A INFLUÊNCIA DO TEMPO DE TREINAMENTO NA PERFORMANCE DAS CAPACIDADES FÍSICAS EM ATLETAS INFANTIS NAS ESCOLAS DE FUTEBOL DO CRUZEIRO EM CURITIBA

CURITIBA
2005
HELTON DIOGO MALLO STAES

A INFLUÊNCIA DO TEMPO DE TREINAMENTO NA PERFORMANCE DAS CAPACIDADES FÍSICAS EM ATLETAS INFANTIS NAS ESCOLAS DE FUTEBOL DO CRUZEIRO EM CURITIBA

Trabalho apresentado à Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Educação Física, como requisito parcial para obtenção do título de Bacharel em Educação Física, sob a orientação do Prof. Msd. Mario André Mazzuco.

CURITIBA
2005
A felicidade não está em viver, mas em saber viver ... mas não vive mais o que mais vive, mas o que melhor vive.

Mahatma Gandhi

Ainda que o bem que persigo esteja distante, contudo existe.

Confúcio

Bem-Aventurado aquele que teme ao Senhor e anda nos seus caminhos.

Palavra de Deus – Salmos 128:1
AGRADECIMENTOS

Agradeço ...

... primeiramente a Deus por ter me dado o Dom de viver e por ter me sustentado, além de me fortalecer e me consolar nesta caminhada vencida.

... à Elaine Cristina S. Mallo Stais, minha querida esposa que me ajudou, compreendeu e me fortaleceu nas horas difíceis, e que apesar de perder noites de sono e momentos especiais ao meu lado, soube ser auxiliadora e ajudadora nesta fase conquistada.

... aos meus pais, Renato C. Stais e Jucélia C. Mallo Stais, que me incentivaram e forneceram apoio desde meu nascimento e durante minha vida, transmitindo valores importantes para a formação de um cidadão correto, e acima de tudo contribuindo para que mais um objetivo fosse alcançado.

... ao Professor e mestrando Mario André Mazzuco que me orientou nesta caminhada, e Professores e Amigos que compartilharam conhecimentos e possibilitaram novas experiências, contribuindo para o perfeito andamento da vida acadêmica que culminou com este trabalho, fruto de esforços e dedicação.
SUMÁRIO

<table>
<thead>
<tr>
<th>Capítulo</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTA TABELAS E GRÁFICOS</td>
</tr>
<tr>
<td>RESUMO</td>
</tr>
<tr>
<td>1. INTRODUÇÃO</td>
</tr>
<tr>
<td>1.1 PROBLEMA</td>
</tr>
<tr>
<td>1.2 JUSTIFICATIVA</td>
</tr>
<tr>
<td>1.3 OBJETIVOS</td>
</tr>
<tr>
<td>1.3.1 OBJETIVO GERAL</td>
</tr>
<tr>
<td>1.3.2 OBJETIVOS ESPECÍFICOS</td>
</tr>
<tr>
<td>1.4 HIPÓTESES</td>
</tr>
<tr>
<td>2. REVISÃO DE LITERATURA</td>
</tr>
<tr>
<td>2.1 BREVE HISTÓRICO DO FUTEBOL</td>
</tr>
<tr>
<td>2.2 CARACTERÍSTICAS E VALÊNCIAS FÍSICAS DO ESPORTE</td>
</tr>
<tr>
<td>2.3 ASPECTOS MATURACIONAIS NA INFÂNCIA E ADOLESCÊNCIA</td>
</tr>
<tr>
<td>2.4 EFEITOS DO PROCESSO DE TREINAMENTO</td>
</tr>
<tr>
<td>3. METODOLOGIA</td>
</tr>
<tr>
<td>3.1 POPULAÇÃO E AMOSTRA</td>
</tr>
<tr>
<td>3.2 MATERIAIS E MÉTODOS</td>
</tr>
<tr>
<td>3.3 ANÁLISE ESTATISTICA</td>
</tr>
<tr>
<td>4. RESULTADOS</td>
</tr>
<tr>
<td>5. DISCUSSÃO</td>
</tr>
<tr>
<td>6. CONCLUSÕES</td>
</tr>
<tr>
<td>REFERÊNCIAS BIBLIOGRÁFICAS</td>
</tr>
</tbody>
</table>
LISTA DE TABELAS E GRÁFICOS

TABELA 1. Média e Desvio Padrão dos grupos em cada Valência.....................28
TABELA 2. Coeficientes de Correlação dentro do grupo Geral (G)....................29
TABELA 3. Coeficientes de Correlação dentro do grupo Menos Experientes (ME)..30
TABELA 4. Coeficientes de Correlação dentro do grupo Experientes (E)........31

GRÁFICO 1. Médias de Idade, Peso e Estatura...28
RESUMO

O futebol como qualquer outro esporte necessita de diversas valências físicas para a aprendizagem e desenvolvimento das habilidades específicas, inerentes à prática. Dentre as valências utilizadas no futebol encontram-se a velocidade de corrida, a agilidade e a capacidade de oxigenação máxima, objetos deste estudo que busca determinar os níveis destas valências físicas comparadas ao tempo de treinamento em atletas da categoria infantil de Escolas de Futebol. Através de testes físicos que mensuram cada uma das valências observa-se entre atletas experientes e menos experientes uma homogeneidade devido à faixa etária e ao esporte em comum, e uma influência do treinamento no desenvolvimento destas valências físicas, que devem ser acompanhadas considerando-se as alterações de cada faixa etária.

Palavras-Chave: futebol; valências físicas; treinamento.
1. INTRODUÇÃO

O esporte é parte da cultura desde os primórdios da civilização, e pode ser considerado como um veículo da instituição social. Ao longo da história do futebol mundial, percebemos que o Brasil é o melhor no que diz respeito ao futebol, mas para que esta marca seja uma constante, existem alguns fatores que fazem com que nos dias de hoje haja uma mudança.

Antigamente eram nos “campinhos” dos bairros, nas ruas, enfim, em qualquer lugar onde a imaginação de cada criança, formava um Maracanã. Hoje em dia as crianças precisam de lugares com segurança e principalmente viver sua totalidade corporal, através de vivências que possibilitem ampliar sua percepção corporal e seus sentidos. Segundo COAKLEY, citado por GALLAHUE & OZMUN (2003) o esporte pode desenvolver também o comportamento moral pelas inúmeras emoções e situações imprevisíveis que surgem. O esporte fornece um ambiente favorável para ensinar os valores de honestidade, lealdade, autocontrole e de justiça (GALLAHUE & OZMUN, 2003). Além disso, o futebol está presente em todas as faixas-etárias da criança e quando trabalhado de forma adequada é sem sombra de dúvidas uma fonte permanente de educação e saúde.

Cada vez mais crianças e jovens estão em evidência no esporte competitivo, um exemplo é o aparecimento de garotos de 15 e 16 anos no futebol profissional. Em geral, a prática deste esporte vincula-se ao desenvolvimento da “performance” do indivíduo, esse conceito tem levado professores a se preocuparem com a preparação física dos praticantes, sem levar em consideração as fases do aparecimento das diferentes valências físicas de acordo com a faixa etária.
As valências físicas são de fundamental importância para a prática do futebol, pois as mesmas serão a base para a aprendizagem das habilidades específicas do esporte. Por isso o desenvolvimento destas deve ser acompanhado por um certo nível de aperfeiçoamento, afinal o treinamento tem como principal objetivo causar adaptações biológicas destinadas a aprimorar o desempenho numa tarefa específica.

1.1 PROBLEMA

O tempo de treinamento em escolas de futebol influencia na performance da velocidade, agilidade e resistência aeróbica, de atletas infantis?

1.2 JUSTIFICATIVA

“A aptidão relacionada à saúde e a aptidão motora de crianças devem ser motivo de grande interesse para todos e não apenas para o educador físico, treinador e para o médico. (...) Até recentemente, relativamente poucas pesquisas havia se concentrado nas necessidades de aptidão de crianças. Como resultado, nosso conhecimento da aptidão e sobre sua capacidade para o trabalho tem sido limitado.” (GALLAHUE & OZMUND, 2003)

Para contribuir com este estudo entre crianças na atualidade e devido à área de atuação profissional, é que surgiu o interesse em pesquisar e explanar sobre tal assunto, com o objetivo de fornecer subsídios na área de estudo do futebol em categorias menores, alargar o conhecimento acadêmico de forma consistente e
profissional, e dar um estímulo à novas e diferentes pesquisas que possam ser realizadas através da leitura e compreensão desta.

Com certeza esta pesquisa será limitada em informações devido à vasta diversidade de assuntos relacionados a crianças e adolescentes que podem ser estudados, mas poderá auxiliar sendo um bom instrumento para treinadores de Escolas de Futebol que tenham atletas nesta faixa etária.

1.3 OBJETIVOS

1.3.1 OBJETIVO GERAL

Determinar os níveis de desenvolvimento das valências físicas velocidade, agilidade e resistência aeróbica, comparadas ao tempo de treinamento em atletas da categoria infantil das Escolas de Futebol do Cruzeiro em Curitiba.

1.3.2 OBJETIVOS ESPECÍFICOS

- Mensurar VO\textsubscript{2máx}, Agilidade e Velocidade dos atletas;
- Comparar os resultados entre iniciantes e experientes;
- Analisar a influência do treinamento.
1.4 HIPÓTESES

h0 – O estado de desenvolvimento das capacidades físicas mensuradas entre os alunos experientes e iniciantes pode ser considerado homogêneo devido à faixa etária em comum.

h1 – O Nível de resistência aeróbica demonstra-se proporcional ao nível de agilidade e velocidade, tornando os valores dependentes.

h2 – O treinamento influencia no desenvolvimento das valências físicas, independente do objetivo do atleta.
2. REVISÃO DE LITERATURA

2.1 BREVE HISTÓRICO DO FUTEBOL

Um dos esportes mais difundidos no mundo, conhecido pelas famosas e importantes competições (mundiais interclubes, nacionais, copas do mundo, jogos olímpicos), é também a “paixão nacional” do povo brasileiro que possui a única Seleção Penta Campeã Mundial da FIFA. Por um instante a origem deste esporte torna-se brasileira dada à proximidade da prática do Futebol com este país.

Embora seja evidente a intimidade do jogador brasileiro com a bola, como se fosse o criador deste esporte, o objeto principal do jogo chegou ao Brasil tempos depois do surgimento do Futebol.

A organização do Futebol coube aos ingleses, mas a sua origem perde-se no tempo. Na China em 2600 a.C. surge o kemari, primeira ideia do futebol, na Grécia Antiga o epyskiros é disputado com uma bola feita de bexiga de boi, coberta com uma capa de couro, o que em Roma foi chamado de harpastum. Já na Idade Média jogava-se na Inglaterra, um futebol selvagem, violento, sem regras e sem número de jogadores determinado, paralelamente ao soule jogado na França, e ao calcio jogado na Itália.

O jogo começou a ser organizado há 150 anos com o surgimento dos que posteriormente seriam os árbitros, e de algumas regras que começaram a pôr ordem no esporte.

Segundo DUARTE (2000) o futebol como é hoje chegou à França em 1872; à Suíça em 1879; à Bélgica em 1880; à Alemanha, Dinamarca e Holanda, em 1889; à Itália em 1893; e aos países da Europa Central em 1900.
Em 1894, Charles Miller, brasileiro, filho de ingleses e que estudava na Inglaterra, trouxe para o Brasil duas bolas que permitiram a prática do futebol regularmente. Porém para alguns historiadores antes mesmo de Charles Miller, o jogo já era conhecido no Brasil por intermédio de marinheiros ingleses, holandeses e franceses que jogavam nas praias brasileiras durante as paradas dos navios, mas após um período iam embora e levavam as bolas.

“China (keman), Grécia (epyskiros), Roma (harpastum), França (soule), Florença (calcio) e Inglaterra (football) formam a árvore genealógica do Futebol.” (DUARTE, 2000)

Ainda segundo DUARTE (2000) para o futebol atual houveram duas datas importantes onde foram definidas regras que deram início à organização do esporte. Em 26 de Outubro de 1863, na Freemason’s Tavern, na Great Queen Street, em Londres, representantes de clubes, capitães e dirigentes de escolas reuniram-se para unificar as regras e fundaram a Football Association. Já no dia 2 de Junho de 1886, as quatro Associações de Futebol Britânicas fundaram, em Londres, a International Football Association, que ainda é a guardiã das regras e da organização desse esporte.

2.2 CARACTERÍSTICAS E VALÊNCIAS FÍSICAS DO ESPORTE

O futebol é uma modalidade esportiva intermitente, com constantes mudanças de intensidade e atividades. A imprevisibilidade dos acontecimentos e ações durante uma partida exige que o atleta esteja preparado para reagir aos mais diferentes estímulos, da maneira mais eficiente possível (BARBANTI, 1996).
Segundo BARROS & GUERRA (2004) na prática deste esporte exige-se uma grande demanda física, o que requer elevado grau de habilidade técnica, força, *endurance* (resistência) e velocidade. Além destes aspectos físicos como princípios decisivos, importantes são também a agilidade e a flexibilidade. A resistência tem sua importância para desempenhar uma boa performance durante todo o jogo. A velocidade é necessária para percorrer as distâncias curtas o mais rápido possível e a ligação entre as capacidades é de extrema importância, principalmente entre a velocidade e a agilidade.

A aquisição e performance das habilidades motoras fundamentais serão facilitadas pelas valências físicas, apresentadas pelo indivíduo desde o seu nascimento, por exemplo: grau de coordenação motora; tempo de reação; flexibilidade; agilidade etc. Estas valências físicas possuem características genéticas, sendo portanto uma característica individual de cada criança (DE CAMPOS, 1998).

Classificando de uma forma geral e abrangente, para WEINECK (1991) e MEINEL & SCHNABEL (1984) *citados por PELLEGRINOTTI*, 1997, as valências físicas, também chamadas capacidades motoras, dividem-se em:

- **Condicionantes**: força, velocidade e resistência,
- **Motrizes**: coordenação e a flexibilidade.

MELO (1997) define que os atletas de futebol possuem características físicas específicas por posição de jogo.

- **Goleiro**: força explosiva, flexibilidade, equilíbrio, resistência muscular localizada e velocidade de reação.
- **Laterais**: força explosiva, resistência e coordenação.
- Zagueiros: força, impulsão, equilíbrio, velocidade de reação e agilidade.
- Meio-campo: resistência, coordenação, recuperação e velocidade.
- Atacantes: velocidade, agilidade, equilíbrio e força explosiva.

Cada valência física possui o momento exato para seu aparecimento, e o trabalho para desenvolvê-las deve respeitar as características individuais do praticante (MEINEL & SCHABEL, 1984 citado por PELLEGRINOTTI, 1997).

Ainda, segundo PELLEGRINOTTI (1997), a velocidade e suas formas de atividades devem ser programadas entre 9 e 18 anos. Já força e resistência, valências físicas de fácil assimilação, recomenda-se programá-las desde a idade de 10 anos, pois sua evolução e possibilidades de aperfeiçoamento podem ser alcançadas ao longo dos anos, sendo melhorada, também, com a maturação do indivíduo.

Pensando numa forma mais específica e abrangente de classificação, DANTAS (2003) que chama as valências físicas de qualidades físicas, apresenta a classificação de TUBINO (1979), como a mais conhecida e usual:

- Qualidades físicas desenvolvidas ou obtidas por meio de treinamento, as chamadas qualidades da forma física. (força dinâmica, estática e explosiva, resistência aeróbia, anaeróbia e a muscular localizada, e flexibilidade)
- Qualidades inatas e que seriam tão-somente aperfeiçoadas pelo treinamento – as denominadas qualidades das habilidades motoras. (coordenação, descontração total e diferencial, agilidade, velocidade de reação e de movimento, e equilíbrio dinâmico, estático e recuperado)
Como este trabalho tomará como base de dados para o devido estudo a Resistência, a Velocidade e a Agilidade, torna-se importante apresentar os conceitos e significados de cada uma destas valências físicas mais especifica e detalhadamente.

Resistência

É a qualidade física que permite ao corpo suportar um esforço de determinada intensidade durante um certo tempo. (DANTAS, 2003). É subdividida em resistência aeróbica, anaeróbica e muscular localizada (RML).

O desempenho aeróbio é determinado pelo poder e capacidade aeróbia. Isso reflete a capacidade de produzir energia aeróbia em níveis elevados e é caracterizada pelo consumo máximo de oxigênio. A capacidade aeróbia expressa a habilidade de se manter um exercício durante um período e é sinônimo de endurance (Reilly et al. 2000 citado por BARROS & GUERRA, 2004). Portanto a Resistência Aeróbica é aquela cuja principal característica é apresentar uma intensidade pequena e um volume grande, ou seja, um longo tempo de execução da atividade.

Durante o futebol competitivo, a principal via metabólica é a aeróbia e as respostas metabólicas são em geral análogas às encontradas nos exercícios de endurance. A maioria das atividades é composta de movimentos sem bola.

O futebol compreende vários tipos de deslocamentos, embora a caminhada e o trote sejam predominantes. É necessário treinar a capacidade de resistência aeróbia para que os jogadores possam se movimentar, durante os 90 minutos, com
periódos de movimentos de alta intensidade, como acelerações em pequenas distâncias (YAMANEKA; ASAMI; TOGARI et al., *citado por* PERES, 1996).

O futebol é uma atividade predominantemente aeróbica, com somente aproximadamente 12% do tempo de jogo gasto com atividades que utilizam substratos energéticos anaeróbios. Para BOSCO (1994), 11% da distância total são percorridos sob a forma de sprint. Constata-se que o sistema anaeróbio alático é o principal sistema anaeróbio da modalidade, sendo o futebol um esporte com componentes anaeróbios aláticos e láticos.

Em estudos realizados entre profissionais observou-se que durante o jogo os atletas ficam parados em 17,1% do tempo de jogo, andam em 40,4% do tempo, correm em intensidade baixa em 35% do tempo e correm com intensidade alta em 8,1% do tempo total de jogo. (Bangsbo *et al.* 1991; Mujika *et al.* 2000 *citados por* BARROS & GUERRA, 2004). A média de relação descanso - atividades de baixa intensidade - atividades de alta intensidade é de 3:16:1, o que demonstra que a maior parte da energia utilizada pelo futebol é de natureza submáxima e aeróbica com períodos de exercícios de alta intensidade raros e curtos (Rienzi *et al.* 2000; Withers *et al.* 1982 *citados por* BARROS & GUERRA, 2004).

Por isso o desenvolvimento da capacidade aeróbica no futebolista é de fundamental importância já que permite uma recuperação mais rápida durante atividades de baixa intensidade, dos sistemas energéticos alático e lático, quando os músculos são estimulados pelos exercícios intermitentes, de alta intensidade, durante a partida (Silva *et al.* 1999 *citado por* BARROS & GUERRA, 2004).
Velocidade

No futebol, as corridas curtas de alta velocidade desenvolvidas durante o jogo são denominadas *sprints*. Para a eficácia deste movimento esportivo é necessária entre as demandas físicas uma potência anaeróbia elevada.

A este respeito, BARROS & GUERRA (2004) relatam que com relação aos estudos que analisaram as corridas de velocidade máxima no jogo, foi registrada a realização de 52 corridas de velocidade máxima em média por jogo. Winkler, em 1985, verificou que na maioria das vezes os *sprints* não superam 20 metros, dados muito parecidos aos encontrados por Reilly & Thomas, em 1976, que verificaram a realização de um *sprint*, em média, a cada 90 segundos.

Para DANTAS (2003) a velocidade pode ser definida como a qualidade física que permite realizar a ação no menor tempo possível e apresenta-se de duas formas:

- Velocidade de Reação;
- Velocidade de Movimento: expressa pela rapidez de execução de uma contração muscular.

Segundo GALLAHUE & OZMUND (2003) a velocidade é influenciada pelo “tempo de reação” (a quantidade de tempo decorrido desde o sinal de largada até os primeiros movimentos do corpo), bem como pelo “tempo motor” (o tempo decorrido desde o movimento inicial até o término da atividade).

Para jogadores profissionais, a duração total de exercícios de alta intensidade durante um jogo é de cerca de 7 minutos. Isso inclui uma média de 19 *sprints* com duração de 2 segundos (Bangsbo & Lindquist, 1992a; Shepard, 1999 citados por
BRROS & GUERRA, 2004). Portanto a potência anaeróbia é muito importante para o sucesso dos jogadores, afinal auxilia na rapidez que é decisiva em jogos.

Na infância e além dela, a velocidade motora pode ser encorajada por meio de atividade física vigorosa, que incorpore curtos impulsos de velocidade. (GALLAHUE & OZMUND, 2003)

Agilidade

Qualidade física que possibilita mudar a posição do corpo ou a direção do movimento no menor tempo possível (DANTAS, 2003).

Devido ao número de jogadores no futebol e ao objetivo de atingir a meta adversária na realização do gol, é freqüente observarmos momentos em que o nível de agilidade é exigido.

Em crianças este nível é progressivo, porém, após certa idade esta valência física necessita de treinamento para o aprimoramento. Segundo GALLAHUE & OZMUND (2003), O tempo de reação e o tempo motor influenciam a velocidade motora, a agilidade e a energia, que tendem a avançar de forma linear na infância, mas requerem treinamento especial, depois disso, para que se aprimorem continuamente.
2.3 ASPECTOS MATURACIONAIS NA INFÂNCIA E ADOLESCÊNCIA

Desde sua formação até a velhice o ser humano apresenta constantes transformações que são produzidas naturalmente pelos processos de crescimento, desenvolvimento e maturação.

À medida que o homem vai sofrendo transformações internas, tais processos já estão acontecendo, com o objetivo de torná-lo apto à enfrentar as fases e acontecimentos da vida, inserindo-o gradualmente ao meio em que vive.

Para que possam ser entendidos os degraus galgados pelo homem, é necessário diferenciar algumas funções básicas inerentes à todo o processo, que são: o crescimento, o desenvolvimento e a maturação.

TOURINHO FILHO & TOURINHO (1998), em artigo de revisão, diferenciam os termos conceituando cada um, segundo alguns autores, da seguinte forma: o crescimento pode ser definido como as mudanças normais na quantidade de substância viva; é o aspecto quantitativo do desenvolvimento biológico, resultando de processos biológicos por meio dos quais a matéria viva normalmente se torna maior (ARAÚJO, 1985). O desenvolvimento, por sua vez, pode ser definido como um processo de mudanças graduais, de um nível simples para um mais complexo, dos aspectos físico, mental e emocional pelo qual todo ser humano passa, desde a concepção até a morte (BARBANTI, 1994); já, a maturação significa pleno desenvolvimento, a estabilização do estado adulto efetuada pelo crescimento e desenvolvimento (ARAÚJO, 1985).

A classificação para análise do nível de desenvolvimento do indivíduo, pode acontecer de várias maneiras, no entanto a mais conhecida é a classificação pela idade cronológica. Nesta, a idade é determinada pela diferença entre o dia
Atualmente vivido pelo indivíduo e o dia do nascimento. GALLAHUE & OZMUND (2003) apresentam a seguinte classificação para a idade cronológica: vida pré-natal (da concepção do zigoto ao nascimento); primeira infância (do nascimento aos 24 meses); segunda infância (dos 24 meses aos 10 anos); adolescência (dos 10 aos 20 anos); adulto jovem (dos 20 aos 40 anos); adulto de meia-idade (dos 40 aos 60 anos) e adulto de idade terciária (acima de 60 anos).

Outro meio, pelo qual o nível de desenvolvimento pode ser mais precisamente determinado, é a idade biológica. Esta idade corresponde à determinada pelo nível de maturação dos diversos órgãos que compõem o homem. A determinação da idade biológica pode ser concluída por meio da avaliação das idades morfológica, esquelética, dental e sexual (GALLAHUE & OZMUND, 2003).

As idades mencionadas acima permitem perceber que a maturidade não acontece de uma vez só, nem tão pouco ao mesmo tempo, mas é conduzida por uma variabilidade determinada geneticamente. Durante seu crescimento, o ser humano passa por diversos momentos de estabilização, onde desenvolvimentos específicos são completados. Alguns órgãos e sistemas desenvolvem-se completamente antes que outros, não dependendo de um tempo predeterminado para que o estágio de maturação aconteça.

Segundo WEINECK (1991) o organismo infantil possui uma complexa capacidade de adaptação, isto é válido principalmente no que se refere à capacidade aeróbia: em comparação aos adultos, as crianças apresentam uma menor capacidade para a obtenção de energia anaeróbia. Até os 12 anos, as curvas de crescimento do consumo de oxigênio não apresentam diferenças significativas de
perfil entre os sexos, embora os rapazes obtenham valores superiores desde os cinco anos de idade. A diferenciação sexual instala-se, porém, após os 14 anos, idade em que as garotas atingem um platô, ao passo que os rapazes continuam a apresentar valores crescentes até os 18 anos (Mirwald et al, 1981 citado por TOURINHO FILHO & TOURINHO, 1998).

A capacidade anaeróbica vai ganhando maiores níveis de desenvolvimento com o decorrer da idade. Esta capacidade pode ser visualizada na velocidade de movimento, que pode ser medida, em crianças, através de vários testes de velocidade de corrida. GALLAHUE & OZMUND (2003) citam que em um estudo sobre a velocidade de corrida de crianças de escola elementar, Keogh (1965) apontou que, aos 6 e 7 anos, meninos e meninas têm velocidade de corrida semelhante; no intervalo dos 8 aos 12 anos, porém, os meninos superam as meninas. Já na adolescência os meninos continuam a ter crescente melhora, enquanto as meninas tendem a estabilizar-se após a idade de 12 anos. As razões para a estabilização prematura das meninas adolescentes podem ser explicadas, em parte, pela maturação precoce delas e pelos níveis inferiores de motivação pessoal que apresentam, quando comparadas aos meninos, que amadurecem mais tarde e frequentemente são mais motivados (GALLAHUE & OZMUND, 2003).

Na análise do limiar anaeróbico percebe-se uma superioridade das crianças em relação aos adolescentes. Adaptado de TANAKA & SHINDO (1985) e citado por TOURINHO FILHO & TOURINHO (1998), esta diferença é devida às características da musculatura esquelética. Os baixos níveis de testosterona e a baixa influência hormonal na musculatura provocam uma alta capacidade oxidativa. Portanto, com a
idade, ocorre um declínio significativo dos percentuais do consumo máximo de oxigênio nos quais as concentrações de lactato afetam o desempenho.

Em pessoas adultas, as alterações que eventualmente, possam ocorrer caracterizam-se como uma resposta ao processo de adaptação do estresse imposto pelo esforço físico. No entanto em crianças e adolescentes, as modificações que ocorrem até que atinjam o estágio de maturidade podem ser tão grandes ou maiores até do que as próprias adaptações resultantes de um programa de atividade física (GUEDES & GUEDES, 1995 *citado por* TOURINHO FILHO & TOURINHO, 1998).

Por isso é fundamental que no estudo entre crianças e adolescentes seja observada a diferenciação entre os efeitos de treinamento e os possíveis efeitos do desenvolvimento, crescimento e maturação.

2.4 EFEITOS DO PROCESSO DE TREINAMENTO

Cada Indivíduo é único em seu desenvolvimento e progredirá até um nível determinado pelas circunstâncias ambientais e biológicas em conjunto com as necessidades da tarefa motora (GALLAHUE & OZMUND, 2003).

Para GALLAHUE & OZMUND (2003) a aptidão motora, que é a aptidão relacionada ao desempenho, é considerada como o nível de desempenho atual de um indivíduo, e é influenciada por fatores como movimento, velocidade, agilidade, equilíbrio, coordenação e força, pertencendo ao grupo de fatores que afetam o desenvolvimento motor. Estes fatores são treináveis e determinam diferenças até mesmo entre indivíduos, de forma hipotética, iguais geneticamente, através dos níveis de performance.
No treinamento desportivo um dos princípios científicos é o da Individualidade Biológica, o qual julga ser necessário um planejamento personalizado e diferenciado para cada indivíduo, de acordo com suas características individuais. Porém, o que vale salientar na explicação deste princípio é que genótipo e fenótipo são influenciadores na caracterização do indivíduo, e que, portanto, características como: habilidades desportivas; consumo máximo de oxigênio; percentual dos tipos de fibras musculares; e potencialidades expressas (altura do indivíduo, sua força máxima, etc.); são específicas do fenótipo, afinal são melhoradas ou acrescentadas ao indivíduo após seu nascimento. Portanto, DANTAS (2003) explica que os potenciais são determinados geneticamente, e que as capacidades ou habilidades expressas são decorrentes do fenótipo.

Ao confrontar tudo o que foi descrito acima com o objetivo deste estudo, verifica-se que qualidades físicas como a Velocidade, a Agilidade e a Resistência Aeróbica podem apresentar uma evolução se treinadas corretamente. Por isso fatores como período, intensidade, volume, freqüência e forma de trabalho são influenciadores do treinamento.

Neste ponto, torna-se necessário frisar que a resistência aeróbica utiliza como seu principal sistema de transferência energética o sistema aeróbico, enquanto a velocidade e a agilidade, o sistema anaeróbico alático.

Diversos estudos têm demonstrado que, quando o consumo máximo de oxigênio por quilograma de peso corporal é feito para refletir a potência aeróbia máxima, pré-púberes são menos treináveis do que indivíduos mais maturados. Alguns afirmam que a baixa treinabilidade é devida a constante movimentação e hiperatividade das crianças mesmo quando não fazem parte de um programa de
treinamento, e por isso, um programa adiciona pouco à sua aptidão. Porém, em uma revisão apresentada por ROWLAND (1985) *citada por* TOURINHO FILHO & TOURINHO (1998) pode-se observar uma lista de estudos demonstrando o aumento do consumo máximo de oxigênio de crianças através do treinamento, e a conclusão do autor que, quando o regime de treinamento aeróbico é realizado conforme a orientação estabelecida para adultos, pré-púberes são treináveis.

Adaptado de SOBRAL (1988) *citado por* TOURINHO FILHO & TOURINHO (1998), a baixa capacidade anaeróbica das crianças em relação aos adultos deve-se a estoques inferiores de fosfagênio e, também, ao menor volume de massa muscular. Além de a criança e o adolescente possuírem uma concentração de lactato no músculo e no sangue mais baixa do que no adulto, há também uma menor ação do hormônio testosterona sobre a musculatura esquelética da criança, e uma menor capacidade de recrutamento das unidades motoras quando uma performance máxima é solicitada. Isto tudo demonstra a dificuldade de adaptação ao treinamento anaeróbico, principalmente lático, já que o alático, apesar de tudo, é um assimilado.
3. METODOLOGIA

3.1 POPULAÇÃO E AMOSTRA

O estudo baseia-se numa pesquisa de campo a ser realizada nas Escolas de Futebol do Cruzeiro em Curitiba. A amostra foi composta por 21 atletas do sexo masculino na faixa etária de 14 e 15 anos de idade, devidamente matriculados nas Escolas.

3.2 MATERIAIS E MÉTODOS

Para o desenvolvimento do estudo, primeiramente foram confeccionados questionários compostos por perguntas referentes a períodos e freqüências de treinamento, os quais foram preenchidos por cada atleta. A amostra foi dividida em dois grupos: Experientes (E) e Menos Experientes (ME), com base na média do tempo de treinamento de todo o grupo. Atletas com tempo de treinamento menor ou igual à média do grupo foram considerados Menos Experientes (ME), já outros, com tempo de treinamento superior à mesma média foram incluídos no grupo Experientes (E).

Para a coleta de dados a amostra foi dividida, tornando o controle dos testes mais eficaz. Esta coleta, para a análise das performances das capacidades físicas foi realizada em dois dias para uma parte do grupo e outros dois para a outra parte. Para tal análise foram aplicados, aos integrantes das duas metades do grupo, testes de velocidade e agilidade, no primeiro dia de coleta, e teste de resistência (VO$_{2\text{máx}}$) no segundo dia.
No propósito de avaliar a agilidade de cada indivíduo, o teste utilizado foi o de *Shuttle Run*. Para a aplicação do teste, os materiais utilizados foram dois blocos de madeira (5 cm x 5 cm x 10 cm), cronômetro, espaço livre de obstáculo de 15m, no mínimo, e folha de protocolo. A execução ocorreu da seguinte forma, de acordo com DANTAS (2003): foram demarcadas duas linhas no solo, a uma distância de 9,14m entre elas. A linha mais próxima do avaliado foi a linha de partida e a outra, a linha de referência, depois da qual os dois blocos foram colocados. O avaliado trouxe os dois blocos para trás da linha de partida, sendo um de cada vez, após a voz de comendo de início do teste. O cronômetro foi parado quando o avaliado colocou o último bloco no solo e ultrapassar, com pelo menos um dos pés, as linhas que delimitam os espaços demarcados. De acordo com o protocolo o bloco não deve ser jogado, mas colocado no solo. Cada avaliado realizou duas tentativas com intervalos mínimos de dois minutos, permitindo a recomposição do sistema anaeróbico alático. O resultado foi determinado pelo melhor tempo de percurso entre as duas tentativas.

A avaliação da velocidade foi fundamentada no teste de *Corrida Máxima de 30m*. Adaptado de BAKER (2004), e citado por BARROS & GUERRA (2004), o teste consiste em realizar um sprint entre duas marcas colocadas a 30 metros de distância entre elas, em esforço máximo, a fim de alcançar o melhor tempo em duas tentativas como critério de medida. Após a voz de comando de início do teste o avaliado iniciou o sprint, saindo da linha de partida determinada pelo avaliador, sendo então acionado o cronômetro. Quando um dos pés do avaliado ultrapassou a linha de chegada, o cronômetro foi parado, marcando o tempo do percurso.

Concluindo a etapa de coleta de dados de cada grupo, a capacidade aeróbica (VO$_{2\text{máx}}$) foi mensurada através do *20m Shuttle Run Test (Teste de Léger)*, proposto
por LÉGER et al (1988), considerando a velocidade do estágio máximo alcançado como variável dependente em Km/h, a partir do qual o VO₂max é estimado. O teste consiste em correr entre duas linhas afastadas vinte metros ao ritmo inicial de 8,5 Km/h. O ritmo foi determinado por um CD que emite um sinal sonoro indicando o momento em que o indivíduo deveria estar com o pé em cima da linha. Cada estágio do teste dura aproximadamente um minuto e o ritmo é aumentado em 0,5 Km/h. O teste considerou-se encerrado quando o indivíduo não conseguiu acompanhar o ritmo predeterminado pelo CD e acabou chegando atrasado por duas vezes consecutivas a dois metros ou mais das linhas de referência.

3.3 ANÁLISE ESTATÍSTICA

Os resultados coletados foram analisados estatisticamente através da aplicação da Média, Desvio Padrão e Teste "t" de Student para medidas independentes. Foi utilizada também a Correlação de Spearman (p<0,05 e p<0,01), para verificar alguma associação entre as variáveis. Toda esta análise estatística descritiva foi aplicada usando o software SPSS, versão 13.0.
4. RESULTADOS

Os resultados obtidos através da análise estatística não foram muito satisfatórios, principalmente pelo “n” encontrado ao dividir o grupo estudado ou Geral (G) em Experientes (E) e Menos Experientes (ME). Calculando o Desvio Padrão para peso, estatura e VO2max foram obtidos valores altos até mesmo no Grupo Geral (G), demonstrando o número pequeno de amostra de dados coletados.

Tabela 1 - MÉDIA E DESVIO PADRÃO DOS GRUPOS EM CADA VALÊNCIA

<table>
<thead>
<tr>
<th>GRUPOS</th>
<th>N</th>
<th>IDADE</th>
<th>PESO</th>
<th>ESTATURA</th>
<th>AGILIDADE</th>
<th>VELOCIDADE</th>
<th>VO2Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geral (G)</td>
<td>21</td>
<td>14,93</td>
<td>62,30</td>
<td>171,00</td>
<td>10,12</td>
<td>4,32</td>
<td>42,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 0,54</td>
<td>± 10,29</td>
<td>± 7,63</td>
<td>± 0,62</td>
<td>± 0,29</td>
<td>± 4,65</td>
</tr>
<tr>
<td>Experientes (E)</td>
<td>08</td>
<td>15,06</td>
<td>59,30</td>
<td>168,25</td>
<td>9,69</td>
<td>4,32</td>
<td>42,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 0,66</td>
<td>± 9,54</td>
<td>± 9,54</td>
<td>± 0,77</td>
<td>± 0,30</td>
<td>± 4,13</td>
</tr>
<tr>
<td>Menos Experientes (ME)</td>
<td>13</td>
<td>14,93</td>
<td>64,00</td>
<td>173,50</td>
<td>10,53</td>
<td>4,40</td>
<td>40,50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>± 0,48</td>
<td>± 11,13</td>
<td>± 5,97</td>
<td>± 0,52</td>
<td>± 0,30</td>
<td>± 5,10</td>
</tr>
</tbody>
</table>

Gráfico 1. - MÉDIAS DE IDADE, PESO E ESTATURA
Ao se fazer a correlação entre cada uma das valências do Grupo Geral (G), foi encontrada uma correlação moderada de 48% (p<0,05) entre o teste de agilidade aplicado e a idade dos atletas, além de outra com aproximadamente 67% (p<0,01) entre o mesmo teste e o de velocidade. Um resultado já esperado pelo que já havia sido estudado foi a correlação forte de aproximadamente 86% (p<0,01) entre a estatura e o peso corporal. Todos os outros resultados não ultrapassaram 45 pontos percentuais demonstrando correlações muito fracas que não evidenciam argumentos para uma discussão.

Tabela 2 – Coeficientes de Correlação dentro do grupo Geral (G)

<table>
<thead>
<tr>
<th></th>
<th>IDADE</th>
<th>PESO</th>
<th>ESTATURA</th>
<th>SHUTTLE RUN</th>
<th>VEL30M</th>
<th>LEGER VO2MAX</th>
<th>EXP TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDADE</td>
<td>1,000</td>
<td>-0,147</td>
<td>-0,105</td>
<td>-0,480 (*)</td>
<td>-0,383</td>
<td>-0,083</td>
<td>-0,055</td>
</tr>
<tr>
<td>PESO</td>
<td>-0,147</td>
<td>1,000</td>
<td>0,858(**)</td>
<td>0,095</td>
<td>0,420</td>
<td>-0,415</td>
<td>0,008</td>
</tr>
<tr>
<td>ESTATURA</td>
<td>-0,105</td>
<td>0,858(**)</td>
<td>1,000</td>
<td>0,139</td>
<td>0,320</td>
<td>-0,313</td>
<td>-0,051</td>
</tr>
<tr>
<td>SHUTTLE RUN</td>
<td>-0,480 (*)</td>
<td>0,095</td>
<td>0,139</td>
<td>1,000</td>
<td>0,666(**)</td>
<td>-0,099</td>
<td>-0,095</td>
</tr>
<tr>
<td>VEL30M</td>
<td>-0,383</td>
<td>0,420</td>
<td>0,320</td>
<td>0,666(**)</td>
<td>1,000</td>
<td>-0,170</td>
<td>0,072</td>
</tr>
<tr>
<td>LEGER VO2MAX</td>
<td>-0,083</td>
<td>-0,415</td>
<td>-0,313</td>
<td>-0,099</td>
<td>-0,170</td>
<td>1,000</td>
<td>0,044</td>
</tr>
<tr>
<td>EXP TOTAL</td>
<td>-0,055</td>
<td>0,008</td>
<td>-0,051</td>
<td>-0,095</td>
<td>0,072</td>
<td>0,044</td>
<td>1,000</td>
</tr>
</tbody>
</table>

(*) Correlação significativa com p≤0,05
(**) Correlação significativa com p≤0,01

Na Tabela 3 a seguir pode-se observar os resultados de correlação encontrados entre as valências físicas a partir do Grupo Menos Experientes (ME). Entre o teste de velocidade aplicado e o peso corporal dos atletas com períodos de
treinamento abaixo da média do grupo geral resultou uma correlação moderada, muito próxima de forte, de aproximadamente 72% (p<0,01). Outro fator antropométrico dos atletas, a estatura, apresentou uma correlação moderada menor que a anterior de aproximadamente 64% (p<0,05) entre este e o mesmo teste de velocidade já correlacionado. Apenas um resultado encontrado diz respeito ao teste de agilidade, 57% com p<0,05, correlacionado com a estatura de forma moderada.

Tabela 3 – Coeficientes de Correlação dentro do grupo Menos Experientes (ME)

<table>
<thead>
<tr>
<th></th>
<th>IDADE</th>
<th>PESO</th>
<th>ESTATURA</th>
<th>SHUTTLE RUN</th>
<th>VEL30M</th>
<th>LEGERVO2MAX</th>
<th>EXP TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDADE</td>
<td>1,000</td>
<td>-0,308</td>
<td>-0,404</td>
<td>-0,341</td>
<td>-0,426</td>
<td>-0,282</td>
<td>-0,106</td>
</tr>
<tr>
<td>PESO</td>
<td>-0,308</td>
<td>1,000</td>
<td>0,753(**)</td>
<td>0,335</td>
<td>0,725(**)</td>
<td>-0,460</td>
<td>0,413</td>
</tr>
<tr>
<td>ESTATURA</td>
<td>-0,404</td>
<td>0,753(**)</td>
<td>1,000</td>
<td>0,571(*)</td>
<td>0,637(*)</td>
<td>-0,255</td>
<td>0,451</td>
</tr>
<tr>
<td>SHUTTLE RUN</td>
<td>-0,341</td>
<td>0,335</td>
<td>0,571(*)</td>
<td>1,000</td>
<td>0,390</td>
<td>-0,152</td>
<td>0,206</td>
</tr>
<tr>
<td>VEL30M</td>
<td>-0,426</td>
<td>0,725(**)</td>
<td>0,637(*)</td>
<td>0,390</td>
<td>1,000</td>
<td>-0,202</td>
<td>0,314</td>
</tr>
<tr>
<td>LEGERVO2MAX</td>
<td>-0,282</td>
<td>-0,460</td>
<td>-0,255</td>
<td>-0,152</td>
<td>-0,202</td>
<td>1,000</td>
<td>0,042</td>
</tr>
<tr>
<td>EXP TOTAL</td>
<td>-0,106</td>
<td>0,413</td>
<td>0,451</td>
<td>0,206</td>
<td>0,314</td>
<td>0,042</td>
<td>1,000</td>
</tr>
</tbody>
</table>

(*) Correlação significativa com p≤0,05
(**) Correlação significativa com p≤0,01

Concluindo a análise estatística dos dados coletados compararam-se os resultados das valências do Grupo Experiente (E) e puderam-se observar as correlações mais fortes da pesquisa. Numa delas, entre o teste de agilidade e o teste
de velocidade obteve-se aproximadamente 92% de correlação com $p<0,01$, e na outra, entre o peso corporal e a estatura, como já se havia observado no Grupo G, uma correlação muito forte de aproximadamente 98% ($p<0,01$).

Tabela 4 – Coeficientes de Correlação dentro do grupo Experientes (E)

<table>
<thead>
<tr>
<th></th>
<th>IDADE</th>
<th>PESO</th>
<th>ESTATURA</th>
<th>SHUTTLE RUN</th>
<th>VEL30M</th>
<th>LEGER VO2MAX</th>
<th>EXP TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDADE</td>
<td>1,000</td>
<td>0,048</td>
<td>0,167</td>
<td>-0,667</td>
<td>-0,455</td>
<td>0,184</td>
<td>-0,071</td>
</tr>
<tr>
<td>PESO</td>
<td>0,048</td>
<td>1,000</td>
<td>0,976</td>
<td>0,048</td>
<td>0,024</td>
<td>-0,552</td>
<td>0,214</td>
</tr>
<tr>
<td>ESTATURA</td>
<td>0,167</td>
<td>0,976</td>
<td>1,000</td>
<td>-0,071</td>
<td>-0,120</td>
<td>-0,602</td>
<td>0,048</td>
</tr>
<tr>
<td>SHUTTLE RUN</td>
<td>-0,667</td>
<td>0,048</td>
<td>-0,071</td>
<td>1,000</td>
<td>0,922</td>
<td>-0,098</td>
<td>0,214</td>
</tr>
<tr>
<td>VEL30M</td>
<td>-0,455</td>
<td>0,024</td>
<td>-0,120</td>
<td>0,922</td>
<td>1,000</td>
<td>0,068</td>
<td>0,347</td>
</tr>
<tr>
<td>LEGER VO2MAX</td>
<td>0,184</td>
<td>-0,552</td>
<td>-0,602</td>
<td>-0,098</td>
<td>0,068</td>
<td>1,000</td>
<td>0,270</td>
</tr>
<tr>
<td>EXP TOTAL</td>
<td>-0,071</td>
<td>0,214</td>
<td>0,048</td>
<td>0,214</td>
<td>0,347</td>
<td>0,270</td>
<td>1,000</td>
</tr>
</tbody>
</table>

(**) Correlação significativa com $p\leq0,01$
5. DISCUSSÃO

Ao utilizar o cálculo estatístico de desvio padrão para a análise dos grupos mais experientes e menos experientes, observaram-se valores muito elevados nos fatores peso, estatura e VO$_{2\text{max}}$ (através do teste de Leger). Isso ocorreu principalmente porque o valor do “n” obtido no estudo foi muito baixo. Já ao observar o desvio padrão referente à idade, ao teste de Shuttle Run e de velocidade 30 m, foi perceptível uma certa homogeneidade. Este desvio em menor grau pode ser entendido através da faixa etária em estudo, categoria infantil, a qual limitou em no máximo dois anos as diferenças de idade. Para GALLAHUE & OZMUN (2003) os componentes da aptidão relacionada ao desempenho do adolescente passam por grandes alterações desde o início do período adolescente até o final da adolescência (aproximadamente de 11 até 21 anos de idade) e cita o aparecimento do *Surto de Crescimento Pré-Adolescente* como marco inicial da rápida aceleração nos níveis de aptidão para os meninos. Isto explica as rápidas melhorias na velocidade de meninos, que se iniciam aproximadamente aos 12 anos de idade, e a estabilização tardia desta valência devida principalmente ao prolongamento da maturação e pelos níveis elevados de motivação pessoal. Através destas características da faixa etária estudada são explicados os dados muito próximos observados nos testes de agilidade e velocidade.

BARROS & GUERRA (2004) relatam que há 25 anos, sugeriu-se que a agilidade era o fator que diferenciava os jogadores de futebol de outros atletas, e direciona este dado explicando que durante o jogo de futebol há uma mudança de velocidade ou direção a cada 4 a 6 segundos exigindo uma boa performance desta valência, o que garante a especificidade dos testes de agilidade aplicados em atletas
de futebol. Também, o teste de Velocidade de 30 metros apresenta-se entre os mais indicados para avaliar a valência física velocidade em atletas de futebol. Isto é explicado segundo BARROS & GUERRA (2004) com base em estudos que analisaram a movimentação durante um jogo e demonstraram que a corrida em velocidade máxima ocorre muito raramente, e que a distancia desses sprints eram de 30 metros ou menos, devido a necessidade de deslocamentos rápidos para realizar determinadas ações, como interceptar um passe ou receber o mesmo, durante a partida.

Por estes motivos deve-se considerar também o fator especificidade dos testes, na análise do desvio padrão acentuado nos fatores agilidade (Shuttle Run) e velocidade (corrida de 30 metros). Como o grupo selecionado para a pesquisa é homogêneo quanto ao esporte praticado (futebol), ficou evidente a assimilação dos testes com alguma situação de jogo, ou seja, o engrama (imagem e percepção do movimento) já existia.

No grupo dos menos experientes pôde-se perceber uma correlação moderada de 72% (p<0,05) entre velocidade e peso, e entre velocidade e estatura que apresentou o mesmo nível de correlação, porém com 64% (p<0,05). Isto não foi observado no outro grupo, fator este que pode ser entendido pela influência do tempo de treinamento capaz de reduzir o peso corporal a níveis bons e consequentemente melhorar a velocidade que é diretamente proporcional ao peso. Para GALLAHUE & OZMUN (2003), atividades físicas vigorosas e regulares podem alterar a composição corporal. O exercício físico, juntamente com a regulação da ingestão calórica, vai resultar em aumento da massa magra corporal e na diminuição do percentual de gordura corporal o que é muito importante para determinar a
evolução dos fatores que influenciam a corrida de velocidade, segundo DANTAS (2003). O ponto até o qual a composição corporal pode ser alterada depende do grau e da duração do treinamento. À proporção que os níveis de atividade diminuem, os percentuais de gordura corporal aumentam (GALLAHUE & OZMUN, 2003).

Por isso o desempenho da velocidade, como valência física, pode variar de acordo com o nível de composição corporal do atleta, ou seja, pode ser influenciado pelo peso corporal (massa magra e massa gorda) em relação à altura. Isto demonstra que um atleta mais experiente pode apresentar uma estatura alta e proporções corporais controladas, devidamente incluído nas características próprias do crescimento na adolescência, o que pode não acontecer com um menos experiente que apresenta uma proporção corporal descontrolada, mesmo considerando estas mudanças, provocando uma dificuldade no deslocamento veloz do corpo durante a distância determinada.

Ainda, observou-se no grupo dos menos experientes uma correlação, porém moderada de 57% (p<0,041) entre agilidade, através do teste de Shuttle Run, e estatura, o que demonstra a melhora da performance no teste diretamente proporcional a estatura mais baixa, tornando-se evidente que um atleta alto mas suficientemente treinado não apresenta a mesma dificuldade que um outro pouco treinado, considerando que o teste exige constantemente mudanças de nível, de um mais alto para um mais baixo e o inverso também.

Já ao analisar os resultados do grupo mais experiente observa-se a correlação mais forte do estudo com valores de 92% (p<0,001) entre o teste de 30 metros e o de Shuttle Run, podendo ser observado que atletas mais treinados
apresentam níveis de agilidade diretamente proporcionais a níveis de velocidade, o que não acontece em atletas menos treinados devido a influências de fatores como peso e estatura descontrolados pela falta de treinamento.

A agilidade, classificada segundo DANTAS (2003) como qualidade das habilidades motoras, envolve também velocidade e coordenação e necessita do bom desenvolvimento destas para ser bem desempenhada. O treinamento da velocidade, conforme DANTAS (2003), não pode converter as fibras musculares lentas (ST) em fibras rápidas (FT), as quais são relevantes para o rendimento, por serem determinadas geneticamente, mas através de treinos técnicos, de coordenação e de força pode melhorar os fatores influenciadores da corrida de velocidade que são: a frequência da passada, a amplitude da passada e a força de membros inferiores. Com isso o treinamento vai provocando evoluções que permitem a proximidade entre resultados de velocidade e agilidade em atletas com mais experiência.

Observou-se também correlação forte entre peso e estatura, prevista devido ao crescimento proporcional do corpo pelo aumento da estatura com o avanço da idade, acompanhado do desenvolvimento da massa corporal. GALLAHUE & OZMUN (2003) explicam que na adolescência ocorrem alterações significativas da composição corporal devido ao aumento do peso, que tende à acompanhar a curva geral de aumento em altura. Este ganho de peso em meninos adolescentes ocorre basicamente por causa de aumentos na altura, da maturação esquelética (aumentos no tecido muscular e adiposo) e poderá ser afetado pela dieta, exercícios, motilidade gástrica e por fatores gerais de estilo de vida, bem como por fatores hereditários.

Constatou-se uma correlação moderada de 48% \((p<0,05)\) entre agilidade e idade, e de 67% \((p<0,001)\) entre agilidade e velocidade, ao considerar o grupo como
um todo, sem a divisão de experientes e menos experientes. Neste caso por haver um “n” maior verificou-se resultados mais consistentes, inclusive pôde-se constatar a confirmação da relação entre agilidade e velocidade discutida quando encontrada também no grupo de experientes.
6. CONCLUSÕES

Como os atletas selecionados para o estudo eram todos da categoria infantil de escolas de futebol, o estado de desenvolvimento das capacidades físicas, velocidade e agilidade, mensuradas entre os atletas Experimentes e Menos Experimentes pode ser considerado de certa forma homogêneo devido à faixa etária e ao esporte em comum. O mesmo não foi possível concluir sobre o consumo de oxigênio máximo (VO2max) através da amostra coletada, ou seja, não foi constatado nível de resistência aeróbica proporcional ao nível de agilidade e velocidade, mas resultados diretamente proporcionais somente entre as outras duas valências.

Verificando os objetivos das escolas de Futebol, independentemente do objetivo do atleta que foi matriculado na mesma, deve haver um planejamento, por parte do professor, dos treinamentos, variando tanto atividades técnicas como táticas, físicas e recreativas, planejamento este que vai refinando o aluno nos movimentos intrínsecos ao esporte, e então influenciando em variados níveis no desenvolvimento das valências físicas, que na faixa etária estudada encontram-se ainda em desenvolvimento. Portanto deve ser um processo conjunto o crescimento e desenvolvimento na adolescência e os estímulos para a progressão das valências físicas do adolescente atleta de escola de futebol. Além disso, ressalta-se a importância da influência percebida de fatores maturacionais, visto que, apesar dos atletas utilizados no estudo estarem inseridos em uma faixa etária semelhante, os resultados podem indicar que a própria experiência não apresenta tanta influência quanto diferenças significativas de nível maturacional, ou idade biológica, o que se
sugere então estudos mais aprofundados e específicos desta questão, a qual não foi abordada neste trabalho.
REFERÊNCIAS BIBLIOGRÁFICAS

