• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016043P4 Programa de Pós-Graduação em Engenharia Elétrica
    • Dissertações
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016043P4 Programa de Pós-Graduação em Engenharia Elétrica
    • Dissertações
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A lung cancer detection approach based on shape index and curvedness superpixel candidate selection

    Thumbnail
    View/Open
    R - D - JEOVANE HONORIO ALVES.pdf (3.401Mb)
    Date
    2016
    Author
    Alves, Jeovane Honório
    Metadata
    Show full item record
    Subject
    Câncer
    Diagnóstico por imagem
    Pulmões - Câncer
    xmlui.dri2xhtml.METS-1.0.item-type
    Dissertação
    Abstract
    Resumo: Câncer é uma das causas com mais mortalidade mundialmente. Câncer de pulmão é o tipo de câncer mais comum (excluíndo câncer de pele não-melanoma). Seus sintomas aparecem em estágios mais avançados, o que dificulta o seu tratamento. Para diagnosticar o paciente, a tomografia computadorizada é utilizada. Ela é composta de diversos cortes, que mapeiam uma região 3D de interesse. Apesar de fornecer muitos detalhes, por serem gerados vários cortes, a análise de exames de tomografia computadorizada se torna exaustiva, o que pode influenciar negativamente no diagnóstico feito pelo especialista. O objetivo deste trabalho é o desenvolvimento de métodos para a segmentação do pulmão e a detecção de nódulos em imagens de tomografia computadorizada do tórax. As imagens são segmentadas para separar o pulmão das outras estruturas e após, detecção de nódulos utilizando a técnicas de superpixeis são aplicadas. A técnica de Rótulamento dos Eixos teve uma média de preservação de nódulos de 93,53% e a técnica Monotone Chain Convex Hull apresentou melhores resultados com uma taxa de 97,78%. Para a detecção dos nódulos, as técnicas Felzenszwalb e SLIC são empregadas para o agrupamento de regiões de nódulos em superpixeis. Uma seleção de candidatos à nódulos baseada em shape index e curvedness é aplicada para redução do número de superpixeis. Para a classificação desses candidatos, foi utilizada a técnica de Florestas Aleatórias. A base de imagens utilizada foi a LIDC, que foi dividida em duas sub-bases: uma de desenvolvimento, composta pelos pacientes 0001 a 0600, e uma de validação, composta pelos pacientes 0601 a 1012. Na base de validação, a técnica Felzenszwalb obteve uma sensibilidade de 60,61% e 7,2 FP/exame. Palavras-chaves: Câncer de pulmão. Detecção de nódulos. Superpixel. Shape index.
     
    Abstract: Cancer is one of the causes with more mortality worldwide. Lung cancer is the most common type (excluding non-melanoma skin cancer). Its symptoms appear mostly in advanced stages, which difficult its treatment. For patient diagnostic, computer tomography (CT) is used. CT is composed of many slices, which maps a 3D region of interest. Although it provides many details, its analysis is very exhaustive, which may has negatively influence in the specialist's diagnostic. The objective of this work is the development of lung segmentation and nodule detection methods in chest CT images. These images are segmented to separate the lung region from other parts and, after that, nodule detection using superpixel methods is applied. The Axes' Labeling had a mean of nodule preservation of 93.53% and the Monotone Chain Convex Hull method presented better results, with a mean of 97.78%. For nodule detection, the Felzenszwalb and SLIC methods are employed to group nodule regions. A nodule candidate selection based on shape index and curvedness is applied for superpixel reduction. Then, classification of these candidates is realized by the Random Forest. The LIDC database was divided into two data sets: a development data set composed of the CT scans of patients 0001 to 0600, and a untouched, validation data set, composed of patients 0601 to 1012. For the validation data set, the Felzenszwalb method had a sensitivity of 60.61% and 7.2 FP/scan. Key-words: Lung cancer. Nodule detection. Superpixel. Shape index.
     
    URI
    https://hdl.handle.net/1884/45760
    Collections
    • Dissertações [308]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV