Show simple item record

dc.contributor.authorRex, Franciel Eduardo, 1994-pt_BR
dc.contributor.otherDalla Corte, Ana Paula, 1980-pt_BR
dc.contributor.otherSilva, Carlos Albertopt_BR
dc.contributor.otherSanquetta, Carlos Roberto, 1964-pt_BR
dc.contributor.otherMachado, Sebastião do Amaral, 1939-pt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Ciências Agrárias. Programa de Pós-Graduação em Engenharia Florestalpt_BR
dc.date.accessioned2022-01-22T01:24:25Z
dc.date.available2022-01-22T01:24:25Z
dc.date.issued2019pt_BR
dc.identifier.urihttps://hdl.handle.net/1884/63010
dc.descriptionOrientadora: Prof.ª Drª Ana Paula Dalla Cortept_BR
dc.descriptionCoorientadores: Dr. Carlos Alberto Silva, Prof. Dr. Carlos Roberto Sanquetta; Prof. Dr. Sebastião do Amaral Machadopt_BR
dc.descriptionDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Agrárias, Programa de Pós-Graduação em Engenharia Florestal. Defesa : Curitiba, 25/02/2019pt_BR
dc.descriptionInclui referênciaspt_BR
dc.descriptionÁrea de Concentração: Manejo Florestalpt_BR
dc.description.abstractResumo As florestas tropicais são consideradas como os ecossistemas vegetais que mais estocam carbono, devido ao acúmulo de biomassa em seus tecidos durante seu desenvolvimento. A floresta Amazônica se destaca pela sua extensão, sendo considerada a maior floresta tropical do mundo. Assim, frente às principais discussões de mudanças climáticas globais, a floresta Amazônica tem sido apontada como umas das alternativas para redução de gases do efeito estufa, principais responsáveis pelas mudanças climáticas globais. Nesse sentido, esta pesquisa foi dividida em duas etapas: A primeira etapa objetivou realizar uma análise da dinâmica da biomassa acima do solo (AGB) em floresta tropical através de dados de LiDAR aerotransportado, relacionando com mudanças estruturais identificadas automaticamente. A segunda etapa teve como objetivo comparar diferentes abordagens para a estimativa de AGB em floresta tropical, bem como analisar a dinâmica da AGB em uma floresta tropical que foi seletivamente explorada. O primeiro estudo foi conduzido na Floresta Nacional (FLONA) do Jamari, em Rondônia - Brasil. Neste estudo, foram utilizados dados de LiDAR e de inventário florestal. A metodologia foi constituída de processamento dos dados LiDAR para obtenção do modelo de altura de copa (CHM) e das métricas para estimativa de AGB. Dois modelos disponíveis na literatura foram utilizados para as estimativas de AGB de campo e via métricas LiDAR. Após este procedimento, uma análise das mudanças dos estoques de AGB em nível de paisagem e também das mudanças estruturais identificadas foi realizada. O segundo estudo foi conduzido em uma floresta tropical seletivamente explorada no leste da Amazônia. Os dados de campo foram constituídos de 85 parcelas, enquanto que os dados LiDAR foram obtidos em 2012, 2014 e 2017. Modelos no nível da parcela foram primeiramente desenvolvidos usando 6 métricas baseadas na análise de PCA e quatro abordagens de aprendizado de máquina foram implementados e comparados com o modelo de regressão linear (OLS). Os resultados de ambos os capítulos mostraram que o LiDAR é uma ferramenta de grande potencial para a estimativa do estoque e da dinâmica de AGB em florestas tropicais, permitindo desta forma que diferentes análises sejam desenvolvidas. Foram mensuradas de forma automática 40 copas para cada ano no estrato superior da floresta, e com estas, observou-se que houve acréscimos estruturais positivos que não influenciaram nas estimativas dos estoques de AGB. Os resultados do segundo capítulo mostraram que entre as abordagens utilizadas, o método de regressão linear foi superior às demais abordagem, entretanto, abordagens não paramétricas como Random Forest e Support Vector Machine também mostraram potencial para estimativas de AGB e podem ser utilizadas quando necessário. Os resultados do segundo capítulo também revelaram que era possível mapear os estoques de AGB com uma precisão aceitável (RMSE <20%), dessa forma, foi possível analisar com precisão as mudanças ao longo do tempo dos estoques de biomassa em uma floresta seletivamente explorada. Palavras-chave: Amazônia, sensoriamento remoto, predição de biomassa, métodos de estimação.pt_BR
dc.description.abstractAbstract Tropical forests are considered the most carbon-storing plant ecosystems due to the accumulation of biomass in their tissues during their development. The Amazon rainforest stands out for its extension, being considered the largest tropical forest in the world. Faced with the main discussions of global climate change, the Amazon rainforest has been identified as an alternative to reduce greenhouse gases, which are the main cause of global climate change. Thereby, this research was divided into two stages. The first stage was to perform an analysis of the aboveground biomass (AGB) dynamics in tropical forest from airborne LiDAR data, relating them to the structural changes identified automatically. The second stage was aimed at comparing different approaches to estimate AGB in tropical forest, as well as to analyze the dynamics of AGB in a tropical forest that was selectively explored. The first study was conducted in the Jamari National Forest (FLONA), in Rondônia - Brazil. Airborne LiDAR and forest inventory were used and the methodology was consisted of processing the LiDAR data to obtain Canopy Height Models (CHM) and also the metrics for estimating AGB at plot and landscape level. Two allometric models available in the literature were used for AGB estimates. The first was used to estimate the AGB from the field and the other was used for the estimations via LiDAR metrics. After this, an analysis was made of the changes in AGB stocks at the landscape level and also of the structural changes identified. The second study was conducted in a selectively exploited tropical forest in eastern Amazonia. The field data were composed of 85 plots. LiDAR data were obtained in 2012, 2014 and 2017. Plotlevel models were first developed using 6 metrics based on PCA analysis and four machine learning approaches were implemented and compared with the linear regression model (OLS). The results of both chapters showed that the LiDAR is a tool with great potential for the estimation of the stock and the dynamics of AGB in tropical forests, thus allowing different analyzes to be developed. From two LiDAR surveys (2011-2013), 40 crowns were automatically measured for each year in the superior stratum of the forest, and with these, it was observed that there were positive structural increases that did not influence of AGB stocks. The results of the second chapter showed that among the approaches used, the linear regression method was superior to the other approaches, however, non-parametric approaches such as Random Forest and Support Vector Machine also shown potential for AGB estimates and may be used when required. The results of the second chapter also revealed that it was possible to map AGB stocks with acceptable accuracy (RMSE <20%), so it was possible to safely analyze the changes over time in biomass stocks in a forest that was selectively exploited. Keywords: Amazon, remote sensing, biomass prediction, methods.pt_BR
dc.format.extent119 p. : il.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.subjectBiomassa florestal - Amazôniapt_BR
dc.subjectBiomassa florestal - Mediçãopt_BR
dc.subjectBiomassa florestal - Métodos estatísticospt_BR
dc.subjectRecursos Florestais e Engenharia Florestalpt_BR
dc.subjectSensoriamenro remotopt_BR
dc.subjectLevantamentos florestaispt_BR
dc.subjectTesespt_BR
dc.titleEstimativas do estoque e dinâmica de biomassa acima do solo utilizando diferentes abordagens estatístcas e dados LiDAR em floresta tropicalpt_BR
dc.typeDissertação Digitalpt_BR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record