• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Teses
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Teses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Algoritmos paralelos para árvores de cortes e medidas de centralidade em grafos

    Thumbnail
    View/Open
    R - T - JAIME COHEN.pdf (3.440Mb)
    Date
    2013-06-10
    Author
    Cohen, Jaime
    Metadata
    Show full item record
    Abstract
    Resumo: Uma árvore de cortes é uma representação compacta da aresta-conectividade de um grafo não orientado. As árvores de cortes resolvem de maneira eficiente o problema de calcular a arestaconectividade entre todos os pares de vértices do grafo. As árvores de cortes têm muitas aplicações como, por exemplo, no projeto de redes confiáveis, na partição de grafos, no agrupamento em grafos, na análise de redes sociais, dentre outras. Dois algoritmos para a construção de árvores de cortes de grafos não orientados e capacitados são bem conhecidos: o algoritmo de Gomory-Hu e o algoritmo de Gusfield. Este trabalho apresenta propostas de implementações paralelas de três algoritmos para encontrar uma árvore de cortes. Versões paralelas para os algoritmos de Gusfield e de Gomory-Hu são descritas e avaliadas experimentalmente. Um algoritmo híbrido que combina esses dois algoritmos e que busca tirar proveito das vantagens de cada um deles também é apresentado. Resultados experimentais mostram que os três algoritmos apresentam boas acelerações nos tempos de execução. Os experimentos também mostram que o algoritmo híbrido é quase sempre mais rápido do que o algoritmo de Gomory-Hu e em certas instâncias ele é muito mais rápido do que o algoritmo de Gusfield. Heurísticas para a melhoria do algoritmo de Gomory-Hu e do algoritmo híbrido são propostas e analisadas. Na segunda parte desta tese, são estudadas medidas de centralidade dos vértices de um grafo que são baseadas na conectividade - algumas delas podem ser calculadas a partir de árvores de cortes. As medidas de centralidade de vértices têm como objetivo quantificar a importância dos vértices de um grafo com base em diferentes critérios. Dentre as medidas de centralidade propostas, destaca-se a i-aresta-conectividade, que mede a aresta-conectividade dos vértices em relação ao grafo. Uma medida de conectividade baseada em cortes de vértices também é proposta. Um estudo experimental com as medidas de conectividade foi executado para avaliar a relação das medidas propostas com outras medidas de centralidade mais conhecidas. Esse estudo mostra empiricamente que vértices com alta conectividade tendem a ter baixa excentricidade. Além disso, experimentos mostram que as medidas de conectividade não são equivalentes ao grau como critério de ordenação dos vértices.
    URI
    http://hdl.handle.net/1884/30394
    Collections
    • Teses [129]

    DSpace software copyright © 2002-2022  LYRASIS
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2022  LYRASIS
    Contact Us | Send Feedback
    Theme by 
    Atmire NV