• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Dissertações
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Dissertações
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Desempenho do método de lagrangeano aumentado com penalidade quadrática

    Thumbnail
    View/Open
    luisfernandojussiani.pdf (694.1Kb)
    Date
    2004
    Author
    Jussiani,Luis Fernando
    Metadata
    Show full item record
    Subject
    Teses
    Lagrange, Funções de
    Programação convexa
    Análise numérica
    xmlui.dri2xhtml.METS-1.0.item-type
    Dissertação
    Abstract
    Resumo: Neste trabalho, serão utilizadas duas metodologias para construção de funções de penalização para algoritmos de Lagrangeano Aumentado, aplicados a problemas de programação convexa comrestrições. Métodos de Lagrangeano Aumentado partem normalmente de funções de penalização ? : R ? R, estritamente convexas e crescentes, que são combinadas com multiplicadores de Lagrange para compor termos de penalização com os formatos: (y, ?) ? R×R++ 7?? p(y, u) = ??(y) e (y, ?) ? R×R++ 7?? p(y, u) = ?(?y). Propõe-se uma função de penalização ? a ser usada no algoritmo de Lagrangeano Aumentado, definida por y ? R 7?? ?(y) = 1 2 y2 + y, sendo ? estritamente convexa, porém nãocrescente em todo o seu domínio. Neste caso, em que as penalidades são quadráticas, os multiplicadores gerados pelo algoritmo de Lagrangeano Aumentado podem ser negativos, pois a derivada da função não é crescente em todo o seu domínio. Este problema é contornado aumentando-se o parâmetro de penalidade, conforme relações mostradas no Capítulo 2, entre os métodos de Ponto Proximal e Região de Confiança. Implementam-se os algoritmos de Lagrangeano Aumentado para problemas com restrições de desigualdades, utilizando duas metodologias para construção das funções de penalidades quadrática e m2b. Os resultados numéricos obtidos em Matlab ilustram a eficiência da penalidade quadrática.
     
    Abstract: In this work, two methodologies are used for constructing penalization functions of Augmented Lagrangian algorithms, solving convex programming problems with constraints. Augmented Lagrangian methods are usually built from strictly convex and increasing penalization functions ? : R ? R, combined with Lagrange multipliers ? to compose penalization terms: (y, ?) ? R × R++ 7?? p(y, u) = ??(y) and (y, ?) ? R × R++ 7?? p(y, u) = ?(?y). The penalization function ?, defined by y ? R 7?? ?(y) = 1 2 y2 + y, is ? strictly convex, but non-increasing in all its domain. In this case, the multipliers generated by the Augmented Lagrangian algorithm can be negative. Therefore the derivative of the function is not increasing in all its domain. This problem has been turned around by increasing the penalty parameter, according to relations shown in chapter 2, between the Proximal Point and Trust-Region methods. Augmented Lagrangian algorithms are implemented and tested for problems with inequality constraints, using the quadratic and m2b penalty functions. The numeric results obtained in Matlab illustrate the efficiency of the quadratic penalty.
     
    URI
    http://hdl.handle.net/1884/995
    Collections
    • Dissertações [226]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV