• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Utilizando técnicas de aprendizado de máquina para apoiar o teste de regressão

    Thumbnail
    View/Open
    Dissertacao Alexandre Rafael Lenz.pdf (1.438Mb)
    Date
    2010-09-15
    Author
    Lenz, Alexandre Rafael
    Metadata
    Show full item record
    Subject
    Teses
    xmlui.dri2xhtml.METS-1.0.item-type
    Dissertação
    Abstract
    Resumo: Independentemente do tipo de manutenção realizada, o teste de regressão é indispensável para testar as modificações e as novas funcionalidades do software. Ele também é responsável por verifícar se as funcionalidades existentes não foram negativamente afetadas pela modificação. Muitas técnicas têm sido propostas para reduzir os esforços e aumentar a eficácia dos testes de regressão. Dentre elas, algumas utilizando Aprendizado de Máquina (AM). Entretanto, a maioria dos trabalhos existentes não relacionam as informações coletadas durante o teste provenientes da aplicação de diferentes técnicas e critérios de teste. Esses critérios são considerados complementares porque podem revelar diferentes tipos de defeitos, e considerar essa complementariedade pode auxiliar o teste de regressão, reduzindo os esforços gastos nesta atividade. Dada essa perspectiva, este trabalho tem como objetivo explorar técnicas de AM, como de agrupamento, para relacionar informações como, por exemplo: dados de entrada, saída produzida, elementos cobertos por critérios estruturais, defeitos revelados, e etc. Com estas informações os dados são agrupados em classes funcionais. Os resultados assim obtidos são então submetidos a um algoritmo de classícação, para geração de regras a serem utilizadas na seleção e priorização de dados de teste. Uma ferramenta, chamada RITA (Relating information from Testing Activity), foi implementada para dar suporte à abordagem proposta. Ela foi utilizada em experimentos, cujos resultados mostram a aplicabilidade da abordagem e uma redução de custo do teste de regressão.
    URI
    http://hdl.handle.net/1884/24259
    Collections
    • Dissertações [471]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV