• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Análise e classificaçao de imagens baseadas em características de textura utilizando matrizes de co-ocorrencia

    Thumbnail
    View/Open
    D - NASCIMENTO, JOAO PAULO RIBEIRO DO.pdf (4.459Mb)
    Date
    2011-02-08
    Author
    Nascimento, Joao Paulo Ribeiro do
    Metadata
    Show full item record
    Subject
    Teses
    Reconhecimento de padrões
    Reconhecimento visual de textura
    xmlui.dri2xhtml.METS-1.0.item-type
    Dissertação
    Abstract
    Resumo: Os métodos de classificação de imagens baseados em características texturais têm sido amplamente utilizados no meio científico e industrial, possuindo aplicações na medicina, microscopía, sensoriamento remoto, controle de qualidade, recuperação de dados em bases gráficas, dentre outras. A característica de textura é uma fonte importante de informações para o processo de análise e interpretação de imagens. Inicialmente, este trabalho apresenta conceitos sobre textura e uma revisão bibliográfica sobre os principais estudos envolvendo técnicas para análise de texturas, principalmente estatísticas de segunda ordem. São avaliados diversos métodos de classificação supervisionada de imagens baseada em informação de textura, tais como o classificador de distância mínima, /o-vizinhos mais próximos, máxima verossimilhança, redes neurais e um novo classificador baseado em intervalos de decisão. Neste trabalho, a textura é definida através de um conjunto de medidas locais descrevendo as variações espaciais de intensidade ou cor. Tais medidas são calculadas utilizando-se matrizes de co-ocorrência. São abordados também detalhes relevantes sobre redução de dimensionalidade, extração e seleção de características que influenciam a precisão e desempenho do classificador. Resultados experimentais utilizando uma grande variedade de imagens reais demonstram a aplicabilidade dos métodos.
    URI
    http://hdl.handle.net/1884/25099
    Collections
    • Dissertações [471]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV