GABRIEL DE GOUVEIA FERREIRA

AVALIAÇÃO DO MÉTODO DE POSICIONAMENTO POR PONTO PRECISO (PPP) NA DETERMINAÇÃO DE COORDENADAS GEODÉSICAS DOS VÉRTICES DE DIVISA DO TIPO C4, IMPLANTADOS NA FAZENDA EXPERIMENTAL DE RIO NEGRO DA UFPR.

Monografia apresentada como requisito parcial à conclusão do Curso de Especialização em Geotecnologias, setor de Ciências da Terra, Universidade Federal do Paraná.

Orientadora: Prof.ª Dr.ª Claudia Pereira Krueger

CURITIBA
2015
Ata da Defesa de Monografia

No dia 17 de junho de 2015, a partir das 09:30h, estiveram reunidos, em Sessão Pública, na sala de aulas do Laboratório de Geodésia Espacial e Hidrografia do Setor de Ciências da Terra da Universidade Federal do Paraná, a professora Claudia Pereira Krueger, na qualidade de orientadora e presidente da sessão, e o Engenheiro Cartógrafo Anderson Renato Viski, na qualidade de membro avaliador, como componentes da Banca de Avaliação de Monografia do candidato Gabriel de Gouveia Ferreira. Aberta a sessão, o candidato Gabriel teve a palavra para proceder a apresentação de sua Monografia intitulada “Avaliação do método de posicionamento por ponto preciso (PPP) na determinação de coordenadas geodésicas dos vértices de divisa do tipo C4, implantados na Fazenda Experimental de Rio Negro da UFPR”. Após a apresentação feita pelo candidato, o Engº. Anderson Renato Viski deu início à fase de arguição. Finda a fase de arguição, a Banca, em reunião fechada, deliberou pela aprovação da Monografia, com a ressalva de que, a versão final do texto deve, num prazo de até sessenta dias, ser entregue em versão impressa ao Profª. orientadora para que avalie, constate e aprove a realização das sugestões e recomendações feitas ao longo da arguição.

Profª. Drª. Claudia Pereira Krueger
Orientadora e Presidente

Engº. Cart. MSc. Anderson Renato Viski
Membro da Banca

Prof. Dr. Henrique Firkowski
Coordenador do Curso de Especialização em Geotecnologias
Centro Politécnico, Jardins das Américas, CEP 81.531-990 – Caixa Postal 19001 Curitiba-Pr
Fone: (0xx41)3361-3638 – Fax: (0xx41)3361-3161 - e-mail: geotecnologia@ufpr.br
TERMO DE APROVAÇÃO

AVALIAÇÃO DO MÉTODO DE POSICIONAMENTO POR PONTO PRECISO (PPP)
NA DETERMINAÇÃO DE COORDENADAS GEODÉSICAS DOS VÉRTICES DE
DIVISA DO TIPO C4, IMPLANTADOS DA FAZENDA EXPERIMENTAL DE RIO
NEGRO DA UFPR.

POR

GABRIEL DE GOUVEIA FERREIRA

Monografia apresentada ao Curso de Especialização em Geotecnologias, administrado no
Departamento de Geomática do Setor de Ciências da Terra da Universidade Federal do
Paraná, e aprovada pelos seguintes membros da banca:

Orientadora:

Prof.ª Dr.ª Claudia Pereira Krueger

Eng. Cart. MSc. Anderson Renato Viski

Curitiba, 17 de junho de 2015
RESUMO

A utilização do GPS (Global Positioning System) no georreferenciamento de imóveis rurais tem se tornado comum desde que a regulamentação da Lei nº 10.267, de 2001, exige a apresentação de coordenadas de vértices vinculadas ao Sistema Geodésico Brasileiro (SGB). No Brasil, o Instituto Nacional de Colonização e Reforma Agrária (INCRA) é o responsável por estabelecer normas que regem a precisão mínima para levantamentos desta natureza. Dentre distintos métodos de posicionamento e processamento GPS, destaca-se o Posicionamento por Ponto Preciso (PPP), disponibilizado pelo Instituto Brasileiro de Geografia e Estatística (IBGE). Apoiada neste fato, esta monografia visa à verificação da acurácia deste método, a partir de dados de rastreio GPS estático, obtidos em levantamentos realizados na Fazenda Experimental de Rio Negro da Universidade Federal do Paraná (UFPR). O foco do estudo volta-se especificamente para a ocupação de marcos de divisa, implantados em propriedades rurais, Classe C4, ou seja, cuja finalidade seja o limite de terras e cuja precisão seja igual ou inferior a 0,5 m. Para tal, foram comparados os resultados de processamentos PPP-IBGE com os obtidos pelo método de posicionamento relativo estático para seis marcos, cujo tempo médio de ocupação igual a 36 min. Constataram-se diferenças máximas para as coordenadas UTM de 68,6 cm entre as componentes Este, 7,7 cm entre as componentes Norte e 68 cm entre as précisions da posição. Verificou-se também, das precisões planimétricas em UTM obtidas por ambos os métodos, uma diferença mínima e uma máxima iguais a 10,6 cm e 17,7 cm, respectivamente. Analisou-se as discrepâncias da precisão de posição em relação a precisão planimétrica, encontrando o valor de 51 cm como maior variação. Por fim, verificou-se que cinco dos seis marcos mantiveram sua precisão posicional dentro da tolerância especificada pela norma do INCRA, o que significa um total de 83%.

Palavras-Chave: Posicionamento Geodésico, Georreferenciamento, Posicionamento por Ponto Preciso, Posicionamento Relativo Estático.
ABSTRACT

The application of GPS (Global Positioning System) at the georeferencing of rural properties has become usual since the regulamentation of the Law No. 10,365, 2001, what demands the apresentation of vertex coordinates linked to the Brazilian Geodetic System (SGB). At Brazil, the National Institute of Colonization and Agrarian Reform (INCRA) is the responsible to establish rules governing the minimum accuracy for surveys of this nature. From different GPS positioning and processing methods, stands out the Precise Point Positioning (PPP), what is offered by the Geography and Statistics Brazilian Institute (IBGE). This monograph is supported on this fact cited and it aims the verification of the accuracy of this method, from static survey GPS that occurred at the Rio Negro’s experimental farm of the Federal University of Paraná (UFPR). The focus of this research is the occupation of the currency landmarks, what are implanted at rural properties, Class C4, in other words, whose purpose is the land limits and whose precision must be equal or less than 0.5 m. For this, the results of the PPP processing were compared with the results of the static relative positioning processing for six landmarks, whose mean time occupation was 36 min. It was found maximum and minimum differences to the UTM coordinates, what are 68.6 cm between de East components, 7.7 cm between the North components and 68 cm between position accuracy. From the UTM planimetric accuracy obtained from the both methods, it was also verifying a minimum and maximum differences equal to 10.6 cm and 17.7 cm, respectively. It was analyzed discrepancies of the position accuracy from the planimetric accuracy and it was found a value of 51 cm as biggest variation. Ultimately, it was checked that four of six landmarks maintained their position accuracy in the tolerance specified by the INCRA’s rules, what mean that a total of 83% had success on the utilization of the PPP data.

Keyword: Geodetic Positioning, Georeferencing, Precise Point Positioning, Static Relative Positioning.
LISTA DE ILUSTRAÇÕES

FIGURA 01 – GEOMETRIA DOS SATÉLITES NO INSTANTE DA OBSERVAÇÃO.17
FIGURA 02 – MARCO DE APOIO CLASSE C1 (CENTRAGEM FORÇADA) 27
FIGURA 03 – VISUALIZAÇÃO GERAL DE TODOS OS PONTOS ESCOLHIDOS PARA ESTUDO 29
FIGURA 04 – PRECISÃO NORTE E ESTE PARA OS MARCOS DE DIVISA OBTIDOS COM O PPP 31
FIGURA 05 – PRECISÃO PLANIMÉTRICA (PPP) E PRECISÃO DA POSIÇÃO 34
LISTA DE TABELAS

TABELA 01 - COORDENADAS DO MARCO FAZ1 AJUSTADAS (UTM - SIRGAS 2000, FUSO 22 S) 27
TABELA 02 - DADOS DOS POSICIONAMENTOS RELATIVO ESTÁTICOS DOS VÉRTICES DE DIVISA 28
TABELA 03 - COORDENADAS DOS VÉRTICES DE DIVISA E SUAS RESPECTIVAS PRECISÕES, OBTIDAS PELO LGO E PPP 30
TABELA 04 - PARÂMETROS QUE AUXILIAM NA ANALISE DA QUALIDADE DO PÓS-PROCESSAMENTO DOS VÉRTICES DE DIVISA COM O EMPREGO DO LGO 32
TABELA 05 - PARÂMETROS QUE AUXILIAM NA QUALIDADE DAS COORDENADAS OBTIDAS COM O IBGE-PPP 32
TABELA 06 - PRECISÃO PLANEJAMENTO DAS COORDENADAS DOS VÉRTICES COM O MPRE e o PPP 33
TABELA 07 - DIFERENÇA ENTRE AS COORDENADAS UTM (SIRGAS2000) PADRÃO E AS ADVINHAS DO PPP 33
SUMÁRIO

1 INTRODUÇÃO 8
 1.1 OBJETIVOS 9
 1.1.1 Objetivo geral 9
 1.1.2 Objetivos específicos 10
 1.2 JUSTIFICATIVA 10
 1.3 ESTRUTURAÇÃO DO TRABALHO 11
2 REVISÃO BIBLIOGRÁFICA 12
 2.1 NAVSTAR–GPS 12
 2.1.1 Segmento espacial 13
 2.1.2 Segmento Usuário 14
 2.1.3 Segmento de Controle 15
 2.1.4 Princípio do Posicionamento 15
 2.1.5 Métodos de posicionamento 18
 2.1.5.1 Posicionamento Relativo Estático 18
 2.1.5.2 Posicionamento por Ponto Preciso 19
 2.2 GEORREFERENCIAMENTO DE IMÓVEIS RURAIS – NORMA TÉCNICA 22
3 METODOLOGIA 26
4 RESULTADOS E DISCUSSÕES 30
5 CONCLUSÕES E RECOMENDAÇÕES 35
REFERÊNCIAS BIBLIOGRÁFICAS 37
APÊNDICES 40
1 INTRODUÇÃO

O Homem sempre sentiu a necessidade de determinar coordenadas geodésicas com precisão na superfície da Terra. Estas observações se iniciaram com métodos astronômicos, passando para os métodos de posicionamento terrestres e atualmente métodos de posicionamento por satélites. A busca pela determinação da velocidade de deslocamento dos objetos e do tempo também eram metas a serem alcançadas. Visando atender estes interesses os militares, na década de 70, propuseram o NAVigation System With Time And Ranging – Global Positioning System (NAVSTAR–GPS). Ele é um sistema de posicionamento por satélites que propõem a determinação de coordenadas na superfície da Terra com precisão de centímetros por meio da disponibilidade contínua de dados de navegação. O sistema possibilita ainda o estabelecimento de um referencial global, com cobertura global e regional, independentemente das condições meteorológicas.

Este sistema tem evoluído e, desde 2000, ele não é mais considerado um sistema estritamente militar. Diversos métodos de posicionamento têm sido aplicados na determinação destas coordenadas geodésicas e uma contínua avaliação destes métodos devem ser realizadas. Nos dias atuais, os usuários do GPS têm a sua disposição diversos serviços de Posicionamento Por Ponto Preciso, por exemplo: NRCan (Geodetic Survey Division of Natural Resources of Canada); IBGE – PPP (Instituto Brasileiro de Geografia e Estatística – Posicionamento por Ponto Preciso) e AUSPOS (Australian Surveying and Land Information Group’s On-line GPS Processing Service) do Departamento de Recursos, Energia e Turismo da Austrália. Esses serviços são online e possibilitam o processamento dos dados coletados no modo isolado (por ponto ou absoluto) por um programa científico. Este método proporciona uma economia e agilidade no processo, visto que os usuários necessitam apenas coletar os dados, transformá-los em RINEX (Receiver Independent Exchange Format) e encaminhar para o processamento, pelo serviço on-line de uma das instituições.

A Norma Técnica para Georreferenciamento de Imóveis Rurais do INCRA (Instituto Nacional de Colonização e Reforma Agrária) - 1ª, 2ª e 3ª Edições - regulamentada de acordo com a Lei nº 10.267, de 28 de outubro de 2001 e ao Decreto 4.449, de 30 de outubro de 2002, indica aos usuários a possibilidade de emprego deste método de posicionamento para alguns dos marcos implantados em uma propriedade rural.
Se o método de Posicionamento Por Ponto dispensa o uso de um receptor instalado sobre um vértice de coordenadas conhecidas (estação base), ele se torna mais prático de ser efetuado, e a norma de georreferenciamento aceita a sua aplicação em alguns dos marcos implantados em uma área rural. Assim, análises quanto à acurácia e precisão devem ser realizadas para este método de posicionamento.

Porém o Posicionamento por Ponto Preciso do IBGE (http://www.ppp.ibge.gov.br/PPP.htm) tem algumas limitações, quando se utiliza para o georreferenciamento de imóveis rurais, pois conforme especificado na Norma Técnica do INCRA, quando se utiliza o IBGE-PPP, faz-se necessária que as observações sejam feitas com receptores de 02 frequências, o que não acontece com a determinação de uma coordenada qualquer através do mesmo método, onde podem ser utilizados receptores com apenas uma frequência (SILVA et al., 2011).

A proposta deste trabalho consiste na avaliação do Método de Posicionamento Por Ponto Preciso na determinação das coordenadas geodésicas de vértices codificados como “M”, ou seja, vértices necessariamente ocupados e materializados, classificados quanto ao tipo, finalidade e precisão como “C4”, que são os principais tipos de vértices implantados nas divisas das propriedades rurais. Esta avaliação será efetuada mediante uma comparação destas coordenadas com aquelas advindas do Método de Posicionamento Relativo Estático empregado na área de estudo.

1.1 OBJETIVOS

1.1.1 Objetivo geral

Avaliar a precisão e acurácia das coordenadas geodésicas de vértices de divisa implantados na Fazenda Experimental de Rio Negro da UFPR.
1.1.2 Objetivos específicos

Dentre os objetivos específicos cita-se:

- Determinar coordenadas geodésicas de vértices de divisa posicionados pelo método de posicionamento relativo, as quais serão tomadas como acuradas (padrão) visando a análise da acurácia do PPP;
- Avaliar parâmetros como a solução das ambiguidades, o número de satélites observados, o PDOP e a precisão do posicionamento relativo obtidos com o processamento dos dados; e
- Analisar a precisão e acurácia das coordenadas geodésicas dos vértices de divisa obtidas com o emprego do serviço online PPP do IBGE.

1.2 JUSTIFICATIVA

Hoje são diversos os métodos de posicionamento relativos utilizados nos trabalhos de georreferenciamento de imóveis rurais, dentre eles estão o Relativo Estático, o Relativo Estático Rápido, o Relativo Stop and Go (semi-cinemático) e o Relativo Cinemático. Todos estes métodos exigem uma estação base de coordenadas precisas conhecidas, o que acarreta em um custo mais elevado para o levantamento, visto que o profissional responsável necessita empregar, na maioria dos casos, pelo menos dois receptores. Também há uma maior demanda de recursos humanos, pois é necessário monitorar os receptores que deverão ficar coletando dados no mesmo intervalo de tempo.

Por isso, um estudo mais profundo quanto à precisão e acurácia do método do Posicionamento por Ponto Preciso (IBGE-PPP) é importante para os usuários do GPS que trabalham no Georreferenciamento de Imóveis Rurais, visto que é uma técnica de posicionamento da classe dos métodos absolutos, onde apenas uma antena é necessária para a execução do mesmo em campo, reduzindo assim custos operacionais e de investimento para a execução de trabalhos deste tipo.
1.3 ESTRUTURAÇÃO DO TRABALHO

No capítulo 3, descreve-se a metodologia empregada para a obtenção das coordenadas pelo Método de Posicionamento Absoluto Estático, que sofreram um tratamento através do IBGE-PPP e pelo Método de Posicionamento Relativo Estático.

Os resultados obtidos neste trabalho, bem como as análises, são indicados no capítulo 4, enquanto que no capítulo 5 são apresentadas as conclusões e as recomendações.
2 REVISÃO BIBLIOGRÁFICA

Conforme exposto anteriormente, neste capítulo são apresentados alguns conceitos básicos necessários à compreensão deste trabalho como, por exemplo, o NAVSTAR–GPS e a Norma de Georreferenciamento de Imóveis Rurais.

2.1 NAVSTAR–GPS

O NAVSTAR–GPS (*Navigation System with Time and Ranging – Global Positioning System*) é um sistema que nasceu da fusão do PROJETO 621B, desenvolvido pela Força Aérea Americana (*U. S. Air Force*) e o TIMATION, desenvolvido pela Marinha Americana (*U. S. Navy*), mantido pelo DoD (Departamento de Defesa dos Estados Unidos). A princípio tal sistema era apenas para atender fins militares, mas devido ao seu grande potencial, logo foi estendido a segmentos não militares, sendo hoje um dos sistemas mais precisos no que diz respeito ao posicionamento tridimensional. Foi proposto nos anos 70 e, desde 1994, os 24 satélites passaram a orbitar o Planeta Terra sem maiores problemas, buscando atender os seguintes objetivos:

a) Precisão da ordem do metro para o posicionamento;
b) Exata determinação da velocidade e do tempo;
c) Disponibilidade contínua dos dados de navegação;
d) Base para o estabelecimento de um referencial global;
e) Cobertura global e regional;
f) Observação simultânea de pelo menos 4 satélites visíveis, acima do horizonte em qualquer região e em qualquer momento; e
g) Independência das condições climáticas.

Hoje já existem outras constelações de satélites em órbita, tais como GLONASS (sistema russo) e BEIDOU (sistema chinês), os quais possibilitam a determinação de coordenadas de pontos na superfície terrestre. Em breve contar-se-á ainda com os satélites da constelação GALILEO (sistema europeu). Em áreas obstruídas é uma vantagem
trabalhar-se com sinais enviados por satélites de diferentes constelações. Contudo, neste trabalho não se fará referência a estas constelações por não terem sido aqui aplicadas.

O GPS pode ser dividido em três segmentos: Segmento espacial, Segmento de controle e Segmento do usuário.

2.1.1 Segmento espacial

Segundo Seeber (2003), o segmento espacial é baseado em uma constelação básica de 24 satélites, sendo que hoje são aproximadamente 30 satélites, desenvolvidos e mantidos pelo Departamento de Defesa dos Estados Unidos (DoD). Todos os satélites estão dispostos em 6 planos orbitais denominados A, B, C, D, E e F, separados entre si num ângulo de 60°, e com um inclinação de órbita de 55° em relação ao plano do equador. Cada um desses planos contém, pelo menos, quatro satélites, defasados de 90°, com uma altitude orbital média de 20.200 km, com órbitas quase circulares com período de 12 horas siderais. A posição de um satélite na órbita a cada instante de tempo fica definida pelos 06 elementos orbitais ou Keplérianos. A constelação foi desenvolvida de forma que haja observações simultâneas de pelo menos 04 satélites visíveis, acima da linha do horizonte em qualquer região e em qualquer momento. Os satélites são equipados com relógios de alta precisão, como os de Césio e Rubídio, e foram lançados em blocos a partir de 1978, com os protótipos (Bloco I), passando pelo Bloco II/IIIA, lançados de 1989 a 1990, o que tornou o sistema operacional em março de 1994, passando pelo Bloco IIR e chegando ao Bloco IIF a partir de 2005.

Os sinais enviados pelos satélites da constelação são denominados de códigos, ondas portadoras e mensagens de navegação. Têm-se os códigos C/A e P e as ondas portadoras L1, L2 e L5 (enviadas apenas pelos satélites do Bloco IIF). Todos estes sinais são derivados de uma frequência chamada de fundamental (fo = 10,23 Mhz). A onda portadora L1 é modulada pelo código P (Preciso) e C/A (Fácil Acesso). Ela é ambígua e tem uma frequência de 1.575,42 MHz, um comprimento de onda igual a 19,05 cm, sofrendo ainda uma aceleração na ionosfera. Já, a onda portadora L2, também ambígua, é modulada apenas pelo código P, com uma frequência de 1.227,60 MHz e comprimento de onda igual a 24,45 cm, também sofrendo aceleração na ionosfera. Essas duas ondas portadoras, quando
empregadas juntas, minimizam algumas fontes de erro como, por exemplo, a influência da ionosfera na propagação do sinal. A onda portadora L5 tem uma frequência de 1,176,45 MHz e um comprimento de onda aproximadamente igual a 25,5 cm. Ela tem modulada sobre si um código 10 vezes mais longo que o código C/A, denominado de L5C.

Referente aos códigos, estes podem ser descritos como sinais retangulares, com sequência binária, de características aleatórias. Um exemplo é o próprio código C/A não ambíguo, que possui comprimento de onda de 293,23 metros e é transmitido a uma razão de 1,023 MHz, com período de 1 milisegundo, apresentando retardo na ionosfera. O código P é aquele exclusivo das forças militares americanas e por civis autorizados. Possui comprimento de onda de 29,33 metros, transmitido a uma razão de 10,23 MHz, com um período de 266 dias, sendo que cada satélite corresponde a 7 dias do período de transmissão do mesmo. É um sinal não ambíguo e apresenta retardo na ionosfera.

A mensagem de navegação que contém as efemérides transmitidas, ou seja, os parâmetros orbitais aproximados, informações ionosféricas e os parâmetros de correção dos relógios dos satélites, bem como informações sobre sua vida útil, tem período de repetição de 30s com uma frequência de transmissão de 50 Bits/seg e vem modulada nas ondas portadoras L1 e L2.

2.1.2 Segmento Usuário

O Segmento de Usuário pode ser considerado aqueles quem recebem os sinais eletromagnéticos enviados pelos satélites, os quais serão decodificados pelos receptores de sinais GPS. Alguns autores ainda incluem aqui os fabricantes e desenvolvedores de programas.
2.1.3 Segmento de Controle

O Segmento de Controle é formado por cinco estações espalhadas pelo globo terrestre, sendo que a principal delas é a de Colorado Springs, situada nos Estados Unidos. Elas recebem os sinais emitidos pelos satélites, fazendo o monitoramento contínuo dos mesmos, bem como seu controle, determinação do sistema de tempo GPS, predição das efevendas dos satélites e do comportamento dos relógios dos mesmos, envio periódico das mensagens de navegação para cada satélite e pequenas manobras para manter a órbita ou relocal os mesmos, visando a substituição de um satélite “não saudável” (Seeber, 2003).

2.1.4 Princípio do Posicionamento

Para a determinação de coordenadas cartesianas (X, Y e Z) ou coordenadas geodésicas latitude (ϕ), longitude (λ) e altitude elipsoidal (h) de um determinado ponto na superfície terrestre, existe a necessidade da recepção simultânea de pelo menos sinais de 04 satélites acima do horizonte. A grandezza fundamental é a medida do tempo decorrido para que o sinal viaje da antena do satélite até a antena do receptor.

Como a posição dos satélites no espaço é conhecida, com relação a um sistema de referência na Terra, que no caso do NAVSTAR-GPS o utilizado é o WGS84, e a distância entre o satélite e a antena do receptor é medida (desta forma conhecida) e denominada de pseudodistância, o vetor a ser determinado é o formado entre o centro de massa da Terra e o ponto na superfície terrestre. Isto é o que ocorre para a maioria dos casos.

A equação 01 representa a observação da Pseudodistância (PD) por meio da medida do código (CD) para uma época de observação genérica (t), (segundo Krueger, 1996):

\[PD_{CD}(t) = R(t) + cdtu(t) + cdtu(t) + cdis(t) + \varepsilon \] (01)
onde:

PD_{CD} é pseudodistância por meio do código (distância medida da antena de um receptor (A) a antena de um satélite (S)) [m];

R é distância geométrica entre a antena do receptor, no tempo de recepção do sinal, e a antena do satélite, no tempo de transmissão [m];

t é a época de observação [s];

dtu é o erro de não sincronismo do relógio do receptor (estação A) em relação ao tempo GPS [s];

dta é o atraso na propagação do sinal entre a antena do receptor e a antena do satélite na atmosfera (refração ionosférica e troposférica) [m];

dts é o erro de não sincronismo do relógio do satélite (S) em relação ao tempo GPS [s];

\(\varepsilon \) são demais erros (ruído do receptor, órbita, efeito de multicaminho, variação do centro de fase da antena e outros) [m]; e

\(c \) é a velocidade da luz [m/s].

E a observação da Pseudodistância (PD) por meio da medida da fase da onda portadora (CR) para uma época de observação genérica (t) é indicada na equação 02 (KRUEGER, 1996).

\[
PD_{CR}(t) = R(t) + cd(t) + cdtu(t) + cdta(t) + cdts(t) + c\left(\frac{N}{f_{CR}}\right)(t) + \varepsilon \quad (02)
\]

onde:

\(f_{CR} \) é frequência da onda portadora; e

\(N \) é ambiguidade (sempre haverá uma ambiguidade para cada satélite rastreado, em cada receptor).

Para minimizar os erros presentes em cada uma das observações são empregadas algumas técnicas de diferenciação para modelagem da medida da fase da portadora da onda, como a não diferenciação de observações (ZDF), Simples Diferença de Fase (SDF), Dupla Diferença de Fase (DDF) e a Tripla Diferença de Fase (TDF).
Dos fatores que interferem na precisão da posição obtida e que não podem ser minimizados pela aplicação dos métodos das diferenciações, estão Disponibilidade Seletiva (SA), quando ativada, e a geometria dos satélites.

O primeiro, é mecanismo de segurança implantado no NAVSTAR/GPS pelo Departamento de Defesa Americano (DoD), que quando acionado, faz com que a precisão da posição que é de 12 a 15 metros em 95,00% dos casos, aumente para 100 metros em 95,00% dos casos, já incluindo todas as fontes de imprecisões citadas anteriormente nesta seção.

Já no que diz respeito à Geometria dos Satélites (Figura 01) ou Diluição Geométrica da Posição – GDOP (Geometric Dilution of Precision), quanto maior o ângulo formado entre as linhas imaginárias que ligam cada satélite ao receptor, maior será a qualidade da posição obtida. É determinado através de indicadores que tem números relativos, sendo o PDOP (Positional Dilution of Precision), fator responsável pela determinação da diluição posicional tridimensional, é o que é mais comumente apresentado aos usuários do sistema GPS e quanto menor o fator PDOP, melhor é a precisão da posição.

FIGURA 01 – GEOMETRIA DOS SATÉLITES NO INSTANTE DA OBSERVAÇÃO. FONTE: MIGUENS (2000)
2.1.5 Métodos de posicionamento

Na literatura se encontram alguns métodos de posicionamento visando à obtenção das coordenadas geodésicas de um ponto sobre a superfície terrestre. Em linhas gerais eles se classificam em absoluto ou por ponto, relativo e diferencial. Neste trabalho de pesquisa serão empregados os métodos de Posicionamento Por Ponto Preciso e o Posicionamento Relativo Estático. Na sequência estes métodos são descritos.

2.1.5.1 Posicionamento Relativo Estático

Esse método de posicionamento relativo consiste na determinação dos vetores que separam as estações base e itinerante, e posteriormente as coordenadas daquela sobre a qual a antena do receptor GPS é instalada.

Suas principais características consistem num tempo de observação de no mínimo 20 minutos, indo até algumas horas ou dias, dependendo de alguns fatores como o comprimento da linha de base, número de satélites rastreados, geometria dos satélites rastreados, observáveis utilizadas, precisão desejada, etc. O intervalo de gravação de dados pode ser de 15, 30 ou 60 segundos, onde a estação base e as itinerantes devem rastrear, simultaneamente, os mesmos satélites, sendo no mínimo 04 (quatro), com intervalos iguais ou múltiplos, tendo como vantagem a maior precisão e desvantagem baixo rendimento operacional.

Um exemplo das aplicações deste método é a determinação das coordenadas geodésicas de vértices ocupados e materializados de Código M, classificados como C1, C2, C3 e C4 (Norma de Georreferenciamento do INCRA para imóveis rurais, 2ª Edição, 2010).
2.1.5.2 Posicionamento por Ponto Preciso

O Método de Posicionamento Por Ponto possibilita a determinação de coordenadas geodésicas, em tempo real, no sistema de referência WGS-84. Este método pode ser estático ou cinemático e é utilizado por diversos usuários do GPS. Contudo, o erro de posicionamento planimétrico é inferior a 13 metros e o erro de posicionamento tridimensional é inferior a 22 metros com 95% de probabilidade (SEEBER, 2003).

Quando os usuários almejam precisão, podem ser coletadas observações (códigos e ondas portadoras) para serem pós-processados. Neste caso tem-se o Método de Posicionamento por Ponto Preciso (PPP). O IBGE (Instituto Brasileiro de Geografia e Estatística) disponibiliza esse serviço online para os usuários. É um serviço gratuito oferecido para o pós-processamento de dados GNSS e processa dados coletados por receptores de uma ou duas frequências, no modo estático ou cinemático, obtidos depois da adoção oficial do Brasil no Sistema de Referência Geocêntrico para as Américas 2000 (SIRGAS 2000), fazendo uso de um aplicativo desenvolvido pela NRCan (Geodetic Survey Division of Natural Resources of Canadá).

Para o processamento que acontece on-line, o usuário envia o arquivo das observações em formato específico (RINEX ou HATANAKA). O programa de processamento emprega outros arquivos, tais como órbitas e erros de relógios de satélites, correção do centro de fase da antena dos receptores, fatores de correção da ionosfera, parâmetros de transformação ITRF/SIRGAS2000, modelo de carga oceânica, modelo de velocidades e Modelo de Ondulação Geoidal – MAPGEO2010.

Segundo o Manual do Usuário do Aplicativo Online do IBGE-PPP, na sua versão de dezembro de 2013, no caso das órbitas e modelo de satélites, quando o rastreio é feito dentro do território brasileiro, são utilizadas as órbitas precisas disponíveis pelo NRCan, e quando o rastreio é fora do território brasileiro, são utilizadas as órbitas precisas disponíveis no IGS. Essas órbitas, de acordo com o tempo em que se apresentam disponíveis a contar do momento da coleta de dados, são classificadas em ULTRA-RÁPIDAS, RÁPIDAS e FINAL, sendo selecionada pelo sistema do IBGE, no momento do processamento àquela mais precisa que estiver disponível no momento, além de levar em conta se o rastreio é dentro ou fora do território brasileiro, onde a disponibilidade dos produtos fornecidos pelo IGS pode ser encontrada através do site (http://igscb.jpl.nasa.gov/components/prods.html).
Os erros de correção da ionosfera só serão corrigidos em caso de rastreio envolvendo apenas a onda portadora L1. Tais erros são obtidos por meio de mapas denominados IONEX, que podem ser rápidos e finais, sendo que no processamento serão utilizados os mais precisos que estiverem disponíveis no momento. Esses arquivos podem ainda não estarem disponíveis, então em caso dos dados para processamento serem oriundos apenas da observável L1, o sistema retornará uma mensagem ao usuário, solicitando que o mesmo aguarde até a disponibilidade dos dados pós-processados. Porém, em casos onde os dados são oriundos de observáveis L1 e L2, isso não acontece, pois o programa faz uma combinação linear entre as mesmas, gerando a L3, eliminando os efeitos de ionosfera de primeira ordem.

Para que as observações sejam referenciadas ao Plano de Referência da Antena existem algumas correções, feitas durante o processamento através da utilização de arquivos específicos, também fornecidos e atualizados pelo IGS ou NGS (National Geodesic Survey), contendo os valores de desvio do centro de fase da antena. Mas para que essa correção seja efetuada, o modelo da mesma deve ser fornecido no cabeçalho do RINEX. Essas informações de calibração de antena GNSS, podem ser encontradas através dos endereços eletrônicos (ftp://igscb.jpl.nasa.gov/pub/station/general/antenna_README.pdf) e (http://www.ngs.noaa.gov/ANTCAL/).

As correções de modelo de carga oceânica serão utilizadas apenas em situações onde as observações estiverem a uma distância maior que 10 km de uma estação que já possua os valores de correção, como é o caso das estações da RBMC (Rede Brasileira de Monitoramento Contínuo). O modelo utilizado neste caso é o FES2004. O modelo de carga oceânica, bem como seu cálculo, pode ser encontrado em (http://holt.oso.chalmers.se/loading/).

O modelo de velocidade VEMOS2009 deve ser inserido no processamento pelo fato das mudanças de coordenadas que ocorrem ao longo de tempo, tanto pelo movimento de placas tectônicas ou pelos movimentos intraplaca. Por esse motivo, quando ocorre um processamento, o mesmo é referente a uma determinada época. Esse modelo tem a função de transportar ou reduzir as coordenadas planimétricas (latitude e longitude) calculadas na data em que os dados foram coletados para época 2000.4, época de definição do SIRGAS2000. Maiores informações sobre o modelo VEMOS2009 podem ser encontradas em (http://www.sirgas.org/index.php?id=54&L=0).

O resultado do processamento do IBGE-PPP fornece as coordenadas em SIRGAS, sistema geodésico oficial do Brasil desde 2005, reduzidas para a época 2000.4 ou para a data do levantamento, no formato de coordenadas geodésicas (Latitude e Longitude, em graus, minutos e segundos e Altitude Geométrica, em metros), além das coordenadas na projeção UTM (N e E, em metros, informando o meridiano central – MC). Ainda apresenta a Ondulação Geoidal, a Altitude Ortométrica e o Desvio Padrão ou Sigma das coordenadas geodésicas, todos na unidade de metros, bem como gráficos do comportamento do desvio padrão das coordenadas geodésicas, conforme transcorre o tempo de observação.

O processamento só pode ser feito com dados coletados a partir de 25/02/2005, data em que o SIRGAS foi oficialmente adotado no Brasil, podendo utilizar até as efemérides precisas para o pós-processamento, tendo como principais vantagens a redução e custo, o processamento automatizado, uso total e automático dos programas da International GNSS Service (IGS), uso global, economia de tempo e centímetros de precisão (IBGE, 2013).

Os resultados obtidos no IBGE-PPP, são independentes de qualquer ajustamento de rede geodésica e não está associado as realizações ou ajustamentos de rede planimétrica. Deste modo, os resultados obtidos através deste serviço terão uma pequena diferença daqueles disponíveis no Banco de Dados Geodésico – BDG, quando se estiver processando observações realizadas em marcos geodésicos pertencentes ao Sistema Geodésico Brasileiro – SGB. Permite também o processamento de dados GPS coletados em qualquer lugar do mundo e dados GNSS coletado dentro do território brasileiro.

Segundo o site do IBGE, para processamentos de dados GNSS coletados dentro do território nacional, o intervalo mínimo do término do rastreio até a possibilidade de início do processamento é de 36 horas. Já para dados exclusivamente GPS, também em território nacional, esse tempo mínimo cai para 2 horas e 30 minutos.

Não existe um tempo de rastreio mínimo e sim um tempo máximo de 48 horas, desde que o tamanho do arquivo a ser enviado, resultado das observações não ultrapasse os 25 KB, sendo que este tamanho pode ser obtido antes das 48 horas, dependendo do intervalo de gravação de dados. Porém, a duração do período da observação influenciará
diretamente na precisão da coordenada obtida, e os resultados do processamento são expressos em cinco arquivos, a saber:

- uma extensão SUN, que possui o relatório completo do processamento;
- uma extensão POS, contendo as estimativas das coordenadas época a época do rastreio;
- uma extensão KML, possibilitando uma visualização no Google Earth;
- outro arquivo Leiame.txt, informando o conteúdo de saída do processamento; e
- uma extensão PDF, com o relatório resumido dos resultados do processamento estático, as coordenadas na época do levantamento reduzidas a época 2000.4, os desvios padrão das coordenadas e a ondulação Geoidal (este arquivo não é produzido em caso de processamento no modo cinemático).

2.2 GEORREFERENCIAMENTO DE IMÓVEIS RURAIS – NORMA TÉCNICA

Para o Georreferenciamento de imóveis rurais, segue-se a norma do INCRA - 1ª, 2ª e 3ª Edições - regulamentada de acordo com a Lei nº 10.267, de 28 de outubro de 2014 e ao Decreto 4.449, de 30 de outubro de 2002. Esta norma tem por objetivo estabelecer os preceitos técnicos aplicáveis aos serviços de agrimensura, relacionados com as atividades fundiárias, objetivando a caracterização e o georreferenciamento de imóveis rurais por meio de levantamento, materialização de seus limites e posterior certificação deste trabalho junto ao INCRA. Dessa forma, os trabalhos efetuados se tornarão padronizados, garantindo maior confiabilidade na geometria descritiva de um imóvel rural, visando à diminuição dos efeitos da sobreposição de limites com imóveis limítrofes.

A base de todo levantamento, é o vértice, conceituado como o momento em que uma linha limítrofe de um determinado imóvel muda de direção ou quando existe intersecção de uma linha com outra limítrofe de imóveis contíguos ou servidões de passagem. Segundo a Norma Técnica do INCRA para o Georreferenciamento de Imóveis Rurais – 1ª, 2ª e 3ª Edições – os vértices ainda podem ser classificados em:

a) Tipo M – ocupado ou materializado:
São aqueles que têm suas coordenadas obtidas a partir de ocupação física obrigatória e devem ser materializados a fim de preservar a identificação do limite fundiário do terreno;

b) Tipo P – ocupado e não materializado:
Também tem suas coordenadas obtidas por meio de ocupação física, localizados na divisa dos imóveis e estão ao longo de acidentes físicos ou geográficos;

c) Tipo V – nem ocupado e nem materializado:
Também conhecido como virtuais, cujas coordenadas não são obtidas por meio de ocupação física, mas sim por determinação analítica, extraído de uma base cartográfica qualquer ou projetado;

d) Tipo O – paralelo ao eixo levantado:
Também por determinação analítica, em locais onde a ocupação limitrofe se torna difícil ou inviável, ou seja, projeção de linhas paralelas ao levantamento efetuado sobre os limites que possuem delineamento sinuoso, tais como estradas, ferrovias e cursos d’água.

Todos os vértices levantados serão identificados por meio de uma codificação única, gerada pelo responsável técnico do serviço de georreferenciamento. Este código é constituído por 08 (oito) caracteres, sendo que os três primeiros são referentes a um código gerado ao responsável técnico do levantamento no momento da obtenção de sua carteira junto ao INCRA. O quarto caractere se refere ao tipo do vértice levantado e os quatro últimos, correspondem a uma numeração sequencial que tem início no 0001, passando pelo A001, AA01, AAA1, até chegar no ZZZ9. Em seguida a sequencia de 04 últimos dígitos se reinicia pelo serial 0001A, até chegar ao 9ZZZ.

Além das regras para codificação acima citadas, a norma dispõe sobre algumas particularidades da codificação, como fazer a identificação e o reconhecimento dos limites dos imóveis, bem como a documentação solicitada para o credenciamento ao proprietário, reconhecimento e identificação de limites, bem como as especificações técnicas do levantamento.

A materialização e monumentalização de vértices acontecem exclusivamente com aqueles do tipo M, materializados no campo por meio de marcos, ficando a critério do credenciado ou do proprietário a implantação destes em limites já consolidados por meio de elemento físicos.
Estes marcos podem ser de rocha, concreto, metal ou outro material sintético e pode ter seu padrão definido de acordo com o credenciado, de modo a garantir sua durabilidade e estabilidade no terreno. O INCRA sugere alguns modelos de marco como o de concreto (traço 1:3:4, alma de ferro com diâmetro de 4,2 mm, em forma de tronco ou de pirâmide, com as dimensões 8 x 12 x 60 cm), marcos de granito (em forma de tronco ou de pirâmide, medindo 8 x 12 x 60 cm), marco de ferro (tubo de ferro galvanizado com diâmetro de 4,95 cm x 90 cm de comprimento e base pontiaguda, com dispositivos como a espinha de peixe que dificultem sua retirada) e marco de material sintético, sendo este resistente a fogo, com o mesmo tamanho e formato que os de concreto e granito.

No topo destes marcos é fixada a plaqueta de identificação do vértice, contendo seu código inequívoco e uma marca no centro, onde será feita a medição. Essa plaqueta também deverá ser construída por material que garanta sua durabilidade e boa fixação no marco.

Os vértices ainda podem ser classificados, independentemente do seu tipo, de acordo com a sua precisão, ou seja, a aderência da medida a um determinado valor. Essas aderências são determinadas pela equação 3 descrita, constante na Norma Técnica do INCRA para o Georreferenciamento de Imóveis Rurais – 1ª, 2ª e 3ª Edições:

\[PP = (\sigma E^2 + \sigma N^2)^{1/2} \quad (3) \]

Onde:
\[PP \] = é precisão posicional;
\[\sigma N \] = é o desvio padrão da componente Norte, em metros;
\[\sigma E \] = é o desvio padrão da componente Este, em metros.

De acordo com a norma do INCRA, segue-se a classificação dos vértices quanto à finalidade, precisão e tipo:
- C1 – tem a finalidade de apoio básico, apoio imediato e limite. Sua precisão deve ser \(\leq 0,10 \) metros e pode ser do tipo M;
• C2 – tem a finalidade de apoio básico ou limite. Sua precisão deve ser ≤0,20 metros e pode ser do tipo M;
• C3 – tem a finalidade de desenvolvimento de poligonal ou limite. Sua precisão de ser ≤0,40 metros e pode ser do tipo M e P;
• C4 – tem a finalidade de limite. Sua precisão deve ser ≤0,50 metros e pode ser do tipo M, P, V e O;
• C5 – tem a finalidade de limites naturais. Sua precisão deve ser ≤2,00 metros e pode ser do tipo P, V e O; e
• C7 – Utilizados apenas em situações de usos restrito. Tem a precisão dependente do tipo de método empregado no levantamento.

Lembrando que para a certificação dos vértices Tipo “M”, da classe “C4”, conforme a Norma Técnica de Georreferenciamento de Imóveis Rurais do INCRA – 1ª, 2ª e 3ª Edições, depois do pós-processamento das observações obtidas por meio do Método de Posicionamento Estático, os equipamento obrigatoriamente tem que ser L1 ou L1/L2, o intervalo de gravação dos dados deve ser de 5, 10 ou 15 segundos, a máscara de elevação mínima é de 15º e o PDOP inferior a 6,0.

Já quando se fala na certificação destes vértices com as observações obtidas através do método IBGE-PPP, o tempo de observação deve ser o suficiente para que a precisão posicional do mesmo seja de 0,50 metros, conforme especificado na mesma Norma.

O Sistema Geodésico Brasileiro (SGB) e o Sistema Cartográfico Nacional (SCN) adotam a Projeção Universal Transversa de Mercator – UTM para confecção de mapas e o sistema de referência adotado é o SIRGAS2000. Tem ainda o SGB a função de determinar todos os padrões de qualidade e precisão para os levantamentos por método de topografia convencional e levantamento GNSS, indicando ainda para cada tipo e classe de ponto quais métodos GNSS são recomendados, fornecendo parâmetros para processamento e tratamento dos dados, tanto por levantamentos convencionais quanto para levantamentos GNSS, disciplinando ainda como deve ser o relatório final, a apresentação dos dados e quais os documentos necessários para a certificação do mesmo.
3 METODOLOGIA

Para este trabalho de pesquisa foram selecionados de forma aleatória 06 (seis) vértices de divisa, implantados na Fazenda Experimental de Rio Negro da Universidade Federal do Paraná (UFPR). Estes marcos são classificados com Código M, classe C4 (seção 2.2), conforme norma do INCRA, por meio do Georreferenciamento. De acordo com esta norma, as coordenadas geodésicas destes marcos podem ser obtidas por meio de um Posicionamento Relativo Estático, Posicionamento Relativo Estático Rápido, Método de Posicionamento Relativo Stop and Go ou Semicinematício, Posicionamento Real Time Kinematic – RTK e Posicionamento Por Ponto Preciso, obedecendo as características técnicas e as especificações referentes a cada um dos métodos.

A coleta dos dados utilizados nesta pesquisa foi efetuada por membros do LAGEH (Laboratório de Geodésia Espacial e Hidrografia) da UFPR.

Inicialmente os vértices de divisa tiveram as suas coordenadas geodésicas determinadas por meio do método de Posicionamento Relativo Estático e posteriormente pelo método de Posicionamento Por Ponto Preciso. No primeiro caso foi empregado o programa Leica Geo Office (LGO) e no segundo caso foi utilizado o serviço online PPP do IBGE.

As coordenadas geodésicas obtidas com método de posicionamento relativo estático serão tomadas como padrão para analise daquelas advindas do PPP. Deste modo torna-se possível efetivar analises quanto à acurácia das coordenadas advindas do PPP.

Na Fazenda Experimental de Rio Negro foi implantado um marco principal, denominado FAZ1 (Figura 02), de centragem forçada que, segundo a Norma Técnica do INCRA para Georreferenciamento de Imóveis Rurais, foi classificado como “Código M” e “Classe C1”.
Este marco "Classe C1" teve as suas coordenadas determinadas por meio de Método de Posicionamento Relativo Estático (seção 2.1.5.1), com intervalo de gravação de dados de 5 segundos, no ano de 2006. Segundo Krueger & Da Costa (2015), os dados coletados foram processados com as efemérides precisas e a partir de duas estações homologadas, ou seja, pertencentes ao Sistema Geodésico Brasileiro (SGB). As estações empregadas foram à estação PARA (Curitiba) da Rede Brasileira de Monitoramento Continuo (RBMC-IBGE) e a estação CESUMAR (Maringá) da Rede da Manfra.

Na Tabela 01 apresentam-se as coordenadas ajustadas UTM-SIRGAS 2000 para o marco principal (FAZ1).

<table>
<thead>
<tr>
<th>Marco</th>
<th>N (m)</th>
<th>E (m)</th>
<th>h (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UTM-SIRGAS2000</td>
<td></td>
<td>Altitude Elipsoidal</td>
</tr>
<tr>
<td>C1</td>
<td>7.116.109,2813</td>
<td>624.156,3749</td>
<td>791,0055</td>
</tr>
</tbody>
</table>

FONTE: Krueger & Da Costa (2015)
Após o ajustamento, os desvios padrão das coordenadas geodésicas do marco FAZ1 foram iguais a 0,0071m. Ele deveria ter precisão posicional inferior ou igual a 0,10m (como explicado na seção 2.2), o que foi devidamente atendido.

O marco Classe C1 serviu de apoio (estação base) para a determinação das coordenadas dos demais vértices (M e P). Nesta pesquisa os vértices de divisa escolhidos são os pontos: M015, M016, M020, M021, M026 e M30. Eles são classificados conforme a Norma do INCRA para Georreferenciamento de Imóveis Rurais, como “Código M” e da “Classe C4” (seção 2.2).

Na Tabela 02 são apresentados os vértices ocupados (pontos), receptores e antenas utilizadas, altura vertical da antena medida, tempo de ocupação e intervalo de gravação dos dados.

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Receptor</th>
<th>Antena</th>
<th>Altura da Antena (m)</th>
<th>Tempo de ocupação</th>
<th>Int. de gravação dados</th>
<th>Máscara de obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M015</td>
<td>Leica 900</td>
<td>ATX900</td>
<td>6,45</td>
<td>0h32min33s</td>
<td>1s</td>
<td>15°</td>
</tr>
<tr>
<td>M016</td>
<td>Leica 900</td>
<td>ATX900</td>
<td>2,00</td>
<td>0h49min57s</td>
<td>1s</td>
<td>15°</td>
</tr>
<tr>
<td>M020</td>
<td>Leica 900</td>
<td>ATX900</td>
<td>2,00</td>
<td>0h29min26s</td>
<td>1s</td>
<td>15°</td>
</tr>
<tr>
<td>M021</td>
<td>Leica 900</td>
<td>ATX900</td>
<td>0,00</td>
<td>0h33min30s</td>
<td>1s</td>
<td>15°</td>
</tr>
<tr>
<td>M026</td>
<td>Leica 900</td>
<td>ATX900</td>
<td>2,00</td>
<td>0h39min26s</td>
<td>1s</td>
<td>15°</td>
</tr>
<tr>
<td>M030</td>
<td>Leica 900</td>
<td>ATX900</td>
<td>0,00</td>
<td>0h35min27s</td>
<td>1s</td>
<td>15°</td>
</tr>
</tbody>
</table>

Já na Figura 03, é apresentada uma visão geral de como os vértices estão distribuídos ao longo do contorno da Fazenda Rio Negro, pois se pode perceber a grande quantidade de vegetação que existe no entorno dos vértices, o que pode dificultar a recepção das observações enviadas pelos satélites, justificando a utilização de extensores do bastão da antena, como no ponto M015.

De posse dos dados brutos e das cadernetas de campo, foram efetuados os processamentos no LAGEH (UFPR), no Centro Politécnico, em Curitiba, Paraná, utilizando um software comercial LGO versão 7.0, fabricado pela Leica Geosystems. Durante o processamento foram realizadas análises quanto ao PDOP, à solução das ambiguidades, os
resíduos da Dupla Diferença de Fase (DDF) e as perdas de sinal. Para cada solução aceita foi gerado um relatório final.

De acordo com Norma Técnica do INCRA para Georreferenciamento de Imóveis Rurais, o PDOP deve ser inferior a 6 e os marcos desta classe devem ter precisão posicional inferior a 0,50 m.

As coordenadas geodésicas foram obtidas em SIRGAS2000, reduzidas para a época 2000.4 e suas transformações para a projeção cartográfica UTM foi efetuada por meio de um sistema on-line chamado de “Calculadora Geográfica” (INPE, 2015). Estas são as coordenadas adotadas como padrão para análise futura da acurácia do PPP. Os resultados alcançados são apresentados na seção 4.

Posteriormente, os dados brutos foram convertidos em RINEX e enviados ao serviço online do IBGE-PPP, cujas soluções foram geradas e enviadas ao usuário. Os relatórios contem as coordenadas corrigidas para a época 2000.4, bem como a precisão alcançada. A transformação destas para a projeção cartográfica UTM foi realizada do mesmo modo que as geodésicas.
4 RESULTADOS E DISCUSSÕES

Na Tabela 03 são apresentadas as coordenadas em UTM-SIRGAS2000 dos seis vértices de divisa (pontos: M015, M016, M020, M021, M026 e M30), obtidas por meio do processamento dos dados com o LGO para o método de posicionamento relativo estático (2.1.5.1), e aquelas advindas do método de posicionamento por ponto preciso (2.1.5.2), conforme descrito na seção 3.

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Pós-processamento LGO – SIRGAS2000</th>
<th>PPP – SIRGAS2000.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E (m) oE (m) N (m) oN (m)</td>
<td>E (m) oE (m) N (m) oN (m)</td>
</tr>
<tr>
<td>M015</td>
<td>624410,5455 0,0002 7116820,4065 0,0001</td>
<td>624409,8600 0,0350 7116820,3790 0,1690</td>
</tr>
<tr>
<td>M016</td>
<td>624342,4705 0,0003 7116504,3599 0,0002</td>
<td>624342,3360 0,0530 7116504,3720 0,0920</td>
</tr>
<tr>
<td>M020</td>
<td>623777,2534 0,0003 7116181,3378 0,0001</td>
<td>624194,0111 0,0200 7116177,3840 0,1470</td>
</tr>
<tr>
<td>M021</td>
<td>624194,2578 0,0001 7116169,8046 0,0001</td>
<td>624194,3311 0,0170 7116169,8820 0,1330</td>
</tr>
<tr>
<td>M026</td>
<td>624059,5359 0,0003 7115775,2704 0,0002</td>
<td>624059,7599 0,0530 7115775,3270 0,1690</td>
</tr>
<tr>
<td>M030</td>
<td>623795,8339 0,0003 7115654,1335 0,0001</td>
<td>623795,645 0,0610 7115654,1840 0,1580</td>
</tr>
</tbody>
</table>

FONTE: O Autor (2015)

Analisando-se os resultados obtidos com o método de posicionamento relativo estático, verifica-se que a precisão para as coordenadas Este é inferior a 0,0003m e para a coordenada Norte é inferior a 0,0002m. Cabe ressaltar que esta é uma precisão relativa obtida por meio do processamento dos dados. Conforme exposto anteriormente, a Norma Técnica para o Georreferenciamento de Imóveis Rurais do INCRA indica que ela deve ser menor que 0,50 metros para marcos do tipo M e classe C4 (seção 2.2).

As precisões obtidas para as coordenadas (Norte e Este) advindas do método de posicionamento por ponto preciso (PPP-IBGE) podem ser visualizadas na Tabela 03 e na Figura 02.

Na Figura 04 verifica-se que as precisões nas coordenadas Este são inferiores a 0,06m e para a coordenada Norte são inferiores a 0,18m. Valores estes superiores aqueles advindos do processamento com o método de posicionamento relativo estático.
FIGURA 04 – PRECISÃO NORTE E ESTE PARA OS MARCOS DE DIVISA OBTIDOS COM O PPP

FONTE: O Autor (2015)
NOTA: A figura apresenta os pontos com códigos a fim de ilustração gráfica, sendo M015 (1), M016(2), M020(3), M021(4), M026(5) e M030(6)

Na Tabela 04 são apresentados alguns parâmetros que auxiliam na análise da qualidade do processamento do Método de Posicionamento Relativo Estático (MPRE) para cada um dos vértices ocupados. Indica-se o valor do PDOP, frequência processada, constelação observada, perdas de ciclo, percentagem de ambiguidades fixadas, efemérides empregadas e numero de satélites observados. Verifica-se que apenas o vértice M030 tem um PDOP acima de 6 (igual a 6,3). Poucas perdas de ciclo não foram eliminadas para os vértices M015 (1 Perda de ciclo) e M026 (2 Perdas de ciclo). Com exceção do vértice M026 todos tiveram mais de 92% das ambiguidades fixadas. Em todos os casos foram empregadas as efemérides transmitidas, e o numero mínimo de satélites observados foi igual a 6.
TABELA 04 – PARÂMETROS QUE AUXILIAM NA ANÁLISE DA QUALIDADE DO PÓS-PROCESSAMENTO DOS VERTICES DE DIVISA COM O EMPREGO DO LGO

<table>
<thead>
<tr>
<th></th>
<th>M015</th>
<th>M016</th>
<th>M020</th>
<th>M021</th>
<th>M026</th>
<th>M030</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDOP Médio</td>
<td>3,55</td>
<td>3,6</td>
<td>3,8</td>
<td>5,6</td>
<td>6</td>
<td>6,3</td>
</tr>
<tr>
<td>Frequência</td>
<td>L1 e L2</td>
</tr>
<tr>
<td>Constelações</td>
<td>GPS</td>
<td>GPS</td>
<td>GPS</td>
<td>GPS</td>
<td>GPS</td>
<td>GPS</td>
</tr>
<tr>
<td>Perdas ciclo</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Ambiguidades</td>
<td>99%</td>
<td>92%</td>
<td>100%</td>
<td>100%</td>
<td>88%</td>
<td>100%</td>
</tr>
<tr>
<td>Órbitas Transmitidas</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>N° Satélites</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

FONTE: O Autor (2015)

Na Tabela 05 são indicados os parâmetros que auxiliam na avaliação da qualidade das coordenadas advindas do posicionamento por ponto preciso com o serviço IBGE-PPP. Percebe-se que foi empregada a solução L3 (seção 2.1.5.2), as efemérides finais e foram processadas informações dos códigos e da fase das ondas portadoras.

TABELA 05 – PARÂMETROS QUE AUXILIAM NA QUALIDADE DAS COORDENADAS OBTIDAS COM O IBGE-PPP

<table>
<thead>
<tr>
<th></th>
<th>M015</th>
<th>M016</th>
<th>M020</th>
<th>M021</th>
<th>M026</th>
<th>M030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequência</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
</tr>
<tr>
<td>Órbita</td>
<td>Final</td>
<td>Final</td>
<td>Final</td>
<td>Final</td>
<td>Final</td>
<td>Final</td>
</tr>
<tr>
<td>Obs. proc.</td>
<td>Cód & Fase</td>
</tr>
</tbody>
</table>

FONTE: O Autor (2015)

Na Tabela 06 são apresentadas as precisões planimétricas calculadas para as coordenadas padrão, obtidas com o processamento dos dados coletados com o Método de Posicionamento Relativo Estático, e para as coordenadas obtidas com o PPP.
TABELA 06 – PRECISÃO PLANIMÉTRICA DAS COORDENADAS DOS VÉRTICES COM O MPRE e o PPP

<table>
<thead>
<tr>
<th>Vértices</th>
<th>Precisão Planimétrica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPRE (m)</td>
</tr>
<tr>
<td>M015</td>
<td>0,0002</td>
</tr>
<tr>
<td>M016</td>
<td>0,0009</td>
</tr>
<tr>
<td>M020</td>
<td>0,0007</td>
</tr>
<tr>
<td>M021</td>
<td>0,0001</td>
</tr>
<tr>
<td>M026</td>
<td>0,0004</td>
</tr>
<tr>
<td>M030</td>
<td>0,0003</td>
</tr>
</tbody>
</table>

FONTE: O Autor (2015)

Observa-se na Tabela 06 que a precisão planimétrica das coordenadas dos vértices com o Método de Posicionamento Relativo Estático atinge valores inferiores ao milímetro. No caso das coordenadas advindas do PPP esta precisão tem valores entre 10,6 cm e 17,7 cm. Estes valores indicam a qualidade para o PPP se observados de maneira individual.

Admitindo-se as coordenadas advindas do Método de Posicionamento Relativo como padrão, ou seja, como coordenadas verdadeiras, foi possível calcular a diferença entre essas coordenadas e as coordenadas (Norte e Este) obtidas com o Método de Posicionamento Por Ponto Preciso (PPP) para cada um dos vértices ocupados. De acordo com a Norma Técnica do INCRA para Georreferenciamento de Imóveis Rurais, 3ª Edição, pode-se obter a precisão da posição (PP) (equação 3, seção 2.2). As diferenças entre as coordenadas em UTM e a Precisão da Posição estão indicadas na Tabela 07.

TABELA 07– DIFERENÇA ENTRE AS COORDENADAS UTM (SIRGAS2000) PADRÃO E AS ADVINDAS DO PPP

<table>
<thead>
<tr>
<th>Vértices</th>
<th>Diferença em Coordenadas UTM</th>
<th>Precisão da Posição</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E (m)</td>
<td>N (m)</td>
</tr>
<tr>
<td>M015</td>
<td>0,6855</td>
<td>0,0275</td>
</tr>
<tr>
<td>M016</td>
<td>0,5011</td>
<td>0,0297</td>
</tr>
<tr>
<td>M020</td>
<td>0,0792</td>
<td>-0,0220</td>
</tr>
<tr>
<td>M021</td>
<td>-0,0732</td>
<td>-0,0774</td>
</tr>
<tr>
<td>M026</td>
<td>-0,2231</td>
<td>-0,0567</td>
</tr>
<tr>
<td>M030</td>
<td>0,1889</td>
<td>-0,0506</td>
</tr>
</tbody>
</table>
Verifica-se que a precisão da posição obtida para o vértice M015 está acima da tolerância especificada na mesma norma para marcos do tipo "M" e classe "C4", que é de 0,50 m. O vértice M016 está no limite desta tolerância, se for considerada a regra de arredondamento.

Na Figura 05 apresentam-se as precisões planimétricas obtidas com o PPP e a precisão posicional calculada.

Percebe-se na Figura 5 que os vértices com valores mais elevados de precisão posicional são o M015 e o M016, apesar de apresentarem precisão posicional com o PPP inferior a 0,20 m. O primeiro vértice apresentou uma precisão planimétrica com o PPP de 0,17m e a precisão posicional foi igual a 0,69m. O vértice M016 apresenta uma precisão planimétrica do PPP de 0,11m e uma precisão posicional de 0,50m. Nos demais casos pode-se dizer que as precisões são inferiores a 0,24m.
As soluções adotadas como padrão para estes vértices são muito boas, conforme informações apresentadas na Tabela 04, pois para o vértice M015 o PDOP médio foi de 3,55, 99% das ambiguidades foram resolvidas e contava-se com a presença de 8 satélites. No caso do vértice M016 tem-se PDOP médio de 3,6, 92% das ambiguidades resolvidas e a presença de 6 satélites. Pode-se então indicar que o PPP, apesar de apresentar uma precisão planimétrica dentro do almejado pela Norma Técnica do INCRA para Georreferenciamento de Imóveis Rurais, não apresentou acurácia no posicionamento para o vértice M015. Desta forma, o PPP deve ser empregado com cuidado, apesar de ser indicado como um dos métodos de posicionamento a ser empregado na determinação de coordenadas de vértices de divisa.

5 CONCLUSÕES E RECOMENDAÇÕES

Com esta pesquisa foi possível verificar que a aplicação do Posicionamento Por Ponto Preciso visando à determinação das coordenadas de marcos de divisa deve ser feita com cuidado, visto que, o PPP pode ser preciso, mas não acurado dentro do almejado pela Norma Técnica do INCRA para Georreferenciamento de Imóveis Rurais.

Foram avaliadas as coordenadas geodésicas de 06 vértices de divisa implantados na Fazenda Experimental de Rio Negro da UFPR.

Em 100% dos casos analisados as coordenadas geodésicas dos vértices de divisa implantados na Fazenda Experimental de Rio Negro da UFPR estavam dentro dos 0,50m indicados pela Norma Técnica do INCRA para Georreferenciamento de Imóveis Rurais quando se analisa a precisão planimétrica obtida por cada um dos métodos empregados. Porém, quando se analisa a precisão posicional, ou acurácia do IBGE-PPP em relação ao Método de Posicionamento Relativo Estático, verificou-se que em 83% dos casos a precisão de posição esta dentro de 0,50m indicados pela Norma Técnica do INCRA para Georreferenciamento de Imóveis Rurais.

Mais análises no que concerne a precisão posicional devem ser efetuadas, trabalhando com um universo de pontos ainda maior e não só de apenas um levantamento, principalmente no sentido de atrelar o uso do IBGE-PPP a determinadas condições encontradas em loco no momento das observações.
O vértice M015 poderia ser reocupado empregando-se um tempo superior ao que foi empregado neste trabalho, algo entre 01 e 02 horas, visando uma melhora significativa da acurácia da posição, tentando tornar a precisão da mesma ainda maior, buscando assim uma posição média que não se afaste além dos 0,50 metros permitidos pelo Norma do INCRA para Georreferenciamento de Imóveis Rurais, da posição média obtida pelo Método de Posicionamento Relativo Estático, considerada correta.

Já no caso dos vértices M026 e M030, que mesmo apresentando precisão posicional dentro do esperado, mas para evitar a não certificação desses vértices pelo INCRA, pelo fato da não resolução de ambiguidades de 88% e de PDOP 6,30, que os mesmos apresentaram respectivamente, poderiam ter ser feito o reprocessamento desses dados em LGO, utilizando as efemérides precisas no lugar das transmitidas, evitando assim um processo de reocupação precipitado, sem antes esgotar todas as possibilidades.
REFERÊNCIAS BIBLIOGRÁFICAS

APÊNDICES

APÊNDICE 1 – RELATÓRIO IBGE-PPP

Instituto Brasileiro de Geografia e Estatística
Relatório do Posicionamento por Ponto Preciso (PPP)

Sumário do Processamento do marco: M015

<table>
<thead>
<tr>
<th>Incídiens/Minutos</th>
<th>2010/03/27 13:25:07,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fim/Minutos</td>
<td>2010/03/27 14:01:40,00</td>
</tr>
<tr>
<td>Modo de Operação do Usuário</td>
<td>ESTÁTICO</td>
</tr>
<tr>
<td>Observação processada:</td>
<td>CÓDIGO & FASE</td>
</tr>
<tr>
<td>Modelo da Antena:</td>
<td>NÃO DISPONÍVEL</td>
</tr>
<tr>
<td>Órbitas dos satélites:</td>
<td>FINAL</td>
</tr>
<tr>
<td>Frequência processada:</td>
<td>1,3</td>
</tr>
<tr>
<td>Intervalo de processamento(s):</td>
<td>1,90</td>
</tr>
<tr>
<td>Sigma² da pseudodistância(m):</td>
<td>2,000</td>
</tr>
<tr>
<td>Sigma da portadora(m):</td>
<td>0,015</td>
</tr>
<tr>
<td>Altura da Antena(m):</td>
<td>6,450</td>
</tr>
<tr>
<td>Ângulo de Elevação(graus):</td>
<td>10,000</td>
</tr>
<tr>
<td>Resíduos da pseudodistância(m):</td>
<td>2,52 GPS</td>
</tr>
<tr>
<td>Resíduos da fase da portadora(cm):</td>
<td>0,67 GPS</td>
</tr>
</tbody>
</table>

Coordenadas Sirgas

<table>
<thead>
<tr>
<th>Latitudem (gms)</th>
<th>Longitude(gms)</th>
<th>Alt. Geo. (m)</th>
<th>UTM N(m)</th>
<th>UTM E(m)</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Em 2000.4 e o que irá ao mercado</td>
<td>-26° 03' 44,2654''</td>
<td>-47° 47' 22,0136''</td>
<td>784,90</td>
<td>7141820,362</td>
<td>624409,830</td>
</tr>
<tr>
<td>Na data do levantamento</td>
<td>-26° 03' 44,2631''</td>
<td>-47° 47' 22,0190''</td>
<td>784,90</td>
<td>7141820,379</td>
<td>624409,838</td>
</tr>
<tr>
<td>Sigma(95%) (m)</td>
<td>0,035</td>
<td>0,013</td>
<td>0,121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modelo Geodésico</td>
<td>MAPCK02010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinada Geodésica</td>
<td>3,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude Ortoestrórica</td>
<td>780,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Precisão esperada para um levantamento estático (metros)

<table>
<thead>
<tr>
<th>Tipo de Receptor</th>
<th>Uma frequência</th>
<th>Duas frequências</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planimétrico</td>
<td>Altimétrico</td>
</tr>
<tr>
<td>Após 1 hora</td>
<td>0,450</td>
<td>0,1000</td>
</tr>
<tr>
<td>Após 2 horas</td>
<td>0,300</td>
<td>0,8000</td>
</tr>
<tr>
<td>Após 4 horas</td>
<td>0,200</td>
<td>0,5000</td>
</tr>
<tr>
<td>Após 6 horas</td>
<td>0,180</td>
<td>0,4000</td>
</tr>
</tbody>
</table>

1 Órbitas obtidas do International GNSS Service (IGS) ou do Natural Resources of Canada (NRCan).
2 O termo "Sigma" é referente ao desvio-padrão.
3 Distância do Marco ao Plano de Referência da Antena (PRA).
5 A data de levantamento considerada é a data de início da sessão.
6 Este desvio-padrão representa a confiabilidade interna do processamento e não a exatidão da coordenada.

1 Processado em: 09/12/2014 22:32:44