Show simple item record

dc.contributor.advisorMarchi, Carlos Henriquept_BR
dc.contributor.authorCarvalho Junior, Carlos Alberto Rezende dept_BR
dc.contributor.otherMartins, Márcio Andrépt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Métodos Numéricos em Engenhariapt_BR
dc.date.accessioned2017-03-20T16:15:08Z
dc.date.available2017-03-20T16:15:08Z
dc.date.issued2015pt_BR
dc.identifier.urihttp://hdl.handle.net/1884/44607
dc.descriptionOrientador : Prof. Dr. Carlos Henrique Marchipt_BR
dc.descriptionCoorientador : Prof. Dr. Márcio André Martinspt_BR
dc.descriptionDissertação (mestrado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa: Curitiba, 30/03/2015pt_BR
dc.descriptionInclui referências : f. 78-80pt_BR
dc.description.abstractResumo: Neste trabalho emprega-se a Multiextrapolação de Richardson (MER) para reduzir o erro de discretização (Eh), na área de Dinâmica dos Fluidos Computacional (em inglês Computational Fluid Dynamics (CFD)), que consiste em uma técnica de pós processamento de dados para reduzir Eh. Para atingir este objetivo utiliza-se uma nova metodologia, proposta em 2013 para malhas uniformes, em que se aplica interpolações polinomiais. Através desta metodologia, MER teve seu desempenho melhorado: a magnitude dos erros de discretização reduziu progressivamente com o refinamento da malha, com um concomitante aumento das suas ordens de acurácia, até mesmo em variáveis de interesse cuja localização não é fixa, até então na literatura, MER era considerada de baixo desempenho neste tipo de variável. Com o intuito de estender este significativo resultado de 2013, esta metodologia foi estendida para malhas não uniformes unidimensionais. Como problema-modelo é considerado a equação de Poisson 1D, utilizando dois tipos de malha inicial, e refinamento uniforme. A discretização dessa equação foi realizada com o método de Diferenças Finitas. Nas variáveis de interesse estudadas, testou-se vários graus de interpolação e foram alcançados resultados semelhantes com os apresentados para este mesmo problema utilizando malhas uniformes, com MER, isto é, o erro de discretização teve redução significativa. Palavras-chave: Erro de discretização. Multiextrapolação de Richardson (MER). Interpolação polinomial. Dinâmica dos fluidos computacional (CFD). Equação de Poisson 1D. Método de Diferenças Finitas.pt_BR
dc.description.abstractAbstract: This work applies the Repeated Richardson Extrapolation (RRE) to reduce the discretization error (Eh) in Computational Fluid Dynamics (CFD), consisting of a post-data processing technique to reduce Eh. Therefore, to use RRE, we use a new methodology, created in 2013 for uniform grids, which works with the use of polynomial interpolation. Using this methodology, RRE had its performance improved: the magnitude of the discretization errors was reduced progressively with mesh refinement, with a concomitant increase in its accuracy orders, even variables of interest whose location is not fixed, so far in the literature, RRE was considered underperforming in this type of variable. We adapted this methodology to non-uniform one-dimensional meshes, with intent of extending this significant recent result for non-uniform grids. As problem-model we consider the Poisson equation 1D using two types of initial mesh with uniform refinement. The discretization of equation is performed using the Finite Difference Method. In the interest variables studied in this work, it was tested various degrees of interpolation and obtained similar results to those presented to the same problem for uniform meshes with RRE, in the other words, the Eh had a significant reduction. Keywords: Discretization error, Repeated Richardson Extrapolation (RRE), Polynomial Interpolation, Computational Fluid Dynamics (CFD), 1D Poisson Equation, Finite Difference Method.pt_BR
dc.format.extent150 f. : il. algumas color.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.relationDisponível em formato digitalpt_BR
dc.subjectAnálise numéricapt_BR
dc.subjectInterpolaçãopt_BR
dc.subjectDinamica dos fluidospt_BR
dc.subjectDiferenças finitaspt_BR
dc.subjectTesespt_BR
dc.titleInterpolação polinomial com multiextrapolação Richardson para reduzir o erro de discretização em malhas não uniformes 1Dpt_BR
dc.typeDissertaçãopt_BR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record