Show simple item record

dc.contributor.advisorScarpin, Cassius Tadeu, 1980-pt_BR
dc.contributor.authorBaziewicz, Carolina Meduna, 1993-pt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Métodos Numéricos em Engenhariapt_BR
dc.date.accessioned2021-05-18T13:27:06Z
dc.date.available2021-05-18T13:27:06Z
dc.date.issued2019pt_BR
dc.identifier.urihttps://hdl.handle.net/1884/65745
dc.descriptionOrientador: Prof. Dr. Cassius Tadeu Scarpinpt_BR
dc.descriptionDissertação (mestrado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa : Curitiba, 30/08/2019pt_BR
dc.descriptionInclui referências: p. 100-103pt_BR
dc.descriptionÁrea de concentração: Programação Matemáticapt_BR
dc.description.abstractResumo: Um dos desafios para estruturar uma metodologia robusta de previsão e controle de estoques é a escolha dos métodos de previsão. Neste trabalho foi realizada uma análise crítica da metodologia de classificação de Syntetos e Boylan (2005) no que tange a escolha dos métodos de previsão para itens de reposição de estoque. Tal metodologia sugere que as séries do tipo slow-moving, errática e lumpy sejam previstas pelo método de Aproximação de Syntetos e Boylan (SBA), e que as séries do tipo smooth sejam previstas pelo método de Croston. A metodologia foi testada em dados reais de venda de 9.339 produtos de uma rede do setor supermercadista. Para ampliar a abrangência e contribuição da análise, foram utilizados quinze métodos de previsão, três indicadores de desempenho, três estratégias de previsão e diferentes perspectivas de análise. A análise foi estruturada com base em três elementos principais: a comparação entre os métodos de previsão - pela quantidade de vitórias conquistadas e pelo erro de previsão; a comparação entre as estratégias de previsão; e a comparação dos resultados obtidos com os trabalhos correlatos da literatura. Os resultados mostram que a classificação de Syntetos e Boylan não garantiu a melhor escolha do método de previsão para os dados utilizados, pois os métodos SBA e Croston foram superados por outros métodos em termos de desempenho, especialmente na estratégia 3. Nenhum método foi totalmente superior perante os demais, mas todos se mostraram capazes de fornecer boas previsões, em maior ou menor quantidade de séries. Para as estratégias 1 e 2, os métodos TLSaz, Naive e SBJ obtiveram melhor desempenho geral, enquanto na estratégia 3 o método ARIMA obteve maior destaque. De modo geral, a estratégia 2 é a que registrou menor amplitude geral nos erros de previsão, seguido da estratégia 1 e depois da estratégia 3. Por fim, conclui-se que a busca por uma metodologia de classificação robusta e universal ainda é um grande desafio para esta área de pesquisa. De fato, este tema não tem recebido atenção o suficiente da comunidade científica, haja vista os benefícios diretos que poderiam ser adquiridos desta iniciativa. Palavras-chave: Classificação de demanda. Métodos de Previsão. Syntetos e Boylan. Itens de reposição.pt_BR
dc.description.abstractAbstract: One of the biggest challenges to structure a robust inventory control methodology is the choice of forecasting methods. This paper presents a critical analysis of the classification methodology of Syntetos and Boylan (2005) regarding the choice of forecasting methods for spare parts. Their methodology proposes that slow-moving, erratic and lumpy series should be predicted with Syntetos and Boylan Approximation method (SBA), while smooth series should be predicted by Croston's method. This procedure was tested on a real sales dataset of 9,339 products from a supermarket chain. In order to broaden the scope and contribution of this paper, fifteen forecasting methods, three performance indicators, three forecasting strategies and different analysis perspectives were used. The analysis was structured according to three main elements: the comparison across forecasting methods - the amount of victories of each method and the forecast error; the comparison across forecasting strategies; and the results obtained compared to related works in the literature. The results evidence that the Syntetos and Boylan classification did not guarantee the choice of the best forecasting method for the data used, as long as the SBA and Croston methods were surpassed by other methods in terms of performance, especially in strategy 3. No method was found to be absolutely superior when compared to others, but all were able to provide good forecasts in higher or lesser number of series. For strategies 1 and 2, the TLSaz, Naive and SBJ methods had better overall performance, while in strategy 3 the ARIMA method was more prominent. Overall, strategy 2 has the lowest forecasting error amplitude, followed by strategy 1 and strategy 3. Finally, the search for a robust and unique classification methodology is still a great challenge in this research area. In fact, this issue has not received enough attention from the scientific community as it should, given the direct benefits that could be gained from this initiative. Keywords: Demand classification. Forecasting Methods. Syntetos and Boylan. Spare Partspt_BR
dc.format.extent134 p. : il. (algumas color.).pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.subjectAnalise de series temporaispt_BR
dc.subjectPrevisãopt_BR
dc.subjectAnálise Numéricapt_BR
dc.titleAnálise de uma metodologia de classificação de séries temporais para definição dos métodos de previsãopt_BR
dc.typeDissertação Digitalpt_BR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record