Show simple item record

dc.contributor.authorKubo, Diandra Akemi Alves, 1994-pt_BR
dc.contributor.otherBellon, Olga Regina Pereirapt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informáticapt_BR
dc.date.accessioned2021-01-04T22:53:35Z
dc.date.available2021-01-04T22:53:35Z
dc.date.issued2019pt_BR
dc.identifier.urihttps://hdl.handle.net/1884/69169
dc.descriptionOrientador: Profa Dra Olga R. P. Bellonpt_BR
dc.descriptionDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 30/10/2019pt_BR
dc.descriptionInclui referências: p. 46-51pt_BR
dc.descriptionÁrea de concentração: Ciência da Computaçãopt_BR
dc.description.abstractResumo: A avaliação de dor é uma tarefa difícil e complexa, que é particularmente importante para recém-nascidos, que não conseguem verbaliza-la de maneira adequada e são vulneráveis a danos cerebrais decorrentes do não tratamento da dor. As ferramentas utilizadas no ambiente clínico para auxiliar na avaliação de dor requerem treinamento dos profissionais de saúde que irão utilizá-las, e seu uso é afetado pelo viés no reconhecimento da dor de cada indivíduo. Por essa razão, esforços tem sido colocados em automatizar essa tarefa, e uma das maneiras de fazê-lo é analisando a expressão facial do neonato, uma vez que esta é comprovadamente correlacionada à dor. Nessa dissertação, as diferenças entre os principais trabalhos em reconhecimento automático de expressão facial de neonatos são apresentadas, examinando os métodos utilizados, bases de dados e performances dos sistemas. Com isso em mente, testamos os principais métodos utilizados com objetivo de comparar suas performances mais a fundo. Esse estudo também avança o entendimento da base de dados COPE, a única base de dados de expressão facial de neonatos publicamente disponível. Conduzimos testes com métodos off the shelf para detecção de face, e em 54% das imagens nenhuma face foi detectada, reforçando a necessidade do desenvolvimento de sistemas específicos para recém-nascidos ou mais robustos à mudanças de público. Desde a publicação da base COPE em 2005, avanços significativos foram alcançados na área de processamento de imagens, e por essa razão comparamos métodos clássicos de extração de características em processamento de imagens com características provenientes de redes neurais convolucionais (CNNs), que são consideradas estado da arte para a maioria das aplicações de visão computacional. Um delta de 19% foi observado entre os filtros de gabor (melhor dos métodos clássicos) e características da ResNet50 (melhor das CNNs). Também testamos a robustez dos métodos a ruído, um fator importante em problemas de visão computacional onde devem ser considerados cenários da vida real. Para os métodos clássicos, foi observado um delta menor na performance entre cenários limpos e ruidosos, mas de maneira geral a performance foi pior que das CNNs. Em adição, estressando a performance das CNNs, testamos quais camadas produziriam melhor performance, na tentativa de verificar se camadas mais rasas poderiam ter desempenho igual ou melhor que camadas mais profundas, o que significaria menor custo computacional. Os resultados mostraram melhores resultados utilizando as camadas mais profundas. De maneira geral, estudando a literatura da área notamos uma tendência na utilização de métricas enviesadas, como acurácia, em um campo onde uma visão mais completa de performance de modelos deveria ser utilizada, por se tratar de um público tão vulnerável. Por fim, também observamos uma dificuldade no acesso as bases da literatura. Nossos esforços reforçam o potencial da utilização de métodos de visão computacional, porém fora limitados à base de dados utilizada. Palavras-chave: Expressões faciais, avaliação de dor, visão computacionalpt_BR
dc.description.abstractAbstract: Pain evaluation is a difficult and complex task, that is particularly important for newborns, who cannot verbalize it properly and are vulnerable to cerebral damage due to untreated pain. The current pain assessment tools used in clinical settings require extensive training for the caregivers and can be affected by each individual's bias towards pain recognition. For this reason, efforts have been made to automate this task, and one of the ways to do so is analyzing the newborn's facial expression, that has been proved to correlate with pain. In this dissertation, the differences among the most prominent works in automatic neonatal facial expression recognition were outlined, examining methods used, databases and final performance. With this in mind, we tested main methods used to compare their performances more in depth. This study also advances the understanding of the COPE database, the only publicly available newborn facial expression database. We conducted a test with off the shelf methods for face detection, and found that in 54% of the images, no face was found, reinforcing the need to develop either tailored applications or more robust ones. Since the COPE database was published, in 2005, significant advances in image processing have been made, and for this reason, we compared classical image processing feature extraction methods with Convolutional Neural Networks (CNNs), that are considered to be state of the art for most computer vision problems. We saw a difference of 19% in recall when using gabor filters (best of classical methods) and then the ResNet50 features (best of CNNs). We also tested the methods in regards to robustness to image noise, an important factor for computer vision problems when real world scenarios are considered. We found that image processing methods had a smaller delta in performance from clean to noisy scenarios, but had overall poor performance. In addition, stressing the CNNs performance, we also studied which layers yielded best performance in order to verify if shallow layers could produce the same results as deeper ones for this application, meaning less computational cost, but our test showed superior performance in deeper layers. Overall, studying the literature we noticed a tendency to use biased metrics, such as accuracy, in a field where a more complete view of model performance should be used. Moreover, we also found it very difficult to access data for this field. Our findings reinforce the potential of more complex computer vision methods, but are limited to the dataset that was used. Keywords: Facial expression, pain assessment, computer visionpt_BR
dc.format.extent51 p. : il. (algumas color.).pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.subjectSoftwarept_BR
dc.subjectRecém-nascidospt_BR
dc.subjectAprendizado do computadorpt_BR
dc.subjectNeonatologiapt_BR
dc.subjectCiência da Computaçãopt_BR
dc.titleReconhecimento de expressões faciais em neonatospt_BR
dc.typeDissertação Digitalpt_BR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record