Show simple item record

dc.contributor.authorPedernera Parada, Daniel Mauriciopt_BR
dc.contributor.otherBellon, Olga Regina Pereira, 1962-pt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informáticapt_BR
dc.date.accessioned2018-09-21T13:15:49Z
dc.date.available2018-09-21T13:15:49Z
dc.date.issued2017pt_BR
dc.identifier.urihttps://hdl.handle.net/1884/55807
dc.descriptionOrientadora: Profa. Dra. Olga Regina Pereira Bellonpt_BR
dc.descriptionDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 16/12/2017pt_BR
dc.descriptionInclui referências: p.56-60pt_BR
dc.descriptionÁrea de concentração: Ciência da Computaçãopt_BR
dc.description.abstractResumo: Neste trabalho, realiza-se o reconhecimento de Expressões Faciais Compostas (EFCs), em imagens 3D, nos ambientes de captura: forçado e espontâneo. Explora-se assim, uma moderna categorização de expressões faciais, diferente das expressões faciais básicas, por ser construída pela combinação de duas expressões básicas. A pesquisa se orienta através da utilização de imagens 3D por conta de suas vantagens intrínsecas: não apresentam problemas decorrentes de variações de pose, iluminação e de outras mudanças na aparência facial. Consideram-se dois ambientes de captura de expressões: forçado (quando o sujeito é instruído para realizar a expressão) e espontâneo (quando o sujeito produz a expressão por meio de estímulos). Isto, com a intenção de comparar o comportamento dos dois em relação ao reconhecimento de EFCs, já que, diferem em várias dimensões, incluindo dentre elas: complexidade, temporalidade e intensidade. Por fim, propõe-se um método para reconhecer EFCs. O método em questão representa uma nova aplicação de detectores de movimentos dos músculos faciais já existentes. Esses movimentos faciais detectar são denotados no sistema de codificação de ação facial (FACS) como Unidades de Ação (AUs). Consequentemente, implementam-se detectores de AUs em imagens 3D baseados em padrões binários locais de profundidade (LDBP). Posteriormente, o método foi aplicado em duas bases de dados públicas com imagens 3D: Bosphorus (ambiente forçado) e BP4D-Spontaneus (ambiente espontâneo). Nota-se que o método desenvolvido não diferencia as EFCs que apresentam a mesma configuração de AUs, sendo estas: "felicidade com nojo", "horror" e "impressão", por conseguinte, considera-se essas expressões como um "caso especial". Portanto, ponderaram-se 14 EFCs, mais o "caso especial" e imagens sem EFCs. Resultados obtidos evidenciam a existência de EFCs em imagens 3D, das quais aproveitaramse algumas características. Além disso, notou-se que o ambiente espontâneo, teve melhor comportamento em reconhecer EFCs tanto pelas AUs anotadas na base, quanto pelas AUs detectadas automaticamente; reconhecendo mais casos de EFCs e com melhor desempenho. Pelo nosso conhecimento, esta é a primeira vez que EFCs são investigadas em imagens 3D. Palavras-chave: Expressões faciais compostas, FACS, Detecção de AUs, Ambiente forçado, Ambiente espontâneo.pt_BR
dc.description.abstractAbstract: The following research investigates Compound Facial Expressions (EFCs) in 3D images captured in the domains: forced and spontaneous. The work explores a modern categorization of facial expressions, different than basic facial expressions, but constructed by the combination of two basic categories of emotion. The investigation used 3D images because of their intrinsic advantages: they do not present problems due to variations in pose, lighting and other changes in facial appearance. For this purpose, this research considers both forced (when the subject is instructed to perform the expression) and spontaneous (when the subject produces the expression by means of stimuli) expression caption domains. This has the intention of comparing the behavior of both domains by analyzing the recognition of EFCs, because they differ in many dimentions, including complexity, time and intensity. Finally, a method for EFCs recognition is proposed. The method in question represents a new application of existing detectors of facial muscle movements. These facial movimentes to detect are denoted in the Facial Action Coding System (FACS) as Action Units (AUs). Consequently, 3D Facial AUs Detectors are developed based on Local Depth Binary Patterns (LDBP). Subsequently, the method was applied to two public databases with 3D images: Bosphorus (forced domain) and BP4D-Spontaneous (spontaneous domain). Note that the developed method does not differentiate the EFCs that present the same AU configuration: "sadly disgusted", "appalled" and "hateful", therefore, these expressions are considered a "special case". Thus, 14 EFCs are observed, plus the "special case" and the non-EFCs images. The results confirm the existence of EFCs in 3D images, from which some characteristics were exploit. In addition, noticed that the spontaneous environment was better at recognizing EFCs by the AUs annotated at the database and by the AUs detected; recognizing more cases of EFCs and with better performance. From our best knowledge, this is the first time that EFCs are explored for 3D images. Keywords: Coumpound facial expression, FACS, AUs detection, posed domain, spontaneous domain.pt_BR
dc.format.extent60 p. : il. (algumas color.).pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.subjectReconhecimento de padrõespt_BR
dc.subjectCiencia da computaçãopt_BR
dc.subjectExpressão facialpt_BR
dc.subjectImagem tridimensionalpt_BR
dc.subjectTesespt_BR
dc.titleReconhecimento de expressões faciais compostas em imagens 3D : ambiente forçado vs ambiente espontâneopt_BR
dc.typeDissertação Digitalpt_BR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record