AMILTON DA ROCHA LEAL JUNIOR

EFEITO DA DENSIDADE POPULACIONAL E DEBICAGEM SOBRE A ÁREA DE FIBRAS MUSCULARES (Mm. Gastrocnemius e Pectoralis major) DE CODORNAS PARA CORTE (Coturnix sp.)

Dissertação apresentada como requisito parcial à obtenção do grau de Mestre em Ciências Veterinárias, Curso de Pós-Graduação em Ciências Veterinárias, Setor de Ciências Agrárias, Universidade Federal do Paraná.

Orientador: Prof. Dr. Edson Gonçalves de Oliveira

Curitiba

2006
À Rosane, esposa,
Fabíola e Isabela, nossas filhas,
Tesouros que Deus me confiou,
O meu amor
DEDICO
AGRADECIMENTOS

À Deus, pelo dom da vida.

Ao Curso de Pós-Graduação em Ciências Veterinárias com ênfase em Zootecnia, do Setor de Ciências Agrárias da Universidade Federal do Paraná.

Ao Professor Dr. Edson Gonçalves de Oliveira pela amizade e orientação segura.

À Professora Dra. Marina Isabel Mateus de Almeida, pela amizade, orientação, correções e auxílio nas análises estatísticas.

À Professora Dra. Carla Wanderer, pela amizade, orientação e pela ajuda no trabalho de captação e análises das imagens.

Ao Professor Marco Antonio Randi, pela amizade, sugestões, orientação e auxílio no uso dos softwares utilizados no experimento.

À Professora Dra. Sonia Grotzner, pelas orientações e sugestões nas análises das imagens.

Ao Professor Dr. Édison Luiz Prisco Farias, pela amizade, incentivo e ajuda na captação de imagens.

À Fundação da Universidade Federal do Paraná para o Desenvolvimento da Ciência, Tecnologia e da Cultura - FUNPAR, pelo apoio e gerenciamento dos recursos financeiros do Projeto de Agro-ecologia e Recuperação das Instalações da Fazenda do Canguiri/UFPR, Setor de Animais Alternativos e Silvestres.

Ao Setor de Ciências Agrárias da Universidade Federal do Paraná e à Fazenda Experimental do Canguiri, pela disponibilidade e auxílio na execução deste experimento.

Aos colegas do Departamento de Anatomia da UFPR pela amizade e incentivo.

Aos alunos do curso de graduação em Zootecnia da Universidade Federal do Paraná, Marcelo Montegutte Cardoso, Roberta de Azevedo Zanatta e às estagiárias Kátia Regina Ostrovski, Naiery de Antoni M. Pinto e Karine Esther Linhares Pfeffer, pela ajuda no manejo das codornas e cooperação nos dias de abate.
Ao funcionário do Setor de Ciências Biológicas, Herculano Salviano dos Reis Filho, o querido Nino, pelo trabalho de confecção das lâminas e companheirismo cristão.

Às funcionárias do Departamento de Anatomia da Universidade Federal do Paraná, Neusa Aparecida Gomes de Oliveira, Neide de Fátima Gomes e Ely de Fátima Rodrigues de Oliveira, pelo auxílio nos dias de abate.

À funcionária Mirian Rosely Maciel, pela ajuda em todo o tempo.

À funcionária Maria José Botelho Maeda, da Secretaria de Pós Graduação em Ciências Veterinárias da UFPR, pelo apoio em todo o período de estudos.

À bibliotecária Maria Simone Utida dos Santos Amadeu, pelo auxílio na correção e formatação do texto.
SUMÁRIO

LISTA DE FIGURAS.. vi
LISTA DE TABELAS.. vii
RESUMO.. viii
ABSTRACT.. ix
1 INTRODUÇÃO.. 1
2 REVISÃO DE LITERATURA.. 3
 2.1 CARACTERÍSTICAS GERAIS... 3
 2.1.1 As codornas como produtoras de carne... 5
 2.2 DENSIDADE POPULACIONAL E DOMINÂNCIA SOCIAL.. 6
 2.3 A DEBICAGEM.. 7
 2.4 A MUSCULATURA.. 8
 2.4.1 Origem das fibras musculares... 10
 2.4.2 Tipos de fibras musculares esqueléticas... 10
 2.4.3 Número de fibras musculares... 11
 2.5 PSE.. 15
 2.6 O MÚSCULO PEITORAL.. 16
 2.6.1 Parte torácica do músculo peitoral... 16
 2.6.2 Ação do músculo peitoral... 16
 2.6.3 Partes propatagiais longa e curta do músculo peitoral... 17
 2.6.4 Parte abdominal do músculo peitoral... 17
 2.7 O MÚSCULO GASTROCNÊMIO.. 17
 2.7.1 Ação do músculo gastrocnêmio... 17
 2.7.2 Parte lateral (cabeça lateral) do músculo gastrocnêmio.. 17
 2.7.3 Parte média (cabeça média) do músculo gastrocnêmio.. 18
 2.7.4 Parte interna (cabeça medial) do músculo gastrocnêmio... 18
3 MATERIAIS E MÉTODOS... 19
 3.1 DOS ANIMAIS... 19
 3.2 PREPARO DAS LÂMINAS... 23
 3.3 CAPTAÇÃO DAS IMAGENS E DIMENSIONAMENTO DAS FIBRAS MUSCULARES.......... 24
 3.4 ANÁLISE ESTATÍSTICA.. 26
4 RESULTADOS E DISCUSSÃO... 27
 4.1 MÚSCULO PEITORAL.. 27
 4.2 MÚSCULO GASTROCNÊMIO.. 31
 4.3 PESO VIVO.. 35
 4.4 COMPARAÇÃO ENTRE IDADES... 37
 4.5 IDADE DE ABATE.. 38
5 CONCLUSÕES.. 39
REFERÊNCIAS.. 40
LISTA DE FIGURAS

FIGURA 1 – Seção transversal de um músculo esquelético.. 9
FIGURA 2 – Padrão de corte para o músculo peitoral de frangos............................ 14
FIGURA 3 – Retirada da porção do músculo peitoral.. 22
FIGURA 4 - Dissecação da cabeça lateral do músculo gastrocnêmio do membro pélvico esquerdo... 23
FIGURA 5 – Preparação digital das imagens.. 25
FIGURA 6 - Fotomicrografias de fibras do músculo peitoral de machos de codorna abatidos aos 35 dias... 27
FIGURA 7 - Fotomicrografias de fibras do músculo peitoral de machos de codorna abatidos aos 42 dias... 28
FIGURA 8 - Fotomicrografias de fibras do músculo peitoral de machos de codorna abatidos aos 49 dias... 28
FIGURA 9 - Fotomicrografias de fibras do músculo peitoral de machos de codorna abatidos aos 56 dias... 29
FIGURA 10 - Fotomicrografias de fibras do músculo gastrocnêmio de machos de codorna abatidos aos 35 dias... 31
FIGURA 11 - Fotomicrografias de fibras do músculo gastrocnêmio de machos de codorna abatidos aos 42 dias... 32
FIGURA 12 - Fotomicrografias de fibras do músculo gastrocnêmio de machos de codorna abatidos aos 49 dias... 32
FIGURA 13 - Fotomicrografias de fibras do músculo gastrocnêmio de machos de codorna abatidos aos 56 dias... 33
LISTA DE TABELAS

<table>
<thead>
<tr>
<th>TABELA</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Número de aves alojadas por box, de acordo com o tratamento experimental</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Áreas de fibras do músculo peitoral de machos de codornas aos 35 dias de idade submetidos a três densidades e dois manejos</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Áreas de fibras do músculo peitoral de machos de codornas aos 42 dias de idade submetidos a três densidades e dois manejos</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Áreas de fibras do músculo peitoral de machos de codornas aos 49 dias de idade submetidos a três densidades e dois manejos</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Áreas de fibras do músculo peitoral de machos de codornas aos 56 dias de idade submetidos a três densidades e dois manejos</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Áreas de fibras do músculo gastrocnêmio de machos de codornas aos 35 dias de idade submetidos a três densidades e dois manejos</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Áreas de fibras do músculo gastrocnêmio de machos de codornas aos 42 dias de idade submetidos a três densidades e dois manejos</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>Áreas de fibras do músculo gastrocnêmio de machos de codornas aos 49 dias de idade submetidos a três densidades e dois manejos</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>Áreas de fibras do músculo gastrocnêmio de machos de codornas aos 56 dias de idade submetidos a três densidades e dois manejos</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>Peso vivo de machos de codornas abatidos aos 35 dias de idade submetidos a três densidades e dois manejos</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>Peso vivo de machos de codornas abatidos aos 42 dias de idade submetidos a três densidades e dois manejos</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>Peso vivo de machos de codornas abatidos aos 49 dias de idade submetidos a três densidades e dois manejos</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>Peso vivo de machos de codornas abatidos aos 56 dias de idade submetidos a três densidades e dois manejos</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>Peso vivo de machos de codornas – comparação entre as quatro idades de abate</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>Áreas das fibras do músculo peitoral – comparação entre as quatro idades de abate</td>
<td>37</td>
</tr>
<tr>
<td>16</td>
<td>Áreas das fibras do músculo gastrocnêmio – comparação entre as quatro idades de abate</td>
<td>37</td>
</tr>
</tbody>
</table>
RESUMO

Buscou-se detectar, através de dimensionamento das áreas das fibras musculares, os efeitos de debicagem e três densidades populacionais (150, 250 e 350 cm²/ave) em quatro idades de abate (35, 42, 49 e 56 dias) como subsídio para determinar a melhor idade de abate. Foi utilizada uma técnica de dimensionamento microscópico que permitiu medir a área das fibras dos músculos do peito (pectoralis major) e da perna (gastrocnemius), de machos de codornas (Coturnix sp.) selecionadas para corte (linhagem italiana). As variáveis analisadas foram área média das fibras do músculo peitoral, do músculo gastrocnêmio e o peso vivo das aves no momento do abate. Os efeitos de densidade populacional, manejo e interação entre ambos foram investigados através de análise de variância para delineamento inteiramente casualizado, em esquema fatorial 3 x 2 com quatro repetições em cada uma das quatro idades de abate. Os contrastes de médias foram realizados pelo teste de Tukey. As áreas das fibras do músculo peitoral das codornas abatidas aos 35 dias foram maiores que as das aves não debicadas. Este efeito não foi notado nas fibras do músculo gastrocnêmio nesta idade de abate. Não houve efeito de tratamento nas outras idades de abate. Concluiu-se que a debicagem pode ser adotada como técnica de manejo para codornas e que estas aves podem ser criadas em densidades de 150 cm²/ave sem alteração nas áreas das fibras dos músculos peitoral e gastrocnêmio. Os pesos vivos foram menores aos 35 dias de idade (p<0,0001) não apresentando diferenças a partir dos 42 dias (p>0,30). Com base nestes dados e visto que não houve diferenças significativas nas aferições das áreas das fibras musculares avaliadas a partir de 42 dias, considerou-se, nas condições experimentais avaliadas, esta idade como a melhor idade para o abate das codornas.

Palavras-chave: codorna, densidade populacional, área de fibra muscular, debicagem
ABSTRACT

An attempt was made to detect, through the measurement of the area of muscular fibers, the effects of reduction and three housing densities (150, 250 and 350cm²/bird) at four stages of slaughtering (35, 42, 49 and 56 days). It was used a laboratory technique that permitted measuring the area of the muscular fibers of the breast (*pectoralis major*) and of the leg (*gastrocnemius*), of male quails selected for meat. The variables analyzed were the average area of the fibers of the pectoral muscle, of the *gastrocnemius* muscle and the live weight of the birds. The effects of the density, management and interaction between both were investigated through analysis of variance for the completely chance delineation in the factorial design 3 x 2 with four repetitions in each of the four times of slaughtering. The contrasts of the averages were accomplished by the Tukey test. The areas of the fibers of the pectoral muscles of the beak trimmed quails slaughtered at 35 days were larger than those of the not beak trimmed birds. This effect was not noted in the fibers of the *gastrocnemius* muscles at this stage of slaughtering. There was no effect of the treatment in the other stages of slaughtering. It was concluded that the testing can be adopted as a technique of management for quail and that these birds can be raised in densities of 150 cm²/bird without changes to the area of the *pectoralis major* and *gastrocnemius* muscular fibers. The live weights were less at 35 days of age (p<0.0001). Showing no differences after 42 days (p>0.30). The best data from slaughtering according to the obtained results is 42 days, since there are no differences among the area of muscular fibers and live weight among this age and data obtained later.

Key words: quail, density, area of muscular fibers, beak-trimming