• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Dissertações
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Dissertações
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rede de Kohonen

    Thumbnail
    View/Open
    R - D - CLAUDIA APARECIDA CAVALHEIRO FRANCISCO.pdf (557.0Kb)
    Date
    2004
    Author
    Francisco, Claudia Aparecida Cavalheiro
    Metadata
    Show full item record
    Subject
    Teses
    Redes neurais (Computação)
    Ecologia - Processamento de dados
    Mapas auto-organizáveis
    Peixe - classificação - Processamento de dados
    xmlui.dri2xhtml.METS-1.0.item-type
    Dissertação
    Abstract
    Resumo: As redes neurais artificiais têm sido aplicadas com sucesso em diversos problemas de análise exploratória de dados multivariados relacionados à ecologia. Todavia, poucos são os trabalhos utilizando a rede de Kohonen (mapas auto-organizáveis) para classificação de padrões de dados ecológicos. A dificuldade encontra-se na obtenção de um conjunto adequado de dados para o treinamento e validação da rede. Para o desenvolvimento deste trabalho foram utilizados dados obtidos no projeto "Estudos ictiológicos na área de influência do AHE Corumbá" pelo Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura (Nupélia), Universidade Estadual de Maringá (UEM) em convênio com FURNAS Centrais Elétricas S.A. Este trabalho utiliza a rede de Kohonen como uma metodologia para a classificação das espécies de peixes em categorias tróficas do reservatório de Corumbá - GO, de acordo com a dieta, envolvendo duas fases distintas: fase rio (anterior ao represamento), com a classificação de 1845 estômagos de 33 espécies de peixes, e a fase reservatório (posterior ao represamento), com a classificação de 5492 estômagos de 36 espécies de peixes. As classificações foram obtidas nas duas fases distintamente, resultando em ambas, em uma separação de dois grandes grupos: o dos generalistas e o dos especialistas. Os peixes especialistas foram divididos em quatro grupos: insetívoros, herbívoros, piscívoros e detritívoros. Os insetívoros apresentaram um grande número de espécies, sendo necessário modelar uma nova rede, visando a separação desta categoria, em quatro sub-grupos. A rede de Kohonen mostrou-se uma ferramenta robusta para a classificação dos dados, apresentando resultados rápidos, com uma clara visualização dos agrupamentos, facilitando sobremaneira a interpretação dos resultados.
    URI
    http://hdl.handle.net/1884/34757
    Collections
    • Dissertações [223]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV