MICROPROPAGAÇÃO DE *Gypsophila paniculata* PELA CULTURA DE SEGMENTOS NODAIS E CALOGÊNESE A PARTIR DE SEGMENTOS FOLIARES

Dissertação apresentada ao Curso de Pós-Graduação em Agronomia, área de concentração em Produção Vegetal, Departamento de Fitotecnia e Fitossanitarismo, Setor de Ciências Agrária, Universidade Federal do Paraná, como parte das exigências para a obtenção do título de mestre em Ciências.

Orientadora: Prof. Dra. Francine Lorena Cuquel

CURITIBA
2004
AGRADECIMENTOS

À Professora Francine Lorena Cuquel pela orientação, incentivo e ensinamentos transmitidos.

Aos Professores Luiz Antonio Biasi e Marguerite Quoirin pelas sugestões durante a realização deste trabalho.

Ao Curso de Pós-Graduação em Agronomia da UFPR pela oportunidade deste estudo.

Ao Professor João Carlos Possamai pela orientação e apoio para a realização das análises estatísticas.

À Minha mãe, Lia, pela compreensão, amor e estímulo e ao meu pai, José Rios (in memoriam) pelo incentivo aos estudos.

Às minhas irmãs, Rosana e Cristina, aos meus filhos Thaís Mayumi e João Rafael, motivo de alegria e orgulho.

Aos meus amigos, em especial, Marcelo Hammerschmidt, pelo agradável convívio, apoio sincero e presença constante em todos os momentos.
SUMÁRIO

AGRADECIMENTOS .. iii
LISTA DE TABELAS .. vi
LISTA DE FIGURAS .. vii
LISTA DE ANEXOS .. viii
LISTA DE ABREVIATURAS .. X
RESUMO .. xi
ABSTRACT .. xii

1 INTRODUÇÃO ... 1

2 REVISÃO DE LITERATURA .. 3
 2.1 MICROPROPAÇÃO DE PLANTAS ... 3
 2.1.1 Característica das plantas matrizes e coleta de explantes 3
 2.1.2 Assepsia ... 4
 2.1.3 Estabelecimento, isolamento e multiplicação de segmentos nodais 5
 2.1.4 Enraizamento das brotações provenientes dos segmentos nodais 5
 2.2 CALOGÉNESE ... 7
 2.3 MEIO DE CULTURA PARA MICROPROPAÇÃO DE *Gypsophila paniculata* 8
 2.4 VITRIFICAÇÃO ... 11

3 MATERIAL E MÉTODOS .. 13
 3.1 FONTE DE EXPLANTES ... 13
 3.1.1 Plantas matrizes e condições de cultivo .. 13
 3.1.2 Obtenção dos segmentos nodais e segmentos foliares 14
 3.2 EXPERIMENTOS DE ASSEPSIA DOS SEGMENTOS FOLIARES E SEGMENTOS NODAIS ... 15
 3.2.1 Influência do etanol e do hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos foliares .. 15
 3.2.2 Influência de concentrações de hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos nodais 16
 3.2.3 Influência da nordexidina e do PVP-I no controle da contaminação fúngica e bacteriana em segmentos nodais .. 17
 3.2.4 Influência do termoperíodo no controle da contaminação fúngica e bacteriana em segmentos nodais ... 17
 3.2.5 Influência do etanol e do hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos nodais ... 18
 3.3 EXPERIMENTOS DE MICROPROPAÇÃO .. 18
 3.4 EXPERIMENTO DE ENRAIZAMENTO ... 19
 3.5 EXPERIMENTO DE CALOGÉNESE DE SEGMENTOS FOLIARES 20
 3.5.1 Influência da combinação entre ANA e BAP na calogênese de segmentos foliares ... 20
 3.5.2 Influência da concentração de BAP e ANA na organogênese de calos de segmentos foliares ... 20
3.6 ANÁLISE ESTATÍSTICA .. 21
4 RESULTADOS E DISCUSSÃO .. 22
4.1 TESTES DE ASSEPSIA DOS SEGMENTOS FOLIARES E NODAIS............................... 22
4.1.1 Influência do etanol e do hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos foliares.. 22
4.1.2 Influência de concentrações de hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos nodais.. 22
4.1.3 Influência da nordeixidina e do PVP-I no controle da contaminação fúngica e bacteriana em segmentos nodais.. 22
4.1.4 Influência do termoperíodo no controle da contaminação fúngica e bacteriana em segmentos nodais.. 23
4.1.5 Influência do etanol e do hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos nodais.. 23
4.2 EXPERIMENTO DE MULTIPLICAÇÃO ... 24
4.2.1 Porcentagem de calos formados e taxas de sobrevivência .. 24
4.2.2 Comprimento das brotações e número de folhas das brotações 25
4.2.3 Massa fresca e taxa de vitrificação .. 27
4.2.4 Número e viabilidade das brotações .. 28
4.3 EXPERIMENTO DE ENRAIZAMENTO ... 30
4.3.1 Porcentagem de enraizamento e vitrificação ... 30
4.3.2 Porcentagem de calogênese e de sobrevivência das brotações 31
4.3.3 Massa fresca total e comprimento das brotações ... 33
4.3.4 Número de brotações e número de raízes ... 34
4.4 EXPERIMENTOS DE CALOGÊNESE DE SEGMENTOS FOLIARES 35
4.4.1 Influência da combinação entre ANA e BAP na calogênese de segmentos foliares... 35
4.4.2 Influência da concentração de BAP e ANA na organogênese de calos de segmentos foliares .. 37
5 CONCLUSÕES .. 41
6 CONSIDERAÇÕES FINAIS ... 42
7 REFERENCIAS .. 43
LISTA DE TABELAS

TABELA 1 - Efeito do álcool e do hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos nodais de *Gypsophila paniculata* cv. Golan........... 24

TABELA 2 - Porcentagem de calos e taxa de sobrevivência dos explantes a partir de segmentos nodais de *Gypsophila paniculata* cv. Golan em meio de cultura suplementado com diferentes concentrações de reguladores............... 25

TABELA 3 - Comprimento das brotações e número de folhas oriundas dos explantes a partir de segmentos nodais de *Gypsophila paniculata* cv. Golan em meio de cultura suplementado com diferentes concentrações de reguladores............... 26

TABELA 4 - Peso das brotações e porcentagem de brotações vitrificadas oriundas dos explantes a partir de segmentos nodais de *Gypsophila paniculata* cv. Golan em meio de cultura suplementado com diferentes concentrações de reguladores .. 27

TABELA 5 - Número de brotações e viabilidade das brotações oriundas dos explantes a partir de segmentos nodais de *Gypsophila paniculata* cv. Golan em meio de cultura suplementado com diferentes concentrações de reguladores 29

TABELA 6 - Efeito de diferentes concentrações de AIB sobre as taxas de enraizamento e vitrificação de brotações de *Gypsophila paniculata*.. 31

TABELA 7 - Efeito de diferentes concentrações de AIB sobre as taxas de calogênese e de sobrevivência das brotações de *Gypsophila paniculata* cv. Golan....................... 32

TABELA 8 - Efeito das concentrações de AIB sobre o peso de matéria fresca total comprimento das brotações enraizadas de *Gypsophila paniculata* a partir de segmentos nodais.. 33

TABELA 9 - Efeito de diferentes concentrações de AIB sobre o número de brotações e número de raízes... 34

TABELA 10 - Porcentagem de calogênese e peso (mg) dos calos formados a partir de segmentos foliares de *Gypsophila paniculata* L. cv. Golan, em meio de cultura com diferentes concentrações de BAP e ANA.. 37

TABELA 11 - Porcentagem de calos oxidados, brancos e verdes em meio de cultura com diferentes concentrações de BAP e ANA... 38
LISTA DE FIGURAS

FIGURA 1 - Segmentos nodais de *Gypsophila paniculata* L. cv. Golan utilizados como explantes iniciais para micropropagação *in vitro* .. 14

FIGURA 2 - Desenho representativo de cortes transversais e longitudinal de folhas de *Gypsophila paniculata* cv. Golan utilizados como segmentos foliares nos experimentos de assepsia.. 16

FIGURA 3 - Aspecto de uma brotação de *Gypsophila paniculata* L. cv. Golan multiplicada *in vitro* a partir de segmentos nodais... 30

FIGURA 4 - Aspecto da calogênese em segmentos foliares de *Gypsophila paniculata* L. cv. Golan, em meio de cultura com diferentes concentrações de BAP e ANA.. 36

FIGURA 5 - Aspecto de calos formados na organogênese de segmentos foliares de *Gypsophila paniculata* L. cv. Golan, em meio de cultura com diferentes combinações de ANA e BAP.. 39

FIGURA 6 - Aspecto de calos brancos (A) e verdes (B) formados a partir de segmentos foliares de *Gypsophila paniculata* cv. Golan e calo com desenvolvimento de raízes (C) cultivados em meio de cultura MS com diferentes combinações de ANA e BAP.. 40
<table>
<thead>
<tr>
<th>ANEXO</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Composição de macronutrientes, micronutrientes e suplementos do meio básico MS (MURASHIGE e SKOOG, 1962)</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>Análise de variância para porcentagem de contaminação fúngica em segmentos de Gypsophila paniculata cv. Golan submetida a diferentes concentrações de hipoclorito de sódio12%</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Análise de variância para porcentagem de contaminação bacteriana em segmentos de Gypsophila paniculata cv. Golan submetida a diferentes concentrações de hipoclorito de sódio12%</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>Análise de variância para porcentagem de calos formados em segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de reguladores de crescimento</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>Análise de variância para porcentagem de sobrevivência dos explantes de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de reguladores de crescimento</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Análise de variância do número de folhas provenientes de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de reguladores de crescimento</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>Análise de variância do comprimento das brotações provenientes de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de reguladores de crescimento</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>Análise de variância do peso de matéria fresca das brotações provenientes de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de reguladores de crescimento</td>
<td>56</td>
</tr>
<tr>
<td>9</td>
<td>Análise de variância da porcentagem de brotações vitrificadas provenientes de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de reguladores de crescimento</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>Análise de variância do número de brotações provenientes de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de reguladores de crescimento</td>
<td>56</td>
</tr>
<tr>
<td>11</td>
<td>Análise de variância da viabilidade de brotações (%) provenientes de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de reguladores de crescimento</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>Análise de variância da porcentagem de enraizamento de brotações provenientes de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de reguladores de crescimento</td>
<td>57</td>
</tr>
<tr>
<td>13</td>
<td>Análise de variância da porcentagem de vitrificação de brotações provenientes de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de reguladores de crescimento</td>
<td>57</td>
</tr>
<tr>
<td>14</td>
<td>Análise de variância da porcentagem de calogênese de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de AIB</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>Análise de variância da porcentagem de brotações viáveis de segmentos nodais de Gypsophila paniculata cv. Golan submetidos a diferentes concentrações de</td>
<td>57</td>
</tr>
</tbody>
</table>
ANEXO 16 Análise de variância do peso de matéria fresca de brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB ... 58

ANEXO 17 Análise de variância do comprimento de raízes das brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB .. 58

ANEXO 18 Análise de variância do comprimento da parte aérea das brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB .. 59

ANEXO 19 Análise de variância para o número de brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB .. 59

ANEXO 20 Análise de variância do número de raízes provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB .. 59

ANEXO 21 Análise de variância para calogênese de segmentos foliares de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de BAP e ANA.. 59

ANEXO 22 Análise de variância para peso de calos formados a partir de segmentos foliares de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de BAP e ANA .. 59

ANEXO 23 Análise de variância para porcentagem de calos oxidados formados a partir de segmentos foliares de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de BAP e ANA .. 60

ANEXO 24 Análise de variância para porcentagem de calos brancos formados a partir de segmentos foliares de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de BAP e ANA .. 60

ANEXO 25 Análise de variância para porcentagem de calos verdes formados a partir de segmentos foliares de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de BAP e ANA .. 60
LISTA DE ABREVIATURAS

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Nome Complementar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>Ácido 2,4 diclorofenoxiacético</td>
</tr>
<tr>
<td>AIA</td>
<td>Ácido Indolacético</td>
</tr>
<tr>
<td>AIB</td>
<td>Ácido Indolbutírico</td>
</tr>
<tr>
<td>ANA</td>
<td>Ácido Naftalenoacético</td>
</tr>
<tr>
<td>BAP</td>
<td>Benzilaminopurina</td>
</tr>
<tr>
<td>C.V(%)</td>
<td>Coeficiente de Variação</td>
</tr>
<tr>
<td>GA₃</td>
<td>Ácido Giberélico</td>
</tr>
<tr>
<td>CIN</td>
<td>Cinetina</td>
</tr>
<tr>
<td>NaOCl</td>
<td>Hipoclorito de Sódio 12%</td>
</tr>
<tr>
<td>PVP-I</td>
<td>Polivinilpirrolidona Iodo 10%</td>
</tr>
<tr>
<td>TDZ</td>
<td>Thidiazuron</td>
</tr>
<tr>
<td>ZEA</td>
<td>Zeatina</td>
</tr>
</tbody>
</table>
MICROPROPAGAÇÃO DE *Gypsophila paniculata* PELA CULTURA DE SEGMENTOS NODAIS E CALOGÉNESE A PARTIR DE SEGMENTOS FOLIARES

RESUMO

A floricultura traz muitos benefícios sociais, já que é possível produzir em pequenas áreas, criando trabalho e mantendo o homem no campo. *Gypsophila paniculata* é uma espécie com grande mercado dentre as flores de corte e também pode ser cultivada em pequenas propriedades. Comercialmente é propagada por métodos vegetativos *in vitro*. Este trabalho teve como objetivo estabelecer um protocolo de micropropagação através de segmentos nodais e a calogênese de segmentos foliares como possível forma de propagação desta espécie. Os experimentos foram conduzidos no Laboratório de Micropropagação de Plantas da UFPR. As plantas matrizes de *Gypsophila paniculata* cv Golan foram obtidas de produtores da região de Atibaia, Estado de São Paulo e foram plantadas em vasos de 20 litros e mantidas em casa-de-vegetação, com temperatura e umidade. Foram utilizados como explantes, segmentos nodais e segmentos foliares. Segmentos nodais com 1 a 2 cm de comprimento foram retirados das plantas matrizes e submetidos a experimentos de assepsia. Para os experimentos de multiplicação e enraizamento foram utilizados segmentos nodais provenientes do experimento de assepsia. Para os experimentos de calogênese foram utilizados segmentos foliares retirados das brotações provenientes da fase de multiplicação. Para a assepsia foram testadas diferentes concentrações de hipoclorito de sódio. Na multiplicação a partir de segmentos nodais foi testada a combinação de CIN, ANA e GA₃ e para a fase de enraizamento foram testados diferentes concentrações de AIB (0,3 mg.L⁻¹, 0,5 mg.L⁻¹ e 1,0 mg.L⁻¹). No processo de calogênese foi testado a concentração de ANA (0,0 ; 0,3 e 1,0 mg.L⁻¹) e BAP (3,0 e 5,0 mg.L⁻¹). De acordo com os resultados estatísticos a assepsia dos segmentos nodais pode ser obtida pela imersão em etanol 70%, por 30 segundos, seguida de hipoclorito de sódio 2%, por 10 minutos. A combinação de 0,1 0,3 mg.L⁻¹ com 0,1 mg.L⁻¹ de GA₃ foi a que apresentou os melhores resultados de multiplicação de segmentos nodais. A concentração de 0,3 mg.L⁻¹ de AIB foi a que promoveu a maior taxa de enraizamento (80%) e na calogênese foram obtido resultados com a combinação de 5,0 mg.L⁻¹ de BAP com 1,0 mg.L⁻¹ de ANA.

Palavras-chave: mosquitinho, gypsophila, cultura de tecidos, biotecnologia, *in vitro*.
ABSTRACT

MICROPROPAGATION OF THE *Gypsophila paniculata* THROUGH CULTURE OF NODAL SEGMENTES AND CALOGENESIS FROM LEAF SEGMENTS

Floriculture brings social benefits, because it is possible to produce in small areas, creating jobs and maintaining man in the field. *Gypsophila paniculata* is one of the species with the biggest market among cut flowers and possible to produce in small areas. Commercially it is propagated by *in vitro* vegetative methods. The goal of this work was to improve *in vitro* technology to propagate *Gypsophila paniculata* trough nodal segments and study calogenesis by leaf segments. Experiments were conduct at Federal University of Parana, in the Micropropagation Laboratory. Plants from “Golan” cultivar from a grower situated in Atibaia, São Paulo State, were used to start this research. They were planted in pots and maintained inside a greenhouse with temperature and moist controlled, supplying nodal segments. Nodal segments with 1 to 2cm were removed from these plants and submitted to treatments with sodium hypochlorite and alcohol to obtain aseptic material. Aseptic nodal segments were *in vitro* isolated on MS media containing several concentrations of KIN and GA\(^3\). After 30 days they transferred to MS media containing several concentrations of IBA. *In vitro* plants obtained from the previous experiments supplied leaf explants to the next experiment. To induce calogenesis leaf segments were tested on MS media containing different concentrations of NAA and BAP. Aseptic nodal segments were obtained by immersion in alcohol 70% during 30 seconds, followed by immersion in sodium hypochlorite 2% during 10 minutes. Better nodal segments multiplication was obtained in MS media containing 0.1 mg.L\(^{-1}\) of KIN and 0.1 mg.L\(^{-1}\) of GA\(^3\). Better rooting was obtained in MS media containing 0.3 mg.L\(^{-1}\) of IBA. Better calogenesis was obtained in MS media containing 5.0 mg.L\(^{-1}\) of BAP and 1.0 mg.L\(^{-1}\) of ANA.

Key-words: floriculture, ornamental plant, propagation, baby breath.
1 INTRODUÇÃO

A espécie Gypsophila paniculata L., conhecida como mosquitinho, pertence à família Caryophyllaceae Lindl., a qual possui cerca de 80 gêneros e 2.000 espécies com ampla distribuição em todas as regiões do globo (GEMTCHUJNICOV, 1976). A *Gypsophila paniculata* é uma planta originária da Europa e da Ásia Ocidental, região onde predomina o clima temperado. Das várias espécies do gênero somente a *Gypsophila paniculata* tem sido cultivada comercialmente como flor de corte (ARTEAGA e AMEZQUITA, 1990a). São plantas arbustivas, perenes, de formas arredondadas chegando a ter um metro de altura (BARROSO, 1978) e possuem ramos muito finos e folhas lineares. Sua floração natural ocorre no final da primavera e continua até o outono, podendo gerar dois ou três cortes de flores neste período (SHILLO e HALEVY, 1982). É uma planta de clima temperado, de dias longos e, sob condições controladas de cultivo pode produzir flores o ano todo. As flores brancas, pequenas e numerosas são muito apreciadas como flores de corte para formar arranjos florais com outras plantas (INFOAGRO, 2002).

O cultivo de *Gypsophila paniculata*, no Brasil, tem aumentado significativamente destacando-se como sendo um dos 10 produtos mais vendidos no Veilling Holambra-SP e nos onze principais países produtores de flores e plantas ornamentais (CASTRO, 1998).

Muitos são os fatores relacionados ao cultivo e desenvolvimento desta cultura, em particular, destaca-se a propagação da espécie. A propagação é restrita porque muitas variedades são unissexuais e não produzem sementes (SHILLO, 1985, citado por ZUKER et al., 1997). Portanto, a propagação vegetativa por estacas de qualidade e em condições apropriadas, proporciona plantas com crescimento e floração semelhantes às plantas matrizes (ARTEAGA e AMEZQUITA, 1990b). Entretanto este processo pode apresentar problemas fitossanitários que são introduzidos nas áreas de cultivo através de material propagativo contaminado. A planta pode ser contaminada pela bactéria *Erwinia*

herbicola pv. Gypsophilae (Ehg) que causa galhas (COOKSEY, 1986). Esta doença pode causar 30 - 60 % das perdas de plantas de Gypsophila paniculata em campos comerciais e pode ser o fator limitante para a propagação da planta (MILLER et al., 1981). A ocorrência da doença é mais freqüente durante a propagação de estacas em casas-de-vegetação, tendo como resultado o enfraquecimento, a queda das folhas e finalmente morte da planta inteira (CLARK et al., 1989).

A técnica da cultura de tecidos em Gypsophila paniculata tem sido usada principalmente para micropropagação e eliminação de doenças (HENRY, 1993). A cultura de tecidos pode ser definida como o cultivo de todos os tipos de células, tecidos e órgãos da planta, sob condições assépticas (SMITH e DREW, 1990). Em um sentido mais restrito, como um processo mediante o qual pequenos fragmentos de tecido vivo são isolados de um organismo e cultivados assepticamente, por períodos indefinidos, em um meio nutritivo (MANTELL et al., 1994). Este processo está baseado na totipotencialidade dos explantes, ou seja, no princípio de que cada célula vegetal possui o potencial genético para reproduzir um organismo inteiro, o que o torna uma ferramenta poderosa para a propagação massal de genótipos superiores (TORRES et al., 1998). Além disso, as técnicas de cultura de tecidos permitem uma multiplicação mais rápida quando comparadas às demais técnicas de propagação assexuada, além de constituir um pré-requisito para futuros estudos de engenharia genética (LACORTE, 1991).

O presente estudo teve como objetivo geral estabelecer um protocolo de propagação in vitro, envolvendo as etapas de desinfestação, multiplicação e enraizamento in vitro de Gypsophila paniculata, e também estudar a calogênese de segmentos foliares como possível forma de propagação. Os objetivos específicos foram: i) determinar o melhor método de assepsia dos explantes foliares e segmentos nodais; ii) definir os reguladores de crescimento e concentração mais eficientes para a multiplicação in vitro do mosquitinho (Gypsophila paniculata L. cv. Golan); iii) definir a concentração mais adequada de ácido indolbutírico para o enraizamento in vitro; iv) definir os reguladores de crescimento e concentração mais eficientes para induzir calogênese em segmentos foliares de Gypsophila paniculata cv. Golan.
2 REVISÃO DE LITERATURA

2.1 MICROPROPAGAÇÃO DE PLANTAS

A micropropagação, termo proposto por HARTMANN e KESTER (1968), pode ser dividida em três fases: I – etapa de estabelecimento do cultivo inicial ou primário; II - etapa de multiplicação das brotações e III – etapa do enraizamento (MURASHIGE, 1974). Uma etapa anterior ao isolamento, que compreende a seleção da planta-matriz fornecedora de explantes e pré-tratamentos para promover uma determinada resposta in vitro pode ser considerada como mais uma fase deste processo (DEBERGH e MAENE, 1981) e outra posterior ao enraizamento, denominada aclimatização que compreende a transferência para o meio ambiente (KRIKORIAN, 1991).

2.1.1 Característica das plantas matrizes utilizadas in vitro

Plantas sadias e que não apresentam sinais de deficiência nutricional ou hídrica, geralmente, fornecem explantes com melhor qualidade (GRATTAPAGLIA e MACHADO, 1998). Segundo os autores, os explantes devem ser retirados preferencialmente a partir de brotações novas, formadas durante a fase de crescimento ativo da planta logo após o seu período de dormência.

As plantas matrizes devem ser mantidas livres de insetos e microrganismos com o auxilio da aplicação regular de inseticidas, fungicidas e acaricidas, podendo ainda ser feito um pré-tratamento químico com solução de Benomyl (Benlate® solução 0,2%) de 24 a 48 horas antes da coleta dos explantes (GRATTAPAGLIA e MACHADO, 1998; GEORGE, 1993).

Segundo GRATTAPAGLIA e MACHADO (1998), podem ser utilizados diversos tipos de explantes para iniciar a propagação in vitro. Para a escolha do explante devem ser considerados aspectos como o nível de diferenciação do tecido utilizado e a finalidade da micropropagação. Teoricamente, qualquer tecido pode ser utilizado como explante, tendo em vista a totipotência das células vegetais. Na prática, entretanto procura-se
utilizar explantes que contenham maior proporção de tecido meristemático ou que tenham maior capacidade de expressar a totipotência. Em geral utiliza-se como explantes, ápices caulinares, gemas axilares e meristemas.

Os brotos de 1,5 – 2,5 cm de comprimento são coletados e, posteriormente, têm seu tamanho reduzido para isolamento do ápice meristemático (KUSEY et al., 1980; SONG et al. 1996). CALDAS et al. (1990) afirmaram que gemas apicais apresentam maior capacidade de crescimento quando comparadas com gemas axilares que estão sob efeito da dominância apical. Folhas encurtadas a 1 – 2 cm no comprimento e cortadas longitudinalmente podem ser utilizadas como explantes para obtenção de brotos adventícios num procedimento eficiente de transformação genética (AHRONI et al., 1997; ZUKER et al., 1997).

O material vegetal coletado pode ser armazenado a baixas temperaturas para favorecer o desenvolvimento de gemas axilares. Assim, AHRONI et al. (1997) e ZUKER et al. (1997) trabalhando com *Gypsophila paniculata*, mantiveram o material vegetal coletado armazenado a 4ºC durante duas semanas antes do isolamento dos explantes.

ZUKER et al. (1997) descreveram em seu trabalho a regeneração de gemas adventícias de *Gypsophila paniculata* a partir de segmentos foliares bem como ZAMORANO et al. (1994); LEE e BAE, (1999) e AHRONI et al. (1997) também obtiveram sucesso na regeneração a partir de explantes foliares.

2.1.2 Assepsia

A fase de assepsia apresenta a dificuldade de encontrar um ponto de equilíbrio entre o ponto ideal de descontaminação do tecido sem conduzi-lo à morte quando isolado. As concentrações das soluções desinfestantes, assim como as combinações dos princípios ativos e o tempo de exposição podem variar muito. Estes fatores podem ser manipulados de acordo com a sensibilidade do tecido (GRATTAPAGLIA e MACHADO, 1998).

AHRONI et al. (1997) utilizando segmentos nodais e ZUKER et al. (1997) utilizando segmentos de folhas de *Gypsophila paniculata* como explantes para a regeneração enxaguaram estes explantes com etanol 70%, a seguir foram esterilizados por dez minutos em hipoclorito de sódio 1,5% e enxaguados três vezes por dez minutos cada uma em água esterilizada.
2.1.3 Estabelecimento, isolamento e multiplicação de segmentos nodais

GRATTAPAGLIA e MACHADO (1998) sugeriram a realização de um pré-condicionamento dos segmentos nodais, isolando-os em meio nutritivo sem fitorreguladores. Justificam que estes fitorreguladores podem estimular respostas indesejadas como a formação de calo e, eventualmente intoxicar os tecidos.

Na fase de multiplicação, o principal objetivo é produzir o maior número de plantas possível, no menor espaço de tempo. Entretanto alguns aspectos qualitativos devem ser considerados. Não basta obter altas taxas de multiplicação em alguns explantes. O importante é obter uma taxa média satisfatória com o mínimo de variação de explante para explante. Outro aspecto importante é a qualidade e homogeneidade das partes aéreas produzidas, o que irá determinar o sucesso na fase seguinte de enraizamento (GRATTAPAGLIA e MACHADO, 1998). Ainda, segundo estes autores, a composição do meio de cultura utilizado, as condições ambientais de crescimento e os cuidados na manipulação do material durante as subculturais, são variáveis que podem ser manipuladas para otimizar esta fase de crescimento.

As vias metabólicas e bioquímicas que funcionam nas plantas são conservadas nas células cultivadas, mesmo que alguns processos, como a fotossíntese, possam ser inativados pelas condições de cultivo e pelo estado de diferenciação celular. Portanto, os meios nutricionais têm por finalidade suprir as exigências da planta inteira quanto aos nutrientes minerais (CALDAS et al., 1990). A quantidade e a forma de elementos minerais essenciais, vitaminas e outros suplementos orgânicos, fonte de carbono, agente geleificante, pH e capacidade tampão do meio são alguns aspectos que também devem ser levados em consideração além da escolha dos reguladores de crescimento para a formulação do meio de cultura ideal (HAN et al., 1991b; 1995; 1996a).

2.1.4 Enraizamento das brotações provenientes dos segmentos nodais

Segundo GRATTAPAGLIA e MACHADO (1998), esta é a fase onde há proliferação de raízes adventícias nas partes aéreas provenientes da fase de multiplicação. Os propágulos derivados desta etapa são pequenos e ainda incapazes de auto-sustentar o crescimento no solo ou em substratos, necessitando passar por uma fase que propicie a formação de raízes.
A rizogênese pode ser dividida em indução, iniciação e alongamento das raízes, cada uma destas etapas requerendo quantidades diferentes de auxina. Nas fases iniciais há uma maior dependência auxínica o que acaba inibindo o crescimento e alongamento das raízes (GRATTAPAGLIA e MACHADO, 1998). As auxinas mais utilizadas em meio de cultivo são Ácido indolacético (AIA), Ácido naftalenoacético (ANA) e Ácido indolbutírico (AIB). O uso de Ácido 2,4 diclorofenoxiacético (2,4-D) não é recomendado devido ao forte estímulo à formação de calos e à repressão da organogênese (DODS e ROBERTS, 1985).

A indução para a formação adventícia de raízes in vitro pode ser facilitada pela adição, em baixa concentração, de auxinas no meio de cultura. Entretanto, este tratamento hormonal deve ser utilizado apenas por um período limitado, pois as auxinas necessárias para a indução de raízes podem inibir o alongamento destas raízes (DEBERGH e MAENE, 1981).

A eliminação da etapa de enraizamento in vitro é economicamente desejável (DEBERGH e MAENE, 1981) e esta etapa pode ser, para algumas espécies, realizada fora dos recipientes de cultura (MAENE e DEBERGH, 1983) diminuindo assim os custos operacionais. KUSEY et al. (1980) obtiveram brotações de explantes caulinares de Gypsophila paniculata, em meio com 0,05 mg.L\(^{-1}\) de ANA, 60 % das brotações enraizadas em três semanas tendo a maioria das plantas sobrevivido ao plantio. MENDOZA e MUÑOZ (1994), testando diversas combinações de reguladores de crescimento, em meios de enraizamento de explantes de Gypsophila paniculata, obtiveram o maior comprimento de raiz (2,32 cm) com o uso de 0,75 mg.L\(^{-1}\) de AIB. Entretanto, HAN et al. (1991a) em seu experimento induziram a formação de raízes nesta espécie com a adição de 1,0 mg.L\(^{-1}\) de AIB no meio de enraizamento.

SONG et al. (1996), utilizando plântulas de Gypsophila paniculata alcançaram a taxa de 95% de enraizamento após 14 dias em meio MS (MURASHIGE e SKOOG, 1962) suplementado com 5 mg.L\(^{-1}\) de AIA ou 0,1 mg.L\(^{-1}\) de ANA ou 0,2 mg.L\(^{-1}\) de AIB.

Brotos de Gypsophila paniculata com 2 cm de comprimento foram enraizados em meio MS com sais reduzidos pela metade contendo 0,1 mg.L\(^{-1}\) de ANA e 0,1 mg.L\(^{-1}\) de GA\(_3\) (ZUKER et al., 1997).

AHRONI et al. (1997), utilizando cinco meios de enraizamento (1/2 MS, MS, MS com 0,1 mg.L\(^{-1}\) de ANA, MS com 0,1 mg.L\(^{-1}\) de GA\(_3\) e MS com 0,1 mg.L\(^{-1}\) de ANA e 0,1 mg.L\(^{-1}\) de GA\(_3\)), verificaram que 95% dos brotos com comprimento variando de 1,5 cm a 2
cm cultivados em meio de multiplicação, enraizaram após três a quatro semanas, independente do meio utilizado e que, 98% do material enraizado pode ser aclimatizado.

2.2 CALOGÊNESE

A colocação de uma porção de tecidos de uma planta num meio de cultura, contendo nutrientes e reguladores de crescimento, traz como conseqüência a liberação de suas células do controle hormonal a que estavam submetidas, expondo-as a uma nova condição onde a capacidade de divisão pode ser requerida, fenômeno este chamado desdiferenciação (HANDRO e FLOH, 1990). O calo é um tecido amorfo e desorganizado, formado pela intensa atividade de células vegetais (GRATTAPAGLIA e MACHADO, 1998). A formação de calos pode ser dividida em três fases: indução, divisão celular e diferenciação. Durante a fase de indução ocorre um estímulo no metabolismo preparando as células para a divisão celular. Na fase de divisão, os explantes readquirem capacidade meristemática pela desdiferenciação de suas células, promovendo o crescimento do calo, pela produção de células parenquimáticas indiferenciadas. Na última fase, algumas regiões do calo rediferenciam-se formando zonas de atividade meristemática (AITCHISON et al., 1977).

A partir destas zonas de atividade meristemática, as divisões celulares e o padrão de diferenciação podem ocorrer de maneira a conduzir a um grau de organização morfo-anatômica peculiar, que no caso de caracterizar um órgão definido, constitui-se no processo chamado organogênese (HANDRO e FLOH, 1990).

Usualmente se induz a formação de calos em explantes cultivados em meio de cultura contendo auxina, ou com alta relação auxina:citocinina. O meio para a proliferação dos calos pode necessitar uma composição ligeiramente diferente daquela utilizada na sua indução. Já a diferenciação de gemas geralmente se obtém cultivando os calos em meio de cultura com alta relação citocinina:auxina (LITZ e JARRET, 1991).

As condições físicas de incubação, como a temperatura, umidade, intensidade, qualidade e duração do período de luz, os componentes do meio de cultura e o próprio genótipo do material vegetal cultivado, influem sobre a morfogênese dos tecidos vegetais (GEORGE e SHERRINGTON, 1984).

A calogênese também é afetada por características do explante, como a origem, tamanho, idade e pré-tratamentos a que são submetidos (FORTES, 1992). O tipo de
explante afeta o padrão de desenvolvimento nos cultivos *in vitro*. Geralmente, na regeneração os explantes mais utilizados são folhas e entrenós, que precisam ser seccionados para que haja uma intensa proliferação celular com formação de tecidos de cicatrização e zonas de intensa atividade meristemática. Folhas jovens são mais responsivas do que folhas velhas e a parte mediana da folha é mais prolífica do que as laterais. Também a posição do explante no meio de cultura é importante. Alguns trabalhos em macieira demonstraram que a regeneração a partir de explantes foliares ocorre somente quando a superfície adaxial fica em contato com o meio de cultura (SCHUCH, 2000).

Folhas jovens também foram utilizadas como explantes por SALMAN (2002), para obtenção de calos em *Gypsophila paniculata*. Os explantes foram cultivados em meio de cultura MS suplementado com diferentes concentrações de Benzilaminopurina (BAP) e 2,4-D. A calogênese também foi obtida inoculando-se folhas jovens de cravos em meio MS com diferentes concentrações de 2,4-D (0,2; 0,5; 1,0; 2,0 e 5,0 mg.L\(^{-1}\)) combinados com BAP (0; 0,2; 0,5; 1,0; 2,0 e 5,0 mg.L\(^{-1}\)) sendo que o melhor resultado obtido foi para a concentração de 0,5 mg.L\(^{-1}\) de 2,4-D e 1,0 mg.L\(^{-1}\) de BAP (JAIN et al., 2001).

2.3 MEIO DE CULTURA PARA MICROPROPAGAÇÃO DE *Gypsophila paniculata*

Grande parte dos trabalhos realizados com *Gypsophila paniculata* utilizou como meio de cultura o meio MS (MURASHIGE e SKOOG, 1962) para micropropagação dessa espécie (AHRONI et al., 1997; HAN et al., 1991a; 1991b; 1992; 1995; 1996a; 1996b; KUSEY et al., 1980; MENDONZA e MUNHOZ, 1994; NAKANO et al., 1996; SONG et al., 1996; TAKANE et al., 1994; ZUKER et al., 1997). Comparando meios MS e WPM (“Wood Plant Medium”) HAN et al. (1996b) concluíram que a propagação e a diferenciação de gemas foram melores no meio MS. KUSEY et al. (1980) obtiveram organogênese direta a partir de explantes de gema apical isolados neste meio.

O meio MS pode ser utilizado com a concentração normal de sais ou reduzida. Em subcultivos de calos de *Gypsophila paniculata*, NAKANO et al. (1996) utilizaram o meio MS na concentração normal, ¼ e ½ de sais e verificaram que variações na concentração de sais do meio de cultura podem ser bem sucedidas. Entre os constituintes do meio MS, a glicina é um aminoácido que pode ser dispensável. LINSMAIER e SKOOG (1965) demonstraram que este aminoácido não apresentou efeito algum na cultura de tecidos de
fumo, sendo portanto, dispensável. Apesar das vitaminas tiamina, piridoxina e do ácido nicotínico serem frequentemente utilizados no meio MS, tem-se demonstrado que apenas a tiamina apresenta resultados mais positivos, tendo um efeito estimulador na promoção do crescimento de diversas culturas, sendo variável a resposta encontrada com as demais vitaminas (CALDAS et al., 1990).

LINSMAIER e SKOOG (1965) sugeriram um aumento na concentração de tiamina para 0,4 mg.L\(^{-1}\) e a eliminação de piridoxina e ácido nicotínico, pois estes tiveram um comportamento inibitório ao crescimento. Tal procedimento tem sido utilizado para a multiplicação in vitro de Gypsophila paniculata (KUSEY et al., 1980). DILLEN e BUYSENS (1989), em seu trabalho, também eliminaram a piridoxina e o ácido nicotínico do meio e acrescentaram somente tiamina na concentração de 1,0 mg.L\(^{-1}\).

As auxinas e citocininas são as classes de reguladores de crescimento mais utilizadas na cultura in vitro (CALDAS et al., 1990). Embora nem sempre sejam necessárias no meio de multiplicação, as auxinas têm sido utilizadas para promover o crescimento de calos, suspensões celulares e em combinação com citocininas, regular a morfogênese estabelecendo o equilíbrio adequado de reguladores de crescimento (GEORGE e SHERRINGTON, 1984).

Auxinas são compostos de ocorrência natural nas plantas, capazes de iniciar a divisão celular e estão envolvidas na formação dos merístemas originados de tecidos não organizados ou de órgão definido (GEORGE, 1993). Entre as auxinas naturais, o AIA é o composto de maior utilização. Também são amplamente utilizados compostos que possuem um efeito fisiológico similar e que são produzidos artificialmente, chamados auxinas sintéticas, entre as quais estão o ANA e 2,4-D (KRIKORIAN, 1991).

O AIB é a auxina mais eficiente na indução da formação de raízes nas culturas (DODDS e ROBERTS, 1985) enquanto que o ANA pode estimular a formação de calo.

Os efeitos das citocininas são bastante evidentes em cultura de tecidos, quando são utilizadas para estimular a divisão celular e controlar a morfogênese (GEORGE, 1993; GEORGE e SHERRINGTON, 1984). De acordo com GRATTAPAGLIA e MACHADO (1998), as citocininas são indispensáveis à proliferação de gemas axilares, por promoverem a quebra da dominância apical dos explantes.

O uso de BAP tem sido preferido para a multiplicação de segmentos nodais de Gypsophila paniculata. Em cultivos in vitro tem-se usado concentrações de BAP variando entre 0,5 e 3,0 mg.L\(^{-1}\) (HAN et al., 1991a; 1991b; 1992; 1995; 1996a; 1996b; KUSEY et al., 1980; MENDONZA e MUÑOZ, 1994; SONG et al., 1996).
Outras citocininas também têm sido testadas. KUSEY et al. (1980) combinaram ANA com Cinetina (CIN), além de BAP, comparando seus efeitos no crescimento e na multiplicação de brotos de gypsophila e concluíram que altos níveis de ANA estimularam o crescimento de calos e inibiram a multiplicação e que BAP a 1,0 mg.L\(^{-1}\) proporcionou melhor proliferação de brotos, massa da matéria fresca total, tamanho de calo e máximo comprimento das brotações formadas.

SONG et al. (1996) combinaram BAP na concentração de 0,5 mg.L\(^{-1}\) com ANA a 0,5 mg.L\(^{-1}\) e CIN a 1,0 mg.L\(^{-1}\), para a multiplicação dos segmentos nodais. ZUKER et al. (1997) utilizando as cultivares Arbel, Golan, Gilboa, Tavor, Perfecta e Flamingo, para regeneração foliar, testaram três concentrações das citocininas Thidiazuron (TDZ) e BAP em combinações com ANA. Estes autores concluíram que o meio contendo TDZ foi mais eficiente na formação de brotos bem como o número de brotos por folha formado. De acordo com o trabalho desenvolvido, a adição de 3,0 mg.L\(^{-1}\) de TDZ e 0,3 mg.L\(^{-1}\) de ANA no meio de cultura propiciou um aumento de aproximadamente duas vezes o número de explantes que regeneraram brotos (47%), quando comparado aos resultados obtidos com a adição de 6,0 mg.L\(^{-1}\) de BAP que não ultrapassaram os 29% de brotos formados. Segundo estes mesmos autores houve também uma pequena diferença no número de brotos regenerados observando-se uma média de 5 ± 1 brotos por explante no meio contendo TDZ contra uma média de 4 ± 1 no meio contendo BAP.

LEE e BAE (1999) utilizando segmentos de folhas para a regeneração in vitro de Gypsophila paniculata afirmaram também que TDZ apresentou maior eficiência na regeneração da folha quando comparado com BAP e CIN.

AHRONI et al. (1997), testaram as citocininas BAP, CIN e Zeatina (ZEA) e também TDZ, e obtiveram melhores resultados com TDZ, seguido de BAP e ZEA, enquanto CIN conferiu os piores resultados para a porcentagem de brotos formados. De acordo com os autores, a adição de 6 mg.L\(^{-1}\) de BAP ao meio de cultura levou a um aumento de 63% do número de explantes que regeneraram brotos, quando comparado com os resultados obtidos com a adição de 3 mg.L\(^{-1}\) de BAP (25%), porém não houve aumento significativo no número de brotos regenerados por explante, sendo de aproximadamente 4,0 para ambas concentrações de BAP. A adição de 3 mg.L\(^{-1}\) de TDZ proporcionou um percentual de 94% de brotos formados com uma média de 11 ± 2 brotos por explante.

NUGENT et al. (1991), trabalhando com cravos que, como a Gypsophila pertence à família de Caryophyllaceae, afirmaram que o TDZ é a citocinina mais eficaz para a regeneração a partir de explantes de ramos.
HAN et al. (1995; 1996a) multiplicaram explantes de Gypsophila suplementando o meio MS com 0,5 mg.L\(^{-1}\) de AIA e 0,5 mg.L\(^{-1}\) de BAP. Em outro trabalho (1996b) os mesmos autores obtiveram melhores resultados quando suplementaram o meio MS com 2,0 mg.L\(^{-1}\) de BAP e auxinas ANA e AIA na concentração de 0,05 mg.L\(^{-1}\) cada. Utilizando ápices caulinares de gypsophila MENDOZA e MUÑOZ (1994), suplementaram o meio com 0,5 mg.L\(^{-1}\) de AIA e 3,0 mg.L\(^{-1}\) de BA e obtiveram regeneração de oito brotos por explante, num período de cinco semanas. Com explantes de folhas houve a formação de calos que apresentaram alta capacidade de formar raízes e que não puderam ser revertidas por reguladores de crescimento para a emissão de brotações.

2.4 VITRIFICAÇÃO

As brotações vitrificadas apresentam folhas translúcidas, túrgidas (DEBERGH et al., 1981) e com aspecto molhado, encharcado (GEORGE, 1993) apresentando excesso de água nos espaços intercelulares (KEVERS e GASPAR, 1986). As brotações também se apresentam mal formadas e alongadas (ZIMMERMAN e COBB, 1989). As plantas vitrificadas não sobrevivem ao transplante para o solo porque possuem menor conteúdo de matéria seca que as plantas normais e são menos lignificadas (KEVERS et al., 1984). As espécies Forsythia intermédia, Oreopanax nymphaeifolium, Gerbera jamesonii, Cynara scolymus, Dianthus caryophyllus, Prunus sp, Malus sp, Gypsophila paniculata, entre outras, quando cultivadas in vitro, podem apresentar o fenômeno da vitrificação (DEBERGH, 1983; KEVERS et al., 1984).

ZIMMERMAN e COBB (1989) observaram que o aumento na concentração de ágar no meio de cultura reduz a hiper-hidricidade de tecidos cultivados, entretanto, reduz a taxa de multiplicação. HAN et al. (1991b) chegaram a mesma conclusão, onde,
cultivando plântulas de *Gypsophila* em cinco concentrações diferentes de ágar por seis semanas verificaram que a massa fresca, o número de brotações e a relação massa de matéria fresca:massa seca diminuíram quando o potencial hídrico foi menor que –6,0 bars (ágar 1,3%).

MIROSHNICHENKO e DOLGOV, (2000), em seus trabalhos com cravos, afirmaram que ao aumentar a concentração de TDZ de 0,5 mg.L⁻¹ para 2,0 mg.L⁻¹ proporcionaram um aumento na formação de calos de explantes foliares mas também ocorreu um aumento na vitrificação dos brotos formados. Isto confirma a informação de DEBERGH (1983), que uma redução na concentração de citocinina no meio de cultura proporciona uma diminuição da hiper-hidratação. Semelhante resultado é descrito por HAN et al., (1991) onde verificaram que BAP nas concentrações variando de 0,5 - 2,0 mg.L⁻¹ foi a citocinina mais eficaz para a proliferação de brotos, mas resultou em elevada taxa percentual de vitrificação, quando comparada CIN e 2iP.

CASTRO et al. (1996) observaram que na propagação *in vitro* de *gypsophila*, a taxa mais elevada do vitrificação (69%) foi observada no meio suplementado com 2,0 mg.L⁻¹ de CIN e AIA (10 mg.L⁻¹) e na menor concentração de AIA (0,5 mg.L⁻¹), nenhuma diferença foi observada no estabelecimento ou no número dos brotos produzidos mas o comprimento médio do broto foi significativamente mais elevado.

MUTHAPPA e NARAYANASWAMY (1998) conduziram um experimento para determinar os efeitos de diferentes concentrações de ágar na incidência de vitrificação, concluindo que a concentração de 8 g.L⁻¹ produziu um número mais elevado de plantas normais do que no meio isento de ágar.

YADAV et al. (2003) conseguiram reduzir a hiper-hidricidade na micropropagação de cravos, aumentando a concentração do ferro e/ou do magnésio no meio contendo 0,7 a 0,8% de ágar. Em algumas concentrações, a hiper-hidricidade foi eliminada e a multiplicação dos brotos foi aumentada.
3 MATERIAL E MÉTODOS

Este trabalho foi realizado no Laboratório de Micropropagação e na casa-de-vegetação do Departamento de Fitotecnia e Fitossanitarismo do Setor de Ciências Agrárias da Universidade Federal do Paraná, em Curitiba, Paraná.

O meio básico de cultura utilizado na pesquisa foi o MS (MURASHIGE e SKOOG, 1962) contendo sais minerais, vitaminas e compostos orgânicos, cuja composição está relacionada no Anexo1. O pH do meio de cultura foi ajustado para 5,8 antes da adição do ágar Vetec®. De acordo com o experimento, aíquotas do meio de cultura foram distribuídas em frascos de 30 mL e 250 mL, e tubos de ensaio de 25 x 150 mm. Nos frascos menores e nos tubos de ensaio sempre foram adicionados 10 mL de meio e colocado um explante enquanto que nos maiores, 25 mL e colocados de 3 a 5 explantes. Os frascos maiores foram vedados com tampas de polipropileno e os demais com papel-alumínio. A esterilização do meio de cultura foi realizada em autoclave, a 120ºC, sob pressão de 1,05 kg.cm$^{-2}$, por 20 minutos. Os frascos com os explantes foram mantidos em sala de crescimento com iluminação artificial fornecida por lâmpadas fluorescentes do tipo “branca fria”, de irradiância de 40 μmol.m$^{-2}$.s$^{-1}$, 16 horas de fotoperíodo e temperatura de 26±2ºC.

3.1 FONTE DE EXPLANTES

3.1.1 Plantas matrizes e condições de cultivo

Mudas de Gypsophila paniculata L. cv. Golan foram obtidas da Flora Hiranaka da cidade de Atibaia, Estado de São Paulo, em maio de 2002, sendo o plantio realizado em recipientes plásticos com capacidade de 20,0 L, contendo uma mistura em volumes iguais de solo e areia.

As plantas matrizes foram tutoradas e mantidas em casa-de-vegetação por um período de um ano. Durante esse período, as plantas receberam aplicações mensais de benomyl (Benlate 500®) - 2 g.L$^{-1}$, em caráter preventivo, acephato (Acephato Fersol 750 PS®) - 2 g.L$^{-1}$ e mancozeb (Dithane PM®) – 1,5 g.L$^{-1}$ conforme a necessidade de controle
dos patógenos. Foram realizadas pequenas podas para retirada de ramos secos ou doentes quando necessário.

A irrigação foi realizada, sistematicamente, a cada 3-4 dias de acordo com a demanda hídrica, segundo as práticas recomendadas para a cultura, procurando-se molhar apenas o substrato, a fim de reduzir o grau de infestação da parte aérea.

3.1.2. Obtenção dos segmentos nodais e segmentos foliares

Ramos vegetativos com 8 a 10 cm de comprimento foram retirados das plantas matrizes, cortados na base e acondicionados em sacos plásticos que foram vedados e conduzidos ao laboratório. Em sala de assepsia, os ramos foram seccionados e a maioria das folhas foi retirada sendo que as mais novas foram utilizadas como explantes nos experimentos com segmentos foliares. Dos ramos seccionados foram preparados segmentos nodais com 1 cm de comprimento (Figura 1) utilizados como explantes nos experimentos com segmentos nodais. Os explantes foram conduzidos à câmara de fluxo laminar para desinfestação.

3.2 EXPERIMENTOS DE ASSEPSIA DOS SEGMENTOS FOLIARES E SEGMENTOS NODAIS

O delineamento experimental utilizado foi inteiramente casualizado com 6 repetições e 4 frascos por parcela. Em cada frasco foi colocado um explante.

3.2.1 Influência do etanol e do hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos foliares

Após a coleta, os ramos vegetativos retirados das plantas matrizes permaneceram durante 15 minutos num recipiente com água corrente enquanto eram retiradas suas folhas. Descartando-se o primeiro par de folhas apícais de cada ramo colhido, as demais foram retiradas dos ramos até o seu terço médio. Estas folhas tiveram seu ápice e sua base excisados e foram divididas em duas partes a partir da nervura principal conforme a Figura 2, ficando com comprimento médio de 2 cm. Em seguida estes segmentos foliares foram submetidos aos seguintes tratamentos com etanol (etanol 70 % v/v) e NaOCl.

1) Testemunha (água esterilizada)
2) Etanol 70 % (30 segundos) e NaOCl 0,5 % (10 min)
3) Etanol 70 % (30 segundos) e NaOCl 1,0 % (10 min)
4) Etanol 70 % (30 segundos) e NaOCl 1,5 % (10 min)

Em seguida os segmentos foliares foram enxaguados três vezes em água esterilizada e levados à câmara de fluxo laminar onde foram isolados em meio de cultura MS.

Os frascos foram mantidos em sala de incubação nas condições descritas no item 3. Após 15 dias foi realizada a avaliação do experimento pela porcentagem de contaminação fúngica e bacteriana.
3.2.2 Influência de concentrações de hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos nodais

Os ramos vegetativos retirados das plantas matrizes permaneceram durante 15 minutos num recipiente com água corrente enquanto os brotos eram divididos em segmentos nodais de 1 cm de comprimento aproximadamente (Figura 1). Foram aplicados em seguida os tratamentos que constaram na imersão em quatro soluções contendo: 0 ; 0,5; 1,0 e 1,5 % de NaOCl, onde permaneceram por 10 minutos. A seguir, os segmentos nodais foram enxaguados três vezes em água esterilizada e em câmara de fluxo laminar onde foram isolados em meio de cultura MS.

Os frascos foram mantidos em sala de incubação nas condições descritas no item 3. Após 15 dias foi realizada a avaliação do experimento pela porcentagem de contaminação fúngica e bacteriana.
3.2.3 Influência do digluconato de clorexidina e do PVP-I no controle da contaminação fúngica e bacteriana em segmentos nodais

Após a coleta, os ramos vegetativos permaneceram durante 15 minutos num recipiente com água corrente enquanto os brotos eram divididos em segmentos nodais de 1 cm de comprimento aproximadamente. Na sequência foram aplicados dois tratamentos, que constaram da imersão por cinco minutos em soluções contendo 3 gotas de clorexidina 0,5% (Digluconato de clorexidina) em 100 mL de solução e 3 gotas de PVP-I 10% (Polivinilpirrolidona iodo) também em 100 mL de solução além da testemunha onde os segmentos nodais foram imersos somente em água esterilizada. Em seguida os segmentos nodais foram enxaguados três vezes em água esterilizada e em câmara de fluxo laminar onde foram inoculados em meio de cultura MS. Os frascos foram mantidos em sala de incubação nas condições descritas no item 3. Após 15 dias foi realizada a avaliação do experimento pela porcentagem de contaminação fúngica e bacteriana.

3.2.4 Influência da refrigeração no controle da contaminação fúngica e bacteriana em segmentos nodais.

Ramos vegetativos retirados das plantas matrizes foram imersos numa solução de benomyl (Benlate 500®) 2%. Em seguida foram acondicionadas em papel jornal e colocadas em sacos plásticos e mantidos sobre refrigeração a 5º C e submetidos aos seguintes tratamentos:

1) Testemunha (sem refrigeração)
2) 6 horas de refrigeração
3) 9 horas de refrigeração
4) 12 horas de refrigeração

Transcorridos os períodos de refrigeração, os brotos foram enxaguados em água esterilizada, submetidos à assepsia com etanol 70 % (v/v) (30 segundos), hipoclorito de sódio 2,5% (10 minutos) e enxaguados três vezes em água esterilizada. Na câmara de fluxo laminar foram divididos em segmentos nodais de 1 cm de comprimento aproximadamente e isolados em meio de cultura MS. Os frascos foram mantidos em sala
de incubação nas condições descritas no item 3. Após 15 dias foi realizada a avaliação do experimento pela porcentagem de contaminação fúngica e bacteriana.

3.2.5 Influência do etanol e do hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos nodais

Após a coleta, os ramos vegetativos permaneceram durante 15 minutos num recipiente com água corrente enquanto os brotos eram divididos em segmentos nodais de 1 cm de comprimento aproximadamente. Os segmentos nodais foram enxaguados três vezes em água esterilizada e em câmara de fluxo laminar foram isolados em meio de cultura MS nos seguintes tratamentos:

1) Testemunha (sem tratamento)
2) Etanol 70 % (30 segundos) e NaOCl 1% (10 minutos)
3) Etanol 70 % (30 segundos) e NaOCl 1,5 % (10 minutos)
4) Etanol 70 % (30 segundos) e NaOCl 2 % (10 minutos)

Os frascos foram mantidos em sala de incubação nas condições descritas no item 3. Após 15 dias foi realizada a avaliação do experimento pela porcentagem de contaminação fúngica e bacteriana.

3.3 EXPERIMENTO DE MULTIPLICAÇÃO E ALONGAMENTO

Os segmentos nodais com aproximadamente 2 cm de comprimento oriundos dos testes de assepsia que apresentaram o menor índice de contaminação cultivados in vitro, foram transferidos para meio de cultura MS de multiplicação suplementado com fitorreguladores.

Os explantes foram manipulados em câmara de fluxo laminar, tendo-se isolados 5 explantes por frasco num delineamento experimental de blocos ao acaso com 6 tratamentos em 4 repetições e um frasco por parcela e foram submetidos aos seguintes tratamentos:

1) Sem regulador de crescimento(testemunha)
2) 0,0 mg.L-1 CIN + 0,5 mg.L-1 ANA + 0,1 mg.L-1 GA\textsubscript{3}
3) 0,1 mg.L-1 CIN + 0,0 mg.L-1 ANA + 0,1 mg.L-1 GA\textsubscript{3}
4) 0,1 mg.L\(^{-1}\) CIN + 0,5 mg.L\(^{-1}\) ANA + 0,1 mg.L\(^{-1}\) GA\(_3\)
5) 1,0 mg.L\(^{-1}\) CIN + 0,0 mg.L\(^{-1}\) ANA + 0,1 mg.L\(^{-1}\) GA\(_3\)
6) 1,0 mg.L\(^{-1}\) CIN + 0,5 mg.L\(^{-1}\) ANA + 0,1 mg.L\(^{-1}\) GA\(_3\)

Ao final de trinta dias foram avaliadas as seguintes características: calogênese e sobrevivência dos explantes, número e viabilidade das brotações, comprimento das brotações, número de folhas, massa fresca das brotações e porcentagem de vitrificação.

A porcentagem de sobrevivência de brotações é o número de brotações viáveis em relação ao total de brotações regeneradas por explante. O comprimento das brotações foi medido com o auxílio de uma régua. A medição foi realizada da base da brotação até a extremidade do par de folhas mais jovens, envolvendo o ápice.

3.4 EXPERIMENTO DE ENRAIZAMENTO

Neste experimento as brotações viáveis com aproximadamente 2 cm de comprimento, provenientes do experimento de multiplicação in vitro foram transferidas para meio de enraizamento, cultivadas em meio básico MS com três concentrações de AIB, conforme os tratamentos:

1) Sem regulador de crescimento (testemunha)
2) MS + 0,3 mg.L\(^{-1}\) AIB
3) MS + 0,5 mg.L\(^{-1}\) AIB
4) MS + 1,0 mg.L\(^{-1}\) AIB

O experimento foi estabelecido em delineamento inteiramente casualizado, sendo quatro tratamentos com 12 repetições, 3 brotações por frasco e 1 frasco por parcela.

Transcorrido o período de incubação de 30 dias, foram avaliados as porcentagens de enraizamento e vitrificação das brotações, a formação de calos na base, porcentagem de brotações viáveis, o número de raízes por broto, o número de brotos, a massa fresca total (planta inteira) e os comprimentos do caule e das raízes. Foram consideradas apenas as raízes com comprimento superior a 5 mm para analisar a variável número de
raízes. Para a variável comprimento das raízes foram consideradas apenas as três maiores raízes de cada brotação.

3.5 EXPERIMENTOS DE CALOGÊNESE DE SEGMENTOS FOLIARES

3.5.1 Influência da combinação de ANA e BAP na calogênese de segmentos foliares

Os segmentos foliares oriundos da fase de multiplicação in vitro e, portanto, folhas assépticas foram utilizados como explantes neste processo de calogênese. Em câmara de fluxo laminar estas folhas, com cerca de 7 cm de comprimento foram divididas antes conforme descrito no item 3.2.1.

O delineamento experimental utilizado foi inteiramente casualizado, com 5 repetições e um frasco por parcela. Foram testados 6 tratamentos, resultantes da combinação entre as concentrações 0; 0,3 e 1,0 mg.L\(^{-1}\) de ANA e 3,0 e 5,0 mg.L\(^{-1}\) de BAP.

Os segmentos foliares obtidos foram isolados em câmara de fluxo laminar no meio de cultura MS ficando a face adaxial em contato com o meio. Em cada frasco foram isolados 3 segmentos foliares.

O experimento foi avaliado após 30 dias, pela porcentagem de explantes com calogênese e massa frescas dos calos.

Todos os dados de porcentagem foram transformados em arc sen \(\frac{\sqrt{X}}{100}\) e todos os dados referentes a variável massa foram transformados em log (X + 100) para realizar a análise de variância.

3.5.2 Influência da combinação de BAP e ANA na organogênese de calos de segmentos foliares

Os calos utilizados foram formados a partir de explantes foliares. Os calos foram divididos e isolados em câmara de fluxo laminar, em fracos de 250 mL contendo cada um 3 calos com 5,5 mg. Estes calos haviam sido cultivados em meio MS com 1,0 mg.L\(^{-1}\) de ANA e 5,0 mg.L\(^{-1}\) de BAP.
O delineamento experimental utilizado foi delineamento inteiramente casualizado, com 6 repetições e 2 frascos por parcela. Foram testados 4 tratamentos, resultantes da combinação entre as concentrações 3,0 e 6,0 mg.L\(^{-1}\) de BAP e 0,0 e 1,0 mg.L\(^{-1}\) de ANA.

Após 30 dias foi realizada a avaliação do experimento pela determinação da porcentagem de calos oxidados, brancos e verdes e taxa de regeneração.

3.6 ANÁLISE ESTATÍSTICA

Após as avaliações, os resultados foram submetidos à média dentro de cada repetição. Posteriormente, realizou-se o Teste de Bartlett para verificar se as variâncias dos tratamentos eram homogêneas entre si. Com a confirmação da homogeneidade das variâncias, realizou-se a análise de variância para detectar se havia diferença estatisticamente significativa entre as médias dos tratamentos aos níveis de 1 e 5 %. Nos casos em que o resultado da análise de variância foi significativo, realizou-se o teste de comparação de médias de Tukey, no nível de 5 %. Os resultados são apresentados nas tabelas, onde as médias seguidas por letras distintas na coluna diferem estatisticamente entre si. As médias na coluna que não diferiram significativamente pelo teste F a 5 % de probabilidade realizado na análise de variância, não estão seguidas por nenhuma letra.

Em alguns casos os dados foram transformados em arc sen \(\sqrt{X/100}\) e log (X + 100), quando pelo teste de Bartlett, verificava-se que as variâncias dos tratamentos não eram homogêneas.

Os testes de Bartlett, as análises de variância e os testes de Tukey foram realizados no programa computacional MSTAT.
4 RESULTADOS E DISCUSSÃO

4.1 EXPERIMENTOS DE ASSEPSIA DOS SEGMENTOS FOLIARES E NODAIS

4.1.1 Influência do Etanol e do hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos foliares

O uso dos dois produtos germicidas, etanol e hipoclorito de sódio nas concentrações testadas, não foram eficientes no controle da contaminação fúngica e bacteriana sobre os segmentos foliares resultando em contaminação superior a 90%.

4.1.2 Influência de concentrações de hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos nodais

O teste de assepsia com aplicação de diferentes concentrações hipoclorito de sódio para o controle de contaminação fúngica e bacteriana em segmentos nodais de *Gypsophila paniculata* resultou em 100% de contaminação dos explantes.

4.1.3 Influência do digluconato de clorexidina e do PVP-I no controle da contaminação fúngica e bacteriana em segmentos nodais

No cultivo *in vitro* de tecidos vegetais não foi encontrado nenhum trabalho utilizando digluconato de clorexidina e PVP-I. O uso destes produtos é extensivo na área médica e odontológica, e nestas áreas diversos trabalhos foram publicados a respeito da sua eficácia no controle microbiano. Por exemplo, ESTRELA *et al.* (2003) avaliaram o efeito do digluconato de clorexidina a 2% sobre o crescimento de colônias de bactérias de interesse odontológico (*Streptococos aureus, Escherichia faecalis, Pseudomonas aeruginosa, Bacilus subtilis e E. fecalis*). BAMBACE (2003) testou o uso de digluconato de clorexidina em solução aquosa nas concentrações de 0,5%, 1%, 2% e 4% para
desinfecção de bancadas. Para degermação das mãos usa-se sabão anti-séptico (PVPI ou Clorexidina); para anti-sepsia intra-oral do paciente realiza-se a escovação e o bochecho com solução anti-séptica tópica (PVPI ou Gluconato de Clorexidina a 0,12%); para degermação extra-oral utiliza-se na pele gaze embebida com soluções à base de polivinilpirolidona-iodo degermante (PVPI) a 10% ou clorexidina solução a 0,4% (GUANDALINI, 1999).

A aplicação de digluconato de clorexidina e PVP-I não controlou a contaminação fúngica e bacteriana sobre os segmentos foliares resultando em elevada taxa de contaminação (superior a 90%) o que inviabilizou a análise estatística do experimento.

4.1.4 Influência da refrigeração no controle da contaminação fúngica e bacteriana em segmentos nodais

Os tratamentos de frio aplicados aos segmentos nodais de *Gypsophila paniculata* para o controle de contaminação fúngica e bacteriana não foram satisfatórios apresentando taxas de 100% de contaminação.

4.1.5 Influência do etanol e do hipoclorito de sódio no controle da contaminação fúngica e bacteriana em segmentos nodais

A análise de variância, dos resultados de contaminação fúngica e bacteriana, revelou significância estatística para o efeito do etanol e do hipoclorito de sódio (Anexo 2 e 3).

O uso dos dois produtos germicidas promoveu uma redução significativa na contaminação fúngica e bacteriana, porém não as eliminou totalmente (Tabela 1). Os segmentos tratados com etanol e hipoclorito de sódio a 2%, para a assepsia dos explantes de *Gypsophila paniculata* foram os que apresentaram menor índice de contaminação por fungos (45,83%) e bactérias (20,83%) e o tratamento eficaz foi a testemunha. Estes resultados concordam com a recomendação de VAN ALTVORST *et al.* (1992), que trabalhando com segmentos nodais de cravos, realizaram assepsia com hipoclorito a 2% de concentração, obtendo baixas taxas de contaminação. O índice de contaminação encontrado com o uso de 2% de hipoclorito de sódio revelou que havia necessidade ainda de utilizar soluções mais concentradas, como a aplicada por
YANTCHEVA et al. (1998), entretanto estas soluções mais poderiam causar danos aos explantes.

TABELA 1 - Efeito de tratamento com etanol durante 30 segundos e de hipoclorito de sódio durante 10 minutos no controle da contaminação fúngica e bacteriana em segmentos nodais de *Gypsophila paniculata* cv. Golan.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Explantes com Fungos (%)</th>
<th>Explantes com Bactérias (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testemunha</td>
<td>94,17 b</td>
<td>52,00 b</td>
</tr>
<tr>
<td>Etanol 70 % + NaOCl 1%</td>
<td>55,83 ab</td>
<td>34,50 a</td>
</tr>
<tr>
<td>Etanol 70 % + NaOCl 1,5%</td>
<td>69,17 ab</td>
<td>27,50 a</td>
</tr>
<tr>
<td>Etanol 70 % + NaOCl 2%</td>
<td>45,83 a</td>
<td>20,83 a</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>29,87</td>
<td>31,44</td>
</tr>
</tbody>
</table>

Médias seguidas da mesma letra na coluna não diferem significativamente pelo teste de Tukey, a 5% de probabilidade de erro.

4.2 EXPERIMENTO DE MULTIPLICAÇÃO

4.2.1 Porcentagem de calos formados e porcentagem de sobrevivência

Os resultados de porcentagem de formação de calos e de sobrevivência são apresentados na Tabela 2. As análises de variância para estas variáveis não revelaram significância estatística para o efeito das diferentes concentrações dos reguladores de crescimento testados (Anexo 4 e 5). Os calos formados eram friáveis, com aspecto translúcido e de tamanho variado.

Não foram observadas alterações das características avaliadas em função da formação de calos, porém, o mais adequado seria a utilização de meios de cultura que proporcionassem menores índices de formação de calos nos explantes uma vez que, brotações regeneradas a partir de calos formados na base dos explantes não podem ser aproveitadas em função de sua variação genética com as plantas matrizes, regenerando
plântulas com características culturais indesejáveis (GRATTAPAGLIA e MACHADO, 1998). Observou-se que, a medida que se aumentou a concentração de CIN, houve uma tendência de redução na formação de calos na base dos explantes. O menor percentual de calos (22,75%) foi obtido com o uso de 1,0 mg.L⁻¹ de CIN combinado com 0,1 mg.L⁻¹ de GA₃ (Tabela 2). Este resultado está de acordo com os de AHRONI et al. (1997) que afirmaram terem reduzido a concentração de auxina a fim de reduzir a formação de calos.

TABELA 2 - Porcentagem de explantes formando calos e porcentagem de sobrevivência dos explantes a partir de segmentos nodais de Gypsophila paniculata cv. Golan em meio de cultura suplementado com diferentes concentrações de fitorreguladores.

<table>
<thead>
<tr>
<th>Fitorreguladores (mg.L⁻¹)</th>
<th>Calos (%)</th>
<th>Sobrevivência (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN 0,0 0,0 0,0</td>
<td>40,00</td>
<td>86,75</td>
</tr>
<tr>
<td>0,0 0,5 0,1</td>
<td>50,00</td>
<td>71,25</td>
</tr>
<tr>
<td>0,1 0,0 0,1</td>
<td>37,00</td>
<td>95,00</td>
</tr>
<tr>
<td>0,1 0,5 0,1</td>
<td>41,50</td>
<td>91,75</td>
</tr>
<tr>
<td>1,0 0,0 0,1</td>
<td>22,75</td>
<td>95,00</td>
</tr>
<tr>
<td>1,0 0,5 0,1</td>
<td>33,25</td>
<td>91,75</td>
</tr>
</tbody>
</table>

C.V. (%) 32,73 17,55

Médias não diferem significativamente entre si pelo teste F a 5% de probabilidade de erro.

Na Tabela 2 foi verificado que a máxima taxa de sobrevivência de explantes (95%) foi obtida nos tratamentos sem auxina e a taxa mais baixa de sobrevivência (71,25%), com a adição de 0,5 mg.L⁻¹ de ANA no meio de cultura sem CIN e com 0,1 mg.L⁻¹ de GA₃ embora não diferiram estatisticamente.

4.2.2 Comprimento das brotações e número de folhas das brotações

A análise de variância revelou diferença significativa para o efeito dos fitorreguladores sobre o comprimento e número de folhas por brotação (Anexo 6 e 7).
Os brotos formados em meio de cultura contendo 0,1 mg.L\(^{-1}\) de CIN e 0,1 mg.L\(^{-1}\) de GA\(_3\) na ausência de ANA foram os que apresentaram maior comprimento (5,5 cm), conforme Tabela 3. Entretanto, não diferiram significativamente dos tratamentos onde as concentrações dos reguladores foram respectivamente 0,1 mg.L\(^{-1}\) de CIN, 0,5 mg.L\(^{-1}\) de ANA e 0,1 mg.L\(^{-1}\) de GA\(_3\), 1,0 mg.L\(^{-1}\) de CIN, 0,0 mg.L\(^{-1}\) de ANA e 0,1 mg.L\(^{-1}\) de GA\(_3\) e 1,0 mg.L\(^{-1}\) de CIN, 0,5 mg.L\(^{-1}\) de ANA e 0,1 mg.L\(^{-1}\) de GA\(_3\) e da testemunha.

Os resultados do número de folhas das brotações foram semelhantes aos da variável comprimento das brotações. Isto indica a direta relação entre as duas variáveis. Assim sendo, quanto maior o comprimento de uma brotação, maior será o número de entrenós e, conseqüentemente, o maior número de folhas. Conforme a Tabela 3, o tratamento que apresentou melhor efeito sobre o número de folhas foi o meio suplementado com 0,1 mg.L\(^{-1}\) de CIN e 0,1 mg.L\(^{-1}\) de GA\(_3\), onde se obteve 13,55 folhas por brotação, embora não tenha havido diferença significativa com o tratamento de 0,1 mg.L\(^{-1}\) de CIN, 0,5 mg.L\(^{-1}\) de ANA e 0,1 mg.L\(^{-1}\) de GA\(_3\).

TABELA 3 - Número de folhas e comprimento das brotações oriundas dos segmentos nodais de *Gypsophila paniculata* cv. Golan em meio de cultura MS suplementado com diferentes concentrações de fitorreguladores, após 30 dias.

<table>
<thead>
<tr>
<th>Fitorreguladores (mg.L(^{-1}))</th>
<th>Número de folhas/brotação</th>
<th>Comprimento das brotações (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN 0,0</td>
<td>ANA 0,0</td>
<td>GA(_3) 0,0</td>
</tr>
<tr>
<td>CIN 0,0</td>
<td>ANA 0,5</td>
<td>GA(_3) 0,1</td>
</tr>
<tr>
<td>CIN 0,1</td>
<td>ANA 0,0</td>
<td>GA(_3) 0,1</td>
</tr>
<tr>
<td>CIN 0,1</td>
<td>ANA 0,5</td>
<td>GA(_3) 0,1</td>
</tr>
<tr>
<td>CIN 1,0</td>
<td>ANA 0,0</td>
<td>GA(_3) 0,1</td>
</tr>
<tr>
<td>CIN 1,0</td>
<td>ANA 0,5</td>
<td>GA(_3) 0,1</td>
</tr>
</tbody>
</table>

| C.V (%) | 29,17 | 32,13 |

Médias seguidas da mesma letra na coluna não diferem significativamente, pelo teste de Tukey, a 5% de probabilidade de erro.
4.2.3 Massa fresca e porcentagem de vitrificação

Pela análise de variância apresentada no Anexo 8, constatou-se a significância estatística das tratamentos para a variável massa fresca. No Anexo 9 verificou-se que não houve diferença estatística para a variável vitrificação.

De acordo com os dados apresentados na Tabela 4, observou-se que o tratamento com 0,1 mg.L-1 de CIN e 0,1 mg.L-1 de GA\textsubscript{3} e o tratamento com 0,1 mg.L-1 de CIN, 0,5 mg.L-1 de ANA e 0,1 mg.L-1 de GA\textsubscript{3} não diferiram estatisticamente para a variável massa fresca das brotações e foram superiores aos demais tratamentos. Os melhores resultados obtidos nesses dois tratamentos pode ter sido decorrente do melhor desenvolvimento das brotações.

TABELA 4 - Massa fresca das brotações e porcentagem de brotações vitrificadas oriundas dos explantes a partir de segmentos nodais de *Gypsophila paniculata* cv. Golan em meio de cultura MS suplementado com diferentes concentrações de fitorreguladores, após 30 dias.

<table>
<thead>
<tr>
<th>Fitorreguladores (mg.L-1)</th>
<th>Massa fresca1 (mg)</th>
<th>Vitrificação2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN 0,0</td>
<td>ANA 0,0</td>
<td>GA\textsubscript{3} 0,0</td>
</tr>
<tr>
<td>CIN 0,0</td>
<td>ANA 0,5</td>
<td>GA\textsubscript{3} 0,1</td>
</tr>
<tr>
<td>CIN 0,1</td>
<td>ANA 0,0</td>
<td>GA\textsubscript{3} 0,1</td>
</tr>
<tr>
<td>CIN 0,1</td>
<td>ANA 0,5</td>
<td>GA\textsubscript{3} 0,1</td>
</tr>
<tr>
<td>CIN 1,0</td>
<td>ANA 0,0</td>
<td>GA\textsubscript{3} 0,1</td>
</tr>
<tr>
<td>CIN 1,0</td>
<td>ANA 0,5</td>
<td>GA\textsubscript{3} 0,1</td>
</tr>
</tbody>
</table>

1 Médias seguidas da mesma letra não diferem significativamente, pelo teste de Tukey, a 5\% de probabilidade de erro.
2 Médias não diferem significativamente entre si pelo teste F a 5\% de probabilidade de erro.
A suplementação dos meios de cultura testados com cinetina em uma concentração elevada influenciou os valores da variável massa fresca, uma vez que o excesso de citocinina promove uma série de eventos nos explantes como a regeneração de brotações anormais e vitrificadas (HAN et al., 1992). Segundo PAEK et al. (1991) a vitrificação de brotações de Gypsophila paniculata cultivadas in vitro pode ser influenciada por muitos fatores, entre os quais a adição de níveis elevados de citocininas no meio de cultura. Entretanto, segundo os autores, a vitrificação das culturas também pode ser conseqüência da exposição à baixas irradiações luminosas e/ou, altas temperaturas. Neste experimento estes fatores podem ter influenciado a porcentagem de vitrificação das brotações uma vez que houve períodos de alta temperatura e outros de baixa luminosidade em virtude de problemas nos equipamentos que mantêm as condições ambientais da sala de crescimento.

A associação destes fatores levou aos resultados obtidos na Tabela 4 para a variável vitrificação. Embora a análise estatística não revele diferença entre os tratamentos, verifica-se que a concentração de 1,0 mg.L\(^{-1}\) de CIN na ausência de ANA proporcionou a mais alta taxa de vitrificação (49,50%).

4.2.4 Número e viabilidade das brotações

O número e viabilidade das brotações obtidas por explante, em função das concentrações dos reguladores testados, são apresentados na Tabela 5.

As análises de variâncias (Anexo 10 e 11) para estas variáveis não indicaram diferenças estatísticas entre os tratamentos. Porém, quando se aumentou a concentração de ANA no meio e manteve-se constante a concentração de CIN o número de brotações diminuiu.

No presente experimento as concentrações de citocinina e auxina utilizadas não proporcionaram taxa de multiplicação satisfatória, tendo-se obtido 4,65 brotações por explante enquanto que MENDONZA e MUÑOZ (1994) obtiveram oito brotos por explante, cultivando ápices caulinares de Gypsophila paniculata em meio de cultura contendo 0,5 mg.L\(^{-1}\) de AIA e 3,0 mg.L\(^{-1}\) de BAP. HAN et al. (1991b; 1992) utilizaram 1,05 mg.L\(^{-1}\) de BAP com 0,3 mg.L\(^{-1}\) de AIA, enquanto HAN et al. (1995; 1996a) utilizaram AIA e BAP, nas concentrações de 0,1 mg.L\(^{-1}\) e 0,3 mg.L\(^{-1}\) respectivamente.

TABELA 5 - Número de brotações e sobrevivência das brotações oriundas dos segmentos nodais de *Gypsophila paniculata* cv. Golan em meio de cultura MS suplementado com diferentes concentrações de fitorreguladores, após 30 dias.

<table>
<thead>
<tr>
<th>Fitorreguladores (mg.L⁻¹)</th>
<th>Número médio de brotações/explante</th>
<th>Sobrevivência das brotações (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>ANA</td>
<td>GA₃</td>
</tr>
<tr>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>0,0</td>
<td>0,5</td>
<td>0,1</td>
</tr>
<tr>
<td>0,1</td>
<td>0,0</td>
<td>0,1</td>
</tr>
<tr>
<td>0,1</td>
<td>0,5</td>
<td>0,1</td>
</tr>
<tr>
<td>1,0</td>
<td>0,0</td>
<td>0,1</td>
</tr>
<tr>
<td>1,0</td>
<td>0,5</td>
<td>0,1</td>
</tr>
<tr>
<td>C.V.(%)</td>
<td>40,92</td>
<td></td>
</tr>
</tbody>
</table>

Médias não diferem significativamente entre si pelo teste F a 5% de probabilidade de erro.

Embora não tenha ocorrido diferença significativa entre os tratamentos observa-se que a aplicação de 0,1 mg.L⁻¹ de CIN com 0,5 mg.L⁻¹ de ANA e 0,1 mg.L⁻¹ de GA₃ ao meio de cultura proporciona 100% de sobrevivência das brotações (Figura 3).
FIGURA 3 – Aspecto de uma brotação de *Gypsophila paniculata* L. cv. Golan em meio de multiplicação *in vitro* a partir de segmentos nodais em meio de cultura MS suplementado com 0,1 mg.L\(^{-1}\) de CIN, 0,5 mg.L\(^{-1}\) de ANA e 0,1 mg.L\(^{-1}\) de GA\(_3\) após 30 dias de cultivo.

4.3 EXPERIMENTO DE ENRAIZAMENTO

4.3.1 Porcentagem de enraizamento e vitrificação

Os resultados dos tratamentos com diferentes concentrações da auxina AIB sobre as variáveis porcentagem de enraizamento e porcentagem de vitrificação das brotações de *Gypsophila paniculata* estão apresentados na Tabela 6.

As análises de variâncias para a porcentagem de enraizamento, revelaram significância estatística entre os tratamentos com diferentes concentrações de AIB (0,3 mg.L\(^{-1}\), 0,5 mg.L\(^{-1}\) e 1,0 mg.L\(^{-1}\)) e o tratamento sem o regulador de crescimento (Anexo 12). Apesar dos resultados entre os tratamentos com AIB não apresentarem diferenças estatísticas significativas entre si, a aplicação de 0,3 mg.L\(^{-1}\) proporcionou a maior porcentagem de enraizamento das brotações (80%). Os resultados são semelhantes aos
obtidos por SOUZA et al., (1996) que conseguiram porcentagens de enraizamento em meios com concentrações de AIB variando entre 0,37 mg.L\(^{-1}\) e 0,50 mg.L\(^{-1}\) e por PETRY et al. (2003), com enraizamento de 87% no meio contendo 0,75 mg.L\(^{-1}\) de AIB. Resultados semelhantes também foram encontrados no trabalho de SONG et al. (1996) com a aplicação de 0,2 mg.L\(^{-1}\) de AIB onde obtiveram uma porcentagem de 95% de enraizamento. Entretanto, tais resultados diferem daqueles obtidos por KUSEY et al. (1980) onde a porcentagem de enraizamento de 80% foi conseguida com 1,0 mg.L\(^{-1}\) de AIB.

Apesar da análise estatística não revelar diferenças entre os tratamentos para a porcentagem de vitrificação (Anexo 13) e ter sido feita uma eliminação prévia das brotações vitrificadas, durante o período de incubação no meio de enraizamento, a concentração de 0,3 mg.L\(^{-1}\) de AIB foi a que apresentou o menor percentual (7,92%) de vitrificação.

TABELA 6 - Efeito de diferentes concentrações de AIB sobre as porcentagens de enraizamento e vitrificação de brotações de *Gypsophila paniculata*, após 30 dias.

<table>
<thead>
<tr>
<th>Concentração de AIB (mg.L(^{-1}))</th>
<th>Enraizamento (%)</th>
<th>Vitrificação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>57,50 b</td>
<td>8,33</td>
</tr>
<tr>
<td>0,3</td>
<td>80,00 a</td>
<td>7,92</td>
</tr>
<tr>
<td>0,5</td>
<td>62,50 ab</td>
<td>18,67</td>
</tr>
<tr>
<td>1,0</td>
<td>75,00 ab</td>
<td>30,83</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>26,95</td>
<td>59,72</td>
</tr>
</tbody>
</table>

Médias seguidas da mesma letra na coluna não diferem significativamente, pelo teste de Tukey, a 5% de probabilidade de erro.

4.3.2 Porcentagem de calogênese e de sobrevivência das brotações enraizadas

A análise estatística para a taxa de sobrevivência das brotações não apresentou diferença significativa entre os resultados (Anexo 15). O teste estatístico aplicado revelou diferença significativa entre as porcentagens de calogênese das brotações enraizadas (Anexo 14). Dentre as concentrações da auxina testada, a de 0,3 mg.L\(^{-1}\) de AIB foi a que
apresentou menor porcentagem de calogênese (Tabela 7), o que está em concordância com os resultados de ZUKER *et al.* (1997) que utilizou baixa concentração auxínica para minimizar a produção de calos.

Tabela 7. Efeito de três concentrações de AIB sobre as porcentagens de calogênese e de sobrevivência das brotações de *Gypsophila paniculata* cv. Golan, após 30 dias.

<table>
<thead>
<tr>
<th>Concentração de AIB (mg.L⁻¹)</th>
<th>Calogênese (%)</th>
<th>Sobrevivência das brotações (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>41,67 b</td>
<td>99,33 a</td>
</tr>
<tr>
<td>0,3</td>
<td>58,33 ab</td>
<td>99,33 a</td>
</tr>
<tr>
<td>0,5</td>
<td>75,00 a</td>
<td>98,67 a</td>
</tr>
<tr>
<td>1,0</td>
<td>83,33 a</td>
<td>98,00 a</td>
</tr>
<tr>
<td>C.V.</td>
<td>38,64</td>
<td>2,93</td>
</tr>
</tbody>
</table>

Médias seguidas da mesma letra na coluna não diferem significativamente, pelo teste de Tukey, a 5% de probabilidade de erro.

Observou-se que a sobrevivência das brotações não foi influenciada pela concentração de AIB no meio de cultura e nem pelas altas porcentagens de calogênese dos demais tratamentos e assim não houve diferença significativa entre os mesmos para a variável sobrevivência das brotações.

Analisando a Tabela 7 é possível constatar que aumento da concentração de AIB proporcionou um aumento na formação de calos na base do explante. Este resultado não comprova a afirmação de GRATTAPAGLIA e MACHADO (1998), pois não houve comprometimento estatisticamente significativo para a rizogênese. Os calos formados na base das brotações eram friáveis e as raízes emitidas a partir deles eram finas, claras e se desprendiam facilmente o que indica não haver ligação entre o sistema radicial e o vascular das partes aéreas.
4.3.3 Massa fresca total e comprimento das raízes e do caule

Neste estudo, os valores sobre a massa fresca total estão relacionados ao grau de desenvolvimento da plântula, enquanto que na fase de multiplicação, esta variável estava diretamente relacionada à taxa de vitrificação.

A análise de variância não apresentou significância estatística para o efeito das concentrações de AIB no meio de cultura para as variáveis massa fresca total e comprimento da parte aérea (Anexos 16 e 18). Entretanto, para o comprimento de raiz houve diferença significativa (Anexo 17). Os maiores comprimentos do caule (8,16 cm) e do sistema radicial (3,83) foram obtidos com a aplicação de 0,3 mg.L\(^{-1}\) de AIB (Tabela 8), contrário ao encontrado por MENDONZA e MUÑOZ (1994) que conseguiram raízes com 2,32 cm de comprimento aplicando 0,75 mg.L\(^{-1}\) de AIB. Paradoxalmente, embora a auxina seja necessária para a indução de raízes adventícias, ela inibe o crescimento longitudinal das plântulas. Segundo HARTMANN et al. (1990) a função da auxina é estimular a iniciação e formação dos tecidos meristemáticos e atuar na elongação dos tecidos que darão origem aos primórdios de raízes.

TABELA 8 - Efeito das concentrações de AIB sobre a massa fresca total e comprimento da raiz e da parte aérea das brotações enraizadas de *Gypsophila paniculata* obtidas a partir de segmentos nodais, após 30 dias.

<table>
<thead>
<tr>
<th>Concentração de AIB (mg. L(^{-1}))</th>
<th>Massa fresca total (mg)</th>
<th>Comprimento (cm)</th>
<th>Raiz</th>
<th>Caule</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>108,20 a</td>
<td>2,21 b</td>
<td>5,88 a</td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>134,60 a</td>
<td>3,83 a</td>
<td>8,16 a</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>102,40 a</td>
<td>2,00 c</td>
<td>6,08 a</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td>111,80 a</td>
<td>3,21 a</td>
<td>5,84 a</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>35,40</td>
<td>32,88</td>
<td>38,16</td>
<td></td>
</tr>
</tbody>
</table>

Médias seguidas da mesma letra na coluna não diferem significativamente, pelo teste de Tukey, a 5% de probabilidade de erro.
4.3.4 Número de brotações laterais e número de raízes

Na Tabela 9 são apresentados os resultados da análise estatística sobre o número de brotações e o número de raízes emitidas por brotações em diferentes concentrações de AIB.

Observa-se que não houve diferença significativa, de acordo com a análise de variância apresentada no Anexo 19, para o número de brotações emitidas. Comparando esses resultados, podemos supor que o baixo número de brotos foi em razão do balanço entre auxinas:citocininas endógenas associadas a tratamentos aplicados, bem como a concentração de sais minerais que constituem o meio básico MS (GRATTAPAGLIA e MACHADO, 1998).

Diferença estatística significativa foi encontrada entre os resultados para a variável número de raízes (Anexo 20). Constatou-se que um maior número médio de raízes (5,50) foi obtido quando ao meio de cultura MS foi adicionado 0,3 mg.L\(^{-1}\) de AIB, o que está de acordo com os resultados de COSTA JR et al. (2003) que afirmaram ter obtido um maior número de raízes formadas quando utilizaram AIB. O tratamento sem regulador de crescimento apresentou uma média de 3,0 raízes por brotação que não diferiu estatisticamente do tratamento com 1,0 mg.L\(^{-1}\) de AIB (3,17 raízes).

Tabela 9 - Efeito de diferentes concentrações de AIB sobre o número de brotações laterais e número de raízes por estaca de *Gypsophila paniculata* a partir de segmentos nodais, após 30 dias.

<table>
<thead>
<tr>
<th>AIB (mg.L(^{-1}))</th>
<th>Número de brotações</th>
<th>Número de raízes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>1,17 a</td>
<td>3,00 b</td>
</tr>
<tr>
<td>0,3</td>
<td>1,67 a</td>
<td>5,50 a</td>
</tr>
<tr>
<td>0,5</td>
<td>1,41 a</td>
<td>4,58 b</td>
</tr>
<tr>
<td>1,0</td>
<td>1,33 a</td>
<td>3,17 ab</td>
</tr>
<tr>
<td>C.V.</td>
<td>34,01</td>
<td>37,03</td>
</tr>
</tbody>
</table>

Médias seguidas da mesma letra na coluna não diferem significativamente, pelo teste de Tukey a 5% de probabilidade de erro.

O fato de uma concentração maior de regulador ter proporcionado um menor número de raízes pode estar associado aos níveis endógenos destes reguladores.
combinados com a concentração aplicada ou também a um efeito fitotóxico na aplicação de AIB, uma vez que a porcentagem de enraizamento decresceu com o aumento da aplicação da auxina.

Auxinas geralmente podem estimular a formação de raízes em estacas, sugerindo que o alto grau de enraizamento nestas estacas é devido ao aumento da concentração de níveis endógenos de auxina ou devido à grande sensibilidade nestes tecidos (ARTECA, 1995).

4.4 EXPERIMENTOS DE CALOGÊNESE DE SEGMENTOS FOLIARES

4.4.1 Influência da combinação entre ANA e BAP na calogênese de segmentos foliares

A análise estatística revelou que houve diferença estatística entre os tratamentos para as diferentes concentrações de ANA e BAP na calogênese e massa fresca dos calos formados (Anexo 21 e 22).

Apenas ocorreu a formação de calos nos explantes foliares em meio de cultura com ANA (Figura 4). A concentração de 1,0 mg.L\(^{-1}\) de ANA combinada com 5,0 mg.L\(^{-1}\) de BAP proporcionou a indução de calos em 100% dos explantes, sendo que esta resposta morfogênica foi observada em menor intensidade com a redução na concentração de BAP (3,0 mg.L\(^{-1}\)) para uma mesma concentração de ANA de 1,0 mg.L\(^{-1}\) (Tabela 10).

Os calos com maior massa foram obtidos pela combinação de 1,0 mg.L\(^{-1}\) de ANA com 5,0 mg.L\(^{-1}\) de BAP, sendo este tratamento significativamente superior aos demais, dentro da mesma concentração de cada regulador de crescimento (Tabela 10).

Em experimentos preliminares, também envolvendo a combinação de ANA e BAP, observou-se que concentrações superiores a 5 mg.L\(^{-1}\) de BAP em combinação com 1,0 mg.L\(^{-1}\) de ANA foram prejudiciais à formação de calos, enquanto concentrações inferiores de ANA apresentaram uma baixa resposta morfogênica. Estes resultados estão de acordo com os de SALMAN (2002) que obteve 100% de calos desenvolvidos a partir de segmentos foliares de *Gypsophila paniculata* incubados em meio suplementado com 2,4-D e BAP. Em seu estudo, a maior taxa de calos foi obtida mantendo-se a relação auxina/citocinina igual a 0,2.
FIGURA 4 - Aspecto da calogênese em segmentos foliares de *Gypsophila paniculata* L. cv. Golan, em meio de cultura MS com diferentes concentrações de BAP e ANA, em mg.L\(^{-1}\) após 30 dias.

O tipo de auxina também exerce influência sobre a calogênese (YOUNG, 1983), sendo o 2,4-D, a auxina mais utilizada (GRATTAPAGLIA e MACHADO, 1998). Por isso, em futuros trabalhos com gypsophila, sugere-se também a utilização de 2,4-D, pela possibilidade de induzir uma melhor resposta calogênica nos explantes.
TABELA 10 - Porcentagem de explantes apresentando calogênese e massa fresca (mg) dos calos formados a partir de segmentos foliares de *Gypsophila paniculata* L. cv. Golan, em meio de cultura com diferentes combinações de BAP e ANA.

<table>
<thead>
<tr>
<th>Fitorreguladores (mg.L(^{-1}))</th>
<th>Calogênese (%)</th>
<th>Massa fresca dos calos (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAP 3,0 0,0</td>
<td>0,0 e</td>
<td>0,0 e</td>
</tr>
<tr>
<td>BAP 3,0 0,3</td>
<td>30,0 c</td>
<td>44,45 c</td>
</tr>
<tr>
<td>BAP 3,0 1,0</td>
<td>75,0 b</td>
<td>147,3 b</td>
</tr>
<tr>
<td>ANA 5,0 0,0</td>
<td>0,0 e</td>
<td>0,0 e</td>
</tr>
<tr>
<td>ANA 5,0 0,3</td>
<td>15,0 d</td>
<td>1,67 d</td>
</tr>
<tr>
<td>ANA 5,0 1,0</td>
<td>100,0 a</td>
<td>171,7 a</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>0,54</td>
<td>1,52</td>
</tr>
</tbody>
</table>

Médias seguidas da mesma letra na coluna não diferem significativamente, pelo teste de Tukey a 5% de probabilidade de erro.

4.4.2 Influência da combinação de BAP e ANA na organogênese em calos de segmentos foliares

As análises de variância do efeito dos reguladores de crescimento apresentaram significância estatística para a porcentagem de calos oxidados, brancos e verdes (Anexos 23, 24 e 25).

Observa-se na Tabela 11 que a maior porcentagem de calos brancos foi obtida com uma concentração de 6 mg.L\(^{-1}\) de BAP sem adição de ANA.

Em todas as concentrações de BAP houve a formação de calos verdes (Tabela 11) e não se verificou diferença estatística entre as concentrações de 3,0 mg.L\(^{-1}\) de BAP e 6 mg.L\(^{-1}\) de BAP com 1,0 mg.L\(^{-1}\) de ANA. Entretanto no tratamento com 6,0 mg.L\(^{-1}\) de BAP e sem ANA, o percentual de calos verdes foi o menor observado. Este fato deve-se à relação auxina/citocinina que neste tratamento inibiu a formação deste tipo de calo. Também houve a formação de calos brancos em todos os tratamentos sendo que a
concentração de 6,0 mg.L\(^{-1}\) de BAP foi a que promoveu a maior taxa de calos brancos (54%).

A formação de calos brancos, por serem friáveis, dá indícios de que é possível a formação de gemas a partir de calos de segmentos foliares enquanto que, em calos verdes, mais compactos, este processo torna-se mais difícil.

TABELA 11 - Porcentagem de calos oxidados, brancos e verdes em meio MS de cultura com diferentes concentrações de BAP e ANA.

<table>
<thead>
<tr>
<th>BAP (mg.L(^{-1}))</th>
<th>ANA (mg.L(^{-1}))</th>
<th>Calos oxidados (%)</th>
<th>Calos brancos (%)</th>
<th>Calos verdes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,0</td>
<td>0,0</td>
<td>58,30 a</td>
<td>12,77 b</td>
<td>33,43 a</td>
</tr>
<tr>
<td>3,0</td>
<td>1,0</td>
<td>53,30 a</td>
<td>22,00 b</td>
<td>24,70 b</td>
</tr>
<tr>
<td>6,0</td>
<td>0,0</td>
<td>41,73 a</td>
<td>54,00 a</td>
<td>4,16 c</td>
</tr>
<tr>
<td>6,0</td>
<td>1,0</td>
<td>41,77 a</td>
<td>17,07 b</td>
<td>41,15 a</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>23,57</td>
<td>23,09</td>
<td>20,38</td>
</tr>
</tbody>
</table>

Médias seguidas da mesma letra na coluna não diferem significativamente, pelo teste de Tukey, a 5% de probabilidade de erro.

Em nenhuma concentração utilizada, para ambos os reguladores, houve a diferenciação de novas gemas (Figura 5). Em alguns casos ocorreu alteração de cor dos calos, brancos e verdes (Figura 6) e em outros, houve emissão de raízes.
A capacidade rizogênica da *Gypsophila paniculata* assemelha-se à do cravo e é superior a sua capacidade de emitir brotações. Ao contrário da emissão de brotações, a rizogênese ocorre em segmento apical e nodal como também em segmento internodal do calo (KALLAK et al., 1997). Em seus estudos com cravos, estes autores constataram elevada porcentagem de raízes emitidas a partir de calos subcultivados em meio MS com diferentes combinações de ANA, BAP e AIB quando comparadas à proliferação de brotos. Este fato corrobora o comportamento observado neste experimento onde, independendo das concentrações de reguladores aplicadas, houve proliferação de raízes a partir dos calos (Figura 6).
FIGURA 6 - Aspecto de calos brancos (A) e verdes (B) formados a partir de segmentos foliares de *Gypsophila paniculata* cv. Golan e calo com desenvolvimento de raízes (C) cultivados em meio MS com diferentes combinações de ANA e BAP.

O fato de não se ter obtido diferenciação de partes aéreas pode estar associado às condições físicas de incubação e ao genótipo do material vegetal que podem ter um efeito mais significativo sobre a morfogênese do que a utilização exógena de reguladores de crescimento (GEORGE e SHERRINGTON, 1984; KALLAK *et al.*, 1997), pois num explante ou calo existem células com diferentes graus de diferenciação, as quais interagem entre si, dificultando o controle do processo morfogênico apenas pela variação de poucos fatores (HANDRO e FLOH, 1990).

Por isso, talvez melhores resultados do que os obtidos neste trabalho, possam ser conseguidos com *Gypsophila paniculata*, mediante a utilização de novos genótipos, com outras fontes de explantes que apresentem maior potencial morfogênico ou mesmo com a combinação de outros reguladores de crescimento.
CONCLUSÕES

A análise e interpretação dos resultados obtidos e nas condições em que cada experimento foi conduzido permitem concluir que:

1) A assepsia externa dos segmentos nodais pode ser obtida pela imersão em etanol 70%, por 30 segundos, seguida de hipoclorito de sódio 2%, por 10 minutos;

2) Os melhores resultados na fase de multiplicação a partir de segmentos nodais foram obtidos para as variáveis porcentagem de sobrevivência dos segmentos nodais (95%), número médio de folhas (13,55) por explante, comprimento das brotações (5,5 cm), massa fresca (328,82 mg) e número de brotações (4,65) por explante na combinação de 0,1 mg.L\(^{-1}\) de CIN com 0,1 mg.L\(^{-1}\) de GA\(_3\) em meio MS;

3) O uso de 0,3 mg.L\(^{-1}\) de AIB no meio de enraizamento, influenciou positivamente as características de enraizamento, proporcionando a obtenção de plântulas com maior comprimento de raiz (3,83 cm), número de raízes (5,50) e porcentagem de enraizamento (80%);

4) A combinação entre 5,0 mg.L\(^{-1}\) de BAP e 1,0 mg.L\(^{-1}\) de ANA promovem a calogênese em 100% dos segmentos foliares.

5) A calogênese é possível como forma de propagação.
CONSIDERAÇÕES FINAIS

A boa sanidade das plantas-matrizes e a correta manutenção em casa-de-vegetação, obedecendo aos tratos culturais específicos para a espécie são fatores que contribuem para facilitar a assepsia dos explantes. Na ocorrência de contaminação fúngica e bacteriana, não sendo possível seu controle pela assepsia com agentes germicidas comuns, é necessária a identificação prévia dos microrganismos para que se possa aplicar um produto mais eficiente no controle da contaminação. Sugere-se para futuros trabalhos com *Gypsophila paniculata* novos testes com outras concentrações de hipoclorito de sódio já que as concentrações testadas não foram suficientemente capazes de controlar a contaminação fúngica e bacteriana dos explantes.

A *Gypsophila* é uma planta ornamental de fácil multiplicação *in vitro* e apresenta alta porcentagem de sobrevivência. Entretanto outros estudos são necessários para se obter um maior controle sobre a vitrificação a qual pode ser um grande entrave ao processo de micropropagação desta espécie.

Embora seja uma planta de fácil enraizamento *in vitro* esta etapa do processo de micropropagação de *Gypsophila* necessita ser incrementada para aumentar a porcentagem de brotações enraizadas. Para isso sugere-se novos testes com outras concentrações de AIB no meio de indução.

Para a calogênese de segmentos foliares as concentrações de BAP e ANA testadas foram suficientes para se obter a máxima porcentagem de calos formados. Sugere-se entretanto novos testes com outras concentrações de BAP e ANA para promover a regeneração de brotações ou gemas uma vez que não se obteve sucesso na organogênese indireta.
REFERENCIAS

ARTEAGA A.D., AMEZQUITA, M.O. Efecto de la zona de localizacion del esqueje en la planta madre, sobre el enraizamiento de *Gypsophila paniculata* L. *Agronomía Colombiana*, v.47, p.4-53, 1990a.

ARTEAGA A.D., AMEZQUITA, M.O. Respuestas de crecimiento y desarrollo en *Gypsophila paniculata* en la ubicacion de los esquejes en la planta madre y a tratamientos con bajas temperaturas. *Agronomía Colombiana*, v.7, p.54-60, 1990b.

LISTA DE ANEXOS
ANEXO 1 – Composição de macronutrientes, micronutrientes e suplementos do meio básico MS (MURASHIGE e SKOOG, 1962).

<table>
<thead>
<tr>
<th>Composição</th>
<th>Concentração (mg.L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sais</td>
<td></td>
</tr>
<tr>
<td>NH(_4)NO(_3)</td>
<td>1.650,0</td>
</tr>
<tr>
<td>KNO(_3)</td>
<td>1.900,0</td>
</tr>
<tr>
<td>CaCl(_2).2H(_2)O</td>
<td>440,0</td>
</tr>
<tr>
<td>MgSO(_4).7H(_2)O</td>
<td>370,0</td>
</tr>
<tr>
<td>KH(_2)PO(_4)</td>
<td>170,0</td>
</tr>
<tr>
<td>Na(_2)EDTA</td>
<td>37,3</td>
</tr>
<tr>
<td>FeSO(_4).7H(_2)O</td>
<td>27,8</td>
</tr>
<tr>
<td>H(_3)BO(_3)</td>
<td>6,2</td>
</tr>
<tr>
<td>MnSO(_4).H(_2)O</td>
<td>16,9</td>
</tr>
<tr>
<td>ZnSO(_4).7H(_2)O</td>
<td>8,6</td>
</tr>
<tr>
<td>KI</td>
<td>0,83</td>
</tr>
<tr>
<td>Na(_2)MoO(_4).2H(_2)O</td>
<td>0,25</td>
</tr>
<tr>
<td>CuSO(_4).5H(_2)O</td>
<td>0,025</td>
</tr>
<tr>
<td>CoCl(_2).6H(_2)O</td>
<td>0,025</td>
</tr>
<tr>
<td>Suplementação</td>
<td></td>
</tr>
<tr>
<td>Tiamina</td>
<td>0,1</td>
</tr>
<tr>
<td>Piridoxina</td>
<td>0,5</td>
</tr>
<tr>
<td>Glicina</td>
<td>2,0</td>
</tr>
<tr>
<td>Ácido Nicotínico</td>
<td>0,5</td>
</tr>
<tr>
<td>Inositol</td>
<td>100,0</td>
</tr>
<tr>
<td>Sacarose</td>
<td>30.000,0</td>
</tr>
<tr>
<td>Ágar</td>
<td>7.000,00</td>
</tr>
</tbody>
</table>
ANEXO 2 - Análise de variância para porcentagem de contaminação fúngica em segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos ao tratamento com etanol e a diferentes concentrações de hipoclorito de sódio.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamento</td>
<td>3</td>
<td>2626.389</td>
<td>6.706**</td>
</tr>
<tr>
<td>Erro</td>
<td>20</td>
<td>391.667</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>29.87</td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td></td>
<td>6.721</td>
<td></td>
</tr>
</tbody>
</table>

** F significativo a 1% de probabilidade

ANEXO 3 – Análise de variância para porcentagem de contaminação bacteriana em segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos ao tratamento com álcool e diferentes concentrações de hipoclorito de sódio.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamento</td>
<td>3</td>
<td>1079.042</td>
<td>9.609**</td>
</tr>
<tr>
<td>Erro</td>
<td>20</td>
<td>112.292</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>31.44</td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td></td>
<td>5.599</td>
<td></td>
</tr>
</tbody>
</table>

** F significativo a 1% de probabilidade

ANEXO 4 – Análise de variância para porcentagem de calos formados em segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de reguladores de crescimento.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco</td>
<td>3</td>
<td>794.944</td>
<td>5.30 ns</td>
</tr>
<tr>
<td>Concentrações</td>
<td>5</td>
<td>331.467</td>
<td>2.21 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>15</td>
<td>149.978</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>32.73</td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td></td>
<td>4.433</td>
<td></td>
</tr>
</tbody>
</table>

F significativo a 5% de probabilidade

ns F não significativo a 5% de probabilidade
ANEXO 5 – Análise de variância para porcentagem de sobrevivência dos explantes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de reguladores de crescimento.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco</td>
<td>3</td>
<td>437.389</td>
<td>1.81</td>
</tr>
<tr>
<td>Concentrações</td>
<td>5</td>
<td>324.967</td>
<td>1.34 ns</td>
</tr>
<tr>
<td>Erro</td>
<td>15</td>
<td>241.789</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>17.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[^{\text{ns}}\] F não significativo a 5% de probabilidade

ANEXO 6 – Análise de variância do número de folhas provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de reguladores de crescimento.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco</td>
<td>3</td>
<td>4.105</td>
<td>0.64 ns</td>
</tr>
<tr>
<td>Concentrações</td>
<td>5</td>
<td>46.787</td>
<td>7.33 **</td>
</tr>
<tr>
<td>Erro</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>29.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[^{\text{*}}\] F significativo a 1% de probabilidade
[^{\text{ns}}\] F não significativo a 5% de probabilidade

ANEXO 7 – Análise de variância do comprimento das brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de reguladores de crescimento.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco</td>
<td>3</td>
<td>0.463</td>
<td>0.25 ns</td>
</tr>
<tr>
<td>Concentrações</td>
<td>5</td>
<td>7.819</td>
<td>4.23 *</td>
</tr>
<tr>
<td>Erro</td>
<td>15</td>
<td>1.850</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>32.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[^{\text{*}}\] F significativo a 5% de probabilidade
[^{\text{ns}}\] F não significativo a 5% de probabilidade
ANEXO 8 – Análise de variância da massa de matéria fresca das brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de reguladores de crescimento.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco</td>
<td>3</td>
<td>878.624</td>
<td>0.66<sup>ns</sup></td>
</tr>
<tr>
<td>Concentrações</td>
<td>5</td>
<td>11823.374</td>
<td>8.89<sup>*</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>15</td>
<td>1329.332</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>14.59</td>
<td></td>
</tr>
<tr>
<td><sup>χ</sup><sup>2</sup></td>
<td></td>
<td>10.218</td>
<td></td>
</tr>
</tbody>
</table>

[*] F significativo a 5% de probabilidade

^{ns} F não significativo a 5% de probabilidade

ANEXO 9 – Análise de variância da porcentagem de brotações vitrificadas provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de reguladores de crescimento.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco</td>
<td>3</td>
<td>892.375</td>
<td>2.57<sup>ns</sup></td>
</tr>
<tr>
<td>Concentrações</td>
<td>5</td>
<td>372.075</td>
<td>1.07<sup>ns</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>15</td>
<td>347.875</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>54.26</td>
<td></td>
</tr>
<tr>
<td><sup>χ</sup><sup>2</sup></td>
<td></td>
<td>1.626</td>
<td></td>
</tr>
</tbody>
</table>

^{ns} F não significativo a 5% de probabilidade

ANEXO 10 – Análise de variância do número de brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de reguladores de crescimento.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco</td>
<td>3</td>
<td>1.362</td>
<td>0.68<sup>ns</sup></td>
</tr>
<tr>
<td>Concentrações</td>
<td>5</td>
<td>2.908</td>
<td>1.46<sup>ns</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>15</td>
<td>1.998</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>40.92</td>
<td></td>
</tr>
<tr>
<td><sup>χ</sup><sup>2</sup></td>
<td></td>
<td>4.185</td>
<td></td>
</tr>
</tbody>
</table>

^{ns} F não significativo a 5% de probabilidade
ANEXO 11 – Análise de variância da viabilidade de brotações (%) provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de reguladores de crescimento.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco</td>
<td>3</td>
<td>577.444</td>
<td>1.36</td>
</tr>
<tr>
<td>Concentrações</td>
<td>5</td>
<td>629.267</td>
<td>1.54</td>
</tr>
<tr>
<td>Erro</td>
<td>15</td>
<td>408.978</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>23,47</td>
<td>9.655</td>
<td></td>
</tr>
</tbody>
</table>

\(*\) F não significativo a 5% de probabilidade

ANEXO 12 – Análise de variância da porcentagem de enraizamento de brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIB</td>
<td>3</td>
<td>1325.000</td>
<td>3.861</td>
</tr>
<tr>
<td>Erro</td>
<td>44</td>
<td>343.182</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>26,95</td>
<td>1.768</td>
<td></td>
</tr>
</tbody>
</table>

\(*\) F significativo a 5% de probabilidade

ANEXO 13 – Análise de variância da porcentagem de vitrificação de brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIB</td>
<td>3</td>
<td>1401.965</td>
<td>14.549</td>
</tr>
<tr>
<td>Erro</td>
<td>44</td>
<td>96.362</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>59,72</td>
<td>1.460</td>
<td></td>
</tr>
</tbody>
</table>

\(**\) F significativo a 1% de probabilidade

ANEXO 14 – Análise de variância da porcentagem de calogênese de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIB</td>
<td>3</td>
<td>4097.222</td>
<td>6.579</td>
</tr>
<tr>
<td>Erro</td>
<td>44</td>
<td>622.727</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>38,64</td>
<td>2.032</td>
<td></td>
</tr>
</tbody>
</table>

\(**\) F significativo a 1% de probabilidade
ANEXO 15 – Análise de variância da porcentagem de sobrevivência de brotações de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIB</td>
<td>3</td>
<td>4.889</td>
<td>0.585<sup>ns</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>44</td>
<td>8.364</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td>χ^2 (%)</td>
<td></td>
<td>3.221</td>
<td></td>
</tr>
</tbody>
</table>
^{ns} F não significativo a 5% de probabilidade

ANEXO 16 – Análise de variância da massa de matéria fresca de brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIB</td>
<td>3</td>
<td>0.239</td>
<td>1.462<sup>ns</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>44</td>
<td>0.164</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>35,40</td>
<td></td>
</tr>
<tr>
<td>χ^2 (%)</td>
<td></td>
<td>3.964</td>
<td></td>
</tr>
</tbody>
</table>
^{ns} F não significativo a 5% de probabilidade

ANEXO 17 – Análise de variância do comprimento de raízes das brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIB</td>
<td>3</td>
<td>8.896</td>
<td>10.403*</td>
</tr>
<tr>
<td>Erro</td>
<td>44</td>
<td>0.855</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>32,88</td>
<td></td>
</tr>
<tr>
<td>χ^2 (%)</td>
<td></td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>
* F significativo a 1% de probabilidade

ANEXO 18 – Análise de variância do comprimento da parte aérea das brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIB</td>
<td>3</td>
<td>3.786</td>
<td>2.470<sup>ns</sup></td>
</tr>
<tr>
<td>Erro</td>
<td>44</td>
<td>1.533</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>38,16</td>
<td></td>
</tr>
<tr>
<td>χ^2 (%)</td>
<td></td>
<td>6.586</td>
<td></td>
</tr>
</tbody>
</table>
^{ns} F não significativo a 5% de probabilidade
ANEXO 19 – Análise de variância do número de brotações provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIB</td>
<td>3</td>
<td>0.521</td>
<td>2.311^ns</td>
</tr>
<tr>
<td>Erro</td>
<td>44</td>
<td>0.225</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>34,01</td>
<td>0.941</td>
<td></td>
</tr>
</tbody>
</table>

^ns F não significativo a 5% de probabilidade

ANEXO 20 – Análise de variância do número de raízes provenientes de segmentos nodais de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de AIB.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIB</td>
<td>3</td>
<td>17.076</td>
<td>7.545^**</td>
</tr>
<tr>
<td>Erro</td>
<td>44</td>
<td>2.263</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>37,03</td>
<td>4.411</td>
<td></td>
</tr>
</tbody>
</table>

^** F significativo a 1% de probabilidade

ANEXO 21 – Análise de variância para calogênese de segmentos foliares de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de BAP e ANA.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrações</td>
<td>5</td>
<td>1.708</td>
<td>363705.621^**</td>
</tr>
<tr>
<td>Erro</td>
<td>24</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>0,54</td>
<td>9.397</td>
<td></td>
</tr>
</tbody>
</table>

^** F significativo a 1% de probabilidade

ANEXO 22 – Análise de variância para massa fresca de calos formados a partir de segmentos foliares de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de BAP e ANA.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrações</td>
<td>5</td>
<td>0.212</td>
<td>43720.891^**</td>
</tr>
<tr>
<td>Erro</td>
<td>24</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>1,52</td>
<td>10.608</td>
<td></td>
</tr>
</tbody>
</table>

^** F significativo a 1% de probabilidade
ANEXO 23 – Análise de variância para porcentagem de calos oxidados formados a partir de segmentos foliares de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de BAP e ANA.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrações</td>
<td>3</td>
<td>419.806</td>
<td>3.177</td>
</tr>
<tr>
<td>Erro</td>
<td>20</td>
<td>132.143</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>23.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>2.553</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* F significativo a 5% de probabilidade
 C.V.= Coeficiente de Variação

ANEXO 24 – Análise de variância para porcentagem de calos brancos formados a partir de segmentos foliares de *Gypsophila paniculata* cv. Golan submetidos a diferentes concentrações de BAP e ANA.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrações</td>
<td>3</td>
<td>2108.171</td>
<td>56.475*</td>
</tr>
<tr>
<td>Erro</td>
<td>20</td>
<td>37.329</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>23.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>6.980</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* F significativo a 1% de probabilidade

ANEXO 25 – Análise de variância para porcentagem de calos verdes formados a partir de segmentos foliares de *Gypsophila paniculata* cv. Golan submetido a diferentes concentrações de BAP e ANA.

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>GL</th>
<th>QM</th>
<th>Valor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrações</td>
<td>3</td>
<td>1526.172</td>
<td>54.948*</td>
</tr>
<tr>
<td>Erro</td>
<td>20</td>
<td>27.775</td>
<td></td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>20.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>6.878</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* F significativo a 1% de probabilidade