ASSOCIAÇÃO ENTRE DOR LOMBAR E O LEVANTAMENTO DE CARGAS EM TRABALHADORES DE FRIGORÍFICOS

Monografia apresentada como requisito parcial para conclusão do Curso de Especialização em Ergonomia, do Departamento de Educação Física, Setor de Ciências Biológicas, da Universidade Federal do Paraná.

CURITIBA

2011
ASSOCIAÇÃO ENTRE DOR LOMBAR E O LEVANTAMENTO DE CARGAS EM TRABALHADORES DE FRIGORÍFICOS

Monografia apresentada como requisito parcial para conclusão do Curso de Especialização em Ergonomia, do Departamento de Educação Física, Setor de Ciências Biológicas, da Universidade Federal do Paraná.

ORIENTADORA: LUCIANA SILVA TIMOSSI
AGRADECIMENTOS

Agradeço este trabalho a Deus, por me dar oportunidade de realizar os meus, e os seus sonhos, e a compreender melhor sobre o tratamento de pacientes com dor.

A meu pai, amigo para todas horas e momentos, por acreditar em mim.

A minha orientadora Professora Doutoranda Luciana Silva Timossi, pela paciência, dedicação, apoio e colaboração para a realização deste trabalho.
SUMÁRIO

LISTA DE FIGURAS.. v
LISTA DE TABELAS ... vii
RESUMO .. viii
ABSTRACT ... ix

1 INTRODUÇÃO .. 1
 1.1 CONTEXTUALIZAÇÃO ... 2
 1.2 IMPORTÂNCIA DE DELIMITAÇÃO DO TEMA .. 2
 1.3 PROBLEMA .. 3
 1.4 OBJETIVOS ... 3
 1.4.1 Geral ... 3
 1.4.2 Específicos ... 3
 1.5 JUSTIFICATIVA ... 4
 1.6 HIPÓTESE ... 6
 1.7 ANÁLISE METODOLÓGICA .. 7
 1.8 ESTRUTURA DA PESQUISA .. 7

2 REVISÃO DE LITERATURA .. 7

3 METODOLOGIA E ESTUDO DE CASO ... 8
 3.2 POPULAÇÃO E AMOSTRA ... 24
 3.3 PROCEDIMENTOS METODOLÓGICOS .. 23

4 RESULTADOS E DISCUSSÃO ... 26

5 CONCLUSÃO ... 29

REFERÊNCIAS .. 32

ANEXOS .. 35
LISTA DE FIGURAS

FIGURA 1 – Coluna vertebral (NETTER, 2003).
FIGURA 2 – Coluna lombar L1 – L5 (NETTER, 2003).
FIGURA 3 - Levantamento de Carga a partir do solo e Região L5-S1
FIGURA 4 - Índice de levantamento proposto pelo método NIOSH
FIGURA 5- Diagrama corporal de Corlett
FIGURA 6 – Escala progressiva de desconforto/dor
LISTA DE TABELAS

TABELA 01. Análise dos dados pessoais e antropométricos da população de trabalhadores estudados.
TABELA 2- resultado da aplicação da metodologia de NIOSH.
TABELA 3 - resultado da aplicação do Check List de COUTO.
RESUMO

ASSOCIAÇÃO ENTRE DOR LOMBAR E O LEVANTAMENTO DE CARGAS EM TRABALHADORES DE FRIGORÍFICOS

O objetivo do presente trabalho foi de verificar a existência de associação entre a dor lombar e a tarefa de levantamento de cargas em trabalhadores. Participaram do presente estudo 35 trabalhadores, com idade média de 30,3 anos (± 8,7), estatura 1,71m (± 0,70) e massa corporal de 70,6 kg (± 11,54), que trabalham realizando tarefas de levantamento de cargas frequentemente durante a jornada de trabalho, o posto de trabalho foi avaliado com as ferramentas ergonômicas de NIOSH e Check List de COUTO os participantes responderam um questionário sobre a presença de desconforto osteomuscular de Corlett. Na análise estatística foi utilizado o teste qui quadrado para associação. Os resultados demonstraram que houve associação entre a lombalgia e a metodologia de COUTO e aplicação das duas ferramentas é diferente na quantificação do risco ergonômico.

ABSTRACT

ASSOCIATION BETWEEN LOW BACK PAIN AND LIFTING OF LOADS IN WORKERS OF STORES

The goal of this study was to verify the existence of the association between back pain and the task of lifting workers. The study included 35 workers, with a mean age of 30,3 (±8.7 years-old), height 1.71 (± 0.70m) and body mass of 70.6 (± 11.54 kg) that often perform load lifting during their workin journey. The work was assessed with the tools and ergonomic NIOSH and COUTO’s checklist, participants answered a questionnaire about the presence of musculoskeletal discomfort on Corlett. The statistical analysis used the chi square (2x2), for the association. The results showed that there was an association between low back pain and COUTO’s methodology and application of two different tools in quantifying the ergonomic risk.

Keywords: manual lifting, back pain, Work.
1 INTRODUÇÃO

A dor lombar é a desordem osteomuscular mais comum e que causa mais custos entre os trabalhadores industriais (MARRAS, 2004). Acredita-se que entre os brasileiros, existam cerca de 10 milhões de pessoas ficam incapacitadas por essa morbidade (SILVA, et al. 2004). Diversos estudos relatam que aproximadamente 80% da população dos países industrializados apresentarão episódios de dores lombares agudas em algum período da sua vida (LARIVIÈRE et al., 2002). O diagnóstico das dores nas costas é multifatorial e de difícil diagnóstico (FRYMOYER et al., 1983; SVENSSON et al., 1989). Embora existam muitas dificuldades em estabelecer precisamente os fatores que causam dores nas costas, alguns estudos têm demonstrado que o levantamento manual de altas cargas são apontadas como fator de grande risco para o desenvolvimento de dores lombares (LEE et al., 2003). Por isso, indicadores que determinem níveis de segurança para atividades de levantamento de cargas constituem estratégias importantes na redução dos problemas associados ao levantamento de carga a fim de prevenir a dor lombar (McGILL et al., 1997).

A ergonomia é a disciplina científica que trata da compreensão das interações entre os seres humanos e outros elementos de um sistema. É a profissão que aplica teorias, princípios, dados e métodos, a projetos que visam otimizar o bem estar humano e a performance global dos sistemas. Derivada do grego ergon (trabalho) e nomos (leis) para denotar a ciência do trabalho, ergonomia é uma disciplina inicialmente orientada aos sistemas e que modernamente se estende por todos os aspectos da atividade humana (International Ergonomics Association, 2007). Instituído pela Norma Regulamentadora NR17 da Portaria 3214/78 do Ministério do Trabalho e Emprego visa estabelecer parâmetros que permitam a adaptação das condições de trabalho às condições psicofisiológicas dos trabalhadores, de modo a proporcionar um máximo de conforto, segurança e desempenho eficiente. A fundamentação legal, ordinária e específica, que dá embasamento jurídico à existência desta NR, são os artigos 198 e 199 da CLT. O objetivo da Norma Regulamentadora 17 – Ministério do Trabalho e Emprego é de parâmetros que
permitam a adaptação das condições de trabalho às características psicofisiológicas dos trabalhadores, de modo a proporcionar um máximo de conforto, segurança e desempenho eficiente.

1.1 CONTEXTUALIZAÇÃO

Entre os distúrbios osteomusculares a lombalgia é a principal causa de incapacidade osteomuscular entre a população trabalhadora (MARRAS, 2004). As mais condições ergonômicas incluindo aspectos relacionados ao levantamento, transporte e descarga de materiais, ao mobiliário, aos equipamentos e às condições ambientais do posto de trabalho e a própria organização do trabalho tem gerado esta alta incidência desse problema nas empresas. As lombalgias representam um enorme impacto sócio econômico devido às influências negativas na qualidade de vida dos funcionários e aos altos custos gerados com assistência médica, dias de afastamentos e treinamentos de novos funcionários, além de custos com tratamentos, medicamentos, cirurgias etc. Com isso surge a necessidade de estudar as tarefas que necessitam levantamento e manuseio de cargas para a determinação dos fatores de risco que são responsáveis pelas lombalgias.

1.2 IMPORTÂNCIA E DELIMITAÇÃO DO TEMA

Pesquisas que relacionam os índices de levantamento de carga e parâmetros de sintomas de dor músculo esquelética da coluna vertebral, especificamente da coluna lombar, são interessantes, pois podem auxiliar na elaboração de estratégias de prevenção de problemas de dores lombares e afastamento do trabalho por doenças ocupacionais. Para quantificar o risco ergonômico são utilizadas ferramentas de ergonomia que analisam as condições específicas de trabalhos ligados ao tipo de risco biomecânico, que pode ser má postura, repetitividade, esforço físico, vibração entre outros. O que ocorre na prática é que as ferramentas são utilizadas para mensurar os riscos ergonômicos são aplicadas de forma inespecífica, não relacionando diretamente os riscos com o objetivo funcional da ferramenta, gerando resultados contraditórios em relação à realidade do risco, isso compromete a análise das
atividades e tarefas executadas pelos trabalhadores e consequentemente a quantificação do risco ergonômico, o que pode prejudicar a saúde e integridade física dos trabalhadores.

1.3 PROBLEMA

As ferramentas de ergonomia buscam analisar condições específicas de trabalho como levantamento de peso (NIOSH), postura (RULA, REBA), dor (check lists, Diagrama de Corlett e Manica), repetitividade (OCRA) entre outros, com o objetivo de classificar, mensurar e quantificar os riscos ergonômicos. Para o presente estudo utilizou-se o método NIOSH (1981) desenvolvido pelo National Institute for Occupational Safety and Health para a determinação do limite máximo de peso recomendável para o levantamento de cargas, o CHECK LIST DE COUTO (2003) para análise do risco de lombalgia, que é a ferramenta mais utilizada por profissionais da área de saúde e segurança do trabalho e o diagrama Corporal de Corlett e Manica (1980).

1.4 OBJETIVOS

1.4.1 Objetivo Geral
Investigar a associação entre o levantamento de cargas e dor lombar em trabalhadores que executam levantamento e transporte manual de cargas em uma empresa frigorífica.

1.4.2 Objetivos Específicos

- Classificar o risco ergonômico das atividades de levantamento de cargas das atividades analisadas.
- Analisar a incidência de dor lombar em trabalhadores que manipulam cargas;
- Comparar as metodologias de NIOSH e o CHECK LIST DE COUTO para análise do risco de lombalgia.
1.5 JUSTIFICATIVA

Em todo mundo a incidência de distúrbios osteomusculares relacionados ao trabalho (DORT), vem crescendo nas últimas décadas (MARRAS, 2004). Apesar de reconhecida subnotificação das doenças do trabalho, os DORTs vêm apresentando um crescimento progressivo nas estatísticas oficiais e dos serviços de saúde dos trabalhadores no Brasil, desde 1987 (JUNIOR, 2000). Os Distúrbios Osteomuculares Relacionados ao Trabalho (DORT), tem sido, dentre as doenças ocupacionais registradas, as mais prevalentes segundo estatísticas referente a população trabalhadora segurada (Instituto Nacional do Seguro Social, 2003). É a segunda causa de afastamento do trabalho no Brasil (IBGE, 2004). A dor lombar crônica atinge níveis epidêmicos na população geral, sua origem é desconhecida e informações sobre o perfil das pessoas atingidas podem ajudar a direcionar investimentos para o seu controle, pois constitui causa fregênte de morbidade e incapacidade.

Estudos têm revelado dificuldades em sua aplicação (DEMPSEY et al., 1999), diferenças de biotipo, gênero (MARRAS et al., 2000) e formas de deslocamento têm sido levantadas como fatores limitantes na determinação dos índices de levantamento (WATERS et al., 1998). Além disso, estudos que tenham relacionado os índices de levantamento de cargas proposto pelo NIOSH com outros indicadores de risco de desenvolvimento de problemas de dores nas costas não são conhecidos. Estudos que relacionem índices de levantamento de carga e parâmetros mecânicos da coluna vertebral, especificamente da coluna lombar, são interessantes, pois podem auxiliar na elaboração de estratégias de prevenção de problemas de dores lombares e afastamento do trabalho por doenças ocupacionais. Observam-se custos relacionados à ausência do trabalho, encargos médicos e legais, pagamento de seguro social por invalidez, indenização ao trabalhador e seguro de incapacidade, o que tem como resultado um custo econômico substancial para o governo.

Em muitos casos a presença de sintomas de dor lombar nas empresas, está relacionada às pressões decorrentes da organização de trabalho, provocando insatisfação com à atividade laborativa e com isso aumentando o índice de absenteísmo, atestados médicos, falta no trabalho, gerando um
prejuízo moral e financeiro com grande impacto para as organizações. Diante das condições de trabalho oferecidas, o trabalhador opta por aumentar sua jornada de trabalho, a fim de melhorar a sua qualidade de vida em termos financeiros. A conseqüência desta estratégia provoca sobrecarga física e mental, aumentando a prevalência da dor lombar e transtornos mentais para o empregado. Outras questões relevantes relacionadas a lombalgia ocupacional, se referem, aos altos custos diretos e indiretos; às condições de riscos ocupacionais tanto ergonômicos quanto traumáticos; a falta do estabelecimento do nexo causal da patologia com o trabalho e o não reconhecimento da patologia nas legislações que asseguram o trabalhador.

1.6 HIPÓTESE

A hipótese deste estudo é um aumento no risco de lombalgia à medida que a magnitude do risco ergonômico aumente, ou seja, a hipótese é que existe uma associação. Procurando associar o risco ergonômico das atividades de levantamento de cargas ao risco de ocorrência de lombalgia, formulou-se a seguinte hipótese que norteará este estudo:

H₁- Há associação entre o risco ergonômico e a lombalgia, utilizando o check list de COUTO.
H₂ - Há associação entre o risco ergonômico e a lombalgia, utilizando a metodologia de NIOSH.

H₃ – As metodologias utilizadas para quantificar o risco ergonômico durante o transporte manual de cargas são iguais, ou seja, ambas podem ser utilizadas da mesma forma.

Sendo assim, profissionais da área da Ergonomia poderão utilizar-se da aplicação deste instrumento em suas práticas. Os dados obtidos no uso deste instrumento poderão auxiliar no planejamento de diferentes ações e estratégias para a manutenção de um bom ambiente de trabalho para a busca e alcance de um bom desempenho e dos objetivos propostos, implementando tarefas que possam auxiliar os trabalhadores a laborarem em um ambiente de trabalho melhor e com menos riscos ergonômicos.
2 REVISÃO DE LITERATURA

A coluna vertebral é o eixo ósseo do corpo humano, situada no tronco, na linha mediana, possui a função de sustentar, amortecer e transmitir o peso corporal. Além disto, supre a flexibilidade necessária à movimentação, protege a medula espinhal e forma com as costelas e o esterno, o tórax ósseo. Sendo constituída de 33 vértebras, que se classificam em cinco grupos. De cima para baixo, 7 vértebras se localizam na região pescoço (vértebras cervicais), 12 vértebras estão na região do tórax e se chamam torácicas ou dorsais; 5 vértebras estão na região do abdome e se chamam lombares; 5 vértebras estão fundidas e formam o sacro e as 4 vértebras da extremidade inferior são pouco desenvolvidas e constituem o cóccix. As 9 últimas vértebras da coluna vertebral são fixas e situam-se na região da pélve e se chamam também de sacrococcigeanas (GOSS, 1998).

Portanto, apenas 24 das 33 vértebras são flexíveis e, destas, as que têm maior mobilidade são as vértebras cervicais e as lombares. As vértebras torácicas estão unidas a 12 pares de costelas, formando a caixa torácica, que limitam os movimentos deste segmento. Cada vértebra sustenta o peso de todas as partes do corpo situadas acima dela. Sendo assim, as vértebras lombares são maiores, porque precisam sustentar maiores pesos (GOSS, 1998). O mesmo autor afirma que entre uma vértebra e outra existe um disco
cartilaginoso, chamado de disco intervertebral, composto de uma massa gelatinosa. Os corpos das vértebras unem-se por discos intervertebrais e ligamentos longitudinais anterior e posterior. Os movimentos da coluna vertebral tornam-se possíveis pela compressão e deformação dos discos e pelo deslizamento dos ligamentos.

2.1.1 Anatomia da Coluna Lombar

A coluna lombar é localizada na parte inferior, compreendida pelo tórax e pelo quadril. É formada por cinco vértebras, que possuem características próprias. Possuem o corpo volumoso, sendo seu diâmetro transverso maior que no sentido ântero-posterior. O forame vertebral é triangular, os pedículos são curtos e nascem na parte superior do corpo. Os processos transversos se posicionam posteriormente e superiormente com um tubérculo acessório e outro mamilar. As facetas articulares superiores são côncavas e dispõem no sentido póstero-medial, enquanto as facetas inferiores são convexas no sentido ânterolateral. Os processos espinhosos são longos, largos e horizontais (GOSS, 1998).

![Figura 2 – Coluna lombar L1 – L5 (NETTER, 2003).](image)

2.1.2 Biomecânica da Coluna Lombar

De acordo com Kapandi, (2000) a amplitude de movimentos na região lombar é ampla em flexão e extensão, variando de 8 a 20 graus nos diversos
níveis vertebrais. Ocorre flexão lateral limitada nos vários níveis nas vértebras lombares, que varia de 3 a 6 graus, e muito pouca rotação (1 a 2 graus) em todos os níveis de vértebras lombares. O mesmo autor afirma que a movimentação da coluna vertebral resulta de pequenos movimentos permitidos entre as vértebras. A amplitude de movimento entre duas vértebras depende, fundamentalmente, da altura do disco, ou seja, quanto mais alto o disco, maior seu grau de compressão e, em consequência, maior a amplitude de movimento permitida. A direção do movimento, no entanto, depende particularmente da forma e do plano de orientação das facetas zigoapofisárias. Os fatores limitantes de movimento nas articulações em geral, como os ligamentos e o grau de alongamento dos músculos antagonistas.

A amplitude do movimento de flexão é limitada pelos ligamentos posteriores (longitudinal posterior, flavo e supra-espinhal) e pelos músculos posteriores (ou extensores), limitam a amplitude do movimento de extensão o ligamento longitudinal anterior, o contato entre os processos espinhosos e os músculos anteriores (ou flexores) (CALAIS-GERMAIN, 1991). O mesmo autor afirma que a amplitude do movimento de flexão lateral é limitada, na curvatura lombar, pelos músculos e ligamentos intertransversais do lado convexo - o oposto ao movimento, e na região cervical, pelos músculos do lado convexo e pelo contato entre os processos unciformes do lado côncavo - o do movimento.

A curvatura torácica permite movimentos limitados na parte superior e é mais móvel próxima à junção toraco-ombrosa. A pouca mobilidade nas porções superior e média da curvatura é devida à união das dez vértebras superiores com o osso esterno através das costelas e os discos serem baixos. A direção quase frontal das facetas das zigoapófises limitam a flexão e a extensão, exceto na parte inferior em que as facetas dispõem-se em um plano que se aproxima do sagital. A extensão além de ser limitada pelo ligamento longitudinal anterior, pela superposição dos processos espinhosos, também é pela superposição das láminas. As láminas das vértebras torácicas são as mais altas da coluna e mais altas que os corpos de suas respectivas vértebras. A flexão lateral e a rotação são mais amplas próximo à junção toraco-ombrosa (LIPPERT, 2000).
2.2 LOMBALGIA

A lombalgia é considerada um grande problema de saúde e uma das principais causas de absentismo do trabalho (FRYMOYER et al., 1983). Existe certa dificuldade em identificar especificamente a estrutura ou estruturas anatômicas onde se localizam os sintomas dolorosos. Por conseqüência, também se torna difícil determinar os fatores biomecânicos que respondem pelo surgimento destes sinais (JACKSON et al., 1998). A causa comum da lombalgia é a hérnia de disco, que consiste da evasão de parte do núcleo pulposo por meio do ânulo fibroso rompido. Esta lesão pode ser o resultado tanto de traumas, quanto do estresse constante sobre a região. Sua ocorrência é verificada, com maior prevalência, entre as vértebras C6-C7 (6º e 7º vértebra cervical), L4-L5 (4º e 5º vértebra lombar) e a vértebra S1 (PANJABI et al., 2003). No entanto, os discos L4-L5 e L3-L4 apresentam maior grau de degeneração do que outros discos da região lombar (Mc GILL, 2004).

As atividades ocupacionais que requeiram esforços físicos intensos representam um importante fator de risco de lombalgia. Neste aspecto, CHAFIN (1990), verificou a relação de movimentos corporais básicos da coluna, típicos em algumas atividades profissionais, como flexão, rotação, alcance e esforço súbito e relacionou com o relato de dor na região lombar. De acordo com BARREIRA (1989), as situações impostas à coluna vertebral que constituem as causas mais frequentes de lombalgia, são descritas como, esforço em flexão, esforço excessivo e esforço inadequado.

Estudos demonstraram que a dor e a lesão na região da coluna lombar podem se instalar a partir da forma inapropriada de sentar, da necessidade de permanecer por longos períodos de tempo na mesma postura ou em posturas antinaturais, durante a participação em modalidades esportivas, na forma inadequada de levantar e transportar cargas e pelos mais variados tipos de acidentes. Estes fatores aliados a um estilo de vida sedentário podem estressar o ânulo fibroso do disco intervertebral ao ponto de até o menor esforço precipitar uma lesão ou hérnia de disco. Muitas vezes, os surgimentos dos primeiros sintomas de lombalgia são em função de sobrecargas de atividades que se
passam despercebidas em nosso dia a dia, que se acumulam para dar início aos traumas e lesões.

Em geral, há múltiplas variáveis que podem favorecer o surgimento de lombalgia, e que na verdade somam e interagem-se umas com as outras. Os principais fatores que se associam às disfunções na coluna lombar são descritos por FRYMOYER et al. (1983), como fatores ocupacionais, antropométricos, psicossociais, demográficos e fatores comportamentais. JACKSON et al. (1998) preferem classificar os fatores de risco associados com lombalgia como, característica constitucional (que inclui capacidade aeróbica, idade, aptidão física e força muscular), característica ambiental (cigarro), ocupacional (levantamento de cargas, vibração, tipo de trabalho), recreacional (participação em atividades esportivas) e psicossocial (ansiedade e depressão).

De acordo com de Batti et al. (1998), os grupos de risco para dor na coluna nos Estados Unidos, estão em pessoas que passam maior parte do tempo sentadas e se agravam se o corpo estiver ou for solicitado constantemente a se inclinar para frente, tais como, motoristas de caminhões, secretárias, dentistas e outras. Com respeito às causas, 97% dos portadores de dor na coluna vertebral têm sua origem em fatores mecânicos, que atingem o sistema muscular, ligamentar e tecidos conectivos.

A prevalência de posturas inadequadas mantidas por longo tempo, durante a jornada de trabalhos são fatores que predispõem quadros de dor e desconforto ocorrendo injúrias e impossibilitando muitas vezes a atuação efetiva do trabalhador. Muitos estudos tem sido realizados para evidenciar os múltiplos fatores de risco tendo como causa importante desordens musculo-esqueléticas relativas do trabalho (CORLETT e BISHOP, 1976).

A frequência de problemas clínicos ou cirúrgicos é alta. Pesquisas mostram que 50 a 80% dos adultos serão vítimas, no decurso de suas vidas, de alguma forma de dor decorrente de afecções da coluna vertebral, muitas vezes, por uma postura errada durante o trabalho ou o repouso (CAILLIET, 1999).
2.3 FATORES DE RISCO PARA COLUNA LOMBAR NO LEVANTAMENTO DE CARGA

O ato de levantar um peso está incluído muitas vezes nos movimentos que realizamos durante todo o dia. Mesmo que sua massa seja pequena, realizamos este levantamento manual de carga muitas vezes automaticamente, sem que tenhamos consciência dos mecanismos de exigência sobre o organismo, necessários para que esta carga possa ser elevada ou sustentada (GONÇALVES, 2009).

As forças que atuam sobre a coluna incluem peso corporal, tensão nos ligamentos e músculos circundantes, pressão intra-abdominal e quaisquer cargas externas aplicadas. Quando o corpo encontra-se em posição ereta, a principal forma de carga que age sobre a coluna é axial. A sobrecarga mostrou ser a causa das lombalgias em mais de 60% dos indivíduos com queixas lombares (NIOSH, 1994).

Uma vez que a coluna lombar é anatomicamente próxima das articulações dos quadris, um impacto semelhante ocorre em torno das articulações desta região da coluna vertebral, que, na flexão ou extensão, considera-se ocorrer próximo do centro dos discos intervertebrais.

CHAFIN e ANDERSON (1984) propuseram que o momento de carga em torno do disco lombossacro (L5-S1) deveria ser utilizado como a base para estabelecer limites para o levantamento e carregamento de cargas de vários tamanhos, evitando a fadiga no grupo extensor lombar, principalmente no levantamento de carga a partir do solo (figura 3). Na posição ereta, o peso corporal também contribui para sobrecarga gerando o cisalhamento, particularmente na coluna lombar, onde o cisalhamento cria uma tendência para que as vértebras se desloquem anteriormente com relação às vértebras inferiores adjacentes.
A tensão dos extensores de tronco aumenta com a flexão vertebral. Quando a coluna está em flexão lateral ou torção axial, torna-se necessário um padrão complexo de ativação muscular. As cargas assimétricas no plano frontal do tronco também fazem aumentar tanto as cargas compressivas quanto as de cisalhamento sobre a coluna, por causa do maior momento de inclinação lateral.

De acordo com Gann, (2005) a lombalgia ocorre na maioria dos casos em virtude da ação de forças estáticas prolongada dos tecidos moles. Tem como sintoma dor local intermitente, não sendo alterada pelo movimento. Os trabalhadores que exercem função profissional que exige que a coluna sofra forças estáticas prolongadas são sujeitos a aumentar o risco de lombalgia.

5.4 LOMBALGIA OCUPACIONAL

A incidência de dor lombar na população em geral é extremamente elevada, porém estudos indicam que atinge especialmente a classe trabalhadora. O atual mercado de trabalho exige grande produtividade a um custo competitivo. Estas condições impõem, muitas vezes, ritmos intensos e jornadas prolongadas, sendo que frequentemente o trabalho é realizado em posturas e ambientes ergonomicamente inadequados, predispondo os trabalhadores a lesões (ALMEIDA, 2008).

Entre os diversos fatores encontrados nas manifestações da coluna lombar, um dos mais apontados é o esforço físico nas atividades laborais. Para cada categoria profissional existe uma característica particular de exigência motora,
podendo a dor estar ou não associada com a função exercida. Ferreira & Rosa (2006) evidenciaram as principais características dos pacientes com história de dor na coluna atendidos em um serviço de fisioterapia e os fatores de risco mais associados a esta condição, foram entrevistados participantes com a idade mínima de 18 anos e máxima de 65 anos. Foi encontrada uma incidência maior em pessoas com baixo nível de escolaridade, estresse emocional, bem como a permanência em posturas estáticas por tempo prolongado, e o aumento do índice de massa corporal, e em maior parcela mulheres; sendo assim concluíram que os fatores de risco que afetam a pessoa com dor na coluna indicam diversidades e complexidades que se colocam como verdadeiro desafio profissional, necessitando de novos estudos, entre eles, os que envolvem a saúde em idade precoce, para que de forma antecipada internalizem-se hábitos de cuidados à saúde.

As ocupações em que o indivíduo permanece muito tempo deitado, carregando peso ou realizando movimentos repetitivos, aumentariam a probabilidade de desenvolvimento da dor lombar (ANDRUSAITIS et al 2006).

A etiologia da lombar não está claramente definida, os autores Almeida et al (2008) verificaram a prevalência da dor lombar na população cidade de Salvador através de um estudo transversal baseado em inquérito populacional classificados por nível socioeconômico. Foram entrevistados 2.297 indivíduos através de um questionário geral, onde puderam constatar que 14,7% da população apresentavam dor lombar crônica; com maior freqüência ex-fumantes (19,7%), pessoas com circunferência da cintura acima da normalidade (16,8%) e com escolaridade baixa (17,4%) em relação às outras categorias.

5.5 MÉTODO NIOSH

identificar os riscos de lombalgia associados à carga física a que estava submetido o trabalhador e recomendar um limite de peso adequado para cada tarefa em questão, de maneira que uma determinada percentagem da população – a ser fixada pelo usuário da equação – pudesse realizar a tarefa sem risco elevado de desenvolver lombalgia.

O método NIOSH foi revisto em 1992, sendo proposto o Limite de Peso Recomendado (L.P.R) e o Índice de Levantamento (I.L) (WATTERS, 1993). O grupo de pesquisadores que fez esta revisão, decidiu estabelecer um critério não baseado em determinada carga, acima da qual seria problemático e abaixo da qual haveria segurança, nem se basearam em estabelecer uma frequência máxima, nem uma técnica específica para se fazer um esforço (WATTERS, 1993). O método utilizado estabeleceu que, para uma situação qualquer de trabalho, no levantamento manual de cargas, existe um Limite de Peso Recomendado (L.P.R). O L.P.R, uma vez calculado, compara-se com a carga real levantada, obtendo-se então o Índice de Levantamento (I.L). Assim, estipula-se que se o valor do I.L, for menor que 1.0, a chance de lesão será mínima e o trabalhador estará em situação segura; se o valor for de 1.1 a 2.9, aumenta-se o risco; e se a situação de trabalho for maior que 3.0, aumentará o risco de lesões na coluna e no sistema músculo-ligamentar (figura 2) (WATTERS, 1993).

\[
\text{IL} = \frac{\text{PESO DO OBJETO}}{\text{L.P.R}}
\]

<table>
<thead>
<tr>
<th>I.L</th>
<th>Situação</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.L < 1.0</td>
<td>SEGURANÇA NA ATIVIDADE</td>
</tr>
<tr>
<td>1.1 < I.L < 2.9</td>
<td>SITUAÇÃO DE ALERTA</td>
</tr>
<tr>
<td>I.L > 3.0</td>
<td>GRANDE RISCO NA ATIVIDADE</td>
</tr>
</tbody>
</table>

FIGURA 4: índice de levantamento proposto pelo método NIOSH

A revisão da equação, realizada pelo comitê do NIOSH no ano de 1994, (WATERS, T.; PUTZANDERSON, V.; GARG, A.; FINE, L. 1993 e 1994) completa a descrição do método e as limitações de sua aplicação. De acordo com esta última revisão, a equação NIOSH para o levantamento de cargas determina o limite de peso recomendado (LPR), a partir do quociente de sete fatores, que será explicado a seguir com subtítulo específico.
5.5.1 O LIMITE DE PESO RECOMENDADO (L.P.R)

As principais considerações do L.P.R são:

a) Deve respeitar o peso que uma pessoa possa levantar em situação de trabalho, no qual 90% dos homens e no mínimo 75% das mulheres o façam sem lesão (WATTERS, 1993);

b) No nível apresentado anteriormente, a taxa metabólica é da ordem de 3,5 kcal/min, o que é compatível com uma jornada contínua (ASTRAND & RODAHL, 1986);

c) Níveis abaixo do apresentado nos itens anteriores, não apresentam um significativo comprometimento do sistema osteomuscular;

d) A compressão no disco L5-S1 da coluna vertebral, que pode ser suportada normalmente, é da ordem de 3400 N. Uma situação de trabalho onde exista uma força de compressão maior que 6600 N, são capazes de provocar microtraumas ou mesmo a ruptura no disco na maioria das vezes, dentre outras lesões (CHAFFIN e ANDERSON, 1984; JAGÜER e LUTTMANN, 1989; JAGÜER e LUTTMANN, 1992; GENAIDY et al, 1993).

5.5.2 FÓRMULA PARA CÁLCULO DO LIMITE DE PESO RECOMENDADO - L.P.R

Em 1991, o National Institute for Occupational Safety and Health (NIOSH) foi criado nos Estados Unidos para estudar a saúde dos trabalhadores. O Instituto propôs um limite de peso recomendado (L.P.R.) e o índice de levantamento (I.L.). Assim sendo, existe uma fórmula de cálculo estabelecida para uma situação qualquer de trabalho de levantamento manual de carga. O limite máximo de peso recomendado pelo método NIOSH é de vinte e três quilogramas (23 kg), baseado em estudos realizados com cargas em cadáveres, este valor representa, para uma determinada situação de trabalho, o valor em que mais de 90% dos homens e mais de 75% das mulheres conseguem manusear. Esta fórmula foi reestrutura em 1994 e o método NIOSH é usado em vários países como um referencial para um limite máximo de peso recomendável.

A base do método é uma equação matemática que consiste em recomendar o limite máximo de peso recomendável. O método NIOSH (1994) propõe que, para
uma situação qualquer de trabalho, existe um Limite de Peso Recomendado (L.P.R.), que é estimado a partir de um conjunto de variáveis que descrevem as condições em que o levantamento é executado. A equação emprega seis coeficientes que podem variar entre 0 e 1, segundo as condições em que se dá o levantamento.

O caráter multiplicativo da equação faz com que o valor limite de peso recomendado vá diminuindo à medida que nos afastamos das condições ótimas de levantamento. A equação de cálculo utilizada para determinar o Limite de Peso Recomendado (LPR) é a seguinte:

\[CRL = LC \times HM \times VM \times DM \times AM \times FM \times CM \]

CRL = carga limite recomendada
LC = carga constante = 23kg
HM = multiplicador horizontal = (25/H)
VM = multiplicador vertical = (1-(0,003/V-75/))
DM = multiplicador de distância (0,82+(4,5/D))
AM = multiplicador de assimetria = (1-(0,0032A))
FM = multiplicador de freqüência
CM = multiplicador de interface (preensão)

O valor máximo da carga em condições em que todas as variáveis do levantamento são próprias é de 23 Kg. O conjunto de variáveis considera os fatores de distância horizontal do indivíduo em relação à carga (FDH), a altura vertical inicial em que a carga é levantada (FAV), a distância vertical percorrida desde a origem até o destino da carga (FDVP), a freqüência do levantamento (FFL), o fator de rotação do tronco (FRLT) e o fator de qualidade da pega da carga (FQPC). Cada variável possui um coeficiente que é estabelecido em função de cada um dos parâmetros considerados (WATERS, 1994).

A FDH ideal corresponde a 25 cm; FAV ideal corresponde a 75 cm; FDVP ideal corresponde a 0, a FFL ideal é que seja menor do que uma vez a cada cinco minutos (F<0,2 lev/min); FRLT ideal é que não haja rotação do tronco, portanto, 0º; e a FQPC ideal é que a pega da carga seja fácil e confortável correspondendo ao valor 1. A partir do L.P.R. é calculado o índice de levantamento (I.L.) que é dado pela razão entre o peso do objeto levantado pelo trabalhador e o L.P.R.. O índice de levantamento que se propõe é o quociente entre o peso da carga levantada e o peso da carga recomendada segundo a equação NIOSH.
A função risco não está definida, razão pela qual não é possível quantificar de maneira precisa o grau de risco associado aos incrementos do índice de levantamento. No entanto, podem ser consideradas três zonas de risco segundo os valores do índice de levantamento obtidos para a tarefa:

1. Risco limitado (índice de levantamento < 1). A maioria dos trabalhadores que realizam este tipo de tarefa não deveria ter problemas.

2. Aumento moderado do risco (1 < índice de levantamento < 3). Alguns trabalhadores podem adoecer ou sofrer lesões se realizam essas tarefas. As tarefas desse tipo devem ser redesenhadas ou atribuídas apenas a trabalhadores selecionados que serão submetidos a controle.

O método NIOSH tem por objetivo reduzir problemas em relação à quantidade máxima de peso que a carga poderá ter, prevenindo assim o risco de lombalgias (NIOSH, 1994).

Ao estabelecer o limite de peso recomendável máximo em 23 kg sugere-se que é um peso que mais de 90% dos homens e mais de 75% das mulheres podem levantar sem problemas (WATTERS, 1993).

Assim, para que uma pessoa possa levantar uma carga de 23 kg, todas as variáveis da equação proposta pelo método devem estar em condições ideais para a tarefa, caso contrário o LPR é menor que 23 kg. O método apresentado não considera o fator elevação com apenas uma das mãos, fato que acontece com freqüência em atividades de movimentação de cargas.

A equação NIOSH é baseada no conceito de que o risco de lombalgia aumenta com a demanda de levantamentos da tarefa. O índice de levantamento que se propõe é o quociente entre o peso da carga levantada e o peso da carga recomendada segundo a equação NIOSH. A função risco não está definida, razão pela qual não é possível quantificar de maneira precisa o grau de risco associado aos incrementos do índice de levantamento.

2.5.4 PRINCIPAIS LIMITAÇÕES DA EQUAÇÃO
A equação NIOSH foi concebida para avaliar o risco associado ao levantamento de cargas em determinadas condições, por isso torna-se importante mencionar suas limitações para que não se faça mau uso da mesma, pois a equação não leva em conta o risco potencial associado aos efeitos cumulativos dos levantamentos repetitivos. Também não considera eventos imprevistos como deslizamentos, quedas nem sobrecargas inesperadas. Não foi concebida para avaliar tarefas nas quais se levanta a carga com apenas uma mão, sentado ou agachado ou quando se trate de carregar pessoas, objetos frios, quentes ou sujos, nem nas tarefas nas quais o levantamento aconteça de forma rápida e brusca. Torna-se impossível aplicar a equação quando a carga levantada seja instável, situação em que a localização do centro de massas varia significativamente durante o levantamento. Este é o caso dos recipientes que contêm líquidos ou dos sacos semivazios (WATTERS et al. 1993).

2.6 MÉTODO DE DIAGRAMA CORLLET E MANENICA

Método que permite avaliar as sensações subjetivas de desconforto, um questionário bipolar que mostra nas extremidades de uma linha de nove centímetros de comprimento dois conceitos opostos, que vem acompanhado com ilustração de mapa das regiões do corpo, dividido em segmentos. A pessoa é convidada a colocar uma marca entre os dois pólos opostos, correspondendo ao seu estado de dor e desconforto corporal no momento da avaliação.

A metodologia foi desenvolvida por Corlett & Manenica (1980), segundo os autores o método é representado por um diagrama corporal dividido por segmentos, com a finalidade de análise do grau de desconforto de cada parte do corpo.

Segundo Corlett & Manenica (1980), o método de Análise de dor e/ou desconforto foi planejado visando os critérios:

- Simplicidade para que os questionários possam ser aplicados sem dificuldade e não sendo necessário um treinamento.
- Simplificação sem respostas ambíguas.
- Possibilitando a aplicação do método através do pesquisador ou de uma auto-avaliação.
O método de diagrama de Corlett e Manenica tem duas preocupações principais: a maneira mais factível de analisar índice de dor e/ou desconforto de uma população e como classificar o grau dessa dor e/ou desconforto. Este método é uma ferramenta de análise para identificação de possíveis locais que apresentam problemas de ordem estrutural, organizacional ou cognitivo, podendo ser a causa geradora de doenças osteomusculares relacionadas ao trabalho. A utilização de métodos psicofísicos em ergonomia parte do pressuposto que os trabalhadores podem ser capazes de discernir sensações associadas com sobrecarga e potencial de lesão aos tecidos durante o trabalho (CORLETT e BISHOP, 1976).

2.6.1 CLASSIFICAÇÃO DA DOR

O grande desafio do combate à dor inicia-se na sua mensuração, já que a dor é, antes de tudo, subjetiva, variando individualmente em função de vivências culturais, emocionais e ambientais. Torna-se necessária uma abordagem multidimensional na avaliação dos atributos da dor, os quais incluem intensidade, duração e localização da dor, características somatossensoriais e emocionais que a acompanham. A avaliação dor/sofrimento é sempre necessária, não só para a escolha da forma mais adequada para o controle álgico em cada caso, como também detectando a necessidade de suporte psicológico específico. A figura 5 demonstra o Diagrama Corporal de Corlett, onde o corpo humano é dividido em 27 regiões, e a figura 06 demonstra uma escala progressiva de desconforto e dor.
Figura 5- Diagrama corporal de Corlett

Para a avaliação e mensuração da dor na Metodologia Corlett utilizou a Escala de Estimativa Numérica (Numeric Rating Scale - NRS). Nesta escala os pacientes avaliam a sua dor em uma escala de 1 a 5 categorias, com 0 representando "nenhuma dor" e 5 " dor insuportável". Sousa e Silva (2005) sugerem a utilização dessa medida, para avaliação dos níveis de intensidade de dor na consulta inicial e durante todo o processo de tratamento. Informações psicométricas sobre esta escala não foram encontradas.

Figura 6 – escala progressiva de desconforto/dor

A utilização de métodos psicofísicos em ergonomia parte do pressuposto que os trabalhadores podem ser capazes de discernir sensações associadas com sobrecarga e potencial de lesão aos tecidos durante o trabalho (CORLETT e BISHOP, 1976).
2.7 CHECK LIST DE COUTO PARA RISCO DE LOMBALGIA

O Check list de para risco de lombalgia, foi criado por Couto (2003), (ANEXO III) e seu objetivo é avaliar fatores diversos sobre o levantamento de cargas em relação com o risco de lombalgia, estes fatores são:

- Posicionamento estático do tronco em posição fletida entre 30 e 60 graus a partir da vertical, na posição de pé;
- Atingir o chão com as mãos (frequentemente), independente de carga;
- Pegar cargas maiores que 10 kg em freqüência maior que uma vez a cada 5 minutos;
- Pegar cargas do chão, independente de peso, em freqüência maior que 1 vez por minuto;
- Fazer esforço com ferramentas ou com as mãos estando o tronco fletido;
- Manusear (levantar ou puxar ou empurrar) cargas que estejam longe do tronco;
- Manusear cargas (levantar, puxar ou empurrar) com o tronco em posição assimétrica;
- Carregar cargas mais pesadas que 20 kg mesmo ocasionalmente;
- A necessidade de carregar cargas mais pesadas que 10 kg freqüentemente;
- Necessidade de carregar cargas na cabeça;
- Ficar constantemente com os braços longe do tronco em posição suspensa;
- Tronco em posição estática, sem apoio;

Cada resposta negativa deste questionário gera uma pontuação somatória de 0 (zero) e cada resposta positiva gera uma pontuação de 1 (um), o critério de interpretação é baseado no número de respostas negativas. Quanto maior o número de respostas negativas menor é o risco ergonômico, conforme abaixo:

11 OU 12 PONTOS- MUITO BAIXO RISCO DE LOMBALGIAS = 1
8 A 10 PONTOS - BAIXO RISCO DE LOMBALGIAS = 2
6 A 7 PONTOS - RISCO MODERADO DE LOMBALGIAS = 3
4 OU 5 PONTOS - ALTO RISCO DE LOMBALGIAS = 4
0 A 3 PONTOS – MUITO ALTO RISCO DE LOMBALGIAS = 5

3. ANÁLISE METODOLÓGICA
O estudo apresenta caráter descritivo, uma vez que visou levantar dados, observar e analisar fenômenos, sem interferir ou influenciar os mesmos (THOMAS; NELSON; SILVERMAN, 2007).

3.1 POPULAÇÃO E AMOSTRA

A população dos trabalhadores foi de uma empresa privada, do ramo frigorífico de bovinos, na cidade de Maringá, Paraná, cujo objetivo é fazer a avaliação dos postos de trabalho que envolvem a manipulação de cargas e mercadorias e avaliação dos sintomas de dor e desconforto músculo esquelético e associar estas variáveis. A coleta de dados foi realizada entre os meses de maio e setembro de 2010, a coleta de dados foi realizada com 35 homens saudáveis.

3.2 PROCEDIMENTOS METODOLÓGICOS

Para quantificar o risco ergonômico do levantamento de cargas foi utilizado o método do Índice de Levantamento (IL) através da metodologia NIOSH (ANEXO 1) e do check list de COUTO (2003) para risco músculo esquelético de lombalgia (ANEXO 2). Para mensurar a dor foi utilizado a metodologia do diagrama corporal de Corlett, que é um dos métodos de avaliação das sensações subjetivas de desconforto e dor mais utilizados na Ergonomia é a aplicação do diagrama de Corlett e Bishop (1976). A aplicação do questionário ocorreu de forma coletiva. Em geral, a aplicação não ultrapassa 15 minutos, embora não haja limite de tempo para a reprodução da figura.

A percepção do trabalhador em relação ao conforto/desconforto e dor pode ser coletados através da aplicação do Método de Corlett. Para a avaliação e mensuração da dor na Metodologia Corlett utilizou a Escala de Estimativa Numérica (Numeric Rating Scale - NRS). Nesta escala os pacientes avaliam a sua dor em uma escala de 0 a 5 categorias, com 0 representando "nenhuma dor" e 5 " dor insuportável". Sousa e Silva (2005) sugerem a utilização dessa medida, para avaliação dos níveis de intensidade de dor na consulta inicial e durante todo o
processo de tratamento. Informações psicométricas sobre esta escala não foram encontradas.

Na análise estatística utilizou-se para as variáveis antropométricas a estatística descritiva para os dados de estatura, massa corporal, IMC, classificação ergonômica da atividade com a metodologia de NIOSH e Check list para risco de lombalgia de Couto (2003). Para verificação da associação entre o levantamento de cargas e dor lombar, será utilizado o teste de qui-quadrado 2x2 para associação, para se comparar as duas ferramentas utilizou-se o teste de McNemar.
4 RESULTADOS E DISCUSSÃO

Os dados pessoais e antropométricos da população dos trabalhadores estudados como idade, altura, peso e tempo de trabalho na função expresso em meses foram analisados através da estatística descritiva com média, mínimo, máximo e desvio padrão e podem ser visualizados na tabela 01.

Tabela 01. Análise dos dados pessoais e antropométricos da população de trabalhadores estudados.

<table>
<thead>
<tr>
<th>Média</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Desvio Padrão</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade (anos)</td>
<td>30,31</td>
<td>18</td>
<td>53</td>
</tr>
<tr>
<td>Altura (m)</td>
<td>1,71</td>
<td>1,55</td>
<td>1,90</td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>70,63</td>
<td>51</td>
<td>97</td>
</tr>
<tr>
<td>Tempo na função (m)</td>
<td>3</td>
<td>15</td>
<td>9,74</td>
</tr>
</tbody>
</table>

Em relação aos hábitos de vida dos trabalhadores estudados, 21 (60%) não praticam atividades físicas, enquanto que 14 (40%) praticam atividades físicas regularmente. Em relação ao tabagismo, 25 (71,4%) dos trabalhadores afirmaram que não fumam, enquanto que 10 (28,6%) afirmam em resposta ao questionário que fumam. Sobre a presença de sintomas dolorosos na coluna lombar, 20 (57,1%) dos participantes do estudo afirmaram que até o momento da pesquisa não tem dor lombar, enquanto que 15 (42,9%) relataram a presença de sintomas de dor lombar. O estudo de Almeida (2008) verificou fatores como atividade física, alcoolismo, raça, sexo e classe social não se associaram a dor lombar, relevando então a prevalência moderada de dor lombar crônica na população de Salvador e marcante associação com baixo nível de escolaridade, obesidade central entre outros fatores.

Para Makofsky (2006), a maioria dos distúrbios da coluna lombar ocorre com maior freqüência em homens com a idade de 25 a 50 anos, os fatores demonstram que com o passar dos anos, concomitantemente a mobilidade em flexão da coluna lombossacra, com o aumento da idade. Choratto & Stabile (2007) relatam que a lombalgia é a desordem músculo-esquelética mais comum de limitação para o trabalho e a segunda razão mais frequente da procura por consultas médicas. Considerando as alarmantes conseqüências médicas, econômicas e sociais
resultantes da incidência de lombalgias. Os dados apresentados indicam a necessidade de adoção de medidas educativas para auxiliar na prevenção e tratamento, objetivando a melhoria da saúde e a minimização de custos.

Os resultados da frequência do risco analisadas com a metodologia NIOSH estão descritas na Tabela 2, onde se observa que das atividades laborais apresentaram 17 (48,6%) e 18 (51,4%) possuem alto risco ergonômico para lesão em coluna lombar, sendo que em nenhuma das atividades analisadas foi pontuado baixo risco de lesão.

Tabela 2 - Resultado da aplicação da metodologia de NIOSH.

<table>
<thead>
<tr>
<th>Risco Niosh</th>
<th>Frequência</th>
<th>Percentual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixo</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Médio</td>
<td>17</td>
<td>48,6%</td>
</tr>
<tr>
<td>Alto</td>
<td>18</td>
<td>51,4%</td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>100%</td>
</tr>
</tbody>
</table>

A metodologia NIOSH é método abrangente que envolve o fator biomecânico que emite um resultado que pode ser utilizado para quantificar o risco ergonômico e verificar se a atividade está sendo realizada dentro de um limite de segurança, sendo assim, reduz e controla o risco de desenvolvimento de problemas lombares entre os trabalhadores. Apesar do método proposto pelo NIOSH ser amplamente aplicado para cálculo do levantamento carga (DEMPSEY et al., 1999; WATERS et al., 1994) e de constituir um método preventivo para lombalgias, alguns estudos têm revelado dificuldades em sua aplicação (DEMPSEY et al., 1999; WU, 2003).

Utilizando a metodologia de check list de COUTO (2003) para risco de lombalgia, verificou-se que 09 (25,7%) dos postos de trabalho apresentaram risco moderado, enquanto 18 (51,4%) apresentou risco alto e 8 (22,9%) apresentou risco muito alto para lombalgia, conforme apresentado na Tabela 03.

Tabela 3 - resultado da aplicação do Check List de COUTO (2003).

<table>
<thead>
<tr>
<th>Risco COUTO</th>
<th>Frequência</th>
<th>Percentual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixo</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>
Mild 09 25,7%
Alto 18 51,4%
Muito Alto 08 22,9%
Total 35 100%

Analisando os dados evidenciou-se a presença de associação da lombalgia com a exposição ao trabalho com grandes cargas mecânicas. Este resultado isolado indicaria que o manuseio habitual de cargas, a flexão e rotação de tronco frequentes e o levantamento de cargas poderem ser considerados como possíveis fatores de risco para o adoecimento da coluna lombar, gerando queixas de dor e desconforto osteomuscular.

Para verificar a associação entre a lombalgia e a metodologia Niosh utilizou-se o teste qui quadrado para associação, onde não demonstrou associação entre a presença de lombalgia e o risco de lesão lombar utilizando a metodologia NIOSH na amostra estudada (p=0,38). Para verificar a associação entre a lombalgia e a metodologia de Couto (2003) utilizou-se o teste qui quadrado para associação, onde verificou-se que houve associação entre a presença de lombalgia e o risco de lesão lombar utilizando a metodologia Couto (2003) na amostra estudada. (p=0,03).

Na comparação entre as duas metodologias utilizadas para quantificar o risco ergonômico Couto (2003) e Niosh (1981), o teste de McNemar verificou-se que houve diferença estatisticamente significativa na utilização das 2 metodologias para avaliar o risco de lombalgia, onde (p=0,00). O teste de McNemar tem por objetivo verificar se existe diferença estatística e isso pode ser confirmado pelo teste de associação, vindo a confirmar os resultados do estudo pois, o check list de Couto (2003) apresentou associação enquanto que a metodologia de NIOSH não apresentou associação. Porém o teste de McNemar não revela qual é método mais indicado para esta análise, apenas compara as ferramentas.

Os resultados dos testes de associação demonstraram que a metodologia de NIOSH não demonstrou associação com as lombalgias enquanto que o Check List de Couto (2003) pode ser mais sensível quanto a questão de presença de risco para dores lombares. Mas por outro lado, esta metodologia pode estar
superestimando o risco por não apresentar a real condição que leva às lesões lombares. As condições de trabalho envolvendo o transporte o levantamento manual de cargas independente do ramo de atividades das empresas impõem ritmos intensos e jornadas prolongadas, sendo que frequentemente este tipo de trabalho é realizado em posturas e ambientes ergonomicamente inadequados, expondo os trabalhadores a lesões (ALMEIDA, 2008).

Os resultados do presente estudo identificam importante fator de risco para doença crônica da coluna lombar no trabalho físico pesado com carregamento de cargas. Este estudo contribuiu na abordagem de uma população inserida na indústria frigorífica, cuja exposição aos fatores de risco foi avaliada a partir do processo de trabalho e aplicação de metodologias ergonômicas comumente utilizadas em laudos e análises técnicas, revelando os fatores de risco em geral para a coluna lombar. As metodologias adotadas privilegiaram os riscos biomecânicos das atividades dos indivíduos estudados, permitindo, desta forma, minimizar o viés de seleção, ocasionando o efeito sobrevivência do trabalhador sadio.

5 CONCLUSÃO

A lombalgia continua sendo uma desordem muito comum em trabalhadores. Mesmo com diversos estudos abordando as questões ergonômicas trazendo importantes considerações, as investigações sobre os fatores de risco ainda permanecem inconclusivas, onde informações sobre o perfil dos indivíduos atingidos podem ajudar no direcionamento do seu controle. Há diversas causas da lombalgia como: fatores psicossociais, jornada de trabalho, tempo de permanência em posturas estáticas, realização de movimentos bruscos durante atividades, movimentos repetitivos e, sobretudo, ausência de programas preventivos estão envolvidos nas lombalgias ocupacionais. Sendo assim pode-se observar que os fatores de risco de dos indivíduos com lombalgia indicam diversidades e complexidades, tornando-se um desafio.

Apesar do aumento da automação e robótica na indústria, com conseqüente diminuição do trabalho pesado, e dos avanços tecnológicos da
medicina para o diagnóstico e tratamento, a incapacidade para o trabalho causada por lombalgia continua sendo uma questão importante e de difícil resolução. A lombalgia ocupacional pode gerar possíveis prejuízos sociais e pessoais e sua alta prevalência alerta para necessidade de efetivos programas de prevenção, para uma possível melhora na qualidade de vida destes indivíduos, além de instituir políticas de saúde para os trabalhadores. Faz-se necessário a implantação de programas preventivos para que de forma precoce internalizem-se hábitos de cuidados à saúde, podendo beneficiar os trabalhadores portadores desse tipo de morbidade.

Este estudo buscou investigar a associação entre o levantamento de cargas e dor lombar em trabalhadores de uma empresa do ramo frigorífico, para isso aplicou-se as metodologias de Check List de COUTO (2003) para analisar as condições de risco de Lombalgia e a Metodologia NIOSH (1994) para calcular o risco ergonômico e a metodologia do Diagrama de dor e desconforto corporal de CORLETT (1991).

Os achados demonstraram haver associação (p=0,032) entre os sintomas de dor lombar com o risco ergonômico através do check list de COUTO e não houve associação (p=0,38) com a metodologia de NIOSH, isso demonstra que os resultados do risco das ferramentas utilizadas são diferentes, o que foi confirmado pelo teste de Mc Nemar. Sugere-se que mais estudos sejam desenvolvidos utilizando as duas ferramentas para análise das condições ergonômicas, afim de, estabelecer uma padronização das avaliações para que os riscos sejam os mesmos e possam ser mitigados de acordo com o tipo de tarefa de levantamento de cargas realizado.

Moser; Kerhig (2006) abordaram os conceitos que dão suporte às práticas de saúde no trabalho, com o objetivo de estabelecer uma relação entre os conceitos de saúde vigentes no mundo do trabalho e as práticas deles originadas. As autoras relatam que o processo de trabalho tem sido visto a partir das unidades de produção sem que se considere a ampla gama de determinantes nas condições de desgaste e adoecimento dos trabalhadores, incluindo-se aí os aspectos psicossociais e culturais. Os dados indicam a necessidade de adoção de medidas educativas para auxiliar na prevenção e tratamento, objetivando a melhoria da saúde e a minimização de custos.
Com estes dados considera-se que existem diversos fatores encontrados para manifestação de dor na coluna lombar e eleger apenas um seria negligência aos demais, pois estes fatores podem ser individualizados ou associados. Por isso as causas da dor lombar devem ser adequadamente investigadas com o propósito de excluí-las para que a prevenção e o tratamento sejam adequados, evitando novos casos e reabilitando adequadamente os trabalhadores que sofrem com estes sintomas.

A lombalgia ocupacional constitui-se como um problema freqüente para o trabalhador, provocando aumento da incapacidade temporária ou permanente no trabalho, gerando prejuízos econômicos e sociais tanto para empresa como para o empregado.

CHORATTO, Renata; Stabile, Sandra, Regina. Incidência de lombalgia entre pacientes encaminhados em 2001 a uma instituição privada de saúde para tratamento fisioterápico, Arq. ciencias saúde UNIPAR;7(2) maio-agro. 2003.

FRYMOYER, J.W., POPE, M.H., CLEMENTS, J.H., WILDER, D.G.,
MacPHerson, B., ASHIKAGA, T. and VERMONT, B. Risk factors in low-back
GANN, Nancy. Ortopedia: Guia de Consulta Rápida para Fisioterapia. Série
Physio/
GOSS, C.M. Gray Anatomia . 29.ed. Rio de Janeiro: Guanabara Koogan,
1998.97
GRANATA, K.P. & MARRAS, W.S., 1999, Relation between spinal load factors
and the righ-risk probability of occupational low-back disorder. Ergonomics, v.42,
n 9, p.1187-99.
GRANDJEAN, E. Manual de Ergonomia; adaptando o trabalho ao homem. 4.ed.
IIDA, I. Ergonomia: Projeto e produção. 3ª edição. Rio de Janeiro: Edgar
Blucher, 2002.
LARIVIÈRE, C., GANGNON, D and LOISEL, P. A biomechanical comparison of
lifting techniques between subjects with and without chronic low back pain
during freestyle lifting and lowering tasks. Clinical Biomechanics, v. 17, p.89-98,
2002.
LEE, K.S., PARK, H.S, CHUN, Y.H. The validity of the revised NIOSH weight
limit in a Korean young male population: a psychophysical approach.
LIPPERT, L.S. Cinesiologia Clínica para Fisioterapeutas. 3 ed. São Paulo:
LOOZE, M.P., VISNER, B., HOUTING, I., ROOY, M.A.G.V., VAN DIÊEN, J.H.
and TOUSSAINT, H.M. Weigt and frequency effect on spinal loading in a
McGILL, S.M. and NORMAN, R.W. Partitioning of the L4-L5 dynamic moment
664-678, 1986.

MARRAS WS. Occupational low back disorder causation and control. Ergonomics 2004;43; 880-902

ANEXO 1 CHECKLIST DE COUTO PARA AVALIAÇÃO SIMPLIFICADA DO RISCO DE LOMBALGIAS

1 - O trabalho envolve posicionamento estático do tronco em posição fletida entre 30 e 60 graus? Sim (0) Não (1)
2 - O trabalhador tem que frequentemente atingir o chão com as mãos, independente de carga? Sim (0) Não (1)
3 - O trabalho envolve pegar cargas maiores que 10 kg em frequência maior que uma vez a cada 5 minutos? Sim (0) Não (1)
4 - O trabalho envolve pegar cargas do chão, independente de peso, em frequência maior que 1 vez por minuto? Sim (0) Não (1)
5 - O trabalho envolve fazer esforço com ferramentas ou com as mãos estando o tronco encurvado? Sim (0) Não (1)
6 - O trabalho envolve a necessidade de manusear (levantar ou puxar ou empurrar) cargas que estejam longe do tronco? Sim (0) Não (1)
7 - O trabalho envolve a necessidade de manusear cargas (levantar, puxar ou empurrar) com o tronco em posição assimétrica? Sim (0) Não (1)
8 - O trabalho envolve a necessidade de carregar cargas mais pesadas que 20 kg mesmo ocasionalmente? Sim (0) Não (1)
9 - O trabalho envolve a necessidade de carregar cargas mais pesadas que 10 kg frequentemente? Sim (0) Não (1)
10 - O trabalho envolve a necessidade de carregar cargas na cabeça? Sim (0) Não (1)
11 - O trabalho envolve a necessidade de ficar constantemente com os braços longe do tronco em posição suspensa? Sim (0) Não (1)
12 - O trabalho exige que o trabalhador fique com o tronco em posição estática, sem apoio? Sim (0) Não (1)

PONTUAÇÃO= INTERPRETAÇÃO=

CRITÉRIO DE INTERPRETAÇÃO
11 OU 12 PONTOS- MUITO BAIXO RISCO DE LOMBALGIAS = 1
8 A 10 PONTOS - BAIXO RISCO DE LOMBALGIAS = 2
6 A 7 PONTOS - RISCO MODERADO DE LOMBALGIAS = 3
4 OU 5 PONTOS - ALTO RISCO DE LOMBALGIAS = 4
0 A 3 PONTOS – MUITO ALTO RISCO DE LOMBALGIAS = 5
ANEXO 2 - METODOLOGIA NIOSH

R WL = LC x HM x VM x DM x AM x FM x CM

<table>
<thead>
<tr>
<th>Carga Constante</th>
<th>LC</th>
<th>23 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicador Horizontal</td>
<td>HM</td>
<td>(\frac{25}{H})</td>
</tr>
<tr>
<td>Multiplicador Vertical</td>
<td>VM</td>
<td>(1 - (0.003 \times</td>
</tr>
<tr>
<td>Multiplicador de Distância</td>
<td>DM</td>
<td>(0.82 + \left(\frac{4.5}{D} \right))</td>
</tr>
<tr>
<td>Multiplicador Assimétrico</td>
<td>AM</td>
<td>(1 - (0.0032 \times A))</td>
</tr>
<tr>
<td>Multiplicador de Frequência</td>
<td>FM</td>
<td>Tabela 1</td>
</tr>
<tr>
<td>Multiplicador da Pega</td>
<td>CM</td>
<td>Tabela 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pega</th>
<th>(V_c < 75 \text{ (cm)})</th>
<th>(V_c > 75 \text{ (cm)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boa</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Razoável</td>
<td>(0.95)</td>
<td>1.00</td>
</tr>
<tr>
<td>Pobre</td>
<td>0.90</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Interpretação do Resultado LI

<table>
<thead>
<tr>
<th>LI</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>LI < 1</td>
<td>Baixo Risco</td>
</tr>
<tr>
<td>1 <= LI < 2</td>
<td>Risco Moderado</td>
</tr>
<tr>
<td>LI >= 2</td>
<td>Alto Risco</td>
</tr>
</tbody>
</table>

Classificação Posto