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RESUMO

O presente trabalho trata da utilizagdo da técnica de Programagdo Matematica da
Pesquisa Operacional para a Analise de Portfolio com otimizagdo da relagdo risco - retorno
em carteiras de investimentos. Sdo construidos portfolios otimizados segundo o critério de
dominancia de Pareto, para um parametro "fradeoff" entre risco e retorno. Fazendo-se variar
este parametro entre a maxima aversio, com portfolios de minimo risco, 8 minima aversio,
com portfolios de maximo retorno, € obtido um conjunto de portfolios eficientes estratégicos
a partir dos quais é construida a Fronteira de Eficiéncia dos Portfolios. Os modelos utilizados
sdo o de Média-Variancia (MV) proposto por Harry M. Markowitz (1959) e um modelo com
base na metodologia de Valor sob Risco de J. P. Morgan (1994), supondo retornos dos
portfolios modelados por uma distribuigio log-normal e, portanto, ndo considerados
derivativos e commodities. Sdo utilizadas taxas de retorno correspondentes aos pregos diarios
de fechamento de 63 ativos negociados na Bolsa de Valores do Estado de Sio Paulo -
Bovespa - no periodo de 03/10/1997 a 29/12/2000, obtidos através do banco virtual
www.InvestShop.com br. O modelo MV ¢ formulado como um problema paramétrico de
programagdo quadratica, sujeito a restrigdes lineares incluindo a restrigio de or¢amento, com
solugdo através do algoritmo da Linha Critica, proposto por Markowitz, baseado na técnica de
Multiplicadores de Lagrange. O modelo MVaR corresponde a um problema de programagio
ndo linear com risco calculado pela metodologia VaR (Value at Risk), sujeito as mesmas
restrigdes do modelo MV, acrescentada uma restrigdo para retornos iguais aos obtidos no
modelo MV, permitindo a comparagdo dos dois modelos. A solugdo do modelo MVaR, para
retornos normalmente distribuidos, € equivalente a do modelo de MV, que proporciona
portfolios com minima varidncia, sobre a qual € realizado o calculo do risco pela metodologia
VaR. Como os modelos utilizados supdem que ao menos os retornos dos portfolios sejam
normalmente distribuidos, é verificada a qualidade do ajuste destes retornos a distribuigdo de
Gauss. Os algoritmos s3o implementados nos programas Maple e Lingo.
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ABSTRACT

The present work is about the use of some Operational Research techniques to perform
Portfolio Analysis with optimization of the relationship between risk and return in wallets of
investments. Optimal Portfolios are built according to the approach of Pareto, for a parameter
“tradeoff" between risk and return. Making to vary this parameter among the maximum
aversion, with portfolios of minimum risk, to the minimum aversion, with portfolios of
maximum return, it is obtained a group of strategic efficient portfolios starting from which the
Efficient Frontier of Portfolios is built. The used models are the Mean-variance (MV)
proposed by Harry M. Markowitz (1959) and a model of Mean - Value at Risk (MVaR), for
returns of the portfolios modeled by a lognormal distribution and, therefore, not considered
derivative and commodities. The used returns correspond to daily closing prices of 63 assets
negotiated in the stock exchange of the State of Sdo Paulo - Bovespa - in the period from
03/10/1997 to 29/12/2000, obtained through the virtual bank www.InvestShop.com.br. The
model MV is formulated as a parametric problem of quadratic programming, subject to lineal
constrains including the budget restriction, with solution through the Critical Line algorithm,
proposed by Markowitz, based on the Lagrange Multipliers technique. The model MVaR
corresponds to a problem of non-lineal programming with risk calculated by the VaR
methodology (Value at Risk), subject to the same restrictions of the model MV, added a
restriction for the same returns to the obtained in the model MV, allowing the comparison of
the two models. The solution of the model MVaR, for lognormal returns, it is equivalent to
the one of the MV model, which provides portfolios with minimum variance, on which the
calculation of the risk is accomplished by the VaR methodology. As the used models suppose
at least that the returns of the portfolios are lognormal distributed, the fitting of a Gauss's
distribution is verified for these returns. The algorithms are implemented in the programs

Maple and Lingo.
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1. INTRODUCAO

Este trabalho trata da utilizagdo da técnica de Programagido Matematica na analise de
portfolio para otimizagdo da relagdo risco-retorno em modelos matematicos de administragdo
de carteiras de investimento, visando a obtengdo de portfolios eficientes para os diferentes
graus de aversdo ao risco, isto €, a Fronteira de Eficiéncia, para portfolios construidos a partir
de 63 ativos negociados na Bovespa, no periodo de 03/10/1997 a 29/12/2000.

O capitulo II trata de algumas defini¢Ges da Analise de Portfolio, como o retorno € a
incerteza (ou risco) de ativos e portfolios, modelagem log-normal para retornos,
quantificagdo do risco pela varidncia dos retornos, beneficios da diversificagdo de
investimentos, a fungdo utilidade que leva em conta o grau de aversdo ao risco de cada
investidor, a modelagem de Problema Paramétrico de Programagdo Quadratica para
determinar portfolios estratégicos a partir dos quais € obtida a Fronteira de Eficiéncia.

No capitulo Il sdo abordados os problemas de Programagdo Linear (PL) e
Programagio Quadratica (PQ) e suas formas paramétricas (PPL e PPQ) utilizados na
modelagem de problemas que visam a otimizagdo da relagido risco-retorno na selegdo de
portfolios, a técnica de Multiplicadores de Lagrange e, ainda, verificagdo do ajuste de um
conjunto de dados a uma distribuigio estatistica.

O capitulo IV apresenta o modelo de Média-Variancia (MV) proposto por Harry M.
Markowitz (1959), primeiro modelo de administragdo de carteiras de investimentos de risco
baseado na Estatistica, tendo sido criado na década de 50 e o modelo MVaR como uma
aplicagdo direta da metodologia de mensurag@o de risco (varidncia) do modelo MV, para
obtengdo da Fronteira de Eficiéncia para risco dado pela metodologia de Valor sob Risco -

VaR, desenvolvida por J. P. Morgan, publicada em 1994.
No capitulo V sdo apresentadas as aplicagdes do modelo MV de Markowitz e MVaR

com base na metodologia de quantificagdo de risco de J. P. Morgan, onde sdo utilizados
retornos historicos de 63 ativos negociados na Bolsa de Valores do Estado de Sao Paulo, entre
as datas de 03/09/97 a 29/12/00 (848 dias uteis), obtidos do banco virtual InvestShop.com.br.
A metodologia utilizada para tratamento dos dados é apresentada no decorrer do capitulo.

No capitulo VI sdo debatidos os resultados obtidos quanto a sua aplicabilidade na
construgio de portfolios, aos beneficios obtidos e quanto as suposi¢des necessarias as

metodologias de mensuragio de risco utilizadas. Sdo ainda apresentadas sugestdes para

trabalhos futuros.



2.  ANALISE DE PORTFOLIO
2.1. Introducgio

Para exercer uma oportunidade de investimento, empresas sem disponibilidade de caixa
podem contratar empréstimo, emitir papéis como ag¢des, debéntures, etc. Em contrapartida,
pessoas fisicas e juridicas podem interessar-se por estes titulos, como forma de obter retornos
para seus recursos disponiveis.

Esses titulos, ou ativos, possuem algumas caracteristicas que permitem avaliar sua
utilidade de uma perspectiva do investidor, e que se constituem em apelos econdmicos para
beneficios futuros. Em titulos federais, ha o apelo do fluxo de pagamentos futuros pré-
especificados; fundos de investimentos e subscrigbes de agdes representam apelos a dividendos
futuros e participagdo em ativos de empresas ou corpora¢des. Outras formas de investimentos
sdo encontradas no mercado financeiro, tais como derivativos (ex. opgdes), commodities (ex.
mercado de futuros), etc.

Os ativos financeiros podem ser caracterizados por dois aspectos importantes: risco €
retorno. DOWD (1999, p. 3), relata a preocupag@o com o risco:

"Everything changes, and changes can be good or bad for those affected by them.
Change therefore leads to risk, the prospect of gain or loss, and risk (or, more precisely,
the risk of loss) is something that we must all come to terms with. (...) It means that we
must manage risk: we must decide what risks to avoid, and how we can avoid them;
what risks to accept, and on what terms to accept them; what new risks to take on, and

50 on".

A decisio entre investir em determinado ativo A, com alto retorno esperado e alto risco
(variabilidade), e em um ativo B, com baixo retomo esperado, mas com baixo risco, requer um
critério de ajuste entre retorno esperado e risco.

MARKOWITZ (1959), desenvolveu um modelo de analise da relagdo risco-retorno
baseado em informagdes historicas sobre ativos, onde as informagdes necessarias para escolher
o melhor portfolio para quaisquer niveis de risco estdo contidas em trés parimetros estatisticos:
média, desvio padrdo (ou varidncia) e correlagdes (ou covaridncias).

Segundo GOETZMANN (1998), embora ndo requeira informagdes sobre politica de
dividendos, lucros, participagdo no mercado, estratégia, qualidade de administragdo, ou seja,
nenhuma informagio com que analistas do mercado financeiro preocupam-se, o modelo de

Markowitz alterou a forma com que estes tomam suas decisdes, ndo necessariamente



seguindo a risca suas recomendagdes, mas utilizando-o como forma de avaliar riscos basicos e
relagdes risco-retorno.

Modelos como o CAPM (Capital Asset Pricing Model) desenvolvido por William F.
Sharpe (1964) e o APT (Arbitrage Pricing Theory) desenvolvido por Ross (1976), a partir do
modelo de Markowitz, tém como objetivo determinar o risco de um portfolio em relagio a
fatores mensuraveis direta ou indiretamente, com o estabelecimento de retornos adequados
aos niveis de risco.

O CAPM considera na escolha de ativos uma medida da sensibilidade das flutuagdes
de suas taxas de retorno em relagdo as flutuagdes de um portfolio de mercado (ex.: lbovespa,
como aproximagdo), através de fatores de mensuragdo de risco chamados betas () de ativos,
calculados a partir das covaridncias destes ativos em relagdo ao portfolio de mercado.

ROSS (1976) argumenta que betas sdo somente pontos de partida, e que os retornos de
ativos sdo relacionados a fatores macroeconémicos, responsaveis pela variabilidade global do
mercado. Os fatores de risco sdo identificados com o estudo da estrutura de covaridncias (ou
correlagdes) dos retornos através de técnicas como a de Analise Fatorial (ver Johnson, 1998) e
Analise de Regressao.

Uma técnica bastante conhecida para classificar oportunidades de investimento, para
diferentes retornos esperados e respectivos riscos, € a da Razdo de Sharpe, que permite a
classificagdo de ativos comparando-se as razdes entre seus retornos diferenciais em relagdo a
um portfolio benchmark e a variabilidade desses retornos.

Segundo DOWD (1999), a Razdo de Sharpe tem algumas vantagens como fornecer
informagdes suficientes para a escolha (ex anre) ou avaliagdo (ex posf) entre dois
investimentos, sem ambigiiidade por duas possiveis classificagdes: 1) pelo desempenho dos
retornos e 2) pelas posigdes do risco, mas relata problemas de correlagdo dos retornos de
ativos com o portfolio do investidor. Dados dois ativos 4 e B classificados pela Razdo de
Sharpe, onde A tem melhor desempenho e correlagdo de retornos positiva com o portfolio,
mas B apresenta retornos com correlagio negativa com o portfolio, entdo a compra do ativo 4

faz aumentar o risco do portfolio, enquanto B proporciona redugdo de risco.
DOWD propde a utilizagio da Regra de Sharpe Generalizada, que ndo apresenta os

" problemas de correlagdo’, e pode ser calculado para risco dado pela metodologia VaR em

substitui¢do ao desvio padréo.

' A Razio de Sharpe de um ativo ndo considera a corrclagio deste ativo cont o portf6lio do investidor.
somente com um portfélio de mercado (benchmark).
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DOWD relata a técnica de Valor sob Risco - VaR (Value at Risk), como em crescente
utilizagdo na analise de ativos financeiros em mercado de risco. Entre as formas de avaliagio
do Valor sob Risco, encontram-se as metodologias de VaR paramétrico ou analitico, que parte
da suposi¢do de distribuigdo Gaussiana dos retornos e a Simulagdo Historica e com as
técnicas de Monte Carlo.

Estabelecida uma forma para a quantificagéo do risco, a proxima etapa corresponde a
construgdo de portfolios que, por algum critério especifico, sdo os melhores entre todos os
portfolios possiveis. Investidores racionais, segundo MARKOWITZ (1959), devem ter como
medida do beneficio a ser obtido com a aplicagdo em ativos, nio somente a taxa de retorno.
Devem considerar, também, os niveis de risco a que seus recursos estardo expostos.

Para as preferéncias de diferentes investidores, correspondem varias predisposi¢des ao
risco, alguns avidos por retorno, outros mais conservadores. A cada nivel de predisposi¢do ao
risco, corresponde um parametro “fradeoff” entre risco e retorno.

Entre os objetivos de um modelo de analise de portfolio, esta o de obter portfolios
otimizados, segundo o critério de domindncia®, para cada parametro de aversdo ao risco. Este
objetivo esta explicito no modelo MV e também em modelos MVaR, com a construgédo da
Fronteira de Eficiéncia dos portfolios.

Nos modelos APT e CAPM, esta caracteristica esta implicita na formagdo de
portfolios, mas suas esséncias estio nos chamados f3 (betas) de ativos, ou seja, em identificar
indices de sensibilidade, para as variagdes dos retornos em ativos, devidos a variagdes no
mercado. Nestes modelos o objetivo € a diversificagdio de ativos para prote¢do contra

oscilagdes correlacionadas com o mercado ou com os fatores de risco deste mercado.

2.2. Retorno e Risco de Ativos

O valor mais esperado para as taxas centesimais de retorno (r,) de ativos financeiros
corresponde 4 média geométrica dos fatores (1 +r) (com t dado normalmente em meses,
semanas ou dias) subtraida da unidade. A média geométrica substitui cada um dos fatores, ao

longo de varios periodos, por um fator que produz a mesma variagao final.

2 Em condicdes normais. investidores devem adotar o critério de dominancia de Pareto na escolha de
seus portfolios. isto ¢. preferir portfolios com menor risco. entre dois portfolios de mesmo retorno €. por outro
lado. preferir portfolios com maior retorno. entre portfélios com igual risco.



Dados os retornos percentuais de um ativo em m periodos, {ri. ..., Tm}, 0 valor mais

esperado (7, ) para os retornos deste ativo para um periodo é dado por:

m 'm
FG:{”(Hrt)} -1 (1)

t1
onde ry = (S¢/Se.1)-1, com S; a cotagdo do ativo no t-ésimo periodo.

Um exemplo com dois periodos com taxas de retorno de -20%(perda) e 25%(ganho)
mostra que a média aritmética (2.5%) ndo representa adequadamente o valor mais esperado,
mas sim a média geométrica (0.0%) dos fatores (1 + r,), subtraida da unidade.

Uma transformagao logaritmica aplicada aos fatores (1 + r;) = (S¢/S.1), permite obter a

Esperanga Matematica dos retornos logaritmicos (i =/n(1+7, )) e a matriz de Covaridncias em

conformidade com os resultados de Estimadores de Maxima Verossimilhanga® da Estatistica:
] m
u= —l;glln(l +ry) (2)

Esta transformagdo corrige o problema de equivaléncia de taxas negativas e positivas,
pois uma taxa logaritmica positiva € exatamente a mesma para repor a perda de uma negativa.

Dessa forma a transformagido proporciona adequagdo para obten¢do da fungdo
distribuig¢do de probabilidade e fungdo de probabilidade acumulada onde retornos negativos
tém a mesma importancia que positivos. Como exemplo, para os retornos r;=In(1-20%) e
r>=In(1+25%), as probabilidades P[In(0.8) <r < 0] e P[0 <r <In(1.25)] apresentam intervalos
com a mesma varia¢do € tém a mesma importdncia, em contraposi¢ao as probabilidades
P[-20% < r < 0] € P[0 < T < 25%).

Substituindo In(1+r;) = In(S¢/S¢.1), pode-se obter (2) a partir das cotagdes S;:

u = 3 finS,) - InS)]= p=—finS,) -] (3)
m ¢=| m
A esperanga matematica dos retornos apresenta caracteristicas como incerteza, pois as
forgas econdmicas ndo sio entendidas suficientemente bem para permitir previsdes. Alem
disso, influéncias ndo econdmicas podem mudar o curso de fatores dados como certos.
Em Decisdes Financeiras, considera-se o risco como “o grau de incerteza a respeito de

um evento”, ou como a “possibilidade de perda”.
Nas técnicas matematicas de Analise de Portfolio deseja-se estabelecer portfolios

3 As estatisticas média ¢ variancia amostral (X ¢ s) sdio cstimativas dos pardmetros populacionais (. ¢
©). que maximizam a probabilidade. ou densidade dc probabitidade para variavel continua, dc ser obtida a
amostra observada. Ver Johnson. 1998. pag. 182.



otimos em relagdo a performance passada de séries temporais dos retornos. Nesse sentido, o
risco estd presente principalmente na variabilidade das taxas de remuneragio de um ativo
financeiro, sobre qual retorno pode-se esperar em performance futura.

A série historica de retornos de um ativo é resumida por um valor mais esperado.
Deve-se estudar a distribui¢do dos valores historicos para saber-se o intervalo no qual espera-
se que ocorra esse valor. Em Probabilidade, para uma populagdo normalmente distribuida,
esse intervalo é dado em termos de Desvios Padrdo, onde aproximadamente 68.26%,
(95.44%, 99.74%) dos dados encontram-se no intervalo entre a média menos um, (dois, trés)
desvios padrdo e a média mais um, (dois, trés) desvios padrio.

Assim, quanto maior o desvio padrdo (o), maior o intervalo onde € provavel que o
valor mais esperado dos retornos possa oscilar, o que pode ser caracterizado como uma

medida do risco associado ao ativo. A varidncia (c°) dos retornos do i-ésimo ativo é dada por:

oo i(. .
FmoD ) Y — M) (4)
onde re; = In(Se+1,i/Sei) s30 os retornos logaritmicos e ; € o retorno esperado do i-ésimo ativo.
O risco de um portfolio ndo é dado somente pela soma dos riscos individuais dos

ativos que o compdem, mas também pela soma das covaridncias entre estes ativos. A

covariancia entre os retornos do i-ésimo ativo com os retornos do j-ésimo ativo ¢ dada por:

l m
O j =m§('}.i =) — 1y) (5)

Entre outras formas de se medir o risco, podemos citar a correlagdo dos retornos dos
ativos com algum indice de mercado, como o Ibovespa (ver Anexo 1V), e também sua
decomposigio em conjuntural, ou aquele que ¢ explicado pelas variagdes no indice de
mercado, e especifico, que € proprio do ativo e ndo correlacionado com o mercado.

Alguns modelos como EWMA(lixponentialy Weighted Moving Average) e GARCH*
(Generalized Autorregressive Conditional Heteroskedastic) constituem-se em alternativas
mais robustas para avaliagdo de varidncia, estimando-a como variavel ao longo do tempo, isto
¢, considerando a existéncia de Heterocedasticidade.

A determinagiio de grupos de ativos que se apresentam correlacionados por "fatores de

mercado”, embora esses fatores ndo sejam diretamente mensuraveis, através da técnica de

4 Uma equagdo GARCH de ordem (p.q) assume que a varidncia local dos termos de erro no instante t ¢
linearmente dependente nos quadrados dos altimos p valores dos termos de erro ¢ dos ultimos q valores das
variancias locais. Quando q € zero. o modelo reduz-se a um modelo de ARCH.



Analise Fatorial, constitui-se em técnica de mensuragéo do risco. Esta técnica pode apresentar
vantagens, uma vez que identifica riscos relacionados a fatores nio mensuraveis, mesmo
quando ndo considerados todos ativos existentes, além de proporcionar redugio da estrutura
do problema, que passa a ser tratado com um nimero menor de variaveis que representam

esses fatores.
2.3. Retorno e Variiancia de um Portfolio

Seja X(m x ny @ matriz de retornos historicos em m periodos para n ativos € x o vetor de
dimensdo definida pelo numero de ativos cuja i-ésima coordenada define a fragdo de
or¢amento destinada ao i-ésimo ativo.

Os retornos historicos de um portfolio x, em m periodos, correspondem as
coordenadas do vetor r, = X.x. Estas coordenadas correspondem a uma amostra de tamanho
m da variavel aleatoria r; = X,.x, onde X, é a t-ésima linha da matriz X

Um portfolio x =c¢ tem retorno esperado p, = E(X.¢) e varidncia 02,, = V(X.¢)
calculados sobre a amostra de tamanho m da variavel aleatoria r, € dados por (ver Johnson,
pag. 148):

L = E(rp) = E(Xe) = CE(X) =c¢'.u (6)
02,, =V(Xec) =’ V(X)c=¢'Zc (7)
onde p = E(X) e £ = V(X) sdo o vetor da esperanga matematica e a matriz de covariancias,

respectivamente, dos retornos logaritmicos dos ativos que compdem o portfolio.

2.4. Reducio da Variincia pela Diversificagdo de Ativos

Segundo MARKOWITZ (1959) a diversificagdo de investimentos para compor um
portfolio traz alguns beneficios:

a) Redugdo da varidncia (risco), mantendo o mesmo nivel de retorno;

b) Aumento de retorno, com o mesmo nivel de varidncia (risco).

A composig¢do de um portfolio é obtida pela aplicagdo de percentual do orgamento em
cada ativo disponivel. Os beneficios ocorrem devido as oscilagdes em sentidos contrarios nos

retornos (correlagdes negativas), de forma alternada ao longo do tempo e as variagdes tendem

a se anular.



Portfolios diversificados normalmente apresentam desvio padrio menor que a média
ponderada pelas participagdes, dos desvios padrdes dos ativos que o compdem. A exce¢do
ocorre para ativos que apresentam correlagdo positiva igual 4 unidade, (perfeitamente
correlacionados).

Um exemplo com dois ativos, com retornos esperados dados por p = [ 15%, 10%)],
varidncias dadas por o6°a = 80%2, 6’3 = 30%* e covaridncia oan = 40%°. O retorno e a
varidncia de um portfolio x = [0.6, 0.4], sdo dados por:

iy = [0.6, 0.4].[15%, 10%]' = 13.00%

80 40006
2 : 2
=106 04 = 0 0
G [ ‘ 10 30}[ .4} 52.80%" > o, =7.266%

Isto €, temos um retorno igual a média ponderada dos retornos dos ativos A € B, e
desvio padrdo menor que a média ponderada (7.746) dos desvios padrdes dos ativos A e B,
para um coeficiente de correlagdo pap = 40/ (80"%*30'%) = 0.8.

Quanto mais préoximo da unidade for o coeficiente de correlagdo, mais proximo da
média ponderada dos desvios padrdes sera o desvio padrdo do portfolio.

Para correlagGes negativas, como pap = -0.2 (oA = -10) tem-se:

o’ =[06 0.4 8010806 g 809
P U U 10 30 (o4l 00

O desvio padrio ¢ ainda menor, ou seja, 6, = 5.367%.

A medida que o coeficiente de correlagdo aproxima-se de -1, temos cada vez maior

redugdo no desvio padrdo. Para pap = -1, (caB = - 49), tem-se:

2 — o6 04 B0 =994 001 0 089
OrT Y T 49 30 Jo4)” T

E um desvio padrdo para o portfolio de o, = 3.175%.
A diversificagio apresenta-se como uma forma de redugdo de risco.
O gerenciamento de Carteiras de Investimento pela determinagdo de portfolios com

ativos diversificados diminui a incerteza (variabilidade) quanto a taxa de retorno que melhor

representa a performance passada.

Este beneficio deve ser interpretado com cautela, devido as duas projecdes para a
performance futura, a partir da passada, supostas no modelo: taxas de retorno e correlagges,
para os ativos que compdem o portfolio. A diversificagdo nao garante o0s beneficios, mas

corresponde a escolha com melhor desempenho em performance passada: espera-se que um



ativo com melhor desempenho (maior retorno) no passado seja também o de melhor
desempenho no futuro, e também que as oscilagdes mantenham-se aproximadamente como
nos dados historicos, mantendo também o nivel de risco.

Além das caracteristicas citadas, deve-se considerar que existem correlagdes dos ativos
de um portfolio com ativos que ndo fazem parte do portfolio ou da analise, por ndo
apresentarem cotagGes disponiveis, ou ndo terem sido negociados no periodo. Estas

correlagdes ndo sdo captadas pelo modelo.
2.5. Teoria da Utilidade e Fronteira de Eficiéncia

Conforme SECURATO (1996), uma curva de equilibrio que pode ser atil a uma
grande maioria dos investidores do mercado de capitais, é a chamada Curva de Mercado de
Capitais (CMC, Fig. 1), que relaciona diversos niveis de retorno a niveis de risco; estes niveis
de risco sdo dispostos a partir de Titulos Federais e Cadernetas de Poupanga como de risco
zero, as a¢des ordinarias e preferenciais de empresas, como de risco maximo. A classificagdo,

segundo o autor, ndo € fixa, podendo ter seu posicionamento alterado com a conjuntura dos

ativos.

Retorno
4 C.MC.

AGOES PREFERENCIAIS
ACOES OROINARIAS

FINANCIAMENTO DE OPCOES-ACOES
FINANCIAMENTO OE OPGGES- OURQ

DEBENTURES — 2% LINHA
DEBENTURES- I® LINHA
QURO - DOLAR

CDR - 2% LINHA

CO8-1® LINHA

FUNDOS MUTUOS

I +FiTuLOS FEDERAIS

a Risco

Figura 1: Curva de Mercado de Capitais

A Curva de Mercado de Capitais pode ser interpretada como uma curva de

indiferenca, ou de equilibrio, informando o retorno esperado para cada nivel de risco.
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Quando o risco é pequeno, um aumento de risco AV é aceito para se obter um retorno
adicional Ar; para risco mais alto, maior retorno adicional é requerido para compensar o
mesmo aumento de risco AV.

Uma fungdo que relaciona os retornos r para cada nivel de risco V ¢ chamada fungio
utilidade.

Uma fungdo utilidade do investidor - U(r) - deve receber gradativamente menor
acréscimo para um mesmo acréscimo de retorno, a medida que o risco se eleva, desde que
para maiores retornos tem-se maior risco. Isto €, deve ser uma fungdo crescente a taxas
decrescentes:

U(r) > 0 ecrescente;
U'(r) > 0 e decrescente,
U"(r) < 0 e crescente, tendendo assintoticamente a zero.

Uma forma muito adotada para obtengdo de maior retorno e redugdo de risco € a da
diversificagdo de ativos, com analise da relagdo risco-retorno. A fungdo utilidade mais
freqiientemente utilizada neste caso, segundo DAS (1998), ¢ uma fungdo utilidade
exponencial que tem a forma:

U(r) =1 - exp(-Ar) (8)
onde A é um pardmetro de aversdo ao risco, U(r) retorna o nivel de utilidade para a variavel
taxa de retorno do portfolio (r), e r é obtida como combinagéo linear das taxas de retorno dos
ativos, com coeficientes dados pelas participagdes dos ativos no portfolio.

Esta fungdo tem as caracteristicas necessarias para uma fun¢do utilidade, e pode
adaptar-se a todos os tipos de investidores, bastando variar o pardmetro de aversio ao risco A.

O valor da fungéo utilidade U(r) depende da distribuigdo de probabilidade dos retornos

fir). Para maximizar o valor esperado da fungéo utilidade, € necessario que:

Max E[U(r)] = Max f:(l—e(""’)fﬁyd;~

ou

Min E[U(r)] = Min Jje”‘”/‘(r)dr

A fungdo a ser minimizada €, em Estatistica, a Fun¢do Geradora de Momentos,

avaliada em -A.

Para o caso normal:



RE TSN _|[(.~---u..) ]
MGFy (-A) = e " — e ? 1 dr
N (-A) J‘_w gy
MGFy (-A) = exp(-Aptp + (AG)*/2) 9)

Como MGFy ¢ dada por uma exponencial, basta minimizar o expoente, para obter o
minimo da MGFy;:
Min -App + (-A)’c%/2
ou
Max pp - Ac?/2 (10)
Para retornos historicos de um portfolio com distribuigdo de probabilidades

aproximadamente normal, r~N(11,,6), a fungdo utilidade U(r) = i, - 2.5, /2 é a do modelo de

Markowitz.

O problema de escolha entre n ativos disponiveis, definindo as fragdes x; de orgamento
destinadas a cada ativo, foi formulado por Markowitz como um problema de programagio
quadratica (PQ), cujo objetivo € maximizar o valor esperado da fun¢io utilidade exponencial
do investidor, satisfazendo a restri¢do de or¢amento.

O retorno do portfolio no t-ésimo periodo (performance passada) € dado pela variavel
aleatoria r, = X¢x, onde X € o t-ésimo vetor linha da matriz X de ordem (m x 1) que define
uma amostra de tamanho m do vetor multivariado y = [ Xy, X2, ..., Xw]' de retornos dos ativos.
Entdo o retorno esperado e a variancia do portfolio, ou seja, da variavel aleatéria r, sio dados
pelas formulagdes em (6) e (7):

Hp=X'p
o, = X' Zx
O problema de selegdo de portfolio de Markowitz, sujeito a restrigdo de orgamento

(x1 + X2 + ...+ x, = 1) e demais restri¢des (Ax < b), € definido no Problema P1 a seguir:
Minimizar  (1/2) x'2x - Apx'i

Sujeito a: dox, =1 (P1)
i=1

Ax <b
x; > 0 Vi
Este problema (P1) tem duas outras formas equivalentes, ou seja, maximizar o retorno

esperado dado por [, = x"J, sujeito a um valor fixo para a varidncia, ou minimizar a varidncia
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dada por o, = x'Xx, sujeito a um valor fixo para o retorno, ambos também sujeitos as

restri¢des de orgamento e de ndo negatividade.

A condigdo de ndo negatividade também ¢ referida como condi¢do de legitimidade do
portfolio. Caso nio satisfeita esta condigdo, tem-se portfolios financiados, ou "alavancados”.

Para cada valor fixo do retorno esperado, ou da variancia, corresponde um valor do
pardmetro de aversdo ao risco Ar na formulagdo que visa maximizar a funcéo utilidade do
investidor.

Um conjunto de portfolios na fronteira do conjunto de portfolios factiveis, com retorno
maximo para cada nivel de risco dado pela varidncia, é chamado de Fronteira de Eficiéncia de
Markowitz. Na representagdo do Risco-Retorno em um plano x-v. nesta ordem, nio ¢
possivel encontrar Portfolios acima da Fronteira de Eficiéncia e portfolios abaixo desta sdo

dominados pelos Portfolios Eficientes de Markowitz.

2.6. Razao de Sharpe

A escolha entre alternativas de investimentos que apresentam diferentes retornos com
diferentes niveis de risco exige uma forma de ajuste entre retornos e seus niveis de risco. A
performance de ativos e portfolios também pode ser avaliada com o estabelecimento de uma

medida do retorno obtido para cada nivel de risco.

Segundo DOWD (1999), estas duas formas de avaliagdo obtidas com o ajuste de risco,
para retornos esperados (avaliagdo ex anfe, com parametros estimados) ou para performance
obtida (avaliagdo ex posr), permitem a escolha entre oportunidades de investimento ou a
avaliagio de sua performance, sem ambigiidade por duas possiveis classificagdes: pela
performance dos retornos e pelas posi¢des de risco.

Seja xp um portfolio com retornos historicos rp e xi3 um portfolio henchmark com

retornos rp € 0s retornos diferenciais rj, = rp - rp entre os dois portfolios. A razdo de Sharpe €

definida como o quociente entre o valor esperado (L) e o desvio padrio esperado (on) do

retorno diferencial:
SR=up/op (11)
Esta razdo capta o retorno diferencial esperado por unidade de risco associado com
este retorno diferencial. Ou seja a classificagdo pela SR leva em conta ambos retorno
diferencial entre os portfolios e risco do diferencial associado.

Na avaliagdo de performance, os pardmetros |1 € op sdo conhecidos (néo estimados).
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2.7. Modelos de Precificacio de Ativos Financeiros

Fundamentos mais elaborados para cilculo do tradeoff entre risco e retorno sio
encontrados no Capital Asset Pricing Model (CAPM) criado por William F. Sharpe (1960) e
no Arbitrage Pricing Theory (APT), por ROSS (1965). Nestes modelos, construidos a partir
do modelo MV, o risco é decomposto em duas parcelas, uma delas relacionada ao mercado e
outra propria do ativo ou portfolio.

Estes modelos tém como assertiva que, embora forgas especificas de ativos ou ramo de
atividade possam influenciar os retornos de um ativo individual, seus efeitos tendem a
cancelarem-se em portfolios amplamente diversificados, ou seja, pode-se aproximadamente
eliminar o risco proprio caracteristico de cada empresa ou ramo de atividade.

Contudo, forgas econémicas influenciam os retornos de todos os ativos em conjunto e
este risco ndo € eliminado pela diversificagdo. Esta é a parcela do risco pela qual deve ser
exigida recompensa adicional, ou seja, maior retorno para maior exposi¢ao ao risco.

O CAPM prevé a influéncia de somente um tipo de risco ndo diversificavel sobre o
retorno esperado de um ativo, relacionado ao indice de mercado, suposto eficiente para o
modelo Média-Variéncia.

O modelo APT, mais geral, ndo fixa a exposigdo a somente um fator de risco, ndo fixa
seu nimero ou mesmo exige sua prévia definigdo. Os fatores originam-se em mudangas ndo
antecipadas na confianga de investidores, taxas de juros, inflagdo, atividade/negocio, indice de
mercado, etc.

Um ativo ou portfolio tem sua exposigdo a for¢as econdomicas de mercado medida por
betas, que identificam seu comportamento ou perfil (variabilidade e performance) em relagdo

ao risco sistematico. O padrio de exposi¢do de um portfolio € definido pela exposig¢do dos

ativos selecionados para compd-lo.

2.8. Capital Asset Pricing Model - CAPM

O Modelo de Precificacio de Ativos Financeiros (Capital Asset Pricing Model -
CAPM), criado por William F. Sharpe (1964), prevé a influéncia de somente um tipo de risco
nio diversificavel sobre o retorno esperado de um ativo, relacionado ao mercado. Seu modelo

estabelece que o indice de mercado €, por si s0, eficiente para o modelo Média-Variancia, ou

seja, que proporciona maximo retorno esperado para cada nivel de risco.
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SECURATO (1996) apresenta o modelo CAPM, onde os retornos r, de um portfolio

sdo aproximados por um modelo de regressdo linear

n=o+PBr+eg (12)
onde r € o retorno para o fator de risco, & denota a parcela de retorno especifica do ativo ou
portfolio, B € a sensibilidade do portfolio ao fator de risco, sendo estimado pela razio entre a
covaridncia do portfolio com o fator de risco e a varidncia do fator de risco.

Desenvolvido por William Sharpe (1964), e com modificagdes por Lintner (1965) e
Mossim (1966), o CAPM (Capital Asset Pricing Model ou Modelo de Precificagio de Ativos
Financeiros) ¢ um dos chamados modelos de equilibrio. O CAPM assume algumas
suposigdes, tais como:

- Investidores no mercado se comportam racionalmente, usando um mesmo modelo

de decisdo, o modelo de Markowitz;

- Existe um ativo sem risco, acessivel a todos os investidores, que podem toma-lo
emprestado, ou nele investir com uma mesma taxa de retorno pr;

- Todos os investidores estdo de acordo quanto ao retorno esperado e a matriz de
covariancias dos retornos dos ativos de risco do mercado, ou seja, que a fronteira
de eficiéncia € unica.

- Sob condigdes de equilibrio, todos os ativos estdo presentes no portfolio de
mercado.

A partir dessas hipoteses, o modelo calcula propriedades de pontos de equilibrio do

mercado e estabelece uma relagdo entre o retorno esperado de determinado ativo A e a parcela
de seu risco ndo diversificavel, ou seja, a parcela do risco que é correlacionada com a carteira

de mercado M.
Uma carteira C, composta pelo ativo A e pela carteira de mercado, com fragdes © € (1-

©), respectivamente, tem retorno i e risco o¢ dados por:

pe = o.pa + (1-0) .1y (13)

ol =0’ o} +(-0) o), +20(1-0).cov(ramn) (14)

onde

Lwae o sdo o retorno esperado e a varidncia do ativo A;

LM € of, sdo o retorno esperado € a varidncia da carteira de mercado M.

O ativo A naturalmente faz parte da Carteira de Mercado.
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A carteira C, com fragdes (v, 1-w) para A e M, altera a carteira de mercado, que passa
a ter maior participagdo do ativo A. Para manter o equilibrio de mercado, deve-se ter ® = 0,
onde a procura pelo ativo A permanece em proporgdes de sua participagio no mercado, e C =
M.

As taxas de variagdo em (ic e sc, em relag@o a participagdo do ativo A na carteira C,

sdo dadas por:

cu
Y < =My T Hy (15)
cto
oo 2.(0.0’j -2(1 - w)o—/ff +2(1 - 2m).cov(r, .1, ) (16)

‘m 2 2 > 2
ca 2\/1370; +(I-w)’ o}, +2m(1-@).cov(r,.r,, )
O coeficiente angular da reta tangente a equagdo risco-retorno das carteiras formadas

de ativos A e M é calculado como o quociente entre 15 e 16. Para o = 0, tem-se:

M
_ - 1 ' \{ 5 (17)
CQV( ry, ’A{ ):_O-!‘l

UAI
A razdo recompensa-variabilidade de Sharpe para a carteira C ¢ calculada em relag@o a

um ativo livre de risco F (or = 0, com retorno ur) e dada por:

Rl' - (:uC_luF)

¢

Para a maxima razdo recompensa-variabilidade, deve-se ter:

OH,- Co
ORV . Oc~ (.u< - ,U,,) -
c _Com 0w _ >
ow o’

(18)

As carteiras C' formadas por F e por M sdo pontos de uma reta de coeficiente angular

RVy, ou seja:
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e = pp + o ZHE) o
O

Assim, a equag@o da reta que passa por i € Lty serda tangente em Ly a hipérbole

formada pelas carteiras do tipo C.
Igualando as expressdes (17) e (18), temos a Equa¢io Fundamental do CAPM:

Hy— Hyy _ (), — Hr) N
cov( 7,7y )~ Oy Oy
Oy
cov(r,,r,) .
My =M+ m"'zl"_L-(/JM - ,u,,)
oY
M=+ By — 1) (19)

O retorno esperado para um ativo A deve ser composto por uma parcela de retorno
esperado para um ativo livre de risco, acrescido de uma segunda parcela calculada sobre o
retorno diferencial deste ativo em relagdo ao mercado, proporcional ao indice de sensibilidade
do ativo ao mercado.

Os indices de sensibilidade (f) podem ser obtidos com a regressdo da variavel r, de
retornos do ativo A com a variavel explicativa ry de retornos da carteira de mercado:

ra=aat+barytea (20)
onde:

ra= retornos historicos do ativo A;

ry= retornos historicos da carteira de mercado M;

aa = constante da regressdo do ativo A;

€a = erro da regressdo de ry com ryy, onde E(g,) = 0.

Aplicando o operador esperanga matematica a equagdo (20), tem-se a equagdo
caracteristica do ativo A:

ta = ax + batu
A varidncia total do ativo A pode ser decomposta em uma parcela correspondente &

sua correlagio com o mercado (4;.0;, ), e outra ndo correlacionada, que € propria desse ativo
(&)
2 2 2 2
04~ b..ro_‘\{ + e

A covaridncia entre os retornos r, e ry € dada por:

cov(ra, rv) = cov(aa + ba.ra + ea, ) 2



cov(ra, 1) = cov(ay, ryy) tcov(by.ryy, ryy) + cov(en. ry)
onde cov(aa, ry) = 0 (as constante) e cov(ea, ry) = 0 (parte da variancia ndo captada pelo
modelo de mercado), que resulta:
cov(ra, ) = cov(ba.ny, ny) =b. o,
Entdo:

cov( b)) h,; Oy _ b
9 - -

Ba= 3

O-M

Vemos que o CAPM nio capta o risco proprio, somente o sistematico ou conjuntural,
e que pode ser explicado pelo modelo de regressao linear.
Da equagdo caracteristica do ativo A,
Ha = ay+ Bapa
Se o ativo A tem comportamento igual ao de M, temos piy = Butty = B = 1.

Comportamento de ativos, conforme o valor de seu [3:

a) Ba=Pu=1

O ativo A tem 0 mesmo comportamento do mercado;
b) Ba>Pu=1

O ativo A tem comportamento "agressivo” em relagdo ao mercado,
c) Ba<PBu=1

O ativo A tem comportamento "defensivo"” em relagdo ao mercado.
B.>0: ereage com fragdo da variagdo de mercado.
Ba <0: ereage de forma contraria as variagdes de mercado.
Br=0: éindiferente as variagdes de mercado.
Obtidos os betas dos ativos, a partir dos dados historicos, pode-se escolher os ativos
para compor uma carteira, de maneira a diversifica-la em relagdo ao risco sistematico ou

conjuntural e que pode ser explicado pelo modelo de regressao.

2.9. Arbitrage Pricing Theory - APT

Segundo ROSS, ROLL e BURMEISTER (1998), o APT segue-se de dois postulados
basicos: 1. "Os retornos sio gerados por um modelo de k fatores" da forma:

ri(t) - E[ri(t)] = Bafi(t) + ... + Bafi(t) + &(t) (21)



onde
ri(t) = retorno do ativo i ao final do periodo t;
E[ri(t)] = retorno esperado no inicio do t-ésimo periodo;
B = medida da exposigdo ao risco, ou beta do ativo i ao fatorj (j = 1, ... k);
f; = carregamento do j-ésimo fator de risco;
gi(t) = retorno residual n3o explicado pelos fatores, proprio do i-€ésimo ativo;
A esperanga matematica dos fatores e dos residuos € nula:
Effit)] = E[e(t)]=0,Vi=1,2 _..n

Os retornos residuais ndo sdo correlacionados com os fatores:
Cov[ei(t), fi(t)] =0,V j=1,2, ...k

Finalmente, os fatores e os residuos sdo ndo correlacionados ao longo do tempo:
Cov[fi(t), fi(t')] = Covlei(t), &i(t)] =0, Vj=1,2, .. keparatodot #t'

Estas condi¢des implicam que os retornos sdo gerados por um modelo fatorial linear.

Fatores de risco podem ser correlacionados (ex. inflagdo e taxas de juros), bem como
os retornos residuais (ex. os retornos de empresas de determinado setor industrial), ou seja,
cov(fi, f;) e cov(gi, &) podem ser nio nulos.

2. "A receita de um portfolio de arbitragem é nula".

Devido a competi¢do em mercados financeiros, investidores ndo podem ganhar retorno
positivo sobre qualquer combinagdo de ativos sem submeter-se a algum risco e sem fazer
algum investimento liquido. Trata-se de um conceito de equilibrio com implicagdes nas areas
da economia financeira, além da determinagdo de precos.

Em um portfolio de arbitragem, com as seguintes caracteristicas:

1. x'1 = 0, valor investido igual a zero (1 = vetor de elementos unitarios),

2. x' =0, imune a todas as taxas de risco de mercado;

3. Var(x'a)~0, quase livre de risco proprio (a = vetor de retornos esperados dos ativos);
o retorno esperado deve ser nulo, do contrario seria possivel ganhar dinheiro sem risco:

x'E[a] =0
Dados os Postulados 1. e 2., o teorema principal do APT ¢é de que existem k + 1
_escalares, nem todos nulos, tal que o retorno esperado do i-ésimo ativo € aproximado por Py

mais a soma sobre j de B;;.P;.
A condigdo de equilibrio, a partir das caracteristicas 1 € 2 e de (22) € expressa como:

x[1 B]=0->xE[ri(t)]=0



isto €, o retorno esperado E[ri(t)] de um ativo deve ser combinagio linear dos fatores de risco.
Conforme Chen, Ingersole (1983), Dybvig (1983), a aproximacio ¢ valida exatamente:
E[ri(t)] = Po + Bir.Py + ... + ik Px (22)
onde P; € o prego (ou prémio) do j-ésimo fator de risco.
A correspondéncia de maior exposigdo (maior beta) para maior retorno, equivale ao
tradeoff do modelo MV de Markowitz.
Substituindo (22) em (21), tem-se a equagdo do modelo APT:

k
L) =P, =2 B[P+ ()] +e(1) (23)

Um portfolio perfeitamente diversificado (g,(t) = 0), sem exposi¢do a fatores (B, =0
para todo j = 1, 2, .., k) isto €, com risco zero, tem retorno Py. Entdo Py deve ser o retorno
esperado de um ativo livre de risco, ou zero beta.

Segundo ROSS, ROLL e BURMEISTER, neste ponto, o APT e o CAPM tém sua
diferenga. No CAPM, o retorno adicional para um ativo € igual ao produto do beta do ativo
pelo retorno adicional esperado sobre o indice de mercado, mesmo para a versdo multifatorial
do CAPM. Para que o CAPM seja valido, algumas restrigdes sobre os P; devem verificar-se, e
em testes estatisticos tem sido repetidamente rejeitadas em favor do APT. Para a
implementagdo do APT, segundo os autores, pode-se utilizar um indice para o retorno livre de
risco, (citando o indice 30-day Treasury Bill) e as alternativas para estimar o modelo sdo:

1. Calculo dos fatores de risco fi(t), f(t), ..., fk(t) usando técnicas estatisticas como
Analise Fatorial ou Componentes Principais;

2. Os k fatores podem ser substituidos por k portfolios bem diversificados;

3. Teoria econdmica e conhecimento de mercados financeiros, para especificar k
fatores de risco que possam ser mensurados a partir de dados macroecondmicos e financeiros.

A primeira alternativa € util para determinar o numero de fatores necessarios, no
entanto proporciona dificuldade de interpretagdo economica dos fatores, que sofrem mudanga
com o tempo. A segunda e terceira alternativas estdo relacionadas a analises econdmicas.

A selecdo de um conjunto de fatores macroecondmicos deve proporcionar facil
interpretagdo econdmica, e que explique o maximo possivel as variagdes nos retornos.

Estimativas EWMA ou GARCH para os betas proporcionam betas de mercado

variaveis com o tempo, sendo um grande avango sobre betas de valores constantes usualmente

obtidos a partir de fontes de dados padrao.



3. PESQUISA OPERACIONAL NA ANALISE DE PORTFOLIO

Entre as técnicas de otimizagio empregadas na Analise de Portfolio, destaca-se a
Programac¢do Matematica, com a Programagdo Linear (PL) e Programagio Quadratica (PQ).
Modelos para redug@o de risco dado pela varidncia normalmente resultam em Problemas de
Programagdo Quadratica Paramétrica. Outros modelos sdo construidos como problemas de PL.,
ou reduzidos a problemas PL por linearizagdo. Um modelo mais simples para a determinagio
de portfolios 6timos, visando somente & maximizagio do retorno e sujeito a restricdes lineares é
formulado como um problema de PL..

A Estatistica também ¢ utilizada, com os testes para verificagdo da qualidade do ajuste
da distribui¢do dos retornos de ativos e portfolios a uma distribuigio estatistica. Entre estes
testes pode-se citar o QQ-Plot para identificar a Gaussianidade de uma amostra multivariada e o
teste K-S de Kolmogorov-Smirnov, para amostra univariada. Analise Fatorial e Analise de
Componentes Principais também sio utilizadas com objetivo de substituir a analise de ativos

pela analise de grupos de ativos e, ainda, identificar fatores de risco comuns a esses grupos.

3.1. Programacio Linear

Problemas que podem ser descritos por uma fungdo objetivo linear, a ser maximizada ou
minimizada, satisfazendo restri¢Ses lineares de igualdade e/ou desigualdade constituem-se em
problemas de Programagio Linear (PL). Sua forma padrdo € apresentada no Problema P2 a
seguir:

Maximizar z=c¢'x
Sujeito a Ax<b (P2)
x;20Vi=12 .. .n
onde ¢ € R" é o vetor de custos, b € R™ é o vetor de "recursos”, A € M(m x n) é a matriz dos
coeficientes das restri¢des, a qual € suposto que tem linhas linearmente independentes, ou seja,
que ndo existem restri¢des redundantes.

Um método bastante eficiente para solugdo do problema PL foi desenvolvido por

George B. Dantzig (1947), e chamado simplex. Contribui¢des para o aprimoramento deste

algoritmo ocorreram com:
Dantzig, Orchard-Hays, Wolfe (1953/1954), com a elaboragdo do simplex revisado;



- Lemke(1954) com a Teoria da Dualidade e o algoritmo dual simplex:

- Beale(1955), Dantzig, Orden e Wolfe (1955), com a criagdo de regras

lexicograficas para solugdo de problemas de degeneragao e iteragoes ciclicas;

- Klee(1972), Minty(1972) com o estudo da complexidade de algoritmos simplex

para o comportamento do pior caso;

- Dantzig, Van Slyke (1967), com a criagdo do chamado Generalized Upper Bound

Algorithm (GUB);
- Markowitz (1954), com Basis factorization and the elimination form of the inverse
(EFI), mais tarde também tratados por Beale(1971), Hellerman e Rarick (1971/72).

Outros desenvolvimentos para solugdo de problemas LP sdo encontrados, como o
meétodo SSX (sparse simplex), e o método de pontos interiores.

A descri¢do do simplex revisado pode ser encontrada em MURTY (1976), ou
ZIONTS (1974). Para aplicagdo do método simplex revisado, € suposto que o problema
apresente-se na forma padrdo, isto €, somente com restri¢des de igualdade. Para as restrigdes
de desigualdade, sdo acrescentadas variaveis auxiliares, que assumem a diferenga quando a
restri¢do € satisfeita com folga; neste caso sdo chamadas variaveis de folga.

O problema P2, com variaveis de folga para restricdes de desigualdade, e
considerando que maximizar ¢'x € equivalente a minimizar - ¢'x, € apresentado no Problema
P3 a seguir:

Minimizar z=-¢'x

Sujeito a Ax+Hs=b (P3)
xiz0, vVi=1,2,..,n
520, Vj=1,2,..p

Se p = m, H é a matriz identidade de ordem m e tem-se uma base factivel formada por
variaveis de folga, na forma candnica para inicio do método simplex.

Se p < m, pode-se obter uma base factivel inicial usando a rotina Pricing Ouit, que
consiste em subtrair multiplos adequados das (m-p) linhas (restri¢oes de igualdade), da linha
de custos (¢'), de forma que m destes custos sejam atualizados para valor zero, desde que

resulte na forma candnica para o inicio do método simplex.

Outras rotinas para obter a base candnica inicial consistem em formar uma base com
variaveis artificiais. O método Big-M acrescenta variaveis artificiais com alto custo (M) a

fungdo objetivo, de modo que estas ndo retornem a base apos sua saida.
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Definida uma base factivel inicial com variaveis basicas xu. nas iteragdes do método
Simplex Revisado € avaliado se alguma variavel nio basica (em xv) pode acrescentar valor &
fungao objetivo. Esta avaliagdo é obtida com as consideragdes a seguir.

O sistema de equagdes das restrigdes ¢ decomposto na forma:

Bxg+Nxy=b > Xp = B-lb - B-‘NXX
onde B e N sdo matrizes formadas por colunas da matriz de restricdes, correspondentes as
variaveis basicas xp € ndo basicas xx.
Os conjuntos de variaveis, basicas e ndo basicas, sdo dados por:
Jp = {ital que x; esta na base} (J;;={3.5}, se x5 e xs sdo variaveis da base).
Jn = {1 tal que x; ndo esta na base}
Entdo a fungdo objetivo z = -¢'[xp xx]' = ¢'xp + ex'xx pode ser escrita como:
z= CB'(B-]b - B-]NXN) +en'xy 2
z= CB'B-]b +(ceN' - C];.B"N)XN

Se todas as componentes em 7 = (cx' - ¢3.B™ N) sdo positivas, entdo nenhuma variavel
ndo basica que entrar na base pode acrescentar valor a fungfio objetivo e a solu¢do otima foi
encontrada. Se algum ; < 0, entdo uma variavel ndo basica X; entra na base, satisfazendo:

Xj = {xi, 1 € Jn, tal que m; € minimo}
A variavel x; a ser substituida, deve ser a que gera menor valor para a que entra:

Xk = {xi, 1 € Jp, tal que byi/a;; ¢ minimo, j determinado no passo anterior}.
Para os valores de b; e ai; atualizados, isto €, dados por b; = [B"b]; €ajy = [B"Ak']i_k.
Para a nova base, Jg = Jg + {j} - {k}, repete-se a avaliagdo para 7, até que se verifique

m > 0Vj. A solugio corresponde ao conjunto de variaveis em Jg, com valor xg = B'b.
3.1.1. Condic¢oes de Otimalidade em PL

BERTSEKAS (2001) apresenta as condigdes de otimalidade para problemas de PL,
que podem ser obtidas da Teoria de Otimiza¢do com Restrigdes. Somente as condi¢Ses de
primeira ordem - condi¢des de Karush-Kuhn-Tucker (KKT) - sdo necessarias. A
convexidade do problema de PL garante que estas condi¢des sdo suficientes para um minimo
global, bem como se pode mostrar que as de segunda ordem ndo s3o necessarias por um

simples argumento - a Hessiana do Lagrangeano de problemas de PL € nula.
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As condigdes KKT requerem independéncia linear dos vetores gradiente das restri¢oes
ativas. Porém, para qualificagdo de restrigdes, o resultado continua a valer para restrigdes
com vetores gradiente linearmente dependentes, uma vez que sio lineares, caso do problema

de PL.

Decompondo o vetor de multiplicador de Lagrange para o problema de PL em dois
vetores 1 e s, onde T € R™ é o vetor de multiplicadores para as restri¢gdes de igualdade Ax =
b, enquanto s € R"€ o vetor de multiplicadores para as restrigdes de ndo negatividade x; > 0.

Usando a definigdo de Fung@o Lagrangeana, obtemos L(x, x, s) para o problema PL:

L(x, s)=c'x - T'(Ax - b) - s'x.

As condigdes necessarias de primeira ordem de Karush-Kuhn-Tucker para que x* seja

uma solug@o do problema de PL sdo de que existam vetores T e s tais que:

Ar+s=c¢c (i)

Ax =b (ii)
X >0 (iii)
S >0 (iv)
XiSi >0,i=1,2,..,n (v)

A interpretagio da ultima condigdo € essencialmente que ao menos um dos
componentes x; e s; deve ser zero para cadai= 1, 2, ..., n. Esta condi¢do é também escrita na
forma x's = 0, e referida como condi¢do de complementaridade. (Obs.: devido a condigdo de
ndo negatividade para x e s, ambas as formas sdo idénticas).

Seja (x*, m*, s*) um vetor satisfazendo as condi¢des de KKT. e combinando-se a
primeira, quarta e quinta condigdes, encontra-se que:

c'x* = (A'n* + s*)x* = (Ax*)'n* = b'n*

Como pode ser visto, b'w € a fung¢do objetivo para o problema dual do problema LP,
assim, a identidade ¢'x* = b'n* indica que os objetivos primal e dual sdo iguais para o vetor
(x, &, s) que satisfaz as condigdes KKT.

Para provar que as condi¢gdes KKT de primeira ordem sdo suficientes para que x* seja
a solugdo global do problema LP, seja x; outra solugdo factivel, tal que Ax; =b e x; 2 0.
‘Entdo:

c'x; = (Ar* + s*)'x; = b'w* + x'is* > b'n* = ¢'x*

onde a desigualdade é valida, pois x; >0 es* > 0.
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Esta ultima desigualdade informa que nenhum outro ponto factivel pode ter um valor
menor que ¢'x*. Além disto, o ponto x; € 6timo se e somente se:
x18*¥=0
desde que, do contrario, a desigualdade (b'm* + x's* > b'm*) € estrita. Ou seja, quando s*; > 0,

entdo se deve ter x; = 0 para todas as solugdes do problema LP.
3.2. Programacio Quadritica

Problemas gerais de programagio quadratica (PQ) tém uma fungdo objetivo quadratica
e estdo sujeitos a restri¢des lineares ou quadraticas. Uma classe mais especifica de problemas
quadraticos trata-se de problemas quadraticos convexos, na qual se encontra a dos problemas

de analise de portfolio. Um problema quadratico primal € definido como a seguir:

Minimize Z=-;—X'Zx-c'x
Sujeito a: Ax=b (P4)
Xi=>0,Vi

onde ¢ € um vetor de constantes, x € o vetor de variaveis de decisdo, ambos de dimensido n, b
¢ o vetor de "recursos" ou disponibilidades das restri¢des, de dimensdo p e A € a matriz de
coeficientes das restricdes, de dimensdo p x n. T é uma matriz positiva semidefinida’ de

dimensdo 1 x n.

A correlagdo perfeita entre dois ativos, ou entre dois grupos de ativos, também gera X
positiva semidefinida, uma vez que as correlagdes destes dois ativos (ou grupos de ativos)
com os demais ativos diferem apenas por um mesmo multiplicador. Se as correlagoes entre |
estes ativos (grupos de ativos) for negativa, um portfolio legitimo tera V(x) = 0. Caso

contrario, somente portfolios ilegitimos (alavancados, ou financiados) terdo varidncia nula.

A matriz ¥ sera positiva-definida quando excluida a possibilidade dos recursos serem
aplicados em um ativo com variabilidade zero (caixa) e inexisténcia de grupos de ativos com

retornos dados por C.L. de outros ativos, devido a x"Ex corresponder a variancia do portfolio

~ x, supondo-se positiva.

T x'Tx>0VYxe R,



Problemas de Programacio Quadritica Paramétricos:

S3o problemas da forma:

Minimize z=c'.x+Ad"x +%x'.2.x

Sujeito a: Ax=b : (PS)
x=>20VYi
)\«min < )\- < A-max

onde ¢, x, A e b sdo definidos em P4; e e d sdo vetores de pardmetros de ajustes; e tem
dimensio m e d, dimensdo n.

Este problema PQ paramétrico envolve a solu¢do de uma familia de problemas PQ,
onde A € um parametro da fungdo objetivo que pode tomar quaisquer valores ndo negativos
entre Amin € Amix.

Problemas paramétricos de Programagdo Quadratica (PPQ) podem ser usados para
calcular a Fronteira de Eficiéncia para carteiras de investimentos. Proporciona estratégia
Otima para investimentos para diversos niveis de risco quadratico, e variagdo de recursos ou

disponibilidades para as restrigdes lineares.
3.2.1. Condic¢des de Otimalidade em QP

Condigdes de otimalidade em QP podem ser encontradas em ROCKAFELLAR(1997):

Multiplicadores de Lagrange
Sejam as fungdes £ R" > Rehi: R" 2> R, i=1, 2,..., m, e o problema com restri¢des -

de igualdade da forma:
minimizar  f{(x)
sujeito a h(x)=0, 1=1,2,.,m
O Teorema de multiplicadores de Lagrange para este problema estabelece que, sob
suposigdes apropriadas, para um dado minimo local x*, existem escalares ?»:, i=1,2,..,m
chamados Multiplicadores de Lagrange, tais que:
* m o«
VI + D NV (x)=0
Estas n equagdes, junto com as m restrigdes hi(x") = 0, formam um sistema de n + m

. P . * T *
equagdes com n + m incognitas dadas pelo vetor x e os multiplicadores A;. Desta forma o
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problema de otimizagdo com restrigdes tem solugdo através da solugdo de um sistema de
equagdes (lineares ou ndo lineares, dependendo de f{x) e hi(x)).

Para uma fung@o convexa, a ser minimizada satisfazendo um conjunto de restrigdes
lineares, um ponto extremo corresponde ao extremo global. Isto fica estabelecido no teorema
de Kuhn-Tucker a seguir (para demonstragdo, ver ROCKAFELLAR, 1997, pag. 273-290):

Teorema de Kuhn-Tucker: Seja (P) um problema ordinario convexo satisfazendo as
hipoteses de extremo limitado e existéncia de ao menos uma solugdo factivel na regido
delimitada pelas restri¢des, isto €, que existe um vetor de Kuhn-Tucker para (P). Entdo para
que determinado vetor x* seja uma solugdo otima de (P), € necessario e suficiente que exista
um vetor u* tal que (u*,x*) seja um ponto de sela do Lagrangeano de (P). Equivalentemente,
x* é uma solugdo Otima se, e somente se existem multiplicadores de Lagrange Ai, os quais,
junto com x* satisfazem as condi¢des de Kuhn-Tucker para (P).

Para o modelo de Markowitz (Problema P1), o ponto critico da fungdo Lagrangeana

corresponde ao ponto de minimo global:

f V(%.XZX - Agxp) + AV(Ax-b) =0 (A eR™)
| Ax | =b
J Tx - Agp + AL =0
| Ax =b (S1)

este sistema (S1) corresponde ao sistema de equagdes lineares do método da Linha Critica de

R NENESH

Fixando-se A; ou X, o sistema linear acima fica determinado. O Problema de

Markowitz:

Programagio Quadratica assim definido é um Problema Paramétrico de Programagdo

Quadratica (PPQ).
3.3. Ajuste de uma Distribuicdo Estatistica para uma Amostra

A fungdo densidade normal n-dimensional para um vetor aleatorio x = [xi, Xz, ... Xn]
tem a forma

l —(x—p)YX(x—u)/2
(zﬂ)p/2lzll/2 )
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onde p € o vetor de médias amostrais e £ a matriz de covaridncias, respectivamente, de uma
amostra de tamanho m do vetor aleatorio x.

Diz-se que o vetor aleatério x tem distribuigdo normal multivariada, e denota-se
x~INp(p, Z), analogamente a fungdo densidade de probabilidade para o caso univariado.

Para uma distribui¢do normal n-dimensional, o elipsoide de valores x satisfazendo:

(X-p) 2 (x-p) < xn (@) (12)
tem probabilidade 1-a (JOHNSON, 1998, pag. 164, 194).

Desta forma, aproximadamente 50% das observa¢gdes de uma amostra do vetor
multivariado x devem satisfazer a desigualdade (12), para oo = 0.5, caso contrario, a suposigdo
de normalidade € suspeita.

Um método mais formal para identificar se um conjunto de dados apresenta
distribuigdo normal € baseada nas distancias quadraticas generalizadas:

A’ =(xe- W' -p),j=1,2, ..., m (13)
onde xy sio observagdes do vetor multivariado x. Cada uma das distancias d;* deve comportar-
se aproximadamente como uma variavel 3°. A construgio do grafico dos pares (qcn,di>), com
Qen((-1/2)/m) = xzn((m-j+1/2)/m), onde qcn((j-1/2)/m) é o 100(j-1/2)/m quantil de uma
distribui¢do qui-quadrado com m graus de liberdade, deve apresentar-se aproximadamente
linear a partir da origem, com inclinagdo 1. Um comportamento curvo sugere falta de ajuste
para normalidade.

A construgdo do grafico qui-quadrado € obtida como segue:

a) Ordenar as distancias dadas em (13) da menor para a maior,

b) Dispor os pares (Geq, di’) em um plano x-y.

A importincia da verificagdo de normalidade para uma amostra X reside em que todas
as informagdes sobre os verdadeiros parimetros populacionais (n e X) deste conjunto de
dados estdo contidas nos Estimadores de Maxima Verossimilhanga dados pela média amostral
e pela matriz de covaridncias amostrais, para dados com distribui¢do normal.

Técnicas de analise baseadas em p e T podem estar ignorando outras informagdes

amostrais tteis, para dados que ndo se apresentam normalmente distribuidos.

A verificagdo do ajuste de uma amostra de uma variavel aleatoria univariada a uma
distribui¢do normal, pode ser obtida por testes como x~. Outro teste utilizado € o K-S de

Kolmogorov-Smirnov, que calcula a maxima distancia entre a distribui¢do tedrica ajustada
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aos dados e a distribui¢do normal para as estatisticas média e desvio padrdo amostral (% e s)
da amostra. Existem valores tabelados para estas distancias, e respectivos valores-p para suas
ocoriéncias. Sc © valor-p do teste para uma amostra é menor que 0.1 (10% de probabilidade),
entdo deve-se rejeitar a hipotese de que a amostra provenha de uma distribuigdo normal. (Ver
Mood, pag. 508-510).

Além da verificagdo da qualidade do ajuste com os testes xz e K-S, as estatisticas
baseadas em momentos de terceira e quarta ordem, ou seja, assimetria e curtose, também
podem ser utilizadas, embora, conforme MOOD (pag. 76-77), ndo proporcionem informagdes
precisas sobre a forma das curvas das fungdes densidade de probabilidade. Mood apresenta
um exemplo onde duas distribuigdes bastante diferentes tém os mesmos valores para os quatro
primeiros momentos. Neste caso, a avaliagio da qualidade do ajuste dos dados a fungdo
densidade de probabilidade normal é mais reveladora que o calculo do terceiro e quarto
momentos.

Segundo DAS (1998), a suposi¢do de retornos logaritmicos normaimente distribudos
¢ extensamente utilizada, e outros critérios paia determinagdo de portfolios 6timos como
retornos ajustados a outras distribui¢gdes como a Gama, sdo raramente vistos, devido a duas
razdes principais: 1) a distribuigdo normal para retornos logaritmicos ¢ a que melhor
descreve a distribui¢iio de retornos observados e 1) somente a distribuigdo normal pode ser
generalizada para problemas multivariados sem resultar em demasiada complexidade
matematica.

Para DOWD, ao assumir um modelo que pressupde retornos normalmente
distribuidos, deve-se sempre verificar se o portfolio construido atende tal suposigdo. Alerta,
ainda, que a utilizagio de approach normal leva a perdas de precisdo e ao aumento de
complexidade quando tratando de posi¢des de risco ndo lineares em seus fatores (como

exemplo avaliando opgdes) ou quando os fatores de risco sdo, por si proprios, nao normais.



4. MODELOS DE OTIMIZACAO EM ANALISE DE PORTFOLIO

prn

L. Modelo de Média - Variancia (MV)

Trata-se de um modelo de sele¢do de portfolios com aplicagdo e métodos matematicos
para a otimizagdo da relagdo risco-retorno na formacdo de carteiras de investimentos,
desenvolvido por Harry M. Markowitz (1959), a partir de suas consideragdes sobre 7he Theory
of Investment Value, de John Burr William®:

"Since future dividends are uncertain, 1 interpreted William's proposal 1o be to value a

stock by its expected future dividends. But if the invesior vwere only interested in

expected values of securities, he or she would only be interested in the expected value of

the portfolio; and to maximize the expected value of a portfolio one need invest only in a

single security. This, I knew, was not the way investors did or should act.  Investors

diversify because they are concerned with risk as well as return. Variance came 1o mind
as a measure of risk. The fact that portfolio variance depended on security covariances
added 1o the plausibility of the approach. Since there were two criteria, risk and remrn,
it was natural to assume that investors selected from the sci i Pareto optimd? risk-

return combinations." (Autobiography of Harry M. Markowitz, 1999)

O modelo de Markowitz resulta na constru¢do de portfolios cujos pares Méedia-
Variancia (ou Retorno-Risco) satisfazem ao critério de otimalidade da reiagdo risco-retorno.
Um portfolio eficiente, segundo esse critério, apresenta o maior retorno entre os porttolios com
0 mMesmo risco, € 0 menor risco entre portfolios com o mesmo retorno.

O risco € quantificado pela varidncia dos retornos historicos dos ativos. mais
precisamente pela varidncia da variavel aleatoria definida como a soma ponderada dos retornos
historicos dos ativos, onde os fatores de ponderagdo sdo as participagdes de cada ativo no
portfolio. Desta forma, as correlagdes entre os retornos dos ativos sdo fatores de reducio da
variabilidade, para portfolios diversificados (ver 2.4).

Segundo DOWD (1999), a ampla diversifica¢do de ativos com retornos estatisticamente
independentes entre si para compor os portfolios faz com que a variavel aleatoria de retornos
historicos do portfolio apresente distribui¢do aproximadamente normal.

Esta propriedade permite a utilizagdo do modelo MV, ainda que os retornos dos ativos

ndo apresentem distribuigdo normal multivariada.

S uph D, thesis at Harvard in 1937, (...) Work on how to value financial assets. «.) i estinate thal offers intrinsic
value and it is called the 'Dividend Discount Model' which is still used todav hy professional investors on the
institutional side of markets.” Amazon.com: buving info. Ver (Williams. 1997).



Para atender o objetivo de maximizar o retorno e minimizar o risco, Markowitz tem
suas bases na Teoria da Utilidade e a aversio ao risco. Sua fungio objetivo é a Fungio
Utilidade (ver 2.5. Teoria da Utilidade e Fronteira de Eficiéncia) e as restricdes de seu
modelo sdo as habituais, ou seja, a de orgamento e demais restricdes de composicio de
carteiras, como percentuais maximos e minimos a serem aplicados em determinado grupo de
ativos, etc.

A formulagio do modelo de Markowitz é apresentada a seguir.

Dados n ativos e suas m taxas de retorno, o modelo de Markowitz visa determinar

portfolios x € R" cuja performance passada apresente minima varidncia (x'x) para cada

retorno esperado x'n € R".
Min (1/2)x'Ex — Agx'n
Sa Ax=b (PS)

xi>20Vi=1, .. n

onde:
- Ag € R é um pardmetro de aversdo 20 risco, variando de 0 (maxima aversdo ao

risco), onde o Problema de Programagdo Quadratica (QP) determina uma solugédo
com minima varidncia, a um valor M grande o suficiente para determinar o ponto
de maximo retorno (minima aversao ao risco).

- X € M(n x n) é a matriz de covaridancias dos retornos;

- p € R" € o vetor de retornos esperados;

- b € RP é o vetor de “recursos”;

A € M(p x n) é a matriz de coeficientes das restri¢des e inclui as restri¢des de

or¢amento e de composigdo da carteira, a seguir:

a) de orgamento: x;+x2+ .. +tx,=1;

b) composigio da carteira: A;x < b, podendo ser do tipo percentuais
maximos/minimos, - integralidade, grupos de ativos por suas correlagGes,
variaveis binarias, entre outras;

Para q restrigdes de desigualdade, sdo adicionadas q variaveis de folga, ou residuais.
Assim, a matriz T devera ser aumentada de q linhas e colunas nulas. O vetor x, que representa
o portfolio, tem (n+q) coordenadas.

Aplicando o método de Multiplicadores de Lagrange:

V(1/2x2x - Agxp) + AV(Ax-b) =0 (LR
Ax =b (S3)



Que resulta no sictema que pode ser escrito na forma:

vy f() i
- . |= + Ay ,
P R (84

Fazendo R' = [0 bl e S'=[pn 0], ¢ M - de ordem (n+p+q) por (n+p+q) - a matriz que

multiplica o vetor [x A]" temos:
M : =R+ AgS (S5)

O sistema linear (S5) fica determinado, uma vez fixado Ay ou x. Fixando um portfolio
inicial xy com maximo retorno (& maximo em PS), pode-se avaliar o sistema S5 para a
entrada ou saida de uma variavel na composigao deste portfolio inicial, aceitando a entrada ou
saida da variavel que proporciona menor redugdo possivel no parametro ;.. Como sera visto
no item 4.1.1 a seguir, o valor de Ay para x, ¢ infinito, entdo a primeira entrada ou saida de

variavel da base sera para o maior valor real de A;.

4.1.1. Algoritmo do Modelo MV de Markowitz

A solugdo do sistema S5, determinando os portfolios estratégicos x, para os diferentes
valores do parametro de aversdo ao risco A, foi estabelecida por MARKOWITZ (1959) com
o Algoritmo da L.anha Critica, cujos passos sdo dados a seguir:

Passo 1: Obter o portfolio de maior retorno x = x', isto ¢, a solu¢do do Problema de
Programagao Linear (L.P) que maximiza o retorno (x'n) sujeito as restrigdes (Ax = b; x; = 0).
As variaveis nao nulas em x' sdo referidas como variaveis basicas (in) e as nulas, como
nao-basicas (o)

Passo 2: Determinar a matriz das variaveis basicas, isto é, determinar as linhas e
colunas da matiriz M que devem ter seus valores reduzidos a zero, para que a solugdao do
sistema seja a obtida. Para isto faz-se linhas e colunas de variaveis out iguais ao vetor nulo,

excelo para as intersecgdes destas linhas e colunas, que recebem o valor unitario, o que resulta

na matriz M
Para definigdo da matriz N(1), € calculada a inversa da mai::- M que deve ter os

elementos que receberam valor unitario no passo antertor reduzidos ao valor nuio.

A determinagao de M ' ¢ facilitada com:
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1) Eliminar as linhas e colunas de M correspondentes as variaveis ont:

2) Inverter a matriz resultante;

3) Inserir as linhas e colunas retiradas, com zeros.

Para o caso de p > 1, o calculo de M pode ser obtido por:

T ~-1
M = z A > M= N(_) N,A .
A 0 (A1) 4"z A

O sistema S5, com a matriz M substituida por M. ao ser multiplicada pela matriz

N(1), resulta na equagio a qual Markowitz chama de Linha Critica associada ao vetor [x" A]"
BJ: N(DR + A N()S (S6)

A matriz N(1) corresponde a inversa da base. Podera ter linhas e colunas nulas
retiradas, resultando em um sistema formado somente pelas variaveis in, ou basicas.

Adotando a notagdo de Markowitz, com T(1) = N(I)R e U(l) = N(I)S, temos a

primeira Linha Critica:
X
L}=T(l)+7\EU(l) (S7)

Neste ponto, somente A varia com Ag, X S€¢ mantém constante.
Passo 3: Determinar valores de A;; onde a primeira Linha Critica intercepta cada linha
‘ritica associada as variaveis ouf, com as seguintes trés propriedades:
a) todas as variaveis in na primeira LC continuam i,
b) uma variavel adicional torna-se i1,
c) todas as demais variaveis permanecem out.

A intersegdo € determinada em:

X
MI[J =Hjhg paraj=1,2, .., (ntq) M

m:T(kMEU(m an
De I e 11, e considerando que M;j ¢ a j-ésima linha de M, temos:

M. T(k)
by = i — MUy =1, .
Ej i, — M, U(k) . para (1 — MjUi) # 0, j=1,

Se ;- M;U(k) = 0, ndo ha interseg@o.

ntq,j e



41

A interse¢do mais proxima (que proporciona menor redugdo em Ag) define a varidvel
que sera adicionada as variaveis da base no proximo passo.

Ax = max{ Agj, paraj ¢J}

Se Ag < 0, o problema terminou e x” corresponde ao portfolio de maximo retorno e
também minima variancia.

Se Ag > 0 x; entra na base (j = ji). Como x” permanece constante quando Ar varia, o

novo portfolio tera duas coordenadas nio nulas.

Passo 4: Formula para a nova linha critica, associada a variavel xj.

As atualizagdes necessarias para N(k) sdo:

B = N(k-1).C} (Clé a j-ésima coluna da matriz \1).
c= ij - BCl

| S

— para 1= ]=];

c

.. - B,‘ . .
N(k)ij= para i+ j,
c
N(k),; + : para i# j. . j#* J;

[/j = NCK).R + A, N(K).S

Passo 5: Linha Critica primeiro interceptada pela LC atual, 8 medida que Ay decresce.
E necessario verificar somente as interse¢des com as variaveis que ainda ndo pertenceram as
variaveis in. Neste passo, temos trés possibilidades com o decréscimo de Ar:
1) AEGn) = Agow), faz-se entdo Ag = AgGn) € vai para o passo 6.
2) Akginy < Agoun), Taz-se entdo g = Ao € volta a0 passo 4.
4) Ag =0, o portfolio de minima varincia foi encontrado e o problema terminou.
onde
K[a(i") = max/{ 7\.” = Tj / Uj; M:,j > 0,j €l
_ ; M; T(k) : : A
AFu) = max{ g = m para j ¢J e ainda ndo in}
Passo 6: Portfolio com o valor de A que anula a i-ésima variavel na base:

Para atualizar N(k) = N(k+1), substitui-se a linha e coluna da agora variavel ou (x;)

por zeros. Completar a atualizagdo com

N(k+l)ij = N(k)ij - N(k)i(ik)-N(k)(ik)j/N(k)(ik)(ik) para as linhas ndo zeradas.
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A férmula para a nova linha critica é determinada com
X
1 =Nk +1D).R+ANK+1)S

Retorna ao passo 5.

Os procedimentos descritos determinam solugdes intermediarias estratégicas, as quais
correspondem valores distintos do parametro de aversdo ao risco (Ar) Fazendo-se variar este
parametro de aversdo ao risco (Ag), o sistema linear tem sucessivas solu¢des no intervalo de
variagio.

Se dois portfolios subseqiientes atendem a condi¢do de eficientes, a combinagio
convexa destes também atendera. Basta verificar que a combinacio convexa também é
solu¢do do sistema de equagdes S5 resultante da aplicagdo do método de multiplicadores de

Lagrange ao problema PS.

Um portfolio x3, com retorno intermediario fp entre dois portfolios estratégicos de
retornos (1 € Wy, pode ser obtido através da combinagdo convexa entre estes portfolios:
3~ }\..Xz + (l - )\,).X]

onde A é dado pelo quociente A = (L1-p1,)/(1L1-112) € tem retorno pp € variancia V(xs) = x3'.Z.x3.

4.1.2. Exemplo para o modelo MV

Dada a matriz de covaridncias dos retornos (X), o vetor de valor mais esperado dos
retornos logaritmicos () e a formulagdo do modelo MV a seguir, obter os Portfolios

Estratégicos (xo. X1, ... ) € construir a Linha Critica de Markowitz.

0366444  0.006895 -0.010103 0.032054
L =| 0.006895 0470944 -0.000118 1 =10.063906
-0.010103 —-0.000118 0.279217 0.050033

Problema P:
Minimizar  (1/2)x'Zx - Ag.x'p

Sujeito a x'u=1

x>0Vi (i=1223)

(u € R" € o vetor de elementos unitarios)

Aplicando-se o método de Multiplicadores de Lagrange:

V((1/2)X'Ex - Ag. x'u)-AV(x'u-1)=0

x'u =1



43

Que resulta no sistema de equagdes:
2x +Au = ALp

u'x = 1]

Na forma matricial;

rR HAHEEH

0.366444  0.006895 -0.010103

ou

1| 0 0.032054
0.006895  0.470944 —0.000118 |1 [ 0 ‘A, 0.063906 (S8)
-0.010103 -0.000118 0.279217 x| |0 10.050033

[1 1 1 0l A 1 0

Passo 1. Portfolio de maior retorno, satisfazendo as restri¢des dadas:

Max x'p
S.a: xu=1 (P6)
Xiz0 Vi
Para o caso de somente uma restri¢do, a de orgamento, o portfolio inicial (Passo ) €
formado inteiramente pelo ativo de maior retorno entre os ativos disponiveis: x"=[0 1 0]

O retorno deste portfolio € dado por:

0.032054
ppr =x"pu=[0 1 0]. {0.063906 > ttpr = 0.063906
0.050033

. . iy Q) ~
Passo 2: Para que o sistema S8, acima, tenha como resultado o portfolio x, efetuamos

alteragdes na matriz M, obtendo a matriz M no sistema S9:

1 0 ol (o]l x 0 0.032054
X, 0
0 0470944 Of [1|||%:|_|9], i 0.063906 (59)
0 0 1| [0]{|%| |0 0.050033
0 1 ol ol I 0

A solucdo em [x° A] é obtida fazendo-se o produto & esquerda pela matriz N1 = /\71, !

para ambos os lados da igualdade do sistema S9; as interse¢des de linhas e colunas de

variaveis ndo-basicas da matriz N1 sdo substituidas pelo elemento nulo.

BJ _N()R+ A, N()S
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0 0 0 0

0 0 0 [

NI =
0O 0 0 0
0 1 0 470044
| x, 0 0 0 0 0 0 0 0 () 0.032054
.| [0 00 | 0 . 0 0 0 | 0.063906
x;| |0 0 0 0 ol ""1lo o0 o 0 0.050033
_.;L 0O 1 0 —-.470944 I 0O 1 0 -.470944 0
(xr ] [ o0 o0 |
x2 | 0 .
_ oy (LC1)
x3 0 . 0
L Al ] |-.470944 1.063906

Markowitz denomina a equaciio encontrada de Linha Critica associada a variavel x;.
Passo 3:
. . ~ . " ~ e () .
Substituindo a solugdo obtida (LC1) para o portfolio x'. no sistema S8, obtemos o0s
valores de Ay para a entrada das variaveis x; e x3. A menor redugdo em A, sera a que define a

variavel a entrar. A variavel x, ainda ndo ¢é candidata a sair da base. pois entrou na itera¢do

anterior.
366444 006895 — 010103 | 0 o 11 [o 032054
006895 470944 — 000118 | I . 0 01 1063906
- + Ay - - A (S1 ())
-0010103-.000118 279217 1 0 0 0 050033
I 1 ] 0 -.470944 063906 , ] 0

A primeira e terceira equagoes do sistema determinam os valores de 2, na intersegao
da Linha Critica (L.C) associada a variavel x, (/7) com as LC assoctadas as variaveis x; e Xz

(haehs)
/1 2: 0.0068950 - 0.470944 + A;..0.063906 = A;:.0.032054 = A = 14568912
Iy 30 -0.000118 - 0.470944 + X1.0.063906 = Ay:.0.050033 = 2y = 33.955309
O maior A; ocorre para a entrada na base da variavel x;. Este valor de A corresponde
ao parametro de aversdo ao risco a partir do qual, para valores decrescentes. o portfolio passa

a ter uma fragdo de seu orgamento destinado ao ativo representado pela variavel xs, reduzindo

assim a participacdo de x.



Passo 4:

Procede-se novamente como no passo 2, agora com x; € X3 na base:

B 0
0 470944 - 000118
0 —.000118 279217
0 1 1

Determinamos N(2) = M,

[0

0
N2 =
0

L0

0
1.332627929
-1.332627929
3722496225

ollx, ] [0
L, | |0
[ix, [ [0
01| 4 [
0
-1.332627929
1.332627929
6277503775

032054
, [.063906

(s

"1.050033
0

0
3722496225
6277503775

-.1752346517 |

(S11)

N(2) também poderia ser obtida com os procedimentos do Passo 4, no item 4.1.2.

[ x, 0 0.032054]
X, 0
evey ] lea, v 0.063906
X, 0 0.050033
2 1 0
['x7 ] [ 0 1 0
x2 3722496225 01848754726
_ vy (LC2)
x3 6277503775 “1-.01848754726
| A1) [-1752346517] 105519721902 |

Para Ag = 33.95530887, obtém-se novamente a solugdo para o portfolio x:

Passo 5:

Semelhante ao passo 3, substitui-se a solugdo obtida (LC2) no sistema (S8),
determinando Ay, para a entrada da variavel x;. A variavel x3, que entrou na base na iteracao

anterior, ndo é candidata a sair. A saida da variavel x; é avaliada fazendo-se x = 0 em LC2.

366444 006895 -.010103 1 0 0 0 032054

006895 470944 —.000118 1 3722496225 01848755 0 063906

-0010103-.000118 279217 1 11 6277503775 e —-.01848755 B 0 +)~I': 050033 (S12)
—. 175234652 05519722 1 0

1 1 1 0
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Da primeira equagio do sistema S12. obtemos os valores de )., para a entrada da

variavel x;.

fizas -0 179010153 + A.0.055511470 = 4,:.0.032054 2 2, 70631264

Jiay
A saida da variavel x; ¢ avaliada quanto ao valor que 2, assume quando x; = 0 em
LC2:
hs: A =-0.3722496225/0.01848754726 > )y = -20.135151
Estes valores de Ay (7.631264 e -20.135154) correspondem as imérsecées da LC /n

comas LCs /]23 € /]3.

O mator Ay, corresponde a entrada na base da variavel x;. Entdo x, entra na base.
L qe 1 . .
O portfolio x* pode ser determinado substituindo-se o valor de 2.+ no problema (P), ou

na LC obtida no passo 4 anterior.
Obtém-se x' =[0 0513333 0.486667].

Passo 6:

Procede-se novamente como no passo 2 com x;, x; € x: na base. O sistema de

equagdes corresponde ao sistema inicial (S8)-

0366444  0.006895 —0010103] [1]{] % 0 0.032054
0.006895 0.470944 -0000118 1 X, _ 0 Ny 0.063906 (S13)
~0.010103 -0.000118 0279217 | |1|{|x | [0 " |0050033

[1 ! 1] ool X 0

<
RN

O produto da inversa da matriz M. pelo sistema S13. resulta na [.C' associada as

variaveis xi, Xz € Xa:

(x/ ] (.3261581654 i (<04273972943
x2 2434492304 03536333618
= + Ay
x3 4303926037 L1 00737419325
| a1 ) | -1168490287 | | 04734637349 | (LC3)

Para a saida de ambas as variaveis x; € X3 tem-se Ay negativo.
A2 =-0.2434492304 / 0.03536553618
Jaz = -0.4303926037 / -0.00737419325

Entdo A anula-se antes destas variaveis sairem da base. O ultimo portfolio € obtido

com Ag = 0 na equagdo LC3:
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x> =[0.326158 0.243449 0.430393]

Este ponto apresenta minima variancia, e o algoritmo da LC chegou ao fim.

A saida dn variavel x; ndo € avaliada, pois entrou na iterag¢do anterior - assume valores
positivos a partir de Ag < 7.631264.

Para contemplar uma situagdo nio encontrada no exemplo acima, caso X; ndo tivesse
entrado na iteragdo anterior, nio caberia avaliar sua saida, pois o portfolio composto por x; € X3
seria obtido novamente. Neste caso, o valor de Ag seria maior que o Ay que decidiu a iteragdo
anterior. Este critério pode ser utilizado para ndo inclui-lo entre os valores de Ar das outras
variaveis, dos quais o maior decide a variavel a entrar ou sair.

Além disso, se duas variaveis candidatas a entrar na base apresentam o mesmo valor de
Ak, entdo ambas devem entrar na base e, portanto deve-se aceitar Ay menor do que ou igual ao
que decidiu a iteragdo anterior, mas somente para a entrada de variaveis a base. E ambas estas

variaveis ndo devem sair da base em uma proxima iteragao.

Também € necessario o controle de variaveis que sairam da base, ndo devendo ser
avaliada a hipotese de entrar novamente, exceto variaveis de folga, para restrigdes compostas

por mais de uma variavel.

Portfolios com retorno compreendido entre os retornos de dois portfolios estratégicos
sdo determinados pela combinagdo convexa entre estes, conforme a seguir:
Dados os portfolios estratégicos x” = [0, 1, 0] e x' = [0, 0.513333, 0.486667] com

retornos pp; = 0.063906 e pp; = 0.057154, obter um portfolio com retorno pp = 0.06 e avaliar

seu risco.
Calculo de A:
A =(0.063906 - 0.06) / (0.063906 - 0.057154) = 0.5784952607

Combinagdo convexa, para o portfolio x*:
X =Ax' +(1-1).x° = [0, 0.7184654473, 0.2815345527]

Retorno e variancia:
Lps = X' = 0.060000
V(x*) =x"Z.x* = 0.2651812862
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4.1.3. Implementacdo Computacional do Modelo MV

ldentritcacsdo das variavels:

n, m - numero de ativos disponiveis e numero de periodos de seus rctornos;

p, q -numero de restri¢des e de variaveis auxiliares, para restri¢oes desigualdade;

x € R" - vetor correspondente ao portfolio, ou seja, que define as parcelas x; de um
or¢amento unitario destinadas ao i-ésimo ativo.

p € R" - vetor de retornos esperados (esperanga matematica) dos n ativos;

2% € M(n x n) - Matriz de covariancias dos n ativos;

A € M(p x n) -~ Matriz dos coeficientes das p restri¢des;

b € R’ - vetor de "recursos" das restri¢des;

M € M(n+p+q x n+p+q) - matriz composta correspondente a matriz de coeficientes no
sistema de equagdes do método de Multiplicadores de l.agrange;

R € M(n+p x 1) - matriz composta onde as n primeiras coordenadas €m valor nulo e as
demais correspondem ao vetor b;

S € M(n+p x 1) - matriz composta onde as n primeiras coordenadas correspondem ao
vetor | e as demais tém valor nulo:

PE € M(n+p x npg) - matriz de Portfolios eficientes estratégicos, onde nypj; € o numero
de portfolios estratégicos que serdo determinados. Esta matriz € redimensionada para
registrar a cada iteragdo o novo portfolio estratégico determinado:.

J - Conjunto de variaveis na base(i17), em uma dada iteragdo:;

JX - conjunto de variaveis /i até a itera¢do atual; apos sairem ndo retornam a base,

JIN - conjunto de variaveis in que passaram a fazer parte da base na iteragdo anterior,
ndo podendo deixar a base na iteragdo atual:

VA - conjunto de variaveis auxiliares, ou de folga;

LKA - A¢ do portfolio eficiente estratégico imediatamente anterior A entrada ou saida
de variaveis ndo podera ser com A ; maior que LKA.

Passos para determinagdo dos portfolios eficientes:

1. Calculo dos retornos logaritmicos e da Matriz de covariancias dos retornos:

2. Calculo do portfolio de maior retorno para inicio do algoritmo MV:

Aplicagio do algoritmo MV, com obtengdo de porttolios estratégicos:

(>}

4. Determinacdo da Fronteira de Eficiéncia, a partir de Combinagdo Convexa de pares

de portfolios estratégicos.
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Retornos Logaritmicos (i) e Matriz de Covariancias (2):
Us codigos #: linguagem de programagdo Maple s@o apresentados no Anexo .

Algoritmo para o calculo do parametro Ay

LC = M(T + A.rU) - 7\.[{.8

LK = -3000
IK=0
Parai=1atén+q
Sei ¢ J entdo ! x; ndo esta na base
Sei1 ¢ JX entdo I x; ainda ndo foi basica
LKK = {Ar tal que LC[i]=0): ' LC[1] avalia Ay, para xi.
Se (LKK > LK e LKK <= LKA) entdo
LK =LKK
IK =1 ' Ar, para x; entrar =LKK
Sendo
1Ja foi base e ndo é variavel auxiliar
Sendo
Sei ¢ JIN entdo ! x; ndo entrou na iteragdo anterior
Se U[i,1] = 0 entdo
LKK = - T[i,1J/U[i, 1]
Sendo
LKK = 10* I Ndo intercepta nenhuma LC
Se (LKK > LK e LKK <= LKA) entdo
LK = LKK
IK=1 ! Ap. para x; sair =LKK
Sendo
! x[i] Entrou na lteragdo Anterior
Fim do Se
Fim do Se

Proximo i



4.2. Modelo de Média - Valor sob Risco
4.2.1. Valar sob Risco

DOWD (1999) apresenta a metodologia de Valor sob Risco (\aR) correspondente a
maxima perda esperada em um dado periodo, para um nivel de confianga estatistico
especificado. E uma medida do risco de portfolios que indica o valor maximo esperado de
perdas monetarias, desenvolvida por J. P. Morgan em 1994.

O periodo de tempo pode ser dado em dias, semanas, meses, etc.. e o nivel de confianga,
90%, 95%, 99%, ou outro desejado.

O VaR de um portfolio (ou de um ativo) pode ser definido em termos de valores
absolutos de perda, ou em termos de perdas relativas a renda média esperada. Alternativamente,
pode-se definir VaR como a maxima perda esperada com um dado nivel de confianga, em

relag@o ao valor do portfolio ao final do periodo de aplicago.

A varidncia de um portfolio informa scmionte quanto de variabilidade apresenta o
retorno esperado, mas ndo informa o valor da perda esperada em termos monetarios; entdo uma
medida focalizada nos a% piores resultados, ou seja, a probabilidade nas caudas da distribui¢ao
de probabilidades dos retornos, apresenta-se mais adequada. Pode-se definir VaR como a
maxima perda esperada em (1-a%) dos casos, para um nivel de confianga a.

Ao especificar a, obtém-se um valor de corte para os retornos. separando (100-a)%o dos
dados correspondentes a retornos aceitaveis, dos a% restantes, ndo aceitaveis.

Pode-se, também, estabelecer um valor de corte e determinar a probabilidade de ocorrer

retorno menor.
Seja W o valor inicial do portfolio e r o retorno; seja também r* um valore de corte para

o retorno, isto ¢, sdo aceitos portfolios com valores esperados acima deste corte.

Supondo-se conhecida a distribui¢do de probabilidades dos retornos. f{r), entdo para

retornos centesimais, tem-se:
¥
Plr<r¥]= J‘,/’(/f)dr =
—

O valor de r*, para dados ndo padronizados, pode ser obtido calculando-se a inversa da

funcdo distribui¢do de probabilidade acumulada.

Para retornos normalmente distribuidos, o valor de corte do retorno r* ou do nivel de

confianca a, sdo facilmente encontrados, dados pela relagao:



f=u+zo

Resultante das propriedades de P[Z < (r*-u)/o] = a, onde z reflete o nivel de confianga,
assumindo valor d= 1.65 para 95%, por exemplo, e obtido de tabelas da distribui¢io normal
padronizada; z esta relacionado a probabilidade de eventos nas caudas da distribuig¢io. o que
permite definir VaR em termos dos pardmetros z € o, para o nivel de confianga a desejado:

VaR = -zow (w = valor inicial do portfolio)

Como medida estimada, o VaR verdadeiro ndo € conhecido, uma vez que ¢ e n sdo
estimados. A utilidade do VaR estimado depende de sua precisdo. Se a precisdo € alta, entdo
VaR ¢ altamente informativa; caso ndo seja, as informag¢ées sdo vagas ou de nenhuma valia.

Para avaliar a precisdo, uma maneira natural € a constru¢do de intervalo de confianga,
que sob a suposi¢do de retornos normalmente distribuidos, € de facil obtengio.

Para uma populagdo (de retornos) normalmente distribuida, o VaR verdadeiro € igual a
(-zow), onde w € o valor inicial do portfolio. Mas para valores amostrais e também por tratar-se
de projegdo a partir da analise de performance passada para apoio em decisdes futuras, deve-se
considerar o verdadeiro pardmetro ¢ como desconhecido ou impreciso.

Em amostras de tamanho n, a partir de uma distribui¢ao normal, a variavel
2
(n-1)s*/o?
. . v - . 2 ., A . 2 .
tem distribuigdo x> com (n-1) graus de liberdade, onde s’ é a varidncia amostral e ¢” € a

varidncia populacional desconhecida. Desta forma, existe (100-a)% de probabilidade de que o’

. <~ . 2 .
esteja entre %0025 € X 0975, entdo o intervalo de confianga para 6* deve ser;

,
s° s°
(n-1)——<o’<(n-1)—
0.975 X0.025
O intervalo de confianga para VaR, ¢ dado por:
n—1 . (n-1)
—Z-5 W ( - )<l/aR:—zcm'<—~z-s~w —
Xo.975 Xo.ozs

O VaR de um portfolio é menor que a soma de VaR dos ativos individuais que o
compdem, isto ¢, VaR é reduzido pela principio da diversificagdo. Isto pode ser observado pela
decomposigdo do VaR de portfolios em seus constituintes:

olp = xZx’ = xoRox’ =2
VaRp = -zopw = -z[xoRox’]' 2w >

VaRp = -a[xZx’]" 2. W = [VaR R VaR]'?



N
|89

onde VaR corresponde ao vetor cuja i-ésima coordenada corresponde ao VaR do i-ésimo ativo.
Assim, para estimar o VaRp de um portfolio. sdo necessarias estimativas de fatores como
volatilidiades (o). +»rrelagbes (R), ou ambos fatores combinados na matriz de covariancias Z. e

dos fatores de escala, ou ponderagdes em x, além do valor do portfolio

4.2.2. O Modelo Média - Valor sob Risco (MVaR)

Segundo DUARTE (1999), um algoritmo para gerar a Fronteira de Eficiéncia com risco
dado pelo Valor sob Risco pode ser aproximado pelo modelo M-V de Markowitz. Neste
modelo se obtém a mensuragdo do risco pela metodologia VaR, e uma fungio utilidade com um
parametro de fradeoff entre retorno (ptp = p'x) e valor sob risco (VaR — z V(x), para retornos
com distribui¢do normal), deve ser otimizada segundo o critério de dominincia:

Maximizar U=pn'x+xzV(x)

Sujeito a x'u=| (P4)
Ax=Db
X; 2 0 Yi

onde z reflete o nivel de confiang¢a desejado (por ex., -1.65 para 95%), A € um parametro de

aversio ao risco, caracteristico para cada investidor e V(x) =x'S x € a variancia do portfolio.

4.2.3. Implementac¢do computacional do Modelo MVaR

O modelo MVaR corresponde a um problema de programagido ndo linear, sujeito a
restrigdes lineares, com solugdo obtida através do programa Lingo.

O Anexo III apresenta o modelo implementado.

Os dados para este modelo consistem em vetor de retornos logaritmicos, matriz de

covariancias e vetor de retornos dos portfolios obtidos com o modelo MV, convertidos do

programa Maple para arquivos excel(.xls):
! Matriz de covaridncias e vetor de retornos;
MC = QOLE('C:\MC.¥LS', '™C");
RET = @OLE('C:\VR.XLS', 'VR');
! Retornos Logaritmicos de Portfolios;

RLH = QOLE( 'C:\RLN.ZLS', 'PLN');
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As solugdes obtidas sdo exportadas para um arquivo excel, com a inclusio de nome para
o intervalo onde sdo colocados os resultados: Inserir/Nome/Definir, Nome = "INV" e Intervalo
="=INVISAS | $BKSI".
! Resultados exportados para arquivo excel;

QOLE( 'C:\VARMV.XLS', 'INV MV') = TINV;
A cada solugdo com o programa Lingo, o resultado (portfolio) é armazenado em uma

segunda planilha "PortfM V"



5. APLICACAO DOS MODELOS

5.1. Selec®:: de Ativos

Sdo utilizados os pregos de 63 ativos negociados na Bolsa de Valores do Estado de Sao
Paulo (BOVESPA), obtidos através do banco virtual www invesishop com, cujos nomes
encontram-se listados na Tabela 4, em anexo.

Foram selecionados ativos que apresentaram cotagdes diarias completas no periodo de
03/10/1997 a 29/12/2000 (848 dias uteis), permitindo a constru¢do da matriz de covariancias
com a interpolag@o de alguns poucos dados nao disponiveis dentro do intervalo utilizado.

Os dados listados pelo banco virtual corresponderam aos de Maiores Volumes, Maiores
Altas e Maiores Baixas, negociados na Bovespa.

Com o auxilio da planilha de calculos Microsoft Excel, sio organizados os dados
referentes a cotagdes das agoes e gravados em um arquivo (.csv), para o prozrama Maple.

O calculo dos retornos logaritmicos esperadcs ¢ da matriz de covariancias ¢ realizado
com o programa Maple, com os codigos/algoritmos descritos no Anexo 1.

Como primeira analise, os resultados de retornos logaritmicos esperados e desvio padrdo
(Risco DP) dos retornos dos ativos sdo listados na Tabela 6e Tabela 7 dos anexos. A Figuras 2

e Figura 3 a seguir apresentam a dispersao dos dados em planos Risco-Retorno, para 63 ativos

com 848 cotagdes diarias.
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Figura 1: Risco e Retornos Logaritmicos dos Ativos
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Figura 3: Risco e Retornos Percentuais - 63 Ativos
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A classificagdo para alguns dos ativos pelo critério riscos(maior para menor) resulta

Ativos: 19, 25,57, 35e 63. Com classificagdao pelo retorno(maior para menor), resulta em

Ativos: 25,63, 19, 57 e 35. A construgdo da Fronteira de Eficiéncia permite classificagdo de

portfolios sem esta ambigtiidade.

Os retornos logaritmicos semanais esperados e respectivo desvio padrdo, para os 146

ativos, sdo listados na Tabela 8 dos anexos. A Figura 4 a seguir apresenta a dispersdo dos

dados no plano Risco-Retorno, para 146 ativos com 170 cotagdes semanais.

* Risco e Retorno Semanal - 146 Ativos

Figura 4: Risco e Retorno Semanal - 146 Ativos
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5.2. Retornos e Matriz de Covariancias

Os retorne- esperados e matriz de covaridncias sio calculados a partir da matriz de
cotagdes, utilizando o programa Maple, cujo codigo/algoritmo encontra-se no Anexo I.
O vetor de retornos (n) e a matriz de covariancias () e o tamanho da amostra (n) sdo

gravados em arquivos para utilizagdo no modelo de Markowitz.
5.3. Modelo de Média-Variincia (MV)

A determinagio da Fronteira de Eficiéncia para o modelo Média-Varidncia ¢ realizada
conforme o algoritmo descrito em 4.1.1, implementado em linguagem de programagio Maple.

Os dados de entrada para o modelo MV sio:

- n =063 ativos com retornos diarios em 847 dias uteis;

- prestrigdes sendo q delas do tipo desigualdades;

- = vetor de valor esperado dos retornos dos ativos eficientes:

- A = matriz dos coeficientes das restri¢gdes;

- X = matriz de covaridncias dos retornos logaritmicos.

O primeiro passo determina o portfolio de maximo retorno, com a solu¢do de um
problema de Programag¢do Linear. Utilizando um modelo com somente a restricio de
orgamento, o primeiro portfolio é composto inteiramente pelo ativo de numero 25, com retorno
p = 0.012272 e risco 6 = 0.33186. Os portfolios das 61 iteragdes seguintes correspondem aos
que proporcionam a menor redugdo no pardmetro Ay "tradecff " entre retorno e risco (menor
redu¢do no retorno), para a entrada ou saida de uma variavel da base.

Os calculos sdo efetuados nos programas Maple e Lingo, conforme o algoritmo descrito
em 4.1.1 e codigo descrito no Anexo Il e Anexo HI.

Os resultados de Risco e Retorno Logaritmico dos Portfolios Eficientes Estratégicos
encontram-se na Tabela 2 (anexo). Estes resultados estdo representados em termos de valor
mais esperado dos retornos logaritmicos.

Os valores usuais de retornos percentuais diarios sdo obtidos através da transformagao
(Ep = 100[exp(E;) — 1)) e desvio padrdo dos retornos percentuais (DPp = 100[exp(DP) -- ]) e

apresentados na Tabela 3 (anexo).

O grafico da Fronteira de Eficiéncia é apresentado na Figura 5 a seguir.
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Figura S: Fronteira de Eficiéncia para 63 ativos
De posse dos portfolios estratégicos determinados (Tabela 5 anexo), sdo calculados o

Risco e Retorno, utilizando-se as formulas (7) e (8): pp = ¢’ .pe op = ¢’ Zc.

5.4. Modelo de Média - Valor sob Risco (MVaR)

O modelo MVaR ¢ implementado com o objetivo de verificar o VaR para cada retorno de
portfolios estratégicos determinados no modelo Média - Variancia de Markowitz, permitindo a
comparagdo da eficiéncia dos portfolios obtidos a partir das duas metodologias de quantificagdo

do risco.
O modelo MVaR implementado em Lingo (ver Anexo 1V) € apresentado a seguir:

Minimizar VaR
Sujeito a x.u=1
VaR = z*(x'Zx)"?
xu=R(G), (=1,2, .., 62retornos de portfolios MV)
xi20Vi=12 ..., 63
Os resultados (Risco, Retorno) do modelo MVaR, para retornos iguais aos obtidos com
portfolios MV sdo apresentados na tabela a seguir, e apresentam poucas alteragdoes em relagido

aos resultados do modelo MV, como esperado, pois para a minima variancia tem-se também o

minimo desvio padrio utilizado para obter VaR.
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As diferengas entre os portfolios obtidos no modelo MV e MVaR sio minimas, (0,03%
para ativos ausentes no modelo MV) podendo ser atribuidas a efeitos de arredondamento. O
grafico da Fronteir: d¢ Eficiéncia para o modelo MVaR é idéntico ao do modelo MV, razio
pela qual ndo ¢é apresentado.

Os valores de VaR para os portfolios MV sdo apresentados na Tahela 1 a seguir, onde
VaR representa a maxima perda esperada com 95% de probabilidade e VaR% corresponde a

VaR em valores percentuais.

Tabela 1: Valor sob Risco para Retornos Logaritmicos e Percentuais

Portf| VaR VaR% Portf| VaR VaR% Portf VaR VaR%b

1 10547 4214 22 [0.038 3.69 43 0019 190
2 10221 1980 23 [0.037 363 44 0019 188
3 (0203 1836 24 (0037 3.62 45 0019 186
4 10195 17.76 25 |0.036 3.58 46 0019 184
5 10191 1740 26 0034 334 47 0018 178
6 10.153 1417 27 (0033 322 48 0017 164
7 10.148 1376 28 |0.033 322 49 0016 1.63
8 10.136 1270 29 |0.032 3.18 50 0016 159
9 10.129 1209 30 0032 310 51 0016 153
10 [0.114 1079 31 [0.03] 3.0l 52 0016 155
11 {0.081 780 32 [0.029 284 53 0016 154
12 [0.065 627 33 10025 251 54 0015 148
13 (0064 620 34 10025 251 55 0015 146
14 [0.063 6.08 35 {0025 245 56 0015 [.44
15 {0.061 593 36 10024 239 57 0014 144
16 10.052 5.06 37 10024 235 58 0014 142
17 [0.050 486 38 {0024 235 50 0014 142
18 [0.049 483 39 [0.022 218 60 0.014 [42
19 [0.049 474 40 10021 209 61 0014 142
20 |0.042 4.07 41 10.021 206 62 0014 |42
21 {0.040 3.89 42 10.020 197

Para os retornos percentuais, podemos identificar o elevado grau de risco associado aos

ativos em analise, uma vez que se trata de retornos diarios.

Com o célculo de assimetria e curtose dos retornos dos portfolios. conforme a Tabela 7
dos anexos, podemos avaliar se os dados apresentam-se aproximadamente distribuidos de
acordo com uma curva normal. A assimetria € encontrada somente nos dois primeiros portfolios
com valores 20.77 e 4.08(o padriio é zero), indicando assimetria a direita, com excesso de dados
a esquerda, indicando que o modelo MV esta sub-avaliando o risco. O célculo de curtose indica
que os dados apresentam-se demasiadamente centrados com valores 540.9, 187.3 para os

primeiros portfolios a 6.23 e 6.07 para os dois tltimos.



O teste K-S de Kolmogorov-Smirnov, para verificar a hipotese de ajuste dos dados a
distribui¢do normal, apresentou valores-p menores que 0.01 para todos os portfolios, ou seja, as
variaveis retorno historico de cada portfolio dadas por combinagdo linear dos retornos dos
ativos com coeficientes as fragdes de orgamento aplicada em cada ativo, ndo podem ser

adequadamente modeladas pela curva de Gauss.



6. CONCLUSAO

A construgdo de portfolios amplamente diversificados proporciona uma espécie de
protegdo contra flutuagdes imprevisiveis nos retornos, devido ao efeito da diversificagdo, com
redugdo do risco.

A diversificagdo com o modelo de Média-Variancia de Markowitz, com otimizag¢do do
parametro fradeoff entre risco e retorno proporciona melhor resultado, comparado a
diversificagio aleatoria, pois permite a escolha entre os portfolios diversificados, daqueles que
tem menor variancia para cada nivel de risco, e também corresponde a escolha cujos retornos
esperados apresentam maior probabilidade de ocorréncia, levando-se em conta a performance
passada.

Como resultado do modelo MV, sdo obtidos os portfolios eficientes estratégicos como
solugdes de um sistema de equagdes lineares para cada parametro de aversdo ao risco. As
combinagdes convexas entre duas solu¢des consecutivas também sdo portfolios eficientes,
proporcionando portfolios adequados aos mais diversos niveis de aversdo ao risco. O conjunto
de portfolios e suas combinagdes convexas correspondem a Fronteira de Eficiéncia dos
portfolios, onde nio ¢ possivel obter um portfolio com maior retorno para determinado nivel de
risco, bem como ndo é possivel obter um portfolio com menor risco, para determinado retorno
esperado.

A anilise € adequada, também, para diferentes orgamentos, onde a inclusdo de restrigdes
de valor minimo a aplicar em cada ativo, ou grupos de ativos, gera portfélios com menor
nimero de ativos, de mais facil administra¢do, embora a curva da fronteira de eficiéncia possa
deslocar-se com algum aumento de risco.

Como os modelos MV e MVaR apresentados neste trabalho partem da suposi¢do de
retornos modelados pela distribuigdo de probabilidades normal, a qualidade de ajuste dos
retornos dos portfolios eficientes estratégicos obtidos a distribuigdo normal foi testada. Segundo
MOOD, quando esta suposigio ndo se verifica, pode levar a perda de informagdes
significativas.

Para o conjunto de dados utilizados, foi possivel verificar que, para maior diversificagdo
tem-se gradativamente melhor ajuste, como pode ser observado nos valores de assimetria e
principalmente de curtose para os portfolios eficientes (Tabela 9) e valores normais esperados
para probabilidades (Figuras 7 e 8 nos anexos). Esta observagio esta de acordo com DOWD
(1999, p. 87, 93) sobre a tendéncia a distribuigdo normal para portfolios amplamente

diversificados, devido ao efeito do Teorema Central do Limite, da Estatistica.
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Sob a hipotese de que os retornos dos portfolios eficientes possam ser ajustados pela
distribui¢do de probabilidades normal, a solugdo do modelo ndo linear MVaR, que tem risco
calculado com base na varidncia, é equivalente 8 do modelo MV. A metodologia MVaR pode
ser considerada uma extensdo natural do modelo de Markowitz, ao menos para retornos com
distribuigdo aproximadamente normal. A utilidade do modelo MVaR, esta em que estabelece
um valor maximo para a perda de valor monetario esperada em um horizonte de tempo, para
determinado nivel de confianga estatistico.

Sugestdes para trabalthos futuros:

1. Implementagio do Modelo MVaR fatorial, determinando a maxima perda esperada,
com risco dado por combinagdo linear de fatores de mercado.

2. Construgdo de portfolios com o uso da Razdo de Sharpe Generalizada, proposta por
DOWD, que tem a propriedade de levar em conta as correlagdes de ativos com o portfolio do
investidor, adequado para mudanga em posig¢des de risco.

3. Utilizar metodologia mais robusta para estimagdo de volstilidades e correla¢des,
permitindo variagdo de volatilidade ao longo do tempo, bem como atribuigdo de ponderagio
maior para valores mais recentes: Os modelos de estimadores com média movel ponderada
(EWMA - FExponentially Wighted Moving Average) e Autoregressivo Generalisado com
Heterocedasticidade Condicional (GARCH - Generalised autoregressive conditional
heteroskedastic), embora, segundo DOWD, as correlagdes no modelo GARCH apresentem

dificuldades com o numero de parametros crescendo exponencialmente com o numero de

correlagdes.
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Anexo I: Programacio em Linguagem Maple para Retornos e Covariincias

1. Lé o arg;aivo de pregos:

» restart:with(linalg):
» read("Cotacoes.txt"): # "Retorna a matriz de A de Cotagdes”

2. Divide a matriz A em Matrizes A|1] até A|5], para sexta(1) a quinta(5):

» N[1]:=170:N[2]:=170:N[3]:=170:N[4]:=169:N[5]:=169:

> forifrom1to5Sdo

» AS[i]:=matrix(N[i],n,0):

> kk:=0:

> for j fromito mby 5 do

> kk:=kk+1:

> for k from 1 to 63 do

> AS[i][kk.k]:=A[}.k]:
> od:

> od:

.

od:
3. Cilculo do Vetor de Retornos Logaritmicos Esperados:

VMA:=proc()
global vr: local i, j; vr:=matrix(n,1):
for i from I to ndo
vr[i, 1]:=(In(A[m,i])-In(A[},1]))/(m-1):
od:

A A O U S\ %4

end:

4. Interpolagio Geométrica para Dados Nio informados:

INTG:=proc(jj,ii)
global A: local K, K1, MK:  K:=jj:
while A[K,ii]=0 do
K:=K+1:
od:
MK:=(A[K,ii]/A[jj- Lii ) (H/(K-j+1)):
for KI from jj to K-1 do
A[KLii]:==A[KI-1,ii}*MK:
od:

YV YVYYYYNYYVYY

IS
=
e
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Programaciio em Linguagem Maple para Retornos e Covarifincias
S. Reotornos Logaritmicos Historicos - matrix RLN (847 x 63 ou 170 x 63):

RLOG:=proc()
global A, RL: local i, J, k, vri:
RL:=matrix(n,m-1):
fori from | to ndo
vri:=vr|i,1]:
for j from 2 to m do
if A[j,i]=0 then
INTG(j,1):
fi:
RL[1,j-1]:=In(A[j,i])-In(A[j-1,i]):
od:
od:

NN Y VWYY YVYYYVYYY

end:
6. Calculo da Matriz de Covariancias dos Retornos:

MCA:=proc()
global Sigma, A: local i, j, k. vri, SI, DESV:
DESV:=matrix(n,m-1):
forifrom I tondo
vrir=vr[i, 1]
for j from 2 to m do
if A[j.1]=0 then
INTG(}, 1)
fi:
DESV{i,j-1]:=In(A[j,i])-In(A[j-1,1])-vri:
od:
od:  S!1:=matrix(n,n,0):
for i from 1 to ndo
for j fromitondo
for k from 1 to m-1 do
SIH[i,j1:=DESV[i,k|*DESV[j.k]*+S1[ij]:
od:
SHj,i}:=Sij]:
od:
od: Sigma:=evalm(S1/(m-1.0)):

YVYYYYYYYYYYYYYVYYYYYYY

end:

Programaciio em Linguagem Maple para Retornos e Covariincias

Principal
7. Vetor de Retornos Logaritmicos para Precos da matriz A(63 x m, 146 x m):

> #A=evalm(AS[1]):m:=rowdim(A); #Matrizes de Retornos Semanais 2" a 6
» T_INL:=time():
» RLOG():



-
>

print("Tempo de calculo (s) = " time()-T_INI):

save(RL,"RLN146.LLN"): #Resultado Retornos L.ogaritmicos.

"Tempo de calculo (s) =", 3.714

8. Vetor de Retornos(LLN) Esperados e Matriz de Covariancias:

YU Y NN

T _INI:=time():
VMA():
MCA():
print("Tempo_Calculo (s) = " time()-T INI);
mu:=evalm(vr):MC:=evalm(Sigma):
save(n,mu,"MED146.LN"):
save(MC,"MC146.LN"):

"Tempo_Calculo (s) = ", 121.370
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II: Modelo MV de Markowitz no programa Maple

Inicializagdo:

Iniciar:
# restart: with(linalg): with(simplex): 73:=0: p:=1
# ImpITER:=0: #1 => Mostra Iteracdes:
Dados
Vetor de Retornos e Matriz de Covariancias:
» read ("RET.LN"):read ("MC.LN") :n:=rowdim/M17) :
Conjunto de Variaveis de Restri¢gdes e Vetor de "Recursos":
» VR[1]:={1}: VR[2]:={2}: VR[3]:={3}:
# b:=matrix(p,1,[1]): #b:=matrix(p,1,[0.5,0.9,0.9,1)):
Variaveis e Matrizes do modelo MV
/ A:=matrix(p,n+q,0): VA:={}: VR[p]:=1{}:
for i from 1 to n do
VR[p]:= VR[p] union {i}:
end do:
for i from 1 to p do
for j in VR[i] do
Ali,jl:=1:
end do:
end do:
for 1 from 1 to g do
Ali,n+1i]:=1: VA:= VA union {n+i}:
end do:
M:=copyinto (MC,matrix (n+p+q,n+p+q,0),1,1):
M:=copyinto (A,M,n+p,1):
:=copylinto (transpose(A),M,1,n+p): Nl:=evalm(M) :

Y'Y Y¥YYYYY Y Y Y Y VYYYyYY Yy vy wyy

:=copyinto (mu,matrix (n+p+q,1,0),1,1):
c=matrix (n+g+p,1):
for i from 1 to n+qg do
X[{i,1]:=x[1]:
end do:
for i from n+g+l to n+g+p do
X[i,1l]):=lambda{i-n—-q]j:
end do: JAUX:={}: LK:=0:
V9L:=matrix (0,1,0):

M

R:=matrix (n+p+q,1,0): R:=copyinto(b,F,ntqg+l, 1):
S

X

Procedures:



Modelo MV de Markowitz no programa Maple

Inversdo da matriz M~, Equagdes e Linha Critica

» MN:=proc /()

AL 2 A A T N T B T YVYYVYVYYYYYVYYVYYY

global M1, N1, N2, T, U: local i,7:
“li=evalm (M) :
N2:=evalm(N1) :
for 1 from 1 to n+g do:
if member (i, J)=false then
for 3 from 1 to ntp+g do
M1{i,Jjl:=0:
MI{j,1]:=0:
od:
M1[i,i]:=1:
fi:
od:
Nl:=inverse (M1):
for 1 from 1 to n do
if member (i, J)=false then
N1{i,i]:=0:
fi:
od:
T:=multiply (N1,R):U:=multiply(N1l,3):
if ImpITER = 1 then
print (evalm(X)=evalm(N1)* (evalm(R) +
lambda[E] *evalm(S))):

print (evalm(X)=evalm(T)+lambdal[E]*evalm(U));

fi:
end:

Calculo de lambda[E] para entrada ou saida de variaveis

YY VY Y YYYYYYWVWYYY

LAMBDA:=proc ()
global lambda,LC, LK, IK, JIN, JAUX, J, XX, LKA, VL:

local i, LKK:
LC:=evalm(multiply (M, T+lambda[E] *evalm(U)) -
lambda [E] *evalm(S)) :
LK:=-3000: IK:=0:
for 1 from 1 to n+g do
if member (i,J)=false then
if member (i, JAUX)=false then
LKK:=solve (LC[1,1]1=0,lambdalE]}):
if (LKK >» LK and LKK <= LKA} then

LK:=LKK: IK:=1:
fi: )
#print (x[1], 'lambda[E, ENTRAR] '=LKK) ;
else

#print(x[i],"JA FOI BASE"):

Modelo MV de Markowitz no programa Maple
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Restri¢des

fi:
else
if member (i, JIN)=false then
if U[i,1] <> O then
LKK:=-T[i,1]1/0{i,17}:

else
LKK:=10"21":
fi:
if (LKK > LK and LKK <= LKA) then
LK:=LKK: IK:=1i:
fi:
#print (x[i}], 'lambdalE, SAIR] '=LKK) :
else
#print (x[i], "Entrou Iteracido Anterior"):
fi:
fi:
od:
LKA:=LK:

if LK > 0 then
if member (IK, J)=false then
JIN:={IK}:
J:= J union {IK}:

print (x[IK], "Entra na Base", 'lambdalE] '=LK):

else
if member (IK,VA)=false then
JAUX := JAUX union {IK}:
fi:
J:= J minus {IK}:
print (x[IK], "Sai da Base",'lambdal[E]'=LK):
JIN:={}:
fi:
print('J'=J):
VL:=extend (VL, 1,0, LK) :

else
print ("Variavel",IK, "gera", 'lambdal[E]'=0):

print ("Fim das Iteracdes. MINIMO ENCONTRADO") :

LK:=0:
fi:

end:

» REST:=proc/()

YV VY

global consts: local AX,RHSV,i,AR: consts:={}:
AR:=extend (A,0,p,0): AX:=multiply (AR, X) :
for i from 1 to p do

Modelo MV de Markowitz no programa Maple
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’ consts:= consts union {evalm(AX[i,1])=b[i,1]1};
’ od:
~ end:
PPL - Portiolio de maior retorno:
» PPL:=proc()
global Soluc, consts: 1local Z, SR:
SR t=extend(mu, ptq, 0,0):
4 = multiply(transpose (SR),Z' [}, 1]:
Soluc:=maximize (Z, consts, NONNEGATI %) ;
end:

‘/‘ ‘//; ‘/« ‘/ \:/ \

Conjunto J de variaveis IN e Solug¢des ordenadas:

» CJVIN:=proc()

> global XX, J, JIN:

> local i, k:

’ XX:=matrix (n+q,1):J:={}:

’ for k from 1 to n+qg do

’ for 1 from 1 to n+g do

> if lhs(Soluclk]) = X[i,1] then
re XX[1i,1]:=evalf(rhs(Soluclxi;):
- if XX[i,11 7> 0 then

r J:= J union {i}:

» fi:

Ve fi:

V4 od:

” od:

’ JIN:=J: print ('J'=J):

»~ end:

Conjunto de portfolios estratégicos(matriz PE)

» PPE:=proc/{)

> global XX, PE, PXA, N IT: local i:
> PE:=evalm(PXRh) :

Ve XX:=evalm(multiply (N1,R)+LK*multiply (N1,S));
’ for 1 from 1 to nt+g do

> PE([i,N IT]:=XX[i,1]:

> od:

Ve PXA:=extend(PE,0,1,0):

r if LKA > 0 then

> N IT:=N IT+1:

Ve fi:

» end:

Modelo MV de Markowitz no programa Maple
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INIC LC:=proc/{()
global N IT, LKA, PXA:
PXA:=matrix (n+q,1,0):
N IT:=1:LKA:=10"20:
unassign('PE') :

end:

YV VY VYV

Principal:

Inicializa Variaveis, Restri¢des, Portfolio Inicial e Conjunto J
INIC LC();

REST () ;

PPL () ;

CIJVIN();

VYV VY

IteragOes até Minima Varidncia

» Timelni:=time();

» while LKA > 0 do

Ve MN () : LAMBDA() : PPE () :
r od:

» PPE():

»

Salva Conjunto de Portfolioes Estratégicos
» save (PE,"PE146.FIN");

Fronteira de Eficiéncia:

Portfolios Eficientes e Combinagdes Convexas
» NPI:=1: #Numero de pontos como combinacdo convexa
Digits:=7:
PFE:=matrix (n,NPI*N IT):
for i from 1 to n do
kk:=0:
for j from 1 to N IT do
for k from 1 to NPI do
kk:=kk+1:
PFE{i, kk]:=(NPI+1-k)*PE[i,J]/NPI+(k-1)*
PE[i,J+1]/NPI:
od:
od:
PFE[i,NPI*N IT]:=PE[i,N IT]
od:
PFE:=evalm(PFE) :

YV Y¥YYNYYYYVVYVYYYY
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Risco-Retorno
» RR:=matrix (NPI*N IT,2):

print (N IT,"Iteracdes, em ",time()-Timelni," s."):



» for 1 from 1 to NPI*N IT do

s RR[i,1]:=sqgrt(multiply (multiply(c-! FFE,1),
- MC),col (PFE,1i)) )

- ER[1,2]:=multiply(col (PFE,i),mu) [1]:

~ od:

» RR:=evalm(RR) ;

Fronteira de Eficiéncia
» with(plottools):
AA:=[RR[1,1],RR[1,2]]:
for i from 2 to NPI*N IT do
AA:=AA, [RR[i,1],RR[1i,2]]:;
od
AB:=curve ([AA]) :
plots[display] (AB, title="Fronteira de I'ficiéncia 146
Ativos", labels=[Risco DP,Retorno Seman=z1]);
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Anexo I1I: Modelo MV no programa Lingo

MODEL: ! Média - Variédncia - MV
! Determinar portfélios com minima Varian-ia
! para cada nivel de retorno;
SETS:
ATIVOS/1..63/: INV, RET;
COV (ATIVOS,ATIVOS): MC;
LAMBDAS /1..62/: LKM/;
ENDSETS
DATA:

! Orcamento disponivel;

W=1.0;
! Matriz de covaridncias, vetor de retornos e de Lambdas;
MC = @OLE{ "C:\MC.XLS"', 'MC"):
RET = @OLE( 'C:\VR:XLS", 'VR");
LKMV = @OLE( "C:\LKMV.ZL5', 'LKMV'):;
ENDDATA

! FUNCAO OBJETIVO;
[Funcao_Objetivo] Min = SD2/2 - LKMV(Ll)*XMU;

! Restricdo de Orcamento;
@SUM(ATIVOS: INV) = W;

! Valor do portfélio;
MU = @SUM(ATIVOS: INV * RET);

! Desvio Padrao;
SD2 = (@SUM(COV(I,J): INV(I) * INV(J) * MC(I,J:));

END



Anexo 1V: Modelo MVaR no programa Lingo

ML ! Média - Valor sob Risco - MVaPR
! Determinar portfdlios que minimizam o ‘alor sob risco,
! com probabilidade "alfa" de ser excedi-lo, para cada
! retorno obtido no modelo MV;
SETS:
ATIVOS/1..63/: INV, RET; 'Portfdlio x e ==tor p de retornos
COV(ATIVOS,ATIVOS): MC; 'Matriz de cocvariancias
PARAMETROS /1..62/: RLN; 'Retornos dos portfdlios MV
ENDSETS
DATA:

! Portfdédlio MV sendo analisado (1 a €2);

K =1;
! Orcamento disponivel;
W= 1.0;

' Risco com probabilidade alfa de VaR ser excedido;
alfa = 0.05;
' Matriz de covaridncias, vetor de retornos e de L-r~izdas;
MC = @OLE('C:\MC.YLS', 'MC'};
RET BOLE ('C:\VR.XLS', V'),
! Retornos Logaritmicos de Portfdlios;
PLN = @OLE({ '"C:\RLN.XLS', 'RLN');

! Resultados exportados para arquivo excel;
@OLE( 'C:\VARMV.ZLS', "INV MV') = INV;

ENDDATA

! FUNCAO OBJETIVO;
[Funcao Objetivo] Min = VaR;

! Z = Numero de DP's para P[VaR > VaR*] (-1.644853 para 5-);
alfa = @PSNI(Z);
@FREE (Z) ;

! Restricdo de Crcamento;
@SUM(ATIVOS: INV) = ;

! Restricdo de retorno requerido. Excluir para minimo VaR;
MU = RLN(K);

! Retorno do portfdélio;
MU = @SUM(ATIVOS: INV * RET);

' Desvio Padrao;
SD = (@SUM(COV({I,J): INV(I) * INV(J) * MC{I,T)i) 0.5%;

' Valor sob Pisco (VaP) com 5+ de probabilidade de ser excedido;
VaR = -Z*SD; ! Obs.: Z < 0.
END
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Anexo V: indice IBOVESPA

E o mais importante Indicador de desempenho médio das cotacdes do mercado
brasileiro de agdes, retrata o comportamento dos principais papéis negociados na BOVESPA -
Bolsa de Valores do Estado de Sdo Paulo. Implementado em 02/01/1968, nio sofreu
modificagdes metodologicas até a presente data.

Representa o valor atual, em moeda corrente, de uma carteira teorica de agdes, a partir
de uma aplicagdo hipotética, ou teorica, integrada pelas agdes que, em conjunto, representam
80% do volume transacionado a vista nos doze meses anteriores a formacdo da carteira. A acdo
deve apresentar, no minimo, 80% de presenga nos pregdes no periodo.

A participagdo de cada agdo na carteira € relacionada a representatividade desse titulo no
mercado a vista - em termos de nimero de negdcios e volume em moeda corrente - ajustado ao
tamanho da amostra.

Sofre reavaliagdes quadrimestrais, para que a representatividade do indice se mantenha

ao longo do tempo, com base nos 12 meses anteriores.



Tabela 2: Portfolios Eficientes pelo critério Média - Varifincia

Portfolio A Risco Retorno  Portiolio 3, Risco Retomo
C1 dnA096 0331860 0.012272 32 00628 001714 0002189
2 58972 0133791 0.010513 23 0.1329 0015128 0.001963
3 1.8432 0123016 0.010158 34 0.1323 00135300 0.00196]
4 17566 0118549  0.000858 35 0.1270 0013032 0.001919

17101 0113903 0.009679 36 01220  0.0]11691 0001878
6 13120 0.092644  0.008074 27 01182 0014433 0.001847
7 1.2636  0.089810  0.007873 38 01181 0014430 0.001846
8 11504 0.082355  0.00734] 39 0.1021 0013342 0.001709
9 1.0874  0.078167  0.007041 40 0.0041 0012798  0.001637
10 09519 0069214  0.006394 41 0.0912 0012608 0001610
1 0.6469 0.049277 0004916 42 0.0828 0012049  0.00153]
12 0.4901  0.039284  0.004138 43 0.0760 0011627  0.001468
13 04824 0.038792  0.004098 44 00745 0011530 0001433
14 04717 0.038073  0.004041 - 45 0.0724 0011407 0001434
13 04566 0.037048  0.003958 46 0.0703 0011274 0001413
16 03728 0.031495  0.003499 47 0.0644 0010921 0.001335
17 0.3528 0.030200 0.003389 8 0.0485  0.010054  0.001194
18 0.3498  0.03000F  0.00337] 49 0.0467  0.00996] 0.001174
19 0.3419  0.029474  0.003326 30 0.0424  0.009750 0001128
20 0.2780 0.025224  0.002951 51 0.0362  0.000467  0.001058
21 (0.2597  0.024038 (1002842 52 0.0351  0.009457  0.001056
22 02410  0.022818 (.002728 53 0.03351 0009422 0.001046
23 (0.2353  0.022455  0.002694 54 0.0240  0.009012  0.000919
24 0.2340  0.022369  0.002686 55 00215 0.008942  0.000891
25 0.2300 0.022091  0.002639 56 0.0165  0.008819  0.000834
26 0.2078 0.020577  0.002511 hy) 0.0139  0.008767  0.000803
27 01972 0.019866  0.002440 58 0.0090  0.008693  0.000747
28 0.1966 0.019826  0.002436 59 0.0078  0.008680  0.000733
29 (0.1935 0019607  0.002414 60) 0.0073 0008675  0.000727
30 0.1868 0.019129  0.002363 61 00064  0.008668 0000719
31 0.1782  0.018520  0.002303 62 0.0000  0.0086435  0.000656

h




Tabela 3: Portfélios Eficientes pelo critério MV - Retornos Percentuais

Portfolio Risco Retorno(%a.d.) Portfolio Risco Retorno(%a.d)

| 22 356 1.235 32 1.760 0.219
2 14.315 1.057 33 1.555 0197
3 13.090 1.021 34 1.551 0.196
4 12.586 0.991 35 1515 0.192
5 12.289 0.973 36 | 480 0 188
6 9.707 0811 37 | 454 0.185
7 9.397 0.790 38 1.453 0.185
8 8.584 0.737 39 1.343 0171
9 8.130 0.707 40 1.288 0.164
10 7.167 0.641 41 1.269 0.161
11 5.051 0.493 42 1.212 0.153
12 4.007 0.415 43 1.169 0.147
3 3.955 0411 +1 1.160 0.145
14 3.881 0.405 45 1.147 0.144
15 3.774 0.397 46 1.134 0.141
16 3.200 0.350 47 1.098 0.136
17 3.066 0.339 48 1.010 0.119
18 3.046 (.338 49 1.001 0118
19 2.991 0.333 50 0.980 0.113
20 2559 0.296 51 0.951 0.106
21 2433 0.285 52 0.950 0.106
22 2.308 0.273 53 0.947 0.103
23 2.271 0.270 54 0.905 0.092
24 2.262 0.269 55 (.898 0.089
25 2234 0.266 56 (.886 0.083
26 2.079 0.251 57 0.881 0.080
27 2.006 0.244 38 0.873 0.075
28 2.002 0.244 59 0.872 0.073
29 1.980 0.242 60) 0871 0.073
30 1.931 0.237 61 0871 0.072

31 1.869 0.231 62 0.868 0.066




Tabela 4: Relacio das Empresas de Ativos Utilizad

Numero Codigo |Descrigio Tipo indicc’  Amostra
1 ALBA3 |ALBARUS ON BV 848
2 ARCZ5 |ARACRUZ PNA BV 848
3 ARCZ6 |ARACRUZ PNB IBV 848
4 ARLA4 |ARTHUR LANGE PN BV 848
5 BARB3 [MET BARBARA ON BV 848
6 BAZA3 [AMAZONIA ON EJ BV 848
7 BBDC4 |BRADESCO PN IBV 848
8 BELG3 |BELGO MINEIR ON BV 848
9 BELG4 [BELGO MINEIR PN BV 848
10 BESP3 [BANESPA ON BV 848
11 BESP4 |BANESPA PN IBV 818
12 BMEB4 |MERC BRASIL PN BV 848
13 BRDT4 |PETROBRAS BR PN IBV 818
14  BRHA4 |[BRAHMA PN INT IBV 848
15 CCTU4 [CBC CARTUCHO PN BV 848
16 CMET4 |CAEMI METAL PN BV 848
17 COCE5 |COELCE PNA BV 848
18 CPCA4 |TRIKEM PN BV 848
19 CPFL4 FERRO LIGAS PN BV 848

20 CPNE5S |COPENE PNA IBV 848
21  CPSL3  COPESUL ON BV 848
22 CSNA3 |SID NACIONAL ON IBV 848
23 DHBI4 |DHB PN BV 848
24 EBCO3 |EMBRACO ON BV 848
25 EBER4 |EBERLE PN BV 848
26 ELMJ4 WEG PN BV 848
27  ERIC3 ERICSSON ON BV 848
28 ESTR4 ESTRELA PN BV 848
29 FITA4 FORJA TAURUS PN BV 848
30 FTSE4 |FERT SERRANA PN BV 848
31 GLOB4 |GLOBEX PN BV 848
32 ILMD4 |ADUBOS TREVO PN BV 848
33 ITEC3 ITAUTEC ON EG BV 848
34 ITSA4 ITAUSA PN EJ IBV 848
35 JBDU4 J B DUARTE PN BV 848
36 KLAB+4 |KLABIN PN IBV 848
37 LATS3 |LATASA ON BV 8148
38 LHER4 |LOJAS HERING BV PN 848
39 LITS3 BRASILIT ON BV 848
40  LIXC4 [LIX DA CUNHA BV PN 848
41 MGEL4 |MANGELS INDL PN BV 848
42 OXIT4 |OXITENO PN BV 848
43 PCAR4 [P.ACUCAR-CBD PN BV 8148
44 PLDN4 |POLIALDEN PN BV 848
45 PLIM4  |GLOBO CABO PN IBV ’48
46 PLTOG6 POLITENO PNB BV 848
47  PNORG6 |[PRONOR PNB BV 848

" IBV indica que o ativo participa na defini¢io do indice IBOVESPA: BV. negociado na BOVESPA.



Relacio das empresas de ativos utilizados

(continuacgao)

_Namero  Cédigo  |Descrigiio Tipo indicc  Amostra
48 POU.A4  |POLAR PN BV 848
49 PURP4 |POLIPR PART PN BV 848
50 PQUN3 PETROQ UNIAO ONEFEJ BV 848
51 PRGA4 |PERDIGAO S/A PN BV 84K
52 PTPA4 |PETROPAR PN BV 848
53 RIPH IPIRANGA REF PN BV 848
54 ROSI4 AMADEO ROSSI PN BV 848
55 SGAS+ |SUPERGASBRAS PN BV 848
56  SHUL4 [SCHULZ PN BV 848
57 SIBR7 SIBRA PNC BV 818
58 SOLO4 |SOLORRICO PN BV 848
59  SUzZA4  |SUZANO PN BV 848
60  UCOP4 |USIN CPINTO PN BV 848
61  VAGV4 [VARIG PN BV 848
62  VGOR4 (VIGOR PN BV 818
63 ZIVI4 Z1V1 PN BV 848
64 ACES4 |ACESITA PN IBV 170
65 ARTE3 [KUALA ON BV 170
66  AVIL4 |ACOS VILL PN BV 170
67 BBAS3 [BRASIL ON BV 170
68 BBAS4 |BRASIL PN IBV 170
69 BBDC3 |[BRADESCO ON BV 170
70 BEPA4 |BANESTADO PN INT BV 170
71 BMCT3 |MERC S PAULO ON INT BV 170
72 BPCO4 [BOMPRECO PN BV 170
73 BRGE3 JALFA CONSORC ON BV 170
74 BRIV3 |ALFA INVEST ON BV 170
75 BRIV4  |ALFA INVEST PN BV 170
76  BSCT6 |BESC PNBINT BV 170
77 CBEE3 |CERJ ON INT BV 170
78 CEEB3 JCOELBA ONEJ BV 170
79 CESP3 CESP ON BV 170
80 CESP4 |CESP PN IBV 170
81 CEVA3 |CEVAL BV ON 170
82 CGAS4 [COMGAS PN BV 170
83 CHAPY |CHAPECO PN BV 170
84 CMGR3 |CEMAT ON BV 170
85 CMIG3 [CEMIG ON IBV 170
8 CMIG+ |CEMIG PN IBV 170
87 COGU4 |GERDAU PN IBV 170
88 CPLE3 {COPEL ON BV 170
89 CPLE6 |COPEL PNB IBV 170
90 CQUE8 [CIQUINE PETR PND BV 170
91 CRUZ3 |SOUZA CRUZ ON IBV 170
92 DURA4 |DURATEX PN BV 170
93 ELET3 |ELETROBRAS ON IBV 170
94 ELET6 |ELETROBRAS PNB IBV 170
95 ELPL4 |ELETROPAULO PN IBV 170
96 EMBR3 |EMBRAER ON IBV 170
97 ERIC4 |[ERICSSON PN BV 170
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Relacio das empresas de ativos utilizados

(conclusao)
_Numero  Cddigo  |Descrigio Tipo Indicc  Amostra
48 FLCL5  {F CATAGUAZES PNA BV 170
99  (»:AUd |GERDAUMET PN BV 170
100 GRNL4 {GRANOLEO PN BV 170
101 HGTX4 |CIA HERING PN BV 170
102 ITAU3 ITAUBANCO ON BV 170
103 ITAU4 |ITAUBANCO PN EJ IBV 170
104 IVIL4 IND VILLARES PN BV 170
105 JFEN3 JOAO FORTES ON BV 170
106 LIGH3 LIGHT ON IBV 170
107 LIPR3 LIGHTPAR ON BV 170
108 MAHS4 [MANAH PN BV 170
109 MFLU3 |[SANTISTA ALM ON BV 170
110 MNPR4 |MINUPAR PN BV 170
111 MOAR3 IMONT ARANHA ONED BV 170
112 MWET4 [WETZEL S/A BV PN 170
113 MYPK4 [IOCHP-MAXION PN BV 170
114 OSAO4 |PLASCAR PART PN BV 170
115  PETR3 |PETROBRAS ON IBV 170
116 PETR4 [PETROBRAS PN IBV 170
117 PMAM4 |PARANAPANEMA PN BV 170
118  PNOR5 |PRONOR PNA BV 170
119  PNVL3 [DIMED ON BV 170
120 PRBN4 [PARAIBUNA PN BV 170
121 PTIP4 IPIRANGA PET PN IBV 170
122 RCSL4 |RECRUSUL PN BV 170
123 REPA4 |[ELECTROLUX PN BV 170
124 RHDS3 |RHODIA-STER ON BV 170
125 RPAD3 |ALFA HOLDING ON BV 170
126 RPADS |ALFA HOLDING PNA BV 170
127  RPAD6 |ALFA HOLDING PNB BV 170
128  SBSP3 SABESP ONINT IBV 170
129 SHAP4 |SHARP PN BV 170
130 SIFC4 SIFCO PN BV 170
131  SLAL4 SOLA PN BV 170
132 SOES4 |SADIA S/A PN BV 170
133 SPRIS SPRINGER PNA BV 170
134 STRP4 |STAROUP PN BV 170
135 SULT4 [SULTEPA BV PN 170
136 TAMR4 |TAM PN BV 170
137 TELB3 [TELEBRAS ON BV 170
138 TELB+4 |TELEBRAS PN BV 170
139  TEPR4 |BRASIL TELEC PN ANT IBV 170
140 TERIJ3 TELERJ ON BV 170
141 TERM TELERIJ PN IBV 170
142 TMGR3 [TELEMIG ONEJ BV 170
143 TMGR6 |TELEMIG PNB BV 170
144  TMGRS8 |TELEMIG PND BV 170
145 TRBR4 |{TRANSBRASIL PN BV 170
146  VULC4 |VULCABRAS PN BV 170
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Tabela S: Composicio dos Portfolios do modelo MV - 63 ativos

Portfolio

Ativos

Participagoes

1

25

1.00

25.63

0.26

. 0.74

19. 25, 63

0.07

.0.17

.0.76

6.19.25.63

0.03

. 0.06

. 0.16.

0.74

0.05

. 0.06

;. 0,16,

0.01,0.72

9.25,49.51.63

0.12

. 0.05

L0012,

0.06.0.07. 0.58

9.25.49, 51,63

0.00

. 0.13

. 0.05.

0.12. 0.006. 0.08. 0.56

9, 25.49.50.51. 63

0.01.

0.13,

0.04.

0.11.0.07. 0.06.0.08.0.51

O[R[N || =N

0.01,

0.13.

0.01.

0.04, 0.10. 0.07.0.08. 0.08. 0.48

=

6. 19. 25, 35. 49, 50.51. 63

0.01.

0.12.

0.03. 0.04. 0.09. 0.00. 0.07. 0.14. 0.07. 0.43

—
It

6. 19. 25, 35, 44, 50,51,

49.

6, 19,25, 51.63
s 1

.6, 1

6.1

6,16, 19, 25, 49, 50. 51. 63
6.1

.61

6
4
4
4
4
4
6

3

0.02.

0.30

0.11.

0.07.0.03, 0.06. 0.01. 0.05. 0.07, 0.24. 0.06.

p—
N

4,6, 16, 19, 25, 35, 43. 44, 49, 50,

51,63

0.02,
0.05,

0.23

0.10.

0.08. 0.02. 0.05.0.01.0.04, 0.07, 0.06. 0.27.

13

4,6, 16, 19, 25, 31, 35, 43, 44. 49,

50, 51,63

0.02,
0.28,

0.10,
0.05,

0.08,
0.23

0.02. 0.04, 0.00. 0.01. 0.04. 0.07

. 0.06,

14

4,6, 16, 19, 24, 25, 31. 35,

49, 50. 51. 63

0.02.
0.006,

0.10,
0.28.

0.08.
0.05,

0.02. 0.00, 0.04. 0.00, 0.01. 0.04

0.22

. 0.07.

15

4. 6,16, 19. 24, 25. 30. 31.

44, 49, 50. 51, 63

.10.02,
0.07.

0.09.
0.006,

0.08.
0.28.

0.02. 0.01, 0.3 0.00,0.01. 0.01

0.05.0.22

L 0.04,

16

4,6, 16. 19, 24, 25, 29, 30. 31. :

43.44.49,50. 51,63

0.02,
0.05,

0.09.
0.07.

0.08.
0.06.

0.01.0.04.0.03.0.01,0.01. 0.03

0.27.0.04.0.18

.0.01.

17

4.6, 16, 18, 19, 24, 25, 29. 30.

35,43, 44.49.50. 51, 63

,10.02,
0.01.

0.09,
0.05,

0.08.
0.07.

0.00. 0.01. 0.04. 0.03. 0.01. 0.02

0.06.0.27. 0.04.0.17

. 0.03,

4.6, 13,16, 18, 19, 24, 25. 29, 30,

31,35,43.44. 49, 50, 51, 63

0.02,
0.03,

0.09,
0.01.

0.00,
0.05,

0.08. 0.00. 0.01. 0.04,0.03, 0.01

0.07.0.06, 0.27. 0.04, 0.17

. 0.02,

19

4,6, 13, 16, 18, 19, 24, 25. 29. 30.
31, 35,42, 43, 44. 49, 50, 51, 63

0.02,
0.03,

0.09,
0.01.

0.00.
0.00,

0.08. 0.00, 0.01. 0.05, 0.03. 0.01
0.05. 0.07, 0.06, 0.27. 0.04, 0.17

. 0.02,

20

30.
53.

4.6.13, 16, 18. 19. 24. 25. 29.
31. 35. 42. 43. 44. 49. 50. 51.
63

0.02.
0.04.

0.08.
0.01.

0.02.
0.02.

0.07. 0.00, 0.01. 0.06. 0.03. 0.01
0.05.0.07. 0.05.0.26. 0.03. 0.02.

. 0.02.

0.14

21

30.
53.

2,
50.

29.
51.

4.6.13.16. 18, 19. 24.
31035, 42, 43, 44, 49.
54.63

0.02.
0.05.

0.13

0.08.
0.01.

0.02.
0.03.

0.02.
0.02.

0.006.
0.25,

0.00. 0.01.
0.07. 0.05.

0.07.
0.05.

0.01.
0.03.

0.02.
0.00.

22

25,
50.

29,
51,

30,
53,

4,6, 13, 16. 18, 19. 24,
31, 35. 42, 43. 44, 49.
54, 60, 63

0.02,
0.05.
0.00.

0.12

0.07,
0.01,

0.02,
0.03.

0.07.
0.25.

0.02,
0.02.

0.00, 0.01.
0.07. 0.05.

0.07,
0.05.

0.01.
0.03,

0.03,
0.00.

23

25
50.

29. 30.
51. 53,

4.6.13.16. 18.19. 24.
31. 35, 42, 43. 44. 49,
54.57.60. 63

0.02.
0.05.
0.00,

0.07.
0.01.
0.00.

0.02.
0.03.
0.12

0.02.
0.02.

0.07.
0.24.

0.07.
0.05.

0.00. 0.01.
0.07. 0.05.

0.01.
0.03.

0.03.
0.00.

24

25,
50.

29.
51

30.
52,

4.6, 13.16. 18. 19. 24,
31. 35, 42, 43. 44. 49,
53. 54, 57.60. 63

0.02.
0.05.
0.01.

0.07.
0.01.
0.00.

0.02,
0.03.
0.01.

0.02.
0.02.

0.07.
0.24.

0.00. 0.01.
0.07. 0.05.

0.07.
0.05.
0.12

0.01,
0.00.

0.03.
0.03.

25

25.
49,

29,
50,

4.6.13.16. 18. 19, 21. 24.
30. 31, 35. 40, 42 43, 44
51.52,53.54.57. 60, 63

0.02.
0.03.
0.01.

0.07,
0.05.
0.04.

0.03.
0.01.
0.01,

0.07.
0.04,

0.02.
0.06.

0.06.0.01. 0.01.
0.00. 0.04. 0.04.
0.00.0.01.0.10

0.02.
0.23.

0.01.
0.02.

26

25,
49.

4,6.13. 16, 18, 19. 21. 23. 24.
29. 30, 31. 35. 40, 42_ 43, 44
50, 51. 52. 53. 54. 57. 60. 63

0.02.
0.01.
0.02.

0.01

0.07.
0.03.

0.03.
0.05.
. 0.04.

0.00.
0.06.

0.06. 0.01. 0.01. 0.02
0.01.0.00. 0.04. 0.04,
0.01.0.00.0.01. 0.10

0.07.
0.04.

0.02.
0.23.

27

4.6.13.15.16. 18. 19. 21. 23. 24.
25.29. 30. 31. 35. 40, 42. 43, 44,
49, 50. 51, 52.53. 54. 57. 60. 63

0.02.
0.02.
.23,

0.07
0.01
0.02

. 0.03.
. 0.03.
.0.01.

0.00. 0.06. 0.01. 0.01

0.04.0.01. 0.00.0.01. 0.10

. 0.02. 0.00.
0.05. 0.01. 0.00. 0.04. 0.04. 0.06.

0.07.
0.04.




Composicio dos Portfélios do modelo MV

83

__(continuac¢ia)

Portflio

-

Alivos

Panicif)?]a‘)'gg

28

46,1215, 16. 18, 19, 21, 23. 24,
25. 20290300 31, 35, 40, 42, 43,
44, 49. 50.51. 52, 53, 54, 60. 63

0.02.

0.02.
0.04,

0.07.0.03. 0.00. 0.06. 0.01. 0.01.0.02. 0.00,
0.00. 0.01. 0.03. 0.05.0.01 0.00.0.04. 0.04,
0.23.0.02. 0.01. 0.0, 0.01.0.01.0.10

29

460131516, 18. 19, 21,23, 24,
25.26. 29. 30, 31, 35, 40. 42, 43,
44.49.50.51.52. 53,54, 60. 63

0.0].
0.02.
0.04.

0.06. 0.03.
0.00. 0.0},
0.22.0.02.

0.03.0.05.001.0.00.0.04, 0.04,
0.02.0.04. 0.01.0.01.0.09

0.07.
0.06.

0.00. 0.06. 0.01. 001 0.03. 0.00. 0.07.

0.06.

4.6, 13,15, 16, 18. 19. 21, 23. 24,
25.26. 29, 30. 31. 35. 40, 42 43.
44, 49. 50, 51, 52, 53, 54. 58. 60.
63

0.01.

0.02.
0.04,

0.01. 0.06. 0.01. 001, 0.03. 0.00.
0.03. 0.05. 0.01. 0.00. 0.04. 0.04.
0.02.0.04. 0.01. 0.00. 0.01. 0.09

0.06. 0.03,
0.01. 0.01.
0.22.0.01.

0.07,
0.00.

31

24.
42.
58.

21
35.
53.

23,
40,
54.

4.6.13.15. 16, 18. 19,
25.26. 29. 30. 31. 33.
43, 4449, 50, 51, 52
60. 63

0.01.
0.01.
0.00.

0.05. 0.00. 0.01. 0.04. 0.00.
0.05. 0.00. 0.01. 0.00. 0.04.
0.02.

0.02.
0.03,
0.01.

0.06. 0.03.
0.02. 0.01.
0.04.0.21.

0.07,
0.04,

0.04.001.0.01,0.02.0.08

32

24
40.
54.

21.
33
52

23.
35,
53.

46,13 1516, 18. 19,
25.26. 27, 29. 30. 31.
42,43, 4+ 49, 50051,
58.60. 63

0.01.
0.01.
0.03.
0.07

0.01. 0.05. 0.00.
0.00. 0.01. 0.00,
0.04. 001, 0.01.

0.05.
0.03.
0.01.

0.00.
0.05.
0.03.

0.03.
0.01.
0.19.

0.05.0.03.
0.03.0.01.
0.05. 0.04,

0.08.
0.05.
0.02,

24
40.
54

21.
33.
52

23.
35,
53

4.6, 13. 15,16, 18. 19.
25.206. 27. 29. 30. 31.
42,43, 44 49, 50, 51,
55. 58. 60, 63

0.01.
0.01,
0.03.
0.02,

0.00.
0.00.
0.00.

0.05.
0.0l
0.01.

0.01.
0 00.
(.04

0.05.
0.03.
0.01.

0.00.
0.05.
0.03

0.03.
0.01.
0.19.

0.05. 0.03,
0.03.0.01.
0.05. 0.04,
0.07

0.08.
0.05.
001,

21.
33035,
52.53.

18.
30,
50,

19.
31
51

1. 4.6, 13,15, 16.
24. 25, 26. 27. 29.
40, 42, 43 44 49
54.55. 58, 60, 63

3.10.00.

0.08.
0.05.
0.01,

0.006.
0.01,
0.01.

0.01.
0.01.
0.04.

0.00.
0.05,
0.03,

0.04.
0.03,
0.01.

0.03.
0.01,
0.03.

0.03.
0.01.
0.19.

(.61, 0.05,
0.01. 0.03,
0.03. 0.05.
0.02.0.07

0.00,
0.00,
0.00.

35

AR
33,
52. ¢

18. 19.
31

5L

1. 4.6, 13 15106,
24,2526, 27. 29. 30.
40. 42, 43, 44 49, 50,
54.55. 58, 60, 62, 63

0.00,
0.08,

L1005,

0.01,

0.00.
0.0l
0.01.

001,
0.01.
0.04,

0.04.
0.03,
0.01.

.00,
0.05,
0.03.

0.03.
0.01.
0.18.

0.03.
0.01.
0.03.
0.06

0.01. 0.05.
0.01.0.03,
0.03. 0.05.
0.02. 0.08,

0.00.
0.00.
0.00.

36

21.
33
51 ¢

1. 4.6, 13. 15 16. 18. 1Y,
24.25.26. 27. 29. 30, 31.
38. 40, 42, 430 4449, 50.

53.54.55. 58, 60. 62, 63

-1 0.00,
.10.08.

0.00.
0.00,

0.00.
0.0l
0.04.

0.01.
0.01.
0.03.

0.04,
0.02.
0.18.

0.00.
0.05,
0.01.

0.03.
0.01.

0.03.
0.01.
0.05.0.03.
0.00. 0.06

0.01. 0.05,
0.01. 0.03.
0.05. 0.03.
0.02. 0.02.

37

1.4 6. 13, 15 16, 18. 19. 21.
24,2526, 27. 29. 30. 31. 33

38. 40, 42, 430 44 49, 50. 51. ¢
53. 54, 55, 58, 60. 61, 62. 63

.1 0.00.
.10.08,

0.00,
0.00,

0.006.
0.01.
0.04.

0.01.
0.01.
0.03.

(.00,
0.05.
0.01.

0.03. 0.03. 0.04.
0.01. 0.03. 0.01. 0.01. 0.02.
0.05.0.03. 0.18.

0.05.0.03.
0.02. 0.02. 0.00. 0.00. 0.06

0.01. 0.05.

0.01.
0.00.
0.01.

0.01.
0.00.
001,

38

1.4 6. 12, 13,150 16. 18, 19. 21,
23. 24,2526, 27. 29. 30, 31. 33.
35. 38 40, 42 43, 44, 49,50, 51,
52. 53, 54. 55. 58, 60, 61. 62. 63

0.01.
0.01L
0.00,
0.01,

0.00.
0.05,
0.01.

0.00.
0.0L
0.03.

0.01. 0.04. 0.01. 0.03. 0.04. 0.04.
0.07. 0.0, 0.04. 0.01. 0.01. 0.02.
0.00. 0.05. 0.02. 0.04. 0.03. 0.17.

0.01.0.02.0.02,0.00.0.01.0.05

0.07.
0.01.
0.04.

39

12. 13, 15, 16. 18, 19.
. 25.26. 27, 29. 30. 31.
400420430 4449050,
. 54,55, 58. 60, 61. 62.

63

0.01.
0.07,
0.01.
0.04,

0.00.
0.04.
0.01.

0.00. 0.01. 0.04, 0.01. 0.03. 0.04. 0.03.
0.01. 0.07. 0.01. 0.04. 0.01. 0.01. 0.02.
0.00.0.00, 0.05.0.02. 0.04, 0.03.0.16.
0.01.0.01.0.02.0.02. 0.01. 0.02_0.05

0.00.
0.01.
0.04.

40

19.
3L
49.
ol

5. 16. 18.
7. 29. 30.
3.4 46,
5. 58. o0

13.
26.
42
54.

12,

25.
40,
53.

1. 2. 4. 6.
21,2324,
33. 35. 38,
50. §1. 52
62.063

0.01,
0.07.
0.01.
0.04,

0.01.0.01.0.04. 0.01. 0.03. 0.04. 0.03. 0.00.
0.01. 0.07. 0.01. 0.04. 0.01. 0.01. 0.02. 0.04.
0.00. 0.00. 0.05.0.02. 0.04.0.00,0.03.0.16.
0.04.0.01.0.01.0.02.0.02.0.01.0.02. 0.05

0.00.
0.01.
0.0l




Composicio dos Portfélios do modelo MV

(continuagio)

Portfsiio

41

] Ativos

Participagdes

1.2 16,
23. 21 25,
35, 38. 40,
51,52, 53.
62. 63

12,

20.
42.
54

13

27,
43,
55,

15.

29,
4,
56. -

.3
.49,
. 60,

19.

~

21
.33,
50.
61,

001, 0.01.0.01. 0.0+ 0.01. 0.02. 0.01. 0.03. 0.00. 0.07.

0.01.
0.00,
0.04.

0.07.0.01.0.04.0.02.0.01 0.02

. 0.04, 001 0.01.

0.00. 005,002,004 000 003015 001.0.04.
0.02. 002 0.01.0.02_0.04

0.01.

0.01.

0.00.

42

1.2. 4.6,
23. 24, 25.
35. 38. 40.
51. 52. 53,
62.63

12.

20.
42.
54

3.

27.
43.
55.

15,
29.
44
56.

16.

30.
46.
58.

19.

~

313
49.
60,

211001,

0.01.

-1 0.00.
.1 0.04,

0.01.
0.07.
0.00.
0.01.

0.01.
0.01.
0.05.
0.01.

0.04.
0.04.
0.02.
0.00.

0.01. 0.02. 005, 0.03. 0.00.0.07.

0.02. 0.0]
0.04. 0.01]
0.02.0.02.

. 0.02.0.04. 0.01 0.0].
L 0.03.0.15.0.01. 0.04,
0.01.0.02.0.04

43

2302425,
35. 38. 40.

62.63

1.2.4.6.8.12. 13,
26.
42.
51,52, 53,54

27.
43.

55,

I5.

29.
1.
56.

16.
30,
46.
58.

19.

-

RE W

49.
60,

L1001

0.07.
0.01.
0.04,

0.01,
0.01.
0.00.
0.04,

0.01.
0.07.
0.00.
0.01,

0.04.
0.01.
0.05,
0.02.

0.00.0.01

. 0.02.0.05.0.03. 0.00,

0.04. 0.02.0.01. 0.02. 0.04. 0.01.
0.02.0.04. 001 0.03.0.15. 0.00,
0.00,0.62.0.02.0.01.0.02.0.04

44

50. 51, 52. 53.
61.62.63

1.2.4.6.8. 12,13,
23,24, 25, 26. 27,
35038 40. 42, 43,

54

15.

29
44,
55.

16.
30.

45.
56.

19.

KB R
46.
58.

NIAUR
.1 0.07,
L0010
.1 0.00,

0.04

0.01.
0.01.
0.00,
0.04,

0.01.
0.07.
0.00.
0.04.

0.04,
0.01.
0.05.
0.01.

0.00.0.02. 0.02.
0.04.0.02. 0.01.
0.02. 0.03. 0.00.
0.02. 0.00. 0.02.

0.05.
0.02.
0.0].
0.02.

0.03.
0.04.
0.03.
0.01.

0.00.
001,
0.15.
0.02.

45

23. 24025, 26.
35.37. 38. 40.
49. 50, 51, 52.
60.61.62.63

1.2.4.6.8.12. 13,

27.
42.
53.

15.

29,
43,
54

16.

30,
44,
55.

19.

31
45.

56. 3

J0.0L
. 0.07,
L1 0.01,

0.14.
0.02.

0.01.
0.01.
.00,

0.00.

0.04

0.01.
0.07.
0.00.
0.04.

0.03.
0.01.
0.00.
0.04.

0.00, 012, 0.02.
0.04.0.02.0.01.
0.05. 0.02.0.03.
0.01. 0.02. 0.00.

0.05.
0.02,
(.00,
0.02,

0.03.
0.04,
0.01.
0.02.

0.04
G.04.
0.02.
0.01.

46

23,24, 25, 26,
35. 37, 38. 40.
46. 49, 50, 51,

1.2.4.6.8.12. 13.

27.
41.
52.

58.60.61.62. 63

29.
42.
53.

.16

30,
43,
54,

19.

44

55.

21.
3133,
45.
56.

0.01.
0.08.
0.01.
0.02.
0.01.

0.02,
0.01.
0.00,
0.14,
0.03.

0.01.
0.07,
0.00,
0.00.
0.03

0.03.
0.01.
0.00.
0.04,

0.00. 0.02. 0.02.
0.04. 0.02. 0.01.
0.00, 0.05. 0.02.
0.03.0.01. 0.02.

0.05.
0.02.
0.03.
0.00,

0.02.
0.04.
0.00.
0.02.

0.00,
0.01.
0.01.
0.02,

47

23. 24, 25. 26,
35. 37. 38. 39.

[.2.4.6.8. 12, 3.

27.
40.

I5.

29.
41.

45, 46. 49, 50. 51. 52.
56.58.60.61.62.63

f6.

30.
42.

53,5

.21,
.33
.4

. DD,

0.02.
0.08.
0.00.
0.01,
0.02,

0.02.
0.01.
0.01.
0.02,
0.02,

0.01.
0.00.
0.00.
0.13.
0.03.

0.03.
0.00,
0.01.
0.00,
0.03

0.01. 6.02.0.02.
.05, 0.02. 0.01.
0.00. 0.01. 0.05.
0.04. 0.03.0.01.

0.05.
0.02,
0.01.
0.02,

0.02.
0.04.
0.03.
0.01,

0.00).
0.01.
0.00.
0.03,

48

21
33.

1.2.3.4,6.8. 12, 13,
23.24.25.26. 27.
35. 37. 38. 39. 40.
.45 46. 49. 50. 51,
.56.58.060,61.62. 63

I5.

29.:

41

52. ¢

.19,
.31
.43,
.54,

0.02,
0.00.
0.01.
0.00.
0.03.

0.02,
0.08.
0.00,
0.02,
0.02.

0.00.
0.01.
0.01.
0.02.
0.02.

0.01.
0.06.
0.00.
0.12.
0.03.

0.03. 0.01. 0.02.
000, 0.05.0.02.
0.01. 0.00, 0.01,
0.00_0.04. 0.03.
0.03

0.02,
0.01.
0.05.
0.01.

0.05.
0.02.
0.01.
0.02.

0.02.
0.04.
0.03,
0.01.

19

21,23, 24 25.
33. 35 37. 38.

26.
39.

27.
40.

1,23 4.6.8. 12, 13,15,

29,
41

44,45 46, 48. 49, 50. 51,
54.55.56. 58, 60.61. 62. 63

.19,
3L
43.
. 53.

0.02.
(.00,
0.01.
0.00.
0.01.

0.03.
0.08.
.00,
0.02,
0.03,

0.00.
0.01.
0.01.
0.00.
0.02.

0.01.
(.06,
0.00.
0.02.
0.02.

0.02. 0.01. 0.02,
0.00.0.05.0.02.
001, 0.00.0.0].
0,12, 0.00. 0,04,
0.03.0.02

0.02,
0.01.
004,
0.03.

0.05.
0.02.
0.0,
0.01.

50

44,

54

1.2.3.4.6.8.12. 13, 15,
21,23, 24, 25.26. 27. 29.
33. 35, 37. 38. 39. 40. 41,
45, 46. 48. 49, 50, 51. 52, 53.
35.56. 58.539. 60, 61. 62.63

16.
30,
42.

19.
31
43.

0.02,
0.00.
0.0]1.
0.00.
0.01.

0.03.
0.08.
0.00.
0.02.
0.03.

0.01,
0.01.
0.01,
0.01.
0.00.

0.01.
0.06.
0.00.
(.02.
0.02.

0.02.0.01. 0.03.
0.00. 0.05. 0.02.
0.01. 0.00. 0.01.
011, 0.00. 0.04.
0.02. 0.04.0.02

0.02.
0.01,
0.04.
0.03,

0.02.
0.03.
0.02.
0.02.

5,000
. 0.03.
L 0.02
S 0.02,

84



Composi¢cdo dos Portfolios do modelo MV

(continuagio)
_Porticlio | Ativos Participagdes

122 4.5.6.8. 12 13, 15. 16.[0.02.0.03. 0.01. 0.01. 0.00. 0.02. 0.01. 0.03. 0.02. 0.05.

19, 21, 23.24.25.26. 27. 29, 30.10.01. 0.00. 0.08. 0.01. 0.06. 0.00. 0.05.0.02. 0.01. 0.02.
51 3133035, 37.38. 39,40, 41. 42.10.03. 0.01. 0.00. 0.01.0.00. 601, 0.00.0.01.0.04. 0.01.
N 43,440 45, 46, 48, 49, 50, 51..52.10.02. 0.00. 0.02. 0.01.0.02.0.11.000.0.04. 003 0.01.

53. 54, 55, 56. 58. 59. 60. 61. 62.10.02.0.01.0.03.0.00.0.02.0.02.0.04.0.02

63

1.2.3. 4.5 6.8 12.13.15. 16.119.29.06.05.00.21.13.26 16.54.13.02.79.

19. 21, 23. 24, 25.26. 27. 29.30.10.9.6.0.03.4.7.20.07. 17.3.2. 1.0.04. 08 0.1 11.
57 [31.33.35.37.38.39.40. 41 42./0.1. 08, 44.08.22.01. 1.7 0.7 18 114 0.1 42.
; 43. 44,45, 46, 48.49.50. 51.52./2.7.13.25.09.29.02.2 4. 18.37.19

53. 54. 55, 56. 58. 59. 60. 61. 62.

63

1.2.3.4.5.6.8.12. 13.15. 16.11.9.2.9.06.05.00.2.0.13.26.1.6.54.12.02.7.9.

19.21.23. 24, 25. 26. 27. 28.29.10.9.6.0.0.3.47.2.0.00.0.7.1.7.32.1.0.0.4. 0.8. 0.1.
53 |30.3133.35.37.38.39. 40, 4L | LL 0.1. 0.9 44.0.8. 2.2, 0.1. 1.8 08. 1.8, 113, 0.1,
7 4243444536, 48. 49,50, 51.14.2.26.1.3.25.09.29.02.2.4.18.37. 1.9

52.53. 54. 55. 56. 58. 59. 60. 61.

62. 63 L B

1.2.3.4.56.8 12 13.15.16.]20.34. 11.04.02.15.1.7.29.1.2.56.0.7.0.1. 7.9.

19.21.22.23.24.25.26.27.28.{0.2.0.9.57.0.2.49.2.1.03.0.6.1.5.2.8. 1.1.0.4. 1.0.
g |29-30.31033.3537.38.39.40. | 0.1 15, 0.0, 11 42,04 120220, 15, 16, 10.2.
- 414243444546, 48. 49. 50, [43.2.1.1.3.2.7. 1.1.3.0.0.6. 2.5. 20. 4.1 1.3

52. 53. 54. 55. 56. 58. 59. 60. 61.

62. 63 _

1.2.3.4.5.6.8 12.13. 15. 16.120.35.1.2.03.02 1.4 1.7.30. 1.2.5.6.0.6. 0.1. 7.9.

19. 21,22, 23. 24.25. 26. 27. 28.10.3.09.56.0.1.49.2.1.03.0.6. 1.5.2.7. 1.1. 0.4, L1.
<5 [29-30.31.33.3537.38.39.40. /0.1 16. 0.1. 1.2. 4.2. 03, 1.7. 0.2 2.1 1.7. 1.5 10.0,
- A1.42.43. 444546, 48, 49,50, 4.3.2.0.1.3.28 1.1.3.0.06.25.2.0. 4.1, 1.2

52.53. 54. 55. 56. 58. 59. 60. 61.

62. 63

1.2.3.4.5.6.8.9.12.12.15.16.]2.1.38. 1.4.03.02. 1.2. 1.8.0.1.3.1. 1.0.5.7.0.4. 0.1.

19.21.22.23.24.25.26.27.28.178.0.4.09.55.0.1.50.22.05.05 1.4.2.5 1.1.0.4
g [29-30.31.33.35.37.38.39. 40, 1.2 0.1 18,01 134101 15.02.22.20.14.94.
; 41,42, 43,3445, 46. 48. 49,50, 4.4.1.8.1.3.29.1.2.3.1.08.25.21.43.09

52.53. 54,55, 56. 58. 59. 60. 61.

62. 63

1.2.3.4.5.6.8.9.12.13.15. 16.[2.1.3.9.1.5.0.3.03. L.1. 1.9.0.2.32.0.9.58.0.3.0.0.

19. 21, 22, 23. 24.25.26.27. 28.]7.8.0.4.1.0. 54.0.1,5.0.22. 0505, 1.4. 25 1.1. 0.4,
57 29-30.31.33.35.37.38.39. 40, L2 0.0, 19.0.L 14 41 14.02.2.2.00.2.1. 1.3.9.2.
: 41,42, 44,45, 46. 47, 48.49.50. | 4.4.1.7.1.2.2.9.1.2.3.1.09.25.22. 44,08

52.53. 54. 55. 56. 58. 59. 60. 61.

62.63

1.2.3 15689 12131516122 +1.17.02.03.08.2.0.03.33.06.59.0.1.0.0.

19.21. 22, 23. 24, 25. 26. 27. 28.{7.8.0.5.1.0.5.2.0.0.5.1.2.2.0.6.0.5. 1.3, 2.3. 1.1. 0.3.

29.30. 31, 33. 35. 37. 38.39. 40 1.3.0.0.20.00.1.5.40.12.02.23.0.1.24. 1.2.87.
S8 42 44 1516, 47, 18 49,50, |44, 1.4 12.3.0. 1.3.3.2.1.0.2.6.2.2. 45,05

52.53. 54.55. 56. 58. 59. 60. 61.

62. 63

1 2.3 4.56.89 12 13.15.19.122.42.1.7.02.03.0.7.20.04.33.0.6.5.9.0.0. 7.7.

21.22.23. 24, 25.26. 27. 28.29.10.5.1.0.5.2.0.0.5.1.2.2.0.6.0.5. 1.3.2.2.0.0. 1.2. 0.3.
. 30. 31, 32, 33. 35. 37.38.39. 40 [ 1.4.0.0.2.1. 0.0, 1.5 40. 1.1.02.2.3.02.25 1.2. 85,
39 11 42 44,45 46, 47, 48. 49,50, | 4.4 14, 1.2.3.0. 1.3.3.2.1.0.2.6.2.3. 4.6.0.4

52. 53, 54, 55. 56. 58. 59. 60. G1.

62. 63

85



Composic¢io dos Portfolios do modelo MV

(conclusio)

Portfélio | Ativos Participagoces
1.2.3 4.5, 6.8.9. 12, 13. k122,42, 1.8.0.2. 0.3, 06,59, 00.
21.27 23.24.26.27.28.29.30.30.17.7. 0.5, 1.O. 5.2, 5.1 .22.00.12.
60 32.33.35.37.38.39. 40, 41.42. 44,103, 1.4.00. 2.1. 0.0, L5, L2402 25
45.46.47.48.49.50.52.53.54. 551 1.2. 85 44, 1.3. 1.2 3.1 2.1.0.26.23. 46,
56. 58 60.61.62. 63 0.4
1.2.3.4.5.6.8.9.12.13.15.21.{22. 42. 18.02. 0.4 05,5977
22.23.24.26.27.28.29.30.31.32.{0.5. £.0.52. 5123, .00.1.2.03.
Q! 33.35.37.38.39.40. 4142 44,451 1.4. 00, 2.1, 0.0, 1.5 L0226 1.1
16.47.48.49.50.52.53.54.55.56. |8 4. 44 1.3, 1.2.3. L. 1.4.3.2.10.26.23.46.0.3
58.59.60.61. 62. 63
1.2.3.4.5.6.8. 9. 12. 13.15.21.[22.45.20. 01, 04.04.22.06. 35.03.6.0. 7.7.
22.23.24.26.27.28.29.30.31.32.106. 1.0. 49.51.23. 08. 04 1.2.20.0.1. 1.2. 0.3.
62 33.35.37.38.39.40. 41,42, 44,45 [ 1.5.0.0. 2.3. 0.0, 1.7.39. 08, 02.25.03.29,09
16.47.48. 49.50.52.53.54.55.56.|7.6.45.09.1.2.3.1.1.5:3.2.12.26.24.49.0.0

.61.62.63




Tabela 6: Retornos Logaritmicos e Percentuais de 63 Ativos

(amostra m = 847)

Ativo Retorno Retorno

Log %oa.d.
25 0.012272 1.235
63 0.009905 0.995
19 0.007692 0.772
57 0.005611 0.563
51 0.002247 0.225
49 0.001900 0.190
6 0.001637 0.164
50 0.001633 0.163
16 0.001551 0.155
4 0.001512 0.151
44 0.001354 0.136
43 0.001256 0.126
42 0.001149 0.115
40 0.001142 0.114
13 0.001033 0.103
24 0.000985 0.099
18 0.000958 0.096
31 0.000953 0.095
29 0.000943 0.094
59 0.000901 0.090
30 0.000897 0.090
21 0.000809 0.081
53 0.000807 0.081
35 0.000758 0.076
58 0.000755 0.075
26 0.000731 0.073
60 0.000705 0.071
43 0.000702 0.070
38 0.000694 0.069
55 0.000665 0.067
34 0.000614 0.061
54 0.058

0.000578

Ativo Retorno
Log

9 0.000573
52 0.000551
8 0.000540
20 0.000535
22 0.000519
15 0.000483
33 0.000479
1 0.000473
23 0.000473
36 0.000470
46 0.000454
39 0.000408
62 0.000388
10 (.000383
61 0.000383
5 0.000376
3 0.000282
28 0.000263
7 0.000234
12 0.000192
48 0.000184
11 0.000175
27 0.000167
32 0.000124
47 0.000103
41 0.000088
56 0.000087
17 0.000086
37 0.000055
2 0.000052
14 -0.000043

Retorno
~ %ead.

01037
0.055
(0.054
054
0.052

0.048
0.048
0.047
0.047
0.047
(0.045

0.041

0.039
0.038

0.038

0.038
0028
0.026
0.023

0.019
0.018
0.017
0.017
0.012
0.010
(.009
0.009
0009
0.005
0.005
-0.004



Tabela 7: Desvio Padrao dos Retornos - 63 Ativos

{amostra m = 847)

Ativo DP (Log) DP (%a.d.) Ativo DP(Log)
] 0.05128 5262 33 0.06624
2 0.04416 4513 34 0.03362
3 0.03995 4.076 35 0.20941
4 0.11026 11.657 36 0.04411
5 0.05481 5.634 37 0.05407
6 0.06886 7128 38 014475
7 (.03869 3945 39 (.03944
8 0.04971 5.097 40 0.12341
9 (.04601 4.708 41 0.05792
10 (.04949 5.073 42 0.03703
11 (0.04507 4610 43 0.04167
12 0.04234 4325 44 0.04821
13 0.03521 35383 45 0.06197
14 (.03580 3.644 46 0.04201
15 0.03544 3.608 47 0.09671
16 0.04660 4771 48 0.03386
17 0.05670 5834 49 0.07960
18 0.07264 7.534 50 0.02916
19 0.38811 47.420 Rl 0.07452
20 0.03324 3.380 52 0.04247
21 0.02701 2.737 33 0.03338
22 0.03692 3.761 54 0.07766
23 0.08916 9326 55 0.05816
24 (.04083 4.168 56 0.06003
25 0.33186 39.356 57 0.32570
26 0.03123 2172 58 0.04018
27 0.05392 5541 59 0.03849
28 0.06496 6711 6() 0.05912
29 0.06419 6.629 61 0.05082
30 0.05989 6.171 62 0.03401
31 0.04282 4 375 63 0.13905
32 011610 12311 -

Tabela 8: Retornos Logaritmicos de 146 Ativos

_ bPead)

f 848
1419
23.205
4510
5.556
RIRVA
4.023
3135

5.96!

»d

P
1o~
~
PN ]

4
1039
6.393
4.291
10154
3444
8 286
2.959
7.737
4 443
3393
R.076
5089
6.187
38 500
4 099
3924
6.090
214
2460
14918

5

88



(amostra m = 170 retornos)

_Ativo | Retorno Risco Ativo | Retorno Risco Ativo | Retorno  Risco
i 0.00237  0.09482 51 0.0115 0.1564 101 -0.0090 0.1438
2 0.00026  0.09972 52 0.0028 0.0878 102 -0.0068 01913
3 0.00157  0.09225 53 0.0041 0.0616 103 -0.00806 0.1921
4 0.00410  0.18554 54 0.0038 (.1535 104 -0.0325 ).2998
5 0.00188 0.12174 55 0.0036  0.0925 105 -(1.0026 0.0896
6 0.00820 0.08687 56 0.0014  0.1292 106 -0.0043 0.0993
7 0.00047  0.08234 57 0.0281 0.6190 107 -0.0290 0.5301
8 0.00254  0.09427 58 0.0042 0.0923 108 -().0058 0.1048
9 0.00317 0.08572 59 0.0038 0.0926 109 -0.0085 0.0915
10 0.00183 0.09592 60 0.0035 0.1375 110 -0.0024 0.1597
i1 0.00078 0.11264 6l 0.0016  0.1145 111 -0.0040 0.0907
12 0.00094  0.07721 62 0.0018 0.0835 112 -0.0071 0.5058
13 0.00005  0.08384 63 0.0496  0.3293 113 -0.0055 0.1465
14 0.00542  0.07768 64 -0.0049  0.1002 114 -0.0036 0.1132
15 0.00242 0.07155 65 -0.0116  0.2390 115 -0.0099 0.1932
16 0.00749  0.09743 66 00108  0.1397 116 00117 0.1952
17 0.00037 0.11750 67 -0.0032  0.0641 117 -0 0056 0.1028
18 0.00397  0.14904 68 -0.0032  0.0764 118 -0.0037 0.1107
19 0.03226 .57882 69 -0.0005  0.0768 119 -0.0043 .0629

20 0.00291  0.07051 70 -0.0099  0.0569 120 | -0.0036  0.1688
21 0.00458 0.04871 71 -0.0022  0.0639 121 S 0nn3 0.0750
22 0.00250 0.08085 72 -0.0052  0.0622 122 -0.0084 0.1186
23 0.00240  0.20124 73 -0.0013  0.0618 123 -0.0028 0.1246
24 0.00520  0.09423 74 -0.0020  0.0684 124 -0.0063 0.1627
25 0.06390  0.68445 75 -0.0011  0.0780 125 00017 0.0795
26 0.00295 0.06130 76 00078  0.0898 126 -0.0008 0.0698
27 0.00053  0.09462 77 00045 0.1028 127 -0.0007 0.0784
28 0.00132  0.13200 78 0.0060  0.0923 128 -0.0036 0.1148
29 0.00472  0.08155 79 -0.0100  0.1478 129 -0.0166 01179
30 0.00450  0.10804 80 -0.0101 0.1495 130 -0.0006 ().3480)
31 0.00456  0.10407 81 -0.0072  0.1353 131 00147 0.1124
32 0.00036 0.27382 82 00006  0.1032 132 00316 0.5096
33 0.00259 0.17813 83 -0.0036  0.2676 133 -0.0004 0.0864
34 0.00297 0.08021 84 -0.0079  0.1257 134 -0.0041 0.0938
35 0.00140  0.36618 85 0.0047  0.0872 135 0.0066  0.0630
36 0.00283  0.09139 86 -0.0046  0.1064 136 | -0.0020  0.0845
37 0.00007  0.11520 87 0.0025  0.1097 137 0.0499 04124
3 0.00348 0.28837 88 -0.0019  0.0893 138 -0.05006 04441
39 0.00171  0.07491 89 -0.0009  0.1097 139 -(.0230 0.3052
10 0.00573  0.20616 90 -0.0006  0.1039 130 | -0.0077  0.1086
41 0.00044  0.10103 91 -0.0010  0.0627 141 -0.0062 01112
12 0.00557  0.07119 92 0.0013 00714 142 00050 01076
43 0.00572  0.09243 93 00171 0.2007 143 -0.0043 0.0809
44 0.00691  0.09692 94 0.0174  0.1964 144 -(0.0023 0.1181
45 0.00378 0.12511 95 -0.0066  0.1116 145 -0 0020 0.1194
16 0.00234  0.08446 96 0.0053  0.2734 146 | -0.0082 03458
47 0.00051  0.22002 97 -0.0018  0.1113

18 0.00062 0.05772 98 -0.0030  0.0732

19 0.00952  0.16620 99 -0.0022  0.1041

50 | 0.00818  0.06480 o | -0012_ oded2
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Tabela 9: Assimetria e Curtose dos retornos de Portfolios MY

Portfolio Assimetria Curtose Portfolio Assimetria ( nriose
1 20.77 3001 32 049 S
2 4 08 187.31 33 -0 .46 10 94
3 -0.18 179 76 34 -0 46 1072
4 -0.27 179 .34 35 -0 46 8 6Y
5 -0.31 179 30 36 -0 46 3682
6 -0.63 173.93 37 -0.46 35 30
7 -0.67 172.73 38 -0.46 3534
8 -0.74 170.66 39 -0.46 29 31
9 -0.78 169 31 40 -0.46 26.33
10 -0.86 165.39 41 -0.45 25.29
11 -0.92 146.56 42 -0.45 2217
12 -0.82 126.43 43 -0.45 19.70
13 -0.82 125.29 44 -0.45 1914
14 -(.82 123.86 45 -0.45 18.44
15 -0.82 121.84 46 -0.45 17.69
16 -0.78 107.74 47 -0.46 15.76
17 -0.76 103.43 48 -0.48 118
18 -0.76 102.78 49 -0.48 10.73
19 -0.75 101.22 50 -0.49 982
20 -0.67 86.33 51 -0.51 8.67
21 -0.64 81.18 52 -0.51 8.64
22 -0.60 75.64 53 -0.51 851
23 -0.59 73.86 54 -0.53 7.15
24 -0.59 73.48 55 -0.54 6.95
25 -0.58 72.39 56 -0.54 6.63
26 -0.55 65.87 57 -0.54 6.50
27 -0.53 62.49 58 -0.53 6.31
28 -0.53 62.32 59 -0.55 6.27
29 -0.53 61.45 60 -0.54 6.26
30 -0.52 59.47 61 -0.54 6.23
31 -0.51 56.85 62 -0.33 6.07
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Tabela 10: Teste K-S para normalidade dos retornos de Port{alios MV

(63 ztivos, 62 portfolios)

Varidvel rdo  Distancia |,

Portfolio N° _entre f.dp's ‘oo P Portfolio N°  entre fdp.'s Valor-p
1 0.385825 < 0.01 32 0.146310  <0.01
2 0.367053 <0.01 33 0.138015 < 0.01
3 0.293500 < 0.01 34 0.137581 <0.01
4 0.290752 <0.01 35 0.134954 <0.01
5 0.285268 < 0.01 36 0.132504 < 0.01
6 0.276730 <0.01 37 0.130748 < 0.01
7 0.276038 <0.01 38 0.130701 <0.01
8 0.275510 < 0.01 39 0.120166 <0.01
9 0.272617 < 0.01 40 0.114570 <0.01
10 0.269790 < 0.01 41 0.113953 < 0.01
11 0.248628 <0.01 42 0.110081 <0.01
12 0.228658 <0.01 43 0.103818 < 0.01
13 0.228135 < (0.01 44 0.102972 < 0.01
14 0.228162 <0.01 45 0.102412 < 0.01
15 0.226887 < 0.01 46 0.101810 < 0.01
16 0.208774 < (0.01 47 0.1024.7 <0.01
17 0.205113 <0.01 48 0.098752 < 0.01
18 0.204770 < 0.01 49 0.097123 < 0.01
19 0.204372 < 0.01 50 0.096905 <0.01

20 0.187469 < 0.01 51 0.094505 < 0.01
21 0.182542 <0.01 52 0.094621 < 0.01
22 0.176849 <0.01 53 0.095188 < 0.01
23 0.173394 < 0.01 54 0.093747 < 0.01
24 0.172290 < 0.01 55 0.089405 < 0.01
25 0.170164 < 0.01 56 0.087964 < 0.01
26 0.160034 < 0.01 57 0.082495 <0.01
27 0.156571 <0.01 58 0.078743 < 0.01
28 0.156642 < 0.01 59 0.077541 < 0.01
29 0.155986 <001 50 0077169 < 0.01
30 0.154995 <0.01 61 0.078933 < 0.01
31 0.151374 < 0.01 62 0.077875 < 0.01

Variavel rdo  Distancin
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Figura 6: Fronteira de Eficiéncia para Retornos Percentuais - 63 Ativos
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Figura 7: Valor Normal Esperado para Probabilidades - Portfolios 1 a 3
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Figura 8: Valor Normal Esperado para Probabilidades - Portfélios 60 a 62

Expected Narmal Value

Expected Normal Value

Expected Normal Value

Normal Probability Plot
R60

/

Q0

-0.04 -0.02 0,00 0,02
Value

Normal Probability Piot
R61

G.04

0.06

[<AN
0

-0,04 -0,02 0,00 0,02
Value

Normal Probability Plot
R62

0.06

-0.03 -0,01 1,000e-2
Value

0,03

0.05

94



