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RESUMO

Neste trabalho € proposta uma solug@ para o trabalho de leitura dos medidores
das contas de agua dos clientes. efetuado por uma empresa de saneamento bdsico do
municipio de Pato Branco, utilizando algumas técnicas da Pesquisa Operacional.

A metodologia aqui apresentada divide o trabalho em duas fases distintas: a
primeira onde sdo formados os grupos de aiemdimento para cada leiturista: e a segunda
fase, onde propde-se a melhor rota a ser seguida. de modo a minimizar a distdncia
percorrida por cada trabalhador.

Na primeira fase, compara-se a meta-heuristica do algoritmo genético com a
heuristica cldssica de Teitz e Bart para a defini¢do de 12-medianas. que em seguida
servem como sementes para a formacdo dos 12 grupos de atendimento dos leituristas,
obtidos através do algoritmo de designacéo de Gillett e Johnson.

O roteamento de cada um destes grupes caracteriza um problema de cobertura de
arcos. que € resolvido na segunda fase, utilizando a formula¢do matematica do Problema
Carteiro Chinés e o Algoritmo do Carteiro Chinés.

O objetivo principal do trabalho € ebter, de forma rdpida e eficiente. o caminho
otimizado de percorrida do leiturista para que se gaste menos lempo com o0 seu
deslocamento, oferecendo um atendimente com maior qualidade aos usudrios desses

SErvigos.
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ABSTRACT

This study proposes a solution for customers’ water meter bill reading task,
executed by a basic sanitation company of Pato Branco, through the utilization of some
Operational Research techniques.

The methodology presented here divides the work in two distinct phases: the first,
where the service groups for each meter reader are formed amd: the second. where the
best route to be followed is proposed, in order to minimize the service distance for each
server.

In the first phase, the meta-heuristic of the genetic algorithm is compared to the
Teiz and Bart’s classical heuristics. This defines twelve medians that will serve as seeds
to form the twelve groups of meter reader service, obtained through the Gillett and
Johnson’s designation algorithms.

The routing of each group characterizes an arc covering problem. which is solved
in the second phase by using the Chinese Postman Problem mathematical form and the
Chinese Postman Algorithms.

The main purpose of the work is to obtain, quickly and efficiently. the optimized
service distance for the meter reader so that less time is spent on his covering cvele and

better quality service is offered to the users of this system.

Xiii



CAPITULO I

1. Introducgio

Servicos do setor publico, como por exemplo, varredura de ruas. coleta de lixo,
roteamento de carteiros, inspe¢do de linhas de agua, eletricidade ou gas. sio rcalizados a
partir de uma grande utilizacdo de recursos humanos, visto que. para a execu¢do dessas
tarefas € necessario haver a caminhada ao longo do trecho trabalhado.

Assim, a proposta deste trabalho relaciona-se a leitura das ligagoes de dgua. no que
se refere a melhoria do nivel de atendimento prestado pela Companhia de Sancamento do

Parana (Sanepar).

1.1 Objetivos do Trabatho

Os objetivos do trabalhe sdo:

a) Estabelecer a area de atendimento para lcitura das ligagdes dc dgua para cada
leiturista, levando em consideragdo que a quantidade de faturas emitidas seja,
aproximadamente, a mesma para todos eles.

b) Determinar, para cada leiturista, o percurso a ser feito dentro de sua drca de

atendimento. adequando-o as caracteristicas do trabalho do leiturista.

1.2 Importincia do Trabalho

Os servicos de saneamento basico oferecidos pela Sanepar. sdo operacionalizados
pelos agentes ou leituristas, que fazem a leitura, digitam os dados no microcomputador,

emitem a fatura e a entregam ao cliente; além disso, ¢ fungdo do leiturista. conferir dados
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do logradouro, prestar informagdes diversas, vender servigos como consertos dos mais
diversos e verificar as condi¢des de instalacdo da ligacde predial de agua (conjunto
formado pelo ramal predial e o cavalete) e hidrometro dos locais visitados.

Por isso a necessidade de otimizar, a0 maximo. o caminho de percorrida do
leiturista para que se gaste menos tempo com o seu deslocamento, olerecendo um

atendimento com maior qualidade aos usuarios desses servigos.

1.3 Limitac¢oes do Trabalho

Uma limitagdo do trabalho ¢ o fato de ter sido considerada apenas uma
determinada area do municipio de Pato Branco para estudo. e ndo a cidade toda. Além
disso, ndo seria viavel o cadastramento dos 2.932 clientes desta drea no mapa
digitalizado. Desta forma, 774 pontos representardo estes clientes. como sera detalhado

no capitulo VI1.

1.4 Estrutura do Trabalho

O presente trabalho esta estruturado em sete capitulos, além desta introdugéo.

No segundo capitulo a revisdo de literatura vem fumdamentada em rclatos de
trabalhos relacionados ao problema abordado.

O terceiro capitulo destina-se a descricdo real do problema. detalhando as
caracteristicas do mesmo. bem como a metodologia utilizada, atualmente. para soluciona-
lo.

O quarto capitulo € dedicado, exclusivamente, ao estudo de grafos. no que tange
ao problema abordado.

O problema de roteamento de veiculos € definido no quinto capitulo. bem como as
estratégias de solu¢do do mesmo.

A descrigdo dos métodos propostos para solugdo do problema real ¢ apresentada

no sexto capitulo.
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No capitulo sete fez-se a implementagdo computacional das técnicas citadas,
incluindo os resultados numéricos obtidos.
Finalmente, o capitulo oito, traz a.andlise dos resultados. as conclusdes finais e as

sugestdes para trabalhos futuros.



CAPITULO T

2. Revisiao de Literatura

Este capitulo faz referéncia a alguns trabalhos relacionados aos problemas
abordados nesta pesquisa: localizacdo de facilidades, formagdo de agrupamentos,
algoritmos genéticos, problema das p-medianas e utilizagdo do Problema do Carteiro

Chinés nos Problemas de Roteamento de Veiculos.

Os problemas de localizacdo de facilidades constituem uma importante classe de
problemas dentro da Otimizacdo Combinatoria e, pela sua importancia. 1ém reccbido
consideravel atencdo de pesquisadores de diversas areas. Seu estudo. neste trabalho,
torna-se necessario porque, a partir da localiza¢do da facilidade (deposito ficticio para o
leiturista). sera formado o grupo de atendimento (cluster) para 0 mesmo. Assim. citam-se
alguns autores que publicaram trabalhos nesta arca.

LOBO, 1998, cita WEBER como o pioneiro da era moderna. Em um trabalho
publicado em 1909, buscava a localiza¢do de uma inddstria visando a minimizacio dos
custos de transportes da matéria prima e do produto até o mercado consumidor.

TEITZ ¢ BART [1968] propuseram um método aproximado, com bons resultados
para a €poca, para se encontrar a mediana de um grafo ponderado. O método. que procura
a solucdo para o problema através de troca de vértices, a partir de uma solug¢ao inicial, é
descrito e utilizado neste trabalho (capitulo VI e capitulo V11, adiante).

BEZERRA, 1995, utilizou o modelo das p-medianas para a localizacdo de postos
de coleta para apoio ao escoamento de produtos extrativistas, num estudo de caso
aplicado ao babagu, no estado do Piaui. visando racionalizar o trabalho de transporte
entre o local de coleta e o local de processamento. Para a otimizac¢io do problema foram

utilizados trés algoritmos: o algoritmo de Floyd para determinar as distancias minimas



entre cada n6 que compdem a rede viaria, o algoritmo das p-medianas para localizagdo
dos postos de coleta, e um algoritmo genético para encontrar as distdncias € o roteiro para
os problemas do caixeiro viajante. Para avaliar as solugbes obtidas neste problema de
implantacdo dos postos de coleta, foi feita uma anélise de viabilidade econdmica.

ROSA, 1996, apresenta um estudo de caso com duas abordagens para o problema
de localizagdo de Centros de Distribui¢do Domiciliada (CDDs) da ECT. A primeira, trata
do problema de cobertura de conjuntos que procura minimizar o ndamero de CDDs
(facilidades) necesséarios para atender toda a cidade satisfazendo padrdes de servigos
fixos. E a segunda abordagem traz o Problema das P-medianas (“Mini-sum™) cujo
objetivo € minimizar o percurso médio dos carteiros de ida e volta dos CDDs as suas
regides de entrega.

CORREA, 2000, desenvolve o estudo de um algoritmo que otimiza a designagdo
de candidatos ao vestibular para os locais de provas mais proximos de suas residéncias.
Para resolver o problema das p-medianas capacitado sio utilizadas. por eclc, duas
heuristicas modernas adaptadas ao problema: A primeira é basecada em um algoritmo
genético que utiliza os operadores genéticos usuais € um operador heuristico chamado
“hipermutagdo direcionada”. A segunda heuristica proposta € baseada em busca tabu e

usa memoria de curto e de longo prazo par controlar a busca.

Os algoritmos genéticos surgem como uma meta-heuristica e vém sendo aplicados
com sucesso nos mais diversos problemas de otimizagao como localizacio de facilidades
e roteamento de veiculos. Segundo DIAS e BARRETOS [1998] esta técnica destaca-se
pela simplicidade de operagdo, facilidade de implementagdo e por ser aplicavel em
situagdes onde ndo se conhece 0 modelo matematico ou se este for impreciso. Alguns
trabalhos destacam-se nesta area:

MAYERLE, 1994, apresenta um algoritmo genético para solu¢io do problema do
caixeiro viajante. A partir de uma populagfo aleatoria inicial sdo realizadas operagdes de
cruzamento € mutacdo, fazendo com que novos individuos sejam gerados e incorporados
a populagdo inicial. Tal qual na natureza, os individuos com as caracteristicas mais fortes
sobrevivem e. conseqiiéntemente, participam do processo de geracdo de descendentes. A

fim de demonstrar a eficiéncia do algoritmo proposto, um conjunto de problemas,



variando-se o numero de nos. € resolvido e. os resultados obtidos. sdo comparados com
outras técnicas de solugdo.

NUNES, 1998, mostra uma abordagem a um problema real de roteamento de
veiculos, objetivando racionalizar o sistema de transporte dos funcionarios de uma
empresa, de forma a reduzir a quantidade de veiculos utilizados e minimizar o caminho
total percorrido. Utilizando os algoritmos genéticos ele encontrou as p-medianas (p
pontos notaveis dentre os diversos pontos de parada) para determinacdo da semente dos
clusters e também utilizou os algoritmos genéticos para construcdo de uma seqiiéncia
para coleta dos funciondrios em cada um dos clusters. A formacdo dos clusters foi
determinada a partir da utilizagdo de uma variagdo do algoritmo de designacao de Gillet e
Johnson.

SAMPALIOQO, 1999, elaborou um modelo que busca a localizagio ideal de cscolas do
ensino fundamental, visando minimizar o caminho percorrido pelos alunos desde suas
residéncias até a escola mais proxima. A metodologia proposta por cla utiliza as técnicas
de Simulated Annealing e Algoritmo Genético comparativamente. considerando a
localizacdo da residéncia dos alunos um fator fundamental na determinacio da posi¢io

ou ampliacdo de uma escola.

O Problema do Carteiro Chinés caracteriza o problema de cobertura de arcos. que
deve no problemas de roteamentos de veiculos sobre uma rede viaria percorrer todos os
arcos exatamente uma anica vez. Sdo problemas aplicados como roteamento de carteiros,
varredura de ruas, vistorias de ligacdes de agua, luz e gas. O seu cstudo pode ser
destacado por alguns auiores:

COSTA, 1997, propdés uma solugdo para o problema de entrega de
correspondéncias realizada pelos servigos postais, dividindo esse trabatho em duas fases:
a primeira, que determinou a divisdo de uma regido da cidade em sub-regides (arcas de
atendimento) e a segunda, determinou, para cada carteiro, o roteiro de entrega das
correspondéncias. Foram utilizadas heuristicas em ambas as fases. com destaque para a
segunda, onde utilizou-se 0 Algoritmo do Carteiro Chinés como proposta de solucio para

o problema de cobertura de arcos.
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STERN e DROR, 1978, aplicaram as técnicas do Algoritmo do Carteiro Chinés,
no estudo das rotas dos Leituristas de Medidores Elétricos. num problema de roteamento
de arcos orientados. O resultado apresentou uma reducdo de 40% do numero de
trabalhadores empregados, mostrando a aplicabilidade deste estudo.

EGLESE e MURDOCK, 1991, desenvolveram um software para auxiliar a
limpeza de ruas com veiculos vassoura. Este estudo foi aplicado no norocste da
Inglaterra, com a intengdo de desenvolver uma rota a ser seguida por cada varredor cuja
distdncia total percorrida fosse minimizada, sujeita a quantidade de trabalho ¢ o tempo
habil em cada dia.

GHIANI e IMPROTA, 2000, apresentaram uma variante do classico problema do
Carteiro Chinés, o problema do Carteiro Chinés Hierarquico. cujos arcos sdo divididos
em clusters ¢ a relacdo precedente ¢ definida nos clusters. Sua aplicagio pritica pode ser

vista nos controles de neve ¢ gelo nas ruas e estradas.

O tratamento dado pelos pesquisadores aos problemas de localiza¢do de
facilidades e de roteamento de veiculos ¢é bastante diversificado. variando ndo apenas nos
algoritmos utilizados, mas também no tipo de tratamento dado as particularidades

proprias de cada problema.



CAPITULO 1

3. Descricio do Problema Real

3.1 Introducio

A Companhia de Saneamento do Parana (Sanepar), empresa estadual de economia
mista. ¢ responsavel pelas agdes de saneamento basico em quase todo o Estado do
Parana. Brasil.

O saneamento basico do Parand. no inicio da década dc 60. tinha um indice de
atendimento muito baixo. Apenas 8.3% da populacio era servida por rede de
abastecimento de dgua, € apenas 4.1% com rede de esgoto. Das 221 scdes municipais da
€poca, 19 possuiam todos os servicos e 37 somente o de agua. Das 20 cidades mais
populosas do Estado, segundo o censo de 1950, apenas 11 tinham servigo de agua.

Hoje 98% da populagdo urbana € abastecida com agua tratada. sdo mais de 7
milhdes de habitantes. distribuidos entre as 619 locatidades atendidas pela Sancpar., o que

pode ser visualizado no quadro 3.1 abaixo:

Quadro 3.1 — Populacio urbana atendida pela Sanepar

Nimero de liga¢des de agua do Estado 1.846.609
Numero de ligagdes de esgoto do Estado 600.226
Populacdo urbana atendida com agua 7.361.594
Populag¢@o urbana atendida com esgoto 2.799.100
Nivel de atendimento com agua 98.59%
Nivel de atendimento com esgoto 37.46%
Localidades atendidas com agua 619
Localidades atendidas com esgoto 133




A Sanepar, unidade de Pato Branco, centraliza o atendimento das cidades:
Chopinzinho, Clevelandia, Coronel Vivida, Itapejara do Oeste. Mangueirinha,
Mariépolis, Palmas, Pato Branco, Sdo Jodo e Vitorino. A seguir, tem-se o quadre 3.2 com
o total de ligagdes de agua, esgoto ¢ a populagio atendida pelos servigos da Sanepar nesta

unidade.

Quadro 3.2 - Total de liga¢des de agua, esgoto e populacio atendida

Numero de Ligacoes Nivel de Atendimento
Local Ligacoes Ligacoes Agua Esgoto Esgoto
de Agua De Esgoto Tratado
Chopinzinho 2.846 668 98.99% | 22.67% 87.30%
Clevelandia 3.883 1.157 9924% | 30.07% |  100.00%
Coronel Vivida 3.850 922 98.83% | 23.44% | 100.00%
Ttapejara do Oeste 1.440 9842% | o
Mangueirinha 1.820 730 99.09% | 39.15% 100.00%
Maridpolis 1.011 98.35%
Palmas 7.109 911 99.09% | 13.48% 100.00%
Pato Branco 14.097 5.832 99.27% | 47.73% | | 100.00%
S&o Jodo 1.320 375 99.07% | 25.90% 100.00%
Vitorino 905 98.79%
Total 38.281 10.595 99.10% | 30,50% 99.36%

As ligacdes podem ser classificadas como:
a) agua (somente dgua);
b) esgoto (dgua € conseguida através de recurso ou fomie propria):
C) agua e esgoto.
Estas ligacdes atendem usudrios dos seguintes grupos:
a) residenciais;
b) comerciais;
¢) industriais;
d) poder publico;
¢) utilidade ptblica.
Ap6s a distribuigdo da dgua, existe o trabalho de faturar os consumos. A empresa
Mercado é uma empresa terceirizada que realiza esta atividade em Pato Branco. usando

um sistema de processamento ¢ emissdo de fatura no proprio local do consumo. A
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utilizagdo de microcomputadores portateis reduz, em muito, 0s custos operacionais se
comparada aos sistemas convencionais de faturamento, conforme pode-se observar no

quadro 3.3.

Quadro 3.3 — Comparacdo entre Sistema convencional de faturamento € o
utilizado pela Sanepar

Sistema atual utilizado pela

Sistema convencional
Sanepar

O leiturista digita os dados
colhidos do medidor em
seu equipamento portatil. A
-\ fatura ¢ emitida e entregue
ao cliente na mesma hora.

N O funcionario coleta os
i ; dados apresentados pelo
|| medidor.

P
\
?,
e _— \\

.';I;\) A informagdo ¢ levada até a
'/ sede da empresa, onde ¢é
feita a digitacéo,
</ consisténcia,
processamento e a
impressédo da fatura.

) O funcionério retorna ao
=, enderego dias depois, para
entregar a fatura ao cliente.

3.2 Descricio da Situagio Atual com a Utilizacio do Roteamento Existente no
Municipio de Pato Branco

Em Pato Branco, existem 14.097 ligagdes de agua. Para a realizacdo da leitura das
contas de agua, a cidade esta dividida, atualmente, em 07 grupos, de onde considerou-se,
para fins de estudo neste trabalho, o grupo 11 que ¢ formado pelos bairros: Centro
(parte), Parzianelo, Cadorin, Bancérios, Pinheiros, Brasilia, Vila Isabel, Sdo Luiz, Bortot,
Trevo da Guarani (Parte).

Este grupo foi escolhido por apresentar caracteristicas de centro e bairros.
Apresenta trechos com varios clientes e também longos trechos com poucos clientes.

O mapa da cidade de Pato Branco, com o grupol1l em destaque, encontra-se na

Figura 3.1.



Figura 3.1 ~Mapa da cidade de Pato Branco — PR (Destacando-se o grupo 11)

[l



FEsse grupo possui 2.932 ligagdes e esta dividido. atualmente. em 12 rotas para os

leituristas. A distancia percorrida ¢ o namero de ligacdes que devem ser visitadas por

cada leiturista nas rotas ja existentes estdo distribuidas conforme informacdes contidas no

quadro 3 .4.

Quadro 3.4 — Distancia percorrida, em metros, pelos leituristas nas rotas existentes

atualmente.

Rota Distancia percorrida (m) Namero de ligacoes
11005 9.512 240
11010 8.791 248
11015 7.639 251
11020 7.816 249
11025 8.674 253
11030 9.553 222
11035 8.182 243
11040 11.180 253
11045 8.103 251
11050 7.620 241
11055 8.063 268
11060 10.660 213
Total 105.793 2932

De acordo com as informagdes contidas no quadro acima. tem-se¢ que para efetuar

a leitura de 2.932 ligagdes, a distancia total percorrida é 105.793 metros. Doze leituristas

realizam esse trabalho ao longo de um dia.

Observa-se. por exemplo, que o leiturista 11060 efetuou. neste més. a leitura de

213 ligagdes. Isso representa quase 20% a menos que o nimero de leituras efetuadas pelo

leiturista 11055, que realizou 268 leituras. Porém. pode-se notar que a distincia

percorrida pelo leiturista 11060 foi de 10.660 metros. o representa 32% a mais que a

distancia percorrida pelo leiturista 11055, que foi de 8.063 metros. Assim. conclui-se que,
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apesar de ter efetuado menos leituras, gastou praticamente o mesmo tempo, em virtude
do tempo gasto com a distancia percorrida.

Na Figura 3.2, a seguir, sdo apresentadas as rotas existentes atualmente.

Figura 3.2 — Visualizagdo das rotas existentes atualmente

LEGENDA
W 11005 -
| 11010-
W 11015-
M 11020 -
W 11025 -
W 11030 -
| 11035-
W 11040 -

I 11050 -
W 11055 -
W 11060 -

As rotas existentes atualmente em toda a rede viaria do municipio de Pato Branco,

sdo elaboradas manualmente.

Na figura 3.3 pode-se visualizar a sequéncia da rota 11005.




Figura 3.3. Visualizagdo da sequéncia da rota 11005

14!
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De acordo com a figura acima. percebe-se que a rota segue semprc pela
“esquerda” do leiturista. Ele inicia a rota no ponto a. faz as leituras a sua csquerda chega
ao ponto b, continua até o ponto c¢. fazendo as leituras que existem a sua esquerda. faz a
quadra e quando chega ao ponto d atravessa a rua retornado ao ponto ¢. assim. ¢ lado e

passa a ser sua esquerda. O leiturista segue este critério até o final de sua rota.



CAPITULO 1V

4. Algumas Nocodes Basicas Sobre Grafos

4.1 Introducio

Tendo o estudo de grafos como pressuposto importante para ¢ desenvolvimento
desta pesquisa, sdo apresentadas a seguir defini¢des relevantes feitas por estudiosos como
CHRISTOFIDES {1975], BOAVENTURA NETO [1979] ¢ RABUSKE {1992].

De acordo com RABUSKE [1992], a teoria dos grafos apresenta-se como
ferramenta simples, acessivel e poderosa para constru¢do de modelos e resolugio de
problemas relacionados com arranjos de objetos discretos. A tecnologia possui hoje um
grande nimero de problemas que requerem a construgio de sistemas complexos. devido
as combinacdes de seus componentes. Estes problemas abrangem processos industriais,
analise de caminho critico. tatica ¢ logistica (campo militar). sistemas de comunicagio,
estudo de transmissdo de informagdes, escolha de uma rota otima. fluxos em redes. redes
elétricas (engenharia elétrica e civil, arquitetura, computagio). genética. psicologia,
economia, estrutura social, jogos, fisica, quimica, tccnologia dc¢  computador.
antropologia, lingiiistica, etc.

Baseada na simples idéia de pontos interligados por linhas. a teoria dos grafos
combina esses ingredientes basicos em um rico sortimento de formas e as dota com
propriedades flexiveis, fazendo, assim. com que esta teoria seja uma f(erramenta util e
poderosa em Pesquisa Operacional em geral e, especificamente. em problemas de

roteamento.



4.2 Definicoes

Seja V um conjunto finito e ndo vazio, e [ uma relagcdo bindria sobre V. Os
elementos de V sd3o representados por pontos. O par ordenado (v.w) e E. (ou
simplesmente vw), onde v,w € V. ¢é representado por uma linha ligando v a w. Tal
representagdo de um conjunto V e uma relacdo binaria sobre o mesmo. ¢ denominada um
grafo G(V. E).

Em outras palavras. um grafo G ¢ definido como sendo um par ordenado (V.E). Os
elementos de V sdo denominados de vértices ou nés ¢ os pares ordenados de E,
denominados de arestas ou arcos do grafo. Quando as linhas possucm oricntacdo,
usualmente representado por uma seta, essas sdo chamadas de arcos. Se as linhas ndo tém
orientacdo. sdo chamadas de arestas. Uma arestafarco ¢ dita incidente com os vértices que
ela liga. Uma aresta/arco incidente a um tnico vértice é denominade um lago. Dois
vértices sdo ditos adjacentes, se eles estdo ligados por uma aresta/arco.

A Figura 4.1 mostra uma representagdo geométrica do grafo G(V.L). onde vs ¢ um

vértice isolado (ndo ha aresta incidindo sobre eley e o arco (v,.v;) é um laco.

Figura 4.1 — Representagao Geométrica de um grafo G(V.E). onde
V={vi.vi. V5. V. vs} € E = {vpvo, vivs, Vovy vav viv, ).

V1 Vz

Vs Vs,

O cardinal |[V| = n € a ordem de G, adotando-se |E| = m, sem designacio especifica.
Duas arestas que incidam sobre o mesmo vértice sdo ditas adjacentes. Sc existem
duas arestas ¢; = (v,w) € ¢; = (v,w), entdo diz-se que ¢; e ¢; sdo arestas paralelas. conforme

apresentado na Figura 4.2.



Figura 4.2 — Representacdo Geométricade V={ x. v, z. v. w} e
E = {xy,xv, yv, yw, vz, vw. viv. ZwW} . onde as arestas vw s@o paralelas.

Se um grafo possui lacos e/ou arestas paralelas, ¢ denominado de multigrafo, do
contrario. diz-se que o grafo é simples.

Um grafo simples, em que cada par distinto de vértices ¢ adjacente. ¢ denominado
grafo completo. O grafo completo de n vértices € usualmente representado por K, e
H‘

denominado clique. Todo grafo completo de n vértices possui m = [q] arcstas.

Alguns grafos se notabilizam por peculiaridades em suas estruturas. Essas. podem
ser bastante uteis na representacdo de situacdes reais ou na utilizacdo de algoritmos de
soluc¢do para os problemas em grafos.

Um grafo ¢ dito dirigido (ou digrafo). se possuir arcos (linhas com oricntagdo),
caso contrario, € dito ndo dirigido. Claramente, um grafo ndo dirigido ¢ uma
representagdo de um conjunto de vértices ou nds € uma representacdo simdétrica binaria
sobre esse conjunto. Em um grafo ndo dirigido, uma aresta ligando dois vértices ve w
pode ser representada por (v.w) o (w.v) indistintamente.

Uma cadeia de arestas. em um grafo, ¢ qualquer sequéncia nio direcionada de
arestas, na qual cada aresta ¢ conectada com suas arestas adjacentes através dos scus dois
vértices terminais. Se nenhuma aresta aparecer mais que uma vez, tem-se uma cadeia
simples. Quando, nesta sequéncia ndo direcionada. nenhum vértice figurar mais que uma
vez. tem-se uma cadeia elementar.

Um caminho, em um grafo dirigido, é qualquer seqiiéncia de arcos onde o vértice

final de um, € o vértice inicial do seguinte. Assim. caminho elementar ¢ um caminho no
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qual um vértice ndo figura mais que uma vez. Caminho simples é um caminho no qual
um arco nfo aparece mais que uma vez.

Define-se um ciclo como uma cadeia fechada em um grafo G. ou seja. que inicia e
termina no mesmo nd. Quando se tem um grafo G orientado. denomina-se circuito a
sequeéncia distinta de arestas que repetem o ltimo no visitado.

Um grafo G ¢ dito conexo se para todo par de vértices existe. pelo menos. uma
cadeia entre eles. Caso contrario. o grafo é dito ndo conexo. Por exemplo. o grafo da

figura 4.3(a) € conexo e o de 4.3(b) ¢ ndo convexo.

Figura 4.3 — Representacdo de grafos ndo dirigidos, onde em (a) tem-se um grafo conexo
e em {b). um grafo ndo conexo.

g (D

N

(a) (b)

4.2.1 Ciclos e Circuitos Hamiltonianos

Um circuito hamiltoniano. em um grafo conexo G, ¢ definido como um caminho
simples fechado, isto €, passa-se em cada vértice de G exatamente uma vez. exceto
naturalmente no vértice inicial que é considerado, também, vértice terminal. Portanto, um
circuito hamiltoniano em um grafo de n vértices consiste em. exatamente. n arestas.
Obviamente, nem todo grafo conexo possui um ciclo hamiltoniano.

Na Figura 4.4 tem-se uma representacdo geométrica de um Circuito Hamiltoniano.
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Figura 4.4 — Representagao Geométrica de um Circuito Hamiltoniano
(1-6-4-2-3-5-1)

L
R

4.2.2 Ciclos Eulerianos

Um grafo ndo orientado conexo G € um grafo de Euler se. e somente se. todos os
seus vértices sdo de grau par. Se um grafo G for euleriano, entdo ¢ possivel achar um
caminho fechado. passando em cada aresta/arco uma tnica vez: este caminho/ciclo é

denominado caminho/ciclo euleriano. representado na Figura 4.5.

Figura 4.5 — Representacdo de um Ciclo Euleriano
(1-6-5-4-3-2-6-4-2-1-5-3-1)

O

& \

foat

4.2.2.1 Definicado de um Caminho Euleriano

Segundo BOAVENTURA, 1979, existe uma regra bastante facil para tracar um

caminho euleriano. utilizando o Algoritmo de Fleury, apresentado a seguir.
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Algoritmo de Fleury

Seja G um grafo euleriano. entdo as seguintes construgdes sdo sempre possivels e
produzem um caminho euleriano em G.

Inicie em qualquer vértice v e atravesse as arestas de uma maneira arbitraria,
segundo as seguintes regras:

R1) Apague a aresta que foi visitada e, se algum vértice ficar isolado. apague-o
também:;

R2) Em cada estdgio, use um istmo (faixa de terra que liga uma peninsula a um
continente) somente se ndo houver alternativa, isto é, nunca atravesse uma aresta se,
naquele particular momento, a remog¢do daquela aresta divide um grafo em duas ou mais

componentes (excluindo os vértices isolados).

4.3 Representaciao de Grafos

A representacdo mais familiar de um grafo ¢ através do desenho de pontos e
linhas. Em computadores, o grafo pode ser representado através de matrizes de diversas
maneiras. A eficiéncia do algoritmo vai depender da escolha certa de como representar

um grafo.

4.3.1 Matriz de Adjacéncia

Dado um grafo G(V,E). a matriz d¢ adjacéncia A=[a;] € uma matriz n x n tal que

{1, se e somente se existe (v,.v,) €E
a; =

0. caso contrario.
A matriz de adjacéncia requer n” bits. Para um grafo ndo dirigido. a matriz de
adjacéncia € simétrica, portanto ¢ suficiente armazenar somente a parte triangular
superior. Obtém-se, assim, uma economia de 50% no armazenamento. mas o tempo

computacional pode aumentar bastante devido & referéncia a;;. que deve ser substituida
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por “Se i > | entdo a; sendo a; . Na Figura 4.6 sdo apresentadas a representagdo

geométrica de um Grafo G ndo dirigido e a Matriz de Adjacéncia correspondente.

Figura 4.6 — Representagdo Geométrica do Grafo G e sua Matriz de Adjacéncia.

2 1 23 4 5 6
1o 0 01 0 0]

200 001 1 0 0

4 3

3101 01 0 0O

41 11 0 1 1

6 50 001 0 1
5 6/0 0 0 1 1 0]

4.3.2 Matriz de Incidéncia

Uma matriz A=[a;] de ordem n x m € denominada como de incidéncia do grafo

G(V.E) se, para todo arco j que liga o né k ao nd 1 tem-se:

+1, seesomentesei=k
a; = 1—1, seesomentesei=1(para grafo direcionado. sendo a i =D
0, nosoutros casos.
Na figura 4.7 a representagdo geométrica de um Grafo G dirigido ¢ sua matriz de
incidéncia .

Figura 4.7 — Representacdo Geomcétrica do Grafo G Dirigido e sua Matriz de Incidéncia

1 2 Uy, U, U, U,
Uy " 1fr o o o]
200 1 0 0

3(-1 -1 1 ]

e % 40 0 -1 0
. ] so o o -1l

Na figura 4.8 a representagido geométrica de um Grafo G ndo-dirigido e sua matriz

de incidéncia .
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Figura 4.8 — Representacdo Geométrica do Grafo G Nao-Dirigido e sua Matriz de

Incidéncia
! 2 Uy Uy Uy U,
us us 11 0 0 0]
3 21001 0 0
3i7 1 1 1
Us Ye 410 0 1 0
. \05 500 0 0 1)

4.3.3 Matriz de Custos

Um grafo. no qual um niimero wj; esta associado a cada aresta/arco. ¢ denominado
de grafo valorado € o nimero w; € chamado o custo da aresta/arco. Em redes ou
transporte estes custos representam alguma quantidade fisica, tal como distdncia,
eficiéncia. capacidade da aresta/arco correspondente. ctc.

Um grafo simples valorado pode ser representado por sua matriz de custo W =
[wi;], onde

{custo da aresta,se(v,.v,)eE
Wi. = b
)

O(sei=]j) ouco, caso contrario.
Na figura 4.9 pode-se visualizar um grafo G simples valorado ¢ sua matriz de
custos.

Figura 4.9 — Representacdo Geométrica do Grafo G valorado
e sua Matriz de Custos

3
1 (0 5 o 3 o]
5 1 5 w 0 3 o o
W=lw oo 0 o 5
0 ; ° 1 1 w 0 1
1 _(I)lCD]O_




CAPITULO V

s. Modelos de Roteamento de Veiculos

5.1 Introducio

Um problema de roteamento pode ser considerado como um conjunto organizado
de meios que objetiva o atendimento de demandas localizadas nos arcos/arestas ou nos
vértices de alguma rede de transportes. O sistema de roteamento. como qualquer sistema
operacional, pode ser decomposto. sob a oOtica da operagdo. em rés partes: cstratégica,
tatica e logistica.

Uma vez iniciado o processo de construg¢do do sistema de roteamento. obviamente,
outras decisdes deverdo ser tomadas. As decisdes sobre numero de rotas. sobre a forma
de contratacdo de mdo-de-obra ou regimes de trabalhos. sdo freqiientemente tomadas de
uma forma mais localizada e especifica.

Assim, define-se um problema de caracteristica combinatoria ¢ dc grande
dificuldade de solugdo que denomina-se Problema de Roteamento de Veiculos (PRV).
Como elementos de entrada mais provaveis desse problema pode-se destacar
[GOLDBARG,2000]:

- a area servida pelos depositos;
- o tamanho da frota alocada a cada depdsito;
- as regras que definirdo as alocagGes de transporte a elementos da propria {rota ou a

unidades eventualmente contratadas.

De posse dessas informagdes, o objetivo do planejamento serd estabelecer um

roteamento ¢ um seqiiénciamento (scheduling) ou emprego de veiculos que conduzam a
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minimizac¢do do custo da atividade. Nesse ponto € pertinente esclarecer que a definigio
de uma fungdo objetivo apropriada pode ser, por si s0, uma tarefa nao muito simples. O
objetivo de reduzir custos podera ser perseguido através da reducio de:

- prazos de entrega (servigos de emergéncia, produtos pereciveis. etc.):

- caminhos a percorrer (combustivel, manutencdo, tempo de operagdo. etc.):

- emprego de mio-de-obra;

- numero de veiculos.

5.2 Problema de Roteamento de Veiculos

A 1déia basica do problema de roteamento € designar pontos de parada a veiculos,
bem como a determinag¢do da seqiiéncia em que estes pontos de parada serdo visitados,
estabelecendo as rotas para os veiculos. Portanto o PRV é um problema. basicamente,
euclidiano ou espacial.

O objetivo geral destes problemas ¢ minimizar os custos associados ao sistema de
transporte considerado. Os objetivos especificos estdo ligados as particularidades de cada
problema: determinar rotas de comprimento minimo, minimizar a quantidade de veiculos
utilizados, diminuir o tempo total das rotas. Em qualquer caso deve-se levar em
consideracdo diversas varidveis como: caracteristicas dos veiculos (capacidades,
autonomias. quantidades), aspecto geométrico da rede (disposi¢ao dos nos e arcos/arestas

do grafo), natureza das operagdes, entre outros.

5.3 Formulaciio para o Problema Geral de Roteamento de Veiculos

Uma das formulac¢des mais utilizadas como base a diversos métodos de solugio é a
de FISHER e JAIKUMAR [1981].

Considerando:
x; = variavel binaria que assume valor 1 quando o veiculo k visita o cliente j

imediatamente ap6s o cliente i; 0 em caso contrario;
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yi = variavel binaria que assume valor 1 se o cliente 1 é visitado pelo veiculo k: 0 em
Caso contrario;

¢; = demanda do cliente i;

O, = capacidade do veiculo k;

c; = custo de percorrer o trecho que vai do cliente i ao j. E o modelo matematico de
Programacédo Linear Inteiro Binario para este problema definido como scgue:

Minimizar z = Z(Ca Zx{,kj
k

.

sujeito a:
>y =1 i=2..n (5.1)
3
Zy,k =m i=1 (5.2)
k
Zq,yi,{ <Q, k=1.....m (3.3)
quk SZX_M =Y, i=1l,...n k=1....m (5.4)
J J
D> x, 481 VSci2....n}. k=1l....m (3.3)
1. jes
Vi €401} 1=1,...n k=I1....m (5.6)
X, €10, Lj=l....nk=1.... m (3.7)

A fungio objetivo minimiza os custos associados ao sistema de transporte
considerado. A restri¢do (5.1) assegura que um cliente seja visitado uma. ¢ s6 uma vez. A
restricdo (5.2) garante que o deposito receba uma visita de todos os veiculos. A restri¢ao
(5.3) obriga que as capacidades dos veiculos n@o sejam ultrapassadas. A restri¢do (5.4)
garante a continuidade das rotas. A restricdo (5.5) garante as tradicionais restri¢des de
eliminacdo de subtours (sub-rotas) e as restrigdes (5.6) e (5.7) definem as variaveis do

problema como binarias.



3.4 Estratégias de Soluciio Para os Problemas de Roteamento

De acordo com GOLDBARG [2000], os problemas em que as varidveis assumem
valores inteiros ou que possuem fung¢des objetivo com descontinuidades nido podem,
geralmente, ser solucionados diretamente através de um modelo matematico de
Programacdo Linear Inteiro (PLI) utilizando o algoritmo simplex. Esse ¢ o caso de

grande parte dos problemas de roteamento. Para tais problemas, tem-se na Pesquisa

Operacional diversas formas e estratégias, sintetizadas na figura 5.1.

Figura 5.1 — Possiveis Estratégias para solucdo de PRV

Problema de Roteamento de Veiculos

— T

Problemas Polinomiais Problemas NP-Hard

l O

Algoritmos Exatos Relaxagoes

Algoriumos Exatos

Algoritmos aproximativos

ou heuristicos

5.5 Problemas Classicos Basicos de Roteamento

Os principais problemas de roteamento de veiculos, segundo BODIN [1983]. sdo:

1. O Problema do Caixeiro Viajante (PCV)
il. O Problema do Carteiro Chinés (PCC)

1ii. O Problema dos Multiplos Caixeiros Viajantes (PCVM)

iv. O Problema de Roteamento de Nés com um Unico Deposito e Maltiplos Veiculos

(PRDMV)

v. O Problema de Roteamento de Nos com Multiplos Depésitos € Multiplos Veiculos

(PRMDMV)

vi. O Problema de Roteamento de Nos com Depésito Unico. Multiplos Veiculos e

Demanda Estocastica nos Vértices (PRDMVE)
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vii. O Problema do Carteiro Chinés Capacitado (PCCC)

O estudo dos Problemas de Roteamento de Veiculos tornou-se um desalio para a
area de Otimizagcdo Combinatoria da Pesquisa Operacional, apos as divulgacdes dos
artigos de DANTZIG e RAMSER [1959], os quais inspiraram o desenvolvimento de
pesquisas neste assunto.

Segundo DASKIN [1985], duas abordagens basicas para roteamento de veiculos
tém sido adotadas, supondo que os veiculos serdo roteirizados numa rede composta por
nos e arcos: problemas de cobertura de nés, que determinam a rota de comprimento
minimo que visita cada n6 uma unica vez; problemas de cobertura de arcos, que

determinam uma rota de comprimento minimo que atravessa cada arco uma unica vez.

5.5.1 Os Problemas de Cobertura de Nés

Os problemas de cobertura de nos devem determinar uma rota de comprimento
minimo que visite cada nd6 uma Unica vez. Neste grupo de problemas encontra-se o
problema do caixeiro viajante, o problema dos multiplos caixeiros viajantes e o0s
problemas de roteamento de veiculos com um ou varios depdsitos. A importancia do
problema do caixeiro viajante esta diretamente associada com a proposta de solugio de

varios problemas do cotidiano.

5.5.1.1 O Prablema deo Caixeiro Viajante (PCV)

5.5.1.1.1 As origens do Problema

O Problema do caixeiro viajante (PCV) é um dos mais tradicionais e conhecidos
problemas de programagdo matematica. Os problemas de roteamento lidam. em sua
maior parte, com passeios ou fours sobre pontos de demanda ou oferta. Esses pontos
podem ser representados por cidades, postos de trabalho ou atendimento. depositos,
dentre outros. De acordo com GOLDBARG [2000], quanto aos tipos de passeios,

destaca-se o hamiltoniano, um dos mais importantes. Seu nome ¢ devido a Willian



29

Rowan Hamilton que, em 1957, prop6s um jogo que denominou Around the World. O
jogo era feito sobre um dodecaedro em que cada vértice estava associado a uma cidade
importante na época. O desafio consistia em encontrar uma rota através dos vértices do
dodecaedro que iniciasse e terminasse em uma mesma cidade sem nunca repetir uma
visita. O grafo do problema ¢ mostrado na figura 5.2.

Figura 5.2 — Jogo de Hamilton

Uma solucdo do jogo de Hamilton, muitas vezes assim chamado cm sua
homenagem, passou a se denominar um ciclo hamiltoniano. Hamilton ndo foi o primeiro
a propor esse problema, mas seu jogo o divulgou. Uma das solugdes do jogo esta

apresentada na figura 5.3.

Figura 5.3 — Uma solucio do jogo de Hamilton.
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De acordo com GOLDBARG [2000], modernamente a primeira mengdo
conhecida do problema ¢ devida a Hassler Whitney, em 1934, em um trabalho na
Princeton University. Independente desse trabalho de Hamilton, o problema do caixeiro
viajante (PCV) é um problema de otimizagdo associado ao da determinag¢do dos
caminhos hamiltonianos em um grafo qualquer. O objetivo do PCV ¢ encontrar, em um

grafo G(N,A), o caminho hamiltoniano de menor custo.

5.5.1.1.2 Importancia Atual do PCV

A importancia do PCV € devida a pelo menos trés de suas caracteristicas:
a) grande aplicagdo pratica (REINELT [1994]);
b) uma enorme relagdo com outros modelos (LAPORTE [1996]);
c) grande dificuldade de solugiio exata (PAPADIMITRIOU e STEIGLITZ [1982]).
Dessa forma, a importdncia do modelo ¢ indiscutivel, tanto sob o aspecto pratico,
como o teorico. Considerado intratdvel por GAREY e JONHSON {[1979] é classificado
por KARP [1975] como NP-Hard.

5.5.1.1.3 Formulacio matematica para o PCV

Assumindo que os custos sdo simétricos, isto €, ¢; = ¢;; € estabelecendo que ¢; =
+o0 para i = 1,2,...,n, 0 PCV consiste em formar uma rota passando por todos os nos,
comegando e terminando na origem, né 1, que fornece a distancia ou custo total minimo.
A formulagio fornecida a seguir € devida a [GOLDEN, 1977] ¢ [BODIN, 1983].

Sejam n o nimero de nds da rede, a; a quantidade de arcos que possuem o né i
como vértice inicial, b; a quantidade de arcos que possuem o n6 j como vértice final, e x;
a variavel de decisdo do problema, estabelecida como segue:

1,seoarcoi- jestd narota
Xij = (-
: 0, caso contrario,
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entdo o modelo matematico, onde a func¢do objetivo (5.8) visa minimizar a distancia ou

custo total. fica definido do seguinte modo:

Minimizar iicuxﬁ (5.8)
=1 =

s.a.

ixu=bjzl (j=12.....n) (3.9)
o

Sx,=a,=1  (i=12...0) (5.10)
=

X=(x) € S (3.11)
Xj=0oul (1,j=1.2....n) (5.12)

A formulagdo do problema seleciona uma matriz X =x;;] de variaveis de decis@o
tal que exatamente um arco (i, j). emana de cada né e. exatamente um arco (i. j), €
dirigido para cada n¢ j. Isto implica numa designagio de cada nd para scu nd sucessor na
rota, que € estabelecido pela equagdes (5.9) ¢ (5.10). A equacdo (5.12) define as variaveis
do problema como binarias. caracterizando o PCV como um problema de Programacio
Linear Inteiro (zero ou um). Os requisitos para designagdo. entretanto. ndo garantem que
a matriz X corresponda a uma rota. Para eliminar a possibilidade de formagao de sub-
rotas, restrigdes adicionais, fornecidas pela equagdeo (5.11). sdo impostas nas escolhas
para a selegdo dos arcos na matriz X.

O conjunto S pode ser formado por quaisquer restrigdes que proibam formagdes de
sub-rotas que satisfagam as restri¢des de designagdo (5.9), (5.10) e (5.12). Tais restrigdes

sao chamadas restrigdes de quebra de sub-rota. As possiveis escolhas para S incluem:

a) S= {(xi): ZZXE‘- > 1 para todo subconjunto proprio ndo vazio Q de N. onde N é o
ieQ jeQ

namero de nos}

b) S= {(x;): D.> x; <IR|- 1 para todo subconjunto ndo vazio R de {1.2...n}1;

1eR jeR
¢) S= {(xj):yi—y; ¥ nx < (n-1) para 2 <1 # j < n para alguns nameros recais v;}. onde y;

= 1. se 0 no 1 € visitado no passo t da rota ou y; = 0. caso contrario.
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Adicionando qualquer uma destas restricdes ao problema. evita-se que ocorra
formacdo de sub-rotas BODIN [1983].

Outras formulagdes sdo apresentadas por BODIN [1983]. as quais sdo vélidas por
fornecerem idéias sobre a complexidade do PCV e sua relagdo com outros problemas de

roteamento e distribuigdo, sugerindo algoritmos estratégicos e procedimentos heuristicos.

5.5.1.1.4 Procedimentos de Solucdio para os Problemas de Cobertura de Nos:
Algoritmos Exatos, Relaxacées e Algoritmos Aproximativos ou
Heuristicos

A maioria dos procedimentos que formecem a solucdo 6tima para o PCV
necessitam das formulagdes da Programacdo Inteira, embora a Programacdo Dindmica
também seja usada [CHRISTOFIDES, 1981]. Os algoritmos da Programacio Inteira sdo
baseadas em procedimentos do método branch and bound. Podem ser usados para
solucionar uma série de problemas pequenos como, por exemplo. os que cstio inscridos
dentro dos problemas de designagao.

Considerando o PCV, estes métodos sdo aplicidveis apenas para pequenos
problemas, pois os algoritmos exatos disponiveis requerem um ntmero de passos
computacionais que crescem segundo uma fungdo exponesncial do namero de pontos que
precisam ser visitados. Assim, muitos procedimentos heuristicos foram ¢ tém sidos
desenvolvidos.

Na solug@o do Problema do Caixeiro Viajante, as heuristicas existentes podem ser
classificadas em [FISHER, JAIKUMAR. 1981]: procedimentos de constru¢do de rota,
algoritmos de melhoria de rota, técnica das duas fases (ou procedimentos compostos), ou
seja, construgdo e melhoria, e métodos de otimizagdo incompletos.

Outros métodos tém sido aplicados para solucionar o PCV. como por exemplo, a
utilizacio de redes neurais [BARBOSA, 1989]; [BURKE, DAMANY. 1992]. algoritmos
genéticos [MAYERLE, 1994], simulated annealing [BARBOSA. 1989] ¢ guided local
search [VOUDOURIS, 1996].
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5.5.2 Os Problemas de Cobertura de Arcos

Os problemas de cobertura de arcos determinam um caminho minimo através de
uma rede tal que todos os arcos sejam atravessados uma unica vez. Este problema,
conhecido na literatura como o Problema do Carteiro Chinés (PCC). tem muitas
aplicagdes, como por exemplo, problemas do setor publico incluindo varredura de ruas,
coleta de lixo. roteamento de carteiros, inspec¢do de linhas de agua. cletricidade ou gas,
entre outros.

O problema do carteiro chinés ¢ denominado dirigido ou nao dirigido. dependendo
se os arcos do grafo sdo ou ndo dirigidas. Ambos os casos podem ser solucionados por
algoritmos com limitacdo polinomial. O problema do carteiro chinés misto. que possui

alguns dos arcos dirigidos e outros ndo dirigidos, é NP-Hard.

5.5.2.1 O Problema do Carteiro Chinés (PCC)
5.5.2.1.1 Historico

Os problemas de Percurso em Arcos sd@o dos mais antigos relacionados a grafos. A
primeira referéncia. que sc conhece sobre eles, vem do famoso problema das sete pontes
de Koningsberg, figura 5.4. Buscava-se saber se havia um caminho f{echado que
atravessasse, cxatamente uma vez. sete pontes sobre o rio Pregel em Koningsberg, hoje
Kaliningrad. O matemdtico suico [.eonhard Euler, em 1736, encontrou as condi¢des para
a existéncia de uma rota fechada (grafo euleriano) e mostrou que ndo havia solucdo que
satisfizesse aquele caso particular, figura 5.5. A preocupagdo de Euler foi exclusivamente
sobre a existéncia do caminho fechado: ja a questdo de determina-lo foi resolvida 137

anos mais tarde por Heierholzer (percurso euleriano), [HEIERHOLZER. 1873].
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Figura 5.4 — Visualiza¢do de Koningsberg, € as sete pontes sobre o rio Pregel.
[NEGREIRO, 1999]
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Figura 5.5 — Representagdo em Grafo do problema de Euler, 1736, representando a
situac@o do problema das sete pontes. [NEGREIRO, 1999]

Muitos anos mais tarde, em 1962, um matematico da Universidade Normal de
Shangtun, KWAN MEI-KO, quando de sua passagem como funciondrio dos correios
durante a revolugdo cultural chinesa, preocupou-se com uma situagdo semelhante a de
Euler ¢ Heierholzer, porém adequada ao percurso dos carteiros que atenderiam ruas de
sua cidade. Neste caso, KWAN mostrou-se interessado em definir além da travessia, a
forma mais fécil de fazé-la, percorrendo a menor distancia possivel. KWAN, definiu
assim o problema: Um carteiro tem que cobrir seu local de trabalho, antes de retornar
ao posto. O problema é encontrar a menor distancia de percurso para o carteiro, [MEI-

KO, 1962].
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55.2.1.2 A Importincia do Modelo do Carteiro Chinés para ¢ Problema de
Roteamento de Veiculos

O problema da determinacdo de uma rota 6tima para um veiculo sobre um grafo
pode transformar-se, na maioria dos casos praticos, em uma tarcfa muito dificil. Existem,
contudo, excegdes a essa regra geral. O problema do carteiro chinés destaca-se
exatamente pelo fato de admitir. na maioria das situagdes. uma solucio cm tempo
polinomial.

O PCC € um problema de otimiza¢cdo que objetiva cobrir com um passeio (ou
four) por todos os arcos do grafo. minimizando a distincia total percorrida. O passeio do
carteiro distingue-se do circuito (ou ciclo) culeriano por nele ser permitida a repeticio de
arestas. Obviamente, o circuito (ou ciclo) euleriano, quando existente no grafo, € a
solu¢do do carteiro chinés. O carteiro chinés pode ser considerado sobre um grafo
orientado ou ndo. Em ambos os casos existem algoritmos polinomiais para a resolugio do
problema [EDMONDS e JOHNSON. 1973]. A figura 5.6 (b) representa a solugdo para
um ciclo euleriano no grafo representado na figura 5.6 (a). O caminho fechado 1-2-6-7-2-

3-4-5-1-6-8-1 constitui uma solugdo para o caso.

Figura 5.6 — Grafo qualquer em (a) e seu Caminho Euleriano ecm (b).

(a) Grafo
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(b) Caminho Euleriano

Segundo GOLDBARG [2000]. as principais vartantes do PCC sio:
a) o carteiro chinés em grafos orientados (possui solucgio polinomial):
b) o carteiro chinés em grafos ndo-orientados (possui solugdo polinomial):
¢) o carteiro chinés em grafos mistos (caso geral ndo possui solucao polinomial):

d) o carteiro chinés capacitado (caso geral ndo possut solucdo polinomial).

5.52.1.3 O Problema do Carteiro Chinés em Grafos Nio-Orientados

A soluciio do problema do carteiro chinés em grafos nio-orientados quando o
grafo ¢ dito euleriano, reduz-se a determinacio de tal ciclo. Um grafo conexo G €
euleriano quando possui um nimero par de arestas incidentes em cada nd. Caso o grafo
ndo seja euleriano, ou seja, se existirem nds de grau impar, sera neccssario percorrer
algumas arestas mais de uma vez para que o passeio seja possivel.

KWAN MEI-KO, como ja foi mencionado, foi o primeiro a relatar ¢sse problema
em uma publicacdo datada de 1962 na Chinese Mathematics e. por esse motivo, o
problema foi denominado de carteiro chinés. Para um grafo G(N.A). pode-se formular o

problema como segue. Considerando-se:



37

X;; = numero de vezes que a aresta (ij) € percorrida de i para j.
¢jj = comprimento ou o custo da aresta (i,/),

o Modelo Matemaético é:

(PCC1) Minimizarz= Y Se,x,

=1 g=l

sujeito a:

5
|
>
1l
<
Ay
]
—_—
M
=
.
A
:..
e

x, +x,21 V(ij) e A (5.14)

h
LA
p—

X; z 0 einteiros {

Observa-se que, no modelo matematico proposto. a fun¢do objetivo minimiza o
custo total. ou seja, a distdncia total a ser percomrida. A restri¢do (5.13) garante a
continuidade do passeio e a restri¢do (5.14) que nenhuma aresta deixara de ser
considerada, e em (5.15) tem-se que as variaveis do problema sio inteiras.

De acordo com GOLDBARG, 200, Como em todo grafo existe um namero par de
nos de grau impar, se denominarmos por d; o grau do nd / ¢ por |[E| = m o namero de

arestas. entdo » d, = > d,+ > d, =2m, pois cada aresta possui dois nds extremos.
i

iempar e par
Como a primeira parcela da soma ¢é par, a segunda também o scra. Considere N; o
conjunto de noés de grau impar em G e por N, o conjunto de nds de grau par ¢. ainda, N o
conjunto de todos os nds. Desde que o numero de nds de grau impar seja par. [ Ni|2 ¢

par. Utilizando esse fato, pode-se particionar Ni em dois conjuntos e formar k=i.[ 121‘

19

caminhos entre pares de nos distintos. As arestas {(aqui denominadas por E*) contidas
nesses caminhos sdo acrescentadas ao grafo original G como arcos artificiais. obtendo-se
um grafo G(E*). Uma solugdo viavel do PCC origina-se dos k caminhos que ligam os k
pares de nds impares. De acordo com CHRISTOFIDES [1976], o problema entdo se
reduz a determinar os melhores k caminhos que figam os K pares de nd impares. Sua
idéia de solugdo ¢ a de transformar o PCC em um problema de determinag¢io de um ciclo

euleriano em um grafo convenientemente expandido.
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Na figura 5.7 o grafo G ¢ transformado em um grafo euleriano pelo acréscimo de
arestas. As arestas 1-3 e 2-4. bem como as 1-2 ¢ 3-4 representam os caminhos mais
curtos entre esses pares de vértices. A solugdo do problema seria. dentre as duas

alternativas possiveis, o percurso total mais barato.

Figura 5.7 — Processo de obtengdo de G(E*)

O, ©

© (9

(a) Grafo G (b) Nos impares

Conjunto 1] O O 2 1 O_—OZ Conjunto 1
ou

. 3 i
Conjunto 2 3 O4 ( )———()4| Conjunto?2

(c)k=2 unides possiveis

—
—
n)

(d) Grafos aumentados

A solugio exata desse problema pode ser obtida em O(n’) como mostra

PAPADIMITRIOU [1982]. EDMONDS e JOHNSON [1973] apresentaram um
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interessante algoritmo para a solu¢do do PCC via matching (emparelhamento). Pode-se

resumir o algoritmo da seguinte forma [GOLDBARG, 2000}:

Algoritmo Carteiro Chinés

INICIO
Ler o grafo G(N,A);
Se todos os nés em G, o grafo original, possuem grau par entio determine um
ciclo euleriano em G e Fim.
Organize um grafo K, da seguinte forma:
Reiina todos os vértices de grau impar no grafo K, e
Associe a cada par de vértices i1 € j no grafo, uma aresta (i. j) com peso igual
ao caminho mais curto que liga i a j no grafo G.
Determine o 1-matching minimo em K, M*.
Para cada aresta pertencente a M* associe uma nova aresta em G no
caminho minimo que ela representa, obtendo um grafo G;.
Determine a solugdo do carteiro chinés que ¢ representada por um ciclo euleriano
em G;.
FIM

As figuras 5.8 € 5.9 exemplificam o processo descrito no algoritmo carteiro chinés.
A solug¢@o para o problema sobre o grafo da figura ¢ o caminho:

ABoFRER A DR ES FRC2EC=2B = AcomC=24.

Figura 5.8 — Obtengio de K,

O ®

O ®

E F

(a) Grafo Original (b) Vértices de Grau impar
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Figura 5.9 — Solugéo Final

A0 O's

O

A (@)y—————(®)B

(a) Matching M em K,

(b) Caminhos Associados
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AO‘ >OB
A Y\
%Oc

b=

F

°O

(c¢) Solu¢do Final

5.5.2.1.4 O Problema Carteiro Chinés em Grafos Orientados

No caso do grafo orientado, uma condigdo suficiente para a existéncia do circuito
euleriano € que o semigrau interior (grau de entrada) de cada no scja igual ao scmigrau
exterior (grau de saida). Para solucionar o problema, determina-se dois conjuntos de nods
S e D. O primeiro corresponde aos nos determinados de forma que o semigrau interior
d(i)" supere o semigrau exterior d(i)” e o segundo, o caso contrario. Pode-se construir um
grafo bipartido com os nés s; € S e d; € D. Cada distancia ¢ . entre dois nos desse grafo,
representara 0 menor caminho entre o nd s; e 0 né s¢ no grafo original. Tais distancias
podem ser determinadas pela aplica¢do de algum algoritmo de caminho mais curto sobre
G. como por exemplo o algoritmo de Floyd, que sera descrito a frente. Se existe um nd s;
que possuil caminho que o ligue a todos os noés s , entdao o PCC ndo possui solugdo

viavel. A figura 5.10 demonstra esse fato para um grafo dirigido.
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Figura 5.10 — Exemplo de um PCC inviavel

1 2
d(4y =2
d4)y’ =0
3 4
O s
d(5)" =2 S = {5}
d(5y = D = {4}

Na verdade a solu¢do do PCC exige a solugdo de um problema de 1-matching para
a formacdo do grafo Gi(E*) e. posteriormente, a solugdo de um problema de circuito
euleriano.

Para problemas de cobertura de arcos com mais de um veiculo. dois
procedimentos sdo propostos por BELTRANI [1974]
a) rotear primetro € agrupar depois;

b) agrupar primeiro e rotear depois.

No primeiro procedimento. uma grande rota ¢ determinada contendo todos os
arcos que devem ser passados e, depois. a rota ¢ particionada de acordo com a capacidade
dos veiculos considerados e em relagdo a demanda de cada arco. No segundo
procedimento, a rede € dividida em tantas partes quanto o numero de veiculos existentes

e, entdo, ¢ solucionado o problema de roteamento de arcos em cada uma destas regides.

5.5.2.1.5 O Carteiro Chinés Capacitado

De acordo com GOLDBARG. 2000, esse problema consiste em definir um
conjunto de rotas para um conjunto S = {1, ..., s} de carteiros que devem atender a
demanda originada no grafo G(V.E). GOLDEN e¢ WONG. [1981] formulam esse

problema de roteamento como um problema de fluxo da seguinte forma:
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Definindo:
C = [c;;] = matriz do comprimento dos arcos;
QO = [q;j] = matriz das demandas que sdo despertadas nos arcos e devem ser atendidas
pelos carteiros;
w = capacidade dos carteiros, sendo w = max g, V(i) € E;

I;= varidvel binaria que assume valor 1 quando o carteiro p servir a demanda do arco

(i,j) € 0 em caso contrario;

x) = variavel binaria que assume o valor igual a 1 se o arco (i.j) ¢ percorrido pelo carteiro

p e 0 caso contrario;

f,] = varidvel de fluxo que assume valor positivo se x/=1. [/ e W

Um depdsito central que recebera o indice 1.

Minimize z= ) > > cPx!

1eV jeV pes
Sujeito a:

ij’j—Zx‘f:O VieV,peS (5.10)
Jel Jel’
q; .. ]
S +1;)={—} V(ij) e E (5.17)
p=l w
x; =1y V(jye E.pe S (5.18)
Y3l <w pesS (3.19)
ieV jeVv
Z i —Zf.,,’.’ :Zlu” Vie E\{l},peS (3.20)
geb’ Jeb’ Jel’
fr<(n s V(ij)eE.peS (5.21)
£ =0 pesS (3.22)
q,>0 V(i) € E

f)-x) {01} V(ij)e E,peS
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A funcdo objetivo ¢ o custo total de percorrida do arcos pelos p carteiros. A
restri¢do (5.16) garante a continuidade das rotas dos carteiros. A restri¢do (5.17) assegura
que o atendimento dos carteiros € considerado em apenas uma das suas passadas pelo
arco. A restrigdo (5.18) obriga que o carteiro percorra os arcos que lhe forem designados
atender. A restricdo (5.19) garante que os atendimentos dos diversos carteiros ndo
ultrapassem sua capacidade. A restri¢cdo (5.20) garante que o fluxo de atendimento ¢ igual
ao computado pela designacdo aos carteiros. A restrigdo (5.21) garante que o {luxo nfio
sera maior que o valor de percorrida no arco (i,J). A restricdo (5.22) garante que a

variavel de fluxo vai assumir valor positivo se x] = 1.

Segundo GOLDEN e WONG [1981], esse é um problema NP-llard. Sugerem o
Algoritmo de Christofides. [GOLDBARG, 2000] para a solugdo do problema.

Algoritmeo de Christofides

INICIO
Ler o grato G(N.A);
Faca todos os arcos serem servidos em um circuito individual.
Iniciando com o maior circuito disponivel. verifique se um arco d¢ um circuito
menor pode ser servido por um circuito maior.
Sujeito as restrigdes do problema, procure compor dois circuitos de forma a obter
a maior economia possivel.
Repita a composi¢do até ndo existir composi¢do que traga economia a solugio;
FIM

O algoritmo ¢ descrito de uma maneira um pouco vaga. exatamente para permitir a
utilizagio de outros procedimentos de otimizagdo ja existentes. A etapa repita pode ser

implementada com auxilio das heuristicas de CLARKE e WRIGHT [1964].
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5.6 Uma Técnica para Determinacio de Caminhos Minimos entre Nos de um Grafo

O caminho mais curto entre os pares de nds pode ser obtido a partir do algoritmo
de Floyd [CHRISTOFIDES, 1975]. Este algoritmo ¢ devido a FLOYD. 1962. baseia-se
numa sequéncia de n iteracdes sobre uma matriz inicial de custos C = [¢;}. de dimensdo n
x n, até que na k-ésima iteracdo, a matriz representa o caminho de distincia minima entre
todos os pares de nos com a restricdo de que o caminho entre x; € X; (para quaisquer x; €

Xj) contém apenas nos do conjunto restrito {X;. Xa.....Xx} como intermediarios.

Algoritmo de Floyd
Passo 1. Inicializar a matriz de custos C = [¢;]. da seguinte maneira:

0,V(x,,x;,) €A

C; =400, se (xi,x_,) ¢ A

custo associadoao arco (X,.x ;) € A

Passo 2. Fazerk = 0.

Passo 3. ki=k + 1.

Passo 4. Para todo 1 # k tal que ¢ # o e todo j # k tal que c¢y; # oo realizar a operagdo Cij =
min {cj, (Ci + ¢}

Passo S. a) Se k = n, parar. A solugéo foi alcangada ¢ [c;;] fornece os custos minimos para
cada par de nos.

Passo 5. b) Se k <n, voltar ao Passo 3.

Os trajetos minimos, entre dois nds x; € x;, podem ser obtidos dos caminhos de
minimo custo usando uma relagdo recursiva similar a equagdo dada pelo passo 4. Para
tanto, HU, 1969 [CHRISTOFIDES, 1975], forneceu um procedimento que pode ser
utilizado para armazenar informagdes sobre os trajetos. envolvendo o armazenamento e a
atualizagdo de uma segunda matriz ® = [®;], de dimensdo n x n. em complemento a
matriz de custos C. A entrada ®; € o né predecessor do no x; no trajeto minimo entre os
nds X; € x;. A matriz © € inicializada tal que ®; = x; para todo x; e x;.

Apos o calculo da equagdo utilizada pelo passo 4 do algoritmo de Floyd é

introduzida a atualiza¢do da matriz ® como segue:
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®kj' se (¢, +%)<°g

iy
O;. se (¢, +c)=2¢y

Ao final do algoritmo o trajeto minimo pode ser obtido diretamente da matriz final
©. Assim. para obter o caminho minimo entre quaisquer dois nos x; e x;. este caminho é
dado pela sequéncia de nos: ;. X,..... X¢. Xp. Xa, Xj. Onde %, = O Xp = Ojp X¢ = Ope o X5 =

O;,.



CAPITULO VI

6. Descricdo dos Métodos Propostos na Resolucio do Problema

6.1 Introducio

Este capitulo descreve, em detalhes, a estrutura dos métodos propostos para a
solucdo do problema. A primeira parte aborda o problema de localiza¢io de facilidades,
objetivando a locacdo de medianas.

Depois. ¢ introduzido o Algoritmo Genético, tragando-se sua estrutura basica. suas
defini¢des e a sua aplicagc@o no problema das p-medianas.

E. na ultima parte, faz-se uma mengdo ao algoritmo para formacio de clusters, um

método proposto por Gillett e Johnson.

6.2 O Problema de Localizacao de Facilidades

6.2.1 Introducio

Os algoritmos de otimizagdo relacionados a Problemas de Localizacio de
Facilidades tratam do problema de selecionar a melhor localizacdo. em uma regido
especifica, para a facilidade de servigos.

Na literatura, problemas de localizagio sdo tratados pela teoria dos grafos. Tais
problemas sio conhecidos como problemas de centros e problemas das medianas. Em
ambos os casos, 0 objetivo é a localizagdo de facilidades. ao longo de uma rede viaria,

definida por um grafo.
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No problema de centros. o objetivo é minimizar a distdncia até o ponto mais
critico a ser atendido, ou seja, busca minimizar a maior distancia a ser percorrida e, por
isso, sdo chamados “problemas de localizagdo minimax™. Normalmente. sdo aplicados a
servigos emergenciais como, por exemplo, a localizagdo de postos de saide. postos de
bombeiros ou a localizagdo de um hospital. Como esses problemas sdo. em geral,
associados a um grafo, suas solugdes sdo entdo chamadas “centros™ de um grafo.

Os problemas de localiza¢do de medianas tém por objetivo minimizar a distancia
meédia, isto €, minimizar a soma de todas as menores distdncias da facilidade aos vértices
de um grafo. A localizagdo otima da facilidade ¢ chamada “mediana do grafo™ e, em
virtude da natureza da fungdo objetivo, esses problemas sdo denominados “problemas de
localizagdo de soma minima (minisum)”. Na préatica. esses problemas aparecem sob
varias formas como, por exemplo, a localizagdo de centros de comuta¢do em rede
telefonicas, subestacdes em redes de energia elétrica. depésitos de fornecimento em uma
rede de distribuicdo rodoviaria e a localizagie de correspondéncia. CHRISTOFIDES
[1975].

Segundo MINIEKA [1977], as facilidades podem ser localizadas nos vértices e/ou
nas arestas, e essas localizagdes sdo chamadas de medianas. Utilizando p para denotar o
numero de facilidades a serem localizadas tem-se. assim o problema da determinagdo
das p-medianas.

De acordo com ROSA [1996], o problema de locagdo de medianas pode ser
aplicado a muitas situa¢Oes praticas, onde se deseja minimizar uma soma ou uma média,
dentre os quais pode-se citar:

a) localizar um deposito de distribui¢do de mercadorias numa rede de rodovias para
abastecer diversos clientes com localizagdes fixas e conhecidas de¢ maneira a
minimizar a soma das distdncias, aos clientes. Nesse caso. os vértices do grafo
representam os clientes;

b) localizar “P” cabinas de telefones publicos de maneira a minimizar o deslocamento
médio dos usudrios. Nesse caso, os vértices sdo subconjuntos de usuarios:

¢) localizar, numa cidade, uma escola de maneira que os alunos de cada bairro
desloquem-se, em média (média ponderada pelo nimero de alunos de cada bairro), o

minimo possivel. Nesse caso, os vértices sdo estes bairros:
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d) localizar unidades operacionais do correio: localizar. por exemplo. os Centros de
Distribuicdo Domiciliar (CDD) — as unidades de entrega da Empresa de Correios e
Telégrafos (ECT) — de maneira que, em média. o deslocamento dos carteiros dos seus

respectivos CDDs até os seus distritos seja © menor possivel.

O objetivo do problema classico das p-medianas é encontrar a localizacdo para um
certo nimero p de facilidades € minimizar a distancia média que separa os consumidores
da facilidade mais proxima. Na medida em que a distincia afeta o acesso. a soluc¢do das
p-medianas maximiza a acessibilidade ao servico [DREZNER, 1995].

Para resolu¢do do problema das medianas, acima mencionado. encontra-se na
literatura alguns métodos de solugdo. Para problemas de pequeno porte. a solugido pode
ser encontrada por formas exatas. tails como: modelo de programacido inteira e
cnumeracdo exaustiva (ou busca em arvore). Este tltimo método foi usado por HAKIMI
[1985] para encontrar as 3-medianas de um grafo com 10 vértices. Existem. também, os
métodos aproximados, usados por varios autores, como MARANZANA [1964]. TEITZ e

BART [1968], os quais se aplicam a problemas de maior porte.

6.2.2 O Problema das P-Medianas

O problema abordado neste trabalho, descrito no capitulo IlI. no que tange a
determinagiio dos clientes que devem ser atendidos por cada leiturista. sera tratado como
um problema de localizagio de p-medianas e, por este motivo. far-se-a. na sequéncia, um

estudo mais detalhado deste topico.

6.2.3 Formulacio Matem:itica para o Problema das P-Medianas

Segundo CHRISTOFIDES [1975], este problema pode ser formulado como um
Problema de Programacdo Linear Inteira Binario (PPLIB), da seguinte forma:
sendo [&;] uma matriz de locagdes, onde
& =1, se o vértice x; ¢ locado ao vértice x;

e &; =0, caso contrério
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e se além disso, &;; = 1. se o vértice x; € um vértice-mediana ¢ £;;= 0. caso contrario. entdo

tem-se 0 seguinte modelo matematico:

Minimizar 7, = Z ngig 6.1)
=l j=I

s.a.

Ziuzl paraj=l....n (6.2)

1=l

&, =p (6.3)

i=1

E:i_i S E.HI para tOdO i*_} = 15 ceeusy n (64)
e

Sy =0Ooul (6.5)

onde [d;;] € a matriz de distancias ponderadas, isto €. a matriz de distancias com cada
coluna j multiplicada pelo peso v;. A fungdo objetivo (6.1) minimiza a soma das
distancias dos vértices de demanda até o conjunto de medianas. A cquagdo (6.2) garante
que todo vértice x; € locado a um e somente um vértice-mediana x;: a equacdo (6.3)
garante que existem exatamente p vértices medianas; a restricdo (6.4) garante que as
locagdes sO podem ser feitas a vértices medianas: a restricdo (6.5) impde a integralidade,
isto €, &;; € varidvel bindria, podendo assumir o valor 0 ou 1.

Se a restri¢do (6.4) do problema acima for escrita como &; > 0. o problema passa a
ser um Problema de Programacao Linear.

Como o problema ¢ formulado como um PPLIB. por si s0 ja bastante complexo,
dependendo da cardinalidade de nos do grafo, o modelo apresentado torna-se invidvel
devido ao tempo computacional. Por este motivo, a seguir. faz-se a abordagem do

Algoritmo de Teitz e Bart.

6.2.4 Algoritmo das P-Medianas de Teitz e Bart

Uma das heuristicas mais conhecidas para o problema das p-medianas ¢ a
desenvolvida por TEITZ ¢ BART [1968] e ¢ conhecida como Algoritmo das p-medianas
de Teitz e Bart. Esta heuristica ¢ baseada na substituicdo de vértices e seu objetivo é, a
partir de uma soluc¢ao inicial, melhorar o valor da fun¢do objetivo a cada iteragdo. Esta

heuristica € facil de ser implementada ¢ produz boas solu¢des para problemas pequenos,



51

principalmente quando aplicada vérias vezes ao mesmo problema com diferentes
solucdes iniciais.

Considerando-se todos os vértices do grafo como potenciais medianas. o algoritmo
de Teitz ¢ Bart para o problema das p-medianas pode ser definido como segue:
dado G(V,A) um grafo ndo direcionado onde V sdo os vértices e A as arestas. Seja v; um
vértice qualquer pertence a V. Chama-se niimero de transmissdo a soma das menores
distancias existentes entre o vértice v; e todos os outros vértices do grafo. Sendo n o
namero total de vértices do grafo, o numero de transmissdo ¢ dado por:

b
G(vi)=ijd(vi,vj),vi,vjeV (6.6)

i=1
onde, d(v;,v;) € a menor distdncia entre v; € vj € w; € um peso associado ao vértice v;.

Assim, v,, ¢ uma mediana se, entre todos os vértices do grafo. ¢ aquele que produz

a menor soma total das distincias desde si proprio até cada um dos outros vértices do

grafo.
Assim sendo. tem-se:
o(v,,)=minimo[c(v;)],Vv, € V. (6.7)
Para o problema de encontrar p-medianas (p > 1), seja V, < V ¢ |V, | = p. calcula-
se:
D(Vy, vj)= minimo [d(v;, v))], V vi € V. v € V (6.8)
e

o(V,) =D w.dV,.v,).V v e V. (6.9)

Desse modo, um conjunto de p vértices ¢ a solugdo Otima para o problema das p-
medianas se, entre todos os outros conjuntos de p vértices do grafo. é aquele que produz a
menor distincia total desde si proprio até todos os outros vértices do grafo. Portanto,
deve-se ter:

o(V ) =minimo[c(V )],VV_ c V. (6.10)

O objetivo do algoritmo de Teitz € Bart €. portanto. encontrar um conjunto V, em

p _solugdo _ otima

V, para o qual o nimero de transmissio seja minimo.
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6.2.5 Procedimentos Basicos do Algoritmo das P-Medianas de Teitz e Bart

Sdo descritos, a seguir, os procedimentos basicos executados pelo algoritmo das

p-medianas de Teitz e Bart [TEITZ ¢ BART, 1968].

Algoritmo de Teitz e Bart
Passo 0
Selecione, aleatoriamente. um conjunto V, < V, com |V,| = p para formar uma
solugdo inicial para o problema.
Passo 1
Rotule todos os vértices v; € {V —V,} como “ndo analisados™.
Passo 2
Enquanto existirem vértices ndo analisados em {V -V} faca o seguinte:
Selecione um vértice ndo analisado v; € {V — V,}. e calcule a redugio A do
nimero de transmissdo. para todos os vértices v; pertencentes a V,,. ou seja:
Aj=0o(Vp)-o(V, U {vij-1vi}), V v; €V, (6.11)
Faga Ajj maximo = maximo[A;], para todo A calculado anteriormente.
Se Ajj maximo > 0 entdo:
Faga V, = (V, U {vij — {v;}) e insira vj em {V-V,}.
Rotule v; como “analisado™.
Caso contrario continue.
Passo 3
Se durante a execugdo do Passo 3, houver alguma modificacio no conjunto V,,
entao:
Volte ao Passo 2 ¢ continue a execugdo do algoritmo.
Caso contrario, PARE ¢ apresente o conjunto V, como uma solugdo aproximada
para o problema das p-medianas.
Fim.

O algoritmo de Teitz ¢ Bart encontra a solugdo através do método exaustivo. Os
problemas de pequeno porte tém solucdio 6tima através deste método cxaustivo, que
examina todos 0s casos possiveis.

O método exaustivo. quando aplicado a problemas de maior porte. provoca a

explosdo combinatorial. Por esta razfo, a estes casos sdo aplicadas as heuristicas,

métodos aproximados cuja solugdo se aproxima da solucdo otima.
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6.3 Algoritmos Genéticos

6.3.1 Introducio

O Problema do Roteamento de Veiculos busca a defini¢do da melhor rota para a
realizacdo de uma tarefa de distribuicio, de coleta ou de prestacdo de servigos. Procura-se
minimizar a distancia total percorrida, respeitando-se as restrigdes impostas.

Como ja foi mencionado, o problema de roteamento de veiculos pertence a
categoria de problemas NP-hard, na qual o tempo computacional ¢ uma fun¢io
exponencial do tamanho do problema. Dessa forma, na grande maioria das aplicagdes, o
uso de métodos heuristicos tem demonstrado ser mais adequado, resultando em solugdes
freqiientemente de boa qualidade e tempo reduzido. No entanto, OCHI [1994] salienta a
dificuldade de criar heuristicas de carater geral que sejam eficientes na solu¢do de uma
classe mais ampla de problemas préticos, como a classe de problemas de roteamento de
veiculos.

As meta-heuristicas, como o simulated annealing, a busca tabu. guided local
search e o algoritmo genético, sdo heuristicas genéricas que se adaptam facilmente a uma
classe de problemas e sfio direcionadas a otimizagdo global de um problema. Segundo
HAMACHER [1998], dentre as meta-heuristicas, o algoritmo genético apresenta um
tempo de execugdo geralmente mais curto ¢ uma flexibilidade maior para tratar as
restricdes do modelo, conseguindo assim solucionar deficiéncias historicas dos
algoritmos convencionais de busca heuristica.

Os Algoritmos Genéticos (AG’s) constituem um método de otimizagdo inspirado
no processo Darwiniano de seleg@o natural dos seres vivos. Na realidade. os AG’s fazem
parte de uma classe de paradigmas e técnicas computacionais inspiradas na evolugio
natural, denominada de Computacido Evolucionista.

HANS-PAUL SCHWEFEL, um dos pioneiros da Computagio Evolucionista (CE)
— na tentativa de imitar a evolugdo dos seres vivos na natureza - considera dificil definir
quem teria sido o primeiro a conceber um algoritmo evolucionista.

DIAS e BARRETO, 1998, destaca, dentre os principais fatores que tém feito do
Algoritmo Genético uma t€cnica bem sucedida: a simplicidade de operag¢do; facilidade de

implementacdo; eficacia na busca da regido onde, provavelmente, encontra-se 0 maximo
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global; ser aplicavel em situagdes onde ndo se conhece o modelo matematico ou se este
for impreciso; em fungdes lineares e ndo-lineares.

Contudo, em virtude da lenta e, até mesmo critica convergéncia dos AG’s quando
o erro torna-se pequeno, recomenda-se utilizd-Jo de forma hibrida. Nesse caso, o AG
seria encarregado da aproximag8o necessaria do maximo global e outros métodos. como

o do gradiente, ficariam encarregados do ajuste fino.

6.3.2 Historico

De acordo com CARVALHO, 2001, até meados do século XIX, os naturalistas
acreditavamn que cada espécie havia sido criada separadamente por um ser supremo ou
através de geracdo espontinea. O trabalho do naturalista Carolus Linnacus. 1735, sobre a
classificacdo bioldgica de organismos, despertou o interesse pela similaridade entre certas
espécies, levando a acreditar na existéncia de uma certa relacdo entre elas. Outros
trabalhos influenciaram os naturalistas em dire¢do a teoria da sele¢do natural. tais como
os de Jean Baptiste Lamark, 1809, que sugeriu uma teoria evolucionaria no "uso e
desuso” de oOrgdos; € de Thomas Robert Malthus, 1798, que propds que fatores
ambientais tais como doengas e caréncia de alimentos, limitavam o crescimento de uma
populacdo.

Depois de mais de 20 anos de observagdes e experimentos, Charles Darwin
apresentou em 1858 sua teoria de evolugdo através de sele¢do natural. simultaneamente
com outro naturalista inglés Alfred Russel Wallace. No ano seguinte, Darwin publica o
seu On the Origin of Species by Means of Natural Selection com a sua teoria completa,
sustentada por muitas evidéncias colhidas durante suas viagens a bordo do Beagle.

Esse trabalho influenciou muito o futuro ndo apenas da Biologia, Botinica e
Zoologia, mas também teve grande influ€ncia sobre o pensamento religioso. filoséfico,
politico e econdmico da época. A teoria da evolugdo ¢ a computa¢do nasceram
praticamente na mesma época: Charles Babbage, um dos fundadores da computagio
modema e amigo pessoal de Darwin, desenvolveu sua maquina analitica em 1833.
Ainbos, provavelmente, estariam surpresos e orgulhosos com a ligagdo entre estas duas

areas.
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Por volta de 1900, o trabalho de Gregor Mendel, desenvolvido em 1865, sobre os
principios basicos de heranga genética, foi redescoberto pelos cientistas e teve grande
influéncia sobre os futuros trabalhos relacionados a evolugdo. A moderna teoria da
evolucdo combina a genética e as idéias de Darwin e Wallace sobre a selegdo natural,
criando o principio basico de Genética Populacional: a variabilidade entre individuos em
uma populacio de organismos que se reproduzem sexualmente € produzida pela mutagio
e pela recombinacdo genética.

Esse principio foi desenvolvido durante os anos 30 e¢ 40, por bidlogos e
matematicos de importantes centros de pesquisa. Nos anos 50 ¢ 60, muitos bidlogos
comecaram a desenvolver simulagdes computacionais de sistemas genéticos. Entretanto,
foi John Holland quem comegou, seriamente, a desenvolver as primeiras pesquisas no
tema. Holland foi, gradualmente, refinando suas idéias e em 1975 publicou o seu livro
Adaptation in Natural and Artificial Systems, hoje considerado a Biblia de Algoritmos
Genéticos. Nos anos 80 David Goldberg, aluno de Holland, consegue o primeiro sucesso
em aplicagdo industrial de Algoritmos Genéticos (AG). Desde entdo, esses algoritmos
vém sendo aplicados com sucesso nos mais diversos problemas de otimizag¢do e

aprendizado de maquinas.

6.3.3 Aplicacdes dos Algoritmos Genéticos

Um sistema com bom desempenho em um ambiente dindmico, geralmente exige
solugdes adaptativas. Sistemas adaptativos tentam resolver problemas acumulando
conhecimento sobre o problema e utilizando estas informagdes para gerar soluces
aceitaveis. Entre outras aplicagdes, exemplifica-se [BARBOSA, 1997]:

a) na construgdo automdtica de programas para realizagio de tarefas especificas
[HARVEY, 1992];

b) nas areas de economia e finangas (gerenciamento de carteira de acgdes,
desenvolvimento de estratégias para leildes, detecgdo de fraudes em movimentos na

bolsa de valores) [MORAN, 1996];
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6.3.4 Funcionamento dos Algoritmos Genéticos

Segundo GREFENSTETTE. 1986, um AG ¢ um procedimenio iierativo que
mantém uma populagdo de estruturas, chamadas de “individuos™. quec representam as
possiveis solugdes para um determinado problema. A cada iteracdo (“geracdo™), os
individuos da populacdo passam por uma avaliacdo que verifica sua capacidade em
oferecer uma solugdo satisfatoria para o problema. Essa avaliag@o ¢ feita conforme uma
funcdo que recebe o nome de funcao de aptiddo, ou funcdo de firness.

Com essa avaliagdo, alguns individuos s@o selecionados. de acordo com uma regra
probabilistica, para passar por um processo de reproducdo. Na verdade. aplica-se sobre os
individuos selecionados os chamados operadores genéticos. gerando uma nova populagio
de possiveis solugdes. Pressupde-se que a populacdo. em média. vai ficando,
incrementalmente. mais apta para solucionar o problema. Apos um grande nimero de
geragdes, de acordo com um critério de término do algoritmo. o individuo mais apto até
entlo ¢ uma possivel solu¢do para o problema.

Embora os AG’s nem sempre possam encontrar a solu¢do otima para um
determinado problema (6timo global), na maioria das vezes. sdo capazes de encontrar
uma solucdo quase otima, o que ¢ aceitdvel quando se¢ considera problemas muito
complexos, como os de otimizacdo combinatoria. onde os métodos convencionais,
normalmente, sdo inviaveis em razdo do esforgo computacional que seria necessario para
resolvé-los. Conveém lembrar que muitos problemas apresentam tantas dificuldades. que
fica-se satisfeito em encontrar uma soluco que atenda a todas as restrigdes impostas.

Assim sendo, os AG’s constituem uma classe de ferramentas muito versatil e
robusta. pois a busca da solugdo pode inclusive se dar em conjuntos ndo-convexos e
mesmo disjuntos, com fungdes objetivo também ndo convexas ¢ ndo-diferenciaveis,
podendo trabalhar, simultaneamente, com variaveis reais. logicas e inteiras. E importante
ressaltar que, em virtude de suas caracteristicas, os AG’s evitam atragdes irremediaveis
para otimos locais. 0 que ocorre, freqiientemente. com alguns algoritmos usuais de
programagdo matematica, permitindo uma melhor exploragdo do espag¢o de busca.

Algumas das principais caracteristicas que diferenciam os AG’s de outras técnicas

de programagio matematica, sdo as seguintes:
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a) empregam uma populacio de individuos. ou solugdes. que pode ter tamanho fixo ou
varidvel, ao contrario da maioria das técnicas que efetuam uma busca “ponto-a-
ponto™;

b) nao trabalham diretamente com as possiveis solu¢des do problema. chamadas de
fenotipos, mas sobre uma codificacdo das mesmas chamadas de gendtipos:

¢) empregam rcgras de transi¢do probabilisticas ou estocasticas. sendo que a maioria dos
algoritmos tradicionais usam regras deterministicas;

d) ndo exigem maiores informag¢des adicionais sobre a fungdo a otimizar.

Os maiores atrativos do AG tém sido a sua simplicidade de implementacio e a
eficiéncia, sendo que grande parte desta eficiéncia deve-se a eficacia do AG em realizar
um passo na direcdo de uma busca global [DIAS e BARRETO. 1998].

A forte inspiragdo dos algoritmos genéticos, na teoria da evolugdo das espécies €
na genética natural, aproxima a terminologia utilizada. A nivel bioldgico. um individuo é
formado por um conjunto de cromossomos. no entanto pode-se fazer uma analogia entre
individuo ¢ cromossomo. Segundo DIAS e BARRETO [1998]. no AG os dois termos sdo
utilizados indistintamente. O cromossomo (string) ¢ composto de genes (bit). sendo que
cada gene possui um local fixo no cromossomo (locus). Cada gene pode assumir um
certo valor pertencente a um conjunto de valores (alelo). Desta forma, o valor (alelo) de
um bit depende da posicdo (locus) que ele ocupa no cromossomo (string)
[PAVAN,1966].

Ao conjunto de cromossomo. genes € alelos denomina-se gendtipe (¢ a variavel
independente x) e as caracteristicas conferidas por este denomina-se fenotipo (é a
variavel dependente ou fungdo, f(x)).

BARBOSA [1997], apresenta o seguinte pseudo-cddigo genérico. capaz de

englobar a maioria dos AG’s, apresentado a seguir:
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Algoritmo AG genérico
Inicie a populacio
Avalie individuos na populagéo
Repita
Selecione individuos para reprodugdo
Aplique operadores de recombinacdo e mutagéo
Avalie individuos na populagéo
Selecione individuos para sobreviver
Até critério de parada satisfeito
Fim

Na figura 6.1 pode-se visualizar a estrutura basica de um Algoritmo Genético,

adaptada de HOFFMANN [1997].

Figura 6.1 — Estrutura basica de um Algoritmo Genético

Populagio
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Os procedimentos associados aos verbos iniciar, avaliar, selecionar e aplicar,
utilizados nesse algoritmo serdo comentados no decorrer deste capitulo. Considera-se

inicialmente o processo de reproducido num AG.

6.3.5 O Processo de Reproducio

No que diz respeito 2 maneira pela qual os individuos criados sdo inseridos na
populagdo, considera-se dois tipos extremos de AG’s [BARBOSA, 1997].

O primeiro tipo € chamado de AG generacional, onde toda a populacio é
substituida pelos novos individuos gerados depois do processo de selegdo ¢ aplicagdo dos

operadores genéticos. Pode-se representar este tipo de algoritmo da seguinte forma:

Algoritmo Genético generacional

Inicie a populagdo P de alguma forma

Avalie os individuos da populagido P

Repita

Repita

Selecione individuos da populacio P
Aplique os operaderes genéticos
Insira os novos individuos em P’

Até que a populacdo P’ esteja completa

Avalie os individuos da populacdo P’

PP

Até que um critério de parada esteja satisfeito
Fim

Considerando que neste processo toda a populagdo é substituida pela nova. corre-
se o risco de perder bons individuos. Para evitar isto, pode-se utilizar um procedimento
conhecido como elitismo, que consiste em passar para a geragdo seguinte uma copia de
alguns dos melhores individuos.

O outro tipo de AG ¢ conhecido como “steady-state”, o qual caracteriza-se por
criar apenas um individuo de cada vez, sendo que o individuo gerado pode ou nio ser
passado para a geracdo seguinte. Normalmente, ele € transmitido para a proxima geragéo,
se o seu valor de fitness for melhor do que o pior valor de fitness da populag¢do antiga.

Pode-se representar estes AG’s com o seguinte pseudo-codigo:
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Algoritmo AG “steady-state”
Inicie a populagdo P de alguma forma
Avalie os individuos da populagdo P
Ordene a populacdo de acordo com o seu fitness
Repita
Selecione os individuos na populagdo P
Aplique os operadores genéticos
Selecione um individuo f para sobreviver
Se f é melhor que o pior elemento de P Entao
Remova um individuo da populagio
Insira f em P de acordo com seu “ranking™
Até que um critério de parada esteja satisfeito
Fim
Neste trabalho, sera implementado este algoritmo adaptado ao problema das p-

medianas. e sera descrito mais adiante.

6.3.6 O Sistema de Representacio ¢ Codificacao

Considerando que os AG’s ndo operam diretamente sobre os elementos do espago
de busca [GOLDBERG, 1989], [BARBOSA, 1997], a primeira ctapa para sc¢ resolver um
dado problema utilizando um AG consiste na codificacdo/representacdo  destes
elementos. Costuma-se chamar de fenétipos os elementos deste espaco de busca,
enquanto que o codigo que os representa ¢ denominado de genotipo. em analogia com a
terminologia encontrada na Genética.

Matematicamente, a escolha da codificacdo para um dado problema ¢ a fun¢iio ou
regra que associa os elementos do espaco de genétipos com aqueles do espago de busca,
os fenotipos. Convém lembrar que os espagos de busca podem ser formados por
elementos das mais diversas naturezas. Pode-se considerar o espago das matrizes,
vetores. as combinagdes de varidveis logicas, inteiras e reais, e até programas de
computador numa dada linguagem.

Normalmente. esta forma de codificagdo corresponde a utilizar cadeias (“strings™)
de comprimento /, formadas por caracteres de um determinado alfabeto. O caso mais
comum € o bindrio, onde o alfabeto ¢ composto pelos simbolos 0 ¢ 1. Em alguns casos,

utiliza-se também o cédigo de Gray, onde a diferenga entre duas cadeias consecutivas é
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de apenas 1 hit . Tal construcdo ¢é sempre possivel, haja vista a bi-univocidade entre as
cadeias de 0 e 1 e os nimeros que elas representam.

Assim. no sistema binéario a cadeia 10010101 poderia representar uma possivel
solu¢do de um dado problema. Neste caso. tem-se / = 8 e o conjunto dos genétipos ¢
formado por todos os nimeros binarios de 00000000 a 11111111 contendo portanto 2' =
2% = 256 clementos. A codificagdo ¢ a regra que associa a cada uma destas cadeias de
numeros binarios uma solugdo. Um possivel elemento do espaco de busca composto

pelas variaveis v, de diferentes tipos poderia ser codificado como uma cadeia da forma

00101 1101,.. 100111

1 V3 bn

também denominada cromossomo.

Cada uma destas subcadeias ¢ denominada de gene ¢ representa uma das diversas
variaveis que compde © Cromossomo.

Existem situagdes onde mais de um cromossomo € associado @ um individuo. O
Homo sapiens ¢ dipléide, isto ¢, possui 2 cromossomos. A grande maioria das aplicagdes
de AG’s utiliza, entretanto, individuos hapléides com um s cromossomo.

Assim, 0 genétipo ¢ composto de um ou mais cromossomos que sdo compostos
por subcadeias de simbolos pertencentes ao alfabeto utilizado. Esta

representacio/codificacdo € uma etapa que depende do problema a ser resolvido.

6.3.7 Geracio da Populacio Inicial

O processo de inicializagdo da populagdo € quase sempre realizado aleatoriamente
utilizando-se um gerador de nimeros pseudo-aleatorios com distribui¢do uniforme dos
individuos numa faixa previamente definida pelo usuario [BARBOSA. 1997]. Essa faixa
¢ definida levando-se em consideragdo algum conhecimento prévio do problema a ser
otimizado.

No caso de codificag¢@o bindria, por exemplo. ¢ facil obter uma boa distribuicdo de

zeros ¢ uns na populagdo inicial.
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Pode-se também introduzir, na populacdo inicial, um ou mais individuos
“interessantes”, como, por exemplo. solugdes aproximadas conhecidas ou contendo
algum tipo de informacdo prévia.

O numero de elementos que compora a populacdo ainda ¢ questionavel. ou seja,
depende muito da experiéncia do usudrio e do seu conhecimento prévio sobre a fungdo a
ser otimizada.

O ndamero de elementos na populacdo. a probabilidade de ocorrer cruzamento e a
probabilidade de acontecer mutacdo sdo denominados de parametros de controle do

AG.

6.3.8 Os Operadores Genéticos

O objetivo dos operadores genéticos € operar sobre os individuos que foram
selecionados para reproducdo. produzindo um ou mais “descendentes™. Os operadores
sdo construidos apos definida uma codificagdo para os elementos do espaco de busca.
Dos diversos operadores genéticos propostos por GOLDBERG [1989] ¢ outros autores,
destaca-se, basicamente, dois tipos: os operadores de recombina¢io ¢ os operadores de

mutacdo, detalhados a scguir.

6.3.8.1 Operadores de Recombinacio (Cruzamento)

O operador genético de cruzamento ou “crossover” corresponde a uma
generalizagdo do que ocorre na reprodugdo sexuada. Atuam sobre os gendtipos dos
individuos selecionados. promovendo uma recombinagdo do material genético dos
elementos “pais”, gerando os elementos “filhos”. Este tipo de operador costuma se
chamar na literatura de AG’s de operadores de crossover, em analogia com o termo da
genética.

Segundo SPEARS [1991]. a troca de partes do cromossomo pode ser cfetuada de
varias formas, como o cruzamento uniforme, cruzamento com l-parti¢do. cruzamento

com 2-parti¢cdes € cruzamento com n-parti¢oes.



O cruzamento uniforme consiste no emparelhamento dos dois cromossomos pais e

cada locus do cromossomo tem 50% de chance de ser trocado, conforme apresentado na

figura 6.2.

Figura 6.2 — Exemplo de cruzamento uniforme

Pontos de cruzamento uniforme:

I iy

Pais Filhos

O cruzamento com 1-particdo consiste na escolha aleatoria de somente um ponto

de corte. Todo o material genético a direita deste corte sera intercambiado. Esta situagfo

esta ilustrada na figura 6.3.

Figura 6.3 — Exemplo de cruzamento com 1-parti¢io

Ponto de corte:

Pais Filhos

No caso do cruzamento com 2-parti¢des, héa a escolha aleatoria de dois pontos de

corte. Todo o material genético dos pais, existentes entre os dois pontos de corte, sera

trocado de acordo com a figura 6.4.
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Figura 6.4 — Exemplo de cruzamento com 2-parti¢cdes

Pontos de corte:

Pais Filhos

O cruzamento com n-parti¢cdes consiste em n cruzamentos com duas parti¢des.

6.3.8.2 Operadores de Mutacie

A mutagdo ¢, possivelmente, o operador genético mais simples de ser
implementado. Ao se considerar o alfabeto binario [BARBOSA. 1997]. uma posicio do
cromossomo € sorteada e o bit correspondente € invertido, isto €, se for | ele passa a ser 0
e vice-versa. A probabilidade de se efetuar uma mutac¢do deve ser rclativamente baixa,
caso contrério o algoritmo se comportara fazendo uma busca aleatoria. dificultando a
convergéncia.

Esses operadores exploram, globalmente, o espaco de busca, possibilitando
inclusive, recuperar algum bom material genético que possa ter sido perdido apés
sucessivas recombinagdes. Assim sendo, pode-se considerar os operadores de mutagiio
como uma espécie de “apoOlice de seguro” contra perdas acidentais deste material
genético de boa qualidade.

Dentre os principais mecanismos de alteracdo genética que recebem a

denominagio global de mutacio destacam-se:

a) Troca Simples: consiste de um erro de copia de um ou mais genes da cadeia,

conforme mostrado na figura 6.5.
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Figura 6.5 — Exemplo de mutagio por troca simples

Ponto de mutagéo

l l

Pai Filho

b) Inversdo: retirada e inser¢do de parte da cadeia, porém na ordem inversa em que foi

retirada, conforme a figura 6.6.

Figura 6.6 — Exemplo de mutagfo por inversio

Pai Filho

¢) Translocagdo: parte do cromossomo ¢ retirada e colocada em outra posicio,

guardando a mesma ordem em que foi retirada, de acordo com a figura 6.7.

Figura 6.7 — Exemplo de mutacdo por translocacio

Pai Filho
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6.3.9 Aplicacao dos Operadores Genéticos

A aplicagdo dos operadores genéticos consiste na manipula¢do genética através da
aplicagdo dos operadores de cruzamento e/ou mutacio [DIAS ¢ BARRETO. 1998]. Esses
podem ser aplicados em toda ou em parte da populacao sorteada para compor 0 processo
que ira gerar a nova populacdo. Ao final desta etapa, tera sido criada uma nova populagdo
que devera repetir os passos anteriores até que a adaptacio da populagio seja aceitavel.

Para aplicagdo do operador genético de cruzamento com I-particdo implica na
geragdo de 2 nimeros aleatdrios:

a) o primciro, cntre 0 e 1, indicara a probabilidade de ocorrer cruzamento:
b) o segundo, o local da realizagdo do cruzamento (ponto de corte). caso haja
cruzamento. Nesse caso o numero aleatorio deverd estar entre 1 ¢ (g-1). onde g é o

nuamero de bits do individuo.

E assim para os demais operadores. A probabilidade de ocorrer mutagdo ¢ sempre
bem menor que a de ocorrer cruzamento, quasc que na totalidade das aplicacocs.

Os individuos selecionados para serem manipulados pelos operadores genéticos
sdo inicialmente divididos em casais e, a csses, ¢ aplicado o operador genético de
cruzamento. A seguir, a cada novo individuo gerado, aplica-se o operador genético da
mutagdo. Ao final, tem-se uma nova gerag@o ¢ dessa. espera-se que, em média. a nova
populagdo tenha maior adaptacdo que a anterior e assim sucessivamente.

As populagdes seguintes a populacdo inicial, geralmente, apresentam o mesmo
numero de individuos, porém, a composi¢io pode ser totalmente diferente. A populagio
inicial tem seus individuos gerados aleatoriamente dentro de uma faixa previamente
definida: ja a populagio seguinte € obtida, principalmente, através da manipulaciio

genética da populacdo inicial.
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6.3.10 A Funcao Aptidao

O grau de adaptacdo de cada individuo ¢é a aptiddo, também denominada 'fitness”
e ¢ obtido pela avaliacdo do individuo através da fungdo a ser otimizada.

A funcdo de aptiddo deve refletir a qualidade de um clemento em solucionar o
problema [BARBOSA, 1997], [GOLDBERG, 1989]. A regra que a determina depende
do tipo de problema que esta sendo considerado e. nos problemas de otimizagdo,
minimiza¢do ou maximizagfo, esta dirctamente relacionada com a fungao objctivo. Ao se
considerar o Problema do Caixeiro Viajante, por exemplo, a regra da funcdo de aptiddo
pode ser a expressdo que fornece a distancia total percorrida pelo viajante.

Considerando que no decorrer das iteracdes os individuos vdo se tornando cada
vez mais semelhantes, pois a populagio tende a convergir. pode ser intercssante aumentar
a pressdo de selegdo, utilizando como fun¢do de aptiddo uma composigdo da fun¢do

objetivo com alguma fun¢do conveniente.

6.3.11 Os Esquemas de Selecao

Sdo diversos os esquemas de selegdo utilizados nos AG's. No esquema de selegdo
conhecido como selecdio proporcional, a probabilidade de um individuo ser selecionado
para participar do processo de reprodugdo ¢ proporcional a medida relativa do grau de

fitness (aptiddo) do individuo relativamente a populagdo. Nesse caso. a probabilidade p,

do individuo «, ser selecionado. poderia ser dada pela formula: p = BEACHE onde 1 €

> fla,)
i=1
a funcdo de aptiddo € » o tamanho da populagdo.
Este tipo de esquema de sele¢ao que tem o efeito de aumentar a aptiddo média da
populagdo costuma ser chamada de selegdo direcional [BARBOSA, 1997]. [LOPES,
1996], [GOLDBERG, 1989]. Na pratica, tudo se passa como se o sorteio dos elementos

fosse feito através de um jogo de roleta, onde a probabilidade de cada individuo ser

selecionado ¢ proporcional ao seu fitness.



68

Em algumas situagdes, pode-se deixar de lado a magnitude do grau de firness de
um individuo, levando em consideragdo apenas o seu “ranking”. ou posi¢do relativa da

medida de aptiddo [MAYERLE, 1994].

6.3.12 Convergéncia, Diversidade Populacional e Nichos

Um dos critérios para a convergéncia de uma populacio ¢ de um gene em um
cromossomo foi definido por DE JONG [1975]. Segundo ele. um gene converge quando
95% da populacdo possut 0 mesmo gene, enquanto que uma populaciio converge quando
todos 0s seus genes convergem.

O termo diversidade diz respeito a falta de semelthanga entre os individuos de uma
populagdo e sua perda estd diretamente ligada & convergéncia da mesma. Em uma
situagdo idcal, um AG deveria convergir sem perda de diversidade genética. Isso
aumentaria as chances de se encontrar o 6timo glebal através de um cquilibrio entre uma
exploragdo global e local.

Para diminuir a perda da diversidade. alguns AG’s utilizam a chamada “redugio
de incesto” que reduz a operacdo de crossover entre elementos muito semelhantes,
permitindo a recombinagdo apenas entre individuos cuja distdncia de Hamming seja
grande. A distancia de Hamming permite medir a diversidade entre dois cromossomos,
sendo definida como o numero de alelos (valores que os genes podem tomar) diferentes
para as mesmas posi¢des relativas [ILOPES, 1996}.

Muitas vezes, utiliza-se também o conceito de nicho ecologico. que consiste em
manter subpopulagdes estaveis de individuos. de uma forma tal que cada subpopulagio
explore uma regido do espago de busca, sem que haja competi¢do entre elas. Para
aumentar a possibilidade de formagao destas subpopulagdes pode-se diminuir a pressdo
seletiva, utilizando o fator de crowding que faz com que os “cromossomos-fithos”
venham a substituir os elementos com os quais tenham a maxima semelhanga.

Quando o espago de busca se torna muito grande, torna-se necessario o uso de uma
populagcdo também numerosa., fazendo, muitas vezes, com quc 0s AG's classicos

(seqiienciais) se tornem menos cficientes. Ainda existe a questdo dos parametros que
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deve ser considerada. E muito dificil definir os pardmetros mais adequados para um
determinado problema. O tamanho da populagdo, por exemplo, vai depender. dentre
outros fatores, do espago de busca considerado, ndo sendo possivel. a priori. determinar o
tamanho ideal de uma populagio para uma determinada classe de problemas.
GREFENSTETTE [1986], sugere que na grande maioria das aplica¢des uma populagio
de 50 a 200 individuos possa parecer adequado. Assim, o método empirico de tentativas e
erros, guiado por uma cxperiéncia prévia, parece ser o caminho mais indicado para o

cquacionamento de problemas.

6.3.13 Algoritmos Genéticos Paralelos

A 1déta dos AG’s paralelos surgiu do conceito de se evoluir diversas populagdes
de forma paralela, muitas vezes, compartithando informagoes entre elas [LOPES. 1996].
Obviamente, a implementagdo de um AG paralelo depende diretamente do hardware
disponivel pelo usuéario. Existem diferentes abordagens para AG’s paralclos. Na mais
comum destas abordagens, diversas sub-populagdes evoluem paralelamente. sendo que o
controle de cada uma delas € atribuido a um processador particular. Eventualmente, pode
ocorrer uma migra¢do de individuos, geralmente os melhores. entre os processadores,
acarretando um aumento na diversidade genética da populagido que os recebe. Nos casos
onde o custo computacional da avaliagdo de um individuo ¢ significativamente grande,
pode-se atribuir a outro processador esta tarefa.

Fica claro que na implementagio de qualquer abordagem de AG paralelo, torna-se
necessario a introdugdo de parametros de controle adicionais. Entre cles pode-se destacar:
a quantidade de elementos que irdo migrar, quais serdo estes individuos. de onde e para

onde sera feita esta migragdo, etc.
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6.4 O Algoritmo Genétice Utilizado neste Trabalho
6.4.1 Algoritmo Genético para o Problema das P-Medianas

Inicialmente, serda definida a estrutura do cromossomo. a funcdo de aptiddo, o
processo de selecdo e os operadores utilizados no algoritmo proposto neste trabalho para
resolver o problema. A estrutura adotada € a mesma proposta por NUNES [1998] e por

SAMPAIO [1999], para o problema das p-medianas.

a) Estrutura do Cromossomo:
Seja G(V, E) um grafo ndo direcionado, onde V ¢ o conjunto de vértices e E é o
conjunto de arestas. Cada um dos m cromossomos (r;) sera um subconjunto de V

contendo p elementos, ou seja,. r; c Ve r| =p, paratodoi e {I.2.....m}.

b) A funcio de aptidao
Neste algoritmo, adotou-se como fitness o namero de transmissio de cada
cromossomo que representa a soma das distancias percorridas pelos leituristas. ao longo

do grupo que deve ser percorrido, ou seja:

C, =fitness(r,) = Z {min [d(v,.v )]}
VJGV VLET;
Especificamente, neste exemplo, quanto menor € o numero de transmissdio. melhor €

o fitness do individuo.

¢) O processo de selegdo
No processo de sele¢do foi utilizada a mesma fungdo dec scle¢do adotada por
MAYERLE, 1994, para o problema do caixeiro viajante, o que torna provavel a escolha

para a reproducéo de individuos com melhor fitness, isto é:

1+y1+4.md(m’ +m)
2

Select (R)=4r, e R/ j=m+1-
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onde R ¢ uma lista R = (ry, 13, .... 1,,). com m cromossomos vidveis de p clementos cada,
sorteados entre os v vértices do grafo. rnd € [0, 1) ¢ um namero aleatério uniformemente

distribuido ¢ [b] ¢ o menor inteiro maior do que b.

d) O operador de recombinagdo crossover

Scjam r; ¢ r; dois cromossomos selecionados. com p elementos cada. no cromossomo
r; sdo sorteados ¢ elementos, ¢ € {1. 2. ... p}. que serdo transferidos para o cromossomo
ri, No cromossomo 1; sdo sorteados ¢ elementos que serdo transferidos para o
cromossomo r;. Desta maneira, foi adotado o cruzamento com n-parti¢oes.

Caso os dois cromossomos criados no processo de crossover ndo sejam viaveis, faz-
se a mutagdo substituindo-se, num dos cromossomos. os elementos repetidos por outros

sorteados entre os elementos que ndo pertencem ao cromossomo considerado.

6.4.1.1Descri¢do do Algoritmo Proposto
A seguir, scrdo apresentados os passos do algoritmo genético proposto. o qual sera

chamado de AGPMed.
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Passo 1. Construgio da Populacio Inicial

- Gere uma lista R = (1}, 5, ..., 1,,,), com m cromossomos viaveis de p elementos cada,
sorteados entre os v vértices do grafo;

- Calcule C; = fitness(r;), V r; € R;

- Ordenc a lista Rde modoque C; < C, <... < Cy;

- Faga k = 0 ¢ defina o erro € ¢ 0 nimero maximo de iteracdes Kg,.y:

Passo 2. Teste
-Se C,, — €, <€ ou k =Kk, entdo PARE e apresente o cromossomo ry:

Passo 3. Sclecao
- Selecione dois cromossomos. r; = Select(R) e r; = Select(R). com r; # r;:

Passo 4. Crossover

- Faga a reprodugio. Crossover (1j, 1) = { 1y, 1, };
Passo 5.

- Se rye r, forem cromossomos viaveis, faga:

r, =r,, sefitness(r, ) < fitness(r, ) ) ,
o , € vaao Passo 7.
I, =r., €asocontrario

- Ou entdo, se apenas um entre r, € r, ¢ viavel, faga:

r, = r, ou ry (vidvel), e va ao Passo 7.

Passo 6. Mutacg@o (no caso de ry e r, serem ndo viaveis)
- Escolha aleatoriamente r, ou ry;
- Faga a mutacdo no cromossomo cscolhido, produzindo r,:

Passo 7.
- Se fitness(ry) < fitness(r,,). faca:

- Elimine ry, (o pior cromossomo) da lista R;

- Insira r; na lista R. mantendo a ordem crescente dos fitness:
- Fagak =k + 1 e volte ao Passo 2.

6.5 Algoritmo Para Formacio dos Clusters (Agrupamentos)

Obtidas as medianas que, para o problema aqui estudado, servirdo como depositos
ficticios para cada um dos veiculos (leituristas), deve-se, entdo. determinar qual sera o
grupo de atendimento (os pontos de parada) de cada um destes leituristas. Isto sera obtido

a partir de algoritmo de designacdo.



No método proposto por Gillett e Johnson [GOLDEN. 1977] [BODIN. 1983] os
pontos de parada sdo designados aos depositos de acordo com o algoritmo. considerando-
se restrigdo de capacidade. Neste trabalho, o algoritmo serd chamado de algoritmo

M Dep Rz e csta descrito a seguir.

Passo 1. Calcule a distdncia entre cada n6 ainda ndo designado. até cada um dos
depositos ficticios, cujos veiculos correspondentes ainda possuam espago:

Passo 2. Para cada n6 i do passo anterior, obter t; como sendo o depOsito mais proximo
deie t] como sendo o segundo depésito mais proximo de i. com distancias iguais a ¢! e
c;, respectivamente;

Passo 3. Para todos os nos i dos passos anteriores. calcular a razdo ri = ¢!/¢; . Ordenar os

nos 1 de acordo com os valores de ri. em ordem crescente. Essa lista determina a ordem
em que os nos serdo designados a um dos depositos: aqueles no relativamente proximos a
um deposito serdo considerados primeiro:

Passo 4. Percorrer a lista do passo anterior, designando os nds i aos depositos mais
proximos, até€ que a capacidade do veiculo correspondente. a um depdsito ficticio. esteja
esgotada. Nesse caso, volte ao passo 1.

A seguir, no capitulo VII, sdo mostradas as aplicacdes das técnicas ao problema

abordado.



CAPITULO VII

7. Aplicagdo das Técnicas Apresentadas a Solucio do Problema Proposto
- Implementacio Computacional

Para resolver o problema real descrito no Capitulo 1I1. efetuou-se a implementagdo
computacional de alguns dos algoritmos apresentados. Uma descri¢do detalhada, assim

como os resultados obtidos, sdo apresentados a seguir.

7.1 Introducao

Preliminarmente a implementa¢do computacional dos algoritmos, definiu-sc a area
de atuacdo dos leituristas na cidade de Pato Branco. Para fazer a leitura dos medidores de
consumo de dgua, os leituristas devem percorrer, mensalmente, uma rede viaria,
composta de ruas. Cada rua ¢ dividida em trechos (quadras). onde cada trecho é um
pedago de rua compreendido entre duas ruas transversais. os quais podem ou ndo possuir
medidores de dgua; os que possuem sdo os trechos produtivos, os outros sio chamados
improdutivos.

O problema €, entdo, determinar qual leiturista devera atender a quais pontos de
leitura. de maneira a percorrer seu trajeto de forma otimizada. atravessando o minimo
possivel trechos improdutivos.

Portanto. o problema a ser tratado divide-se em duas fases: divisdo da parte da
rede vidria a ser estudada em subgrupos, sendo que cada subgrupo devera ser percorrido
por um leiturista € o roteamento do percurso nos diferentes subgrupos. conforme

apresentado no Fluxograma 7.1.
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Fluxograma 7.1 — Fases de resolugio do problema

Resolucgdo do problema

Fase I
Formacao dos subgrupos
de atendimento

Fase 11

Roteamento dos

subgrupos

7.2 Etapas da Implementacio Computacional

A 1mplementagdo computacional dos algoritmos para solu¢do do problema foi
dividida em 4 etapas distintas:

Na primeira etapa, efetuou-se o cadastramento de varios pontos no mapa
digitalizado da cidade de Pato Branco. Esses pontos foram dispostos de mancira a mapear
a parte da rede viaria a ser estudada, que conforme mencionado no capitulo 111, foi
escolhida por apresentar caracteristicas de centro e bairros ¢. também. por apresentar
trechos com varios clientes e longos trechos com poucos clientes. Foram introduzidos
pontos nas interse¢des das ruas € no meio das quadras, buscando a methor caracterizag¢io
dos trechos produtivos. No mapa, pequenos simbolos indicardo a presenca destes pontos.
Assim, um banco de dados € formado contendo as coordenadas geograficas de cada
ponto.

Na segunda etapa, utilizando o Algoritmo Genético Aplicado ao Problema das P-
Medianas (AGPMed), definiu-se 12 pontos que representam uma boa aproximagdo para o
problema de localizagdo de 12 facilidades (12-medianas que representardo depositos
ficticios) do grafo cujos vértices sdo os 774 pontos que demarcam a area de atendimento
em estudo. Depois, utilizou-se 0 Algoritmo de Teitz e Bart, com o mesmo objetivo. cuja

solucdo inicial foi o resultado obtido pelo AGPMed. A idéia foi encontrar 12 pontos de
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modo que a soma das distancias de cada vértice do grafo a facilidade mais proxima fosse
minima, comparativamente ao Algoritmo Genético.

Em torno de cada uma das 12 medianas, formou-se clusters (agrupamentos),
realizando-se a terceira etapa. Para isto, utilizou-se o algoritmo de designacio
M Dep Rz, que ¢ uma adaptagdo feita a partir da heuristica proposta por Gillet e
Johnson.

Na quarta etapa, para cada um dos agrupamentos, construiu-se roteiros pela
Formulacdo do Problema do Carteiro Chinés e pelo Algoritmo do Carteiro Chinés.

Estas etapas estdo ilustradas no Fluxograma 7.2.

Fluxograma 7.2 — Resumo das etapas de resolucao

Fase I

Formacio dos subgrupos de atendimento

Etapa 1 — Cadastramento dos pontos

Software AutoCad (Ferramenta Map)

)

Etapa 2 — Designacio das 12-medianas
- Proposia {: Algoritmo Genético aplicado
ao probiema das P-medianas (AGPMed)

- Proposta 2: Rlgoritmo de Teitz e Bart

'

Etapa 3 - Formacio dos Clusters

Algoritmo de designagdo M_Dep Rz

v

Fase I1

Roteamento dos subgrupos

Etapa 4 — Roteamento dos subgrupos

- Proposta !: Formulagdo do PCC
- Proposta 2: Algoritmo do Cart Chinés
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E importante ressaltar que. em todas as fases deste trabatho. foram consideradas

apenas as distancias euclidianas entre os vértices do grafo.

7.3 A Implementacio Computacional e Obtenciio dos Resultados

A programacgdo computacional dos algoritmos utilizados neste trabalho foi feita
através da Linguagem Pascal e a utiliza¢do do Software LINGO ® 6.0. instalados em um
microcomputador Pentium 1l — 400 MHz ¢ 64 MB de memédria RAM. sendo 4 MB

compartilhada para video.

7.3.1 O Cadastramento dos Dados — Definicio do Grafo Inicial

O cadastramento dos dados foi feito um a um. Em cada trecho de rua. existem
varios clientes que devem ser atendidos pelos leituristas. Dessa forma. associou-se, a
apenas um ponto, todos esses clientes que devem ser atendidos. que ¢ estabelecido como
o ponto médio do trecho produtivo.

Estes pontos médios formam, assim, o conjunto dos pontos de parada do
problema. O problema €, entdo, redefinido da seguinte forma: determinar qual lciturista
devera atender a quais pontos de parada, de modo a percorrer 0 menor caminho para
atender a todos os seus pontos de parada.

Designar um ponto de parada a um leiturista € o correspondente a designar um
trecho produtivo ao leiturista e, desta forma. estdo definidos os seus pontos de leitura.

Os resultados da inser¢do dos pontos no mapa digitalizado da cidade de Pato

Branco (PR). que indicar@o os trechos produtivos, podem ser visualizados na Figura 7.1.



Figura 7.1 — Pontos que definem a area de atendimento estudada
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7.3.2 A Definicao das 12-Medianas

Para o célculo das 12-medianas utilizou-se, primeiramente, o algoritmo genético

descrito no capitulo VI. Fixou-se o nimero maximo de iteracdo kysx = 1000 ¢ uma

populag@o variando de 75 a 200 individuos. O algoritmo para, quando se atinge o nimero

maximo de iteragGes, ou quando a diferenga dos valores de transmissdo entre o melhor e

o pior € menor de 2.000 metros.

Considerando-se o aspecto probabilistico dos algoritmos genéticos, efetuou-se 5

simula¢des. Em cada uma dessas simulagdes, a partir da solugdo obtida pelo algoritmo

genético, iniciou-se o algoritmo de Teitz e Bart, buscando melhorar a solugdo através da
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substituicdo de vértices. Os resultados sdo apresentados no Quadro 7.1. onde os valores

de transmissdo sdo dados em metros e os tempos computacionais em segundos.

Quadro 7.1 — Resultados numéricos das simula¢des para o problema das 12-medianas

Algoritmo Genético (AGPMed)

Algoritmo de Teitz e Bart

Simulacdo | IteracGes | Populagdo | Valor Trans. | Tempo Comp. § lteragdes | Valor Trans. | Tempo Comp.
(metros) (segundos) {metros) (segundos)
1 1000 200  ]201.569,1775 7.290 17 185.152.4898 7.444
2 1000 150 202.306,3062 7.205 14 184.663,2083 6.192
3 1000 75 203.176,7247 6.790 18 184.920.8433 7.811
4 1000 200 202.946,4390 7.430 12 187.156,6691 6.057
5 1000 100 213.958,3634 6.950 15 186.164.3975 6.369

Verifica-se no Quadro 7.1 que, nas 5 simulagdes, o critério de parada {oi o namero

de iteragdes previstas para o algoritmo. Em nenhuma dessas simulagdes o crro. ou seja, a

diferenga dos valores de transmissdo entre o melhor e o pior cromossomo, foi menor que

2.000 metros.

O Quadro 7.2 apresenta os vértices encontrados no AGPMed ¢ no Algoritmo de

Teitz e Bart, em cada simulagédo.
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Quadro 7.2 — As 12-medianas encontradas em cada uma das 5 simulacdes.

Vértices determinados pelo:
Simulacio AGPMed Algoritmo de Teitz e Bart
639 636 477 428 750 625 474 325
1 300 351 616 95 489 364 576. 95
690 215 63 272 678 650 64 272
446 272 412 35 474 272 598 64
2 357 551 323 95 364 541 325 111
690 655 639 694 679 640 745 198
682 584 720 272 678 579 650 272
3 357 624 323 95 364 618 326 95
63 456 502 570 64 458 498 750
538 720 326 95 541 721 326 95
4 357 412 495 272 364 | 746 474 272
690 215 63 613 688 231 65 600
420 584 720 95 745 598 575 95
5 357 329 675 56 364 325 679 64
215 533 456 667 232 533 474 281

O melhor resultado foi obtido na simulagdo 2 ¢ pode ser visualizado na Figura 7.2,
onde foram destacados os 12 vértices que representam as 12 medianas: 64, 111, 198, 272,

325, 364, 474, 541, 598, 641, 679, 745 que serdo utilizadas na etapa seguinte.




Figura 7.2 — Destaque das 12-medianas em relagdo aos demais pontos de parada.
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Como pode-se observar na Figura 7.2, as medianas ficaram bem distribuidas, em

relagdo aos demais pontos de parada, na area de atendimento estudada.

7.3.3 Formacio dos Clusters

Apés ter-se definido as 12-medianas, essas funcionario como sementes ou

depositos ficticios. Associou-se a cada uma destas sementes um leiturista diferente,

buscando-se que cada um atendesse, aproximadamente, a mesma quantidade de clientes.

Para tanto utilizou-se o algoritmo M_Dep Rz, que é uma adapta¢io do algoritmo de

designagdo proposto por Gillet e Johnson [GOLDEN, 1977], [BODIN, 1983], descrito no

capitulo VI. Foi proposto que cada leiturista atendesse em torno de 70 vértices.
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A designagdo dos pontos a cada uma das 12 sementes originara a formag¢ao dos 12

clusters de atendimento, que sdo apresentados no quadro 7.3

Quadro 7.3 — Formacdo dos 12 clusters, utilizando o algoritmo M Dep Rz

Vértices designados a cada um dos clusters

Total de pontos
atendidos

Cluster 1

64,20,21,22,23,24,25,26,27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41,
42,43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62. 63,
65, 66, 67, 68, 69, 70, 71, 73, 75, 139, 141, 142, 144, 145, 147, 148, 149, 151.
152, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 166, 169

76

Cluster 2

111,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 81, 82. 83. 84.
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 112, 113, t14, 115, 116, 117, 118, 119, 120, 121.
122,123, 124. 127,128,208, 211,212,217

69

Cluster 3

198,72, 74, 76, 77, 78, 79, 80, 126, 129, 130, 131, 132, 133, 135, 136, 137, 138,
140, 143, 146, 150, 171, 172, 173, 177, 184, 185, 186, 187, 188, 189, 191, 192,
193, 194, 195, 196, 197, 199, 200. 201, 202, 203, 204, 205, 206, 236, 237. 238,
288. 289, 292, 401, 402, 403, 405, 618, 620, 621, 622, 623, 624. 625. 626. 627

66

Cluster 4

272, 165, 167, 168, 170, 174, 175, 176, 178, 179, 180, 181, 182, 183, 190, 239,
240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
256, 257. 258, 259, 260, 267, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278,
279, 280, 281, 282, 283, 284, 285, 286, 287, 293, 294, 295, 296, 297, 298, 299,
300, 305, 306. 307, 308, 309, 310.313

72

Cluster 5

325, 228, 265, 266, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323.
324, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339. 340.
341, 342, 343, 344, 345, 377, 378, 379, 380, 381, 382, 383, 384. 385, 386. 387
388, 389, 390, 391, 392, 393, 394, 396, 398, 399, 400. 435. 467, 468

62

Cluster 6

364, 261, 262, 263, 264, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 336,
357, 358, 359, 360, 361, 362, 363, 365, 366, 367, 368, 369, 370, 371, 372, 373,
374, 375.376

[
th

Cluster 7

474, 428, 429, 430, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447,
448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462. 463,
464, 465, 469, 470, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483,
494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 511, 512. 513. 514,
515,516, 517.518.519, 519, 774

Cluster 8

541, 505, 506, 507, 508, 510, 520, 521, 522, 523, 524, 525, 526, 527, 528. 329,
530, 531, 532, 533, 534. 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 546.
547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 558, 559, 560, 561, 562, 563,
564, 565, 566, 570, 576, 578. 579, 580, 582, 586, 587, 588, 590, 616

62

Cluster 9

598, 290, 291, 301, 302, 303, 304, 395, 404, 406, 407, 408, 409, 410, 411, 412,
413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427. 431.
432, 433, 434, 466, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 591, 592.
593, 594, 595, 596, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609,
611,614,617

67

Cluster 10

641, 125, 207, 209, 210, 213, 214, 218, 216, 225, 227, 230, 231, 232, 233, 234,
235, 610, 612, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 640, 642,
643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 633, 654, 655, 656, 657. 658,
659, 660, 663, 718, 727, 728, 730, 731, 732, 733, 762, 763, 765, 766, 767, 768,
771,772

66

Cluster 11

679, 218, 219, 220, 221, 222, 223, 224, 226, 229, 661, 662, 664, 665, 666, 667,
668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684,
685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 693, 696, 697. 698, 699, 700,
701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716,
717,719

66

Cluster 12

745, 134, 159, 567, 568, 569, 571, 572, 573, 574, 575, 577, 581, 583, 584, 585,
613, 615, 639, 720, 721, 722, 723, 724, 725, 726, 729, 734, 735, 736, 737, 738,
739, 740, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755,
756,757, 758, 759. 760. 761, 764, 769, 770, 773
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No Quadro 7.3 tem-se que o primeiro vértice de cada cluster representa uma das
12-medianas determinadas na etapa anterior.

Observa-se nesse quadro, que o nimero vértices atendidos por cada leiturista varia
de 58 a 76 vértices, com excegdo do leiturista do cluster 6, que atendera 35 pontos. Isso
justifica-se pelo fato de sua area possuir quadras mais extensas €, como 0s pontos
demarcam essa area, tem-se um nimero menor de vértices; porém, a area a ser percorrida
¢ praticamente a mesma dos demais leituristas. Isso podera ser verificado na figura 7.3,

onde contempla-se, também, a determinagio dos 12 clusters definidos pelo algoritmo
M Dep Rz.

Figura 7.3 — Determinacdo dos 12 clusters definidos pelo algoritmo M_Dep Rz
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Na proxima etapa definiu-se a sequéncia de atendimento dos clusters formados

acima, ou seja, o roteamento dos subgrupos.

7.3.4 Roteamento dos subgrupos

De acordo com o fluxograma 7.2, na segunda fase da resolugdo do problema,
busca-se o roteamento dos subgrupos obtidos pelo algoritmo M _Dep Rz. Para tanto,
surgem duas propostas: Formulacdo do Problema do Carteiro Chinés e o Algoritmo do

Carteiro Chinés.

7.3.4.1 Formulacie do Problema do Carteiro Chinés.

A Formulagdo do Problema do Carteiro Chinés representa a proposta 1 para
solugdo de um problema de cobertura de arcos. A formula¢do apresentada no item
5.5.2.1.3 foi desenvolvida para cada subgrupo separadamente.

Nesta formulag¢do onde havia x, + x, 21 ( restrigdo (5.14)). adotou-sc Ny X 22

em funcdo da leitura em ambos lados da rua, ou seja. considerou-se arcos duplos em
todos os trechos produtivos.

No anexo | apresenta-se, como exemplo, a formula¢do para a rota nimero 272, de
acordo com o grafo (Figura A.2) obtido a partir do mapa do cl/uster 272 (Figura A.1).
Nesse anexo, também sdo fornecidos os resultados obtidos pelo Software LINGO, para
esta rota.

Aplicou-se a Formulagdo do Problema do Carteiro Chinés para todos clusters e,
utilizando o Software LINGO, obteve-se os resultados que sdo apresentados no quadro

7A4.



Quadro 7.4 — Resultados obtidos pelo Software LINGO

Rota Distancia percorrida (em metros)
Rota 64 9.073
Rota 111 8.040
Rota 198 8.112
Rota 272 9.204
Rota 325 7.076
Rota 364 6.575
Rota 474 6.579
Rota 541 8.445
Rota 598 8.988
Rota 641 8.507
Rota 679 9.185
Rota 745 8.055
TOTAL 97.839

85

O Quadro 7.4 fornece a distancia percorrida por cada leiturista e a distancia total.

97.839 metros, que ao ser comparada com a situagdo atual. Quadro 3.4. num total de

105.797 metros, apresenta uma melhoria em torno de 8.13%. Nestas informagdes,

podem-se avaliar as maiores rotas. Nesta proposta, ¢ a rota 272 com 9.204.6410 metros;

na situacdo atual, a maior rota ¢ a 11040, com 11.180,29 metros. o que representa uma

diferenca de 1.975,65 metros.
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7.3.4.2 Algoritmo do Carteiro Chinés

Na proposta 2 da segunda fase, sugere-se 0 uso do Algoritmo do Carteiro Chinés.
Esse algoritmo foi implementado fornecendo a sequéncia a ser percorrida pelos leituristas
e, também, o comprimento, em metros, que cada uma dessas rotas terd. I'sses valores

podem ser visualizados no quadro 7.5.

Quadro 7.5 - Distancia percorrida, em metros, pelos leituristas, nas rotas obtidas pelo
Algoritmo do Carteiro Chinés

Rota Distancia percorrida (em metros)

Rota 64 9.175
Rota 111 8.231
Rota 198 8.264
Rota 272 9.369,
Rota 325 7.314
Rota 364 6.617
Rota 474 6.584
Rota 541 8.687
Rota 598 9.196
Rota 641 8.532
Rota 679 9.240
Rota 745 8.081
TOTAL 99.290
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Comparando-se as distancias encontradas pelo Algoritmo do Carteiro Chinés, no

Quadro 7.5. e as distdncias encontradas pela Formulag¢do do PCC. no Quadro 7.4,

observamos que a diferenca fica em torno de 1%. Essa diferenca ¢ devida ao modo de

execucdo de cada uma das propostas. A Formula¢do matematica do PCC foi elaborada

manualmente. considerando-se um arredondamento de valores. e o algoritmo do Carteiro

Chinés foi implementado considerando-se todas as casas decimais das coordenadas

geograficas dos 774 pontos utilizados.

obtida pelo Algoritmo do Carteiro Chinés a ser seguida ¢ a seguinte:
281.
279,
308.

255,
181.
190.

299.
282.
278,
276.

255.

245,
168.

Na figura 7.4 ¢ apresentada a recuperagdo da rota 272. onde a sequéncia de pontos

270,272,183, 179, 182, 180. 295, 190, 295. 180,

180, 181, 176, 178, 175, 174, 175,
287.293. 297, 299, 306, 307. 305.
300, 299, 298, 299, 297, 293, 296,
281, 282,279,272, 273, 274, 280,
277,276, 275,274, 273,272, 270,
268, 257, 253, 258, 267, 278, 267,
250, 254, 249, 254, 271, 254, 250,
248, 257, 248, 245, 244, 260, 244,

167, 165

179, 183,
307,310,
282, 283,
284, 280.
255, 251,
258,259,
255, 246.
245, 243, :

272,
307,
284,
274,
256,
260,
240,

180.

182.

165,
179.

239.
175,
. 294,
. 308.

240,
178.
. 287,
. 306,
. 283,
.277,
. 268,
.251,

246,
176,



Figura 7.4 — Recuperagdo da rota 272 — Algoritmo do Carteiro Chinés
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CAPITULO VIII

8. ANALISE DOS RESULTADOS NUMERICOS, CONCLUSOES FINAIS E
SUGESTOES PARA TRABALHOS FUTUROS

O objetivo deste trabalho foi o de propor um modelo informatizado para o
planejamento e otimiza¢do das rotas dos leituristas a ser utilizado pela Empresa de

Saneamento Basico do Parana, no municipio de Pato Branco.

8.1 Analise dos Resultados

Inicialmente, sdo analisados os resultados de cada fasc em cada uma de suas

etapas.

8.1.1 Fase I — Formacao dos Subgrupos de Atendimento

A Fase | foi dividida em trés etapas. Na primeira etapa. utilizando-s¢ o Software
AutoCad. obteve-se as coordenadas geograficas dos 774 pontos que demarcavam os
trechos produtivos do grupo a ser trabalhado, formando-se assim. o grafo inicial.

Na segunda etapa foram designadas as 12 sementes para a subsegiiente formacio
dos grupos de atendimento para cada um dos leituristas. Nessa etapa. trabalhou-se com
duas propostas de solugfo: a primeira com algoritmo genético aplicado ao problema das
P-medianas: a outra, com o Algoritmo de Teitz e Bart.

Analisando-se o quadro 7.1, pode-se notar que o tempo computacional. nas cinco
simulagdes, € praticamente o mesmo nas duas propostas. Porém. o que precisa ser

analisado ¢ que o Algoritmo Genético parte de uma solu¢do inicial aleatoria. faz 1000
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iteragbes e apresenta uma solucdo aproximada da 6tima. Na proposta deste trabalho,
usou-se, como solugdo inicial para o Algoritmo de Teitz e Bart, a solu¢do proposta pelo
Algoritmo Genético e buscou-se melhora-la. Assim, o niimero de iteragdes variou de 12 a
18, que ndo € um niimero tdo elevado, em vista que busca-se 12 medianas em 774 pontos
do grafo.

Na solugio escolthida como 6tima para continuag¢do do trabalho, o algoritmo de
Teitz e Bart melhorou em 8,72% a solucgdo fornecida pela proposta 1 — aplicag¢do do
Algoritmo Genético. Esse resultado reflete a boa combinagao desses dois algoritmos.

No Algoritmo Genético, o nimero de individuos para formar a populag¢do variou
de 75 a 200 e apresentou a melhor solug¢de com 150 individuos, o que mostra ndo ser
necessario uma populagdo numerosa, haja visto que esse algoritmo é probabilistico €
busca os individuos mais aptos para o crossover.

Na terceira etapa, utilizou-se o algoritmo de designagio proposto por Gillett e
Johnson, formando-se os agrupamentos emm torno das medianas encontradas na fase
anterior. Esse algoritmo foi implementado com restri¢do de capacidade para cada um dos
depositos. Assim, pode-se verificar no quadro 7.3 e na figura 7.3 que a drea de

atendimento de cada leiturista € aproximadamente a mesma.

8.1.2 Fase II — Roteamento dos Subgrupes

Na segunda fase, tem-se duas propostas para o roteamento dos clusters, 0s grupos
de atendimento de cada leiturista, obtidos na fase anterior.

A primeira proposta foi a formulagio do Problema do Carteiro Chinés (PCC), e
isso foi exemplificado com a formulagdo completa da rota 272, apresentada no Anexo 1.
Apresentou-se a estrutura da Fungéo Objetivo e suas respectivas restrigdes. O modelo foi
resolvido utilizando o Software LINGO e a solu¢io é mostrada logo em seguida.
Percebe-se que o tempo de execucdo foi muito pequeno, apenas 1 segundo para um total
de 108 iteragdes. A formulagdo considerou apenas os arcos validos, ou seja, os vértices

que podem ser realmente ligados.
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Na segunda proposta, utilizou-se o Algoritmo do Carteiro Chinés que foi
implementado de modo que se insere 0s pontos a serem roteirizados. confirmando-se a
ligacdo entre os pontos.

Em seguida, o programa gera o ciclo a ser percorrido € a distincia correspondente
a esse percurso. O tempo computacional foi muito pequeno. Depois de implementado,
pode-se gerar a rota de qualquer conjunto de pontos. No quadro 7.5 pode-se visualizar o
comprimento das rotas obtidas pelo Algoritmo do Carteiro Chingés.

Comparando-se as solugdes das duas propostas para roteamento. quadro 7.4 e 7.5,
percebe-se que a solucdo do Algoritmo do Carteiro Chinés aproxima-sc muito da solugdo

da Formulagdo do Carteiro Chinés.

8.2 Conclusoes

A utilizagdo do Algoritmo Genético melhorado com a utiliza¢do do Algoritmo de
Teitz e Bart fornece uma boa solugcdo para o problema das p-medianas. O algoritmo
M_Dep_Rz ¢ facil de ser implementado e apresenta bons resultados para a designagio
dos pontos aos respectivos depositos.

Para o roteamento dos subgrupos, o Algoritmo do Carteiro Chinés mostrou-se ser
bem eficiente comparativamente com o modelo do Problema do Carteiro Chinés.

Comparando-se a solu¢do do quadro 7.5 e¢ a solugdo atual do problema
apresentado no quadro 3.4, percebe-se no total uma melhoria de 6.15% (Algoritmo do
Carteiro Chinés) e 8,13% (Formulagdo do Problema do Carteiro Chinés). [sso representa
uma redugdo média de 7.200 metros no circuito total deste grupo e, considerando-se que
existem outros 6 grupos semelhantes nesse municipio, torna-se viavel sua
implementagdo. Outro aspecto importante a ser considerado ¢ a automatizacio na

obtencdo das rotas. de maneira rapida, eficaz e sem erros.
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8.3  Sugestoes para Trabalhos Futuroes

Com o objetivo de melhorar ainda mais os resultados apresentados neste trabalho,

deixa-se as seguintes sugestdes para trabalhos futuros:

a) Efetuar, primeiramente, a divisio do municipio em 7 grupos, para depois subdividi-
los em grupos de atendimento para cada leiturista.

b) Sugerir um numero menor de leituristas para cobrir o grupo. Fazer testes para
verificar até€ que area que um leiturista poderia cobrir durante o tempo habil existente.

¢) Atribuir pesos aos pontos médios dos trechos, definidos na etapa 1 da primeira fase,
de acordo com o niimero de clientes que devem ser atendidos nesses trechos.

d) Pesquisar a construg@o de outros algoritmos utilizando, além do algoritmo genético,
as técnicas ant system, simulated annealing e outras.

¢) Aplicar variagdes do Problema do Carteiro Chinés com outras técnicas de cobertura

de arcos.
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ANEXO 1

FORMULACAO DO PROBLEMA DO CARTEIRO CHINES PARA A ROTA 272

Apresenta-se a formulagdo para a rota niimero 272, de acordo com o grafo (Figura
A.2) obtido a partir do mapa do cluster 272 (Figura A.1).

MIN(Rota 272) =

59.4087 * k165167 + 53.3799 * x165239 + 59.4087 * x167165 +
92.5317 * x167168 + 92.5317 * x168167 +

51.7863 * x168170 + 51.7863 * x170168 + 29.3234 * x174175 +
29.3234 * x175174 + 64.3671 * x175178 + 55.1628 * x175179 +
56.4053 * x176178 + 49.3563 * x176181 + 64.3671 * x178175 +
56.4053 * x178176 + 55.1628 * x179175 + 55.8345 * x179182 +
55.2511 * x179183 + 48.9795 * x180181 + 56.7377 * x180182 +
54.3037 * x180281 + 51.7179 * x180295 + 49.3563 * x181176 +
49.9795 * x181180 + 55.8345 * x182179 + 56.7377 * x182180 +
55.2511 * x183179 + 51.8161 * x183272 + 65.7341 * x190287 +
44.6710 * x190295 + 53.3799 * x239165 + 48.9008 * x239240 +
48.9008 * x240239 + 64.7169 * x240242 + 71.0053 * %x240246 +
45.3849 * x241242 + 49.3309 * x241243 + 73.6572 * x241247 +
64.7169 * x242240 + 45.3849 * x242241 + 49.3309 * x243241 +
53.8263 * x243245 + 52.4802 * x244245 + 53.5837 * x244260 +
53.8263 * x245243 + 52.4802 * %x245244 + 79.6651 * x245248 +
71.0053 * x246240 + 82.4609 * x246255 + 73.6572 * x247241 +
80.1123 * x247256 + 79.6651 * x248245 + 77.7053 * x248257 +
32.3870 * x249167 + 68.5141 * x249254 + 45.3848 * x250254 +
56.6444 * x250255 + 52.2905 * x251255 + 54.4369 * x251256 +
53.7339 * x252256 + 49.0428 * x252257 + 59.6467 * x253257 +
48.5263 * x253258 + 68.5141 * x254249 + 45.3848 * x254250 +
50.5318 * x254271 + 56.6444 * x255250 + 52.2905 * x255251 +
48.3653 * %255270 + 80.1123 * x256247 + 54.4369 * x256251 +
53.7339 * x256252 + 48.3653 * x256269 + 77.7053 * x257248 +
49.0428 * x257252 + 59.6467 * x257253 + 45.9215 * x257268 +
48.5263 * x258253 + 69.2646 * 258259 + 47.9398 * x258267 +
69.2646 * x259258 + B6.2066 * x259260 + 53.5837 * x260244 +
86.2066 * x260259 + 47.9398 * x267258 + 43.3259 * x267278 +
45.9215 * x268257 + 43.9424 * x268276 + 48.3653 * x269256 +
43.9138 * x269274 + 48.3653 * x270255 + 46.7214 * x270272 +
50.5318 * x271254 + 51.8161 * x272183 + 46.7214 * x272270 +
54.1419 * x272273 + 58.8570 * x272279 + 54.1419 * x273272 +
53.0289 * x273274 + 43.9138 * x274269 + 53.0289 * x274273 +
52.2313 * x274275 + 65.6069 * x274280 + 52.2313 * x275274 +
53.7339 * x275276 + 43.9429 * x276268 + 53.7339 * x276275 +
58.8730 * x276277 + 61.5935 * x276285 + 58.8730 * x277276 +
45,6305 * x277278 + 43.3259 * x278267 + 45.6305 * x278277 +
58.8570 * x279272 + 57.1410 * x279282 + 65.6069 * x280274 +
52.4026 * x280284 + 54.3037 * x281180 + 55.6152 * x281282 +
57.1410 * x282279 + 55.6152 * x282281 + 53.9554 * x282283 +
48.0445 * x282296 + 53.9554 * x283282 + 51.9308 * x283284 +
52.4026 * x284280 + 51.9308 * x284283 + 51.1475 * x284286 +
48.7600 * x284298 + 61.5935 * x285276 + 56.6379 * x285309 +
51.1475 * x286284 + 5300928 * x286309 + 65.7341 * x287190 +
58.3850 * x287293 + 58.3850 * x293287 + 47.4014 * x293294 +
59.3096 * x293296 + 58.5636 * x293297 + 47.4014 * x294293 +
51.7179 * x295180 + 44.6710 * x295190 + 48.0445 * x296282 +
59.3096 * x296293 + 58.5636 * x297293 + 48.0329 * x297299 +



48.
57.
56.
53.
56.
51.
51.
55.

7600
7697
1000
1148
4172
6333
6333
7166

L . R S

ST

x167165
x165167
x167168
x168170
x175174
x174175
x178176
x175178
x175179%
x181180
x176181
%x179182
1179183
x287190
x165239
x239240
x242241
x240242
x241243
x245244
xX243245
x255246
x241247
x257248
%254249
x255250
x255251
x257252
X257253
x249254
%250255
x252256
x256269 =
+ x248257
x257268 =
x253258
x258259
x244260
x258267
x257268
%x256269
x255270
x254271
x183272
x272279 =
+ x272273
+ x269274
xX274280 =

I T i T ST S S S S S S M A P

o+ o+ b+ o+

®298284 + 57.7697 * x298299 + 48.0329
x299298 + 56.1000 * x299300 + 50.1243
%x300299 + 50.5934 * x305307 + 50.1243
k306307 + 50.5934 * x307305 + 53.1148
x307308 + 55.8791 * x307310 + 56.4172
x308309 + 56.6379 * x308285 + 53.0928
x309308 + 55.7166 * x309313 + 55.8791
x313309;

+ x239165 -x165167 - x165239 = 0;

+ x168167 -x167165 ~ x167168 = 0;

+ x170168 -x168167 - x168170 = 0;
-x170168 = 0;

~-x174175 = 0;

+ x178175 + %179175 -x175174 - x175178
+ x181176 -x176178 - x176181 = 0;

+ x176178 -x178175 - x178176 = 0;

+ x182179 + x183179 -x179175 - x179182
+ x182180 + x281180 -x180181 - x180182
+ x180181 -x181176 - x181180 = 0;

+ x180182 -x182179 - x182180 = 0;

+ x272183 -x18317% - x183272 = 0;

+ x295190 -x190287 - x190295 = 0;

+ x240239 ~x239165 - x239240 = O

+ x242240 + x246240 -x240239 - x240242
+ 3243241 + x247241 -x241242 - x241243
+ x2481242 -x242240 - %x242241 = 0;

+ x245243 -x243241 - x243245= 0;

+ x260244 -x244245 -~ x244260 = 0;

+ x244245 + x248245 -x245243 - x245244
+ x240246 -x246240 - x246255= 0;

+ %256247 -x247241 - x247256 = (;

+ x245248 -x248245 - k248257 = (;
-x249254= 0;

+ x254250 -x250254 - x250255 = 0Q;

+ x256251 -x251255 - x251256 = 0:

+ x256252 -x252256 - x252257 = Q;

+ x258253 ~-x253257 ~ x253258= {;

+ x250254 + x271254 -x254249 - x254250
+ x251255 + x270255 ~-x255250 ~ x255251
+ x251256 + x247256 + x269256 -x256247
a;

+ x252257 + x253257 + x268257 -x257248
0:

+ x259258 + x267258 -x258253 - x258259
+ x260259% -x259260 - x259258 = 0;

+ x259260 -x260244 - x260259= 0;

+ x278267 —-x267258 ~- x267278 = 0;

+ x276268 -x268257 ~ x268276 = 0;

+ x274269 -x269256 - k269274 = Q;

+ x272270 -x»270255 - x270272 = 0;

-x271254 = Q ;
+ x270272 + x273272 + x279272 -x272183

0;:

+ x274273 -x273272 ~ x273274 = 0;
+ x273274 + x275274 + x280274 -x274269

0;

+ x274275 + x276275 -x275274 -~ x275276 = 0;

EE R TS

x299297 +

x299306 +

%x306299 +

x307306 +

x308307 +

x309286 +

x310307 +

x175179 = 0;
%179183 = 0;
%x180281 = 0;
x240246 = 0;
x241247= 0;
X245248= 0;

x254271 = 0;
X255270= 0;

256251 - x256252 -
xX257252 - x257253 -
x258267 = 0;
x272270 ~ x272273 -
x274273 - x274275 -
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+ x268276
276285 =
x276277
x277278
x272279
x274280
x282281
x279282
X282296 =
+ x282283
+ x298284
x284298 =
+ x276285
+ x284286
+ x190287
+ x297293
x293297 =
x293294
x180295
x282296
x293297
x299298
x306299
x299306 =
+ x299300
+ x307305
+ x299306
+ x310307
x307310 =
+ x307308
+ x313309
x309313 =
+ x307310
+ x309313

+ + + + + o+

+ o+ o+

x165167
x165239
x167165
x167168
x168167
x168170
x170168
x174175
%175174
%175178
x175179%
x176178
x176181
x178175
x178176
x179175
x179182
x179183
x180181
x180182
x180281
%180295
x181176
x181180
2182179

R T T T T T T T S S Sy AT I I U

+ x275276 + x277276 + x285276 -x276268
0;

+ x278277 ~x277276 - x277278 =
+ xX267278 -x278267 - x278277
+ x282279 ~-x279272 - x279282 =
+ x284280 -x280274 - x280284 = 0;

+ x180281 -x281180 - x281282 = 0;

+ x281282 + x283282 + x296282 -x282279
0;

+ x284283 -x283282 - x283284 = 0;

+ x286284 + x283284 + x280284 -x284280
0;

+ x309285 -x285276 - x285309= 0;

+ x309286 -x286284 - x286309 = 0;

+ x2983287 -x287190 - x287293 = 0;

+ x296293 + x294293 + x287293 -x293287

’

OO O o

F

7

0;

~-x294283 = 0;

+ x190295 -x295180 - x295190 = O0;

+ x293296 -x296282 - x296293 = 0;

+ x299297 -x297293 - x297299 = 0;

+ x284298 -x298284 ~ x298299 = (;

+ x300299 + x298299 + x2972%89 -x299297
0;

-x300299= 0;

-x305307 = 0;

+ x307306 —-x306299 - x306307 = 03

+ x308307 + x306307 + x305307 -x307305
0;

+ x309308 -x308307 - x308309 = 0;

+ x308309 + x286309 + x285309 -x309285
0;

-x310307 = 0;

-x313309 = 0,

x167165 >= 2;

xX239165 >=
x165167 >=
x168167 >=
x167168 >=
x170168 >=
x168170 >=
x175174 >=
x174175 >=
x178175 >=
x179175 >=
x178176 >=
x181176 >=
x175178 >=
x176178 >=
x175179 >=
x182179 >=
x183179 >=
x181180 >=
x182180 >=
x281180 >=
x295180 >=
x176181 >=
x180181 >=
x179182 >=

Na Ne Se e Ns Ne we N we ws

. w

e NE NE Ny Na Ne Se Ne M o we

MNP NN NN
~

-,

x276275

2282281

x284283

x293294

x299298

%307306

x309286

x276277

x282283

%284286

x293296

2299300

%307308

x309308
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x182180
x183179
x183272
x190287
%x190295
X239165
x239240
x240239
x240242
x240246
x241242
x241243
x241247
x242240
x242241
x243241
x243245
xX244245
x244260
x245243
x245244
x245248
x246240
x246255
x247241
x247256
x248245
x248257
x249254
x250254
x250255
x251255
x251256
X252256
x252257
x253257
x253258
x254249
X254250
x254271
x255250
x255251
%255270
x256247
x256251
x256252
x256269
x257248
xX257252
x257253
x257268
xX258253
x258259
xX258267
x259258
x259260
x260244
x260259
x267258
x267278
x268257

R e i i i e e e e e I e T e S O S IO VOO

x180182
x179183
x272183
x287190
X295190
%165239
x240239
x239240
x242240
x246240
x242241
x243241
x247241
x240242
%241242
%241243
x245243
x245244
x260244
xX243245
x244245
x248245
x240246
x255246
x241247
X256247
x245248
x257248
x254249
x254250
x255250
x255251
®256251
x256252
x257252
x257253
x258253
x249254
x250254
x271254
x250255
x251255
x270255
x247256
x251256
x252256
X269256
x248257
x252257
x253257
x268257
X253258
x259258
X267258
x258259
xX260259
%x244260
%259260
x258267
x278267
x257268

NeNs Ne Ne %a e Me Ne Ne Sa o Na Na Ne S
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x268276
269256
X269274
270255
x270272
x271254
X272183
x272270
x272273
x272279
x273272
x273274
%274269
x274273
X274275
x274280
X275274
x275276
x276268
x276275
x276277
x276285
x277276
x277278
x278267
x278277
x279272
x279282
x280274
x280284
x281180
X281282
X282279
x282281
x282283
x282296
x283282
x283284
x284280
x284283
%28428%6
x284298
x285276
x285309
X286284
x286309
x287190
x287293
X293287
x293294
x293296
xX293297
x294293
x295180
x295190
X296282
x296293
x297293
x297299
x298284
x298299

Rl G T T e S S i e i I S T T e i i T i T TN ot O o U AR

x276268
x256269
x274269
x255270
x272270
x254271
x183272
x270272
x273272
x279272
x272273
x274273
X269274
x273274
x275274
x280274
x274275
xX276275
X268276
x275276
x277276
x285276
x276277
x278277
x267278
x277278
x272279
X282279
X274280
X284280
%x180281
x282281
xX279282
x281282
x283282
x296282
x282283
x284283
x280284
xX283284
%x286284
x298284
x276285
x309285
x284286
x309286
x190287
x293287
x287293
X294293
xX296293
x297293
x29329%4
x180295
x190295
x282296
x293296
x293297
X299297
x284298
x299298

~
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Xx299297 + x297299 >= 2;
x299298 + x298299 >= 2;
x299300 + x3002898 >= 2;
x299306 + x306299 >= 2;
x300299 + x299300 »= 2;
x305307 + x307305 >= 2;
x306299 + x299306 >= 2;
x306307 + x307306 >= 2;
x307305 + x305307 >= 2;
x307306 + x306307 >= 2;
x307308 + k308307 >= 2;
x307310 + x310307 >= 2;
x308307 + x307308 >= 2;
x308309 + x309308 >= 2;
x309285 + %285309 >= 2;
x309286 + x286309 >= 2;
x309308 + x308309 >= 2;
x309313 + x313309 »>= 2;
310307 + x307310 >= 2;
x313309 + x309313 >= 2;

xij > = 0 e inteiras



Figura A.1 — Mapa do Cluster 272
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Figura A.2 — Grafo do Cluster 272




Sao fornecidos os resultados obtidos pelo Software LINGO, para esta rota.

Figura A.3 — Mensagem de solugdo (Software LINGO)

P

Variables

Total:
Manlinzar:
Integers:

Optirnizer Statuz
State: G
Iterations:
Infeasibility:
Objective:
Best P
IP Bound:

LINGD Solver Status [Rota272]

lobal Optimum
108

0

9204 .64
9204 .64

9204 .64

Constraints

Total:
Maonlinear:

Monzeros

Total:
Manlinear:

407
0

1001
0

Generator Memony Used [K)

154

Elapzed Runtime [hi:mm: ss)
go.00:01

Cloze
=2

Update interval: |2

Global optimal solution found at step:

Objective value:
Branch count:

Variable
X165167
X165239
X167165
X167168
X168167
X168170
X170168
X174175
X175174
X175178
X17517¢9
X176178
X176181
X178175
X178176
X179175
X179182
X179183
X180181

Value
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
0.0000000
0.000000C0

2.000000
0.0000000
2.000000
2.000000
1.000000
0.0000000
0.0000000

R = gy

108
9204.641
0

Reduced Cost
0.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.1647949E-06
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

O OEIE O O O o0 9N e o g oT
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X180182
X180281
X180295
X181176
X181180
X182179
X182180
X1831729
X183272
X190287
X1902%85
X239165
X239240
X24023%
X240242
X240246
X241242
X241243
X241247
K242240
X242241
X243241
X243245
X244245
X244269
X245243
X245244
K245248
X246240
X246255
X247241
X247256
X248245
X248257
X2491e7
X249254
X250254
X250255
X25125%5%
X251256
X25225%
X252257%
X253257
X253258
X254249
X254250
X254271
X255250
X255251
X255270
X256247
X256251
X256252
X256269
X257248
X257252
X257253
X257268
X258253
X258259
X258267

1.000000
2.000000
0.0000000
0.00000600
2.000000
1.000000
1.000000
2.000000
0.0000000
0.0000000
.000000
.000000
. 0060000
. 000000
. 000000
0.0000000
0.00060000
2.0006000
1.000000
0.0008000
2.000000
0.00060000
2.000000
0.0060000
2.040000
0.0000000
2.000000
1.000000
2.000000
0.0000000
1.000000
1.0600000
1.000000
1.000000
0.0000000
1.000000
1.4060000
1.000000
0.0000000
2.000000
1.0000600
1.000000
2.000000
0.0000000
.000000
.000000
.000000
. 000000
.000000
0.06000000
1.000000
0.00060000
1.0600000
2.000000
1.000000
1.0006000
0.0000000
2.000000
2.000000
0.0000000
1.000000

N e N

N e e

OO O OO OO0 T OO

0.00000600
.00006000
. 0000000
.00G0000
.0000000
. 0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
. 0000000
.0000000
82.46090
.0000000

C OO D OO OOOCOOODOOOoC OO0

.0000000

.0000000
.0000000
.0000000
. 0000000
.0000000
.0000000
.0000000
.0000000
. 0000000
.0000000
32.38700
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
. 0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
. 0000000
.0000000
.0000000
. 0000000
.0000000
.0000000
.00000600
.00Q0000
. 0000000

e ReREsBeBeNeoNeoNeoloNoRoleBeNoNoRoNoNoNeoNoNoNeNole No o

.1715088E-05

.1721191E-05
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X259258
X259260
X260244
X260259
X267258
X267278
X268257
X26827¢
X269256
X269274
X27025%
X270272
X271254
X272183
X272270
X272273
X27227%
X273272
X273274
X27426%
X274273
X274275%
X274280
X275274
X27527%
X276268&
X276275
X276277
X276285
X277276
X27727%
X278287
X278277
X279272
X279282
X280274
X280284
X28118¢0
X281282
X282279
X282281
X282283
X28229%6
X283282
X283284
X28428¢0
X284283
X28428%
X2842908
X285276
X285309
X286284
X286303
X287190
X287293
X293287
X293294
X293296
X293297
X294293
X295180

2.000000
0.0000000
0.0000000

2.000000

1.000000

1.000000
0.0000000

2.000000
0.0000000

2.008000

2.000000
0.0006G0060

1.000800

2.000000

2.000000
0.0000G00
0.0000000

2.000000
0.0000000
0.000C000
.000000
. 000000
. 000000
. 000000
000800
0.000000G0
. 000000
. 000800
. 0000400
.000000
000000
. 000000
. 000000
000000
0.00006000

1.00G000

1.0000Q0
0.0000000

2. 000006

2.000000
0.0000000
. 000000
. 000080
.000000
. 000480
. 000000
. 000600
0.0000000

2.000000
0.0000000

2.000000

2.000000
0.00006000

2.000000
0.0000000

2.000000

1.000000

1.0006000
0.0000000

1.000000

2.000000

[\

b2 e b

N S R b N R

e

(sBeleBaeleBoleNeNoBoeNoReoReoNoNoBoNoNoNoNoNoReoNoNoNoNoNoNoNoNoNeoNeoReoNoloNoloNeoNeloRNeNeNoNeNeReoNeNolleo ol e R

OO OO0 OO OO

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

.7751465E-06

.0000000
.0000000

.1214600E-05

.0000000
.0000000
.0000000

.8911133E-06

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

.4981140E-03

.0000000
.0000000
.0000000
. 0000000
.0000000
.0000000
.0000000
.0000000

.1159668E-05

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.000000Q0
5300875.
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
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X295180
X296282
X296293
X297293
X297299
X298284
X298299
X299297
X299298
X299300
X299306
X300299
%X305307
X306299
X306307
X307305
X30730¢6
X307308
X307310
X308307
X308309
X309285
X309286
X309308
X309313
X310307
X313309
X255246

0.0000000
1.000000
1.000000
2.000000

0.0000000

0.0000000
2.000000
2.000000

0.0000000

. 000000

.000000

.000000

.000000

. 000000

.000000

.0000600

.0000060

.000000

.0006G0

.000000

.000000

0.00000600

. 000000

.000000

.000000

.000000

. 000009

.000000
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.0000000
.0000000
.00060000
.0000000
. 0000000
.0000008
. 0000000
.0000000
.9033203E-06
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
. 0000000
.0000000
.0000000
.0000000
.0000000
. 0000000
.1306152E~05
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
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APENDICE I

EXEMPLOS DE APLICACAO DOS ALGORITMOS
UTILIZADOS NO TRABALHO

Para um methor entendimento do funcionamento dos algoritmos utilizados neste trabalho,
os programas computacionais foram aplicados a um exemplo composto de um conjunto de 10

vértices. representando as intersegdes e os pontes médios das quadras a serem trabalhadas.

Sejam os 10 pontos e suas respectivas ceordenadas geograficas, apresentadas no Quadro

Al

Quadro A.1 — Coordenadas Geograficas

X

Y

334050

7097900

334110

7097870

334010

7097810

334100

7097830

334090

7097790

334290

7097880

334240

7097890

334230

7097810

WO IND N AW N -

334220

7097730

-
(=]

334070

7097720

A matriz de distincias Euclidianas emtre
computacionalmente, € apresentada no Quadre A.2 abaixo. Trabalhou-se com trés casas

todos os pares de pontos, encontrada

decimais.
Quadro A.2 — Distancias Euclidianas
1 2 3 4 5 6 7 8 9 10
1 0,000 67,082 98,489 86,023 117,047 240,832 190,263 201,246 240,416 181,108
2 67,082 0,000 116,619 41,231 #2462 180,278 131,529 134,164 178,045 155,242
3 98,489 116,619 0,000 92,195 82462 288,617 243,516 220,000 224,722 108,167
4 86,023 41,231 92,195 0,000 45231 196469 152,315 131,529 156,205 114,018
5 117,047 82,462 82,462 41,231 0000 219,317 180,278 141,421 143,178 72,801
6 240,832 180,278 288,617 196,469 219317 0,000 50,990 92,195 165,529 272,029
7 190,263 131,529 243,616 152,315 180278 50,990 0,000 80,623 161,245 240,416
8 201,246 134,164 220,000 131,529 141421 92,195 80,623 0,000 80,623 183,576
9 240,416 178,045 224,722 156,205 143,178 165,529 161,245 80,623 0,000 150,333
10 181,108 155,242 108,167 114,018 72801 272,029 240416 183,576 150,333 0,000

A seguir sdo apresentados os exemplos numéricos de cada algoritmo utilizado neste

trabalho.

1) Algoritmo das P-medianas de Teitz ¢ Bart

2) Algoritmo Genético aplicado ao Problema das P-medianas
3) Algoritmo de Gillet e Johnson
4) Algoritmo do Carteiro Chinés

5) Problema do Carteiro Chinés




1) Algoritmo das P-medianas de Teitz e Bart
Encontrar 3 medianas para os 10 pontos acima.

Passo 0

V = {V}, V2, V3, Va, V3, Ve, V7, Vg, Vo, Vio}

VoV = V,= {vi, v, v3} =Solugdo inicial

Passo 1

vi € {V = V,} serio os vértices ndo analisados:

V =V, = { v4, vs, V6. V7, Vg, Vo, Vi0}

Passo 2

Para todos os vértices ndo analisados. calcule:
Aij=0o(Vp) -o( Vyu {vi} — {vj}), V vj € V,

o(V,) = 855,876

-Analise do vértice 4
G(vy,va,vs) = 846,985
o(vy.vi,vy) = 827,147
G(va.va,vy) = 816,021

-Analise do vértice 5
O(v,Va,vs) =785,643
o(vy,vs,vs) =865,308
o(v2,V3,Vs) =770.263

-Analise do vértice 6
o(v),V2,vg) =686,138
o(vy,v3,ve) =652,448
G(V2,v3,vg) =607,656

-Analise do vértice 7
o{Vvy,v2,v7) =670,282
O(Vvy,V3.v7) =636,592
o(va,v3,v7) =591,796

A43 = 8.891
A43 = 28,729
Agq1 = 39.855
A53 = 70.233
ASZ = -

A5[ =85.613
A(,:; = 169.738

A(,z = 203,428
A(,) = 248,220

A7 = 185,594
Ay =219,284
Ay =264,080

-Analise do vértice 8
o(v,.va,vy) =630,865
o(vy.vi,vg) =597.175
G(Vv2.V3.vg) =552 383

-Anailise do vértice 9
o(V},va.vy) =750,196
o(v).v3,ve) =751,131
S(V2,V3,v0) =676,623

-Analise do vértice 10

O'(V].VZ,V]()) =808.825
G(V],V}.VI()) :()()0.() 10
O(Va.vivg) =777.418

O maximo Ay = Ag; = 303,493 — Assim, retirar v, e inserir vy.

Vp=(Vp U {vg} — {vi}) inserir v; em {V - Vp)

Passo 2
o(V;,) =552,383

Agy =225.011
Agj_ - 258,701
Ax| - 303.493

A<)3 = ]05,680
At)g = 104,745
A()] = ]79,253

A]o; = 47~05]
A]()3 = 135,034
A](” = 78.458



-Analise do vértice 1
o(vy,vs,vy) =855.876
G(Vz,Vg,V]) :630,865
o(v3,vs,vy) =597,175

-Analise do vértice 4
O'(Vz,V3,V4) =81 6,02]
o(Va,V,vy) =567,967
G(V;,Vg,V4) :530,093

-Analise do vértice 5
o(va,v3,vs) =770,263
o(va,vg,Vs) =517.016
O'(V3,V3,V5) 2548,424

-Analise do vértice 6
S(v3,v3,ve) =607.656
0(va,vg,Ve) =594,249
o(Vv3,vg,Ve) =629,545

Asg = -
A53 = 35,367
Asz = 3,959

Agg = -
A()S =_
A()Z = -

-Analise do vértice 7
o(va,v3,v7) =591.800
o(va,vg,v7) =594,249
G(vs3,vg,vy) =629,545

-Analise do vértice 9
O(V,V3,Vg) =676,623
G(Va,Vg,vg) =630,545
o(V3.Vg.Vy) =670,750

-Analise do vértice 10
O(V2,V3,Vy) =777.418
O(Va,Vg.Vy0) =542,722
0(\’3,V3,V)()) =633.545

O maximo Aj; = As3 = 35,367 — Assim., retirar v e inserir vs.

Vp = (Vpu {vs} — {v3}) inserir v em {V — Vp)

Vp = {vy,vs,vg}

V- Vp = { V}.V3. V4. Vp. V7, Vo, Vio}

Passo 2
c(V,)=517,016

-Analise do vértice 1
G(va,vs,vy) =630.865
G(va,vs,vy) =785,643
o(vs,vg,v) =517.017

-Analise do veértice 3
o(v2.vg,v3) =552,383
G(Va,vs,v3) =770,263
o(vs,vg,v3) =548.424

-Analise do vértice 4
o(va,vg,vy) =567,967
G(va,vs,vy) =808,859
o(vs,vg,Vy) =535,958

-Analise do vértice 6
G(Va,Vs.Ve) =594,249
0(V2,V5.V6) =549.939

Como ndo houve alteragio, V, ¢ solugio.

Vi = {va, vg, vs} e 6(V,) = 517,016

o(Vs,Vg.Ve) =527.616
-Analise do vértice 7
o(v2.vg,v7) =594,249
G(V2,vs.v7) =538.367
o(vs,vg,V7) =527.616

-Analise do vértice 9
0(v2.vs,vg) =630,545
(V1,Vs.v9) =64 1,257
o(Vvs,Vs.Vo) =568,821

-Analise do vértice 10

O(Va,Vg,Vig) =542,722
G(Vz,Vs.V]()) :779,924
G(V5,V3,V|0) =5 76.643

A()x = -
A()] = -
Agy = -

Ajgg = -
A]()3 = 9,66)
Ay = -

A()Z =-

Aygs =~
Ajgg = -
Ajgy = -
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2) Algoritmo Genético aplicado ao Problema das P-medianas

Encontrar 3 medianas (p=3) para os 10 pontos dados acima. Considere V={v;=1, v,=2,
vi=3,..., vio=10}, onde 1, 2, 3,..., 10 s@o os pontos considerados ¢ v;. vy, V3,..., Vig, S30 0s vértices
de um grafo G(V,E), para o qual E (conjunto de arestas) sdo as distancias euclidianas entre os
pontos. No caso deste exemplo, os pontos estdo representando as esquinas ¢ pontos médios das
quadras e os vértices escolhidos pelas p-medianas vdo ser as p-sementes para a formagdo dos
clusters. Assim, o peso ou demanda associado a cada ponto sera sempre igual a 1 (w=1).

Primeiramente ¢é calculada a matriz de distancias euclidianas entre os 10 pontos (dada
acima).

Passo 1: Inicializacdo

Pardmetros p=3 e m=5 (5 cromossomos de 3 elementos) gerar aleatoriamente a lista R:
11 = (V1,Y9,Vi0)

2 = (V),V3,Vs)

I3 = (V2,Vg,V9)

Iy = (Va,V7,V10)

Is = (V3,V},Ve)

R = (1}, 12, 13,14, 15)

Calcular C; = fitness(r;) = Zwj {min[d(vi,vj)}}; para todo vy € r. i= {1.2.3.4,5}
Como neste exemplo o peso w; serd igual a 1, o calculo do C; resume-se ao Z{min[d(vi.vj)]}.
Assim, para calcular:

C, = fitness(r))

d(ri,vi)=min[d(vi,vi);d(vio,v1):d(ve,vi)]= min [0;181,108;240,416] = 0
d(ry,v2)=min[d(vi,v2);d(vi0,v2);d(ve,v2)]= min [67.082;155.242:178.045] = 67.08
d(r;,v3)=98,489

d(r;,v4)=86,023

d(rl,v5)=72,801

d(r;,ve)=165,529

d(r;,v7)= 161,245

d(r;,vg)=80,623

d(ry,ve)=0

d(ri,vi0)= 0

C, = fitness(r)) = 731,792

C, = fitness(rz) C; = fitness(r3)
d(rz,v1)=0 d(rs,vi)= 67.082
d(ry,v2)= 67,082 d(r3,v2)=0
d(l‘z,V;): 0 d(l‘3,V3): 1 16,61 9
d(rz,VA,): 41 ,23 1 d(r3,V4): 41 ,23 1
d(r,vs)=0 d(rs,vs)y= 82,462
d(r2,ve)= 219,317 d(rs,ve)= 92,195
d(rz,v7)= 180,278 d(r;,v7)= 80,623
d(rz.vg)= 141,421 d(rs,vg)=0
d(ro.ve)= 143,178 d(r3,ve)=0
d(rs,vi9)= 72,801 d(rs.vy0)= 150,333

C, = fitness(r;) = 865,308 C; = fitness(r3) = 630,545



Cy4 = fitness(ry)
d(r4,v,)= 86.023
d(rs,vo)= 41,231
d(r4.\/3)= 92. 195
d(rg,v4)=0
d(rs,vs)=41.231
d(r4,v6)= 50.990
d(rs,v7)=0
d(rs,vg)= 80,623
d(l’4,V9): 150.333
d(rs,vi0)=0

C4 = fitness(ry) = 542,626

Cs = fitness(rs)
d(rs,\/[): 0
d(r5,v2)= 67,082
d(r5,V3): 0
d(rs.v4)= 86,023
d(rs,Vs): 82.462
d(rs,ve)=0
d(rs.v7)= 50,990
d(rs.vg)= 92,195
d(rs,ve)= 165,529
d(l’j,V[o)z 1 08, 167
Cs = fitness(rs) = 652.445

Como C3 £ CG32C 55 C <G = Ci=(542,626;630,545:,652,448:731,792;865,308) € portanto
R=(ry.r;.r5.r1.12), ou seja R=[(va,vy,vi0)i(va, v, vo)i(Vievave i (Vi,ve.vio)i(vi,v3.vs)]. Reordenado
R=(r1,r2,r3,r4,r5).

Contador k<0 e definimos o erro € = 25 € o n° de iteracdes kpqa=10.

Passo 2: Teste
Cn] - C‘ S_ = 8 Ou k 2 kn]ax?

865.308-542.626 = 322,682 > £ = 25 ¢ k=0 < kyu < 10, portanto continua.

Passo 3: Selecdo

Select(R)—{rJeR/j=m+1_( :

-1+\/1+4.md(m2 +m)”

j1=1 € j»=3, como j, # J», selecionamos r; e r; de R.

Paiyry = (s, V7, V1ip)
Pail, r; = (va, Vg, Vg)

Passo 4: Crossover

Sortear aleatoriamente ¢ € {1,2.3}, ¢=2.
1x=(va.Vg,vo) Filho,
1,=(v2,v7,v10) Filho,

Paij ry = (v4. V7, Vig)
Pai; 13 = (va, vg, Vo)

Passo 5: Como i e ry s#0 ambos cromossomos viaveis, calcular C, = fitness(ry) e C, = fitness(ry)

C, = fitness(ry)
d(ry,v)= 86,023
d(ry,v2)= 41,231
d(ry,v3)=92.195
d(ry,va)=0
d(ry,vs)=41.231
d(ry,ve)= 92,195
d(rs.v7)= 80.623
d(rx.vg)=0
d(r,ve)=0
d(rx,v]0)= 1 ]4.01 8
Cs = fitness(ry) = 547,516

Cy = fitness(ry)
d(ry,vi)= 67,082
d(ry,v2)=0
d(ry,v3)= 108,167
d(ry,va)= 41,231
d(ry,vs)= 72,801
d(ry,ve)= 50,990
d(ry,V7): 0
d(ry.vg)= 80,623
d(ry,ve)= 150,333
d(ry.vig)= 0

C, = fitness(ry) = 571,227
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= Iy 4 Iy, Iy = (V4, Vg, Vo)
Vai ao passo 7.

Passo 7:
Como fitness(ry = 547.516 < fitness(rs) = 865,308
Faca:

Elimine rs5 da lista R,
R=[(v4,v7.v10)5(v2,v8,V9);(V1,V3,Ve6):(Vi,Vo,v10)].

Insira r; na lista, mantendo a ordem crescente dos fitness.
Ci=(542,626;547.516; 630,545,652,448,731,792)

R=(ry, t, r2,r3,13)

R=[(v4,v7.v10):(Va, V8, V0);(V2,V8,V9)5(V1,V3,Ve)i(Vi,Ve.Via)].
Faca:

ke-k+1=1

Volte ao passo 2.

Passo 2: Teste

Cn—Ci<=gouk 2 kpa?

731,792 — 542,626 = 189.166 > € = 25 e k=1 <k < 10, portanto continua.
Reordenar R = [r},r3,r3,4,1'5]

Passo 3: Selecdo
J1=5 e j=3, como j; # ]2, selecionamos rs e r3 de¢ R.

Pai rs = (vy, Vo, V1)
Paiy r3 = (v2, vs, Vo)

Passo 4: Crossover

Sortear aleatoriamente ¢ € {1,2.3}, ¢=1.

Pai; Is = (V[, Vg, VIO) rx=(V1,Vg,V]0) FllhO]
Pais r3 = (vz, vg, Vo) 1,%=(V1,v9,vg) Filho

Passo 5: r, é invidvel e r, viavel, calcular C, = fitness(ry)
Cy = fitness(ry)
d(ry,vi)=0

d(ry.v2)= 67,082

d(rx,v3)= 98,489

d(ry,ve)= 86,023

d(ry.vs)= 72,801

d(ry,ve)= 92,195

d(ry,vy)= 80,623

d(rx,vg)= 0

d(ry,vo)= 80,623
d(r,vie)=0

C, = fitness(ry) = 577.836

= Iy ¢ Iy, I = (Vy, Vg, Vi0)
Vai ao passo 7.



Passo 7:
Como fitness(ry, = 577.836 < fitness(rs) = 731,792
Faca:

Elimine rs da lista R,
R=[(v4,v7,v10)3(Va.V8,V9)i(V2,V8,V9);(V1,V3,Ve)].

Insira r, na lista, mantendo a ordem crescente dos fitness.
Ci=(542,626;547.516; 577,836;630,545;652.,448)

R=(ry, 1z, ri,1r3,14)

R=[(v1,V7,v10);(V4, V8. Vo); (Vi, V8, Vio) (V2,V8,V0)3(V1,V3.Ve)].
Faca:

kek+1=2

Volte ao passo 2.

Passo 2: Teste
Cn—Ci<=cgouk > kna?

652.448- 542,626 = 109,822 > £ = 25 e k=2 <k« < 10. portanto continua.

Reordenar R = [r}.r,r35.14,15]

Passo 3: Selegdo
11=4 ¢ ]2=2, como j; # J». sclecionamos ry ¢ r2 de R.

Paiy 14 = (v2, vs, Vo)
Pai;y 12 = (vs, V3, Vo)

Passo 4: Crossover

Sortear aleatoriamente ¢ € {1,2,3}, c=1.

Paiy ry = (va, vg, Vo) = (v, Vg, vo) Filho,
Pai2 n= (V4, V§. V«)) ry= (V4, Vg, V9) FilhOz

117

Passo 5:Como 1, e r, ndo alteraram 14 e 13, 0 passo 5 ndo modifica nada. Promover uma

mutacao.

Passo 6: Mutagdo

Escolher r, ou r, aleatoriamente: escolhido ry. Faga a mutag¢io no cromossomo 1, com os

elementos de V que nfo estardo em ry.
V — 1 = {V1,V3,V4, Vs, Ve, V7, Vi0} sortear um elemento de V —r,. Sorteado vs.

Mutagdo (ry) = (v2,v5,v9), i € vidvel e 1 «— 1y = 1, = (V2,v5,v9).
Calcular C, = fitness(r,) = 641,257

Passo 7:
Como fitness(ry= 641,257 < fitness(rs) = 652.448
Faca:

Elimine r;5 da lista R,
R=[(v4,v7,v10)5(V4.V8.v9)3(V1.V8,V10);(V2. Vs, Vo).

Insira r; na lista, mantendo a ordem crescente dos fitness.
Ci=(542,626;547,516; 577,836:630,545;641.,257)



R=(ry, 12,13,14,T)
R=[(v4,v7.v10)5(V4,:v8,V9)3(V1,V8,V10):(V2.Vg.V9):(V2.Vs, Vo) |.
Faca:

k<«-k+1=3

Volte ao passo 2.

Passo 2: Teste
Chn—Ci<=gouk2Kkna?
641,257-542,626=98.631 > £ = 25 e k=3 <Kkpna < 10, portanto continua.

Passo 3: Selecdo
J1=1 e Jo=2, como j; # Jo, selecionamos 1 e 13 de R.

Pai; 1 = (va, V7. Vip)
Paig = (V4.. Vs, Vg)

Passo 4: Crossover

Sortear aleatoriamente ¢ € {1,2,3}, c=1.

Paiy r; = (vy4, V7. Vi) rx=(V4,V7,V9) Filho,
Pai3 I3 = (V4, Vg, Vg) ry:(v.;,Vg,Vm) FilhOz

Passo 5: Como ry e ry sio ambos cromossomos viaveis, calcular C, = fitness(r,) e C, = fitness(ry)
C, = fitness(ry) = 506.311

C, = fitness(ry) = 514,121

I € Iy, K = (Va, V7, Vi)

Vai ao passo 7.

Passo 7:
Como fitness(ry, = 506,311 < fitness(rs) = 641.257
Faca:

Elimine 15 da lista R,
R=[(v{.v7,v10);(V4.V8.V9);(V1.V8,Vi0);(V2, Vs, Vo).

Insira r; na lista, mantendo a ordem crescente dos fitness.
Ci=(506,311;542,626;547,516;577,836;630,545)

R=(r,, 11, 12,13,14)

R=[(va,v7,v9);(Va, V7, v10);(V4.V8,V9)s(V1, V8, V10);(V2,Vs, Vo).
Faca:

kek+1=4

Volte ao passo 2.
Passo 2: Teste
Cinm—Ci <=gouk = Kkpyax?

630,545 - 506.311= 124,234 > £ = 25 e k=4 < kyax < 10, portanto continua.

Continuar até que Cp, - C; £=250uk = 10.
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3) Algoritmo de Gillet e Johnson

Passo 1: Calcular a distdncia de cada né (ainda ndo designado) até cada um dos depositos
ficticios (sementes) que ainda possuam espago

Neste exemplo, vamos partir da solugdo do Algoritmo de Teitz e Bart e designar os demais
pontos a estas sementes.

Sementes {v,,vs.vg}

di2=67,082 dis=117,047 dy g =201,246
d;>=116.619 dss = 82,462 d; ¢ = 220.000
dsr =41,231 dss =41,231 dss = 131.529
de2 = 180,278 des=219,317 deg=92.195
d72=131,529 d;5 = 180,278 d7g = 80,623
dy> = 178,045 dos=143,178 dy g = 80.623
dIO.Z = ]55~242 d10,5 =72.801 d]().g = 183,570

;. - i , . . .. .
Passo 2: Para cada né i do passo anterior, obter t, como sendo o deposito mais proximo deiet’
i
1

N . ;. . . ~ . . . 9 .
como o segundo deposito mais proximo de i. com distincias iguais a ¢, e ¢; , respectivamente.

i c! t) c; t;
1 ¢, =67,082 2 c;=117.047 5
3 c1=82,462 5 c;=116,619 2
4 ¢ =41231 2 c;=41.231 5
6 ¢, =92.195 8 c;=180278 2
7 ¢’ =80,623 8 c;=131,529 2
9 €,=80,623 8 c;=143,178 5
10 ¢},=72.801 5 c,,=155242 2

~ ~ I 2 L
Passo 3: Calcular a razdori=c, / ¢; . ordenar os nos i de acordo com r; (crescente).

r =0,5731

r3 =0,7071

I3 = 1

re = 0,5114

r7=0,6130
ro = 0,5631

rip = 0,4690

Ordem crescente: ryg/rg/ro/r1 /17/13 /14
Passo 4: Designacdo

V2 = V4 Vs = v3 N Vo
V7
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4) Algoritmo do Carteiro Chinés
4.1) Considerando-se apenas uma aresta ligando os nos.
Neste exemplo, s@o consideradas as coordenadas geograficas dos pontos dadas
anteriormente. porém, as distancias euclidianas foram arredondadas para facilitar o exemplo.
Figura A.4 — Grafo G

Atravessar todas as arestas do grafo G, contendo 10 nos e 13 arestas.

Passo 1. Obter a matriz de custos iniciais C=[c;], entre todos os nos do grafo.

0 67 98 ®© ®w o™ o ®w w
67 0 w 4] o e 131 o o o
98 0 92 o o o o o 108
o 41 92 0 41 o w [3] o o
ww o o 41 0 w o o w 73
= oo o o W 0 SI 92 o w
oo 131 w e o 35l 0 0 o
o o o 131 o 92 o 0 8l
o o w o o« o o 8l 0 150
Lo o 108 «© 73 o o« oo 150 0 |

Passo 2. Os vértices de grau impar ¢ par sdo:
X;: {x2, X3, X3, X10}
X" = {X1. X4, X5, X6 X7, X0}

Passo 3. Aplicar o algoritmo de Floyd obtendo a matriz C’=[cij]. de custo minimo entre todos os
nos da rede. Sendo a matriz ©=[®;;] a matriz de trajetos entre todos os nds i e j.

1
i

0 67 98 108 149 249 198 239 320 206 112 4 72 4 8 3

67 0 133 41 82 182 131 172 253 155 22 4 2 4 7 2 4 8 5

98 133 0 92 133 315 264 223 258 108 34 3 3 4 7 2 410 3

108 41 92 0 41 223 172 131 212 114 24 4 4 4 7 2 4 8 5

C= 149 82 135 41 0 264 213 172 223 73 O~ 24 4 5 5 7 2 410 5
249 182 315 223 264 O 51 92 173 323 24 4 2 4 6 6 6 8 9

198 131 264 172 213 51 0 143 224 286 27 4 2 4 77 6 8 3

239 172 223 131 172 92 143 0 81 231 24 4 8 4 8 6 8 8 9

320 253 258 212 223 173 224 8l 0 150 2 410 8 10 8 6 9 9 9
1206 155 108 114 75 323 286 231 150 O | 3 4 10 510 8 2 9 10 10|
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Obter a matriz D=[d;j], a partir da matriz C’, com as informag¢des dos custos apenas entre 0s
vértices de grau impar:

X, X3 Xg Xy
X, | 0 133 172 155
D=x, 133 0 223 108
Xg | 172 223 0 231

X | 155 108 231 0

Passo 4. Determinar o matching M* entre todos os vértices de X'. Obtendo a todas as
combinagdes entre dois vértices. As seguintes situacdes sdo possiveis:

Combinando X2 X3 € Xg_Xjo tem-se o custo de: dx,X; + dxg,x;0 = 1334231 = 364
Combinando x,_xg € X3_Xjo, tem-se o custo de: dxy,xg + dx3,x30 = 172+108 = 240
Combinando x;_xjp € X3_Xg tem-se o custo de: dx;,x;9 + dx3,xg = 155+223 = 378
A combinagdo que fornece o menor custo € X, com Xg € X3 Com Xjo.

Passo 5. Aumentar o grafo com as arestas artificiais:
X, combinado com xg . caminho X; —x4 — X3
x3 combinado com x,¢, caminho X3 — X¢

Incluir as arestas artificiais: (X2,X4), (X4,Xs), (X3,X10), obtendo o grafo G-(M*)

Figura A.5 — Grafo G-(M*)

Passo 6. Obter a matriz de adjacéncia A do Grafo G-(M*)

01 100000 0 0]
1002001000
1 001 000¢C0CO02
0210100200
A=0001000001
6 000O0OGT1 100
6100010000
00020100T1°0
0000000101
002010001 0]




Passo 7. Obter os circuitos

b1 = {X|, X2, X4, X2, X7, X6» X8, X0, X10, X3, X1}
&2 = {X3. X10, X5, X4, X3§

G3 = {X4, X3, X4}

Obter o circuito euleriano, de solugdo do problema:
Incluir ¢3 dentro de ¢ :

d2 = {X3, X10. X5, X4, X3}
¢3 = {X4, Xg, X4}

tornando-se:
d2 = {X3. X10, X5, X4, X8, X4, X3}

Incluir ¢» dentro de ¢, :

(i)l = '{xl’ X2, X4, X2, X7, X6, X8, X9, X10, ~— X3. 7 X]}
b2 = {X3. X0, X5, X4» X5, X4, X3}

tornando-se:

b1 = {X1, X2, X4, X2, X7, X6, X8, X0, X0, X3, X10, X5, X4, X8, X4, X3, X}

formando o circuito final de solugdo para o PCC.

2
[N

Passo 8. Somando os custos do grafo G-(M*), obtém-se o custo total minimo do PCC. que neste

caso é 1436.



4.2) Considerando-se arestas duplas, exemplificando o problema real, onde devem ser
percorridos os dois lados das ruas.

Neste exemplo, s3o consideradas as coordenadas geograficas dos pontos dadas
anteriormente, porém, as distancias euclidianas foram arredondadas para facilitar o exemplo.

Figura A.6 — Grafo G

1

Atravessar todas as arestas do grafo G, contendo 10 nos ¢ 26 arestas.

Passo 1. Obter a matriz de custos iniciais C=[c;}, entre todos os nos do grafo.

0 67 98 o oo o®w oo ow 0 o]

67 0 41 o o 131 o o  w

98 0 92 o o©o o o o 108

o 41 92 0 41 w o 13] o oo |

w o o 41 0 w o w o T3

C= ©w o W | ® 0 51 92 o o
w 131 oo @®w oo 51 0 oo o oo

v o oo 131 o 92 o 0 81 o}

©w o o o oo o o §I 0 150

|0 oo 108 @ 73 o o o 150 0 4;

Passo 2. Todos os vértices de sdo de grau par. Portante, a solucdo do Problema do Carteiro
Chinés se reduz a encontrar um circuito euleriano.

Passo 3. Obter a matriz de adjacéncia A do Grafo G

0220000000
2002002000
200200000 2
0220200200
A {00 020000002
0000002200
0200020000
0002020020
000000020 2
00202000 2 0




Passo 4. Obter os circuitos

$1 = {X1.X2,X1,X3,X1 }

B2 = {X2.X4,X2,X7,X6,X7,X2}

§3 = {X3,X4,X5,X10,X3,X4,X5,X10,X3 |
s = {X4,X8,X6X8,X9,X10,X9,X8,X4 }

Incluir os circuitos, um dentro do outro, formando o circuito final de solugéo para o PCC.
O = {X1,X2,X4,X2,X7,X6,X7:X2,X1,X3,X4,X8,X 6,X8,X0,X 10, X9, X8:X4.X5,X10,X3.X4.X5,X 10,X3,X | |

Passo 5. Somando os custos do grafo G, obtém-se o custo total minimo do PCC, que neste caso €
2312.



5) Problema do Carteiro Chinés (formulacio)

Figura A.7 — Grafo G e Matriz de Distancia C
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8 8 8 8 8 8 8§

®w o o ®W  ®
41 o « 131 «
92 ®© ®w o« ©
0 41 o o 131
41 0 o© w

o 0O 51 92
o w51 Q o
131 o 92 o« 0
o o o o 8l
w T3 o © o0

2o ®8 8888 8 8

150
0

(PCC)MIN =67 * x12+ 98 * X13 + 67 * x21 + 41 * x24 + 131 * x27 + 98 * x31 + 92 * X34 + 108 * x310 + 41 *
X42 + 92 * x43 + 41 *x45+ 131 * x48 + 41 * x54 + 73 * X510 + 51 * x67 + 92 * x68 + 131 * x72 + 51 * x76 + 131
* x84 + 92 * x86 + 81 * x89 + 81 * x98 + 150 * x910 + 108 * x103 + 73 * x105 + 150 * x109;

ST

(X TT+X2 T3 1+x4 15 16 T +X T T8 X9 T+ 1O D)-(x T4 12+X 1 3+x 14+x 1 5+x 16+x 1 7+Xx18+x 19+x1 10)=0
(x12+x224+x32+x42+x52+x62+XxT2+x82+x92+x 102)-(x2 1 +x22+x23+Xx24+x25+x26+x27+x28+x29+x210)=0
(X13+Xx23+X33+x43+x53+x63+Xx73-+x83-+x93+x103)-(x3 1 +x32+x33+x34+x35+x36+x37+x38+x39+x310)=0
(x14+x24+x34+x44+x54+x64+XT4+Xx84+x94+x104)-(x4 1 +x42+x43+x44+x45+x46+x4T+x48+x49+x4 10)=0
(x15+x25+x35+x45+x55+x65+x75+x85+x95+X 105)-(XS 1 +X52+X53+X54+X55+X56+Xx57+x58 +x59+x510)=0
(x16+x26+x36+x46+Xx56+x66+x76+Xx86+x96+x106)-(x6 1 +Xx62+X63+x64+X65+x66+Xx67+X68+x69+Xx610)=0
(1 7+x27+x37+x4T+X5THX6T+XTT+X87T+HXYT+X 107)-(XT 1 +XT2+XT3+xT4+XT5+XT6+XTT+xT8+x79+x710)=0
(x18+x28+x38+x48+x58+x68+x78+x88+x98+x108)-(x8 1 +x82+x83+x84+x85+x86+x87+x88+x89+x810)=0
{(x19+x29+x39+x49+x59+x69+x79+x89+x99+x 109)-(x9 1 +x92+x93+x94+x95+x96+x97+x98+x99+x910)~0
(x110+x210+x310+x410-+x510+x610+x710+x810+x910+x1010)-

(x101+x102+x103+x104+x105+x106+x107+x108+x109+x1010)=0

ST

x12+x21 >=2;
xi3+x31>=2;
X2 +x12>=2;
X24 +x42 >=2;
27 +x72>=2;
x31 +x13>=12;
X34 + x43 >=2;

x310 +x103 >=2;

xX42 + x24 >=2;

xi2>=0;
xi3>=0;
x21>=0:
x24 >=(;
x27 >=0;
x31>=0;
x34 >=Q;
x310>=0;
x42 >=0;

x43 + x34 >=2;
x45 + x54 >=2;
x48 + x84 >=2;
X534 + x45 >=2;
X510 + x105 >=2;
X67 + x76 >=2;
x68 + x86 >=2;
x72 + x27 >=2;
X76 + x67 >=2;

x43 >=0;
x45>=Q:
x48 >=(;
x54 >=Q;
X510 >=0:
x67 >=0;
x68 >=0;
X72 >=0;
x76 >=10;

x84 + x48 >=12;
x86 + x68 >=2;
x89 + x98 >= 2;
X98 + x89 >=2;
X910 +x109 >=2;
x103 +x310>=2;
x105 +x510 >=2;
X109+ x910>=2;

x84 >=10);

x86 >= 0;

x89 >=0;

x98 >=0;

X910 >=0;
x103 >=0;
x105>=0;
x109 >=(;

Xij >= 0 e inteiro




Figura A.8 — Mensagem de soluggo (Software Lingo)

IRGO Salver Status {Problema do Caitewro Chinés_PEC] [ X}

Vatiables
Total
Nonlinear:
Integers;

Slate:
{terations:
infeasibility;
Oibjctive:
Best IF:
IP Bound:

100
G
100

Optimizer Status

Global Optimum
42

a

2312

2312

2312

Constraings
Total 137
MNondinear. 0
Monceros
Tatal: 358
HNondinear: a

Generator Mamaory Used (K]
56

Elapsed Runtime [hh:mm:st)
00:00:00

. .

Update interval !2

Global optimal solution found at step:

Objective value:
Branch count:

Variable Value
X12 0.0000000
XT38 0.0000000
X21 2.000000
X24 1.000000
X27 0.0000000
X31 2.000000
X34 0.0000000

X310 1.000000
X42 1.000000
X43 2.000000
X45 0.0000000
X48 1.000000
X54 2.000000

X510 0.0000000
X67 2.000000
Xx68 0.0000000
X72 2.000000
X76 0.0000000
X84 1.000000
X86 2.000000
X89 0.0000000
X98 2.000000

X910 0.0000000

X103 1.000000

X105 2.000000

X109 2.000000
X1l 0.0000000
X41 0.0000000
X51 0.0000000
X6l 0.00000090
X71 0.0000000
X81 0.0000000
X981 0.0000000Q

X101 0.0000000
X14 0.0000000
Xx15 0.0000000
X1l6 0.0000000
X17 0.0000000

42
2312.000
0
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0.0000000
0.0000000
0.0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000
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0000000

. 0000000

0000000

.0000000

.0000000
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.0000000
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.0000000

.0000000

.0000000

. 0000000

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000
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X18
X19
X110
X22
X32
X52
X62
X82
X92
X102
X23
X25
X26
X28
X29
X210
X33
X53
X63
X73
X83
x93
X35
X36
X37
X38
X39
X44
X64
X74
X94
X104
X46
X47
X49
X410
X55
X65
X75
X85
X95
X56
X57
X58
X59
X66
X96
X106
X69
X610
X77
X87
X97
X107
X178
X79
X710
X88
X108
X810
X99
X1010

0.0000000
0.0000000
4.000000
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APENDICE 11

AS COORDENADAS GEOGRAFICAS DOS 774 PONTOS DE PARADA

Na relacfio abaixo sdo fornecidos os nameros dos vértices e suas coordenadas geograficas.

0001;331987.5180,7098901.069
0002:331958.2463;7098870.489
0003;331930.8718;7098840.179
0004;331951.2968;7098817.039
0005;331979.6904;7098787.812
0006;332009.8403;7098815.286
0007;332039.9901,7098841.006
0008;332010.1329,7088752.577
0009:332048.1861;7098709.450
0010;332059.1149;7098762.718
0011;332067.5218;7098816.311
0012;332063.6418;7098690.399
0013;332078.5153;7098674.052
0014;332108.9092;7098637.893
0015;332140.5965;7098603.025
0016;332178.7505;7098558.809
0017:332219.4912;7098516.839
0018;332245.0349,7098484.528
0019;332277.3688;7098448 369
0020;332298.0624,7098425.707
0021.332326.5163,7098375.691
0022;332362.0836;7098310.476
0023,;332397.6509;7098249.780
0024,332428,0448,7098266.568
0025;332457.1453,7098282.065
0026,332433.2182;7098329.847
0027;332446.7985,7098306.601
0028;332424.1647;7098198 434
0029;332450.6786,7098151.944
0030;332500.7959;7098177.126
0031;332533.1298;7098197.788
0032;332478.1623,7098096.414
0033;332513.7296,7098038.947
0034;332566.1104;7098067.357
0035;332593.9176;7098082.854
0036;333230.0000;7100170.000
0037;332544.7700;7097982.360
0038,332572.5772;7097934.578
0039;332617.8448,7097962.343
0040,332654.0588;7097979.777
0041;332588.0976;7097895.190
0042;332623.0182,7097844.180
0043;332659.2322;7097863.551
0044,332692.2128,7097883.568
0045;332655.9988,7097774.368
0046,332696.0928;7097706.570
0047;332743.6235;7097734.335
0048,332803.7646,7097764.037
0049;332770.1373;7097830.544
0050;332730.0433;7097904.720
0051;332775.3107;7097927.320
0052;332854.2054;7097794.952
0053;332898.2182,7097822.873
0054,332860.7109;7097890.127
0055;332824.4969;7097955.342
0056;332774.0560,7098044 835
0057,332799.9232,7098003.510
0058;332732.0220;7098021.590
0059;332678.3476,7097991.888

0060;332700.3347,7097952.967
0061;332649.2471,7098051.473
0062;332621.4399;7098095.381
0063,332671.8809;7098124.437
0064:332690.6345;7098083.113
0065;332716.5016,7098148.974
0066;332595.8329,7098147.242
0067,332561.5590;7098209.229
0068,332610.7066,7098238.931
0069;332533.7519;7098257.011
0070:332654.6807,7098262.176
0071;332629.4602,7098314.478
0072;332554.4455;7098335.140
0073;332505.2980;7098309.312
0074,332602.2998,7098359.677
0075;332683.4333;7098213.105
0076,332459.0360;7098389.172
0077,332556.6845,7098446.639
0078;332411.8285,7098480.215
0079;332466.7961,7038509.917
0080,332508.1835;7098530.580
0081,332389.5183,7098508.882
0082,332409.5653,7098563.120
0083,332369.4712;7098529.544
0084,332336.4906,;7098563.766
0085;332308.6835;7098599.925
0086;332346.1909,7098630.919
0087,332266.6493;7098645.124
0088,332234.3155;7098683.220
0089;332476.1732;7098563.636
0090:332446.4260;7098599.796
0091,332414.7388,7098637.892
0092;332386.9316;7098668.240
0093;332353.3043; 7098707 652
0094;332313.2103;7098752.205
0095;332278.9363,7098722.503
0096;332181.9345,7098738.000
0097;332144.7261,7098779.556
0098;332175.1199;7098820.235
0099;332210.3640,7098872.046
0100;332102.6919,7098826.225
0101,332072.2980,7098864.322
0102;332040.2877,7098899.705
0103;332013.1272,7098930.699
0104;332038.3476,7098968.795
0105,332055.1613,7099003.895
0106;332131.4693;7098961.823
0107;332099.7820;7098907.686
0108;332069.3881;7099029.025
0109;332101.0754,7098992.453
0110;332168.3299;7098918.561
0111;332253.6915;7098815.224
0112;332179.2909;7099104.057
0113;332233.3428;7099038.240
0114,332305.8516;7098955.310
0115;332408.6822;7098842.105
0116,332481.1909,7098753.910
0117:332358.5852;7099001.382
0118;332259.7097,7098918.453

0119;332545.7895,7098688.092
0120;332440.3223;7098713.103
0121;332366.4952;7098799.982
0122;332357.2668,7098896.075
0123;332452.1873,7098877.646
0124,332442.9590,7098796.033
0125;332524.6962;7098790.557
0126,332589.2948;7098723.424
0127;332502.2844,7098645.760
0128,332511.5128,7098716.843
0129;332581.3848,7098637.862
0130;332562.9280,7098565.463
0131;332620.5635;7098597.636
0132;332668.0237;7098621.330
0133;332677.2521,7098498.910
0134,333340.0000;7100210.000
0135;332664.0688,7098395.921

0136;332714.1657,7098426.197
0137,332765.5810,7098452.524
0138;332744.4875,7098369.594
0139;332716.8023;7098295.879
0140;332768.2177,7098327.684
0141,332802.4945;7098272.398
0142;332773.4910,7098180.254
0143;332814.6078;7098352.695
0144:332833.0645;7098217.111
0145;332860.7497,7098160.508
0146,332881.8432,7098244.754
0147;332744.7358;7098101.273
0148;332885.7982;7098107.855
0149:332830.4279;7098080.211
0150;332939.8502;7098139.080
0151,332909.5283;7098065.365
01562;332934.5768;7098017.977
0153;332876.5698;7097987.701

0154,332930.6218,7097967.430
0155;332942.4869;7097935.838
0156;332864.7047,7097945.052
01567;332958.7840,7097979.115
0158;332976.5703,7097940.267
0159;333390.0000;7100200.000
0160,;332968.7888,7097868.941

0161,332963.7864,7097810.668
0162;332930.4370;7097819.548
0163;333015.4779;7097805.496
0164;333068.8368;7097869.319
0165;333072.4496;7097930.034
0166;333022.4255;7097935.029
0167;333074.8558.7097989.394
0168;333030.8652;7098070.800
0169;332986.2881,7098044.445
0170;333002.1247,7098113.879
0171,;332981.5958,7098158.388
0172;332926.4611,7098265.936
0173,332950.5091,7098220.841

0174;333012.0960,7098176.331

0175;333040.2498;7098184.530
0176,333008.5767;,7098301.075
0177,332968.6920;7098287.019



0178;333023.2402;7098246.609
0179;333095.3846;7098182.773
0180;333107.7019;7098294.633
0181;333057.8461;7098298.147
0182;333100.0769;7098238.410
0183;333149.9328;7098173.988
0184;332893.2991;7098325.484
0185;332861.6259,7098376.436
0186;332919.6934;7098406.890
0187;332973.6551,7098437.344
0188;332993.5975,7098370.861
0189;332993.0109,7098370.275
0190;333105.6266,7098380.773
0191,332833.3969,7098426.450
0192;332808.7623;7098474.473
0193;332861.5508;7098503.756
0194,332947.7723,7098552.247
0195;332964.1954,7098497.196
0196,332755.5877,7098565.552
0197;332712.7703,7098646.958
0198;332828.3188,7098593.921
0199;332790.7801,7098703.249
0200,332633.5874,7098762.400
0201;332672.2991,7098716.134
0202;332755.0013;7098677.832
0203;332772.0109,7098757.362
0204,332666.4336;7098791.916
0205;332692.2415;7098816.513
0206;332731.2464,7098778.446
0207,332569.9479,7098831.247
0208;332497.8035;7098918.063
0209,332626.2558,7098899.276
0210;332535.1666;7098944 628
0211,332438.9741;7098985.038
0212;332396.7431,7098036.575
0213;332563.9071;7098972.153
0214;332447.7721;7099079.795
0215;332525.7819;7099054.027
0216;332494.1088,7089124 305
0217,332242.1899;7099121.071
0218;332302.0170;7099140.398
0219;332351.2863;7099087.103
0220,332229.8726,7099205.310
0221;332418.1519;7099330.100
0222;332177.6705;7099244 549
0223;332323.7191,7099265.679
0224,332371.2287,7099186.616
0225;332448.6521,7099242 838
0226;332375.9211;7099390.304
0227;332476.8059;7099173.029
0228;334050.0000;7098300.000
0229;332413.4597;7099130.862
0230,332615,5226,7099012.492
0231,332668.8978;7099065.201
0232;332688.2536;7099006.050
0233;332659.5131,7098945.916
0234;332708.1960;7098963.486
0235;332747.2008;7098860.411
0236,332842.2203;7098742.931
0237;332830.4895;7098491.970
0238;332905.5667,7098532.966
0239;333125.6055,7097925.149
0240;333174.3230,7097920.919
0241;333283.7609,7097908.934
0242;333238.5736;7097913.164
0243;333332.4784,7097901.179
0244;333438.3859;7097892.015

0245;333386.1382,7087896.949
0246;333182.7956,7097991.417
0247;333290.8213,7097982.252
0248;333396.7289,7097975.907
0249;333088.1848,7098018.911
0250;333137.6084;7098083.064
0251;333245.6341,7098071.080
0252;333352.9538;7098059.095
0253;333460.9795;7098047.110
0254;333092.4212;7098087.294
0255;333193.3864,7098073.195
0256,333299.2939;7098061.915
0257;333401.6712,7098053.455
0258;333508.9910;7098040.060
0259:;333504.0487,7097970.972
0260;333491.5926,7097885.670
0261,333583.7213,7097858.092
0262;333685.3926;7097825.663
0263;333695.9833,7097890.522
0264;333699.5137,7097934 935
0265;33362(.4360;7098032.981
0266;333623.9662,7098083.740
0267;333517.3525;7098087 265
0268;333405.0905;7098099.249
0269,333303.0663,7098110.133
0270;333197.1588;7098121.413
0271;333096.8996,7098137.627
0272;33320.3950;7098167 942
0273;333254.3488,7098156.662
0274;333307.3027,7098153.842
0275;333358.8443,7098145.382
0276,333412.5042,7098142.562
0277;333471.1064;7098136.922
0278,333516.2937,7098130.578
0279,333207.7495;7098226.455
0280;333317.1874,7098218.700
0281;333161.8562;7096290.608
0282;333216.9282,7098282.854
0283,333278.5880,7098277.214
0284;333322 1297;7G98270.869
0285;333418.1526;7088203.896
0286,333372 9653;7098265.229
0287;333171.3278;7098392 854
0288;333042.6786,7098463.610
0289;333106.4179,7098484.565
0290;333178.9010,7098490.986
0291,333241.8631;7098490.210
0292;333105.9408;7098436.628
0293,333229.6076,7098389.351
0294,333231.9393;7098436.695
0295;333109.8800;7098346.305
0296;333220.2579,7098330.783
0297;333287.8842,7098383.560
0298;333329.1842;7098319.116
0299;333335.4028;7098376.550
0300;333340.1945,7098432.445
0301,;333346.4128,7098479.789
0302;333293.5969;7098484.534
0303;333400.8663,7098469.792
0304,333449.0594;7098464.359
0305;333442.0635;7098417.791
0306,333385.3201,7098371.999
0307,333438.2304,7098367.343
0308;333431.2128;7098311.364
0309,333425.8015;7098260.015
0316,333493.5026;7088359.130
0311,333544.8050;7098352.921
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0312;333534.7002,7098249.696
0313:333481.0565;7098252.858
0314;333537.7999;7098304.082
0315;333524.6197;7098188.428
0316,333599.2413;7098345.982
0317,333649.7665;7098289.325
0318;333659.0945,7098339.773
0319,333586.8028;7098244.344
0320;333644.3234,7098236.583
0321,333575.1862;7098123.942
0322;333638.1482;7098172.838
0323;333631.1524,7098120.061
0324,333698.8158;7098229.447
0325;333730.6854,7098228.671
0326;333724.4668,7098284.553
0328;333792.8702,7098220.134
0327,333843.4870;7098215.473
0329;333734.6635;7098166.576
0330;333736.9956,;7098109.142
0331:333681.8067;7098115.352
0332;333835.0148,70981580.158
0333;333830.4067;7098098.142
0334;333778.3329;7098102.684
0335;333729.2702;7098018.691
0336;333826.4340,7098046.632
0337,333822.5474,7098008.601
0338;333895.6795;7098091.559
0339;333941.7143,;7097996.154
0340,333953.3740,7098085.410
0341,333900.0000,7098210.000
0342;333970.0000;7098200.000
0343;333960.0000;7098140.000
0344;333880.0000;7098000.000
0345;333950.0000;7098040.000
0346;333810.0000;7097920.000
0347,333940.0000;7097900.000
0348,333940.0000,7097830.000
0349,334000.0000,7097900.000
0350;334050.0000;7097900.000
0351,334110.0000,7097870.000
0352;334010.0000;7097810.000
0353;334100.0000;7097830.000
0354,334290.0000;7097880.000
0355,334090.0000,7097790.000
0356;334240.0000;7097890.000
0357;334230.0000,7097810.000
0358;334220.0000;7097730.000
0359;334070.0000,7097720.000
0360;334150.0000;7097720.000
0361,333950.0000,7097740.000
0362,333780.0000,7097790.000
0363,;334220.0000;7097610.000
0364,334300.0000;7097730.000
0365;334380.0000,7097730.000
0366,334330.0000;7097680.000
0367,334390.0000;7097660.000
0368;334380.0000,7097680.000
0369;334500.0000;7097730.000
0370;334630.0000;7097730.000
0371.334750.0000;7097680.000
0372:334850.0000;7097610.000
0373,334950.0000;7097480.000
0374,335050.0000;7097420.000
0375;335130.0000;7097420.000
0376;335240.0000;7097410.000
0377,333780.0000;7098330.000
0378;333890.0000;7098320.000



0379;334010.0000;7098300.000
0380,334020.0000;7098260.000
0381;334000.0000;7098350.000
0382;334090.0000,7098380.000
0383;333990.0000;7098480.000
0384;334000.0000;7098410.000
0385;333950.0000;7098350.000
0386;333890.0000,7098380.000
0387,333950.0000;7098470.000
0388;333890.0000;7098470.000
0389;333890.0000;7098420.000
0390;333810.0000;7098360.000
0391;333810.0000;7098410.000
0392;333740.0000,7098450.000
0393;333550.0000;7098400.000
0394;333850.0000;7098400.000
0395;333560.0000;7098450.000
0396;333780.0000;7098430.000
0397;333500.0000;7098460.000
0398;333610.0000;7098450.000
0399;333670.0000;7098440.000
0400;333660.0000;7098400.000
0401;333020.0000;7098590.000
0402;333080.0000;7098620.000
0403;333100.0000;7098560.000
0404;333210.0000;7098560.000
0405;333160.0000;7098570.000
0406;333250.0000;7098590.000
0407,333360.0000,7098570.000
0408;333460.0000;7098570.000
0409;333570.0000;7098560.000
0410;333680.0000;7098540.000
0411,333260.0000;7098700.000
0412;333370.0000;7098690.000
0413;333310.0000;7098650.000
0414,333470.0000;7098670.000
0415;333430.0000;7098680.000
0416;333530.0000:7098670.000
0417;333530.0000;7098670.000
0418;333580.0000,7038660.000
0419;333480.0000,7098740.000
0420;333590.0000,7088730.000
0421;333820.0000,7098700.000
0422;333700.0000;7098710.000
0423;333700.0000;7098770.000
0424;333760.0000;7098710.000
0425;333640.0000,7098660.000
0426;333690.0000,7098650.000
0427;333780.0000;7098640.000
0428;333990.0000;7098620.000
0429;333980.0000;7098690.000
0430;333980.0000;7098740.000
0431,333770.0000;7098570.000
0432;333680.0000;7098580.000
0433;333880.0000;7098570.000
0434,333770.0000;7098520.000
0435;333770.0000,7098460.000
0436;333990.0000;7098570.000
0437:;334100.0000;7098600.000
0438;334100.0000,7098550.000
0439;334110.0000;7098480.000
0440;334050.0000;7098490.000
0441;334200.0000;7098500.000
0442;334280.0000,7098510.000
0443,334280.0000,7098580.000
0444;334250.0000;7098590.000
0445;334170.0000,7098590.000

0446;334030.0000;7098610.000
0447,334350.0000,7098520.000
0448;334430.0000;7098530.000
0449;334470.0000;7098610.000
0450;334470.0000;7098570.000
0451;334470.0000;7098670.000
0452;334530.0000,7098620.000
0453;334470.0000;7098530.000
0454;334380.0000;7098600.000
0455;334370.0000;7098680.000
0456,334380.0000;7098650.000
0457,334470.0000,7098640.000
0458;334330.0000;7098590.000
0459;334480.0000;7098460.000
0460;334550.0000;7098540.000
0461;334620.0000;7098470.000
0462;334620.0000;7098550.000
0463;334720.0000;7098560.000
0464,334610.0000;7098690.000
0465;334610.0000;7096630.000
0466;333890.0000;7098530.000
0467;333830.0000;7098460.000
0468;333950.0000;7098310.000
0469;334250.0000,7098700.000
0470;334250.0000;7098540.000
0471;333990.0000,7098660.000
0472;334250.0000;7098760.000
0473;334250.0000,7098720.000
0474,334180.0000;7098720.000
0475,334100.0000,7098730.000
0476;334100.0000;7098800.000
0477;334100.0000,7098770.000
0478;334040.0000;7098740.000
0479;333980.0000,70988080.000
0480;334140.0000;7098830.000
0481;334100.0000;7098840.000
0482;334040.0000;7098840.000
0483;333980.0000,7098850.000
0484;333880.0000;7098860.000
0485;333770.0000,7098870.000
0486:333720.0000;7098880 000
0487,333600.0000, 7098892.000
0488;333660.0000;7098820 000
0489;333590.0000;7088790.000
0490;333600.0000;7098840.000
0491;333650.0000;7098780.000
0492;333790.0000,7098760.000
0493;333890.0000;7098750.000
0494,334250.0000,7098860.000
0495;334250.0000;7098900.000
0496;334170.0000,7098900.000
0497,334100.0000;7098910.000
0498;333970.0000;7098930.000
0499;334250.0000;7098970.000
0500,;334170.0000,7098980.000
0501;334040.0000;7098920.000
0502;334100.0000;7098990.000
0503;334030.0000,7099000.000
0504,333970.0000;7099000.000
0505;333870.0000;7099010.000
0506;333780.0000,7089020.000
0507,333780.0000,7098990.000
0508;333780.0000;7098950.000
0509;334610.0000;7098600.000
0510;333870.0000;7098940.000
0511,334100.0000;7099040.000
0512;334100.0000;7099090.000
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0513;333970.0000;7099060.000
0514,333970.0000;7099100.000
0515;334020.0000;7099100.000
0516;334240.0000;7099090.000
0517,334170.0000;7099090.000
0518;334090.0000,7099150.000
0519;334090.0000,7099190.000
0520;333960.0000;7099150.000
0521,333960.0000;7099180.000
0522;333880.0000,7099110.000
0523;333730.0000,7099120.000
0524;333750.0000,7099080.000
0525;334100.0000;7099370.000
0526;333960.0000,7099360.000
0527;333960.0000;7099390.000
0528;333960.0000,7099270.000
0529;334020.0000;7099370.000
0530;333870.0000;7089360.000
0531,333760.0000;7099350.000
0532;333660.0000,7099310.000
0533,333680.0000,7099250.000
0534;333700.0000;7099210.000
0535;333810.0000;7099210.000
0536;333720.0000;7099160.000
0537;333590.0000;7099290.000
0538,333570.0000;7099340.000
0539;333620.0000,7099210.000
0540;333600.0000,7099250.000
0541;333550.0000;7099280.000
0542;333510.0000;7099260.000
0543;333540.0000;7099210.000
0544,333490.0000,7099310.000
0545;333570.0000;7099120.000
0546;333540.0000;7099170.000
0547,333710.0000;7099330.000
0548,333810.0000;7099120.000
0549;333730.0000;7099420.000
0550;333650.0000:7099400.000
0551;333560.0000;7099380.000
0552;333550.0000;7099420.000
0553,333530.0000;7099470.000
0554;333650.0000;7099470.000
0555;333580.0000;7099470.000
0556,;333430.0000;7099460.000
0557;333480.0000;7099460.000
0558;333450.0000;7099410.000
0559,333470.0000;7099360.000
05660;333520.0000;7099370.000
0561,333350.0000;7099390.000
0562,333370.0000;7099330.000
0563;333410.0000;7099350.000
0564,333390.0000;7099460.000
0565;333350.0000;7099460.000
0566;333280.0000;7099460.000
0567;333240.0000;7099460.000
0568;333240.0000;7099380.000
0569;333260.0000;7099310.000
0570;333310.0000;7099320.000
0571,333210.0000;7099300.000
0572;333170.0000;7099450.000
0573;333130.0000;7099450.000
0574,333130.0000;7099380.000
0675,333160.0000;7099290.000
0576;333390.0000;7099270.000
05677;333290.0000;7099240.000
0578,333450.0000;7099240.000
0579;333410.0000,7099220.000



0580;333360.0000;7029200.000
0581;333310.0000;7099180.000
0582;333440.0000;7099150.000
0583;333340.0000;7099120.000
0584:;333370.0000;7095040.000
0583;333430.0000;7098070.000
0586;333470.0000;7099080.000
0587;333650.0000;7099120.000
0588;333590.0000;7089050.000
0589;333510.0000;7099000.000
0590;333620.0000,7099000.000
0591;333400.0000,7098980.000
0592;333390.0000;7098920.000
0593;333450.0000;7098910.000
0594;333500.0000;7098910.000
0595,333550.0000;7098900.000
0596;333530.0000;7098790.000
0597,333490.0000;7098860.000
0598;333480.0000;7098800.000
0599;333370.0000;7098810.000
0600;333280.0000;7098820.000
0601;333280.0000;7098880.000
0602;333290.0000;7098930.000
0603,333340.0000;7098920.000
0604,333290.0000;7098970.000
0605;333240.0000;7098810.000
0606;333210.0000;7098890.000
0607;333180.0000;7098960.000
0608;333140.0000;7098770.000
0609;333200.0000,7098790.000
0610,333080.0000,7098920.000
0611,333110.0000,7098850.000
0612;333130.0000;7098950.000
0613;333280.0000;7099010.000
0614,333230.0000;7098380.000
0615;333330.0000;7099030.000
0616;333510.0000;7099100.000
0617.333170.0000;7098660.000
0618;333040.0000,7098730.000
0619;333930.0000;7098620.000
0620;333060.0000;7098680.000
0621;333010.0000;7098800.000
0622;332990.0000;7098850.000
0623,332940.0000,7098820.000
0624,332900.0000;7098780.000
0625;332910.0000;7098700.000
0626,332930.0000;7098630.000
0627,333080.0000;7098740.000
0628;333030.0000;7098890.000
0629,332850.0000;7098890.000
0630,332820.0000,7098980.000
0631;332710.0000;7099090.000
0632,332770.0000;7099100.000
0633;332790.0000;7099040.000
0634,332870.0000,7099000.000
0635,332920.0000;7099020.000
0636;332960.0000,7098940.000
0637;332890.0000,7099100.000
0638;332850.0000;7099180.000
0639;333430.0000;7100170.000
0640;332840.0000,7099220.000
0641.332710.0000;7099230.000
0642;332750.0000;7099220.000
0643,332740.0000,7099160.000
0644,332640.0000;7099230.000

0645;332590.0000,7099240.000
0646;332520.0000;7099240.000
0647;332550.0000;7099170.000
0648;332570.0000;7099110.000
0649;332610.0000;7099170.000
0650;332610.0000,7099200.000
0651;332810.0000,7099280.000
0652;332570.0000;7099350.000
0653;332690.0000;7099340.000
0654;332790.0000;7099350.000
0655;332900.0000,7099230.000
0656;332950.0000,7089240.000
0657,333010.0000;7099250.000
0658;332680.0000.7099420.000
0659;332600.0000;7099410.000
0660;332690.0000,7099380.000
0661;332480.0000,7099400.000
0662;332410.0000;7099400.000
0663;332740.0000,7099350.000
0664,332290.0000:7099470.000
0665,332390.0000,7099470.000
0666;332480.0000;7098480.000
0667,332480.0000;7099440.000
0668;332350.0000;7099540.000
0669,332410.0000;7098550.000
0670,332470.0000;7099550.000
0671,332680.0000;7099510.000
0672;332670.0000;7099640.000
0673;332600.0000;7099640.000
0674,332520.0000,7099630.000
0675,332430.0000;7099630.000
0676;332470.0000,7099630.000
0677,332500.0000;7099760.000
0678;332590.0000;7099750.000
0679;332520.00040; 7099650.000
0680,332590.0004¢;7099700.000
0681;332340.0000;7099620.000
0682;332400.0000: 7099660.000
0683,332370.0000;7099640.000
0684;332320.0000;7099710.000
0685,332350.0000;7093740.000
0686;332380.0000; 7099700.000
0687;332410.0000;7039800.000
0688,332410.0000,7099770.000
0689;332480.0000; 7099820.000
0690;332610.0000;7099300.000
0691,332670.0000;7099790.000
0692;332540.0000,7100000.000
0693;332420.0000;7100110.000
0694,332350.0000;7100050.000
0695;332380.0000;7100020.000
0696;332390.0000;7100080.000
0697,332200.0000,7100000.000
0698;332280.0000;7100020.000
0699;332140.0000;7100160.000
0700;332150.0000;7100390.000
0701;332230.0000;7100310.000
0702;332300.0000,7100230.000
0703;332220.0000,7100180.000
0704;332280.0000;7100120.000
0705;332360.0000,7100180.000
0706;332670.0000,7099710.000
0707,332740.0000;7099680.000
0708,332700.0000,7099740.000
0709;332890.0000;7089850.000

0710;332770.0000,7099820.000
0711,332830.0000:7099770.000
0712;332860.0000,7099810.000
0713;332810.0000,7099730.000
0714;332860.0000;7099740.000
0715;332890.0000;7099790.000
0716;332780.0000,7099700.000
0717,332790.0000,7099580.000
0718;332790.0000;7099420.000
0719;332890.0000,7099740.000
0720;332890.0000,7099650.000
0721,332890.0000,7099590.000
0722;332950.0000,7099590.000
0723;333010.0000;7099590.000
0724,333130.0000,7099590.000
0725;333130.0000,7099500.000
0726,332890.0000,7099520.000
0727,332960.0000,7099450.000
0728;333010.0000,7099440.000
0729;333220.0000,7099150.000
0730;332890.0000;7095440.000
0731;332900.0000,7099370.000
0732,333020.0000,7099360.000
0733;333050.0000,7099260.000
0734,333100.0000;7099280.000
0735,332950.0000;7089760.000
0736,333010.0000;7099790.000
0737,333070.0000;7099820.000
0738;333130.0000;7099840.000
0739;333180.0000,7099870.000
0740;333230.0000;7099890.000
0741,333260.0000,7099900.000
0742;333230.0000;7100010.000
0743;333190.0000;7100110.000
0744,333230.0000;7100130.000
0745;333290.0000,7100150.000
0746;333340.0000,7100180.000
0747,333340.0000,7100110.000
0748;333430.0000;7100210.000
0749,333430.0000,7100140.000
0750;333340.0000;7100150.000
0751,333230.0000;7100210.000
0752;333340.0000,7100340.000
0753,;333430.0000,7100340.000
0764;333380.0000;7100350.000
0755;333260.0000;7100280.000
0756,333340.0000.7100260.000
0757,333430.0000;7100280.000
0758;333470.0000;7100230.000
0759;333230.0000;7100060.000
0760;333230.0000;7099940.000
0761,333070.0000;7099450.000
0762;332990.0000,7099150.000
0763;333090.0000;7099180.000
0764,333200.0000,7099220.000
0765,333120.0000,7099100.000
0766,333020.0000;7099060.000
0767;332980.0000;7099040.000
0768;333070.0000;7099080.000
0769;333170.0000,7099120.000
0770;333270.0000;7099160.000
0771;333050.0000;7099000.000
0772;333150.0000;7099030.000
0773;333250.0000,7089080.000
0774;334270.0000;7098560.000



