ESTUDO DO DESEMPENHO DE FILMES MULTICAMADAS
EM EMBALAGENS TERMOFORMADAS

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia. Área de Concentração: Engenharia e Ciência dos Materiais, Universidade Federal do Paraná.

Orientadora: Thais H. D. Sydenstricker, D. Sc.

Co-orientador: Sandro C. Amico, Ph. D.

CURITIBA
2006
Ao meu filho Nicolas, razão de todo meu esforço.

À minha esposa Larissa, por acreditar e compreender.

Aos meus pais Francisco e Inês, pela vida e dedicação.

À minha irmã Deise, pelo carinho e amizade.
AGRADECIMENTOS

À professora orientadora Thais Helena Demetrio Sydenstricker, por sua orientação, pela flexibilidade, pela confiança, pelo positivismo e pelo incentivo.

Ao professor co-orientador Sandro Campos Amico, pela orientação, por seu profissionalismo e pelas valiosas contribuições.

À Empresa Perdigão Agroindustrial S/A, em especial aos Srs. Luiz Stabile Benicio e Tarcisio Alberto Moura, pela oportunidade e viabilização do estudo, e por disponibilizar o equipamento de termoformação e o laboratório de embalagens para realização dos ensaios físicos.

À Empresa Videplast Indústria de Embalagens Ltda, especialmente ao Sr. Nereu de Nardi, por disponibilizar as resinas e os filmes multicanalados para o estudo, assim como o laboratório técnico para realização dos ensaios mecânicos.

À Empresa Dow Química, em especial à Sra. Rosana Rosa, pela disponibilização do laboratório técnico e pelo auxílio na realização dos ensaios térmicos e óticos.

Aos colegas Carlos Alberto da Cunha e Juliano Paulo Borga, pelo auxílio nos ensaios físicos.

Especialmente aos colegas Isaura Zanini Mergen, Adilson Pinto da Rocha e Everton Luiz Schneider, pelo suporte técnico na confecção dos filmes, na realização dos ensaios mecânicos e na discussão dos resultados.

Aos colegas de trabalho e amigos Giovani Otávio Rissi, Anderson Schlosser, Milena Lange, e especialmente à Samira Emi Kitazawa, por suas colaborações.

Aos ex-colegas de trabalho Geraldo Antônio Cofcewicz, Maria Gorete Cordeiro e Daniele Becchi, pela convivência que tivemos e amizade presente.

Aos familiares Mário, Vilma, Ivo, Kátia, Camila e Igor, pelo prazer da convivência, pela amizade e pela sincera torcida.

A todos, que mesmo indiretamente, participaram e contribuíram para a realização deste trabalho.

A DEUS, pela existência e pela proteção eterna e incondicional...
SUMÁRIO

LISTA DE FIGURAS .. iv
LISTA DE TABELAS .. vii
LISTA DE ANEXOS ... ix
PUBLICAÇÕES ... xi
RESUMO ... xii
ABSTRACT .. xiii

1. INTRODUÇÃO E OBJETIVOS ... 1
2. REVISÃO BIBLIOGRÁFICA ... 5
 2.1. O CENÁRIO DA EMBALAGEM PLÁSTICA ... 5
 2.2. RECICLABILIDADE DE PLÁSTICOS .. 8
 2.3. PRINCIPAIS MATERIAIS POLIMÉRICOS PARA EMBALAGEM 10
 2.3.1. Polietileno .. 12
 2.3.2. Polipropileno .. 16
 2.3.3. Poliamida .. 19
 2.3.4. Copolímero de etileno e álcool vinílico .. 21
 2.3.5. Adesivo .. 24
 2.3.6. Poli(tereftalato de etileno) .. 26
 2.3.7. Poli(naftalato de etileno) .. 28
 2.3.8. Poli(cloreto de vinilideno) .. 31
 2.4. PROCESSO DE COEXTRUSÃO DE FILMES PLÁSTICOS 34
 2.5. PROCESSO DE TERMOFORMAÇÃO DE FILMES PLÁSTICOS 41
 2.6. PRINCIPAIS ASPECTOS DOS FILMES PARA EMBALAGEM 47
 2.6.1. Controle de Espessura .. 47
 2.6.2. Proteção de Barreira .. 49
 2.6.3. Resistência Mecânica ... 52
 2.6.4. Efeito Ótico ... 54
3. MATERIAIS E MÉTODOS .. 56
 3.1. MATERIAIS ... 56
 3.1.1. As Resinas .. 56
 3.1.2. Os Filmes de MB e de AB .. 56
3.2. MÉTODOS .. 57
 3.2.1. Coextrusão das Resinas .. 57
 3.2.2. Termoformação dos Filmes de MB e de AB 58
 3.2.3. Caracterização dos Filmes de MB e de AB 59
 3.2.3.1. Calorimetria Diferencial de Varredura 60
 3.2.3.2. Análise Termomecânica .. 60
 3.2.3.3. Espectroscopia de Infravermelho ... 60
 3.2.3.4. Difratometria de Raios-X ... 61
 3.2.3.5. Espessura Total ... 61
 3.2.3.6. Microscopia Ótica .. 62
 3.2.3.7. Taxa de Permeabilidade ao Oxigênio 63
 3.2.3.8. Perfuração .. 64
 3.2.3.9. Tração .. 65
 3.2.3.10. Claridade, Opacidade e Brilho ... 66

4. RESULTADOS E DISCUSSÃO .. 67
 4.1. IDENTIFICAÇÃO DOS FILMES MULTICAMADAS 67
 4.1.1. Temperaturas de Fusão dos Materiais .. 67
 4.1.2. Pontos de Amolecimento dos Filmes ... 70
 4.1.3. Picos de Absorbância dos Materiais ... 71

4.2. GRAU DE CRISTALINIDADE DOS FILMES 73

4.3. MORFOLOGIA DOS FILMES MULTICAMADAS 75
 4.3.1. Espessuras Totais dos Filmes .. 75
 4.3.2. Espessuras das Camadas dos Materiais ... 83
 4.3.3. Barreira ao Oxigênio dos Filmes ... 88

4.4. PROPRIEDADES MECÂNICAS DOS FILMES 92
 4.4.1. Resistência à Perfuração dos Filmes ... 92
 4.4.2. Ruptura em Tração dos Filmes ... 96
 4.4.3. Rigidez dos Filmes .. 101

4.5. PROPRIEDADES ÓTICAS DOS FILMES ... 103

5. CONCLUSÕES ... 106

6. SUGESTÕES PARA TRABALHOS FUTUROS .. 108

7. REFERÊNCIAS BIBLIOGRÁFICAS ... 109

ANEXOS ... 117
LISTA DE FIGURAS

Figura 2.1 - Processo de extrusão “blow” (GUERRINI et al., 2004) 36
Figura 2.2 - Sistema de extrusão “cast”: (a) A - extrusora, B - matriz plana, C - resfriamento, D - acabamento final, (b): A, B, C - múltiplas camadas (PROGELHOF e THRONE, 1993) ... 37
Figura 2.3 - Equipamento de termoformação de filmes plásticos (MULTIVAC Trademark Catalogue, 2004) ... 43
Figura 2.4 - Etapas de termoformação de um filme plástico (MULTIVAC Trademark Catalogue, 2004) ... 44
Figura 2.5 - Termoformação de “bolha” anterior ao vácuo: (a) por ar comprimido, (b) e (c) por “colchão de ar” (BLASS, 1988) 45
Figura 3.1 - Filmes de média e alta barreira ao oxigênio: (a) bobina, (b) pedaço plano enrolado e termoformado ... 56
Figura 3.2 - Equipamento de coextrusão “cast” utilizado: (a) vista geral, (b) filme sendo processado .. 57
Figura 3.3 - Equipamento de termoformação utilizado: (a) vista geral, (b) filme sendo termoformado ... 58
Figura 3.4 - Partes do equipamento de termoformação: (a) câmara de aquecimento e vácuo, (b) parte inferior da matriz (MULTIVAC Trademark Document, 2005) ... 59
Figura 3.5 - Processo de pasteurização da salsicha: (a) “gaiolas” com prateleiras, (b) estufa ... 62
Figura 3.6 - TPO2: (a) Equipamento OXTRAN 2/60 Mocon, (b) “máscara” de alumínio ... 64
Figura 3.7 - Dinamômetro Universal de Ensaios, INSTRON 5565, configurado para análise de: (a) perfuração, (b) tração .. 65
Figura 4.1 - DSC do filme de MBP .. 68
Figura 4.2 - Deformação dos filmes de MBP e ABP em função da temperatura .. 70
Figura 4.3 - FTIR para o filme de ABP, camada de PP 72
Figura 4.4 - Difratogramas de raios-x dos filmes de MBP, MBT, ABP e ABT .. 74
Figura 4.5 - Filmes com “zoom” dos cantos: (a) MBP e MBT, (b) ABP e ABT .. 76

Figura 4.6 - Comparativo de áreas dos filmes: (a) de MBP e MBT (canto), (b) de ABP e ABT (canto).. 77

Figura 4.7 - Filmes termoformados em cortes: (a) longitudinal, (b) transversal.. 77

Figura 4.8 - Perfis de espessuras totais dos filmes de MB e AB (µm) .. 78

Figura 4.9 - Perfis das espessuras totais dos filmes de MB e AB com corte dos filmes: (a) longitudinal, (b) transversal ... 79

Figura 4.10 - Espessuras totais dos cantos dos filmes de MBT e ABT em função da temperatura de termoformação .. 81

Figura 4.11 - Espessuras totais dos cantos dos filmes termoformados de MB e AB, antes e após o termoencolhimento .. 82

Figura 4.12 - Microscopia ótica (escala 50 µm) para os filmes: (a) MBP, (b) ABP ... 84

Figura 4.13 - Microscopia ótica (escala 20 µm) para os filmes: (a) MBP, (b) ABP ... 85

Figura 4.14 - Microscopia ótica (escala 20 µm) para os filmes: (a) MBT, (b) ABT ... 85

Figura 4.15 - Reduções das espessuras das camadas dos filmes de MBP para MBT e de ABP para ABT ... 87

Figura 4.16 - TPO2 em função do tempo para os filmes: (a) MBP e MBT (canto e fundo), (b) ABP e ABT (canto e fundo) ... 88

Figura 4.17 - Perfil de TPO2 para os filmes de MBT e ABT (cm3/m2.dia) .. 90

Figura 4.18 - Perfuração para o filme de MBP, do lado externo para o interno ... 92

Figura 4.19 - Deformação antes da perfuração, para os filmes de MBP, MBT, ABP e ABT, do lado externo para o interno e vice-versa 93

Figura 4.20 - Resistência à perfuração, para os filmes de MBP, MBT, ABP e ABT, do lado externo para o interno e vice-versa ... 95

Figura 4.21 - Tração para o filme de MBP, na direção longitudinal .. 96

Figura 4.22 - Alongamento antes da ruptura em tração, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal 98
Figura 4.23 - Ponto de ruptura em tração, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal

Figura 4.24 - Módulo secante 2% para o filme de MBP, na direção longitudinal

Figura 4.25 - Rigidez em módulo secante 2%, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal
LISTA DE TABELAS

Tabela 3.1 - Espessuras teóricas por camada para os filmes utilizados.............. 58
Tabela 4.1 - Temperaturas de fusão dos materiais dos filmes de MBP, MBT, ABP e ABT... 68
Tabela 4.2 - Ponto de amolecimento dos filmes de MBP e ABP 71
Tabela 4.3 - Picos de absorbância dos materiais dos filmes MBP e ABP 73
Tabela 4.4 - Cristalinidade total qualitativa para os filmes de MBP, MBT, ABP e ABT, na faixa de 2θ de 3 a 40° 75
Tabela 4.5 - Espessuras totais para os filmes de MB e AB por região de análise.. 78
Tabela 4.6 - Espessuras totais dos cantos dos filmes de MBT e ABT em função da temperatura de termoformação .. 81
Tabela 4.7 - Espessuras totais dos cantos dos filmes termoformados de MB e AB, antes e após o termoencolhimento 82
Tabela 4.8 - Espessuras por camada dos filmes de MBP, MBT, ABP e ABT .. 86
Tabela 4.9 - TPO2 para os filmes de MBP e MBT (canto e fundo) e de ABP e ABT (canto e fundo).. 89
Tabela 4.10 - Deformação antes da perfuração, para os filmes de MBP, MBT, ABP e ABT, lado externo para o interno e vice-versa.......... 93
Tabela 4.11 - Resistência à perfuração, para os filmes de MBP, MBT, ABP e ABT, do lado externo para o interno e vice-versa 94
Tabela 4.12 - Alongamento antes da ruptura em tração, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal 97
Tabela 4.13 - Ponto de ruptura em tração, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal........................ 99
Tabela 4.14 - Rigidez em módulo secante 2%, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal transversal 102
Tabela 4.15 - Propriedades óticas, para os filmes de MBP, MBT, ABP e ABT ... 104
LISTA DE SIGLAS E ABREVIATURAS

MB - Média Barreira ao Oxigênio
AB - Alta Barreira ao Oxigênio
MBP - Média Barreira ao Oxigênio Plano
MBT - Média Barreira ao Oxigênio Termoformado
ABP - Alta Barreira ao Oxigênio Plano
ABT - Alta Barreira ao Oxigênio Termoformado
Ad - Adesivo
PE - Polietileno
PEBD - Polietileno de Baixa Densidade
PEBDL - Polietileno de Baixa Densidade Linear
PEMD - Polietileno de Média Densidade
PEAD - Polietileno de Alta Densidade
PP - Polipropileno
EVOH - Copolímero de Etileno e Álcool Vinílico
PA - Poliamida
DSC - Differential Scanning Calorimetry - Calorimetria Diferencial de Varredura
W - Fração Mássica
TMA - Thermomechanical Analysis - Análise Termomecânica
FTIR - Fourier Transform Infrared - Espectro de Infravermelho
TPO₂ - Oxygen Permeability Rate - Taxa de Permeabilidade ao Oxigênio
<table>
<thead>
<tr>
<th>Anexo</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DSC do filme de MBT (canto)</td>
<td>118</td>
</tr>
<tr>
<td>2</td>
<td>DSC do filme de ABP</td>
<td>118</td>
</tr>
<tr>
<td>3</td>
<td>DSC do filme de ABT (canto)</td>
<td>119</td>
</tr>
<tr>
<td>4</td>
<td>FTIR para o filme de MBP, camada de PP</td>
<td>119</td>
</tr>
<tr>
<td>5</td>
<td>FTIR para o filme de MBP, camada de Adesivo</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>FTIR para o filme de MBP, camada de PA</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>FTIR para o filme de MBP, camada de Adesivo</td>
<td>121</td>
</tr>
<tr>
<td>8</td>
<td>FTIR para o filme de MBP, camada de PA</td>
<td>121</td>
</tr>
<tr>
<td>9</td>
<td>FTIR para o filme de MBP, camada de Adesivo</td>
<td>122</td>
</tr>
<tr>
<td>10</td>
<td>FTIR para o filme de MBP, camada de PE</td>
<td>122</td>
</tr>
<tr>
<td>11</td>
<td>FTIR para o filme de ABP, camada de Adesivo</td>
<td>123</td>
</tr>
<tr>
<td>12</td>
<td>FTIR para o filme de ABP, camada de PA</td>
<td>123</td>
</tr>
<tr>
<td>13</td>
<td>FTIR para o filme de ABP, camada de EVOH</td>
<td>124</td>
</tr>
<tr>
<td>14</td>
<td>FTIR para o filme de ABP, camada de PA</td>
<td>124</td>
</tr>
<tr>
<td>15</td>
<td>FTIR para o filme de ABP, camada de Adesivo</td>
<td>125</td>
</tr>
<tr>
<td>16</td>
<td>FTIR para o filme de ABP, camada de PE</td>
<td>125</td>
</tr>
<tr>
<td>17</td>
<td>Perfuração para o filme de MBT (canto), do lado externo para o interno</td>
<td>126</td>
</tr>
<tr>
<td>18</td>
<td>Perfuração para o filme de ABP, do lado externo para o interno</td>
<td>126</td>
</tr>
<tr>
<td>19</td>
<td>Perfuração para o filme de ABT (canto), do lado externo para o interno</td>
<td>127</td>
</tr>
<tr>
<td>20</td>
<td>Perfuração para o filme de MBP, do lado interno para o externo</td>
<td>127</td>
</tr>
<tr>
<td>21</td>
<td>Perfuração para o filme de MBT (canto), do lado interno para o externo</td>
<td>128</td>
</tr>
<tr>
<td>22</td>
<td>Perfuração para o filme de ABP, do lado interno para o externo</td>
<td>128</td>
</tr>
<tr>
<td>23</td>
<td>Perfuração para o filme de ABT (canto), do lado interno para o externo</td>
<td>129</td>
</tr>
<tr>
<td>24</td>
<td>Tração para o filme de MBT (canto), na direção longitudinal</td>
<td>129</td>
</tr>
<tr>
<td>25</td>
<td>Tração para o filme de ABP, na direção longitudinal</td>
<td>130</td>
</tr>
</tbody>
</table>
Anexo 26 - Tração para o filme de ABT (canto), na direção longitudinal130
Anexo 27 - Tração para o filme de MBP, na direção transversal131
Anexo 28 - Tração para o filme de MBT (canto), na direção transversal131
Anexo 29 - Tração para o filme de ABP, na direção transversal132
Anexo 30 - Tração para o filme de ABT (canto), na direção transversal132
Anexo 31 - Módulo secante 2% para o filme de MBT (canto), na direção longitudinal ...133
Anexo 32 - Módulo secante 2% para o filme de ABP, na direção longitudinal ...133
Anexo 33 - Módulo secante 2% para o filme de ABT (canto), na direção longitudinal ...134
Anexo 34 - Módulo secante 2% para o filme de MBP, na direção transversal ...134
Anexo 35 - Módulo secante 2% para o filme de MBT (canto), na direção transversal ...135
Anexo 36 - Módulo secante 2% para o filme de ABP, na direção transversal ...135
Anexo 37 - Módulo secante 2% para o filme de ABT (canto), na direção transversal ...136
PUBLICAÇÕES

RESUMO

Filmes multicamadas são comumente utilizados em embalagens de produtos alimentícios em função de propriedades importantes como resistência mecânica, barreira ao oxigênio, brilho e transparência, aliadas à facilidade de processamento e um custo compatível. Na embalagem de salsichas, são utilizados filmes de média ou alta barreira ao oxigênio, dependendo da composição do produto a ser embalado. Assim, neste trabalho, foram avaliados filmes de média barreira, constituídos de polipropileno / adesivo / poliamida / adesivo / poliamida / adesivo / polietileno, e filmes de alta barreira, constituídos dos mesmos polímeros, com substituição apenas da camada central de adesivo por uma camada de copolímero de etileno e álcool vinílico, e com alterações das espessuras das camadas de forma a otimizar a composição do filme. Ambos os filmes foram submetidos ao processo de termoformação, sob determinadas condições de tempo e temperatura, cuja expansão dos filmes resultou em significativas alterações de propriedades físicas, mecânicas e óticas. Os filmes foram caracterizados antes e após sua termoformação, no formato de embalagens para salsichas, quanto aos perfis de espessuras totais e das camadas individuais, taxas de permeabilidade ao oxigênio, resistências à perfuração e tração, módulo, claridade, opacidade e brilho. Foi observado que o processamento afeta significativamente as propriedades dos filmes, e conforme esperado, os cantos da embalagem são os locais mais críticos. A taxa de permeabilidade ao oxigênio dos filmes aumentou consideravelmente após a termoformação, resultando inclusive em filme considerado fora de especificação técnica. Foi verificado também redução de resistência à perfuração, redução de rigidez e redução de alongamento em esforço de tração, porém, sem rompimento de nenhuma camada polimérica, mesmo nas regiões dos cantos. Embora a análise de difratometria de raios-x tenha revelado uma diminuição do grau de cristalinidade dos filmes após a termoformação, as embalagens termoformadas apresentaram menor claridade e brilho, e maior opacidade que os filmes planos originais.

Palavras-chave: Filmes multicamadas, embalagens, termoformação, caracterização
Multilayer films are widely used in the packaging of food products due to important characteristics such as mechanical strength, oxygen barrier, brightness and transparency, together with the processing easiness and at a viable cost. In the sausage packaging, medium or high oxygen barrier films are used, depending on the product composition to be packed. Thus, in this work, medium barrier films were evaluated, constituted of polypropylene / adhesive / polyamide / adhesive / polyamide / adhesive / polyethylene, and high barrier films, constituted of the same polymers, with only substitution of the middle adhesive layer for a ethylene vinyl alcohol copolymer layer, and with the layers thicknesses variation aiming to optimize the film composition. Both films were submitted to the thermoforming process, under determined time and temperature conditions, whose expansion of the films resulted in important physical, mechanical and optics properties variations. The films were characterized before and after their thermoforming, in the suitable shape for sausage packaging. The total thicknesses profiles and the individual layers thicknesses, the oxygen permeability rates, the perforation and tensile strength, modulus, clarity, opacity and brightness were measured. It was observed that processing significantly affects the films properties, and as expected, the corners of the packaging are the most critical regions. The oxygen permeability rate of the films significantly increased after the thermoforming, also resulting in reputed film outside of the technical specification. It was also checked out perforation strength reduction, stiffness reduction and tensile effort extension reduction, however, with no polymeric layer rupture, even though in the corners regions. Although the x-ray scattering analysis showed a decreasing of the crystallinity index of the films after the thermoforming, the thermoformed packaging presented less haze and gloss, and more opacity than the original plain films.

Key-words: Multilayer films, packaging, thermoforming, characterization
1. INTRODUÇÃO E OBJETIVOS

Filmes plásticos flexíveis multicamadas podem ser utilizados como embalagem de produtos alimentícios à base de carne, sendo que para esta finalidade, necessitam de especificações técnicas de média ou alta barreira ao oxigênio, dependendo das características do produto a ser embalado, de forma a evitar sua contaminação e risco potencial à saúde humana.

Muitos alimentos e bebidas precisam ser submetidos a tratamentos a quente como forma de pasteurização e esterilização, visando a eliminação de organismos patogênicos. A pasteurização é normalmente realizada em temperaturas abaixo de 100°C, enquanto que a esterilização é realizada em temperaturas acima de 120°C. Estes dois processos possuem relação entre temperatura e tempo, sendo que quanto mais alta a temperatura, menor será o tempo requerido para a destruição dos microorganismos. Durante o tratamento a quente, componentes benéficos do produto como as vitaminas, nutrientes e compostos flavorizantes também podem ser destruídos. Entretanto, a destruição de microorganismos é mais dependente da temperatura do que a destruição dos componentes benéficos (OPHIR et al., 2004).

O *shelf-life* (tempo de exposição para venda) de um produto pode ser melhorado por fatores como:

- A qualidade do produto embalado, que não pode ser melhorada pela ação do vácuo, cujo propósito é justamente a manutenção da qualidade do produto;
- O controle da temperatura de exposição do produto, já que o aumento da temperatura pode favorecer a multiplicação de microorganismos;
- O controle da umidade do ar, pois pode causar condensação na embalagem e favorecer a migração de água para a superfície do produto e o surgimento de microorganismos;
- O tempo de processamento, que se for demasiadamente longo, pode favorecer o aparecimento de microorganismos;
- Controle de exposição à luz, pois a exposição do produto à luz pode proporcionar alterações de cores e de qualidade do produto (MITTMANN, 2005).

Para muitos produtos refrigerados embalados em atmosfera modificada, a
CAPÍTULO I - INTRODUÇÃO E OBJETIVOS

deteriorização do produto por oxidação pode limitar o shelf-life e resultar em perda de sabor e descoloração do produto. A redução do oxigênio disponível e/ou da transmissão de luz através da embalagem durante a estocagem tem conseqüências muito importantes. A redução da quantidade de oxigênio disponível na embalagem envolve o oxigênio residual contido pelo período em que a embalagem permanece fechada e a transmissão de oxigênio através da embalagem durante a estocagem. Para embalagens de produtos alimentícios com atmosfera modificada sensível ao oxigênio, o oxigênio residual contido deve ser o menor possível pelo período em que a embalagem permanece fechada, mas a exclusão completa do oxigênio não é possível. Entretanto, os materiais de embalagem utilizados com atmosfera modificada devem fornecer uma barreira ao gás para reter a composição de gás requerida durante todo o período de estocagem (JAKOBSEN et al., 2005).

Aplicações em embalagens requerem polímeros com boas propriedades de barreira, que resultam na obtenção de um longo período de shelf-life para o produto. Entretanto, quando utilizado um polímero simples na composição do filme de embalagem, torna-se muito difícil de se obter todas as propriedades requeridas, já que, por exemplo, um polímero com boas propriedades de barreira ao oxigênio, pode apresentar baixas propriedades de barreira à água, enquanto outro polímero pode apresentar comportamento oposto (BELTRAME et al., 1999).

Há uma demanda muito grande por embalagens práticas, com funções de facilidade de abertura e fechamento, e com capacidade de permitir a preparação do produto na própria embalagem, por exemplo, por cozimento ou por aquecimento em forno de microondas. Estes conceitos demandam designs de embalagens muito particulares e específicos para cada aplicação, que também necessitam de materiais com características específicas, como de resistência ao calor e propriedades mecânicas apropriadas (LANGE e WYSER, 2003).

Nanocompósitos com matrizes poliméricas têm também tido grande destaque no setor de filmes para embalagens embora seu custo ainda seja inviável para a maioria das aplicações mais comuns de embalagens (FORNES e PAUL, 2003).

A baixa permeabilidade a gases, entre outras, é uma das propriedades fundamentais para os filmes utilizados como embalagens de produtos
alimentícios. A literatura tem mostrado que para uma combinação adequada de propriedades físico-químicas e tecnológicas de processamento, é possível se trabalhar com filmes monocamadas, porém, produzidos através de blendas poliméricas formando multicamadas internas na estrutura (PETRIS et al., 1998).

Já a coextrusão é um processo no qual dois ou mais polímeros são extrusados simultaneamente e unidos conjuntamente para formar uma estrutura única com múltiplas camadas. Esta técnica tem se tornado muito atrativa economicamente na produção de chapas multicamadas, “blow” filmes, “cast” filmes, tubos, entre outros. Este é um processo normalmente utilizado para a indústria de embalagem alimentícia, pois possibilita o projeto de estruturas multicamadas com diferentes propriedades funcionais, associadas a cada camada (VALDES et al., 1998).

Materiais plásticos com boas propriedades de barreira ao oxigênio e a solventes têm muitas vantagens, incluindo baixa densidade, flexibilidade, resistência, transparência e facilidade de procesamento em comparação com o metal ou o vidro, para utilização em embalagens. Entretanto, muitos polímeros simples possuem alta permeabilidade a gases e solventes orgânicos. Poliolefinas, como polietileno e polipropileno, são as resinas mais comumente utilizadas em aplicações de filmes para embalagem, devido ao baixo custo, excelentes propriedades de barreira à umidade e fácil processabilidade, porém, apresentam baixas propriedades de barreira ao oxigênio e a muitos solventes orgânicos. Por outro lado, o copolímero de etileno e álc ool vinílico é altamente resistente à permeação de oxigênio, dióxido de carbono e hidrocarbonetos (YEO et al., 2001).

Uma das formas de transformação dos filmes multicamadas em embalagens ocorre pelo processo de termoformação, onde o filme de fundo é aquecido sob determinadas condições de tempo e temperatura e através de um molde perfurado, que suga o filme pela ação de vácuo, é obtido o formato adequado para receber o produto a ser embalado. Posteriormente, este filme fundo já termoformado e com o produto, é selado com um filme de tampa plano, seguido de extração de ar e formação de vácuo.

Termoformação é um processo de deformação de polímeros, no seu estágio de “embrorachado” sólido, acima da temperatura de transição vítrea, sendo que a temperatura da chapa termoplástica vai sendo elevada ao nível apropriado, a fim de ser capaz de deformar o material para alguma forma final
desejada (BOURGIN et al., 1995).

Quando transformados de filmes planos para filmes termoformados, os materiais plásticos flexíveis multicamadas podem apresentar significativas alterações de propriedades físicas, mecânicas e óticas. Dessa forma, torna-se importante o conhecimento da influência da termoformação nas propriedades dos filmes plásticos multicamadas de média e de alta barreira ao oxigênio. Assim, podem-se justificar o estudo realizado e apresentar os principais objetivos do desenvolvimento deste trabalho, conforme informado a seguir.

JUSTIFICATIVAS
O desenvolvimento deste trabalho pode ser justificado principalmente por fatores como:
1. Os filmes plásticos multicamadas utilizados em termoformação são atualmente especificados somente enquanto planos;
2. O processo de termoformação pode alterar as propriedades de barreira, além de causar possíveis alterações físicas, químicas e óticas nestes filmes;
3. O conhecimento dos efeitos do processo de termoformação nas propriedades destes filmes, e consequentemente na conservação dos alimentos embalados, é de extrema importância para as indústrias do setor alimentício.

OBJETIVOS
Diante das justificativas apresentadas, os principais objetivos deste trabalho são:
1. Estudar a influência da termoformação nas propriedades dos filmes plásticos multicamadas de média e de barreira ao oxigênio, utilizados como embalagem de salsicha;
2. Caracterizar estes filmes antes e depois do processo de termoformação, indicando as regiões críticas dos filmes após termoformados;
3. Correlacionar os valores encontrados, sobretudo em termos de variação de espessura, de taxa de permeabilidade ao oxigênio, de resistência à perfuração, de claridade, brilho e transparência.
2. REVISÃO BIBLIOGRÁFICA

2.1. O CENÁRIO DA EMBALAGEM PLÁSTICA

O mercado de embalagens plásticas no mundo em 2000 alcançou a cifra de US$ 431 bilhões, da qual 27% referem-se à Europa, 22% à América do Norte, 15% ao Japão, 5 % à América Latina, e 31% ao resto do mundo. A participação do Brasil foi de 1,65% do mercado mundial (FORLIN e FARIA, 2002).

Em 2003, de acordo com a Abiplast (Associação Brasileira das Indústrias de Plásticos), a participação do Brasil no mercado mundial passou a representar 1,90%, com 7.900 empresas processadoras de plástico, empregando 224.900 pessoas e produzindo aproximadamente 4 milhões de toneladas de plástico, resultando em uma movimentação de cerca de R$ 30 bilhões (JOHNSON, 2004).

A grande maioria dos transformadores brasileiros atua em mais de um setor de mercado, sendo que o maior setor consumidor de resinas plásticas é o setor de embalagens, com 44%; acompanhado respectivamente pelos setores da indústria automotiva, com 25%; e da construção civil, com 21%; que tem alternado posição com o segmento de utilidades domésticas (GORNI, 2006).

O termoplástico mais consumido foi o PP com 25% de participação do mercado, seguido pelo PEAD com 17%, pelo PVC com 16%, pelo PEBD com 14% e pelo PET com 11% (JOHNSON, 2004).

Em 2006, os números mostram que a grande São Paulo e o interior do estado continuam concentrando a maior parte das empresas transformadoras de plásticos do Brasil, representando 49% do total. Assim, como o estado do Rio Grande do Sul também se manteve na segunda colocação, representando 13% das empresas processadoras de plástico do Brasil (GORNI, 2006).
A cadeia produtiva de produtos plásticos tem início na utilização das matérias primas nafta ou gás natural para a obtenção dos produtos petroquímicos básicos. Os produtos petroquímicos básicos, provenientes da primeira geração, são transferidos para as empresas da segunda geração, as quais irão transformá-los em resinas plásticas. Estas resinas são transformadas em plásticos, em geral, através de processos de extrusão, injeção, sopro, e outros, resultando numa grande diversidade de produtos, que atendem aos mais diversos setores da economia (PADILHA e BOMTEMPO, 1999).

As embalagens plásticas atendem principalmente aos setores alimentício, de higiene e limpeza, cosméticos, farmacêutico e industrial, e são divididas em flexíveis, rígidas e sacaria de ráfia. Além de embalar, estes produtos plásticos têm as funções de atrair a atenção, descrever as características do produto, criar confiança do consumidor e produzir uma impressão global favorável. Alguns clientes priorizam o design, a funcionalidade e a qualidade, como no caso das indústrias alimentícias, de cosméticos, e farmacêutica. Embalagens bem desenhadas podem criar valor de conveniência para o consumidor, e valor promocional para o fabricante dos bens de consumo. Neste caso, a escolha pelo produto é por atendimento às especificações do produto, qualidade e preço (PADILHA e BOMTEMPO, 1999).

O plástico é o material mais utilizado pelos produtores de embalagens para o setor alimentício. Estas embalagens podem estar na forma de sacolas, garrafas, caixas e filmes. Os filmes especiais e as embalagens plásticas laminadas (com as suas propriedades de barreira a gases, a vapor d’água, a aromas ou à luz, e grande flexibilidade) estão cada vez mais presentes nos supermercados, por atenderem às exigências dos consumidores quanto ao acondicionamento e apresentação dos alimentos (SOARES et al., 2002).

No setor de transformação de plásticos, as inovações originam-se dos fabricantes de equipamentos, moldes, dos produtores de resinas e da indústria química. Os fabricantes de equipamentos trazem novas possibilidades de processamento, otimizando variáveis como: velocidade do ciclo, redução do desperdício, qualidade, e economia de matéria prima e energia. Os fabricantes de moldes permitem peças mais complexas e com nível tecnológico mais elevado. Os produtores de resinas introduzem novos grades e novas resinas. A indústria química propõe inovações no ramo de catalisadores e aditivos. O setor de
transformação pode assim desenvolver vantagens competitivas ou reforçar vantagens já conquistadas, com a oferta de produtos de melhor qualidade, maior nível tecnológico e design mais moderno (PADILHA e BOMTEMPO, 1999).

Os estudos científicos e o desenvolvimento tecnológico fizeram com que novos materiais e processos permitissem que alimentos durassem anos, podendo ser estocados, transportados e utilizados muito longe da data e do lugar onde foram produzidos. Assim, todos aqueles que estão envolvidos diretamente com o desenho, o planejamento, a produção e a utilização da embalagem em seus negócios e produtos, devem sempre estar muito atentos, pois estão diante de um fator decisivo para o sucesso dos produtos de consumo e dos estabelecimentos onde estes produtos são expostos (MESTRINER, 2005).

Quando uma pessoa está diante de um produto embalado, ela gasta até 20 segundos para visualizá-lo e autopersuadir-se, e apenas 8 segundos para tocá-lo e comprá-lo. Os principais fatores de decisão para a compra de um produto embalado são de 35% pela embalagem, de 26% pelo preço, de 21% pela memorização da marca, e de 18% por outros fatores. A interação entre o consumidor, a embalagem e o produto, é o trinômio para a consolidação da compra, que visa o atendimento à sua automotivação (BANZA, 2005).

Uma embalagem, para atender de forma otimizada às suas atribuições, deve: ter a função de atrair o consumidor com visual gráfico e estético, e ter cores pertinentes ao produto; ser o elo de comunicação com o consumidor e portanto ajudar na venda do produto; ter personalidade própria, já que leva a marca da empresa produtora do produto embalado; ser desenvolvida para produtos e públicos específicos e com seletividade social; ser conservada adequadamente, para garantir e manter as características do produto; proteger o produto durante o ciclo logístico; estar tecnicamente adequada para suportar manuseios, transportes, estocagem e, inclusive, as condições ambientais de luz, temperatura, umidade, durante todo o seu ciclo de vida e o descarte pelo cliente final; ser cômoda para manusear, transportar, abrir e fechar, considerando a segurança pessoal, dos produtos, e suas características ambientais e de reciclagem; conter todos os requisitos básicos e obedecer rigorosamente à legislação vigente de seu país ou dos países para os quais sua empresa exportar (BANZA, 2005).
2.2. RECICLABILIDADE DE PLÁSTICOS

A reciclagem de embalagens plásticas preocupa a sociedade, face ao crescente volume de utilização e às implicações ambientais inerentes ao seu descarte não racional pós-consumo, como no setor de alimentos. Os hábitos de consumo, as regulamentações específicas e o desenvolvimento de tecnologias constituem pauta de ações específicas de setores governamentais e empresariais na reciclagem de embalagens. O incremento do volume dos materiais plásticos utilizados em embalagens representa um desafio sob o ponto de vista da sua reciclagem racional, exigindo uma abordagem integrada entre os processos de transformação das matérias-primas, fabricação das embalagens e sua funcionalidade na conservação dos produtos (FORLIN e FARIA, 2002).

Os plásticos degradam-se muito lentamente no ambiente, uma vez que estes materiais são bastante resistentes às radiações, ao calor, ao ar e à água. Representam cerca de 6 a 7% em peso e 16% em volume nos resíduos sólidos urbanos. Parte destes plásticos pode ser recuperada pela reciclagem mecânica, produzindo novos materiais, normalmente com usos menos nobres, como por exemplo na construção civil e nas rodovias, e nos materiais para sinalização de estradas. Também os plásticos podem ser incinerados produzindo energia. No entanto, nesta reciclagem energética pode ocorrer a formação de gases tóxicos, volatização de metais pesados, ou ainda cinzas contendo elementos tóxicos. Portanto, esta prática poderá ser feita somente sob controle rigoroso (SOARES et al., 2002).

A presença de materiais estranhos, como aço, alumínio, vidro, papel cartão, tintas, vernizes, entre outros, utilizados nos processos de laminação e conversão de materiais plásticos, constitui um problema de contaminantes na reciclagem de embalagens plásticas, bem como os resíduos de alimentos remanescentes na embalagem pós-consumo, ou sujidades adquiridas após o seu descarte (FORLIN e FARIA, 2002).

Como a incineração dos plásticos ainda está associada com riscos potenciais à saúde humana, a redução, a reutilização e a reciclagem constituem os principais focos das políticas de gerenciamento dos resíduos sólidos. O alto custo operacional dos sistemas de coleta dos plásticos também confere, algumas vezes, maior viabilidade às recomendações de redução na fonte que a reciclagem
em si destes resíduos, com destaque na utilização de embalagens mais duráveis e de maiores volumes de consumo (SANTOS et al., 2004).

Uma importante característica dos materiais plásticos utilizados como embalagem de alimentos nas operações de reciclagem é o seu comportamento termo-físico, sendo classificados em termoplásticos e termofixos. A caracterização e a separação de contaminantes são ações imprescindíveis no processo de reciclagem. Os materiais termoplásticos compõem quase integralmente o volume dos plásticos utilizados como embalagens primárias em alimentos. Já os materiais termofixos, são produtos de polimerização em que ocorre a formação de elevado número de ligações cruzadas, conferindo-lhes características de extrema rigidez (FORLIN e FARIA, 2002).

Os três principais meios utilizados para reduzir os resíduos sólidos aterrados em solo são: redução na fonte, reutilização e reciclagem de diferentes formas, incluindo a energética. Essas iniciativas, além de contribuir para não esgotar a capacidade dos aterros sanitários, contribuem para preservar os recursos naturais, reduzir o consumo de energia, e educar e conscientizar ambientalmente a população. Especificamente para os plásticos, ainda contribuem para minimizar sua imagem de vilão ambiental causada por sua poluição visual nos grandes centros e sua taxa de crescimento expressiva nos aterros sanitários (SANTOS et al., 2004).

A reciclagem direta dos rejeitos de produção é, a princípio, mais difícil na produção de filmes do que em outros processos de transformação de plásticos. A grande diferença quanto à densidade em massa das tiras de filmes finos em comparação com o material virgem na forma de grânulos impede uma reciclagem imediata, sendo que se torna preferível então, processar por extrusão a sucata de filmes normalmente aglutinada e em seguida, fazer nova granulação. Os grânulos assim produzidos são realimentados novamente no processo, sob diversas taxas, conforme o produto que está sendo fabricado (SPIRGATIS e WORTBERG, 2002).

O dilema de compatibilizar a função intrínseca do sistema de embalagem com os problemas ambientais decorrentes do descarte pós-consumo sem critério é um desafio para entidades de pesquisa, empresas fabricantes de embalagens, e sociedade, na viabilização de tecnologias, processos e programas que compatibilizem as vantagens da utilização de embalagens plásticas em alimentos e a sua reciclagem racional, em um contexto integrado na cadeia produção-
utilização-consumo (FORLIN e FARIA, 2002).

O desenvolvimento de tecnologias inovadoras e de novos mercados para o plástico reciclado assume um papel importante para o gerenciamento de seus resíduos. No Brasil, apesar do estado incipiente do sistema de coleta de material, há a possibilidade de se criar um sistema de coleta inovador, eficiente e de baixo custo, a partir da centralização dos esforços individuais dos catadores (SANTOS et al., 2004).

O sucesso na reciclagem de materiais de embalagem descartados pós-consumo ou retornáveis está estreitamente relacionado com fatores culturais, políticos e sócio-econômicos da população; a implementação de empresas recicladoras; a existência de programas de coleta seletiva, de reciclagem ou de integração com empresas recicladoras, junto às comunidades e prefeituras; a disponibilidade contínua de volumes recicláveis; o desenvolvimento de tecnologias e equipamentos compatíveis para rotas de reciclagem econômicas e tecnicamente viáveis; programas de fomento para projetos de reciclagem; redução de tributação ou isenção fiscal para a comercialização de produtos reciclados; e, sanções legais para ações ou agentes não integrados com sistemas de reciclagem na cadeia produção-utilização-consumo de embalagens (FORLIN e FARIA, 2002).

2.3. PRINCIPAIS MATERIAIS POLIMÉRICOS PARA EMBALAGEM

Apesar do curto período do desenvolvimento dos catalisadores metalocênicos, que conferem propriedades “feitas sob medida” às poliolefinas, essas novas tecnologias mais direcionadas à produção de poliolefinas podem ser utilizadas na produção de outros polímeros à base de monômeros cíclicos e/ou funcionalizados (FORTE et al., 1996).

As poliolefinas representam aproximadamente 60% da demanda mundial de termoplásticos, onde os polietilenos se encaixam no patamar dos 40%. No Brasil, as poliolefinas representam cerca de 65%, dos quais 43% correspondem aos polietilenos. O mercado de polietileno linear avança acentuadamente sobre a resina de baixa densidade convencional (COUTINHO et al., 2003).

Os polímeros produzidos com os catalisadores convencionais
multicêntricos de Ziegler-Natta são caracterizados por uma ampla distribuição de peso molecular, enquanto que os copolímeros produzidos com catalisadores metalocênicos apresentam adicionalmente alta heterogeneidade química, ou seja, a inserção do comonômero ocorre preferencialmente nas frações de baixo peso molecular. Já os modernos catalisadores de metalloceno possuem apenas um tipo de centro catalítico ativo, sendo que produzem poliolefinas homogêneas com uma estreita distribuição de peso molecular, além de que a distribuição dos comonômeros ocorre de forma uniforme entre as cadeias de diferentes comprimentos. Tal fato garante excelentes propriedades organolépticas, e, em função da estrutura do metalloceno pode-se controlar o peso molecular, os grupos finais, a estereoquímica e as ramificações de cadeias longas e curtas (MAIER, 2000).

Com os catalisadores metalocênicos é possível a obtenção de resinas com distribuição de peso molecular estreita e uniforme, e alto teor de comonômero incorporado com distribuição homogênea (FORTE et al., 1996).

Em contraste com os catalisadores Ziegler-Natta heterogêneos, os metalocênicos possuem uma única espécie ativa com um tipo de coordenação bem definido. Isso torna possível correlacionar a estrutura do metalloceno com propriedades dos polímeros tais como peso molecular, microestrutura, cristalinidade e propriedades mecânicas. Catalisadores tipo Ziegler-Natta convencionais polimerizam facilmente etileno e propileno e incorporam somente pequenas quantidades isoladas de outros comonômeros. Catalisadores metalocênicos têm sido utilizados para sintetizar homopolímeros, copolímeros e terpolímeros de etileno; polipropileno isotático, sindiotático e atático e copolímeros; poliestireno sindiotático e copolímeros de olefinas cíclicas (FORTE et al., 1996).

Assim, polímeros produzidos com metalocenos podem ter suas propriedades controladas pelo catalisador, enquanto que aqueles produzidos com catalisadores convencionais têm suas propriedades controladas através do processo de polimerização. A capacidade de produzir materiais “Taylor made” com diferentes estéreo- e regio-regularidades, pesos moleculares diversos, diferentes polidispersões, copolímeros e ciclopómeros, excede em muito a dos catalisadores Ziegler-Natta (FORTE et al., 1996).
2.3.1. Polietileno

O polietileno, PE, entre os plásticos, é o que tem a estrutura mais conhecida e a mais simples entre os polímeros comerciais (ROMAN, 1997).

O PE é um polímero parcialmente cristalino e flexível, cujas propriedades são acentuadamente influenciadas pelas quantidades relativas das fases amorfa e cristalina. Em condições normais, os polímeros etilênicos não são tóxicos, podendo inclusive ser utilizados em contato com produtos alimentícios e farmacêuticos. Atualmente, os polietilenos são mais apropriadamente descritos como polietilenos ramificados e polietilenos lineares (COUTINHO et al., 2003).

O mais importante parâmetro de controle das propriedades do polietileno é a densidade, sendo em virtude disso, o polietileno classificado da seguinte forma (HERNANDEZ et al., 2000):

- Polietileno de Baixa Densidade (PEBD): 0,910 - 0,940 g/cm³;
- Polietileno de Baixa Densidade Linear (PEBDL): 0,910 - 0,925 g/cm³;
- Polietileno de Média Densidade (PEMD): 0,925 - 0,940 g/cm³;
- Polietileno de Alta Densidade (PEAD): 0,940 - 0,970 g/cm³;

O precursor da família das poliolefinas foi o polietileno de baixa densidade (PEBD), tendo sido obtido acidentalmente em 1933 durante uma experiência do Dr. A. Michels. A Imperial Chemical Industrial Ltd. foi a pioneira na produção comercial do PEBD, em 1939, empregando o processo de polimerização na fase gasosa, com altas temperaturas e pressões. Em 1955, o polietileno de alta densidade (PEAD) foi produzido pela primeira vez com os catalisadores organometálicos de Ziegler-Natta, através do processo de polimerização na fase líquida, com temperaturas mais baixas e pressões próximas da pressão atmosférica. Na década de 70, a Union Carbide introduziu o polietileno linear de baixa densidade (PEBDL) utilizando tecnologia própria de fase gasosa. Nos anos 90, a Dow Química lançou os plastômeros poliolefínicos e os polietilenos produzidos pela tecnologia Insite de catálise metalocênica (SARANTÓPOULOS et al., 2002).

As propriedades ideais do “grade” do polietileno para cada aplicação específica dependem do balanço adequado de características obtidas no processo de polimerização. O polietileno é essencialmente um material composto, consistindo da fase cristalina rígida (responsável pela resistência) e da fração
amorfa elástica (responsável pela elasticidade, maciez e flexibilidade). Portanto, é necessário controlar a estrutura molecular do polietileno, o que passou a ser possível com a evolução dos processos de polimerização (MERGEN, 2003).

A faixa de produtos à base de etileno obtido com catalisadores metalocênicos parece ser quase ilimitada. Esses produtos incluem polietileno de baixa densidade linear, PEBDL, e poliolefinas elastoméricas. Os filmes destes, se comparados com aqueles do PEBDL obtidos com catalisadores do tipo Ziegler-Natta, apresentam resistência ao rasgo de 2 a 4 vezes superior, resistência ao impacto 4 vezes superior, redução da temperatura de selagem, baixo percentual de extraíves e melhores características de processamento. Para uma mesma densidade, os polímeros obtidos com metalocenos apresentam menor ponto de fusão do que aqueles obtidos com catalisador Ziegler-Natta (FORTE et al., 1996).

Os sistemas catalisadores metalocenos produzem apenas o copolímero desejado, incorporando igualmente o comonômero na proporção adicionada no reator, o que traz melhorias significativas ao desempenho da resina. Comparados com o sistema Ziegler-Natta, os catalisadores metalocenos permitem maior uniformidade na incorporação do comonômero ao longo da formação da cadeia e melhor controle da distribuição de peso molecular, uma vez que proporcionam melhor controle da distribuição do comonômero. Como resultado, têm-se maior transparência, menor teor de extraíves, maior flexibilidade e melhor desempenho na termosselagem, uma vez que permitem o controle da estrutura molecular e/ou a obtenção de copolímeros com maior concentração do comonômero (SELKE et al., 2004).

Dentre os polímeros mais utilizados na fabricação de filmes extrusados, encontra-se o polietileno de baixa densidade, PEBD, o qual na forma de filme, possui boas propriedades óticas e boa processabilidade, porém, baixa resistência mecânica. O contrário ocorre com o polietileno de baixa densidade linear, PEBDL, o qual, como filme possui propriedades óticas pobres, processabilidade difícil, mas boa resistência mecânica. Assim, é comum a utilização de misturas físicas (blendas) destes dois polímeros para se obter filmes com boa processabilidade, boas propriedades óticas e boa resistência mecânica. Com o aumento da quantidade de PEBDL nas blendas, as opacidades totais diminuem e o brilho aumenta, já que este último varia inversamente com a opacidade superficial. O valor da cristalinidade “aparente” do filme de PEBDL puro é levemente maior do
que o das blendas, ou seja, o percentual de cristalínidade não é o único fator determinante das propriedades óticas do filme (GUERRINI et al., 2004).

O PEBD é um polímero parcialmente cristalino (50-60%), cuja temperatura de fusão está na faixa de 110 a 115°C. Este polietileno contém cadeias ramificadas, sendo que estas ramificações são, na maioria das vezes, tão longas quanto à cadeia principal do polímero. A presença dessas ramificações determina o grau de cristalização, as temperaturas de transição e afeta os parâmetros cristalográficos tais como o tamanho dos cristalitos (COUTINHO et al., 2003).

O PEDB também apresenta muitas propriedades importantes do ponto de vista industrial, tais como a tenacidade à temperatura ambiente e a baixas temperaturas (com resistência mecânica suficiente para muitas aplicações), a excelente resistência à corrosão, as ótimas propriedades de isolamento, a ausência de cheiro e sabor, e a baixa permeação de vapor d’água (SMITH, 1998).

O PEBDL é mais cristalino que o PEBD, conseqüência do baixo teor de ramificações curtas e da ausência de ramificações longas. As ramificações de cadeia curta têm influência, tanto no PEBDL como no PEBD, sobre a morfologia e algumas propriedades físicas tais como, rigidez, densidade e resistência à tração. Com cadeias lineares de baixo grau de ramificações curtas, o PEBDL cristaliza em lamelas mais ordenadas e mais espessas do que o PEBD. Conseqüentemente, o PEBDL apresenta melhores propriedades mecânicas e maior temperatura de fusão. Ainda, o PEBDL é um termoplástico com elevada capacidade de selagem a quente, sendo muito utilizado em embalagens de gêneros de primeira necessidade, substituindo o PEBD em várias aplicações (COUTINHO et al., 2003).

O PEBDL pode ser obtido por processo em solução, suspensão, ou fase gasosa, dependendo do tipo de catalisador empregado, que pode ser Ziegler-Natta, heterogêneo ou homogêneo, ou metalocênico. O tipo de catalisador utilizado na obtenção do polímero influi nas características finais do produto. As resinas de PEBDL obtidas com catalisadores metalocênicos, em função da semelhança dos sítios ativos de polimerização, apresentam distribuição composicional mais homogênea que aquelas obtidas com catalisadores Ziegler-Natta, apresentando assim propriedades térmicas, físicas, óticas e reológicas diferenciadas (BECKER et al., 2002).

Misturas de PEDB com PEBDL são utilizadas comercialmente na produção
de filmes para diversas aplicações como sacaria industrial, empacotamento automático de alimentos, termoencolhíveis, esticáveis e outros. Ambas as resinas, PEDB e PEBDL, apresentam propriedades físicas e características de processamento particulares devido às diferenças em suas estruturas moleculares, principalmente quanto ao grau e comprimento das ramificações e polidispersão (BECKER et al., 2002).

O PEBDL obtido pela tecnologia de catalisador metalocênico apresenta propriedades melhoradas em relação ao PEBDL convencional, como: alta rigidez mecânica; resistência ao calor; resistência à penetração; tenacidade ao puncionamento; baixa opacidade; alto brilho; insípido e inodoro; além de boa selabilidade. Outra vantagem está na possibilidade de se reduzir a espessura do filme, possibilitando economia de resina. O PEBDL metalocênico é utilizado principalmente na produção de filmes multicamadas, sendo que seu principal campo de aplicação está na fabricação de filmes de alta resistência para embalagens de alimentos (MAIER, 2000).

A natureza e o teor do comonômero incorporado nas resinas de PEBDL influencia a cristalinidade e a densidade das mesmas. O aumento do teor e do comprimento das ramificações ao longo da cadeia principal diminui a simetria ou regularidade da macromolécula, o que provoca uma redução da cristalinidade, abaixamento da densidade, do módulo elástico e da temperatura de fusão do polímero (BECKER et al., 2002).

A disponibilidade no mercado de PEBDL com diferentes estruturas e características, e a utilização destes em misturas com PEBD permitem a obtenção de uma grande variedade de produtos com propriedades diferenciadas.

A adição de PEBDL ao PEBD modifica sensivelmente o comportamento térmico da mistura final devido, principalmente, a diferenças na cristalinidade dos mesmos. Estas diferenças dão origem à variação na estrutura e na massa molar, os quais, influenciam diretamente na formação dos cristalitos. O aumento da proporção de PEBDL não altera significativamente o percentual de cristalinidade da mistura, mas aumenta a quantidade de cristalitos que se formam ou fundem em temperaturas mais altas, alterando assim as características do processamento, tais como estabilidade do balão e propriedades óticas e físicas dos filmes obtidos (BECKER et al., 2002).

Já o PEAD é altamente cristalino (acima de 90%), pois apresenta um baixo
teor de ramificações. Sua temperatura de fusão cristalina é de aproximadamente 132°C. Devido à cristalinidade e à diferença de índice de refração entre as fases amorfa e cristalina, os filmes de PEAD são translúcidos e menos transparentes que os filmes de PEBD, que são menos cristalinos. Um aumento no teor de ramificações reduz a cristalinidade e é acompanhado por variação significativa das características mecânicas, uma vez que causa um aumento no alongamento na ruptura e uma redução da resistência à tração. Enfim, o PEAD e o PEBD têm muitas aplicações em comum, mas em geral, o PEAD é mais duro e resistente e o PEBD é mais flexível e transparente (COUTINHO et al., 2003).

2.3.2. Polipropileno

As primeiras tentativas em polimerizar o propileno tiveram como produto substâncias líquidas oleosas ou sólidas flexíveis, sem valor comercial. Apenas a partir de 1955, com os trabalhos de Natta na Itália, utilizando o sistema de catalisador estereoespecífico de Ziegler, foi possível a obtenção de polipropileno com estrutura regular e com propriedades de interesse comercial. Com esse sistema catalisador é possível controlar o posicionamento dos monômeros na formação da cadeia e assim obter o PP na forma isotática, mais comum, ou na forma sindiotática (SARANTÔPOULOS et al., 2002).

O polipropileno possui um conjunto de propriedades atrativas para a produção de muitos produtos manufaturados. Nestas propriedades, inclui-se a boa resistência química, à umidade e ao calor, além da baixa densidade, da boa dureza superficial e da estabilidade dimensional. Sob a forma de filme, o polipropileno é utilizado na confecção de sacos e para embalagem de produtos frágeis, devido ao seu brilho, polimento, e boa rigidez (SMITH, 1998).

Durante o processamento do PP, para dissipar a energia estática, é comumente utilizado um agente antiestático. Devido à rápida cristalização do PP, é utilizada água para seu resfriamento, ao contrário do PE, cujo resfriamento durante o processamento é realizado com ar frio (HERNANDEZ et al., 2000).

O PP apresenta densidade específica da ordem de 0,9 g/cm³, ponto de fusão cristalina em torno de 140-150°C, boa barreira ao vapor d’água, baixa barreira a gases, boa resistência a óleos e gorduras e a produtos químicos, boa resistência à abrasão, boa estabilidade térmica e não é susceptível ao
fissuramento sob tensão ("stress cracking"). Entretanto é sensível à degradação oxidativa em altas temperaturas, requerendo antioxidantes para seu processamento. Caso não seja protegido, se degrada pela ação da luz ultravioleta e por agentes ionizantes (SARANTÓPOULOS et al., 2002).

O polipropileno linear de configuração isótatica (iPP) é um dos polímeros que pode ser objeto de cisão de cadeias durante os processos físicos e químicos utilizados na produção e para a aplicação final. O iPP é um polímero essencialmente linear devido ao seu processo de polimerização que pode utilizar catalisadores do tipo Ziegler-Natta ou metalocênicos. Estes processos ainda não permitem a produção do iPP ramificado, sendo este tipo de produção possível somente via modificação radicalar de suas macromoléculas, pelo processo de irradiação com feixe de elétrons e o uso de monômeros, resultando em uma família de polímeros de alto desempenho (OTAGURO et al., 2004).

Pesquisas mostraram que a otimização dos comprimentos das sequências isótáticas nos homopolímeros é mais importante do que a isotaticidade absoluta, a qual é correlacionada com a cristalinidade. Valores de módulo extremamente altos somente podem ser conseguidos desde que seja atingida uma fração suficientemente longa de sequências isótáticas de PP. Elas definem a espessura das lamelas no produto final e influenciam também as propriedades mecânicas. Outro aspecto essencial na concepção modular das propriedades do produto é a tecnologia especial de nucleação, ou PP com cristalinidade controlada, já que permite a obtenção de altos níveis de densidade de nucleação, proporcionando um aumento do módulo de elasticidade sob flexão (GAHLEITNER et al., 2003).

A linearidade das cadeias do iPP confere a este baixa resistência do fundido, que significa baixa resistência ao estiramento durante o processo de elongação, sendo que esta característica limita a utilização do iPP em processos que demandam um alto estiramento, como por exemplo, na produção de filmes soprados, em sistema “blow” de extrusão. O enxerto de longas ramificações neste polímero confere melhorias na sua viscosidade extensional, no estado fundido, resultando em um polipropileno com alta resistência do fundido. O aumento da resistência do fundido e da extensibilidade do polímero fundido, se deve ao aumento da densidade de emaranhamento das macromoléculas. Este emaranhamento pode ser resultado da presença e da quantidade de ramificações na cadeia, da polidispersividade do material e da reticulação entre cadeias
Estas melhorias básicas no perfil de propriedades se refletem em vantagens adicionais para a transformação e aplicação da resina. Um exemplo é a faixa expandida para a termoformação, uma característica que já é de grande interesse para o mercado. Também a estabilidade durante a extrusão sob altas velocidades é melhorada ao se adotar uma concepção previamente objetivada de distribuição de peso molecular. Um outro aspecto não menos importante é a redução de peso que a alta cristalinidade proporciona aos filmes para embalagem, obtida com a diminuição de sua espessura ou ainda uma melhoria das propriedades de barreira (GAHLEITNER et al., 2003).

Filmes de BOPP são filmes de polipropileno orientado biaxialmente (*biaxially oriented polypropylene*), obtidos através de um processo de transformação da resina granulada de polipropileno. A obtenção do filme de BOPP compreende as seguintes etapas: extrusão, para a fusão do polipropileno; formação, onde ocorre a formação e resfriamento do filme de polipropileno; estiramento longitudinal e, posteriormente transversal, promovidos através de estiramento mecânico, resultando na película de polipropileno orientada biaxialmente; tração e tratamento da película orientada; e embobinamento (MIGUEL et al., 2003).

Em função da orientação das cadeias de polipropileno, a película resultante deste processo possui propriedades de barreira, rigidez e resistência mecânica, muito superiores às de um filme de polipropileno não orientado com espessura equivalente. Estas propriedades permitem sua utilização em espessuras muito inferiores àquelas de um filme de polipropileno não orientado, possibilitando a utilização desse filme em várias aplicações em embalagens em geral, de alimentos ou não alimentos, bem como aplicações industriais, como fitas adesivas, etiquetas, plastificações, e outras (MIGUEL et al., 2003).

Em nível comercial, são produzidos polipropileno isotático (homopolímero), copolímeros de propileno-etileno e blendas poliolefinicas. Todos os processos de polimerização atualmente utilizam catalisadores Ziegler-Natta com alta atividade de estereoespecificidade. Isso se deve basicamente ao fato de que as propriedades dos compostos de polipropileno podem ser ajustadas dentro de uma ampla faixa de valores, dispondo-se desde um polímero "commodity" a polímeros "Taylor made" com propriedades específicas (FORTE et al., 1996).
No caso dos homopolímeros de PP obtidos pela tecnologia de catalisador metalocênico, as propriedades do material podem ser controladas sob medida por meio do controle do grau de taticidade das moléculas. Suas propriedades são melhoradas em relação ao PP convencional, sendo que apresenta boas propriedades organolépticas, resistência ao impacto, e rigidez mecânica combinada com propriedades óticas de transparência e brilho (MAIER, 2000).

A estereoespecificidade do catalisador metalocênico na produção de polímeros estereoregulares, além de ser influenciada pela sua estrutura, também varia com a temperatura de polimerização. Tanto o peso molecular como o ponto de fusão e a estereoregularidade do polímero, diminuem com o aumento da temperatura de polimerização do propileno. O módulo de flexão do polímero obtido com metaloceno é maior do que o obtido com catalisadores heterogêneos com a mesma temperatura de fusão (FORTE et al., 1996).

As propriedades que determinam a aplicação do PP em embalagens flexíveis são: transparência, rigidez, resistência a óleos e gorduras e baixa permeabilidade ao vapor d’água. Devido à rápida cristalização do PP, os filmes transparentes somente podem ser obtidos por resfriamento rápido após a extrusão, o que é feito por meio do contato direto do filme com água ou com cilindros resfriados, ao contrário dos filmes de PE que podem ser resfriados com ar (SARANTÓPOULOS et al., 2002).

2.3.3. Poliamida

Nylon é o nome genérico da família das poliamidas sintéticas. São polímeros que apresentam uma sequência de carbono-carbonil-nitrogênio (amida)-carbono na cadeia. Os primeiros desenvolvimentos deste polímero foram feitos por W. H. Carothers e colaboradores, entre 1928 e 1937, tendo sido o *nylon* 6,6 sintetizado em 1935, após muita pesquisa no processo de polimerização por condensação. A produção comercial deste polímero foi feita pela *DuPont* em 1939, visando o mercado de fibras têxteis. Químicos alemães sintetizaram o *nylon* 6 na década de 30, sendo que os *nylons* se tornaram comercialmente disponíveis para o mercado de embalagem na década de 50 (SARANTÓPOULOS et al., 2002).

A poliamida, PA, é um material que possui boa barreira ao oxigênio em
compostos orgânicos, mas tem um custo relativamente alto, é higroscópico, e, além disso, apresenta baixa barreira ao vapor d’água (VALDES et al., 1998).

Também apresentam boa barreira a gases e a aromas, alta resistência mecânica (abrasão, perfuração, impacto, flexão), boa resistência térmica, boa resistência a óleos, gorduras e produtos químicos, sendo que podem ser termoformadas. Apresentam flexibilidade à baixa temperatura e resistem a álcalis e a ácidos diluídos. Ácidos fortes e agentes oxidantes reagem com as poliamidas. As maiores deficiências das poliamidas são a dificuldade de processamento, a baixa barreira ao vapor d’água e a perda de propriedades mecânicas e de barreira com a umidificação (SELKE et al., 2004).

As propriedades das poliamidas são muito afetadas pela sua cristalinidade, não apenas pela porcentagem de cristalização, mas também pela morfologia (tamanho e distribuição) dos cristais. A cristalinidade é determinada pelo tipo e grade do nylon, como também pelas condições de processo. No caso dos nylons, as condições de processo podem afetar o grau de cristalinidade em até 40%. Durante a fabricação, o grau de cristalinidade é afetado pela temperatura e taxa de estiramento. Quanto maior a velocidade de resfriamento menor o grau de cristalinidade. Quanto maior o estiramento maior o grau de cristalinidade. Filmes biorientados apresentam melhores propriedades de barreira e maior resistência mecânica e à flexão. Por outro lado, filmes com menor cristalinidade são mais transparentes e apresentam melhores características de termoformação (SARANTÓPOULOS et al., 2002).

Um dos benefícios demonstrados pela alta adição de nanocompósitos, sob o aspecto de relação, é o grande aumento de rigidez, ou módulo, por unidade de massa. Isto também explica o incremento de força e dureza, e possibilidade ou risco de perda de resistência, que estão diretamente relacionados com o grau de esfoliação (espécie de delaminação ou decomposição) (FORNES e PAUL, 2003).

Estudos do comportamento estrutural da poliamida 6,6 (PA66) mostraram que a forma cristalina metaestável é mais dúctil que a forma estável. Além disso, estas formas metaestáveis, que se transformam nas formas estáveis, têm grande relação entre si e preferencialmente se apresentam à baixa taxa e alta temperatura de tração. Já dados de rendimento e fratura da poliamida 6 (PA6), de volume em relação à temperatura de polimerização mostram simultaneamente sua influência no peso molar, cristalinidade e tamanho dos “esferulitos”, sendo
que, uma cristalinidade mais baixa resulta em ductilidade e resistência mais altas, assim como o concomitante aumento do peso molar do polímero obviamente contribui para o aumento da resistência do material (PIERRON et al., 2001).

Poliamidas e poliolefinas podem ser juntamente processadas para se obter blendas, nas quais as propriedades dos componentes combinados podem atender aos diversos requisitos de desempenho técnico dos materiais de embalagem. Como por exemplo, as propriedades de resistência ao impacto e de barreira ao oxigênio da estrutura podem ser melhores exploradas. Contudo, infelizmente, poliamidas e poliolefinas não são miscíveis, sendo que se torna necessário então a inclusão de um terceiro componente na mistura, ou seja, de um adesivo, que tem a função de melhorar a junção interfacial e realçar a homogeneidade do material (BELTRAME et al., 1999), conforme será explorado mais adiante.

Em geral, os *nylons* são muito permeáveis ao vapor d’água e absorvem umidade, que exerce um efeito plastificante no polímero, acarretando uma redução na resistência à tração, no módulo de elasticidade, na rigidez e também nas propriedades de barreira a gases e a vapores orgânicos. A resistência ao impacto e a flexibilidade aumentam com a absorção de umidade. O efeito da absorção de umidade nas propriedades dos *nylons* de número baixo, como *nylon* 6 e 6,6, é mais marcante. À medida que aumenta o número de carbonos na cadeia, diminui a sensibilidade à umidade (HERNANDEZ et al., 2000).

Na área de embalagem, a maior parte das poliamidas é utilizada na forma de filmes. Os filmes podem ser produzidos por extrusão ou coextrusão, em matriz plana ou tubular. Os filmes fabricados por ambos os processos podem ser mono ou biorientados, sendo que para processos de termoformação, são utilizados *nylons* não orientados (SARANTÓPOULOS et al., 2002).

2.3.4. Copolímero de etileno e álcool vinílico

O copolímero de etileno e álcool vinílico (EVOH) foi introduzido comercialmente na década de 70 no Japão e seu uso se expandiu rapidamente nas aplicações de embalagens onde a barreira ao oxigênio é requerida pelo produto. Também apresenta alta barreira a gases e a aromas, e se aplica principalmente a embalagens que visam não permitir a entrada do oxigênio em
seu interior, com as embalagens a vácuo ou inertizadas. Nas embalagens com atmosfera modificada, o EVOH é utilizado para manter o gás carbônico e os outros gases desejados ao redor do produto (SARANTÓPOULOS et al., 2002).

O EVOH é produzido pela hidrólise controlada do copolímero de etileno e de acetato de vinila (EVA), transformando o grupo acetato de vinila em álcool vinílico. Os grupos (-OH) altamente polares aumentam as forças intermoleculares, enquanto os grupos etileno mantêm a mobilidade das moléculas. O polímero é altamente cristalino, apesar dos grupos etileno e álcool vinílico serem distribuídos aleatoriamente na cadeia. A mais importante propriedade do EVOH é a sua excelente barreira ao oxigênio. Também apresenta alta resistência à permeação de óleos e gorduras e a vapores orgânicos. Esta propriedade diminui à medida que a polaridade do permeante aumenta. Também é boa barreira a solventes orgânicos. O filme de EVOH apresenta alta transparência e brilho, boa resistência mecânica, elasticidade e alta resistência à abrasão. O EVOH é a resina barreira mais estável termicamente, sendo que esta resistência permite o reprocessamento de aparas na produção (HERNANDEZ et al., 2000).

O copolímero de etileno e álcool vinílico é uma família de materiais semicristalinos com excelentes propriedades de barreira a gases, solventes e aromas e com proeminente resistência química. As propriedades superiores de barreira a gases do EVOH, utilizado em estruturas de embalagens alimentícias, podem ser comprometidas pela pobre termoformabilidade, especialmente quando grandes profundidades ou altas velocidades de formação são requeridas. Isto é consequência da alta rigidez e rápida cinética de cristalização do EVOH, que impede um estiramento uniforme do material, resultando assim em uma faixa de processamento próxima do ponto de derretimento (GIMÉNEZ et al., 2004).

Os grupos hidroxila (-OH) tornam o polímero hidrofílico, atraindo moléculas de água. A presença de água reduz as propriedades de barreira ao oxigênio do material. Devido à sensibilidade desta mistura, o EVOH é usualmente incorporado em estruturas de embalagens como uma camada intermediária da coextrusão, revestido por poliolefinas ou outros polímeros com boa barreira ao vapor d’água. As estruturas típicas contêm um adesivo entre o EVOH e a poliolefina, de forma a proporcionar uma adesão adequada entre o polar EVOH e a poliolefina apolar (SELKE et al., 2004).

A presença do grupo OH na espinha dorsal da cadeia do EVOH aumenta
as forças intermoleculares entre a cadeia polimérica da ligação hidrogênio e o rendimento proeminente de barreira para os permeantes. Entretanto, sua natureza hidrofílica causa sorção de umidade, a qual resulta em deteriorização das propriedades de barreira do gás. Todavia, a permeabilidade ao oxigênio do copolímero de EVOH pode ser aumentada irreversivelmente na presença de vapor durante o processo de cozimento, sendo um processo habitualmente utilizado para esterilização de alimentos embalados (GIMÉNEZ et al., 2004).

Em comparação com a PA, o EVOH possui melhor transparência, resistência a óleos, e propriedades de barreira contra permeação de gases e solventes, e é reconhecido como o melhor material de barreira ao oxigênio para alimentos e outras aplicações de embalagens que necessitam de proteção ao oxigênio. Entretanto, é relativamente frágil e apresenta custo elevado (YEH et al., 2006).

O EVOH tem sido muito utilizado na indústria de embalagem alimentícia em virtude de apresentar boa processabilidade e excelentes propriedades de barreira a gases. Para minimizar a absorção da mistura, é usualmente combinado com poliolefinas na forma de filmes coextrusados, ao mesmo tempo em que melhora a relação de propriedades e custos envolvidos. Para se obter um nível satisfatório de integridade mecânica, estas ligas de polímeros da estrutura precisam ter um nível satisfatório de adesão entre os componentes, se uma combinação apropriada for utilizada. Entretanto, o grau de compatibilização e as condições de processamento devem ser controlados para que uma mistura dispersiva seja evitada e o EVOH seja retido na distribuição laminar, resultando assim na baixa função de permeabilidade do filme (KALFOGLOU et al., 1998).

No caso de embalagens termoprocessáveis, principalmente naquelas submetidas à esterilização, a proteção das poliolefinas contra a umidificação pode não ser suficiente durante o tratamento térmico e logo após a aplicação do calor úmido. Nestes casos, é possível incorporar à camada de adesivo, entre o EVOH e a poliolefiná, um dessecante. Este agente irá absorver a umidade que eventualmente permear as poliolefinas durante o tratamento térmico a úmido, preservando a baixa umidade na resina de EVOH, e conseqüentemente, preservando suas propriedades de barreira. Quando o EVOH é coextrusado à poliamida (nylon), a camada de adesivo não é necessária, assim como com copolímero de etileno e acetato de vinila (EVA) com alto conteúdo de acetato de
vinila (SARANTÓPOULOS et al., 2002).

O EVOH pode ser extrusado em filmes, moldados por balão ou por injeção. Pode também ser processado por coextrusão ou laminação, em combinação com polietileno, polipropileno, polí(tereftalato de etileno), poliamida, e outras resinas. As aplicações em embalagens incluem estruturas flexíveis e rígidas, sendo considerado aplicações como frascos de ketchup e molho de churrasco, frascos de maionese e embalagens de carnes, além de embalagens para solventes e produtos químicos (SELKE et al., 2004).

2.3.5. Adesivo

Adesivos podem ser definidos funcionalmente como qualquer substância capaz de unir dois materiais, sendo estes, papel, vidro, plástico, metal, cerâmica, ou qualquer combinação destes. O principal mecanismo utilizado para juntar dois plásticos constitui-se nas forças intermoleculares, incluindo as forças de van der Waals e as pontes de hidrogênio. Interações físicas também podem significar um fator de adesão, especialmente para materiais porosos como o papel (HERNANDEZ et al., 2000).

Os adesivos ocupam as camadas intermediárias das estruturas multicamadas, sendo que são constituídos de polímeros com grande compatibilidade, em termos de adesão, com as camadas que os cercam (substratos), sendo que são normalmente desenvolvidos à base de anidrido maleico. A adesão entre as camadas é realizada no próprio processo de coextrusão, sendo impossível de se obter a separação indestrutível das camadas da estrutura.

Devido à incompatibilidade de algumas camadas, um adesivo extrusado, ou uma camada adesiva, deve ser incorporado na estrutura, de forma a proporcionar a união eficiente destes dois materiais. Esta camada adicional de adesivo em filmes coextrusados torna o processo de fabricação mais complexo e mais oneroso, sendo que um bloco especial de alimentação se torna necessário, e algumas vezes uma extrusora adicional no sistema de coextrusão (VALDES et al., 1998).

De fato, filmes multicamadas que são normalmente produzidos por processos de coextrusão, com polímeros quimicamente diferentes, precisam de
uma boa adesão entre as camadas, sendo que a presença de um terceiro componente, um adesivo ou uma camada adesiva, é frequentemente necessária para melhorar a adesão e outras propriedades fundamentais, como propriedades mecânicas, propriedades de barreira, e outras (PETRIS et al., 1998).

A adição de pequenas quantidades de um terceiro componente à blenda imiscível, pode alterar a energia interfacial e a dispersão entre as fases, atuando como um agente compatibilizante. Os agentes compatibilizantes geralmente são copolímeros em bloco ou enxertados e podem provocar um decréscimo no tamanho da fase dispersa e modificar a tenacidade do material em relação ao termoplástico (BARRA et al., 2003).

Quando um adesivo é usado para unir duas superfícies, ele deve: 1) aderir à superfície de cada substrato (força de ligação adesiva) e 2) apresentar uma força de atração interna de suas moléculas grande o suficiente para atender aos requisitos da aplicação (força de ligação coesiva). Assim, quando dois substratos são unidos por um adesivo, tem-se uma estrutura formada por cinco regiões distintas: substrato 1 / interface entre o substrato 1 e o adesivo / adesivo / interface entre o substrato 2 e o adesivo / substrato 2. Portanto, as forças adesivas determinam a força de ligação adesiva nas interfaces, enquanto as forças coesivas determinam a força coesiva do adesivo e dos substratos que estão sendo unidos. A manutenção e o desempenho da estrutura dependem como um todo destas forças (SELKE et al., 2004).

Os adesivos podem ser utilizados para processos de laminação ou para processos de coextrusão. Considerando os processos de laminação, um requisito importante para todos os adesivos é que eles sejam líquidos quando da etapa da aplicação e que sejam capazes de molhar a superfície do substrato, sendo que um dos métodos usados para classificar os adesivos baseia-se no modo como o adesivo líquido é convertido em sólido. Estes adesivos podem ser classificados de várias formas: método de solidificação, tipo de polímero, tipo de solvente ou categoria de aplicação. Uma classificação comum consiste em: reativo, hot melt, base solvente e base água. Outra classificação considera dois grupos: natural e sintético, sendo que a maioria dos adesivos naturais é à base de água, enquanto os adesivos sintéticos aparecem em todas as categorias. Categorias adicionais destes adesivos incluem: sensível à pressão e de selagem a frio (cold-seal) (SARANTÓPOULOS et al., 2002).
2.3.6. Poli(tereftalato de etileno)

O poli(tereftalato de etileno), também conhecido como poliéster, ou PET, é atualmente uma resina muito popular como material de embalagem, especialmente no segmento de embalagens rígidas (garrafas e frascos) e flexíveis (filmes biorientados). Os poliésteres são conhecidos desde a década de 30, porém, a primeira síntese do polímero com alto peso molecular foi em 1942, com potencial reconhecido na época para aplicações como fibra. Como potencial de embalagem, o filme de PET biorientado tornou-se disponível nos anos 60, com grande aceitação para acondicionamento de alimentos. Em 1973, o processo de injeção e sopro com biorientação, desenvolvido pela DuPont, introduziu o PET na aplicação como garrafa, o que revolucionou o mercado de embalagem, principalmente o de bebidas carbonatadas (SARANTÓPOULOS et al., 2002).

O PET apresenta boas propriedades de barreira ao oxigênio e ao dióxido de carbono, as quais podem ainda ser melhoradas pela orientação biaxial, que proporciona também excelentes propriedades de barreira a aromas (HERNANDEZ et al., 2000).

Os filmes de poli(tereftalato de etileno) biorientados apresentam também excelente transparência e brilho, boa resistência química e a óleos e a gorduras, boa resistência à tração, rigidez e estabilidade térmica. Sua barreira ao vapor d’água é média, porém pode ser sensivelmente melhorada com a metalização (SARANTÓPOULOS et al., 2002).

A cristalização do PET ocorre somente acima de determinadas temperaturas, sendo ainda fortemente influenciada pelas condições de processamento. Os filmes de PET têm tipicamente um limitado grau de cristalinidade e apresentam excelente transparência. Os grades amorfos de PET (APET) têm sido modificados por copolimerização para permanecerem amorfos, enquanto que os grades cristalizados de PET (CPET) têm tido agentes nucleares adicionados para maximizar a cristalização, sendo este muito menos sujeito à deformação por stress, especialmente em elevadas temperaturas (SELKE et al., 2004).

Com relação ao efeito da taxa de tração a frio na estrutura do PET, considerando o tracionamento de forma lenta, verifica-se a ocorrência de uma estrutura “paracristalina”, a qual é transformada para uma estrutura “triclínica”
quando recozida a uma temperatura acima de 100°C. O desenvolvimento de diferentes estruturas de PET, acima do ponto de temperatura de transição vítrea, origina a transição dos estágios de amorfo as fases nemática e então, para a fase esmética. Quando folhas de polímeros são extraídas na proximidade da temperatura de transição vítrea, a “mesofase” na qual se tinha um pico transitório fraco mas altamente orientado de difração que ocorre imediatamente antes da tensão induzida de cristalização do polímero (BEDIA et al., 2001).

A densidade do PET na forma amorfa é de 1,335 g/cm³ e na forma cristalina é de 1,455 g/cm³. Há uma relação entre o grau de cristalinidade e a densidade do polímero, o que permite o uso da medida da densidade para estimar o grau de cristalinidade (SARANTÓPOULOS et al., 2002).

Uma das desvantagens do PET é sua baixa força de adesão, o que torna grades normais difíceis ou impossíveis de serem processados por extrusão de balão. Grades especiais podem ser produzidos por extrusão de balão via copolimerização, ou via aumento do peso molecular do material, aumentando assim a força de adesão do PET (HERNANDEZ et al., 2000).

Mesmo representando apenas aproximadamente 3% do total do mercado de plásticos, ou seja, 10% do mercado de plásticos destinado ao setor de embalagens, as embalagens de PET constituem o centro da atenção dos recicladores. Entre os fatores que cooperam para este quadro estão: o custo relativamente alto da resina virgem, a alta competitividade de seus processos de reciclagem mecânica, e o alto valor agregado do reciclado, cujo desempenho, dependendo da tecnologia aplicada, pode ser similar ao da resina virgem (SANTOS et al., 2004).

Na área de embalagem o PET é aplicado como: filmes biorientados para embalagens flexíveis laminadas; garrafas obtidas por injeção/sopro com biorientação para bebidas carbonatadas, água mineral, óleo comestível, sucos e molhos; frascos obtidos por injeção/sopro para produtos farmacêuticos, berços e blister transparentes; e mesmo bandejas com alta estabilidade térmica para uso em fornos convencionais e em fornos de microondas (SARANTÓPOULOS et al., 2002).

Recipientes de poli(tereftalato de etileno) são muitos utilizados como embalagens de bebidas carbonatadas e não carbonatadas, óleos e outras bebidas líquidas, assim como embalagens para vários alimentos sólidos.
Apresenta alta claridade, boas propriedades mecânicas e de barreira a gases, baixo peso, e mais facilmente reciclável que o vidro e outros polímeros de muitas aplicações de embalagens alimentícias (OPHIR et al., 2004).

O PET biorientado pode ainda ser utilizado para embalar carne ou queijo, e como base de laminação com algum outro polímero para embalar snacks. O PET revestindo um papel cartão, torna-o apropriado como embalagem de produto que pode ser aquecido em forno de microondas, para aplicação como embalagem de comida congelada, sendo que pode também ser utilizado como saco para cozimento de comida congelada (direto do freezer ao forno), e para esterilização de medicamentos (SELKE et al., 2004).

2.3.7. Poli(naftalato de etileno)

O poli(naftalato de etileno), PEN, é um poliéster aromático, termoplástico, linear e insaturado, sendo que foi primeiramente sintetizado em 1948. Apesar de sua longa história, somente um número limitado de trabalhos tem sido publicado sobre o PEN, quando comparado com outros polímeros, como, por exemplo, o PET. Devido ao elevado custo de produção dos intermediários para a síntese do PEN, somente em 1973 houve a disponibilidade comercial, ainda em pequena escala, desta resina. Pode ser obtido no estado amorfo ou com baixa cristalinidade pelo resfriamento rápido a partir do fundido e pode ser cristalizado por orientação no estiramento, por tratamentos térmicos, ou pela combinação de ambos. Quando não estabilizado pode ser sensível à luz, particularmente para longas exposições às radiações na região do ultravioleta, sendo que a estabilização precisar ser realizada com absorvedores de UV para aplicações em produtos comerciais (NUNES, 1998).

Dentre as propriedades do PEN, destacam-se: transparência; barreira ao oxigênio, ao dióxido de carbono e ao vapor de água; barreira aos raios ultravioleta; alto desempenho térmico; altas resistências mecânica, química e hidrolítica; e excelente estabilidade dimensional. Devido a estas características, o PEN é um polímero de grande interesse para o mercado de bebidas e alimentos com enchimento a quente (NUNES, 1998).

O poli(naftalato de etileno) apresenta alta temperatura de transição vítrea, de 121°C, enquanto que o PET apresenta 78°C, assim como altas taxas de
deformação e cristalização térmica. Estas avançadas propriedades indicam o potencial de fabricação de recipientes com capacidade superior de aquecimento em comparação com a capacidade de aquecimento do PET (OPHIR et al., 2004).

O principal obstáculo para o PEN é o seu alto custo, sendo que uma das formas de viabilizar economicamente a aplicação do PEN é sua combinação com o PET, por meio de blendas ou pela copolimerização entre os reagentes fundamentais destes polímeros, o que certamente acarretará em uma melhoria das propriedades do PET. A relevância da incorporação do PEN ao PET, e vice-versa, é destacada por vários pesquisadores ligados à área de embalagens flexíveis (NUNES, 1998).

A inclusão do grupo naftalato na cadeia polimérica do PEN, comparado com os anéis benzênicos do PET, aumenta a rigidez da cadeia, o que resulta em maior temperatura de transição vítrea (115-125°C para o PEN e 65-80°C para o PET) e maior temperatura de fusão cristalina (260-270°C para o PEN e 240-255°C para o PET), assim como variação em outras propriedades, incluindo o módulo de elasticidade em tração (35% mais elevado para o PEN), o módulo de elasticidade em flexão (50% mais elevado para o PEN), e as resistências à tração e à fluência (NUNES, 1998).

Entre as diversas técnicas para a avaliação da miscibilidade de componentes nas blendas poliméricas, tem sido utilizada a verificação de deslocamentos das bandas de absorção no infravermelho em relação ao número de onda, devido a interações entre os grupos funcionais. A adição de elastômero enxertado com anidrido maleico a blendas binárias contendo PA6 aumenta a homogeneidade da dispersão com formação de um copolímero na interface. Este copolímero resultante da reação do grupo amino da PA6 com o anidrido maleico do agente compatibilizante, induz mudanças na morfologia das blendas e na adesão interfacial, as quais influenciam nas propriedades mecânicas de resistência ao impacto e no comportamento de tensão e deformação (BARRA et al., 2003).

Esta resina apresenta outras características de desempenho muito favoráveis em relação ao PET: uma melhor barreira ao oxigênio, ao dióxido de carbono e ao vapor de água (as permeabilidades ao oxigênio e ao dióxido de carbono do PEN são aproximadamente 5 vezes menores que a do PET, e a capacidade de barreira ao vapor de água do PEN é 3,5 vezes superior ao PET);
melhor resistência química; melhor barreira aos raios ultravioleta; ciclos de moldagem mais curtos; maior temperatura de distorção térmica (120°C para o PEN contra 70°C para o PET) (NUNES, 1998).

O PEN, sendo um polímero de cristalização lenta, assemelha-se em comportamento reológico, térmico e cristalográfico, ao conhecido PET. Em alguns casos, o PEN exibe características originais próprias, como a viscosidade de derretimento mais alta que o PET. Com relação ao estiramento, o naftalato apresenta uma grande superfície plana paralela, orientando o filme uniformemente no sentido da largura axial do estiramento. O PEN foi desenvolvido para exibir um “pescoço” distinto durante a deformação que ocorre entre a temperatura de transição vítrea e a temperatura de resfriamento cristalino. Isto é atribuído ao alinhamento rápido e localizado do naftalato plano, paralelo à larga superfície da amostra, manifestando-se microscopicamente realmente como um “pescoço” (CAKMAK e KIM, 1996).

Na comparação com o processamento do PET, são necessárias certas alterações nas condições de operação dos equipamentos e nos ciclos dos processos, viabilizando a sua utilização para o PEN. Por exemplo, como o ponto de fusão do PEN é mais elevado que o do PET, o PEN requer temperaturas mais elevadas na extrusora para ser processado (NUNES, 1998).

O PEN é utilizado, por exemplo, na produção de partes elétricas, como da fina e pequena camada de um condensador de ponta, e em acessórios áudios-visuals, como o filme base para discos de vinil ou fitas de vídeo cassete, com alta qualidade. PEN tem também altas propriedades de barreira ao oxigênio e dióxido de carbono, tornando-o mais apropriado para embalagens alimentícias. Entretanto, o PEN é uma resina de alto custo e não pode ser sempre empregado para aplicações industriais. Todavia, blendas de polímeros, de performance superior como o PEN e econômicas como o PET, são passíveis de serem desenvolvidas e esperadas pelo mercado. Por esta razão, blendas compostas de PEN e PET têm atraído consideravelmente uma variedade de pesquisadores. No entanto, a formação mecânica e estrutural da cristalização da combinação entre PEN e PET em blendas de filmes não são ainda completamente entendidas (BEDIA et al., 2001).

Para produzir produtos com qualidade, devem-se considerar a competição entre os pontos de fusão dos dois componentes, a competição nos aspectos
reológicos, o teor de naftalato na blenda, o tamanho geral do granulado e o projeto da resina, além do equipamento de processamento, que deverá manter os dois componentes juntos por um tempo adequado (NUNES, 1998).

Durante a fusão da mistura, ocorre uma reação de transesterificação, através da qual a mistura é submetida a um certo grau de cristalinidade. Esta reação é dependente do tempo e da temperatura da mistura, enquanto que a composição da mistura e o residual de poliéster catalítico não têm efeito significativo. A miscibilidade apresenta recursos para melhorar a claridade e as propriedades mecânicas da mistura (BEDIA et al., 2001).

Com referência à regulamentação para o emprego do PEN em contato com alimentos, na Europa e no Japão já há esta aprovação, enquanto que nos Estados Unidos a FDA (*Food and Drug Administration*) está avaliando o desempenho desta resina (NUNES, 1998).

2.3.8. Polí(cloreto de vinilideno)

O polí(cloreto de vinilideno), PVDC, tem participado de estruturas de filmes plásticos por mais de 50 anos, sendo obtido pela polimerização do cloreto de vinilideno com outros monômeros, como ésteres acrílicos e grupos carboxílicos insaturados, formando longas cadeias de cloreto de vinilideno. A polimerização resulta em um filme com moléculas unidas de forma muito firme em que muito pouco gás ou água pode atravessar. O resultado é a excelente barreira ao oxigênio do PVDC, capaz de proteger o alimento e o consumidor, com resistência também à água, ao ácido, às bases e aos solventes (BELLIS, 2006).

Embora um grande número de soluções de filmes de barreira a gases esteja disponível no mercado, todas têm seus inconvenientes: custo, sensibilidade à água, opacidade ou resistência mecânica limitada (LANGE e WYSER, 2003).

Desde o início da década de 90, filmes de polipropileno orientados são utilizados com atmosfera modificada para aumentar o *shelf-life* de produtos como batata frita e queijo. Este processo normalmente envolve adição de gás em uma máquina vertical de embalagem, através da substituição do ar livre da embalagem por outros gases (normalmente nitrogênio ou uma mistura de nitrogênio e dióxido de carbono). Além dos filmes de alta barreira são necessários também, filmes com metalização ou à base de PVDC, com vácuo, e garantia de eficiência da
selagem. Estas selagens, além de resistentes, são herméticas e previnem a troca dos gases da embalagem com o ar do ambiente externo (CLARK e WAGNER, 2002).

O PVDC revestido com polipropileno apresenta atributos inerentes de claridade, resistência, termoplasicidade, e selabilidade a quente (BRODY e MARSH, 1997).

Apesar do consumo de resinas de poli(cloreto de vinilídeo) como materiais de embalagem ter sido reduzido consideravelmente em virtude de vários problemas ambientais, estas resinas ainda têm sido utilizadas como materiais de barreira a gases, sendo que para este propósito, outros filmes como de EVOH e de PA têm sido mais utilizados. Enquanto que os filmes de PVDC estão em fase de redução de consumo, outros filmes de barreira de outras resinas estão em plena expansão de consumo, sendo que em caso de necessidade de alta barreira a gases associado à boa resistência mecânica, os filmes de PVDC podem ser revestidos com nylon (KATSURA e SASAKI, 2001).

Há um receio em se utilizar alumínio e cloro nas estruturas dos filmes, principalmente por questões ambientais. O PVDC pode ser tóxico em combustão, relacionado à presença do cloro e das dioxinas liberadas em reação, nos casos de descartes dos lixos de embalagens constituídas de PVDC. Consumidores percebem alumínio e camadas metalizadas dos filmes de embalagens como ambientalmente poluidoras. Esta percepção começou nos mercados da Alemanha e da Escandinávia, e tem se espalhado através do mundo inteiro (LANGE e WYSER, 2003).

O PVDC está liberado para utilização em contato direto com alimentos e gorduras. As resinas podem ser extrusadas ou coextrusadas em equipamentos apropriados e por processadores que conheçam as necessidades específicas de desempenho das embalagens, sendo que cerca de 85% do PVDC produzido é utilizado em uma fina camada entre celofane, papel ou plástico, para melhorar a performance de barreira (BELLIS, 2006).

As resinas de PVDC atendem aos requerimentos da European Directive on Packaging Waste (Diretiva Européia sobre Descarte de Embalagem), permitindo a eliminação destas embalagens contendo PVDC em aterros, principalmente pela reduzida quantidade de filme requerida para fornecer proteção ao produto, se comparada com outro filme plástico. As resinas de PVDC também satisfazem à
América do Norte e à Europa em termos dos requisitos permitidos para que o filme possa entrar em contato com alimentos, estabelecendo os limites de migração de aditivos e monômeros nos alimentos (DOW CHEMICAL Trademark Catalogue, 2005).

As blendas são alternativas para melhorar as propriedades de barreira dos filmes, sendo que este melhoramento é fortemente dependente da morfologia da blenda ou do compósito obtido (LANGE e WYSER, 2003).

As propriedades de barreira de uma blenda imiscível são dependentes das propriedades de barreira e da estrutura morfológica de todos os componentes da blenda. A taxa de permeabilidade ao oxigênio do PVDC em blenda com polietileno muda bruscamente acima de uma pequena escala de composição (quantidade de PVDC presente na estrutura). Esta posição na escala de composição é dependente também da participação reológica de todos os componentes da estrutura da blenda (KIRKPATRICK et al., 1992).

O PVDC não é sensível à umidade e não apresenta a deteriorização das propriedades de barreira apresentadas pelo EVOH. As mudanças de processo necessárias para a utilização de PVDC, que é sensível ao aquecimento, são normalmente enfrentadas pela coextrusão em produção de folhas. Os designs de equipamento e processo são críticos para a produção de coextrusados, ou multicamadas, contendo PVDC. De acordo com o interesse na reutilização da sucata gerada na produção por coextrusão contendo PVDC é realmente algo econômico, porém, se a sucata contém PVDC, a extrusora deve também incluir os materiais apropriados para a construção e o design aerodinâmico (BRODY e MARSH, 1997).

Métodos muito utilizados para a obtenção de camadas de barreira são identificados pela laminação ou coextrusão de algum polímero com um polímero de alta barreira, como poli(cloreto de vínilreno) (PVDC), copolímero de etileno e álcool vinílico (EVOH) ou poliamida (PA). Muitos destes polímeros possuem boa barreira ao oxigênio somente em estado seco, o que significa que eles precisam ser colocados entre filmes com boa barreira ao vapor de água, a fim de manter suas funções de propriedades de barreira ao oxigênio (LANGE e WYSER, 2003).

Para extrusão de PVDC há necessidade de se ter uma extrusora de construção especial, resistente à corrosão. Toda a construção deve ser aerodinâmica, com a superfície de fluxo normalmente ou possivelmente em
contato com o PVDC, precisa ser niquelada. Uma extrusora de PVDC pode trabalhar também com outros materiais de barreira igualmente bem, mesmo com projetos diferentes das tradicionais extrusoras de parafusos (BRODY e MARSH, 1997).

Devido ao desempenho superior de barreira, os filmes de PVDC podem reservar a uma embalagem a máxima performance através de finas camadas em estruturas de filmes multilamadas. Filmes de PVDC também podem ser manufaturados de forma eficiente em termos de energia, pois as características de selagem com mínimo aquecimento, e de bom encolhimento dos filmes de PVDC, permitem a produção de embalagens com baixos níveis de temperatura, requisitando assim menor quantidade de energia para seu processamento (DOW CHEMICAL Trademark Catalogue, 2005).

A utilização de estruturas de filmes de PVDC pode fornecer benefícios como um baixo e preciso peso de embalagem, aumento de shelf-life do produto, embalagem mais translúcida, e possibilidade de outras aplicações adicionais, em acordo com as regulamentações internacionais para contato com remédios e alimentos (DOW CHEMICAL Trademark Catalogue, 2005).

2.4. PROCESSO DE COEXTRUSÃO DE FILMES PLÁSTICOS

Coextrusão é a combinação de duas ou mais camadas de polímeros fundidos, que formam um único filme e atendem às necessidades específicas de desempenho para uma determinada aplicação. A coextrusão desenvolveu-se inicialmente em pequenos nichos de mercado, tais como filmes com barreira ao oxigênio, utilizando resinas de poliamida, revestidas com polietileno para se obter características de termo-selagem. Assim, com apenas um processamento e a um custo mais baixo, era possível substituir a laminação de filmes de polietileno com folha de alumínio ou com outros materiais de barreira (MARTÍNEZ e ARROYO, 1998).

Se irregularidades ocorrem nas camadas dos filmes multilamadas, fissuras podem ocorrer durante o ciclo de formação. Para garantir a união entre as camadas do filme e a eficiência da força de colagem, uma excelente combinação de viscosidades entre a resina adesiva e as outras resinas que fazem parte da
estrutura multicamada é recomendada (EVAL AMERICAS, 2000).

O aumento da demanda em termos de propriedades dos produtos plásticos promoveu o desenvolvimento da tecnologia de coextrusão, processo em que duas ou mais camadas de resina são extrusadas através da mesma matriz. Como resultados, são obtidos filmes, chapas, tubos ou perfis contínuos, que combinam as propriedades dos materiais processados. O principal fator limitante da técnica da coextrusão é representado pelo fenômeno de fluxo, ou instabilidade interfacial, que representa um tipo interno de instabilidade, ocorrendo no interior do produto, deixando as superfícies exteriores lisas. Diversos pesquisadores sugeriram o uso da tensão de cisalhamento interfacial crítica como um critério para definir o limiar das instabilidades interfaciais, sendo que materiais com ampla distribuição de peso molecular são mais sensíveis à instabilidade, em comparação com o PEDB, com distribuição estreita de peso molecular (ZATLOUKAL, 2006).

A coextrusão permite otimizar as características dos polímeros mais caros, minimizando a quantidade necessária para desenvolver finalidades específicas de selagem, aderência, rigidez, resistência ao impacto, rasgo, perfuração, brilho, entre outras, em comparação com um filme monocamada onde os componentes estão misturados (MARTÍNEZ e ARROYO, 1998).

No processo de coextrusão, a resina termoplástica é introduzida em um cilindro aquecido e o material plástico amolecido é forçado, por um veio roscado ou parafuso rotativo, a entrar através de uma abertura em uma matriz, para a obtenção de formas contínuas. Depois de sair do molde, a peça extrusada deve ser resfriada abaixo da temperatura de transição vítrea do material, de modo a assegurar a estabilidade dimensional requerida. O resfriamento é geralmente realizado com jato de ar ou com água (SMITH, 1998).

Filmes soprados são produzidos pela extrusão do polímero fundido, na forma de um tubo, através de uma matriz anelar, no centro da qual ar é injetado, inflando o tubo até este atingir um diâmetro maior. Uma “bolha” então é formada, cujas paredes são estiradas na circunferência (pelo ar injetado) e na vertical, por rolos puxadores, ao mesmo tempo em que são resfriadas, conferindo então ao filme soprado uma orientação biaxial. A Figura 2.1 demonstra esquematicamente o processo de extrusão de filmes em sistema “blow” (GUERRINI et al., 2004).
Os parâmetros mais importantes deste processo são: a razão de sopro \((RF/R_0, \text{ onde } RF = \text{ raio final do filme soprado e } R_0 = \text{ raio inicial do filme})\); a razão de estiramento \((V/V_0, \text{ onde } V = \text{ velocidade de puxamento e } V_0 = \text{ velocidade na saída da matriz})\); e a linha de congelamento (em negrito na figura 2.1). Acima da linha de congelamento, considera-se que o polímero está solidificado, com a sua estrutura cristalina e orientação, congeladas. Estes dois últimos parâmetros moleculares dependerão então das condições do fluxo, ou seja, das propriedades reológicas do polímero. Existem três tipos de fluxos durante o sopro: na matriz anelar o fluxo é predominantemente de cisalhamento; entre a saída da matriz e o início da “bolha”, o fluxo é uma mistura de cisalhamento com fluxo elongacional; e até a linha de congelamento, o fluxo é predominantemente elongacional (GUERRINI et al., 2004).

Uma maneira mais simples de se formar filmes poliméricos é pelo sistema “cast” de extrusão, onde os filmes não são orientados, ao contrário do sistema “blow” de extrusão, que possibilita a orientação biaxial dos filmes. Neste sistema “cast” de extrusão, a resina fundida é expulsá atraves de uma matriz linear plana,
formando uma folha polimérica larga e fina, que é então moldada por rolos frios e altamente lustrados, sendo que a refrigeração é dada a partir dos centros dos rolos, conforme esquema visualizado na Figura 2.2(a). Se múltiplas extrusoras são utilizadas, diversos extrusados de diversos tipos de materiais poliméricos podem ser simultaneamente alimentados através do bloco da matriz plana, formando assim uma coextrusão em sistema “cast”, cujo ilustrativo está apresentado na Figura 2.2(b) (PROGELHOF e THRONE, 1993).

Figura 2.2 - Sistema de extrusão “cast”: (a): A - extrusora, B - matriz plana, C - resfriamento, D - acabamento final, (b): A, B, C - múltiplas camadas (PROGELHOF e THRONE, 1993)

Uma matriz apropriada é colocada na “cabeça” do tambor, na extremidade livre do parafuso, sendo que é esta matriz que dá a forma desejada ao polímero fundido, ou seja, uma matriz cilíndrica produz um extrusado de forma tubular, e uma matriz plana produz um extrusado em forma de folha (PROGELHOF e THRONE, 1993).

As matrizes de extrusão definem a configuração geométrica do semi-acabado, exercendo grande influência sobre a rentabilidade das linhas de produção. Exemplos de ferramentas para a extrusão de produtos com seção transversal circular, nas quais o fundido é distribuído por estruturas estáticas de canais de fluxo, são as matrizes com distribuidor helicoidal ou com separador de fluxo, e as matrizes em pilha. Nestes sistemas, a resina é comprimida por um bico e espalhada sobre um ou mais canais distribuidores, tornando inevitáveis heterogeneidades em termos de distribuição de temperatura e espessura, sendo que para que elas sejam equalizadas, é necessária a utilização de dispositivos adicionais, aumentando assim os custos dos equipamentos (LIMPER e
A resistência mecânica final de um filme coextrusado é mais ou menos igual à soma das resistências de suas camadas individuais. Teoricamente, numa blenda monocamada de dois ou mais materiais, a resistência final deveria ser aproximadamente igual à soma dos valores de cada um dos materiais. Entretanto, fatores relacionados com a não-homogeneização da mistura dos diversos componentes, fazem com que isto não aconteça. Estudos realizados demonstram que tanto as propriedades mecânicas quanto a selabilidade dos filmes coextrusados são melhores do que nas blendas monocamada, com igual conteúdo total dos mesmos componentes. Embora os componentes da não-homogeneização das misturas possam ser minimizados com a utilização de uma boa tecnologia de extrusão, há uma variedade de combinações de propriedades em filmes coextrusados que não podem ser obtidas através de blendas nos filmes monocamada (MARTÍNEZ e ARROYO, 1998).

As extrusoras disponíveis comercialmente podem ser de rosca cônica simples, rosca dupla, ou rosca “supercônica”. É possível obter vantagens no processamento de plásticos com extrusoras de dupla rosca cônica reduzindo-se a profundidade do canal (região entre espiras adjacentes) na zona de alimentação e aumentando-se a zona de dosagem. Os benefícios desse novo conceito são evidentes ao longo de todo o perfil da rosca, particularmente na zona de dosagem, considerada uma área crítica (JÄCKER, 2002).

Equipamentos com rosca dupla, amplamente empregados no preparo e na extrusão de formulações de resinas termoplásticas, atingem o máximo de sua capacidade quando o seu torque é plenamente utilizado. Devido às suas excelentes características de mistura e à sua estrutura flexível, as máquinas extrusoras com duas roscas, que giram sob velocidades idênticas, são mais viáveis econômica e tecnicamente no preparo de formulações de resinas termoplásticas (POTENTE et al., 2006).

O maior problema das roscas cônicas está na zona de dosagem, uma vez que o volume disponível na rosca se torna progressivamente menor nessa região. A crescente profundidade do canal proporciona vantagens máximas para esta zona, sendo que se pode conseguir um maior volume de transporte por rotação para um mesmo passo de rosca. Este projeto reduz a velocidade da rosca que se faz necessária para uma mesma vazão de resina fundida, aumentando desta...
forma a vida útil da rosca (JÄCKER, 2002).

A capacidade de produção é limitada pelo torque máximo disponível da extrusora. Uma boa descrição do processo requer, juntamente com o cálculo antecipado da relação entre a pressão e o nível de utilização, a evolução de temperaturas, as características de fusão da formulação e uma determinação exata da introdução de energia. Assim, com o auxílio de cálculos de simulação, é possível determinar previamente a potência requerida por uma extrusora de rosca dupla. Dessa maneira, pode-se conseguir o máximo aproveitamento dos limites de torque para os processos mais frequentes, sendo que o fabricante de formulações terá condições de aproveitar, de forma plena e conveniente, a potência disponível em seus equipamentos (POTENTE et al., 2006).

Para a extrusão de filmes e tubos, foi desenvolvido um ferramental com princípio diferente de funcionamento, sendo que a distribuição da resina fundida, neste caso, não ocorre através de canais de fluxo estáticos, mas por um sistema dinâmico que entra em rotação exclusivamente com a ação do fluxo de resina recebido. Assim, o elemento distribuidor, na verdade, será um sistema dinâmico, apenas com a aplicação de rotação ao fluxo de resina fundida. A configuração desse ferramental leva a uma distribuição homogênea da resina fundida e atenuação das linhas de solda devido à rotação da geometria do distribuidor. O tempo de permanência no ferramental é reduzido ao mínimo possível, e como os segmentos atravessam continuamente a região dos orifícios de alimentação bem irrigados, a quantidade de refugo decorrente do processo de limpeza durante operações de troca de material ou cor também será a menor possível (LIMPER e RÜBBELKE, 2006).

Especialistas desenvolveram uma extrusora com doze rosca dispostas em formato de anel, cujas características abrem possibilidades completamente novas para a formulação e transformação de resinas plásticas, além de assegurar uma alta adaptabilidade aos diferentes tipos de processos a serem aplicados. Os resultados dos ensaios confirmaram a sua eficácia com relação à desgasificação e ao alto grau de dispersão do produto, além da possibilidade de serem obtidos melhores índices de produtividade. A ampla área da região de fusão torna possível um nível de desgasificação substancialmente melhor em comparação com as extrusoras de rosca dupla convencionais. A superioridade da extrusão em anel torna-se clara quando se faz uma comparação direta com uma moderna
extrusora de rosca dupla, ou seja, devido ao maior torque disponível para a extrusora em anel, foram obtidos níveis de produção bem maiores para este equipamento do que para a tecnologia convencional de extrusão com rosca dupla. Apesar do alto torque total, a tensão de cisalhamento máxima gerada por torção é substancialmente menor do que a observada para a extrusora com rosca dupla, proporcionando também garantia adicional contra a ruptura da rosca (VORBERG, 2002).

O cabeçote de sopro da matriz, além da extrusora, também é um dos componentes mais importantes para uma produção flexível e de alta qualidade. Sua missão é assegurar que um espectro mais amplo possível de materiais possa ser processado em uma matriz, sob altos níveis de produção, e que a bolha de filme extrusado seja tão homogênea quanto possível, em termos de espessura e temperatura. O resfriamento do extrusado ainda é o fator que limita a magnitude da produção de filmes tubulares e também exerce uma grande influência na qualidade do produto, uma vez que as condições heterogêneas de resfriamento podem provocar efeitos adversos não apenas na espessura do filme, mas também em sua transparência e brilho (SPIRGATIS e WORTBERG, 2002).

A coextrusão permite reduzir a espessura final de um filme, mantendo e até mesmo melhorando o seu desempenho final. Utilizando a coextrusão podemos otimizar a utilização dos polietilenos de alto desempenho, fato que representa uma vantagem competitiva para o transformador. Além disso, a coextrusão permite também a redução do número de processamentos necessários para se obter as propriedades desejadas para um filme ou uma estrutura laminada (MARTÍNEZ e ARROYO, 1998).

A utilização de sistemas internos de resfriamento está dando uma importante contribuição para aumentar a capacidade de produção, devido ao fato de que ambas as faces da bolha do filme são resfriadas. Isto é limitado apenas pelo diâmetro da matriz de extrusão. Com este processo, consegue-se um resfriamento mais intenso da bolha do filme, evitando-se ainda o bloqueio do filme em função de uma temperatura excessiva da bolha antes da passagem pelos rolos de achatamento (SPIRGATIS e WORTBERG, 2002).

Os recentes avanços na tecnologia dos equipamentos utilizados no processamento de polímeros, a introdução de novos polímeros, e o desenvolvimento de novos mercados de aplicação, atualmente torna mais
atraentes a utilização de filmes coextrusados. Para permanecer competitivo dentro destes mercados, torna-se imprescindível desenvolver as técnicas e o conhecimento adequado para tirar o máximo proveito dos novos polímeros (MARTÍNEZ e ARROYO, 1998).

O perfil transversal de espessura de uma bolha de filme é controlado pelo ar de resfriamento, sendo que o ajuste é efetuado por uma mudança local da vazão ou temperatura do ar. A bolha cilíndrica de filme é comprimida na unidade de achatamento, transformando-se em filme plano com duas camadas. As bobinadoras estão se tornando cada vez mais importantes nos equipamentos para produção de filmes tubulares, sendo que nos sistemas atuais estão integradas funções tais como troca automática e manipulação de rolos, ou gerenciamento dos parâmetros de bobinamento, tais como comprimento do lote, tensão na tira de filme, pressão de contato, e outros, em função do tipo de formulação processada. Todos os componentes de uma linha para produção de filme tubular estão agrupados em uma unidade operacional com um sistema de controle, tais como controle de produção, de temperatura e dos parâmetros de produto, como largura do filme achatado, planicidade da tira e perfil da espessura do filme (SPIRGATIS e WORTBERG, 2002).

2.5. PROCESSO DE TERMOFORMAÇÃO DE FILMES PLÁSTICOS

Termoformação é um método de formação de folhas ou filmes plásticos para utilização em embalagens através da utilização de um molde. O processo de termoformação tem três etapas básicas: aquecimento, formação, e corte do filme. Cada uma destas três etapas deve ser corretamente executada para que a embalagem seja formada adequadamente (XU e KAZMER, 2001).

No processo de termoformação, o fluxo do alongamento ou expansão do filme é de fundamental importância. Métodos experimentais especiais são necessários para medir o comportamento dos polímeros amolecidos em processo de extensão ou alongamento. Longas cadeias ramificadas influenciam significativamente as propriedades reológicas dos polímeros neste processo, sendo que se é possível alterar sistematicamente as estruturas das ramificações destes polímeros (MÜNSTEDT, 2006).
O processo de termoformação pode ser relacionado à orientação do filme, já que o processo de estiramento pode quebrar a estrutura inicial do polímero, gerando uma nova estrutura. O aumento de cristalinidade, resultante do processo de estiramento, reduz a mobilidade da cadeia amorfa, ou alonga o caminho de difusão, reduzindo a permeabilidade ao oxigênio (PETTERSEN et al., 2004).

O processo de termoformação envolve estiramento longitudinal e circunferencial, sendo que quando combinações de polímeros são utilizadas, as propriedades individuais de cada polímero devem ser consideradas. Como a termoformação é um processo de orientação e cada polímero apresenta características de orientação diferentes, deve-se levar em consideração propriedades de estrutura, grau e taxa de cristalinidade, e ponto de amolecimento.

O tipo de termoformação deve ser considerado para a escolha dos materiais poliméricos a serem utilizados, sendo que existem basicamente dois tipos de termoformação: a formação por pressão em fase sólida (SPPF - Solid Phase Pressure Forming), em que o material é formado em temperatura abaixo do seu ponto de amolecimento, resultando em alto grau de orientação, aumento de propriedades mecânicas e tendência de ocorrência de estiramento; e a formação na fase de amolecimento (MPF - Melt Phase Forming), em que o material é formado em temperatura acima do seu ponto de amolecimento cristalino, resultando em baixa orientação e estiramento, possibilidade de queda da taxa de moldagem e dificuldade de formação (EVAL AMERICAS, 2000).

A termoformação é caracterizada como um processo que resulta em filmes com espessuras de paredes não uniformes. A fim de prever os fatores que influenciam na uniformidade das espessuras das paredes, o desvio padrão precisa ser considerado, sendo que os filmes termoformados com menor desvio padrão de medição de espessuras de paredes, apresentam termoformações mais uniformes (HARRON et al., 2002).

Na indústria, para se atingir a melhor distribuição possível do material no molde, o operador do equipamento de termoformação precisa ser capaz de fisicamente alterar parâmetros do equipamento, como tempo e temperatura, durante a operação de termoformação. Os efeitos destas alterações de parâmetros podem ser conferidos através da medição física das espessuras dos cantos dos filmes após termoformados (HARRON et al., 2002).

Filmes termoformados são utilizados para diversos tipos de produtos
alimentícios, principalmente em função da relativa facilidade de utilização em linha de produção industrial (termoformação, enchimento e selagem). Os métodos mais utilizados de termoformação incluem vácuo, pistão auxiliar e vácuo com pistão auxiliar, sendo que dependem principalmente do desenho e da profundidade do molde. O filme coextrusado pode ser fornecido diretamente da coextrusora ao equipamento de termoformação, aumentando a capacidade da linha de produção (fluxo contínuo) e reduzindo custos, desde que os moldes possam ser trocados em curto espaço de tempo (PETTERSEN et al., 2004).

A Figura 2.3 apresenta ilustrativamente a fotografia de um equipamento de termoformação de filmes plásticos (MULTIVAC Trademark Catalogue, 2004).

![Figura 2.3 - Equipamento de termoformação de filmes plásticos (MULTIVAC Trademark Catalogue, 2004)](image-url)

Na Figura 2.4, tem-se um desenho esquemático das etapas de termoformação de um filme plástico em um equipamento de termoformação (MULTIVAC Trademark Catalogue, 2004).
Em (1) tem-se a bobina de filme plástico, chamada de “filme fundo”, que é desenrolado até a câmara de termoformação (2), onde o filme é moldado, sob determinadas condições de tempo, temperatura e vácuo, através de um molde “fêmea” que pode apresentar cavidades de diversas geometrias. O filme plástico está aquecido e preso em um quadro acima do molde. O molde sobe então até a posição de moldagem, quando o vácuo é acionado por um certo período de tempo para que o filme obtenha um formato final idêntico ao formato do molde. Ainda em (2), antes da descida do molde, há um tempo de resfriamento do filme, sendo que após esta etapa, o filme continua o fluxo no equipamento de termoformação em (3). Na etapa (4), o filme já termoformado recebe o produto a ser embalado, que pode ser alimentado de forma manual ou automática. A bobina, denominada de “filme tampa” (5), é desenrolada até o encontro do “filme fundo”, onde ocorre a selagem dos dois filmes na câmara de selagem (6), que é realizada com extração de ar (vácuo) ou onde é injetado alguma mistura gasosa para auxiliar na conservação do produto. Finalmente, em (7) e (8), as embalagens são separadas umas das outras através de cortes transversais e longitudinais,
sendo que estes cortes podem ser realizados no próprio equipamento de termoformação ou em um processo posterior.

Existem alternativas de processos de termoformação que podem resultar em melhor desempenho do filme em termos de uniformidade de espessura, como por exemplo, os processos que sugerem a formação de uma espécie de “bolha” anterior à etapa de vácuo, possibilitando uma melhor distribuição do filme no molde e consequentemente um perfil de espessuras mais uniforme.

Na moldagem por ar comprimido, o material aquecido é comprimido contra uma cavidade “fêmea” por meio de ar, com pressões de até 1 MPa, conforme esquema apresentado na Figura 2.5(a). É um processo que permite ciclos de produção bastante rápidos, e a temperaturas menores do que as exigidas por outros processos alternativos, sendo que é empregado satisfatoriamente em materiais de difícil formabilidade (BLASS, 1988).

A técnica de moldagem por “colchão de ar” consiste no estiramento do filme anteriormente à etapa de conformação. Este estiramento prévio é conseguido com a introdução de ar comprimido entre o filme e o molde, forçando a expansão deste filme na forma de uma “bolha” em conformação livre. Alternativamente, o molde pode ser utilizado como um êmbolo, comprimindo o colchão de ar à sua frente, formando assim a “bolha”, conforme mostra a Figura 2.5(b). Quando o molde estiver formado a “bolha”, faz-se o vácuo e esta se deposita sobre o molde, de acordo com a Figura 2.5(c), sendo que o produto resultante apresenta uma uniformidade muito maior de espessura (BLASS, 1988).

Figura 2.5 - Termoformação de “bolha” anterior ao vácuo: (a) por ar comprimido, (b) e (c) por “colchão de ar” (BLASS, 1988)

As metas de desenvolvimento assumidas pelos fabricantes de máquinas
para termoformação são as mais variadas. Elas incluem a adaptação do porte dos equipamentos aos requisitos de mercado e a melhoria de sua reprodutibilidade, bem como ciclos mais rápidos e tempos prolongados de operação contínua. A alta produtividade e a grande flexibilidade possuem papéis muito importantes, particularmente do campo de fabricação de embalagens. A combinação de moldes para conformação e puncionamento, e o uso de máquinas para termoformação com ar comprimido reduzem os tempos necessários para a preparação do equipamento. Eliminam-se dessa forma o tempo de preparação que seria necessário para uma estação separada de puncionamento, bem como os custos da substituição das lâminas e contraplacas de punção (WIRTZ, 2002).

Em produção, a termoformação pode ser altamente automatizada com várias partes do processo sendo controladas por um sistema computacional. É normalmente considerado um dos meios mais baratos de se obter embalagens plásticas em três dimensões, já que a termoformação é uma técnica de formação a baixa pressão, os moldes são confeccionados com material barato e um equipamento razoavelmente pequeno é suficiente para formar o material. Como a maioria das embalagens ou componentes produzidos por termoformação não são grandes, o processo de formação permite a obtenção de um grande número de peças por ciclo do equipamento (SELKE et al., 2004).

Novos e interessantes desenvolvimentos para termoformação não param de surgir como resultado dos avanços no campo da tecnologia de aquecimento por infravermelho. Foi desenvolvido um emissor de alta potência com reflector parabólico de ouro, inédito em todo o mundo, onde o elemento cerâmico para aquecimento de baixa inércia do emissor é integrado em um reflector parabólico cerâmico dourado, que consegue associar estabilidade térmica e mecânica a uma distribuição espectral de energia muito boa. Estas características viabilizam o alcance de uma temperatura de trabalho de 1000°C em menos de um minuto, bem como altas velocidades para a passagem das chapas de plástico. Contudo, o desempenho do emissor deve se balanceado de acordo com a espessura da chapa e o tipo de pigmentação nela utilizado (WIRTZ, 2002).

As vantagens da termoformação incluem a possibilidade do processamento de complexas estruturas multiamadas e a rápida expansão do mercado para processos de termoformação de geometrias muito mais complexas (PETTERSEN et al., 2004).
No que tange a termoformação à vácuo, a alteração das condições de mercado, a competição crescente e a necessidade de tempos de resposta cada vez mais curtos aos requisitos da demanda, geram a necessidade de termoformadoras mais produtivas e flexíveis. Os tempos de ciclo já são muitos curtos, sendo que o potencial máximo para aumento de produtividade e flexibilidade reside no encurtamento dos tempos de parada, associada com a troca de moldes e as novas regulagens do equipamento (WIRTZ, 2002).

O principal inconveniente da termoformação é a sua incapacidade de formar peças com estreitas tolerâncias dimensionais, e sua dificuldade de realizar cortes mais diferenciados. No entanto, para a grande maioria das aplicações em embalagens, não há grandes inconvenientes (HERNANDEZ et al., 2000).

2.6. PRINCIPAIS ASPECTOS DOS FILMES PARA EMBALAGEM

2.6.1. Controle de Espessura

Espessura é a distância perpendicular entre duas superfícies principais de um material, sendo este um parâmetro utilizado como referência na área de embalagens plásticas. Conhecendo-se a espessura de um material e sua natureza química é possível obter informações teóricas sobre suas propriedades mecânicas e de barreira a gases e ao vapor d’água, bem como fazer estimativas sobre a vida útil de alguns alimentos acondicionados neste material e o desempenho mecânico da embalagem, desde que sejam conhecidos alguns dados como, por exemplo, as dimensões, a capacidade da embalagem e o sistema de distribuição (SARANTÓPOULOS et al., 2002).

As paredes do filme termoformado geralmente não são uniformes em termos de espessuras, a não ser que se tenha um processo muito bem otimizado. A não uniformidade das espessuras das paredes e as reduzidas espessuras dos cantos dos filmes termoformados são as principais limitações da termoformação. Modelos teóricos têm sido desenvolvidos para simulação de termoformação de plásticos com diferentes materiais em diferentes condições. Modelos simplificados baseados em métodos de elementos finitos também têm sido desenvolvidos para simulação de processos de termoformação (PETTERSEN et al., 2004).
Por meio da determinação de espessura é possível avaliar a homogeneidade de um filme quanto a este parâmetro. Variações na espessura de um material implicam problemas em seu desempenho mecânico e perda de barreira, que comprometem o desempenho da embalagem (SARANTÓPOULOS et al., 2002).

Sensores têm sido desenvolvidos em sistemas de medição radiométricos para a inspeção rápida e isenta de contato da espessura e do peso por unidade de área do filme. Estes sistemas utilizam sensores estacionários com amplas faixas de sensibilidade à radiação. Podem ser conectados uns aos outros em sequência, de forma a monitorar continuamente materiais com amplas larguras, proporcionando ao usuário um sistema de medição que monitora em linha 100% do perfil lateral de seu material. Uma fonte irradiante em forma de linha é acoplada lateralmente à direção do movimento do material. No lado oposto à fonte linear, localiza-se uma ampla câmara de ionização, cuja câmara de gás é subdividida em várias células de medição independentes. Isto permite a determinação, com maior nível de resolução, do perfil lateral relativo ao peso por unidade de área ou à espessura do material. A precisão da medição depende da atividade do fluxo quântico da fonte irradiante e do tempo de medição, sendo que proporciona precisão média de 1%, podendo ser maior com o aumento do número de pontos medidos por unidade de área. A inspeção 100% imediata da espessura de filmes é uma ferramenta de qualidade cada vez mais indispensável na prática industrial (KEIL et al., 2002).

Um importante aspecto da análise das espessuras dos filmes na aplicação do processo de termoformação é o deslizamento do material ao longo da parede. Na maioria dos casos, o material não adere estritamente ao longo do molde, mesmo depois de encostado na parede. Uma velocidade de deformação muito rápida é observada, especialmente depois do contato direto, quando o polímero ainda está aquecido. Contudo, o movimento lento do material serve de reserva para alimentar as partes mais estiradas, nas quais há material sendo puxando e em contato com o molde. Na região onde o filme está mais espesso ocorrem as menores deformações ou estiramentos, e é onde o material tem entrado rapidamente em contato com o molde, sendo que os materiais tendem a manter o fluxo em direção as regiões mais estiradas. Isso facilita a uniformidade do perfil de espessuras e reduz a quantidade de material perdido na seção de corte, na parte
final do processo (MARCHAL et al., 2001).

As espessuras das paredes de um filme termoformado, de polipropileno ou polietileno, podem ser melhoradas em termos de uniformidade (taxa de expansão controlada) pela utilização de materiais de cadeias longas ramificadas, gerando a chamada deformação por alongamento biaxial. A ocorrência de “strain hardening” (endurecimento por tensão) contribui efetivamente para a uniformidade da termoformação, sendo que as longas cadeias ramificadas são decisivas para a ocorrência do “strain hardening”, e conseqüentemente para contribuir com a melhor qualidade da termoformação (MÜNSTEDT, 2006).

2.6.2. Proteção de Barreira

A capacidade de uma embalagem de resistir à adsorção ou à liberação de gases e vapores, resistir à permeação de lipídeos e à passagem de luz é definida como barreira. As características de barreira de uma embalagem estão intimamente relacionadas à estabilidade química, física, sensorial, microbiológica, e biológica dos produtos. Por exemplo, o contato do oxigênio com alguns produtos pode causar uma série de alterações indesejáveis, como a rancificação de óleos e gorduras presentes nos alimentos, o que acarreta a produção de aromas desagradáveis, que logo tornam o produto inaceitável para o consumidor (SARANTÓPOULOS et al., 2002).

O oxigênio oxida as gorduras, decompõe as vitaminas, desnatura as proteínas e afeta o sabor, o odor e a cor. As estruturas otimizadas de filmes multicamadas oferecem alta estanqueidade contra gases e vapor d’água, mesmo apresentando pequenas espessuras, conseguidas através da coextrusão de poliolefinas com copolímero de etileno e álcool vinílico e suas blendas (SCHENCK et al., 2000).

Transporte de gases e vapores em polímeros é um tema importante sob o ponto de vista científico e tecnológico. Aplicações incluem revestimentos protetores, materiais de embalagens para alimentos, e barreiras seletivas para misturas de gases ou líquidos. O processo de permeação envolve dissolução de gás de um lado da membrana, difusão de gás através dela, e liberação de gás a partir do outro lado da membrana. Quando trabalhado com polímeros cristalinos, é importante notar que as características de permeabilidade dependerão da
história térmica do polímero. Um método convencional de determinação dos coeficientes de permeabilidade e difusão em polímeros envolve a medida do ganho de peso da membrana versus o tempo até que o equilíbrio de massa final seja alcançado (POLEY et al., 2004).

A redução do consumo de material e a substituição dos polímeros clorados utilizados como camadas de barreira já são realidades nos filmes para embalagens. Filmes compostos de múltiplas camadas contendo camadas de barreira poliméricas feitas de, por exemplo, EVOH, possibilitam a utilização de menor quantidade de material, mantendo inalteradas as características de barreira da embalagem (RÖSCH et al., 2000).

As taxas de permeabilidade ao oxigênio dos filmes de EVOH são relativamente menores que dos filmes de PA e extremamente menores que dos filmes de PE. Filmes de PA ou de PE com blendas de EVOH têm suas taxas de permeabilidade ao oxigênio reduzidas significativamente, sendo que estas reduções de taxa de permeabilidade são proporcionais ao aumento da quantidade de EVOH na mistura (YEH et al., 2006).

A menor permeabilidade típica dos materiais com propriedades de barreira possibilita resolver também, em muitos casos, problemas de migração e proteção contra odores estranhos (RÖSCH et al., 2000).

As propriedades de barreira dos materiais indicam suas resistências à difusão e adsorção de substâncias. Um polímero de boa barreira tem baixos valores de coeficientes de difusão e solubilidade. O coeficiente de difusão é uma medida de velocidade de penetração e movimento dentro do polímero, enquanto o coeficiente de solubilidade fornece a quantidade de penetração obtida pelo polímero a partir da fase de contato. O coeficiente de permeabilidade combina os efeitos dos coeficientes de difusão e solubilidade, sendo que as características de barreira de um polímero são comumente associadas com os valores dos coeficientes de permeabilidade (HERNANDEZ et al., 2000).

A eficácia da barreira aumenta com a diminuição do coeficiente de permeação ao oxigênio, ou seja, o produto da constante de difusão com o coeficiente de solubilidade. Um parâmetro experimental que permite quantificar a eficácia da barreira contra a penetração do oxigênio, sob condições definidas de temperatura e umidade (geralmente 23°C e 50% de umidade relativa) é a taxa de transmissão de oxigênio, que geralmente é expressa em termos de cm³/m².dia e é
medida em equipamento de referência *OXTRAN*, produzido nos Estados Unidos. A permeabilidade ao oxigênio de um filme é um parâmetro relevante do ponto de vista prático e deve levar em conta sua espessura de forma quantitativa, sendo que no caso de filmes com camadas múltiplas, o valor da taxa de transmissão de oxigênio é função de todas as camadas individuais (SCHENCK et al., 2000).

São numerosos os fatores que exercem influência sobre a permeabilidade ao oxigênio dos filmes plásticos, sendo importante ressaltar: (a) as características do material de barreira empregado (por exemplo, grau de cristalinidade, densidade, polaridade e simetria) e os aditivos a ele incorporados durante a transformação (plastificantes, pigmentos e teor de cargas); (b) as características da transformação (como orientação e velocidade de resfriamento); (c) o processamento do filme e sua esterilização; (d) a estrutura do filme (multicamada, local da camada barreira, espessura global, e outros); (e) os tratamentos a que o filme é submetido (irradiação, revestimento, metalização, e outros); (f) as condições de armazenamento (temperatura, umidade e pressão). A temperatura de armazenamento, a umidade durante o período de armazenamento, a espessura do filme e sua esterilização são os fatores de maior significado em termos de permeabilidade ao oxigênio (SCHENCK et al., 2000).

A taxa de permeabilidade ao oxigênio dos filmes termoformados nas regiões dos cantos aumenta com o aumento da profundidade da termoformação, porém, este aumento não é linear, já que deve haver uma correlação com a área de filme termoformada, sendo justificada também pela não uniformidade das espessuras das paredes destes filmes após a termoformação (PETTERSEN et al., 2004).

Considerando a permeabilidade ao oxigênio e ao vapor d’água, podemos agrupar as resinas plásticas conforme segue: (a) materiais com reais propriedades de barreira, como o policloreto de vinilídeno (PVDC) e o copolímero de etileno e álcool vinílico (EVOH); (b) poliolefinas apolares parcialmente cristalinas, que constituem outro grupo com propriedades de barreira comparáveis contra água, ainda que elas se mostrem insuficientes contra gases; (c) plásticos apolares amorfos que geralmente apresentam fracas propriedades de barreira contra água e gases; (d) materiais polares parcialmente cristalinos com boas propriedades de barreira contra oxigênio, mas que são muito permeáveis ao vapor d’água (RÖSCH et al., 2000).
A taxa de permeabilidade ao oxigênio é uma característica importante dos materiais flexíveis com propriedade de barreira. Entretanto, não é apenas esta propriedade que define a estabilidade de um produto sensível ao oxigênio, mas também o oxigênio incorporado no produto, aquele presente no espaço livre da embalagem, e a hermeticidade do fechamento da embalagem, são parâmetros que afetam a sua estabilidade (SARANTÓPOULOS et al., 2002).

O controle da quantidade de oxigênio presente em uma embalagem é de fundamental importância para a durabilidade de muitos produtos alimentícios. Embalagens a vácuo ou com atmosfera modificada são normalmente utilizadas para proteger os produtos do oxigênio. Os materiais de embalagem precisam possuir adequadas barreiras ao oxigênio, sendo que os critérios de especificações dependem principalmente do tempo de estocagem, da temperatura e da umidade. Os filmes são normalmente produzidos em multicamadas, sendo que cada camada possui funções específicas, como barreira ao oxigênio, barreira ao vapor de água, selabilidade, resistência mecânica, entre outras, ou seja, são diferentes combinações de materiais para diferentes necessidades de aplicações (PETTERSEN et al., 2004).

Nas condições reais do comércio varejista, os gêneros alimentícios podem ser submetidos a condições ambientais muito diferentes em termos de teor de umidade e temperatura (SCHENCK et al., 2000).

2.6.3. Resistência Mecânica

A resistência à perfuração é um parâmetro de qualidade para materiais utilizados no acondicionamento de produtos com pontas, cantos vivos e outros tipos de protuberâncias que possam danificar a embalagem durante o acondicionamento e a distribuição. Alimentos congelados também são críticos quanto à perfuração devido à expansão de volume. Produtos que possam ter a embalagem danificada por agentes externos como as tripas artificiais, que costumam ser fechadas por grampos metálicos, também exigem do material de embalagem resistência à perfuração. Nestes casos, danos à embalagem comprometem a qualidade do produto, servindo como porta de entrada para microrganismos, favorecendo a ação do oxigênio e trocas gasosas em geral, reduzindo sua vida útil. Adicionalmente, independente de prejuízos à qualidade do
produto, a resistência à perfuração é de grande utilidade quando se deseja dificultar a violação de uma embalagem, o que tem grande impacto na aparência do produto, comprometendo a própria imagem da embalagem e da marca comercial (SARANTÓPOULOS et al., 2002).

Para a utilização em forma de filmes para embalagem, buscam-se polímeros com propriedades mecânicas superiores, incluindo resistência ao impacto e ao rasgo, resistência à tensão, grande capacidade de elongação e principalmente boa resistência à perfuração. Para se obterem parâmetros desta natureza, em alguns casos, utilizam-se blendas poliméricas, sendo que as propriedades de tensão são indicativas da compatibilidade entre os polímeros utilizados. Alguns polímeros podem ser miscíveis na fase amorfa, e imiscíveis na fase cristalina, sendo que além disso, o peso molecular dos polímeros exerce influência na força de derretimento da blenda, sendo apresentados de forma diretamente proporcional (NIAOUNAKIS e KONTOU, 2005).

Estudos reportam que as propriedades mecânicas dos polímeros são uma função da cristalinidade destes, porém, quando se trata das condições de temperatura de derretimento e ajuste de aquecimento para tal ocorrência, poucos trabalhos têm sido publicados em relação ao comportamento mecânico do material em função de sua cristalinidade (PIERRON et al., 2001). Além disso, a resistência à perfuração é função dos materiais presentes na estrutura, da espessura de cada um deles, da presença e grau de orientação, do módulo de elasticidade, da taxa de penetração (velocidade de ensaio e formato da ponteira), entre outros (HERNANDEZ et al., 2000).

A avaliação da resistência à perfuração de materiais flexíveis, laminados ou não, é baseada na aplicação de uma força biaxial ao material, sendo esta representativa do tipo de solicitação a que os materiais serão submetidos. É realizada por meio de norma específica (ASTM F-1306-90), sendo que o método considera basicamente a velocidade do ensaio, o formato da ponteira e a área da amostra (SELKE et al., 2004).

Durante o processo de termoformação plástica, a temperatura do plástico muda com o processo de deformação, ocasionando também uma alteração das propriedades mecânicas destes plásticos. Para a termoformação plástica, o resfriamento e a solidificação são as etapas mais lentas de todo o ciclo de formação. Se o tempo de resfriamento for muito longo, o ciclo de deformação será
afetado e a produtividade será reduzida, ou, se o tempo de resfriamento for muito curto, a temperatura fornecida será distribuída desigualmente, causando diferenças de espessuras e também de propriedades mecânicas do formado, ou seja, o resfriamento e o estiramento dinâmico influenciam diretamente na tensão térmica que como conseqüência afeta a performance do material. Em virtude disso, a correta análise da temperatura de alimentação é muito importante para o bom desempenho do material durante a termoformação, sendo que otimizando os parâmetros no processo prático de produção, melhorando técnicas de resfriamento, reduzindo tempos de resfriamento, e aumentando a eficiência da deformação, certamente teremos um incremento de qualidade do material termoformado, principalmente de desempenho mecânico (SONG et al., 2000).

2.6.4. Efeito Ótico

A principal utilização dos filmes extrusados em sistema “blow” é na área de embalagens, assim, torna-se necessário otimizar as propriedades óticas destes filmes, tais como o brilho e as opacidades interna e superficial. O brilho é um fenômeno reflexivo medido num ângulo pré-determinado e, em geral, quanto mais lisa a superfície de um filme, maior o brilho desta. A opacidade superficial é função da rugosidade superficial, que dependerá das condições de processo e das propriedades reológicas do material. Já a opacidade interna é influenciada pelo arranjo morfológico das fases cristalinas (GUERRINI et al., 2004).

Os vidros apresentam boa estabilidade dimensional ao longo de ampla faixa de temperaturas, não sofrem alterações dimensionais ou mudanças em suas propriedades óticas devido à absorção de umidade e possuem dureza superficial, rigidez e resistência (ao calor, ao envelhecimento e a solventes) melhores que as dos plásticos. Já os polímeros apresentam vantagens técnicas como boa conformabilidade com alta precisão e peso específico menor. As resinas plásticas também podem ser utilizadas para moldar micro e nanoestruturas e integrar funções óticas a componentes mecânicos. Estas vantagens tecnológicas abrem várias aplicações potenciais para os plásticos na área da ótica (MÜLLER, 2005).

Estudos estabeleceram que o aumento controlado da cristalinidade térmica do polímero pode resultar na obtenção de boas propriedades óticas de claridade. As relações entre o grau de estiramento, temperatura de orientação, temperatura
de cristalização, cinética de cristalização, e efeitos sobre as propriedades físicas e óticas, têm sido documentadas neste sentido. A tensão de cristalização induzida relaciona o desenvolvimento orientado das fases cristalina e amorfa, sendo que as cadeias poliméricas tendem a ser mais aleatórias (estado máximo de entropia). A habilidade de um polímero de voltar à sua dimensão de ligação original pode resultar também no desenvolvimento de restauração da sua força. Esta força é resultado da mudança de entropia ocorrida, sendo que o encolhimento aumentado da desorientação da fase amorfa, leva a estrutura para um estágio mais aleatório de conformação (MODY et al., 2001).

A precisão na resolução do molde, requerida para superfícies óticas, é de dez a cem vezes maior do que a requerida para peças mecânicas. Além disso, a limpeza e a homogeneidade ótica do material possuem um importante papel na sua aplicação subsequente. Defeitos superficiais e bolhas, são causados pelo material de partida, molde e processo de moldagem. Diferentes despolarizações são geradas para tensões virtualmente idênticas em função das propriedades do material ou anisotropia refrativa das diferentes resinas plásticas (MÜLLER, 2005).

As desvantagens físicas do plástico são atenuadas em razão das pequenas dimensões. A reprodutibilidade é melhorada, desde que sejam empregados os processos adequados e a correspondente tecnologia de equipamentos. Também faz sentido gerar e replicar micro e nanoestruturas em peças óticas, uma vez que, dessa forma, podem ser conseguidos efeitos de difração. As resinas plásticas são altamente adequadas para a moldagem de microestruturas óticas, e estes materiais viabilizam peças de projeto complexo, permitindo a integração entre funções mecânicas e óticas (MÜLLER, 2005).

Enfim, a demanda por transparência é uma tendência dos consumidores, sendo que as propriedades de barreira devem combinar com uma boa visibilidade do produto. O grau de transparência do filme dependerá da estrutura do polímero utilizado (se mais amorfo, será mais transparente e, se mais cristalino, será mais translúcido) e da sua espessura. Em alguns casos, há necessidade também de boas características de resistência mecânica e térmica, mas sempre associadas à boa transparência da embalagem final (LANGE e WYSER, 2003).
3. MATERIAIS E MÉTODOS

3.1. MATERIAIS

3.1.1. As Resinas

As resinas para a confecção dos filmes plásticos, provenientes dos pólos petroquímicos, sintetizadas pelos fornecedores DOW QUÍMICA (Estados Unidos e Argentina), BASF (Alemanha), EVAL (Estados Unidos), e SUZANO (Brasil), foram adquiridas e doadas pelo fabricante de embalagens VIDEPLAST INDÚSTRIA DE EMBALAGENS LTDA.

3.1.2. Os Filmes de MB e de AB

Os filmes plásticos para a termoformação foram confeccionados, com as resinas citadas, no fabricante de embalagens VIDEPLAST INDÚSTRIA DE EMBALAGENS LTDA, em equipamento “cast” de coextrusão. Na Figura 3.1, são mostradas as fotografias dos filmes apresentados em forma de bobina (a), e em pedaços, planos enrolados e termoformados (b). As amostras estão devidamente identificadas com sinais coloridos, já que não é possível a diferenciação visual entre os filmes de média e de alta barreira ao oxigênio.

Figura 3.1 - Filmes de média e alta barreira ao oxigênio: (a) bobina, (b) pedaço plano enrolado e termoformado
Os filmes planos utilizados, de média e alta barreira ao oxigênio, possuíam valores previamente especificados de largura e espessura, com valores de 312 mm e de 130 µm, respectivamente.

3.2. MÉTODOS

3.2.1. Coextrusão das Resinas

Os filmes estudados foram coextrusados em sistema “cast” de coextrusão, na VIDEPLAST INDÚSTRIA DE EMBALAGENS LTDA, cujo equipamento utilizado é visualizado na Figura 3.2 (a) e (b).

Figura 3.2 - Equipamento de coextrusão “cast” utilizado: (a) vista geral, (b) filme sendo processado

Ambos os filmes foram coextrusados em sete camadas, sendo que para o filme de média barreira ao oxigênio, as camadas foram dispostas da seguinte forma: polipropileno / adesivo / poliamida / adesivo / poliamida / adesivo / polietileno, da parte externa para a parte interna do filme, respectivamente. Para o filme de alta barreira, apenas substituiu-se a camada central de adesivo por uma camada de copolímero de etileno e álcool vinílico, sendo que as espessuras das camadas também foram alteradas, conforme pode-se ver na Tabela 3.1.
Tabela 3.1 - Espessuras teóricas por camada para os filmes utilizados

<table>
<thead>
<tr>
<th>CAMADA</th>
<th>Filme de Média Barreira (%)</th>
<th>Filme de Alta Barreira (%)</th>
<th>(µm)</th>
<th>(µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Polipropileno</td>
<td>17</td>
<td>26</td>
<td>22,1</td>
<td>33,8</td>
</tr>
<tr>
<td>2. Adesivo</td>
<td>10</td>
<td>10</td>
<td>13,0</td>
<td>13,0</td>
</tr>
<tr>
<td>3. Poliamida</td>
<td>18</td>
<td>10</td>
<td>23,4</td>
<td>13,0</td>
</tr>
<tr>
<td>4. Adesivo</td>
<td>10</td>
<td>---</td>
<td>13,0</td>
<td>---</td>
</tr>
<tr>
<td>4. Copolímero de Etileno e Álcool Vinílico</td>
<td>---</td>
<td>7</td>
<td>---</td>
<td>9,1</td>
</tr>
<tr>
<td>5. Poliamida</td>
<td>18</td>
<td>10</td>
<td>23,4</td>
<td>13,0</td>
</tr>
<tr>
<td>6. Adesivo</td>
<td>10</td>
<td>10</td>
<td>13,0</td>
<td>13,0</td>
</tr>
<tr>
<td>7. Polietileno</td>
<td>17</td>
<td>27</td>
<td>22,1</td>
<td>35,1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
<td>130,0</td>
<td>130,0</td>
</tr>
</tbody>
</table>

3.2.2. Termoformação dos Filmes de MB e de AB

No equipamento de termoformação sob determinadas condições de tempo e temperatura, o filme de fundo foi termoformado. A Figura 3.3 mostra fotografias do equipamento de termoformação, localizado na unidade industrial de Marau-RS da Empresa PERDIGÃO AGROINDUSTRIAL S/A, que foi utilizado para termoformar os filmes.

Figura 3.3 - Equipamento de termoformação utilizado: (a) vista geral, (b) filme sendo termoformado

Cada ciclo do equipamento molda 6 cavidades, sendo 2 no sentido transversal e 3 no sentido longitudinal de termoformação. Cada cavidade possui profundidade de 4 cm, largura de 13 cm, no sentido transversal da termoformação, e comprimento de 14 cm, no sentido longitudinal da
termoformação. Ambos os filmes foram termoformados em temperatura de formação de 95°C, tempo de formação de 1 segundo, e velocidade de produção de 14 ciclos por minuto, sendo que cada ciclo demanda cerca de 4,28 segundos, incluindo o tempo de formação.

A termoformação ocorre sob ação de vácuo, sendo que a Figura 3.4 apresenta um ilustrativo da câmara de aquecimento e vácuo, e da parte inferior da matriz, respectivamente (MULTIVAC Trademark Document, 2005).

![Figura 3.4 - Partes do equipamento de termoformação: (a) câmara de aquecimento e vácuo, (b) parte inferior da matriz (MULTIVAC Trademark Document, 2005)](image)

O filme entra na câmara de termoformação que é então vedada para possibilitar a ação do vácuo. O molde “fêmea” sobe até a altura do filme e com a ação da temperatura e do vácuo, pelo período de tempo estabelecido, termoforma o filme, que preenche toda a superfície da cavidade interna do molde.

3.2.3. Caracterização dos Filmes de MB e de AB

Os filmes foram caracterizados antes e após o processo de termoformação, considerando que para o filme termoformado, as análises foram realizadas nas regiões dos cantos, que são as regiões críticas em termos de perda de propriedades.
3.2.3.1. Calorimetria Diferencial de Varredura

Visando a identificação dos materiais presentes nas estruturas dos filmes, submeteu-se estes filmes à análise de DSC, para verificação das temperaturas de fusão, de temperaturas de transição vítrea e de cristalização. É importante salientar que a análise de DSC pode indicar separadamente a temperatura de fusão de cada camada individual do filme.

As análises de DSC foram realizadas no laboratório do fabricante de resinas DOW QUÍMICA, localizado nos Estados Unidos, sendo que a metodologia foi baseada na norma ASTM D 3418-99. Foi utilizado o equipamento TA Instruments 4100 (2010 DSC cell), sendo que as amostras foram condicionadas à temperatura de 210°C por um minuto e então resfriadas à razão de 10°C/min. até 25°C. As curvas de aquecimento para identificar a temperatura de fusão dos polímeros presentes no filme foram geradas para uma faixa de aquecimento de 0 a 250°C a uma taxa de aquecimento de 10°C/min. sendo utilizado o nitrogênio como gás de purga.

3.2.3.2. Análise Termomecânica

As amostras foram submetidas à análise termomecânica, TMA (Thermomechanical Analysis) buscando identificar o ponto de amolecimento dos filmes, através da temperatura de deflexão do material sob tensão, com o intuito de conhecer a melhor faixa de temperatura de termoformação.

As análises de TMA também foram realizadas no laboratório do fabricante de resinas DOW QUÍMICA, localizado nos Estados Unidos, baseado na norma ASTM E 2092-04, obtendo-se curvas de deformação (em mm) em função da temperatura (em °C) para os filmes de MB e de AB planos analisados.

As análises foram realizadas à temperatura de 25°C e com força estática de 1 N, com modo de operação de penetração via disco, com diâmetro de 3 mm e altura de 1 mm. O aquecimento foi de 20 a 140°C, a uma taxa de 5°C/min.

3.2.3.3. Espectroscopia de Infravermelho

Os grupos funcionais presentes nas estruturas dos filmes planos foram
identificados por análise de infravermelho. As análises foram realizadas no laboratório do fabricante de resinas DOW QUÍMICA, localizado nos Estados Unidos, utilizando o equipamento NEXUS 670 FT-IR Spectrometer com ATR (Attenuated Total Reflectance) e resolução de 4 cm⁻¹. As amostras dos filmes foram limpas com água, secas, e colocadas no suporte do equipamento para análise por reflectância, com a metodologia baseada na norma ASTM D 6348-03.

3.2.3.4. Difractometria de Raios-X

Para medir o grau de cristalinidade percentual total dos filmes planos e termoformados, as amostras foram submetidas à análise de difratometria de raios-x. É importante salientar que o raio-X indicou a cristalinidade total do filme analisado, visto como um todo.

Utilizou-se o difratômetro RIGAKU acoplado ao gerador de raios-x Phillips, de fonte de radiação Cu Kα. Os cálculos dos índices de cristalinidade foram realizados pelo programa Shimadzu.

As análises foram realizadas no Laboratório de Ótica e Instrumentação de Raios-x, do Departamento de Física da Universidade Federal do Paraná.

3.2.3.5. Espessura Total

A fim de quantificar a distância perpendicular entre as duas superfícies principais dos filmes planos e termoformados, as amostras foram submetidas à análise de espessura total.

As análises de espessura total foram realizadas no Laboratório de Embalagens do Centro de Tecnologia, da Empresa produtora de alimentos PERDIGÃO AGROINDUSTRIAL S/A.

Utilizou-se como equipamento de análise um micrômetro digital marca MITUTOYO com escala de 0 a 25 mm e menor divisão de escala de 0,001mm (1 µm), cuja metodologia da análise foi baseada na norma ASTM F 2251-03.

Para as medições das espessuras, foram realizados cortes dos filmes termoformados nas direções longitudinal e transversal de termoformação, sendo medidas as espessuras da região plana (sem termoformação), e das regiões da lateral, do canto e do fundo dos filmes termoformados. Desta forma, foi traçado
um perfil de espessuras ao longo do contorno do filme termoformado, considerando as regiões mais importantes de análise. Os valores de espessura total foram obtidos pela média aritmética entre 5 amostras.

O mesmo procedimento foi realizado para análise da variação da espessura total com a temperatura de termoformação e com a inclusão do processo de termoencolhimento posterior.

O processo de termoencolhimento posterior do filme ocorre durante o processo de pasteurização da salsicha. O produto depois de devidamente embalado em filme fundo termoformado, e selado com extração de ar e formação de vácuo com filme tampa plana, é colocado em uma espécie de “gaiola” com prateleiras igualmente distanciadas, e submetido a aquecimento por um período de 90 minutos. Nesta estufa, o produto é aquecido até atingir a temperatura de 74°C e em seguida é resfriado para 10°C, sendo estas temperaturas medidas no centro do produto. A Figura 3.5 mostra fotografias deste processo de pasteurização que resulta no termoencolhimento posterior do filme termoformado.

![Figura 3.5 - Processo de pasteurização da salsicha: (a) “gaiolas” com prateleiras, (b) estufa](image)

3.2.3.6. Microscopia Ótica

Com o objetivo de medir a espessura de cada camada de material presente nas estruturas dos filmes planos e termoformados, foi realizado o ensaio de microscopia ótica.

Estas análises foram realizadas no laboratório do fabricante de resinas DOW QUÍMICA, localizado nos Estados Unidos, no equipamento *NICOLET*.
CONTINUUM Microscope, e possibilitaram a visualização de fotografias em cortes de secções transversais dos filmes multicamadas, em escalas de 50 µm e 20 µm.

Para a medição da espessura das camadas dos filmes termoformados, houve a necessidade da preparação de um corpo de prova plano, especificamente para o filme de MB, que necessitou de um corte longitudinal, deixando sua superfície o mais uniforme possível, para que a análise fosse possível.

3.2.3.7. Taxa de Permeabilidade ao Oxigênio

Foi realizada a análise da taxa de permeabilidade ao oxigênio, TPO₂ (Oxygen Permeability Rate), dos filmes planos e termoformados.

As especificações técnicas de TPO₂ dos filmes planos estabelecem um valor menor que 20 cm³/m².dia para o filme de MB, e menor que 10 cm³/m².dia para o filme de AB, em condições de 0% de umidade relativa, 23°C de temperatura e 1 atm de gradiente de pressão parcial de oxigênio.

Estas análises foram realizadas no Laboratório de Embalagens do Centro de Tecnologia, da Empresa PERDIGÃO AGROINDUSTRIAL S/A, em equipamento tipo OXTRAN, modelo 2/60, da Mocon.

A taxa de permeabilidade ao oxigênio foi determinada por método coulométrico, conforme descrito na norma ASTM D 3895-02. O fluxo de gás oxigênio é mantido a 30 ml/min e do gás de arraste (98% nitrogênio e 2% hidrogênio) em 10 ml/min. O condicionamento das amostras é realizado por no mínimo 24 horas em ambiente seco. A área de permeação das amostras foi de 10 cm² e o resultado da TPO₂ expresso pelo último valor de permeação do oxigênio (em cm³/m².dia), dado este como a condição de equilíbrio.

Para as medições da TPO₂, foram realizados cortes dos filmes termoformados na direção longitudinal de termoformação, sendo medida a TPO₂ na região plana (sem termoformação) e nas regiões do canto e do fundo dos filmes termoformados.

A análise da TPO₂ nas regiões dos cantos dos filmes termoformados foi possível pelas características do equipamento de medição utilizado, que pode medir simultaneamente a TPO₂ de 6 amostras e trabalha com corpos-de-prova de área de 10 cm², enquanto grande parte dos equipamentos existentes trabalha
com corpos-de-prova de 50 cm\(^2\). Quanto menor a área de corpo-de-prova utilizada, maior será a proximidade das regiões dos cantos dos filmes termoformados. Além disso, para viabilizar as medições mais próximas das regiões dos cantos, utilizou-se uma espécie de “máscara”, desenvolvida pelo próprio fabricante do equipamento, mostrada na Figura 3.6. Esta “máscara”, que é de alumínio puro e possui permeabilidade ao oxigênio igual a zero, possibilitou a redução da área do corpo-de-prova de 10 cm\(^2\) para cerca de 2 cm\(^2\), tornando as medições mais precisas em relação às regiões dos cantos dos filmes termoformados.

Figura 3.6 - TPO\(_2\): (a) Equipamento OXTRAN 2/60 Mocon, (b) “máscara” de alumínio

3.2.3.8. Perfuração

A medida da energia total necessária para perfurar os filmes de MB e de AB, planos e termoformados, foi obtida pela análise de perfuração, que nos forneceu curvas de carga aplicada (em N) em função da extensão dos filmes (em mm), registrando-se os valores de deformação e de resistência antes da perfuração.

Estas análises foram realizadas no laboratório técnico do fabricante de embalagens VIDEPLAST INDÚSTRIA DE EMBALAGENS LTDA, no Dinamômetro Universal de Ensaios, marca INSTRON, modelo 5565, conforme visualizado na Figura 3.7(a).

A metodologia da análise foi baseada na norma ASTM F 1306-02, tendo-se utilizado uma célula de carga de 100 N e velocidade de ensaio de 25 mm/min.
As análises foram realizadas do lado interno para o lado externo dos filmes e vice-versa, sendo que para os filmes termoformados, foram analisadas as regiões dos cantos. Os valores obtidos consideraram a média aritmética entre 5 amostras.

3.2.3.9. Tração

As análises de tração também foram realizadas no laboratório técnico do fabricante de embalagens VIDEPLAST INDÚSTRIA DE EMBALAGENS LTDA, no Dinamômetro Universal de Ensaios, marca INSTRON, modelo 5565, conforme ilustrado na Figura 3.7(b).

Figura 3.7 - Dinamômetro Universal de Ensaios, INSTRON 5565, configurado para análise de: (a) perfuração, (b) tração

Obtiveram-se curvas de tensão aplicada (em MPa) em função da extensão dos filmes (em mm), e então, os valores de alongamento (%) e ponto de ruptura (em MPa) em tração.

A metodologia da análise baseou-se na norma ASTM D 882-02, com utilização de célula de carga de 100 N e velocidade de ensaio de 500 mm/min. As curvas de tensão aplicada em função da extensão dos filmes foram geradas pelo programa computacional (Merlin) associado ao dinamômetro.

Com a análise de módulo secante 2% dos filmes, planos e termoformados, foram obtidas as características de rigidez dos materiais, sendo que quanto maior o módulo, mais rígido é o material.

A norma ASTM D 882-02 também serviu de base para a metodologia,
sendo utilizada uma célula de carga de 100 N e uma velocidade de ensaio de 25 mm/min.

As análises foram realizadas na direção longitudinal e transversal de termoformação dos filmes, sendo que no caso dos filmes termoformados, foram analisadas as regiões dos cantos. Os valores obtidos consideraram a média aritmética entre 5 amostras, sendo também informados os valores mínimos, máximos e desvios padrões para cada caso.

3.2.3.10. Claridade, Opacidade e Brilho

A quantidade de luz percentual transmitida, a quantidade de luz percentual dispersada após ação do raio incidente e a capacidade em refletir a luz incidente, foram analisadas em termos de claridade, opacidade e brilho, respectivamente, para os filmes planos e termoformados.

Estas análises de propriedades óticas foram realizadas no laboratório do fabricante de resinas DOW QUÍMICA, localizado nos Estados Unidos.

A claridade e a opacidade foram dadas em valores percentuais (%), sendo que o brilho não tem unidade de medida específica, sendo considerado como uB (unidade de Brilho). A análise de brilho pode ser realizada a 20° (para filmes de alto brilho), a 45° (para filmes de médio brilho), e a 60° (para filmes de baixo brilho).

Foram utilizados os aparatos específicos de emissão de luz, sendo que as metodologias de análise foram baseadas nas normas ASTM D 1743-03 para análise de claridade, ASTM D 1003-00 para análise de opacidade, e ASTM D 2457-97 para análise de brilho a 45°, normalmente utilizada para filmes plásticos.
4. RESULTADOS E DISCUSSÃO

4.1. IDENTIFICAÇÃO DOS FILMES MULTICAMADAS

4.1.1. Temperaturas de Fusão dos Materiais

Por análise de calorimetria diferencial de varredura (ou DSC - *Differential Scanning Calorimetry*), obtém-se uma curva típica, onde é possível detectar transformações endotérmicas, transformações exotérmicas e transições de segunda ordem. Como exemplo de transição de segunda ordem, pode-se citar a temperatura de transição vítrea do material, na qual a entalpia não sofre variação, mas o calor específico sofre variação repentina. Como aplicações gerais do DSC, pode-se citar a determinação das temperaturas de transição em polímeros (transição vítrea, cristalização e fusão) e a determinação de medidas quantitativas de calor (específico, de fusão, de cristalização e de reação) (LUCAS et al., 2001).

Com o objetivo de identificar os materiais presentes nas estruturas dos filmes de MB e AB, foi utilizada a análise de calorimetria diferencial de varredura para determinação dos picos das temperaturas de fusão dos materiais, conforme verificado nas curvas de DSC a seguir.

A Figura 4.1 representa a curva de DSC realizada para o filme de MBP. As demais curvas de DSC, dos filmes de MBT, ABP e ABT, também foram realizadas e podem ser encontradas nos anexos, ao final desta dissertação. Para os filmes termoformados, as análises foram realizadas nas regiões dos cantos, por serem consideradas as regiões mais críticas, conforme poderá ser verificado nos tópicos seguintes.

A Tabela 4.1 relaciona as temperaturas de fusão, obtidas das curvas de DSC dos filmes de MBP (Média Barreira Plano), MBT (Média Barreira Termoformado), ABP (Alta Barreira Plano) e ABT (Alta Barreira Termoformado), com os materiais presentes nas estruturas dos filmes.
Tabela 4.1 - Temperaturas de fusão dos materiais dos filmes de MBP, MBT, ABP e ABT

<table>
<thead>
<tr>
<th>Filmes</th>
<th>Ad (Adesivo - Anidrido maleico)</th>
<th>PE (Polietileno)</th>
<th>PP (Polipropileno)</th>
<th>EVOH (Copolímero de etileno e álcool vinílico)</th>
<th>PA (Poliamida)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP</td>
<td>105,4/118,2°C</td>
<td>124,2°C</td>
<td>145,3/152,6°C</td>
<td>---</td>
<td>215,7/220,1°C</td>
</tr>
<tr>
<td>MBT</td>
<td>105,3°C</td>
<td>123,9°C</td>
<td>144,9/151,9°C</td>
<td>---</td>
<td>215,1/220,3°C</td>
</tr>
<tr>
<td>ABP</td>
<td>105,4/117,4°C</td>
<td>123,8°C</td>
<td>145,1/152,3°C</td>
<td>164,8°C</td>
<td>214,9/217,9°C</td>
</tr>
<tr>
<td>ABT</td>
<td>104,9/118,4°C</td>
<td>123,3°C</td>
<td>144,7/152,4°C</td>
<td>169,9°C</td>
<td>215,1/219,4°C</td>
</tr>
</tbody>
</table>

Tanto no filme de MBP, quanto no filme de MBT, identificou-se a presença de Ad, PE, PP e PA. O Ad foi identificado pelos picos de temperaturas de fusão de aproximadamente 105°C e 118°C, o PE pelo pico em torno de 124°C, o PP pelos picos de cerca de 145°C e 152°C, e a presença da PA foi identificada pelos picos de temperaturas de fusão de 215°C e 220°C, aproximadamente. A presença de dois picos, em alguns casos, pode estar relacionada com as diferentes formas cristalinas originadas.
Notou-se que o pico de aproximadamente 118°C do Ad não apareceu no filme de MBT, o que pode sugerir que na temperatura de termoformação, o adesivo migrou para as demais camadas do filme. Este adesivo (anidrido maleico) pode ter migrado para as camadas de PE e de PP, já que em ambos os casos houve redução da temperatura de fusão dos materiais após a termoformação do filme, sugerindo que estes polímeros ficaram menos cristalinos devido à presença de impurezas, neste caso, do adesivo. Como após a termoformação do filme, a redução da temperatura de fusão do PE foi maior que a redução da temperatura de fusão do PP, pode-se considerar que a migração do adesivo foi mais intensa para a camada de PE do que para a camada de PP, ou então, que a presença do adesivo teve maior influência na redução da cristalinidade do PE.

Já nos filmes de ABP e ABT, além da identificação dos mesmos materiais presentes nos filmes de MB, identificou-se também a presença do EVOH através dos picos de temperatura de fusão de aproximadamente 165 e 170°C, respectivamente.

Neste caso dos filmes de ABP e ABT, foi observada a presença dos 2 picos do Ad também no filme de ABT, o que pode significar que não houve migração do Ad para as demais camadas do filme. Inclusive, a redução da temperatura de fusão das camadas de PE e de PP é menor que a redução ocorrida no filme de MBT. Outro fato relevante nesta análise é que os picos das temperaturas de fusão do EVOH e da PA aumentaram após a termoformação do filme, sugerindo um aumento dos tamanhos dos cristalitos em função do tratamento térmico, ou ainda que estes polímeros podem ter sofrido orientação.

Enfim, comprova-se que as estruturas dos filmes plásticos coextrusados de MB e AB realmente eram compostas pelos materiais informados quando da coextrusão dos filmes. Com exceção de um pico de temperatura de fusão do adesivo, foram encontrados os mesmos materiais na estrutura do filme plano e do filme termoformado, mesmo nas regiões dos cantos, para os filmes de MB e AB. Pode-se afirmar que mesmo na região crítica das embalagens termoformadas, todas as camadas dos filmes multicamadas permaneceram íntegras.
4.1.2. Pontos de Amolecimento dos Filmes

Através da análise termomecânica (ou TMA - *Thermomechanical Analysis*), submetendo o material à ação de uma carga não oscilatória, sob um sistema de aquecimento controlado, pode-se obter o comportamento do material em termos de deformação em função da temperatura (LUCAS et al., 2001).

Podem ser utilizados os modos de operação de expansão, de compressão, de penetração ou de flexão, para as medições das alterações dimensionais sofridas pelo material em função da variação de temperatura, sendo que todos estes modos de operação permitem a obtenção das temperaturas de transição vítrea e de fusão do material (LUCAS et al., 2001).

Para identificar a faixa de temperatura ideal de termoformação dos filmes de MB e AB, assim como seus pontos de amolecimentos, foi utilizada a análise termomecânica no modo de operação de penetração.

Na Figura 4.2 tem-se a curva de deformação dos filmes de MBP e ABP em função da variação da temperatura, sendo que estas análises termomecânicas foram realizadas somente nos filmes planos, para se identificar a melhor faixa de temperatura de termoformação dos filmes.

![Figura 4.2 - Deformação dos filmes de MBP e ABP em função da temperatura](image)

Ao receberem a aplicação da carga, os filmes apresentam certa resistência à deformação, que tende a ser diminuída com o aumento da temperatura, ou seja,
há uma temperatura em que o filme não resiste mais e acaba por amolecer, indicando o seu ponto de amolecimento.

Os filmes de MBP e ABP apresentaram comportamentos semelhantes em termos de deformação com a temperatura, porém, o filme de MBP apresentou maior deformação antes de amolecer e amoleceu a uma temperatura maior que o filme de ABP, conforme valores da Tabela 4.2.

Tabela 4.2 - Ponto de amolecimento dos filmes de MBP e ABP

<table>
<thead>
<tr>
<th>Filme MBP</th>
<th>Filme ABP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deformação (mm)</td>
<td>Temperatura (°C)</td>
</tr>
<tr>
<td>0,0800</td>
<td>111,95</td>
</tr>
</tbody>
</table>

Como o filme de MBP amoleceu na temperatura de 111,95°C e o filme de ABP na temperatura de 105,35°C, notou-se que apesar da diferença não ser tão significativa, de cerca de 6%, o filme de MBP precisou de uma maior temperatura para amolecer, sendo mais resistente ao amolecimento que o filme de ABP. Assim, teoricamente, o filme de MB precisaria de uma temperatura um pouco maior para ser termoformado.

A análise termomecânica propicia medidas sensíveis de temperaturas relacionadas com propriedades viscoelásticas dos materiais, sendo que as variações das deformações são sensíveis às alterações estruturais das moléculas (LUCAS et al., 2001).

Ao analisar os filmes com todas as suas camadas constituintes, o filme de ABP, por apresentar EVOH em sua composição, apresenta menor quantidade de PA, o que pode justificar o menor ponto de amolecimento encontrado para este filme em relação ao filme de MBP, já que a PA apresenta maior temperatura de fusão que o EVOH, ou seja, quanto menor a quantidade de PA, mais fácil de amolecê-lo será o filme.

4.1.3. Picos de Absorbância dos Materiais

A espectroscopia no infravermelho (ou FTIR - *Fourier Transform Infrared*) é considerada uma das mais importantes técnicas experimentais para a caracterização de polímeros, em termos de identificação e/ou determinação de
características estruturais. A identificação de polímeros baseia-se no fato de que
toda molécula orgânica absorve energia eletromagnética em comprimentos de
ondas específicos, de acordo com as ligações existentes entre os átomos que a
constituem. A frequência de absorção da radiação infravermelha é característica
para vários tipos de ligações químicas, possibilitando a identificação de diferentes
grupos estruturais (SARANTÓPOULOS et al., 2002).

A análise de espectro de infravermelho permitiu a identificação dos grupos
funcionais presentes nas estruturas dos filmes de MBP e ABP. Os materiais foram
identificados através dos picos de absorbâncias em função dos números de
ondas, sendo que com estes picos determinados pelo espectrômetro de
infravermelho foi possível a identificação do material comparando estes valores
experimentais com os valores apresentados na literatura para cada material.

A Figura 4.3 representa o resultado de um dos espectros de infravermelho
realizados para os filmes de MBP e ABP, sendo este específico para a primeira
camada do filme de ABP, cujo material identificado foi o PP. Os demais espectros,
das demais camadas dos filmes de ABP e MBP, podem ser encontrados nos
anexos, ao final desta dissertação.

![Figura 4.3 - FTIR para o filme de ABP, camada de PP](image)
Na Tabela 4.3, têm-se os valores experimentais aproximados dos picos de absorbância obtidos dos materiais presentes em cada camada dos filmes de MBP e ABP, bem como os valores teóricos encontrados na literatura, apresentados de forma comparativa para cada uma das camadas dos filmes.

Tabela 4.3 - Picos de absorbância dos materiais dos filmes MBP e ABP

<table>
<thead>
<tr>
<th>Nº de ondas (cm(^{-1}))</th>
<th>PP</th>
<th>Ad</th>
<th>PA</th>
<th>Ad</th>
<th>EVOH</th>
<th>PA</th>
<th>Ad</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filme de MBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valores experimentais</td>
<td>1370</td>
<td>1460</td>
<td>2830</td>
<td>2910</td>
<td>1540</td>
<td>1645</td>
<td>2830</td>
<td>2850</td>
</tr>
<tr>
<td>Valores da literatura</td>
<td>1375</td>
<td>1454</td>
<td>2822</td>
<td>2917</td>
<td>1547</td>
<td>1456</td>
<td>1643</td>
<td>2851</td>
</tr>
<tr>
<td>(SARANTÓ et al., 2002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filme de ABP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valores experimentais</td>
<td>1380</td>
<td>1460</td>
<td>2840</td>
<td>2910</td>
<td>1550</td>
<td>1630</td>
<td>2830</td>
<td>2850</td>
</tr>
<tr>
<td>Valores da literatura</td>
<td>1385</td>
<td>1465</td>
<td>2845</td>
<td>2915</td>
<td>1555</td>
<td>1635</td>
<td>2835</td>
<td>2855</td>
</tr>
<tr>
<td>(SARANTÓ et al., 2002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Os valores experimentais dos números de ondas, onde se tem a ocorrência dos picos de absorbância, são muito próximos dos valores teóricos, para todos os principais picos de absorbância.

Assim, viu-se que as estruturas dos filmes plásticos estudados realmente são compostas pelos materiais informados quando da coextrusão dos filmes, ou seja, o filme de MBP é composto de PP, Ad, PA, Ad, PE; e o filme de ABP é composto de PP, Ad, PA, EVOH, PA, Ad e PE; do lado externo para o lado interno, respectivamente.

4.2. GRAU DE CRISTALINIDADE DOS FILMES

Através da análise de difratometria de raios-x, pôde-se medir o grau de cristalinidade percentual total dos filmes de MBP, MBT, ABP e ABT.

As amostras de polímeros podem ser encontradas em diversos graus de organização de suas cadeias, sendo que uma amostra na qual as cadeias encontram-se totalmente desorganizadas é denominada de amorfa, enquanto que
se as cadeias pudessem estar totalmente organizadas, a amostra seria
denominada de totalmente cristalina. Os polímeros, que tendem a apresentar
cadeias distribuídas em regiões amorfas e cristalinas organizadas entre si, são
denominados de semicristalinos. A relação entre a região amorfa e cristalina de
uma amostra de polímero é expressa em termos de porcentagem de cristalinidade
ou grau de cristalinidade (LUCAS et al., 2001).

Na Figura 4.4, têm-se o comportamento dos filmes de MBP, MBT, ABP e
ABT, em termos de grau de cristalinidade total, sendo apresentados de forma
comparativa em uma curva de intensidade em função do ângulo 2θ.

Figura 4.4 - Difratógramas de raios-x dos filmes de MBP, MBT, ABP e ABT

Quanto mais largo o pico de intensidade apresentado pelo filme, menor é o
grau de cristalinidade percentual correspondente. Assim, ambos os filmes, de MB
e AB, tiveram redução de cristalinidade após a termoformação, salientando o
caráter qualitativo da análise, ou seja, a obtenção de um “índice relativo”.

Na Tabela 4.4, têm-se os valores de cristalinidade obtidos para os filmes de
MBP, MBT, ABP e ABT, na faixa de 2θ de 3 a 40°.
Tabela 4.4 - Cristalinidade total qualitativa para os filmes de MBP, MBT, ABP e ABT, na faixa de 2θ de 3 a 40°

<table>
<thead>
<tr>
<th>Filme</th>
<th>Cristalinidade (%)</th>
<th>Variação</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP</td>
<td>19,56</td>
<td></td>
</tr>
<tr>
<td>MBT</td>
<td>15,63</td>
<td>-20,09%</td>
</tr>
<tr>
<td>ABP</td>
<td>23,29</td>
<td></td>
</tr>
<tr>
<td>ABT</td>
<td>14,79</td>
<td>-36,49%</td>
</tr>
</tbody>
</table>

Ambos os filmes, de MB e AB, apresentaram redução de cristalinidade total após terem sido termoformados, sendo este efeito mais significativo no filme de AB, que partiu de um grau de cristalinidade maior e resultou num grau de cristalinidade menor que o filme de MB.

Mesmo que uma ou mais camadas constituintes do filme coextrudado se torne mais cristalina após o processo de termoformação, o filme como um todo pode resultar em um material com menor grau de cristalinidade devido à fusão parcial das camadas, mesmo considerando a orientação do filme imposta pelo processamento, que contribuiria para o aumento teórico da cristalinidade.

4.3. MORFOLOGIA DOS FILMES MULTICAMADAS

4.3.1. Espessuras Totais dos Filmes

Conhecendo-se a espessura de um material e sua natureza química, é possível obter informações teóricas sobre suas propriedades mecânicas e de barreira a gases, bem como fazer estimativas sobre a vida útil de alguns alimentos acondicionados neste material (SARANTÓPOULOS et al., 2002).

Com a análise da espessura total dos filmes de MB e AB, obtiveram-se os dados comparativos das alterações das espessuras e identificaram-se as regiões críticas destes filmes em termos de reduções de espessuras após termoformados.

A Figura 4.5 ilustra os filmes de MBP, MBT, ABP e ABT, com um “zoom” das regiões dos cantos dos filmes termoformados.
Figura 4.5 - Filmes com “zoom” dos cantos: (a) MBP e MBT, (b) ABP e ABT

O quadriculado impresso no filme plano distanciado igualmente passou a ser apresentado distanciado de forma irregular no filme termoformado, em virtude da expansão do filme ocasionada pela termoformação, sendo que as regiões mais críticas são as regiões dos cantos, onde o quadriculado mais se distanciou.

Realizando um corte normal do filme plano e um corte na região do canto do filme termoformado, tem-se a Figura 4.6 com um comparativo entre as áreas dos filmes de MBP e MBT, e dos filmes de ABP e ABT.

Foi quantificada de forma aproximada, a expansão ocorrida nas regiões dos cantos dos filmes de MB e AB, após termoformados. A área inicial aumentou de 9 mm² para cerca de 56 mm² no filme de MB, e para cerca de 64 mm² no filme de AB. Pode-se concluir previamente que o filme de AB terá menor espessura na região do canto que o filme de MB, em virtude de ter apresentado maior expansão no processo de termoformação.
MBP: Área = 9mm²
MBT (canto): Área ≈ 56mm²
Variação ≈ + 6 vezes

ABP: Área = 9mm²
ABT (canto): Área = 64mm²
Variação = + 7 vezes

Figura 4.6 - Comparativo de áreas dos filmes: (a) de MBP e MBT (canto), (b) de ABP e ABT (canto)

Para a determinação dos perfis de espessuras totais dos filmes de MB e AB, visualizados na Figura 4.7, foram realizados cortes nestes filmes de forma longitudinal e transversal em relação ao sentido de termoformação, conforme ilustrado na Figura 4.8, na qual é possível também a visualização das regiões dos filmes onde foram realizadas as medições com seus respectivos valores.

Na Tabela 4.5, têm-se quantificadas as espessuras medidas para estes filmes de MB e AB por região de análise, em corte longitudinal e transversal de termoformação, com os valores de mínimo, máximo e desvio padrão.

Figura 4.7 - Filmes termoformados em cortes: (a) longitudinal, (b) transversal
Analisando comparativamente as espessuras dos filmes de MB e AB, em cada região medida, verificou-se que para o filme cortado de forma longitudinal, o comportamento apresentado foi semelhante. Já o filme cortado transversalmente apresentou valores de espessuras ligeiramente diferentes. Para as regiões críticas em termos de espessuras destes filmes, que são as regiões dos cantos,
onde foram obtidas as menores espessuras medidas, registraram-se diferenças de espessuras a maior para o filme de MB, da ordem de 10,7% para o filme com corte longitudinal, e de 15,5% para o filme com corte transversal. Portanto, independentemente do sentido do corte do filme após termoformado, o filme de MB possui maior espessura na região do canto que o filme de AB, para as condições de análise apresentadas.

Na Figura 4.9, têm-se as curvas dos perfis completos das espessuras totais dos filmes de MB e AB, considerando as regiões mais importantes e os cortes dos filmes nas direções longitudinal e transversal de termoformação.

Figura 4.9 - Perfis das espessuras totais dos filmes de MB e AB com corte dos filmes: (a) longitudinal, (b) transversal
Verificou-se que as espessuras dos filmes após termoformados vão reduzindo gradativamente com o aumento da profundidade da cavidade do molde, e que esta redução de espessura do filme plano para o filme termoformado na região do canto foi próximo de 80%.

Os pontos mínimos das espessuras são as regiões dos cantos do filme termoformado, onde as espessuras ficaram na ordem de 20 µm. Além disso, nas regiões dos fundos dos filmes termoformados ocorrem aumentos de espessuras dos filmes em relação às regiões dos cantos, principalmente tendendo ao centro, onde as espessuras ficaram em torno de 50 µm. Haveria material também nas regiões das laterais dos filmes termoformados, onde as espessuras ficaram na ordem de 80 µm, sendo que estes materiais, assim como os materiais das regiões dos fundos, poderiam ser direcionados para as regiões dos cantos dos filmes.

Pode ser sugerido, portanto, um molde de termoformação alternativo com maior ângulo de canto, ou, um processo de termoformação alterado para um sistema de formação de uma “bolha” antes do vácuo, permitindo o preenchimento do molde com maior área de filme, sendo que os cantos do filme poderiam ter maior espessura. Como as temperaturas de amolecimento dos filmes de ABP e MBP são de respectivamente 105,35°C e 111,95°C e ambos os filmes foram termoformados a 95°C, considerando que o filme de MBT ficou mais espesso na região do canto que o filme de ABT, pode ser sugerido que diferentes temperaturas de termoformação possam resultar em melhores resultados em relação à espessura dos cantos da embalagem termoformada.

Objetivando comparar as espessuras das regiões dos cantos dos filmes termoformados com a variação da temperatura de termoformação dos filmes, apresenta-se a Figura 4.10.
CAPÍTULO IV - RESULTADOS E DISCUSSÃO

Figura 4.10 - Espessuras totais dos cantos dos filmes de MBT e ABT em função da temperatura de termoformação

Na tabela 4.6, têm-se os valores medidos das espessuras totais dos filmes de MBT e ABT, nas regiões dos cantos, com as variações das temperaturas de termoformação dos filmes.

Tabela 4.6 - Espessuras totais dos cantos dos filmes de MBT e ABT em função da temperatura de termoformação

<table>
<thead>
<tr>
<th>Filme MB</th>
<th>Filme AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura Termoformação</td>
<td>Mínimo (µm)</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>85°C</td>
<td>21</td>
</tr>
<tr>
<td>95°C</td>
<td>25</td>
</tr>
<tr>
<td>105°C</td>
<td>23</td>
</tr>
</tbody>
</table>

Os pontos de maiores espessuras das regiões dos cantos dos filmes termoformados, de MB e AB, foram encontrados para a temperatura de 95°C, ou seja, tanto reduzindo quanto aumentando a temperatura de termoformação dos filmes, os resultados serão de menores espessuras nas regiões dos cantos.

O aumento da temperatura de termoformação pode ter resultado em redução das espessuras dos cantos em virtude de ter ocasionado um estiramento demasiado destas regiões dos filmes. Já a redução da temperatura, talvez possa ter reduzido as espessuras dos cantos por não ser suficiente para transferir material das regiões dos fundos e das laterais para as regiões dos cantos dos filmes.
Pode-se assim considerar que realmente estes filmes foram termoformados muito próximos das suas temperaturas ideais de termoformação.

Este resultado reforça a suposição de que o processo de termoformação pode ser otimizado com a manutenção da temperatura de termoformação, se for utilizado o artifício de formação da “bolha” antes da etapa de vácuo, de forma a aumentar a área do filme a ser moldado, e se for aumentado o ângulo do canto do molde, favorecendo uma espessura do moldado mais uniforme.

Outra alternativa para aumento das espessuras totais dos cantos dos filmes termoformados consiste no processo de termoencolhimento posterior destes filmes. Na Tabela 4.7, têm-se os dados, e na Figura 4.11 um ilustrativo, do comparativo entre as espessuras totais dos cantos dos filmes termoformados de MB e AB, antes e após a etapa de termoencolhimento posterior.

Tabela 4.7 - Espessuras totais dos cantos dos filmes termoformados de MB e AB, antes e após o termoencolhimento

<table>
<thead>
<tr>
<th>Filme</th>
<th>Antes do Termoencolhimento</th>
<th>Apóso Termoencolhimento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mínimo (µm)</td>
<td>Máximo (µm)</td>
</tr>
<tr>
<td>MBT</td>
<td>22</td>
<td>36</td>
</tr>
<tr>
<td>ABT</td>
<td>21</td>
<td>26</td>
</tr>
</tbody>
</table>

Figura 4.11 - Espessuras totais dos cantos dos filmes termoformados de MB e AB, antes e após o termoencolhimento
Tanto para o filme de MB quanto para o filme de AB termoformados, o processo de termoencolhimento posterior resultou em aumento das espessuras dos cantos destes filmes. O resultado foi mais significativo para o filme de AB, que apresentou um incremento de espessura de cerca de 9% nas regiões dos cantos.

Como as espessuras totais medidas para os filmes termoformados antes do termoencolhimento são menores para o filme de AB, como inclusive verificado na Figura 4.8, talvez se pode supor que quanto menor a espessura do canto do filme termoformado, maior poderá ser o incremento de espessura deste filme com o processo de termoencolhimento posterior. Ou seja, como o filme expandiu mais na etapa de termoformação, este poderá ter maior encolhimento na etapa de termoencolhimento posterior.

De qualquer forma, pode ser considerado que este processo de termoencolhimento posterior resulta em aumento das espessuras dos cantos dos filmes termoformados.

Pode-se ainda sugerir que a utilização de filmes com maior capacidade de termoencolhimento possibilitaria a obtenção de maiores incrementos das espessuras dos cantos destes filmes após termoformados, depois de submetidos a um processo de termoencolhimento posterior, já que estes filmes poderiam recuperar parte de suas espessuras iniciais, tendo a ser planos.

4.3.2. Espessuras das Camadas dos Materiais

No caso de estruturas multicamadas, ou coextrusadas, é necessário determinar não somente a espessura total do material, mas a espessura de cada um dos substratos presentes (SARANTÓPOULOS et al., 2002).

Com a análise de microscopia ótica, obtiveram-se imagens dos filmes de MB e AB, em fotografias de cortes de secções transversais, possibilitando a visualização e a medição de cada camada de material presente nas estruturas dos filmes planos e termoformados.

Na Figura 4.12, têm-se as fotografias dos filmes de MBP e ABP, em escala de 50 µm, sendo que as camadas que compõem os filmes estão indicadas em azul e as espessuras de cada camada estão indicadas em amarelo na figura.
Da mesma forma, agora em escala de fotografia de 20 μm, são apresentadas as Figuras 4.13 e 4.14, com as fotografias de microscopia ótica dos filmes de MBP, ABP, MBT e ABT. Para os filmes termoformados as análises foram realizadas nas regiões dos cantos, havendo a necessidade de um corte especial dos corpos de provas, entre as camadas dos filmes, deixando-os mais planos e susceptíveis às análises.
Na Tabela 4.8, relacionam-se as 7 camadas de materiais presentes nas estruturas dos filmes de MBP, MBT, ABP e ABT, sendo que a camada 1, de PP, é a camada externa, e a camada 7, de PE, é a camada interna dos filmes.
Tabela 4.8 - Espessuras por camada dos filmes de MBP, MBT, ABP e ABT

<table>
<thead>
<tr>
<th>Camada</th>
<th>Filme MBP (µm)</th>
<th>Filme MBT (canto) (µm)</th>
<th>Variação (%)</th>
<th>Filme ABP (µm)</th>
<th>Filme ABT (canto) (µm)</th>
<th>Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PP</td>
<td>29,39</td>
<td>6,52</td>
<td>-78</td>
<td>30,03</td>
<td>7,61</td>
<td>-75</td>
</tr>
<tr>
<td>2. Ad</td>
<td>16,61</td>
<td>5,62</td>
<td>-66</td>
<td>13,04</td>
<td>3,24</td>
<td>-75</td>
</tr>
<tr>
<td>3. PA</td>
<td>25,15</td>
<td>2,25</td>
<td>-91</td>
<td>15,42</td>
<td>3,36</td>
<td>-78</td>
</tr>
<tr>
<td>4. Ad</td>
<td>9,85</td>
<td>2,53</td>
<td>-74</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4. EVOH</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>10,26</td>
<td>2,37</td>
<td>-77</td>
</tr>
<tr>
<td>5. PA</td>
<td>23,18</td>
<td>6,48</td>
<td>-72</td>
<td>13,93</td>
<td>3,19</td>
<td>-77</td>
</tr>
<tr>
<td>6. Ad</td>
<td>11,55</td>
<td>4,43</td>
<td>-62</td>
<td>15,42</td>
<td>3,32</td>
<td>-78</td>
</tr>
<tr>
<td>7. PE</td>
<td>17,17</td>
<td>8,71</td>
<td>-49</td>
<td>39,99</td>
<td>8,01</td>
<td>-80</td>
</tr>
<tr>
<td>Total</td>
<td>132,90</td>
<td>36,54</td>
<td>-72</td>
<td>138,09</td>
<td>31,10</td>
<td>-77</td>
</tr>
</tbody>
</table>

O filme de MB apresentou redução de espessura total de 72%, partindo de 132,90 µm de espessura quando plano para uma espessura de 36,54 µm após termoformado, medida na região do canto. A camada do filme de MBP que apresentou maior redução de espessura foi a camada de PA que reduziu sua espessura de 25,15 µm para 2,25 µm após a termoformação, resultando numa variação de 91%. Como a PA é o material responsável pela barreira ao oxigênio, e como a outra camada de PA da estrutura também apresentou uma redução muito grande de espessura, de cerca de 72%, pode-se prever que haverá uma redução significativa de barreira ao oxigênio deste filme após termoformado.

Cabe observar, que para este filme de MB, as camadas iniciais, que correspondem ao lado externo do filme, apresentaram uma maior variação de redução de espessura após termoformado que as camadas finais, que correspondem ao lado interno do filme. Provavelmente devido à maior expansão do filme quando termoformado ser realizada na parte externa do filme.

Já para o filme de AB, houve uma redução de espessura total de 77%, neste caso, partindo de 138,09 µm de espessura quando plano para uma espessura de 31,10 µm após termoformado, na região do canto do filme. A maior redução foi da camada de PE, que reduziu de 39,99 µm para 8,01 µm de espessura após termoformado, resultando numa variação de 80%. O EVOH, que é o material responsável pela alta barreira ao oxigênio também apresentou uma redução de espessura significativa, passando de 10,26 µm inicial para 2,37 µm após termoformado, resultando numa variação de cerca de 77%. Assim, também se pode prever que haverá uma redução significativa de barreira ao oxigênio deste filme após termoformado.
Neste caso do filme AB, tem-se uma variação de espessura mais uniforme entre as camadas que compõem o filme, ou seja, sem grandes variações entre o lado externo e o lado interno do filme, apesar de que a redução total de espessura foi maior que a redução total de espessura do filme de MB. Talvez esta redução de espessura mais uniforme do filme de AB possa ser justificada pela menor quantidade de PA na estrutura deste filme, que é um polímero mais resistente e mais difícil de processar que o EVOH.

A Figura 4.15 ilustra as reduções das espessuras de cada camada dos filmes de MBP e ABP, após termoformados, nas regiões dos cantos.

![Figura 4.15 - Reduções das espessuras das camadas dos filmes de MBP para MBT e de ABP para ABT](image)

Pode-se ver de forma mais ilustrativa que, para o filme de MB, as camadas iniciais, que correspondem ao lado externo do filme, apresentaram maior variação de redução de espessura para o filme após termoformado que as camadas finais, que correspondem ao lado interno do filme. Para o filme de AB, pode-se ver uma variação de espessura mais uniforme entre as camadas que compõem o filme, sem grandes variações entre o lado externo e o lado interno do filme.

Foi visualizado também de forma ilustrativa, que a redução total de espessura do filme de AB foi maior que a redução total de espessura apresentada pelo filme MB, conforme mencionado anteriormente.
4.3.3. Barreira ao Oxigênio dos Filmes

Com a análise da taxa de permeabilidade ao oxigênio (ou TPO₂ - *Oxygen Permeability Rate*) foi medida a quantidade de oxigênio que passou através dos filmes, considerados inicialmente de MB e de AB. A análise foi realizada de forma comparativa para os filmes planos e após termoformados, sendo que para os filmes termoformados consideraram-se as regiões dos cantos e dos fundos. As especificações técnicas de TPO₂ determinam valores menores que 20 cm³/m².dia para o filme de MB, e menores que 10 cm³/m².dia para o filme de AB, sendo estes valores especificados para os filmes planos.

A Figura 4.16 mostra respectivamente as curvas de TPO₂ em função do tempo, para os filmes de MBP, MBT, ABP e ABT. Para os filmes termoformados, as análises foram realizadas nas regiões dos cantos e dos fundos.

Figura 4.16 - TPO₂ em função do tempo para os filmes: (a) MBP e MBT (canto e fundo), (b) ABP e ABT (canto e fundo)
A eficácia da barreira aumenta com a diminuição do coeficiente de permeação ao oxigênio, ou seja, é relativa ao produto da constante de difusão com o coeficiente de solubilidade. Um parâmetro experimental que permite quantificar a eficácia da barreira contra a penetração do oxigênio, sob condições definidas de temperatura e umidade é a taxa de transmissão de oxigênio. A permeabilidade ao oxigênio de um filme é um parâmetro relevante do ponto de vista prático e deve levar em conta sua espessura de forma quantitativa, sendo que no caso de filmes com camadas múltiplas, o valor da taxa de transmissão de oxigênio é função de todas as camadas individuais (SCHENCK, 2000).

A Tabela 4.9 mostra os valores comparativos para a TPO2 dos filmes de MB e AB, planos, e termoformados nas regiões dos cantos e dos fundos.

<table>
<thead>
<tr>
<th>Filme MB</th>
<th>Filme AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plano</td>
<td>19,33 cm³/m².dia</td>
</tr>
<tr>
<td>Termoformado (canto)</td>
<td>164,53 cm³/m².dia</td>
</tr>
<tr>
<td>Termoformado (fundo)</td>
<td>47,49 cm³/m².dia</td>
</tr>
</tbody>
</table>

A Figura 4.17 mostra os filmes de MBT e ABT, em fotografias do filme termoformado inteiro e em corte longitudinal, e em ilustrativo indicando as regiões onde foram medidas a TPO2, sendo que além das regiões planas, para os filmes termoformados foram analisadas as regiões dos cantos e dos fundos.

Para o filme de MBP, a TPO2 ficou na ordem de 19,33 cm³/m².dia, sendo que para o mesmo filme após termoformado, a TPO2 foi de 164,53 cm³/m².dia na região do canto, e de 47,49 cm³/m².dia na região do fundo. Esta perda de barreira nos cantos do filme termoformado pode ser justificada pela redução das espessuras das camadas de PA, cuja função seria de limitar a passagem de oxigênio pelo filme.

Para filmes com TPO2 superior a 60 cm³/m².dia, como é o caso deste filme de MBT que apresentou TPO2 de 164,53 cm³/m².dia, considera-se que não existe mais barreira ao oxigênio, ou seja, o oxigênio está passando através do filme e migrando livremente para o interior da embalagem, prejudicando a qualidade do produto embalado.
Já para o filme de ABP, obteve-se uma TPO₂ de 1,25 cm³/m².dia, sendo que este filme após ter sido termoformado, os valores da TPO₂ ficaram na ordem de 44,92 cm³/m².dia para a região do canto e de 3,64 cm³/m².dia para a região do fundo. Como para o filme de AB é o EVOH que possui a função de bloquear a passagem de oxigênio pelo filme, a perda de barreira é justificada pela redução da espessura da camada de EVOH nas regiões dos cantos dos filmes. Para este filme de ABT, o resultado da TPO₂ da região do canto de 44,92 cm³/m².dia, ainda é considerado razoável, já que o filme ainda apresenta barreira ao oxigênio, porém, não pode servir para garantir a conservação do produto embalado, pelo período de seu prazo de validade (60 dias exposto à temperatura de 0 a 10°C).

Considerando os filmes de MB e AB planos, os valores das TPO₂ de 19,33 cm³/m².dia e de 1,25 cm³/m².dia, respectivamente, estão dentro dos padrões especificados de TPO₂, (menor que 20 cm³/m².dia para o filme de MB, e menor que 10 cm³/m².dia para o filme de AB). Apesar disso, o valor da TPO₂ do filme de MB esteve mais próximo do limite aceitável que o valor do filme de AB, que
apresenta maior margem de segurança em termos de especificação técnica. Assim, poderia ser proposto para o filme de AB, uma hipotética redução da quantidade de EVOH e um aumento da quantidade de PA, para se aproximar a TPO2 deste filme da especificação técnica máxima permitida (menor que 10 cm³/m².dia), medida no filme plano. Com esta ação, poderia teoricamente haver uma redução de custo e ainda um conseqüente aumento de resistência à perfuração do filme, conforme será visto mais adiante. Apesar de que, muito provavelmente, haveria neste caso outro filme com a TPO2 da região do canto maior que 60 cm³/m².dia, e portanto, considerado sem nenhuma barreira ao oxigênio, conforme já identificado para o filme de MB. Novamente, pode-se ressaltar que os problemas de redução exagerada de espessura e aumento da TPO2 em níveis inaceitáveis, nas regiões dos cantos dos filmes termoformados, são causados pelo processo de termoformação, que pode ser melhorado, seja pela alteração do ângulo do canto, e/ou pela utilização do processo de formação de “bolha” antes da etapa de vácuo e moldagem.

Para os filmes termoformados, o mercado atualmente não especifica a TPO2, provavelmente em virtude da dificuldade de se analisar os filmes nas regiões dos cantos e em virtude da grande variabilidade dos parâmetros de termoformação. De qualquer forma, tanto o filme de MB quanto o filme de AB apresentaram aumento significativo da TPO2 após terem sido termoformados, de 8,5 e de 35,9 vezes, respectivamente, nas regiões dos cantos. Assim, apesar do resultado final da TPO2, em termos de ordem de grandeza do valor final obtido, aparentemente ter sido melhor para o filme de AB, foi o filme de MB que perdeu menor quantidade de barreira ao oxigênio, e portanto, foi menos influenciado pelo processo de termoformação. Este fato sugere que realmente o filme de AB teria TPO2 maior que 60 cm³/m².dia, com as atuais condições de termoformação, logo, sem nenhuma barreira ao oxigênio, caso fosse alterada sua estrutura atual com a redução da quantidade de EVOH e com o aumento da quantidade de PA, conforme mencionado anteriormente.
4.4. PROPRIEDADES MECÂNICAS DOS FILMES

4.4.1. Resistência à Perfuração dos Filmes

Foi medida a energia total requerida para perfurar os filmes de MB e AB, quando planos e após termoformados, com análises realizadas do lado externo para o lado interno dos filmes e vice-versa. Das curvas obtidas, foi verificado o comportamento comparativo entre os filmes, em termos de deformação e de resistência à perfuração.

A Figura 4.18 representa uma das curvas de perfuração realizadas para os filmes de MBP, MBT, ABP e ABT, com análises do lado externo para o interno dos filmes e vice-versa. Esta curva é específica para o filme de MBP, do lado externo para o interno. As demais curvas, podem ser encontradas nos anexos, ao final desta dissertação, sendo que para os filmes termoformados, as análises foram realizadas nas regiões dos cantos.

![Figura 4.18 - Perfuração para o filme de MBP, do lado externo para o interno](image)

Com estas curvas de carga aplicada em função da extensão dos filmes, foram determinados os valores de deformação e os valores de resistência dos filmes à perfuração.

A Tabela 4.10 informa os valores de deformação antes da perfuração, para os filmes de MBP, MBT, ABP e ABT, do lado externo para o interno dos filmes e vice-versa.
Tabela 4.10 - Deformação antes da perfuração, para os filmes de MBP, MBT, ABP e ABT, lado externo para o interno e vice-versa

<table>
<thead>
<tr>
<th>Lado</th>
<th>Filme</th>
<th>Mínimo (mm)</th>
<th>Máximo (mm)</th>
<th>Média (mm)</th>
<th>Desvio Padrão</th>
<th>Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Externo para Interno</td>
<td>MBP</td>
<td>13,53</td>
<td>16,96</td>
<td>15,37</td>
<td>1,34</td>
<td>-54</td>
</tr>
<tr>
<td></td>
<td>MBT</td>
<td>6,48</td>
<td>8,02</td>
<td>7,08</td>
<td>0,59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABP</td>
<td>12,84</td>
<td>15,51</td>
<td>14,18</td>
<td>0,97</td>
<td>-51</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td>6,01</td>
<td>7,71</td>
<td>7,02</td>
<td>0,81</td>
<td></td>
</tr>
<tr>
<td>Interno para Externo</td>
<td>MBP</td>
<td>9,66</td>
<td>12,04</td>
<td>10,92</td>
<td>0,86</td>
<td>-54</td>
</tr>
<tr>
<td></td>
<td>MBT</td>
<td>4,55</td>
<td>5,78</td>
<td>5,05</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABP</td>
<td>9,76</td>
<td>10,55</td>
<td>10,24</td>
<td>0,32</td>
<td>-53</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td>3,61</td>
<td>5,50</td>
<td>4,78</td>
<td>0,76</td>
<td></td>
</tr>
</tbody>
</table>

Do lado externo para o interno, os filmes de MB e AB apresentaram redução da capacidade de deformação antes da perfuração após termoformados, sendo esta redução de 54% para o filme de MB e de 51% para o filme de AB. Do lado interno para o externo, obteve-se o mesmo comportamento dos filmes, com redução da capacidade de deformação antes da perfuração para o filme de MB de 54% e para o filme de AB de 53%. Em ambos os casos o filme de AB apresentou menor variação percentual que o filme de MB, após termoformados.

A Figura 4.19 ilustra a deformação antes da perfuração, com as respectivas variações, para os filmes de MBP, MBT, ABP e ABT, do lado externo para o interno dos filmes e vice-versa.

![Figura 4.19 - Deformação antes da perfuração, para os filmes de MBP, MBT, ABP e ABT, do lado externo para o interno e vice-versa](image-url)
Para a análise do lado externo para o interno, os valores para os filmes planos foram em torno de 15 mm, enquanto que para os filmes termoformados foram cerca de 7 mm. Já para as análises do lado interno para o externo, os valores para a deformação antes da perfuração são menores, ou seja, de cerca de 10 mm para os filmes planos e de cerca de 5 mm para os filmes termoformados.

Assim, de forma geral, conclui-se que a deformação antes da perfuração é maior em cerca de 30% para a perfuração realizada do lado externo para o interno, tanto para o filme de MB quanto para o filme de AB. Além disso, entre os filmes de MB e AB, para cada lado analisado, praticamente não houve variação de deformação antes da perfuração, para os filmes planos e termoformados.

A Tabela 4.11 informa os valores de resistência à perfuração, para os filmes de MBP, MBT, ABP e ABT, também medidos do lado externo para o interno dos filmes e vice-versa.

Tabela 4.11 - Resistência à perfuração, para os filmes de MBP, MBT, ABP e ABT, do lado externo para o interno e vice-versa

<table>
<thead>
<tr>
<th>Lado</th>
<th>Filme</th>
<th>Mínimo (N)</th>
<th>Máximo (N)</th>
<th>Média (N)</th>
<th>Desvio Padrão</th>
<th>Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Externo para</td>
<td>MBP</td>
<td>34,89</td>
<td>42,43</td>
<td>39,38</td>
<td>3,25</td>
<td>-32</td>
</tr>
<tr>
<td>Interno</td>
<td>MBT</td>
<td>25,18</td>
<td>29,07</td>
<td>26,90</td>
<td>1,53</td>
<td>-31</td>
</tr>
<tr>
<td></td>
<td>ABP</td>
<td>33,20</td>
<td>38,98</td>
<td>35,78</td>
<td>2,36</td>
<td>-28</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td>22,33</td>
<td>31,84</td>
<td>25,93</td>
<td>3,82</td>
<td>-31</td>
</tr>
<tr>
<td>Interno para</td>
<td>MBP</td>
<td>26,86</td>
<td>30,45</td>
<td>29,14</td>
<td>1,49</td>
<td>-31</td>
</tr>
<tr>
<td>Externo</td>
<td>MBT</td>
<td>18,35</td>
<td>21,05</td>
<td>20,02</td>
<td>1,00</td>
<td>-31</td>
</tr>
<tr>
<td></td>
<td>ABP</td>
<td>26,57</td>
<td>28,55</td>
<td>27,46</td>
<td>0,84</td>
<td>-36</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td>14,95</td>
<td>18,71</td>
<td>17,47</td>
<td>1,47</td>
<td>-36</td>
</tr>
</tbody>
</table>

Do lado externo para o interno, os filmes de MB e AB, após termoformados, apresentaram redução de resistência à perfuração, de 32% para o filme de MB e de 28% para o filme de AB. Partindo do lado interno, a redução de resistência à perfuração para o filme de MB foi de 31% e para o filme de AB foi de 36%.

Apesar da inversão de valores das capacidades de resistência dos filmes à perfuração, para a análise realizada do lado externo para o interno dos filmes e vice-versa, entre os filmes de MB e de AB planos e termoformados, os valores de variações percentuais foram todos próximos de 30%.
Na Figura 4.20, tem-se um ilustrativo da resistência à perfuração, e suas variações, para os filmes de MBP, MBT, ABP e ABT, com análise do lado externo para o interno e do lado interno para o externo dos filmes.

Figura 4.20 - Resistência à perfuração, para os filmes de MBP, MBT, ABP e ABT, do lado externo para o interno e vice-versa

Os valores das resistências às perfurações, nas análises do lado externo para o interno, foram de aproximadamente 38N e 26N, para os filmes planos e os termoformados, respectivamente. Já partindo do lado interno, os valores foram menores, ou seja, de cerca de 28N para os filmes planos e de cerca de 19N para os filmes termoformados. Portanto, tanto para o filme de MB quanto para o filme de AB, partindo do lado externo, a resistência à perfuração destes filmes é maior em cerca de 25%, que partindo do lado interno.

Ainda, na média, o filme de AB é cerca de 8% menos resistente à perfuração que o filme de MB, fato que talvez possa ser justificado pela presença do EVOH e pela redução das camadas de PA na estrutura deste filme de AB, conforme verificado nas análises de microscopia ótica. Como alternativa, poderia ser reduzida ao máximo a camada de EVOH deste filme, o suficiente para aproximar a TPO₂ de um valor menor que 10 cm³/m².dia (valor especificado para o filme plano), já que o filme apresentou TPO₂ em torno de 2 cm³/m².dia. Assim, o aumento das quantidades de PA, que apresenta melhores propriedades de resistência mecânica que o EVOH, poderia resultar em maior barreira ao oxigênio, e também conferir maior resistência mecânica sem aumento de custos,
considerando que o EVOH é mais caro que a PA.

4.4.2. Ruptura em Tração dos Filmes

Com a análise de tração dos filmes de MB e AB, foi medido o comportamento dos filmes, planos e termoformados, desde o seu alongamento inicial até a sua ruptura. As análises foram realizadas nas direções longitudinal e transversal, sendo que das curvas obtidas, foi verificado o comportamento dos filmes em termos de alongamento antes da ruptura, e de ponto de ruptura.

Na Figura 4.21, tem-se uma das curvas de tração dos filmes de MBP, MBT, ABP e ABT, para análises realizadas nas direções longitudinal e transversal de termoformação. A curva apresentada é relativa ao filme de MBP, na direção longitudinal, sendo que as curvas dos demais filmes nas demais situações mencionadas podem ser encontradas nos anexos, ao final desta dissertação. Para os filmes termoformados, foram analisadas as regiões dos cantos.

![Figura 4.21 - Tração para o filme de MBP, na direção longitudinal](image)

Com estas curvas de esforço de tensão aplicada em função da extensão dos filmes, foram determinados os valores de alongamento antes da ruptura e os valores dos pontos de ruptura dos filmes.

Observa-se inicialmente que a resposta do filme ao alongamento foi crescente e proporcional à deformação imposta, sendo que esta região linear da
curva de tensão em função da deformação é conhecida como a região elástica do filme. Em seguida, ocorreu a transição da região elástica para a região plástica, caracterizada inicialmente pelo escoamento do filme, onde ocorreu um aumento relativamente grande da deformação, com pequena variação da tensão aplicada. Após o escoamento, o filme passou pela etapa de endurecimento por deformação a frio, até o ponto de tensão máxima aplicada, em que o filme não resistiu, indicando o seu ponto de ruptura.

Esta curva obtida sugere que o filme possui características de materiais amorfos, já que apresentou o fenômeno do escoamento bem definido, além de grandes deformações antes da ruptura. São materiais mais flexíveis e mais transparentes, porém, com menor rigidez e resistência mecânica. Com o resfriamento do material, certas moléculas tenderiam a se dispor em regiões mais cristalinas, em arranjos ordenados de moléculas, melhorando assim a resistência mecânica do material.

Na Tabela 4.12, encontram-se os valores de alongamento antes da ruptura em tração, para os filmes de MBP, MBT, ABP e ABT, medidos nas direções longitudinal e transversal de termoformação.

Tabela 4.12 - Alongamento antes da ruptura em tração, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal

<table>
<thead>
<tr>
<th>Direção</th>
<th>Filme</th>
<th>Mínimo (%)</th>
<th>Máximo (%)</th>
<th>Média (%)</th>
<th>Desvio Padrão</th>
<th>Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>MBP</td>
<td>586,57</td>
<td>637,30</td>
<td>605,42</td>
<td>23,31</td>
<td>-47</td>
</tr>
<tr>
<td></td>
<td>MBT</td>
<td>306,80</td>
<td>340,80</td>
<td>322,69</td>
<td>15,78</td>
<td>-40</td>
</tr>
<tr>
<td></td>
<td>ABP</td>
<td>497,90</td>
<td>548,07</td>
<td>528,51</td>
<td>19,60</td>
<td>-31</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td>252,73</td>
<td>362,07</td>
<td>317,65</td>
<td>49,15</td>
<td>-31</td>
</tr>
<tr>
<td>Transversal</td>
<td>MBP</td>
<td>568,77</td>
<td>620,10</td>
<td>585,71</td>
<td>20,25</td>
<td>-31</td>
</tr>
<tr>
<td></td>
<td>MBT</td>
<td>368,87</td>
<td>439,47</td>
<td>405,74</td>
<td>33,59</td>
<td>-31</td>
</tr>
<tr>
<td></td>
<td>ABP</td>
<td>532,43</td>
<td>651,13</td>
<td>582,58</td>
<td>46,37</td>
<td>-31</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td>351,30</td>
<td>438,63</td>
<td>404,59</td>
<td>36,12</td>
<td>-31</td>
</tr>
</tbody>
</table>

Na direção longitudinal, o filme de MB reduziu em 47% e o filme de AB reduziu em 40% a capacidade de alongamento antes da ruptura, após o processo de termoformação. Já na direção transversal, tanto para o filme de MB quanto para o filme de AB, os valores de redução encontrados foram de 31%.
A Figura 4.22 ilustra os valores do alongamento antes da ruptura em tração, com suas variações, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal de termoformação dos filmes.

Figura 4.22 - Alongamento antes da ruptura em tração, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal

Os alongamentos antes das rupturas em tração dos filmes de MB e AB após termoformados reduzem de forma semelhante nas direções longitudinal e transversal. Na direção longitudinal, para os filmes planos de MB e AB, os valores foram de cerca de 600% e de 530%, respectivamente; enquanto que para os filmes termoformados, em torno de 320%. Já na direção transversal, os valores foram de cerca de 580% para os filmes planos e de cerca de 405% para os filmes termoformados, sem variação significativa entre os filmes de MB e AB.

Comparando valores, viu-se que para os filmes termoformados de MB e AB, o alongamento antes da ruptura em tração é maior em cerca de 25% na direção transversal em relação à direção longitudinal.

A Tabela 4.13 mostra os valores dos pontos de ruptura em tração, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal de termoformação.
Tabela 4.13 - Ponto de ruptura em tração, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal

<table>
<thead>
<tr>
<th>Direção</th>
<th>Filme</th>
<th>Mínimo (MPa)</th>
<th>Máximo (MPa)</th>
<th>Média (MPa)</th>
<th>Desvio Padrão</th>
<th>Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>MBP</td>
<td>43,52</td>
<td>49,61</td>
<td>46,17</td>
<td>2,88</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MBT</td>
<td>42,47</td>
<td>50,74</td>
<td>46,11</td>
<td>3,40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABP</td>
<td>30,68</td>
<td>34,77</td>
<td>32,99</td>
<td>1,50</td>
<td>+ 19</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td>32,77</td>
<td>41,98</td>
<td>39,10</td>
<td>3,73</td>
<td></td>
</tr>
<tr>
<td>Transversal</td>
<td>MBP</td>
<td>38,61</td>
<td>43,99</td>
<td>41,08</td>
<td>1,98</td>
<td>+ 7</td>
</tr>
<tr>
<td></td>
<td>MBT</td>
<td>36,85</td>
<td>48,80</td>
<td>44,15</td>
<td>6,07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABP</td>
<td>30,86</td>
<td>37,71</td>
<td>33,83</td>
<td>2,59</td>
<td>+ 15</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td>30,85</td>
<td>41,74</td>
<td>38,99</td>
<td>4,65</td>
<td></td>
</tr>
</tbody>
</table>

Pode ser novamente observado que como após a termoformação as camadas de PA sofrem grande redução de espessura (91 e 72%) no filme de MB, é natural que o filme de MBT não tenha uma resistência significativamente maior após a moldagem. Como sabido, a PA é o polímero que confere a maior resistência mecânica ao filme coextrusado, comparativamente às demais camadas. Na direção longitudinal, após termoformados, o filme de MB não apresentou variação de ponto de ruptura em tração, enquanto que o filme de AB apresentou aumento de 19%, significando maior dificuldade de rompimento. Na direção transversal, o filme de MB aumentou em 7% e o filme de AB aumentou em 15% o valor de ponto de ruptura em tração, após terem sido termoformados.

Observa-se em ambas as direções de análise o mesmo comportamento dos filmes, ou seja, os filmes de AB apresentaram maior variação de aumento de ponto de ruptura em tração que os filmes de MB, quando transformados de filmes planos para termoformados. Além disso, esta variação foi maior na direção longitudinal em relação à transversal.

Este aumento de ponto de ruptura, ou maior dificuldade de rompimento, dos filmes termoformados, principalmente do filme de AB que apresentou valores mais significativos, necessita ser analisado. Por DSC foi visto para o filme de AB termoformado, um ligeiro aumento das temperaturas de fusão do EVOH e da PA. No entanto, por difratometria de raios-x, que analisa o filme como um todo, foi visto que os filmes de MB e de AB termoformados ficaram menos cristalinos, já que pode ter havido migração de adesivo e fusão parcial de polímeros pertencentes a camadas distintas.

Além da possibilidade de se ter um aumento da orientação das moléculas
dos filmes termoformados, ocasionados justamente pelo processo de termoformação, cabe considerar que neste caso, a resistência à tração na ruptura é dada como um fator de ruptura, que relaciona a força máxima de tração com a unidade de área do corpo de prova analisada, levando assim em consideração as espessuras dos filmes analisados.

Na Figura 4.23, tem-se um ilustrativo do ponto de ruptura em tração dos filmes de MBP, MBT, ABP e ABT, com suas variações de valores, nas direções longitudinal e transversal de termoformação dos filmes.

Comparando os filmes planos e termoformados, os valores de ponto de ruptura em tração para os filmes de MB e AB apresentaram variações entre 3 e 6 MPa, a maior para os filmes termoformados, com exceção do filme de MB na direção longitudinal, que não apresentou variação de valor.

Assim, os filmes termoformados, em termos de fator de ruptura (relacionado à espessura do filme), apresentam maior dificuldade de rompimento em tração, com maior influência no filme de AB, que teve perda de espessura mais uniforme que o filme de MB.
4.4.3. Rigidez dos Filmes

Analisando as curvas de módulo secante 2%, dos filmes de MB e AB, planos e termoformados, foram identificadas as características de rigidez dos materiais, com análises nas direções longitudinal e transversal.

A Figura 4.24 representa uma das curvas de módulo secante 2% dos filmes de MBP, MBT, ABP e ABT, com análises nas direções longitudinal e transversal de termoformação dos filmes, sendo esta curva específica para o filme de MBP na direção longitudinal. As demais curvas podem ser encontradas nos anexos, ao final desta dissertação, sendo para os filmes termoformados, analisadas as regiões dos cantos.

![Figura 4.24 - Módulo secante 2% para o filme de MBP, na direção longitudinal](image)

Com estas curvas de carga aplicada em função da extensão dos filmes, foram determinados os valores de rigidez dos filmes relacionados ao seu módulo secante 2% em cada situação.

Trata-se da utilização de um ponto específico do alongamento, localizado antes do ponto de escoamento, onde se determina a relação entre a tensão de tração e a deformação, normalmente utilizado quando é muito difícil de se determinar exatamente a região elástica da curva de tensão e deformação.

Na Tabela 4.14, têm-se os valores de rigidez em módulo secante 2% para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal de termoformação dos filmes.
Tabela 4.14 - Rigidez em módulo secante 2%, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal transversal

<table>
<thead>
<tr>
<th>Direção</th>
<th>Filme</th>
<th>Mínimo (MPa)</th>
<th>Máximo (MPa)</th>
<th>Média (MPa)</th>
<th>Desvio Padrão</th>
<th>Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>MBP</td>
<td>345,13</td>
<td>433,64</td>
<td>385,34</td>
<td>38,16</td>
<td>+ 6</td>
</tr>
<tr>
<td></td>
<td>MBT</td>
<td>305,52</td>
<td>460,77</td>
<td>406,61</td>
<td>63,17</td>
<td>+ 6</td>
</tr>
<tr>
<td></td>
<td>ABP</td>
<td>429,37</td>
<td>492,71</td>
<td>464,68</td>
<td>23,47</td>
<td>- 36</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td>98,03</td>
<td>440,37</td>
<td>297,11</td>
<td>142,14</td>
<td>- 36</td>
</tr>
<tr>
<td>Transversal</td>
<td>MBP</td>
<td>305,57</td>
<td>439,33</td>
<td>390,34</td>
<td>57,79</td>
<td>- 37</td>
</tr>
<tr>
<td></td>
<td>MBT</td>
<td>84,80</td>
<td>390,09</td>
<td>245,10</td>
<td>116,47</td>
<td>- 37</td>
</tr>
<tr>
<td></td>
<td>ABP</td>
<td>409,24</td>
<td>589,98</td>
<td>537,21</td>
<td>73,73</td>
<td>- 52</td>
</tr>
<tr>
<td></td>
<td>ABT</td>
<td>60,85</td>
<td>409,98</td>
<td>260,38</td>
<td>130,58</td>
<td>- 52</td>
</tr>
</tbody>
</table>

Na direção longitudinal, o filme de MB apresentou aumento de 6% e o filme de AB redução de 36% em termos de rigidez, quando termoformados. Na direção transversal, para os filmes de MB e AB, tivemos redução de rigidez após a termoformação, de 37% para o filme de MB e de 52% para o filme de AB.

Independeante da direção de análise, o filme de AB teve maior redução percentual de rigidez que o filme de MB, após termoformado, com valores da ordem de 40%. O que pode ser justificado pela composição dos filmes, ou seja, o filme de AB possui EVOH e consequente menor quantidade de PA que o filme de MB, sendo que como a PA é mais rígida (maior resistência mecânica) que o EVOH, o filme de MB deveria apresentar maior rigidez que o filme de AB, não somente após termoformado, mas também quando plano. Viu-se que em valor absoluto, para os filmes planos, foi o filme de AB que apresentou maior rigidez, talvez explicada pela composição total da estrutura do filme, e não somente pela avaliação isolada de seus materiais constituintes.

Esta redução de rigidez em módulo secante 2% dos filmes de MB e AB, termoformados em relação aos planos, é coerente também com o resultado de difratometria de raios-x, que indicou redução de cristalinidade dos filmes de MB e de AB termoformados, com maior intensidade para o filme de AB.

Uma forma ilustrativa dos valores de rigidez em módulo secante 2%, com suas variações, é apresentada na Figura 4.25, para os filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal.
Os valores de rigidez em módulo secante 2% dos filmes de MBP, MBT, ABP e ABT, nas direções longitudinal e transversal, são diversificados, variando de 245 a 537 MPa. Além disso, os valores dos filmes termoformados, são acompanhados de grandes variações, indicando possibilidade de algum tipo de erro de medição, análise ou utilização da metodologia. Apesar disso, pode-se concluir que os filmes termoformados são cerca de 40% menos rígidos em módulo secante 2% que os filmes planos.

4.5. PROPRIEDADES ÓTICAS DOS FILMES

Foram analisados claridade, opacidade e brilho relacionados à quantidade de luz percentual transmitida, à quantidade de luz percentual dispersada, e à aparência brilhosa do material, respectivamente.

Na Tabela 4.15, têm-se os resultados comparativos destas propriedades óticas para os filmes de MB e AB, planos e termoformados.
Tabela 4.15 - Propriedades óticas, para os filmes de MBP, MBT, ABP e ABT

<p>| Filme | Claridade (%) | | | | | | | | Opacidade (%) | | | | | | | | Brilho 45° (uB) | | | | |
|-------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|</p>
<table>
<thead>
<tr>
<th></th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Média</th>
<th>Desvio Padrão</th>
<th>Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP</td>
<td>95,6</td>
<td>95,9</td>
<td>95,76</td>
<td>0,11</td>
<td>-21</td>
<td></td>
</tr>
<tr>
<td>MBT</td>
<td>74,6</td>
<td>77,4</td>
<td>76,00</td>
<td>1,06</td>
<td>-21</td>
<td></td>
</tr>
<tr>
<td>ABP</td>
<td>91,9</td>
<td>92,1</td>
<td>91,96</td>
<td>0,09</td>
<td>-27</td>
<td></td>
</tr>
<tr>
<td>ABT</td>
<td>64,5</td>
<td>68,1</td>
<td>67,02</td>
<td>1,47</td>
<td>-27</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MBP</td>
<td>5,44</td>
<td>5,63</td>
<td>5,56</td>
<td>0,08</td>
<td>+14</td>
<td></td>
</tr>
<tr>
<td>MBT</td>
<td>6,13</td>
<td>6,52</td>
<td>6,33</td>
<td>0,16</td>
<td>+14</td>
<td></td>
</tr>
<tr>
<td>ABP</td>
<td>8,82</td>
<td>9,33</td>
<td>9,02</td>
<td>0,22</td>
<td>+15</td>
<td></td>
</tr>
<tr>
<td>ABT</td>
<td>9,63</td>
<td>11,2</td>
<td>10,33</td>
<td>0,76</td>
<td>+15</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MBP</td>
<td>89,4</td>
<td>89,8</td>
<td>89,60</td>
<td>0,16</td>
<td>-82</td>
<td></td>
</tr>
<tr>
<td>MBT</td>
<td>14,2</td>
<td>20,2</td>
<td>16,06</td>
<td>2,45</td>
<td>-82</td>
<td></td>
</tr>
<tr>
<td>ABP</td>
<td>82,5</td>
<td>83,3</td>
<td>82,96</td>
<td>0,32</td>
<td>-88</td>
<td></td>
</tr>
<tr>
<td>ABT</td>
<td>7,7</td>
<td>12,2</td>
<td>9,82</td>
<td>1,86</td>
<td>-88</td>
<td></td>
</tr>
</tbody>
</table>

Em termos de claridade, os filmes de MB e AB apresentaram redução após termoformados, sendo de 21% para o filme de MB e de 27% para o filme de AB. Com relação à opacidade, para os filmes termoformados, houve aumento dos valores, sendo de 14% para o filme de MB e de 15% para o filme de AB. Já os resultados de brilho demonstraram que os filmes termoformados apresentaram redução de valores, tanto para o filme de MB, cuja redução de brilho foi de 82 uB, quanto para o filme de AB, onde a redução de brilho de 88 uB.

Concluiu-se que estes resultados são condizentes, pois os filmes após termoformados realmente são menos claros, mais opacos e menos brilhosos. Além disso, as propriedades de claridade e opacidade são inversamente proporcionais, mesmo com diferentes ordens de grandeza.

O brilho é apropriedade ótica mais afetada pela termoformação dos filmes, pois enquanto que os valores de redução de claridade são da ordem de 24% e os valores de aumento de opacidade são da ordem de 15%, os valores de redução de brilho encontrados são da ordem de 85 uB, considerando a unidade de Brilho na mesma ordem de grandeza dos valores percentuais de claridade e opacidade.

O filme de AB é mais afetado pela redução de claridade, aumento de opacidade e redução de brilho, que o filme de MB. A análise por difratometria de raios-x, antes e após a termoformação, revelou redução da cristalinidade dos filmes de MB e de AB, ou seja, seria esperado que o material mais amorfo ficasse mais transparente. No entanto, os resultados de DSC dos filmes antes e após a termoformação revelaram que o processamento alterou as camadas de PA, cujos
cristalitos teriam aumentado de tamanho, conforme evidenciado pelo aumento da temperatura de fusão cristalina e também pelo aumento da resistência à tração do filme. O DSC revelou também possível migração de adesivo após a termoformação, sendo o efeito final no filme multicamada, como percebido pelos raios-x, o de redução da cristalinidade total do filme.

Pode ser sugerido que, com a alteração do processo de termoformação para utilização de um sistema de formação de “bolha” visando o aumento da área de moldagem antes do vácuo e/ou utilização de um molde menos anguloso, as propriedades óticas dos filmes podem ser melhoradas, beneficiando assim o aspecto visual dos produtos embalados.

Enfim, certamente com a otimização do processo de termoformação, visando principalmente o incremento das espessuras dos cantos destes filmes, já que se tem material disponível nas regiões das laterais e dos fundos que precisariam ser melhores distribuídos no molde, os efeitos serão muito positivos. Teríamos melhores propriedades mecânicas dos filmes e principalmente menores taxas de permeabilidade ao oxigênio, fundamentais para a conservação dos produtos no mercado.
5. CONCLUSÕES

1. O processo de termoformação influenciou de forma diferente a estrutura dos filmes de MB e AB. No filme de AB, não se evidenciou migração de adesivo, já no filme de MB, pode ter havido migração de adesivo para as camadas de PE e de PP;

2. As regiões dos cantos dos filmes termoformados são críticas em termos de redução de espessura e de perda de barreira ao oxigênio. Os filmes têm material disponível nas laterais e nos fundos que poderia ser direcionado para os cantos, onde se verificou a inexistência de barreira ao oxigênio para o filme de MB e uma barreira insuficiente para o filme de AB, para garantir a conservação do produto embalado durante o período especificado para sua comercialização e consumo;

3. A termoformação influenciou mecanicamente as propriedades dos filmes de MB e AB, com redução da capacidade de deformação e resistência à perfuração, e redução da rigidez e do alongamento em esforço de tração. No entanto, a resistência mecânica dos filmes é suficiente para a sua aplicação e não há rompimento de nenhuma camada polimérica, mesmo nas regiões dos cantos dos filmes termoformados;

4. As propriedades óticas dos filmes de MB e AB também foram afetadas pela termoformação, especialmente para o filme de AB, resultando em redução de claridade e brilho, e em aumento de opacidade, tendo sido a propriedade de brilho a mais afetada;

5. Outras evidências listadas, contribuem para justificar a necessidade de melhoria do processo de termoformação dos filmes de MB e AB, como por exemplo, através da utilização de um molde com menor profundidade e/ou com maior ângulo de canto, ou através da termoformação de uma “bolha” anterior à etapa de vácuo, o que resultaria em maior quantidade de filme a ser distribuído no molde, acarretando em um perfil de espessura mais uniforme, inclusive nos cantos:

- Reduções significativas de espessuras totais nas regiões dos cantos dos filmes de MB e AB após terem sido termoformados;
Filmes termoformados de MB e AB mal distribuídos no molde, verificados pelas medições das espessuras comparativas entre as regiões das laterais, dos fundos e dos cantos destes filmes;

Reduções de espessuras não uniformes entre as camadas dos filmes de MB e AB, especialmente das camadas de barreira, influenciando na TPO₂;

Reduções bruscas da TPO₂ nas regiões dos cantos dos filmes de MB e AB após terem sido termoformados, resultando inclusive em filmes considerados sem barreira ao oxigênio;

Temperaturas de amolecimento dos filmes de MB e AB são diferentes, já que possuem diferentes quantidades de PA, indicando a necessidade de diferentes temperaturas de termoformação. No entanto, mesmo processados à mesma temperatura foi observado que são obtidas maiores espessuras de cantos do que quando processados em maiores ou menores temperaturas. Entretanto, as espessuras obtidas com “as condições ótimas” de temperatura de processamento causam baixo desempenho das embalagens em termos de propriedades de barreira ao oxigênio;

Perdas consideráveis de propriedades mecânicas dos filmes de MB e AB após termoformados, especialmente de resistência à perfuração e rigidez;

Perdas de propriedades óticas em termos de claridade, opacidade e brilho, para os filmes de MB e AB após terem sido termoformados;

6. Apesar dos filmes planos de MB e AB estarem de acordo com as exigências necessárias para a embalagem de produtos alimentícios em termos de barreira ao oxigênio, o processo de termoformação pode alterar de forma significativa as suas características, inclusive tornando estes filmes fora das especificações técnicas. Assim, empresas que utilizam filmes planos multicamadas termoformáveis como embalagem de produtos perecíveis que necessitem de proteção contra o oxigênio do ar, devem, além de realizar o controle de qualidade do filme plano, avaliar também o processo de moldagem e a qualidade final deste filme;

7. Os resultados obtidos recomendam alterações no processo de termoformação, conforme descrito no item 5, indicando que, além da obtenção de melhores embalagens em termos de propriedades de barreira, teríamos também melhoradas as propriedades óticas destas embalagens.
6. SUGESTÕES PARA TRABALHOS FUTUROS

1. Comparar o desempenho de filmes produzidos em sistema “blow” e em sistema “cast” de coextrusão, em termos de desempenho na termoformação;
2. Variar estruturas e espessuras iniciais de filmes planos, avaliando comparativamente seus desempenhos no processo de termoformação com o objetivo de encontrar a melhor relação de custo e desempenho;
3. Termoformar filmes com capacidade de termoencolhimento, de forma a possibilitar a recuperação de parte da espessura inicial destes filmes;
4. Avaliar o desempenho do filme de AB com menor quantidade de EVOH na estrutura e com maior quantidade de PA, aproximando a TPO2 de 10 cm³/m².dia quando plano, visando redução de custo do filme;
5. Utilizar moldes de termoformação com variação de área, profundidade e ângulos de cantos, de forma a avaliar a distribuição do filme no molde;
6. Substituir o molde atual pelo processo de termoformação de uma “bolha” antes da etapa de vácuo, para aumento da área de filme a ser moldada e melhoria do desempenho funcional da embalagem;
7. Alterar parâmetros do equipamento de termoformação dos filmes, como tempo e temperatura de termoformação, avaliando estas influências nas espessuras dos cantos dos filmes termoformados;
8. Estudar opções de adaptações do equipamento de termoformação, como a inclusão de um pistão superior e/ou o de uma estação de pré-aquecimento do filme plano, para ajudar na distribuição deste filme no molde;
9. Realizar estudos de “shelf-life” de diferentes formulações de produtos, em diferentes condições de exposição, avaliando necessidades específicas de barreira ao oxigênio dos filmes termoformados;
10. Analisar TPO2 de embalagens termoformadas fechadas e comparar os resultados com a TPO2 das regiões dos cantos dos filmes termoformados, de forma a poder quantificar a influência da TPO2 do canto na embalagem final;
11. Avaliar viabilidade, vantagens e desvantagens de se trabalhar com atmosfera modificada ao invés de vácuo para conservação dos produtos embalados.
7. REFERÊNCIAS BIBLIOGRÁFICAS

11. BANZA, J. M. Embalagem não fala, mas vende: atrair o consumidor e proteger
o produto são os principais atributos da embalagem. IMAM (Instituto de Movimentação e Armazenagem de Materiais) Consultoria Ltda. Artigo via e-mail acessado em 18/03/2005 às 18:10h.

22. Coutinho, F. M. B.; Mello, I. L.; Santa Maria, L. C. Polietileno:

33. GUERRINI, L. M.; PAULIN F°, P. I.; BRETAS, R. E. S.; BERNARDI, A.

43. LANGE, J.; WYSER, Y. Recent innovations in barrier technologies for plastic

49. MESTRINER, F. Eles acham que a embalagem é tudo. Comitê de estudos estratégicos da ABRE (Associação Brasileira de Embalagem). Artigo via e-mail acessado em 17/03/2005 às 12:50h.

54. MÜLLER, W. Plásticos com alto grau de integração funcional substituem vidro na fabricação de peças ópticas. Plástico Industrial, São Paulo, Aranda

65. PETTERSEN, M. K.; NILSSON, A.; ESPEDAL, A.; KOHLER, A. Prediction of

76. SMITH, W. F. **Princípios de ciência e engenharia dos materiais.** 3a edição.

ANEXOS
Anexo 1 - DSC do filme de MBT (canto)

Anexo 2 - DSC do filme de ABP
Anexo 3 - DSC do filme de ABT (canto)

Anexo 4 - FTIR para o filme de MBP, camada de PP
Anexo 5 - FTIR para o filme de MBP, camada de Adesivo

Anexo 6 - FTIR para o filme de MBP, camada de PA
Anexo 7 - FTIR para o filme de MBP, camada de Adesivo

Anexo 8 - FTIR para o filme de MBP, camada de PA
Anexo 9 - FTIR para o filme de MBP, camada de Adesivo

Anexo 10 - FTIR para o filme de MBP, camada de PE
Anexo 11 - FTIR para o filme de ABP, camada de Adesivo

Anexo 12 - FTIR para o filme de ABP, camada de PA
Anexo 13 - FTIR para o filme de ABP, camada de EVOH

Anexo 14 - FTIR para o filme de ABP, camada de PA
Anexo 15 - FTIR para o filme de ABP, camada de Adesivo

Anexo 16 - FTIR para o filme de ABP, camada de PE
Anexo 17 - Perfuração para o filme de MBT (canto), do lado externo para o interno

Anexo 18 - Perfuração para o filme de ABP, do lado externo para o interno
Anexo 19 - Perfuração para o filme de ABT (canto), do lado externo para o interno

Anexo 20 - Perfuração para o filme de MBP, do lado interno para o externo
Anexo 21 - Perfuração para o filme de MBT (canto), do lado interno para o externo

Anexo 22 - Perfuração para o filme de ABP, do lado interno para o externo
Anexo 23 - Perfuração para o filme de ABT (canto), do lado interno para o externo

Anexo 24 - Tração para o filme de MBT (canto), na direção longitudinal
Anexo 25 - Tração para o filme de ABP, na direção longitudinal

Anexo 26 - Tração para o filme de ABT (canto), na direção longitudinal
Anexo 27 - Tração para o filme de MBP, na direção transversal

Anexo 28 - Tração para o filme de MBT (canto), na direção transversal
Anexo 29 - Tração para o filme de ABP, na direção transversal

Anexo 30 - Tração para o filme de ABT (canto), na direção transversal
Anexo 31 - Módulo secante 2% para o filme de MBT (canto), na direção longitudinal

Anexo 32 - Módulo secante 2% para o filme de ABP, na direção longitudinal
Anexo 33 - Módulo secante 2% para o filme de ABT (canto), na direção longitudinal

Anexo 34 - Módulo secante 2% para o filme de MBP, na direção transversal
Anexo 35 - Módulo secante 2% para o filme de MBT (canto), na direção transversal

Anexo 36 - Módulo secante 2% para o filme de ABP, na direção transversal
Anexo 37 - Módulo secante 2% para o filme de ABT (canto), na direção transversal