• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016035P1 Programa de Pós-Graduação em Geografia
    • Teses
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016035P1 Programa de Pós-Graduação em Geografia
    • Teses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Regressão logística e redes neurais aplicadas à previsão probabilística de alagamentos no Município de Curitiba, Pr

    Thumbnail
    View/Open
    R - D - MARCIEL LOHMANN.pdf (7.818Mb)
    Date
    2013-06-19
    Author
    Lohmann, Marciel
    Metadata
    Show full item record
    Subject
    Teses
    Redes neurais (Computação)
    Analise de regressão
    Inundações
    xmlui.dri2xhtml.METS-1.0.item-type
    Tese
    Abstract
    Resumo: A presente pesquisa se propõe a estudar por meio do uso de regressão logística e redes neurais as características relacionadas aos padrões de chuva em Curitiba, procurando estabelecer a relação entre chuva e alagamentos para o município, utilizando como base a integração de informações hidrometeorológicas. Para alcançar os objetivos propostos, foram construídos modelos baseados em regressão do tipo logística e redes de Kohonen (Self Organizing Map (SOM)) para previsão probabilística de alagamentos, sendo os dois métodos comparados e avaliados em relação ao seu desempenho por meio da Curva de Características Operacionais (ROC), bem como a partir dos diagramas de confiabilidade, discriminação e refinamento. Para a construção dos modelos foram utilizados os dados de precipitação estimada a partir da integração das informações provenientes de radar meteorológico, satélite e pluviômetros, utilizando o método de Análise Objetiva Estatística (ANOBES). Os dados dos registros pontuais de alagamentos fornecidos pela Defesa Civil Municipal foram compilados pelo IPPUC (Instituto de Pesquisa e Planejamento Urbano de Curitiba). A partir dos dados de estimativas de precipitação foi calculada a chuva média acumulada de 6 em 6 horas por bacia hidrográfica, utilizando-se do método de Thiessen e do Inverso da Distância ao Quadrado, sendo os dois métodos comparados para verificar qual possui o melhor resultado para a geração dos dados de entrada dos modelos. Em relação ao desempenho dos dois métodos utilizados na construção dos modelos, verificouse no caso estudado que o SOM (Self Organizing Map) apresentou desempenho superior quando comparado com a regressão logística tanto no período de calibração quanto de verificação. A partir dos resultados gerados por meio da rede SOM, pode-se definir quais os principais padrões de chuva responsáveis por deflagrar os alagamentos em Curitiba e ainda estimar o número esperado de alagamentos (NEA) por bacia hidrográfica. Sob esta perspectiva, este trabalho possui como uma primeira inovação a utilização de ferramentas especializadas de inteligência artificial (IA) para o reconhecimento de padrões de chuva causadores de alagamento. Em relação ao número esperado de alagamentos, a inovação se refere a espacialização dos mesmos baseado no histórico de ocorrências. Como proposta, sugere-se que os resultados gerados neste trabalho integrem um Sistema de Alertas de Alagamentos em Curitiba, e que as informações e dados gerados possam ser utilizados pela Defesa Civil no sentido de aumentar a resiliência da população e mitigar possíveis impactos decorrentes dos alagamentos.
    URI
    http://hdl.handle.net/1884/30558
    Collections
    • Teses [182]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV