.;

! Z = Número de DP's para PfVaR > VaR+] (-1.644853 para 5 ); 
alfa = 0PSN(Z);
0FREE(Z);

! Restrição de Orçamento;
03UM(ATIVOS: IMV) - W;

! Restrição de retorno requerido. Excluir para mini mo VaR; 
XMU - RLN(K );

! Retorno do portf.ólio;
XMU = 0SUM(ATIVOS: INV + RET);

! Desvio Padrão;
SD = (0SUM(COV(I,J): IUV(I) * INV(J) * M C (I,J !'!'0.5;

SETS :

ATIVOS/1..63/: INV, RET; 
COV(ATIVOS,ATIVOS): MC; 
PARAMETROS /1..62/: RLN;

(Portfólio x  e  eior |i. de retornos 
(Matriz de covariâncias 
(Retornos dos portfólios MV

( Valor sob Risco (VaR) com 5 - de probabilidade de ser excedido; 
VaR = -Z*SD; ! Obs.: Z < 0.

END
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Anexo V: índice IBOVESPA

K o mais importante Indicador de desempenho médio das cotações do mercado 

brasileiro de ações, retrata o comportamento dos principais papéis negociados na BOVESPA - 

Bolsa de Valores do Estado de São Paulo. Implementado em 02/01/1968, não sofreu 

modificações metodológicas até a presente data.

Representa o valor atual, em moeda corrente, de uma carteira teórica de ações, a partir 

de uma aplicação hipotética, ou teórica, integrada pelas ações que, em conjunto, representam 

80% do volume transacionado à vista nos doze meses anteriores à formação da carteira. A ação 

deve apresentar, no mínimo, 80% de presença nos pregões no período.

A participação de cada ação na carteira é relacionada à representatividade desse título no 

mercado à vista - em termos de número de negócios e volume em moeda corrente - ajustado ao 

tamanho da amostra.

Sofre reavaliações quadrimestrais, para que a representatividade do índice se mantenha 

ao longo do tempo, com base nos 12 meses anteriores
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Tabela 2: Portfólios Eficientes pelo critério Média - Variância

Portfólio A.,-: Risco Retorno
i '• 6096 0.331860 0.012272
2 5.8972 0 133791 0.010515
> 1.8432 0.123016 0 010158
4 1.7566 0 118549 0.009858
5 1.7101 0.115903 0000679
6 1.3120 0 092644 0.008074
7 1.2636 0.089810 0.007873
8 1.1504 0.082355 0.007341
9 1.0874 0.078167 0007041
10 0.9519 0.069214 0.006394
1 1 0.6469 0.049277 0.004916
12 0.4901 0.039284 0.004138
13 0.4824 0.038792 0004098
14 0.4717 0.038073 0.004041
15 0.4566 0.037048 0.003958
16 0.3728 0.031495 0.003499
17 0.3528 0.030200 0.003389
18 0.3498 0.03000! 0003371
19 0.3419 0.029474 0.003326
20 0.2780 0.025224 0.002951
21 0.2597 0.024038 0 002842
22 0.2410 0.022818 0 002728
23 0.2353 0.022455 0.002694
24 0.2340 0.022369 0.002686
25 0.2300 0.022091 0 002659
26 0.2078 0.020577 0.00251 1
27 0.1972 0.019866 0.002440
28 0.1966 0.019826 0.002436
29 0.1935 0.019607 0.002414
30 0.1868 0.019129 0.002365
31 0.1782 0.018520 0.002303

Portfólio À, Ri‘-Co Retorno
32 0.1628 0.017444 0.002189
\ > 0.1329 O.OI-42S 0.001965
34 0.1323 0 ()M3°0 0.001961
35 0.1270 0 01.-032 0.001019
36 0.1220 0014091 0.001878
37 0 1 182 0014433 0.001847
38 0.1 181 0014430 0.001846
39 0.1021 0.013342 0.001709
40 0.0941 0 012708 0.001637
41 0.0912 0 012608 0.001610
42 0.0828 0012040 0.001531
43 0.0760 0.01 1627 0.001468
44 0.0745 0011530 0.001453
45 0.0724 0.011407 0001434
46 0.0703 0.01 1274 0001413
47 0.0644 0.0HN2I 0.001355
18 0.0485 0.010054 0.001194
49 0.0467 0.009061 0.001174
50 0.0424 0.000750 0.001128
51 0.0362 0.000467 0.001058
52 0.0351 0.009457 0.001056
53 0.0351 0.00942 2 0001046
54 0.0240 0.000013 0.000919
55 0 0215 0.008942 0 000801
56 0.0165 0.008819 0.000834
57 0.0139 0.008767 0.000803
58 0.0090 0,008693 0.000747
59 0.0078 0.008680 0.000733
60 0.0073 0 008675 0000727
61 0.0064 0.008668 0 000710
62 0.0000 0.008645 0.000656
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Tabela 3: Portfólios Eficientes pelo critério  M V - Retornos Percentuais

Port fólio Risco Retorno(%a d ) Portfólio Risco Rctorno(%a d )

1 39 356 1.235 32 1.760 0.219

2 14.315 1.057 33 1.555 0 197

3 13.090 1.021 34 1.551 0.196

4 12.586 0.991 35 1.515 0 192

5 12.289 0.973 36 1 480 0 188

6 9.707 0.81 1 37 1 454 0.185

7 9.397 0.790 38 1.453 0.185

8 8.584 0.737 39 1.343 0.171

9 8.130 0.707 40 1.288 0.164

10 7.167 0.641 41 1.269 0 161

1 1 5.051 0.493 42 1.212 0.153

12 4.007 0.415 43 1 169 0.147

13 3.955 0.411 44 1 160 0.145

14 3.881 0.405 45 1.147 0.144

15 3.774 0 397 46 1.134 0.141

16 3.200 0.350 47 1.098 0 136

17 3.066 0.339 48 1.010 0.1 19

18 3.046 0.338 49 1.001 0 118

19 2.991 0.333 50 0.980 0.113

20 2.555 0.296 51 0.951 0.106

21 2.433 0.285 52 0.950 0.106

22 2.308 0.273 53 0.947 0 105

23 2.271 0.270 54 0.905 0.092

24 2.262 0.269 55 0.898 0.089

25 2.234 0.266 56 0.886 0.083

26 2.079 0.251 57 0.881 0.080

27 2.006 0.244 58 0.873 0.075

28 2.002 0.244 59 0.872 0.073

29 1.980 0.242 60 0.871 0.073

30 1.931 0.237 61 0.871 0.072

31 1.869 0.231 62 0.868 0.066
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Tabela 4: Relação das Em presas de Ativos Utilizar!

Número Código Descrição Iipo índice Amostra
1 ALBA3 ALBARUS ON BV 848
2 ARCZ5 ARACRUZ PNA BV 848
3 ARCZ6 ARACRUZ PNB IBV 848
4 ARLA4 ARTHURLANGE PN BV 848
5 BARB3 M ETB AR B A R A ON BV 848
6 BAZA3 AMAZÔNIA ON EJ BV 848
7 BBDC4 BRADESCO PN IBV 848
8 BELG3 BELGO MINE1R ON BV 848
9 BELG4 BELGO MINEIR PN BV 848
10 BESP3 BANESPA ON BV 848
1 1 BESP4 BANESPA PN IBV 848
12 BMEB4 MERC BRASIL PN BV 848
13 BRDT4 PETROBRAS BR PN IBV 818
14 BRHA4 BRAFÍMA PN INT IBV 848
15 CCTU4 CBC CARTUCHO PN BV 848
16 CMET4 CAEMI METAL PN BV 848
17 COCE5 COELCE PNA BV 848
18 CPCA4 TRIKEM PN BV 848
19 CPFL4 FERRO LIGAS PN BV 848
20 CPNE5 COPENE PNA IBV 848
21 CPSL3 COPESUL ON BV 848
22 CSNA3 SID NACIONAL ON IBV 848
23 DHBI4 D II B PN BV 848
24 EBC03 EMBRACO ON BV 848
25 EBER4 EBERLE PN BV 848
26 ELMJ4 VVEG PN BV 848
27 ERIC3 ERICSSON ON BV 848
28 ESTR4 ESTRELA PN BV 848
29 FJTA4 FORJA TAURUS PN BV 848
30 FTSE4 FERTSERRANA PN BV 848
31 GLOB4 GLOBEX PN BV 848
32 ILMD4 ADUBOS TREVO PN BV 848
33 ITEC3 ITAUTEC ON EG BV 848
34 ITSA4 ITAUSA PN EJ IBV 848
35 JBDU4 J B DUARTE PN BV 848
36 KLAB4 KLABIN PN IBV 848
37 LATS3 LATASA ON BV 848
38 LHER4 LOJAS HERING BV PN 848
39 LITS3 BRASILIT ON BV 848
40 LIXC4 LIX DA CUNHA BV PN 848
41 MGEL4 MANGELS INDL PN BV 848
42 OXIT4 3XITENO PN BV 848
43 PCAR4 P.ACUCAR-CBD PN BV 848
44 PLDN4 nOLIALDEN PN BV 848
45 PLIM4 3LOBO CABO PN IBV 848
46 PLT06 3OLITENO PNB BV 848
47 PNOR6 ^RONOR PNB BV 848

IBV indica que o ativo participa na definição do índice IBOVESPA; B V. negociado na BOVESPA.
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Relação das empresas de ativos utilizados
 _____   (continuação)
Número Código Descrição Tipo índice Amostra

48 POLA4 POLAR PN BV 848
49 PUR.P4 POLIPR PART PN BV 848
50 PQUN3 PETROQ UN1AO ON F.J BV 848
51 PRGA4 PERDIGÃO S/A PN BV 848
52 PTPA4 PETROPAR PN BV 848
53 RIPI4 IPIRANGA REF PN BV 848
54 ROS14 AMADEO ROSSI PN BV 848
55 SGAS4 SUPERGASBRAS PN BV 848
56 SHUL4 SCHULZ PN BV 848
57 S1BR7 SIBRA PNC BV 848
58 S O L04 SOLORRICO PN BV 848
59 SUZA4 SUZANO PN BV 848
60 UCOP4 USIN C PINTO PN BV 848
61 VAGV4 VAR1G PN BV 848
62 VGOR4 VIGOR PN BV 848
63 ZIVI4 ZIVI PN BV 848
64 ACES4 ACESITA PN IBV 170
65 ARTE3 KUALA ON BV 170
6 6 AVIL4 ACOS VILL PN BV 170
67 BBAS3 BRASIL ON BV 170
6 8 BBAS4 BRASIL PN IBV 170
69 BBDC3 BRADESCO ON BV 170
70 BEPA4 BANESTADO PN INT BV 170
71 BMCT3 MERC S PAULO ON INT BV 170
72 B PC 04 BOMPRECO PN BV 170
73 BRGE3 ALFA CONSORC ON BV 170
74 BR1V3 ALFA INVEST ON BV 170
75 BR1V4 ALFA INVEST PN BV 170
76 BSCT6 BESC PNB INT BV 170
77 CBEE3 CERJ ON INT BV 170
78 CEEB3 COELBA ON EJ BV 170
79 CESP3 CESP ON BV 170
80 CESP4 CESP PN IBV 170
81 CEVA3 CEVAL BV ON 170
82 CGAS4 COMGAS PN BV 170
83 CHAP4 CHAPECO PN BV 170
84 CMGR3 CEMAT ON BV 170
85 CMIG3 CEMIG ON IBV 170
8 6 CMIG4 CEMIG PN IBV 170
87 COGU4 GERDAU PN IBV 170
8 8 CPLE3 COPEL ON BV 170
89 CPLE6 COPEL PNB IBV 170
90 CQUE8 CIQUINE PETR PND BV 170
91 CRUZ3 SOUZA CRUZ ON IBV 170
92 DURA4 DURATEX PN BV 170
93 ELET3 ELETROBRAS ON IBV 170
94 ELET6 ELETROBRAS PNB IBV 170
95 ELPL4 ELETROPAULO PN IBV 170
96 EMBR3 EMBRAER ON IBV 170
97 ERJC4 ERICSSON PN BV 170



Relação das empresas de ativos utilizados
(conclusão)

Núincro Código Descrição Tipo Indicc AmosO.i
9H FI CL5 F CATAGUAZES PNA BV 170
99 (:' \L 4 G E RDAUM ET PN BV 170
100 GRNL4 GRANOLEO PN BV 170
101 HGTX4 CIA HERING PN BV 17n
102 ITAU3 ITAUBANCO ON BV 170
103 ITAU4 ITAUBANCO PN EJ IBV 170
104 1VIL4 1ND V1LLARES PN BV 170
105 JFEN3 JOAO FORTES ON BV 170
106 LIGH3 LIGHT ON IBV 170
107 LIPR3 LIGHTPAR ON BV 170
108 MAHS4 MANAH PN BV 170
109 MFLU3 SANTISTA ALM ON BV 170
110 MNPR4 MINUPAR PN BV 170
111 MOAR3 M O NTARANHA ON ED BV 170
112 MVVET4 WETZEL S/A BV PN 170
113 MYPK4 IOCHP-MAXION PN BV 170
114 O S A 0 4 PLASCAR PART PN BV 170
115 PETR3 PETROBRAS ON IBV 170
116 PETR4 PETROBRAS PN IBV 170
117 PMAM4 PARANAPANEMA PN BV 170
118 PNOR5 PRONOR PNA BV 170
119 PNVL3 DIMED ON BV 170
120 PRBN4 PARA1BUNA PN BV 170
121 PTIP4 IPIRANGA PET PN IBV 170
122 RCSL4 RECRUSUL PN BV 170
123 REPA4 ELECTROLUX PN BV 170
124 RHDS3 RHODIA-STER ON BV 170
125 RPAD3 ALFA HOLDING ON BV 170
126 RPAD5 ALFA HOLDING PNA BV 170
127 RPAD6 ALFA HOLDING PNB BV 170
128 SBSP3 SABESP ON INT IBV 170
129 SHAP4 SHARP PN BV 170
130 SIFC4 SIFCO PN BV 170
131 SLAL4 SOLA PN BV 170
132 SOES4 SADIA S/A PN BV 170
133 SPRI5 SPRINGER PNA BV 170
134 STRP4 STAROUP PN BV 170
135 SULT4 SULTEPA BV PN 170
136 TAMR4 TAM PN BV 170
137 TELB3 rELEBRAS ON BV 170
138 TELB4 rELEBRAS PN BV 170
139 TEPR4 BRASIL TELEC PN ANT IBV 170
140 TERJ3 IELERJ ON BV 170
141 TERJ4 LELERJ PN IBV 170

142 TMGR3 IELEMIG ON EJ BV 170
143 TMGR6 LELEMIG PNB BV 170

144 TMGR8 IELEMIG PND BV 170

145 TRBR4 rRANSBRASIL PN BV 170

146 VULC4 v'ULCABRAS PN BV 170
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Tabela 5: Composição dos Portfólios do modelo MV - 63 ativos

Portfólio Ativos Participações
1 25 1.00
2 25.63 0.26. 0.74
3 19. 2 5 .63 0.07. 0.17. 0.76
4 6 . 19. 25. 63 0.03. 0.06. 0.16. 0.74
5 6 . 19. 2 5 .5 1 .6 3 0.05. 0.06, 0.16. 0.01. 0.72
6 6 . 19. 25, 4 9 .5 1 .6 3 0.12. 0 .0 5 .0 .1 2 ,0  06. 0.07. 0.58
7 4. 6 . 19. 25. 49. 51 .63 0.00. 0.13. 0.05. 0.12. 0.06. 0.08. 0.56
8 4, 6 . 19. 25. 49. 5 0 .5 1 .6 3 0.01. 0.13. 0.04. 0 11. 0.07. 0.06. 0 0 8 .  0.51
9 4 .6 .  16. 19. 2 5 .49 .  5 0 .5 1 .6 3 0.01. 0.13. 0.01. 0.04. 0.10. 0.07. 0.08. 0.08. 0.48
10 4. 6 . 16. 19. 25. 35. 49. 50. 51. 63 0.01. 0.12. 0.03. 0.04. 0.09. 0.00. 0.07. 0.14. 0.07. 0.43

11
4. 6 . 16. 19. 25. 35. 44. 49. 50. 51.
63

0.02. 0 . 1 1. 0.07. 0.03. 0.06. 0.01. 0.05. 0.07. 0.24. 0.06. 
0.30

12
4. 6 , 16. 19. 25. 35. 43. 44. 49. 50. 
51 .63

0.02. 0.10. 0.08, 0.02. 0.05. 0.01. 0.04. 0.07. 0.06. 0.27. 
0.05, 0.23

13 4. 6 . 16. 19. 25. 31. 35, 43. 44. 49. 
5 0 .5 1 .6 3

0.02. 0.10. 0.08. 0.02. 0.04. 0.00. 0.01. 0.04. 0.07. 0.06. 
0.28. 0.05. 0.23

14 4. 6 . 16, 19, 24. 25. 31. 35. 43. 44. 
49. 50. 51 .63

0.02. 0.10. 0.08. 0.02. 0.00. 0.04. 0.00. 0.01. 0.04. 0.07. 
0.06. 0.28. 0.05. 0.22

15 4. 6 . 16. 19. 24, 25. 30. 31. 35. 43. 
44. 49. 50. 51. 63

0.02. 0.09. 0.08. 0.02. 0.01. 0  0 1 . 0.00. 0.01. 0.01. 0.04. 
0.07. 0.06. 0.28. 0.05. 0.22

16 4. 6 . 16. 19. 24, 25. 29. 30. 31. 35. 
4 3 .4 4 .  4 9 .5 0 .5 1 .6 3

0.02. 0.09. 0.08. 0.01. 0.04. 0.03. 0.01. 0.01. 0.03. 0.01. 
0 .05 .0 .07 .  0 .0 6 .0 .27 .0 .04 .  0.18

17 4. 6 , 16. 18. 19, 24. 25. 29. 30. 31, 
3 5 ,4 3 ,4 4 .  49. 50. 5 1 .63

0.02. 0.09. 0.08. 0.00. 0.01. 0.04. 0.03. 0.01. 0.02. 0.03. 
0.01. 0.05. 0.07. 0.06. 0.27. 0.04. 0.17

18 4. 6 , 13. 16, 18. 19. 24. 25. 29, 30, 
3 1 .3 5 .  43. 44. 49. 5 0 .5 1 .6 3

0.02. 0.09. 0.00. 0.08. 0.00. 0.01. 0.04, 0.03. 0.01. 0.02. 
0.03. 0.01. 0.05. 0.07. 0.06. 0.27. 0.04. 0.17

19 4. 6 , 13. 16. 18. 19. 24. 25. 29. 30. 
3 1 .3 5 .4 2 .  43 .44 .  4 9 . 5 0 .5 1 , 6 3

0.02. 0.09. 0.00. 0.08. 0.00. 0 .0 1. 0.05. 0.03. 0.01. 0.02. 
0.03. 0.01. 0.00, 0.05. 0.07. 0.06. 0.27. 0.04. 0.17

2 0
4. 6 . 13. 16. 18. 19. 24. 25. 29. 30. 
31. 35. 42. 43. 44. 49. 50. 51. 53. 
63

0.02. 0.08. 0.02. 0.07. 0.00. 0.01. 0.06. 0.03. 0.01. 0.02. 
0.04. 0.01. 0.02. 0.05. 0.07. 0.05. 0.26. 0.03. 0.02. 0.14

21
4. 6 . 13. 16. 18. 19. 24. 25. 29. 30. 
31. 35. 42. 43. 44. 49. 50. 51. 53. 
54. 63

0.02. 0.08. 0.02. 0.07. 0.00. 0.01. 0.06. 0.02. 0.01. 0.02. 
0.05. 0.01. 0.03. 0.05. 0.07. 0.05. 0.25. 0.02. 0.03. 0.00. 
0.13

22
4. 6 . 13. 16. 18. 19. 24. 25. 29. 30. 
31. 35. 42. 43. 44. 49. 50. 51. 53. 
54. 60, 63

0.02. 0.07. 0.02, 0.07. 0.00. 0.01. 0.07. 0.02. 0.01. 0.0.3. 
0.05. 0.01. 0.03. 0.05. 0.07. 0.05. 0.25. 0.02. 0.03. 0.00. 
0 .0 0 . 0 .1 2

23
4. 6 . 13. 16. 18. 19. 24. 25. 29. 30. 
31. 35. 42. 43. 44. 49. 50. 51. 53. 
54. 57. 60. 63

0.02. 0.07. 0.02. 0 07. 0.00. 0.01. 0.07. 0.02. 0.01. 0.03. 
0.05. 0.01. 0.03. 0.05. 0.07. 0.05. 0.24. 0.02. 0.03. 0.00. 
0 .0 0 . 0 .0 0 . 0 .1 2

24
4. 6 . 13. 16. 18. 19. 24. 25. 29. 30. 
31. 35. 42. 43. 44. 49. 50. 51. 52. 
53. 54, 57. 60. 63

0.02. 0.07. 0.02. 0.07. 0.00. 0.01. 0.07. 0.02. 0.01. 0.03. 
0.05. 0.01. 0.03. 0.05. 0.07. 0.05. 0.24. 0.02. 0.00. 0.03. 
0 .0 1 . 0 .0 0 . 0 .0 1 . 0 .1 2

25
4. 6 . 13. 16. 18. 19. 21. 24. 25. 29. 
30. 31. 35. 40. 42. 43. 44. 49. 50. 
51 .5 2 .  5 3 . 5 4 .5 7 . 6 0 .6 3

0.02. 0.07. 0.03. 0.06. 0.01. 0.01. 0.02. 0.07. 0.02. 0.01. 
0.03. 0.05. 0.01. 0.00. 0.04. 0.04. 0.06. 0.04. 0.23. 0.02. 
0.01. 0.04. 0.01. 0.00. 0.01. 0.10

26
4. 6 . 13. 16. 18. 19. 21. 23. 24. 25. 
29. 30. 31. 35. 40. 42. 43. 44. 49. 
50. 51. 52. 53. 54. 57. 60. 63

0.02. 0.07. 0.03. 0.06. 0 .0 1. 0.01. 0.02. 0.00. 0.07. 0.02. 
0.01. 0.03. 0.05. 0.01. 0.00. 0.04. 0.04. 0.06. 0.04. 0.23. 
0.02. 0 .01 .0 .04 .  0 .01.0 .00.  0 .01 .0 .10

27
4. 6 . 13. 15. 16. 18. 19. 21. 23. 24. 
25. 29. 30. 31. 35. 40. 42. 43. 44. 
49. 50. 51. 52. 53. 54. 57. 60. 63

0.02. 0.07. 0.03. 0.00. 0.06. 0.01. 0.01. 0.02. 0.00. 0.07. 
0.02. 0.01. 0.03. 0.05. 0.01. 0.00. 0.04. 0.04. 0.06. 0.04. 
0.23. 0.02. 0.01. 0.04. 0.01. 0.00. 0.01. 0.10



Composição dos Portfólios do modelo MV
(continuação)

Portfólir Ativos Participações

28
4. 6 . H. 15, 16. 18. 19. 21. 23. 24 
25. 29. 30. 31. 35. 40. 42. 43 
44. 49. 50. 51. 52. 53. 54. 60. 63

0.02. 0.07. 0.0.3. 0.00. 0.06. 0.01. 0.01. 0.02. 0.00. 0.07. 
0 0 2 .  0.00. 0.01. 0.0.7. 0.05. 0.01 0.00. 0.04. 0.04. 0.06. 
0.04. 0.23. 0.02. 0.01. 0.04. 0.01. 0.01. 0.10

29
4. 6 . 13. 15. 16. 18. 19. 21. 23. 24 
25. 26. 29. 30. 31. 35, 40. 42. 43 
44. 49. 50. 51. 52. 53. 54. 60. 63

0.01. 0.06. 0.03. 0.00. 0 06. 0 01 0 01. 0.07. 0 .0 0 . 00 7 .  
0 0 2 .  0.00. 0.01. 0.03. 0.05. 0 01. 0 00. 0.04. 0.04. 0 0 6 .  
0 0 4 .  0.22. 0.02. 0.02. 0.04. 0.01. 0.01. 0.09

30

4. 6 . 13. 15. 16. 18. 19. 21. 2.3. 24. 
25. 26. 29. .30. .31. 35. 40. 42. 4.3. 
44. 49. 50. 51. 52. 5.3. 54. 58. 60.
63

0.01. 0.06. 0.03. 0.01. 0.06. 0 01. 0.01. 0.0.3. 0.00. 0 0 7 .  
0.02. 0.01. 0.01. 0.03. 0.05. 0.01. 0.00. 0.04. 0.04. 0.06. 
0.04. 0.22. 0.01. 0.02. 0.04. 0.01. 0  0 0 . 0.01. 0.09

31

4. 6 . 13. 15. 16. 18. 19. 21. 2.3. 24. 
25. 26. 29. 30. 31. 33. 35. 40. 42. 
43. 44. 49. 50. 51. 52. 53. 54. 58. 
60. 63

0.01. 0.06. 0.0.3. 0.02. 0.05. 0.00. 0.01. 0.04. 0.00. 0.07. 
0.01. 0.02. 0.01. 0.03. 0.05. 0 .0 0 . 0.01. 0.00. 0.04. 0.04. 
0.06. 0.04. 0.21. 0.01. 0.02. 0.04. 0.01. 0.01. 0.02. 0.08

32

4. 6 . 13. 15. 16. 18. 19, 21. 23. 24. 
25. 26. 27. 29. 30. .31. 3.3. 35. 40. 
42. 43. 44. 49. 50. 51. 52. 5.3. 54. 
58. 60. 63

0.01. 0.05. 0.0.3. 0.03. 0.05. 0.00. 0.01. 0.05. 0.00. 0.08. 
0.01. 0.03. 0.01. 0 .0 1. 0.03. 0.05. 0 .0 0 . 0.01. 0 .0 0 . 0.05. 
0 0 3 .  0.05. 0.04. 0.19. 0.01. 0.03. 0.04. 0.01. 0.01. 0.02. 
0.07

33

4. 6 . 13. 15. 16. 18. 19. 21. 23. 24. 
25. 26. 27. 29. 30. 31. 33. 35. 40. 
42. 43. 44. 49. 50. 51. 52. 53. 54. 
55. 58. 60. 63

0.01. 0.05. 0.0.3. 0.0.3. 0.05. 0.00. 0.01. 0.05. 0.00. 0.08. 
0.01. 0.03. 0.01. 0.01. 0.03. 0.05. 0 00. 0.01. 0.00. 0.05 
0.03. 0.05. 0.04. 0.19. 0.01. 0.07 0.04 0.01. 0.00. 0.01. 
0.02. 0.07

34

1. 4. 6 . 13. 15. 16. 18. 19. 21. 23. 
24. 25. 26. 27. 29. 30. 31. .33. 35. 
40. 42. 4.3. 44. 49. 50. 51. 52. 53. 
54. 55. 58. 60. 6.3

0.00. 0.01. 0.05. 0.03. 0.0.3. 0 0 4 .  0 0 0 .  0.01. 0.06. 0.00. 
0.08. 0.01. 0.03. OOJ. 0.01. 0.03. 0.05. 0.01. 0.01. 0.00. 
0.05. 0.0.3. 0.05. 0.03. 0.19. 0.01. 0.03. 0.04. 0.01. 0.00. 
0 .0 1 .0 .0 2 .0 .0 7

35

1. 4. 6 . 1.3. 15. 16. 18. 19. 21. 23. 
24. 25. 26. 27. 29. 30. 31. 33. 35. 
40. 42. 43. 44. 49. 50. 51. 52. 53. 
54. 55. 58, 60. 62, 63

0.00. 0.01. 0.05. 0.0.7. 0.03. 0 0 4 .  0.00. 0.01. 0.06. 0.00. 
0  08. 0.01. 0  03. 0.01. 0.01. 0 0 7 .  0 05. 0.01. 0.01. 0.00. 
0 0 5 .  0.03. 0.05. 0.0.3. 0.18. 0.01. 0.0.3. 0.04. 0.01. 0.00. 
0 .0 1 . 0 .0 2 . 0 .0 0 . 0.06

36

1. 4. 6 . 13. 15. 16. 18. 19. 21. 2.7. 
24. 25. 26. 27. 29. 30. 31. 33. 35. 
38. 40. 42. 4.3. 44. 49. 50. 51. 52. 
53. 54. 55. 58. 60. 62. 63

0.00. 0.01. 0.05. 0.0.3. 0.0.3. 0.04. 0.00. 0.01. 0.06. 0.01. 
0.08. 0.01. 0.03. 0.01. 0.01. 0.02. 0.05. 0.01. 0.01. 0.00. 
0.00. 0.05. 0.0.7. 0.05. 0.0.7. 0.18. 0.01. 0.0.7. 0.04. 0.01. 
0 .0 0 . 0 .0 2 . 0 .0 2 . 0 .0 0 . 0.06

37

1. 4. 6 . 13. 15. 16. 18. 19. 21. 23. 
24. 25. 26. 27. 29. 30. 31. 33. 35. 
38. 40. 42. 4.3. 44. 49. 50. 51. 52. 
53. 54. 55, 58. 60. 61. 62. 6.7

0.00. 0.01. 0.05. 0.03. 0.03. 0.04. 0.00. 0.01. 0.06. 0.01. 
0.08. 0.01. 0.03. 0.01. 0.01. 0.02. 0.05. 0.01. 0.01. 0.00. 
0.00. 0.05. 0.03. 0.05. 0.03. 0.18. 0.01. 0.0.7. 0.04. 0 01. 
0 .0 0 . 0 .0 2 . 0 .0 2 . 0 .0 0 . 0 .0 0 . 0.06

38

1. 4. 6 . 12. 13. 15. 16. 18. 19. 21. 
23. 24. 25. 26. 27. 29. 30, 31. 3.7. 
35. 38. 40. 42. 43. 44. 49. 50. 51. 
52. 5.7. 54. 55. 58. 60. 61. 62. 6.3

0.01. 0.01. 0.04. 0.01. 0.0.3. 0.04. 0.04. 0 00. 0.00. 0.07. 
0.01. 0.07. 0.01. 0.04. 0.01. 0.01. 0.02. 0.05. 0.01. 0.01. 
0.00. 0.00. 0.05. 0.02. 0.04. 0.03. 0.17. 0 .0 1. 0.03. 0.04. 
0.01, 0.01. 0.02. 0.02. 0.00. 0.01. 0.05

39

1. 2. 4. 6 . 12. 13. 15. 16. 18. 19. 
21. 23. 24. 25. 26. 27. 29. 30. 31. 
33. 35. 38. 40. 42. 43. 44. 49. 50. 
51. 52. 53. 54. 55. 58. 60. 61. 62.
6.3

0.01. 0.00. 0.01. 0.04. 0.01. 0.0.3. 0 04. 0.03. 0.00. 0.00. 
0.07, 0.01. 0.07. 0.01. 0.04. 0.01. 0.01. 0.02. 0.04. 0.01. 
0.01. 0.00. 0.00. 0.05. 0.02. 0.04. 0.03. 0 16. 0.01. 0.04. 
0.04. 0.01. 0.01. 0.02. 0.02. 0.01. 0.02. 0.05

40

1. 2. 4. 6 . 12. 1.3. 15. 16. 18. 19. 
21. 23. 24. 25. 26. 27. 29. .30. .71. 
33. .35. 38. 40. 42. 43. 44. 46. 49. 
50. 51. 52. 5.3. 54. 55. 58. 60. 61. 
62. 63

0.01. 0.01. 0.01. 0.04. 0.01. 0.03. 0.04. 0.0.7. 0.00. 0.00. 
0.07. 0.01. 0.07. 0.01. 0.04. 0.01. 0.01. 0.02. 0.04. 0.01. 
0.01. 0.00. 0.00. 0.05. 0.02. 0.04. 0.00. 0.03. 0.16. 0.01. 
0.04. 0.04. 0.01. 0 .0 1. 0.02. 0.02. 0.01. 0.02. 0.05
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Composição dos Portfólios do modelo MV
(contimiação)

Portfóik

4!

Ativos Participações
1. ?. !. 6 . 12. 13, 15. 16. 19. 21 
23. 2 L 25. 26. 27. 29. 30. 31. 33 
35. 38. 40. 42. 43, 44. 46. 49. 50 
51. 52. 53. 54. 55. 56. 58. 60. 61. 
62. 63

0.01. 0.01. 0.01. 0.04. 0.01. 0.02. 0 0 4 .  0.03. ().()(). 0.07. 
0 .0 1 , 0,07. 0.01. 0.04. 0.02. 0 01 0 0 2 .  0.04. 0 0 1 .  0.01. 
0.00. 0.00. 0.05, 0 0 2 .  0.04. 0.00 0 03. 0.15. 0.01. 0.04. 
0.04. 0.01. 0.01. 0.00. 0.02. 0.02 0 01. 0.02. 0.04

42

1. 2. 4. 6 , 12. 13. 15. 16. 19. 21. 
23. 24. 25. 26. 27. 29. 30. 31. 33. 
35. 38. 40. 42. 43. 44. 46. 49. 50. 
51. 52. 53. 54. 55. 56. 58. 60. 61. 
62. 63

0.01. 0.01. 0.01. 0.04. 0.01. 0.02. 0 0 5 .  0.03. 0.00. 0 0 7 .  
0.01. 0 0 7 .  0.01. 0.04. 0 0 2 .  0 01. 0.02. 0.04. 0.01. 0.01. 
0.00. 0.00. 0,05. 0.02. 0.04. 0.01. 0.03. 0.15. 0.01. 0.04. 
0.04. 0.01. 0.01. 0.00. 0.02. 0.02. 0.01. 0.02. 0.04

44

1. 2. 4. 6 . 8 . 12. 13. 15. 16. 19. 21. 
23. 24. 25. 26. 27. 29. 30. 31. 33. 
35. 38. 40. 42. 43. 44. 46. 49. 50. 
51. 52. 53. 54. 55. 56. 58. 60. 61. 
62. 63

0 .0 1 . 0.01. 0.01. 0.04. 0.00. 0.01. 0.02. 0.05. 0.03. 0.00. 
0.07. 0.01. 0.07. 0.01. 0.04. 0.02. 0.01. 0.02. 0.04. 0.01. 
0.01. 0.00. 0.00. 0.05. 0.02. 0.04. 0.01. 0.03. 0.15. 0.00. 
0.04. 0.04. 0.01. 0.02. 0.00. 0.02. 0.02. 0.01. 0.02. 0.04

44

1. 2. 4. 6 . 8 . 12. 1.3. 15. 16. 19. 21. 
23. 24. 25. 26. 27. 29. 30. 31. 33. 
35. 38. 40. 42. 4.3. 44. 45. 46. 49. 
50. 51. 52. 53. 54. 55. 56. 58. 60. 
61. 62. 63

0.01. 0.01. 0.01. 0.04. 0.00. 0 0 2 .  0 0 2 .  0.05. 0.03. 0.00. 
0.07. 0.01. 0.07. 0.01. 0.04. 0.02. 0.01. 0.02. 0.04. 0.01. 
0.01. 0.00. 0.00. 0.05. 0.02. 0.03. 0.00. 0.01. 0.03. 0.15. 
0.00. 0.04. 0.04. 0.01. 0.02. 0.00. 0 0 2 .  0.02. 0.01. 0.02. 
0.04

45

1. 2. 4. 6 . 8 . 12. 1.3. 15. 16. 19. 21. 
23. 24. 25. 26. 27. 29. 30. 31. 33. 
35. 37. 38. 40. 42. 43. 44. 45. 46. 
49. 50. 51. 52. 53. 54, 55. 56. 58. 
6 0 . 6 1 .6 2 . 6 3

0.01. 0.01. 0.01. 0.03. 0.00. 0.02. 0,02. 0.05. 0.03. 0.00 
0.07. 0.01. 0.07. 0.01. 0.04. 0.02. 0.01. 0.02. 0.04. ti.»!. 
0.01. 0.00. 0.00. 0.00. 0.05. 0.02. 0.0.3. 0.00. 0.01. 0.02. 
0.14. 0.00. 0.04. 0 0 4 .  0.01. 0.02. 0.00. 0 .0 2 . 0.02. 0.01. 
0.02. 0.04

46

1. 2. 4. 6 . 8 . 12. 13. 15. 16. 19. 21. 
23. 24. 25. 26. 27. 29. 30. 31. 33. 
35. 37. 38. 40. 41. 42. 43. 44. 45. 
46. 49. 50. 51. 52. 53. 54. 55. 56. 
58. 60. 61. 62. 63

0.01. 0.02. 0.01. 0 0 3 .  0.00. 0,02. 0.02. 0.05. 0.02. 0.00. 
0.08. 0.01. 0.07. 0.01. 0.04. 0.02. 0.01. 0.02. 0.04. 0 01. 
0.01. 0.00. 0.00. 0.00. 0.00. 0 0 5 .  0.02. 0.03. 0.00. 0.01. 
0.02. 0.14. 0.00. 0.04. 0.03. 0.01. 0.02. 0.00. 0.02. 0.02. 
0.01. 0.03. 0.03

47

1. 2. 4. 6 . 8 . 12. 13. 15. 16. 19. 21. 
23. 24. 25. 26. 27. 29. 30. 31. 33. 
35. 37. 38. 39. 40. 41. 42. 43. 44. 
45. 46. 49. 50. 51. 52. 53. 54. 55. 
56. 58. 60. 61. 62. 63

0.02. 0.02. 0.01. 0.03. 0.01. 0 0 2 .  0 .0 2 . 0.05. 0.02. 0.00. 
0.08. 0.01. 0.06. 0.00. 0.05. 0.02. 0.01. 0.02. 0.04. 0.01. 
0.00. 0.01. 0 00. 0.01. 0.00. 0.01. 0 0 5 .  0.01. 0.03. 0 00. 
0.01. 0.02. 0.13. 0.00. 0.04. 0.03. 0.01. 0.02. 0.01. 0.03. 
0.02. 0.02. 0.03. 0.03

48

1. 2. 3. 4. 6 . 8 . 12. 13. 15. 16. 19.
21. 23. 24. 25. 26. 27. 29. 30. 31. 
33. 35. 37. 38. 39. 40. 41. 42. 43. 
4 4 , 45. 46. 49. 50. 51. 52. 53. 54. 
55. 56. 58. 60. 61. 62. 63

0.02. 0.02. 0.00. 0.01. 0.03. 0.01. 0.02. 0.02. 0.05. 0.02. 
0.00. 0.08. 0.01. 0.06. 0.00. 0.05. 0.02. 0.01. 0.02. 0.04. 
0.01. 0.00. 0.01. 0.00. 0.01. 0.00. 0.01. 0.05. 0.01. 0.03. 
0.00. 0.02. 0 0 2 .  0.12. 0.00. 0.04. 0.03. 0.01. 0 0 2 .  0.01. 
0.03. 0.02. 0.02. 0.03. 0.03

49

1. 2. 3. 4. 6 . 8 . 12. 13. 15. 16. 19. 
21. 23. 24. 25. 26. 27. 29. 30. 31. 
33. 35. 37. 38. 39. 40. 41. 42. 43. 
4 4  4 5 . 46. 48. 49, 50. 51. 52. 53. 
54. 55. 56. 58. 60. 61. 62. 63

0.02. 0.03. 0.00. 0.01. 0.02. 0.01. 0.02. 0.02. 0.05. 0.02. 
0.00. 0.08. 0.01. 0 0 6 .  0 .0 0 . 0.05. 0 0 2 .  0.01. 0 0 2 .  0 0 3 .  
0.01. 0.00. 0.01. 0.00. 0.01. 0.00. 0.01. 0 0 4 .  0.01. 0.02. 
0.00. 0.02. 0.00. 0.02. 0 12. 0.00. 0.04. 0.03. 0.01. 0.02. 
0.01. 0.03. 0.02. 0.02. 0.03. 0.02

50

1. 2. 3. 4. 6 . 8 . 12. 13. 15. 16. 19. 
21. 23. 24. 25. 26. 27. 29. 30. 31. 
33. 35. 37. 38. 39. 40. 41. 42. 43. 
4 4 , 4 5 . 46. 48. 49. 50. 51. 52. 53. 
54. 55. 56. 58. 59. 60. 61. 62. 63

0.02. 0.03. 0.01. 0.01. 0.02. 0.01. 0.03. 0.02. 0.05. 0.01. 
0.00. 0.08. 0.01. 0.06. 0.00. 0.05. 0 0 2 .  0.01. 0.02. 0.03. 
0.01. 0.00. 0.01. 0.00. 0.01. 0.00. 0  01. 0,04. 0.01. 0.02. 
0 .0 0 . 0.02. 0.01. 0.02. o i l .  O.OO. 0.04. 0.03. 0.01. 0.02. 
0.01. 0.0.3. 0.00. 0.02. 0.02. 0.04. 0.02



85

Composição dos Porífólios do modelo MV

Porífóüo

51

52

Ativos
1. 2. 3. 4. 5. 6 . 8 . 
19. 21. 23. 24. 25. 
31. 33. 35. .37. 38. 
43. 44. 45. 46. 48. 
53. 54. 55. 56. 58. 
6.3

12. 13. 15. 16. 
26. 27. 29. 30. 
.39. 40. 41. 42. 
49. 50. 51. 52. 
59. 60. 61. 62.

1. 2. 3. 4, 5, 6 . 8 . 
19. 21. 23. 24. 25. 
31. 33. 35. 37. 38. 
43. 44. 45. 46. 48. 
53. 54. 55. 56. 58. 
63

12. 13. 15. 16. 
26. 27. 29. 30. 
39. 40. 41. 42. 
49. 50. 51. 52. 
59. 60. 61. 62.

Participações
(continuação)

0.02. 0.03. 0.01. 0.01. 0.00. 0.02. 0.01 
0.01. 0.00. 0.08. 0.01. 0 06. 0.00. 0 0 5  
0.03. 0.01. 0.00. 0.01. 0.00. 0.01. 0 .0 0  
0.02. 0.00. 0.02. 0.01. 002. 0 I 1. 0 00 
0.02. 0.01. 0.03. 0.00. 0.02. 00 2 .  0.04.

19. 2 9. 0 6 . 0 5. 0 0. 2 I I 7 2 6 . í 6 . 
0 9. 6 .0 . 0.3. 4.7. 2.0. 0.7. 1 7. 3.2. 1.0. 
0.1. 0.8. 4.4. 0.8. 2.2. 0.1. 1.7. 0.7. 1. 
2.7. 1.3. 2.5. 0 .9 .2 .9 .0 .2 .2  4. 1.8 . 3.7.

. 0.03. 0.02. 0 0 5 .  

. 002. 0.01. 0,02. 

. 0.01. 0.04. 0.01. 
0.04. 00 3 .  0.01. 

002

5 4. 1A  0.2. 70 .  
0.4. 0.8. 0.1. 1.1. 
8 . 11.4. 0.1. 4.2. 
1.9

1.9. 2.9. 0.6. 0.5. 0.0. 2.0. 1.3. 2.6. 1.6. 5.4. 1.2. 0.2. 7.9. 
0.9. 6.0. 0.3. 4.7. 2.0. 0.0. 0.7. 17. 3 2. 1.0. 0.4. 0.8. 0.1.
1.1. 0.1. 0.9. 4.4. 0.8. 2.2. 0 1 .  18. 0.8. 1.8. 11.3. 0.1.
4.2. 2.6. 1.3. 2.5. 0.9. 2.9. 0.2. 2.4. 1.8. 3.7. 1.9

53

54

I. 2. 3. 4. 5. 6 . 8 . 12. 13. 15. 16. 
19. 21. 23. 24. 25. 26. 27. 28. 29.
30. 31. 3.3. 35. 37. 38. 39. 40. 41.
42. 43. 44. 45. 46. 48. 49. 50. 51.
52. 53. 54. 55. 56. 58. 59. 60. 61.
62. 63
1. 2. 3. 4. 5. 6 . 8 . 12. 13, 15. 16. 
19. 21. 22. 23. 24. 25. 26. 27. 28.
29. 30. 31. 33. 35. 37. 38. 39. 40.
41. 42. 43. 44. 45. 46. 48. 49. 50.
52. 53. 54. 55. 56. 58. 59. 60. 61.
62. 6.3

2.0. 3.4. 1 .1 .0  4. 0.2. 1.5. 1.7 .2  9. 1.2. 5.6. 0.7. 0.1. 7.9. 
0.2. 0.9. 5.7. 0.2. 4.9. 2.1. 0.3. 0.6. 1.5. 2.8. 1.1. 0.4. 1.0. 
0.1. 1.5. 0.1. 1.1. 4.2. 0.4. ! 8 . 0.2. 2.0. 1.5. 1.6. 10.2. 
4.3. 2.1. 1.3. 2.7. 1.1. 3.0. 0.6. 2.5. 2 .0 . 4.1. 1.3

;o

1. 2. 3. 
19. 21. 
29. 30. 
41. 42. 
52. 53. 
62. 63

4. 5. 6 . 8 . 12. 
22. 23. 24. 25. 
31. 33. 35. 37. 
43. 44. 45. 46. 
54. 55. 56. 58.

13. 15. 16. 
26. 27. 28. 
38. 39. 40. 
48. 49. 50. 
59. 60. 61.

2.0. 3.5. i.2. 0.4. 0.2. 14. 1.7.3 0 . 1.2. 5.6. 0.6. 0.1. 7.9. 
0.3. 0.9. 5.6. 0.1. 4.9. 2.1. 0.3. 0.6. 1.5 .2  7. I I. 0.4. 1.1. 
0.1. 1.6. 0.1. 1.2. 4.2. 0.3. 1.7. 0.2. 2.1. 1.7. 1.5. 10.0. 
4.3. 2.0. 1.3. 2.8. 1.1. 3.0. 0.6. 2 5. 2.0. 4.1. 1.2

56

1. 2. 3. 
19. 21. 
29. 30. 
41. 42. 
52. 53. 
62. 63

4. 5, 6 . 8 . 9. 12. 
22. 23. 24. 25. 
31. 33. 35. 37. 
4 3 . 4 4 . 4 5 . 46. 
54. 55. 56. 58.

13. 15. 16. 
26. 27. 28. 
.38. 39. 40. 
48. 49. 50. 
59. 60. 61.

2.1. .3.8. 1.4. 0  3. 0.2. 1.2. 1.8. 0.1. 3.1. 1.0. 5.7. 0.4. 0.1.
7.8. 0.4. 0.9. 5.5. 0.1. 5.0. 2 2. 0.5. 0 5. 1.4. 2.5. 1.1. 0.4.
1.2. 0.1. 1.8. 0.1. 1.3. 4 1. 0.1. 1.5. 0.2. 2.2. 2.0. 1.4. 9.4.
4.4. 1.8. 1.3. 2.9. 1.2. 3 . 1 . 0  8 . 2.5. 2 1.4.3. 0.9

57

58

59

I. 2. 3. 
19. 21. 
29. .30. 
41. 42.
52. 53. 
62. 63

4. 5. 6 . 8 . 9. 12 
22. 23. 24. 25. 
.31. 33. 35. 37. 
4 4 . 45. 46. 47. 
54. 55. 56. 58.

13. 15. 16. 
26. 27. 28. 
38. 39. 40. 
48. 49. 50. 
59. 60. 61.

2.1. 3.9. 1.5. 0.3. 0.3. I I .  1.9. 0.2. 3.2. 0.9. 5.8. 0.3. 0.0.
7.8. 0.4. 1.0. 5.4. 0.1. 5.0. 2.2. 0.5. 0.5. 1.4. 2.5. 1.1. 0.4.
1.2. 0.0. 1.9. 0.1. 1.4. 4.1. 14. 0.2. 2.2. 0 0. 2.1. 1.3. 9.2.
4.4. 1.7. 1.2 .2  9. 1.2. 3 .1 .0  9. 2.5. 2.2. 4.4. 0.8

1. 2. 3. 
19. 21, 
29. 30. 
41. 42.
52. 53. 
62. 63

4. 5. 6 . 8 . 9. 12. 
22. 23. 24. 25. 
31. 33. 35. 37. 
4 4 . 45. 46. 47. 
54. 55. 56. 58.

13. 15. 16. 
26. 27. 28. 
38. 39. 40. 
48. 49. 50. 
59. 60. 61.

2.2. 4 1. 1 7. 0 2. 0 3. 0 8 . 2.0. 0.3. .3 3. 0 6 . 5.9. 0.1. 0.0.
7.8. 0.5. 1.0. 5.2. 0.0. 5.1. 2.2. 0.6. 0.5. 1.3. 2.3. 1.1. 0.3.
1 .3 . 0 .0 . 2.0. 0,0. 1.5. 4.0. 1 .2 .0 .2 .2  3. 0.1. 2.4. 1.2. 8.7.
4.4. 1.4. 1.2. .3.0. 1.3. 3.2. 1.0. 2.6. 2.2. 4.5. 0.5

1. 2. 3. 
21. 22. 

30. 31, 
41. 42. 
52. 53. 
62. 63

4. 5. 6 . 8 . 9. 12 
23. 24. 25. 26. 
32. 33. 35. 37. 
4 4 . 45. 46. 47. 
54. 55. 56. 58.

13. 15. 19. 
27. 28. 29. 
38. 39. 40. 
48. 49. 50. 
59. 60. 61.

2.2. 4.2. 1.7. 0.2. 0.3. 0.7. 2.0. 0.4. 3.3. 0.6. 5.9. 0.0. 7.7.
0.5. 1.0. 5.2. 0.0. 5.1. 2 2. 0 6 . 0.5. 13. 2.2. 0.0. 1.2. 0.3.
1.4. 0.0. 2 1 .0 .0 .  1 5 . 4  0. 1. 1. 0.2. 2.3. 0.2. 2.5. 1.2. 8.5.
4.4. 1.4. 1.2. 3.0. 1.3. 3 2. 1.0 . 2 .6 . 2.3. 4.6. 0.4
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Composição dos Portfólios do modelo MV
(conclusão)

Portfólio Ativos Participações
1. 2. 7 4. 5. 6. 8 9. 12, 13. 15. ].' I 2.2. 4.2. 1.8. 0.2 0.3. 0.7. 2 1. 0 4. 3.3. 0 6. 5.9. 0.0.
21. 2.1. 24. 26. 27. 28. 29. 30. 31. 7.7. 0.5. 1.0. 5.2 5 1. 2.2. 0.7. 0.5. 1.3. 2.2. 0 0. 1.2.

60 32. 33. 35. 37. 38. 39. 40. 41. 42. 44. 0.3. 1.4. 0.0. 2.1 0.0. 1.5. 4.0. 11. 0.2. 2.4. 0.2. 2.5.
45. 46. 47. 48. 49. 50. 52. 53. 54. 55. 1.2. 8.5. 4.4. 1.3 1.2. 3.1. 1.4. 3.2. 1.0. 2.6. 2.3. 4.6.

56. 58. 59. 60 .6 1 . 62. 63 0.4
1. 2. 3 4. 5. 6. 8 9. 12. 13. 15. 21. 2.2. 4.2. 18. 0 2 0 4. 0.7. 2 1 0 4. 3 4. 0.5. 5.9. 7.7.

22. 23. 24. 26. 27. 28. 29. 30. 31. 32. 0.5. 1.0. 5.2. 5 1 2.3. 0.7. 0 5. 1.3. 2.2. 00 . 1.2. 0.3.
61 33. 35. 37. 38. 39. 40. 41. 42. 44. 45. 1.4. 0.0. 2.1. 0.0 1.5. 4.0. 11. 0.2. 2.4. 0.2. 2.6. 11.

46. 47. 48. 49. 50. 52. 53. 54. 55. 56. 8.4. 4.4. 1.3. 1.2. 3.1. 1.4. 3 2. 1 0. 2.6. 2.3. 4.6. 0.3
58. 59. 60. 6 1 .6 2 . 63
1. 2. 3 4. 5. 6. 8. 9. 12. 13. 15. 21. 2.2. 4.5. 2.0. 0.1 0.4. 0.4. 2.2. 0 6. 3.5. 0.3. 6.0. 7.7.
22. 23. 24. 26. 27. 28. 29. 30. .31. 32. 0.6. 1.0. 4.9. 5.1 2.3. 0.8. 0.4. 1.2. 2.0. 0.1. 1.2. 0 3.

62 33. 35. 37. 38. 39. 40. 41. 42. 44. 45. 15. 0.0. 2.3. 0.0 1.7. 3.9. 0 8. 0 2. 2.5. 0.3. 2.9. 0.9.

46. 47. 48. 49. 50. 52. 53. 54. 55. 56. 7.6. 4 5. 0.9. 1.2. 3 1. 1.5. 3 .2. 1 2. 2.6. 2.4. 4.9. 0.0

58. 59. 60. 6 1 .6 2 . 63
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Tabela 6: Retornos Logarítmicos e Percentuais de 63 Ativos

(a mostra ni 847)

Ativo
Retorno

Log
Retorno
%a.d.

Ativo Retorno
Log

Retorno
%a.d.

25 0.012272 1.235 9 0.000573 0 . 0 5 7

63 0.009905 0.995 52 0.00055 1 0.055
19 0.007692 0.772 8 0.000540 0 054
57 0.005611 0.563 20 0.000535 0054
51 0.002247 0.225 22 0.000519 0 052
49 0.001900 0.190 15 0.000483 0.048
6 0.001637 0.164 33 0.000479 0.048

50 0.001633 0.163 1 0.000473 0.047
16 0.001551 0.155 23 0.000473 0.047
4 0.001512 0.151 36 0.000470 0.047
44 0.001354 0.136 46 0.000454 0 045
43 0.001256 0.126 39 0.000408 0 041
42 0.001149 0.115 62 0.000388 0 039
40 0.001142 0.1 14 10 0.000383 0.038
13 0.001033 0.103 61 0 000383 0.038
24 0.000985 0.099 5 0.000376 0.038
18 0.000958 0.096 3 0.000282 0  0 2 8

31 0.000953 0.095 28 0.000263 0.026
29 0.000943 0.094 7 0.000234 0.023
59 0.000901 0.090 12 0.000192 0.019
30 0.000897 0.090 48 0.000184 0.018
21 0.000809 0.081 11 0.000175 0.017
53 0.000807 0.081 27 0.000167 0.017
35 0.000758 0.076 32 0.000124 0.012
58 0.000755 0.075 47 0.000103 0 010

26 0.000731 0.073 41 0.000088 0.009
60 0.000705 0.071 56 0.000087 0009

45 0.000702 0.070 17 0.000086 0 009

38 0.000694 0.069 37 0.000055 0 005

55 0.000665 0.067 2 0.000052 0.005

34 0.000614 0.061 14 -0.000043 -0.004

54 0.000578 0.058 _____________________
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Tabela 7: Desvio Padrão dos Retornos - 63 Ativos 

(amostra ni = 847)

Ativo DP (Log) DP (%a.d.) Ativo DP(Log) DP('!oa.d.)

1 0.05128 5.262 33 0 06624 6 848

2 0.04416 4.515 34 0.03362 3 410

3 0.03995 4.076 35 0.20941 23.295

4 0.1 1026 11.657 36 0.04411 4.510

5 0.05481 5.634 37 0.05407 5.556

6 0.06886 7.128 38 0.14475 15.575

7 0.03869 3.945 39 0.03944 4.023

8 0.04971 5.097 40 0.12341 13 135

9 0.04601 4.708 41 0.05792 5.063

10 0.04949 5.073 42 0.03703 3.772

11 0.04507 4.610 43 0.04167 4 2 ^

12 0.04234 4.325 44 0.04821 1.939

13 0.03521 3.583 45 0.06197 6.393

14 0.03580 3.644 46 0.04201 4.291

15 0.03544 3.608 47 0.09671 10.154

16 0.04660 4.771 48 0.03386 3.444

17 0.05670 5.834 49 0.07960 8 286

18 0.07264 7.534 50 0.02916 2.950

19 0.38811 47.420 51 0.07452 7.737

20 0.03324 3.380 52 0.04347 4.44.3

21 0.02701 2.737 53 0.03338 3.395

22 0.03692 3.761 54 0.07766 8076

23 0.08916 9.326 55 0.05816 5.989

24 0.04083 4.168 56 0.06003 6.187

25 0 33186 39.356 57 0.32570 38 500

26 0 03123 3.172 58 0.04018 4 000

27 0.05392 5.541 59 0.03849 3.024

28 0.06496 6.711 60 0.05912 6000

29 0.06419 6.629 61 0.05082 5 214

30 0.05989 6.171 62 0.03401 3.460

31 0.04282 4.375 63 0.13905 14 018

32 0.11610 12.311

Tabela 8: Retornos Logarítniicos de 146 Ativos
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m = 170 retornos)

Retorno Risco Ativo Retorno Risco Ativo R e to r n o Risco
0.002--7 0.09482 51 0.0115 0.1564 101 -0 0 0 9 0 0.1438

0.00026 0.09972 52 0.0028 0.0878 102 -00068 0.1913

0.00157 0.09225 53 0.0041 0.0616 103 -00086 0.1921

0.00410 0.18554 54 0.0038 0.1535 104 -00325 0.2998

0.00188 0.12174 55 0.0036 0.0925 105 -0.0026 0.0896

0.00820 0.08687 56 0.0014 0.1292 106 -0.0043 0.0993

0.00047 0.08234 57 0.0281 0.6190 107 -0 0 2 9 0 0.5361

0.00254 0.09427 58 0.0042 0.0923 108 -0.0058 0.1048

0.00317 0.08572 59 0.0038 0.0926 109 -00085 0.0915

0.00183 0.09592 60 0.0035 0.1375 110 -0.0024 0.1597

0.00078 0.11264 61 0.0016 0.1145 111 -0 0 0 4 0 0.0907

0.00094 0.07721 62 0.0018 0.0835 112 -0.0071 0.5058

0.00005 0.08384 63 0.0496 0.3293 113 -0.0055 0.1465

0.00542 0.07768 64 -0.0049 0.1002 114 -0.0036 0.1132

0.00242 0.07155 65 -0.0116 0.2390 115 -0.0099 0.1932

0.00749 0.09743 66 -0.0108 0.1397 116 -00117 0.1952

0.00037 0.11750 67 -0.0032 0.0641 117 -0.0056 0.1028

0.00397 0.14904 68 -0.0032 0.0764 118 -0.0037 0.1107

0.03226 0.57882 69 -0.0005 0.0768 1 19 -0.0043 0 0 6 2 9

0.00291 0.07051 70 -0.0099 0.0569 120 -0.0036 0.1688

0.00458 0.04871 71 -0.0022 0.0639 121 -00003 0.0750

0.00250 0.08085 72 -0.0052 0.0622 122 -0.0084 0.1186

0.00240 0.20124 73 -0.0013 0.0618 123 -0.0028 0.1246

0.00520 0.09423 74 -0,0020 0.0684 124 -0.0063 0.1627

0.06390 0.68445 75 -0.0011 0.0780 125 -0 0017 0.0795

0.00295 0.06130 76 -0 0 0 7 8 0.0898 126 -0.0008 0.0698

0.00053 0.09462 77 -0.0045 0.1028 127 -0.0007 0.0784

0.00132 0.13200 78 -0.0060 0.0923 128 -0.0036 0 . 1 148

0.00472 0.08155 79 -0.0100 0.1478 129 -0.0166 0.1179

0.00450 0.10864 80 -0.0101 0.1495 130 -0.0006 0.3480

0.00456 0.10407 81 -0.0072 0.1353 131 -00147 0.1124

0.00036 0.27382 82 -0.0006 0 1032 132 -0 0 3 1 6 0.5096

0.00259 0.17813 83 -0.0036 0.2676 133 -0.0004 0.0864

0.00297 0.08021 84 -0.0079 0.1257 134 -0 0041 0.0938

0.00140 0.36618 85 -0.0047 0.0872 135 -0.0066 0.0630

0.00283 0.09139 86 -0.0046 0.1064 136 -0.0020 0 0 8 4 5

0,00007 0.11520 87 -0.0025 0.1097 137 -0.0499 0.4124

0.00348 0.28837 88 -0.0019 0.0893 138 -0 0 5 0 6 0.4441

0.00171 0.07491 89 -0.0009 0.1097 139 -002.30 0.3052

0.00573 0.20616 90 -0.0006 0.1039 140 -0.0077 0.1086

0.00044 0.10103 91 -0.0010 0.0627 141 -0.0062 0 1112

0.00557 0,071 19 92 -0.0013 0.0714 142 -0.0050 0 1076

0.00572 0.09243 93 -0 0171 0.2007 143 -0.0043 0.0809  
0.1 181

0.00691 0.09692 94 -0.0174 0.1964 144 -0.0023

0.00378 0.12511 95 -0.0066 0.1116 145 -0.0020 0.1194

0.00234 0.08446 96 -0.0053 0.2734 146 -0.0082 0.3458

0.00051 0.22002 97 -0.0018 0.1113

0.00062 0.05772 98 -0 0 0 3 0 0.0732

0.00952 0.16620 99 -0.0022 0.1041

0.00818 0.06480 100 -0.0012 0.1642 _______
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Tabela 9: Assim etria e C urtose dos retornos de Portfólios INI'

Portfólio Assimetria C urtose Portfólio Assimetria < urtose
1 20.77 540.91 32 -0.49 5f"ÜF
2 4.08 187.31 33 -0 46 10 94
3 -0.18 179.76 34 -0 46 10 72
4 -0.27 1 79.54 35 -0 46 '8 69
5 -0.31 179.30 36 -0 46 36 82
6 -0.63 173.93 37 -0.46 35 36
7 -0.67 172.73 38 -0.46 35.34
8 -0.74 170.66 39 -0.46 29.3 1
9 -0.78 169.31 40 -0.46 26.33
10 -0.86 165.39 41 -0.45 25 29
11 -0.92 146.56 42 -0.45 22.17
12 -0.82 126.43 43 -0.45 19.70
13 -0 82 125.29 44 -0.45 19 14
14 -0.82 123.86 45 -0.45 18 44
15 -0 82 121.84 46 -0.45 17.69
16 -0 78 107.74 47 -0.46 15.76
17 -0.76 103.43 48 -0.48 1118
18 -0.76 102.78 49 -0.48 10.73
19 -0.75 101.22 50 -0 49 9.82
20 -0 67 86.33 51 -0.51 8,67
21 -0.64 8118 52 -0.51 8.64
22 -0.60 75.64 53 -0.51 8.51
23 -0.59 73.86 54 -0.53 7 15
24 -0.59 73.48 55 -0.54 6.95
25 -0.58 72.39 56 -0.54 6.63
26 -0.55 65.87 57 -0.54 6.50
27 -0.53 62.49 58 -0.55 6.31
28 -0.53 62.32 59 -0.55 6.27
29 -0.53 61.45 60 -0.54 6.26
30 -0.52 59.47 61 -0.54 6.23
31 -0.51 56.85 62 -0.53 6.07
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Tabela 10: Teste K-S para norm alidade dos retornos de Portfólios MV 

(ó3 ativos, 62 portfólios)

Variável r do 
Portfólio N°

Distância 
entre f.d.p.'s Valor-p Variável r do 

Portfólio N°
Distânch 

entre f d p.'s Valor-p
1 0 385825 < 0.01 32 0.146310 < 0 01
2 0.367053 < 0.01 33 0.138015 < 0.01
3 0.293500 < 0.01 34 0.137581 < 0 01
4 0.290752 < 0.01 35 0.134954 < 0.01
5 0.285268 < 0.01 36 0.132504 < 0.01
6 0.276730 < 0.01 37 0.130748 < 0.01
7 0.276038 < 0.01 38 0.130701 < 0 01
8 0.275510 < 0.01 39 0.120166 < 0.01
9 0.272617 < 0.01 40 0.114570 < 0.01
10 0.269790 < 0.01 41 0.113953 < 0.01
11 0.248628 < 0 01 42 0.110081 < 0.01
12 0.228658 < 0.01 43 0.103818 < 0.01
13 0.228135 < 0.01 44 0.102972 < 0 01
14 0.228162 < 0.01 45 0.102412 < 0.01
15 0.226887 < 0.01 46 0.101810 < 0.01
16 0.208774 < 0.01 47 0.102407 < 0.01
17 0.205113 < 0.01 48 0.098752 < 0.01
18 0.204770 < 0.01 49 0.097123 < 0.01
19 0.204372 < 0.01 50 0.096905 < 0.01
20 0.187469 < 0.01 51 0.094505 < 0.01
21 0.182542 < 0.01 52 0.094621 < 0.01
22 0.176849 < 0.01 53 0.095188 < 0.01
23 0.173394 < 0 01 54 0.093747 < 0.01
24 0.172290 < 0.01 55 0.089405 < 0.01
25 0.170164 < 0 01 56 0.087964 < 0.01
26 0.160034 < 0.01 57 0.082495 < 0.01
27 0.156571 < 0.01 58 0.078743 < 0.01
28 0.156642 < 0 01 59 0 077541 < 0.01
29 0.155986 < 0 01 50 0 077169 < 0.01
30 0.154995 < 0.01 61 0.078933 < 0.01
31 0.151374 < 0.01 62 0.077875 < 0.01
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Figura 7: V alor N orm al Esperado  para  Probabilidades - Porl fólios 1
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Figura 8: Valor Normal Esperado para  Probabilidades - Portfólios 60 a 62
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