Show simple item record

dc.contributor.authorPaula Filho, Pedro Luiz dept_BR
dc.contributor.otherOliveira, Luiz Eduardo Soares de, 1971-pt_BR
dc.contributor.otherNisgoski, Silvanapt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Ciencias Exatas. Programa de Pós-Graduaçao em Informáticapt_BR
dc.date.accessioned2013-03-21T22:20:22Z
dc.date.available2013-03-21T22:20:22Z
dc.date.issued2013-03-21
dc.identifier.urihttp://hdl.handle.net/1884/29781
dc.description.abstractResumo: A identificação de espécies e uma necessidade primordial para as atividades de comércio e preservacao de florestas. Entretanto, devido a escassez de dados e bases de imagens florestais, os estudos computacionais relacionados a esse tema sao raros e recentes. Outros fatores que influenciam a raridade desses estudos estao relacionados a falta de tecnicas computacionais comprovadamente eficazes para essa tarefa e ao custo para a aquisicão de imagens para a construcao das bases e modelos computacionais, uma vez que equipamentos sofisticados e caros sao utilizados. Tendo em vista esse contexto e com objetivo de minimizar os custos relacionados ao processo de identificaçao de especies florestais, e proposta uma nova abordagem para essa tarefa, com a qual a identificaçao podera ser realizada em campo e com equipamentos de baixo valor, agregando maior mobilidade e agilidade à execucao dessa tarefa. Para avaliar e validar essa proposta, foram construídas duas bases de imagens macroscópicas a partir de amostras de madeira de especies florestais encontradas no território nacional, considerando dois metodos diferentes: abordagem tradicional em laboratório e abordagem em campo, sendo esta ultima, a proposta deste trabalho. Um protocolo modular baseado na estratégia de dividir para conquistar foi proposto, nele as imagens sao divididas em subimagens, com o intuito de que problemas locais nao afetem a classificacao geral da imagem. A partir delas, sao extraídas informacoes de cor e textura que sao utilizadas para a construcão de conjuntos de treinamento, teste e validaçao de classificadores. Para extraçao desses atributos sao avaliadas diversas tecnicas consagradas como analises de cor, GLCM, histograma de borda, Fractais, LBP, LPQ e Gabor. Apos a classificação de cada conjunto de atributos das subimagens, seus resultados passam por duas camadas de fusoes (baixo e alto nível), para se chegar a decisão final de qual especie a amostra pertence. Inicialmente, a avaliaçao experimental foi realizada com a base de imagens obtidas a partir da abordagem em campo uma vez que dessa maneira os resultados sao mais conservadores devido à presenca de ruídos nos conjuntos de dados e ao naão tratamento das amostras adquiridas. A taxa de reconhecimento obtida nessa etapa foi 95,82%. Apos a validacao do metodo proposto, os modelos de classificação foram reconstruídos e avaliados a partir da base de imagens criada com a abordagem tradicional em laboratório. Com esse novo modelo, a taxa de classificaçao foi de 99,49%. A partir da analise dos resultados, observa-se a viabilidade da abordagem proposta neste trabalho, que alem de apresentar uma excelente taxa de classificaçao, muito proxima da obtida com tecnicas mais sofisticadas e de alto custo, ainda agrega a mobilidade para a classificacão de especies em campo. Ressalta-se ainda, a construcao e disponibilizacao das bases de imagens florestais, contribuindo, desta forma, para trabalhos futuros nesta area.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.subjectTesespt_BR
dc.subjectMadeira - Identificaçãopt_BR
dc.subjectBanco de dadospt_BR
dc.subjectSistemas especialistas (Computação)pt_BR
dc.subjectProcessamento de imagenspt_BR
dc.titleReconhecimento de espécies florestais através de imagens macroscópicaspt_BR
dc.typeTesept_BR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record