LUCIANA DA ROCHA POMBO

COMPORTAMENTO DE VARIÁVEIS ANTROPOMÉTRICAS, PRESSÃO ARTERIAL SISTÓLICA E DIASTÓLICA, FREQUÊNCIA CARDÍACA E CONSUMO MÁXIMO DE OXIGÊNIO (VO$_2$ MAX) EM HOMENS COM DIFERENTES ESTADOS NUTRICIONAIS

Monografia apresentada como requisito parcial para a conclusão do Curso de Pós-Graduação Lato-Sensu, Especialização em Fisiologia do Exercício, do Departamento de Educação Física, Setor de Ciências Biológicas, Universidade Federal do Paraná.

CURITIBA
2009
COMPORTAMENTO DE VARIÁVEIS ANTROPOMÉTRICAS, PRESSÃO ARTERIAL SISTÓLICA E DIASTÓLICA, FREQUÊNCIA CARDÍACA E CONSUMO MÁXIMO DE OXIGÊNIO (VO₂ MÁX) EM HOMENS COM DIFERENTES ESTADOS NUTRICIONAIS

Monografia apresentada como requisito parcial para a conclusão do Curso de Pós-Graduação Lato-Sensu, Especialização em Fisiologia do Exercício, do Departamento de Educação Física, Setor de Ciências Biológicas, Universidade Federal do Paraná. Sob orientação da Professora e Mestre Ângela Sena.

CURITIBA
2009
AGRADECIMENTOS

... Agradeço primeiro a Deus...
Agradeço a minha mãe pelo apoio, dedicação e por sempre estar ao meu lado em todos os momentos.
Agradeço ao meu amigo, André que contribuiu muito para que este trabalho se realizasse.
Agradeço a todos os professores que contribuíram para minha formação, em especial ao professor Wagner de Campos, que sempre esteve disposto a ajudar.
Agradeço a todos que, direta ou indiretamente, contribuíram para que eu concluísse o curso de Especialização em Fisiologia do Exercício.
LISTA DE TABELAS

Tabela 1: Descrição da amostra.. 14
LISTA DE GRÁFICOS

Gráfico 1: Porcentagem de indivíduos que apresentam a pressão arterial alterada em diferentes estados nutricionais...17

Gráfico 2: Valores do consumo máximo de oxigênio de acordo com o estado nutricional...18
RESUMO

O excesso de peso e a obesidade interferem de forma significativa num corpo até então saudável, causando anormalidades no organismo como um todo em especial na função respiratória e cardíaca. O presente estudo teve como objetivo verificar o comportamento das variáveis antropométricas (pressão arterial sistólica, pressão arterial diastólica, frequência cardíaca e consumo máximo de oxigênio (VO_2^{max})) entre homens de diferentes estados nutricionais. A amostra constituiu-se de 81 homens sedentários, com idades entre 25 e 65 anos divididos em três grupos de acordo com a classificação do índice de massa corpórea: eutróficas (n=27), sobrepeso (n=27) e obesas (n=27). Foram submetidos a teste de esforço para comparação do consumo máximo de oxigênio (VO_2^{max}), pressão arterial e frequência cardíaca. A análise estatística foi descritiva e para verificar se existia diferença entre os indivíduos eutróficos, com sobrepeso e obesidade foi realizado uma ANOVA one way seguida de um post Hoc de Tukey para verificar onde estão as diferenças com um $p<0.05$. O grupo obesos apresentou valores de VO_2^{max} significantemente menores ($p<0.05$) que sobrepeso e eutróficos, indicando pior aptidão cardiorrespiratória. A hipertensão arterial foi elevada também para o grupo de obesos. Não houve diferença significante entre eutróficas, sobrepeso e obesidade para valores da frequência cardíaca. Conclui-se que os homens obesos apresentaram redução da aptidão física, da capacidade funcional e elevação de níveis pressóricos em relação aos eutróficos e sobrepeso, o que vem se somar ao pior prognóstico para doenças cardiovasculares desses indivíduos.

Palavra-chave: obesidade, índice de massa corporal, teste de esforço, homens.
1.0 INTRODUÇÃO

A prevalência do excesso de peso e da obesidade tem aumentado de forma significativa nas últimas décadas, constituindo um grave problema de saúde pública, tanto nos países desenvolvidos como nos países em desenvolvimento.

O índice de massa corporal (IMC) é um dos indicadores antropométricos mais utilizados, sendo considerada uma das opções para mensuração do grau de obesidade, pois diversos estudos têm mostrado alta correlação entre IMC e gordura corporal. A OMS considera o IMC um importante fator de risco para doenças crônicas, de forma que os riscos aumentam progressivamente na medida em que o IMC aumenta. Entre as doenças crônicas, a OMS destaca a doença cardiovascular que ainda é a maior causa de morte no mundo, matando 17 milhões de pessoas por ano.

A associação entre excesso de peso e alteração na pressão arterial sistêmica foi verificada em diferentes estudos. Souza (2003), em sua pesquisa demonstrou que indivíduos com obesidade e/ou sobrepeso apresentaram maior prevalência de hipertensão arterial e diabetes em relação aos indivíduos eutróficos. Para a função pulmonar o aumento do peso corpóreo geralmente também causa anormalidades devido à diminuição do volume de reserva expiratório e ao maior gasto energético durante exercício muscular (CONCEIÇÃO et al. 2005).

A pressão arterial e as taxas de VO$_2$ diferem entre indivíduos sem cardiopatia classificados em estado de sobrepeso e obesidade.

Entretanto poucos estudos buscaram verificar o comportamento das variáveis antropométricas em homens de diferentes estados nutricionais. Para levantar evidências sobre a relação entre variáveis antropométricas e diferentes estados nutricionais, o objetivo deste trabalho foi verificar o comportamento das variáveis antropométricas (pressão arterial sistólica, pressão arterial diastólica, frequência cardíaca, e consumo máximo de oxigênio (VO$_{2\text{máx}}$)) entre homens de diferentes estados nutricionais.
1.1 Objetivos

Objetivos Gerais:

O presente estudo visa verificar o comportamento das variáveis antropométricas pressão arterial sistólica, pressão arterial diastólica, frequência cardíaca e consumo máximo de oxigênio (VO$_2$) entre homens de diferentes estados nutricionais.

Objetivos Específicos:

- Avaliar o estado nutricional de indivíduos do sexo masculino.
- Avaliar o comportamento da pressão arterial sistólica e diastólica entre indivíduos do sexo masculino.
- Avaliar o comportamento da frequência cardíaca entre indivíduos do sexo masculino.
- Avaliar o comportamento do consumo máximo de oxigênio entre indivíduos do sexo masculino.
- Mensurar a diferença existente nos valores de pressão arterial, frequência cardíaca e VO$_2$ de indivíduos do sexo masculino de diferentes estados nutricionais.

1.2 Hipóteses

HO – Não há diferença entre os estados nutricionais.

H1 – Há diferença entre eutroficos e sobrepeso.

H2 – Há diferença entre eutroficos e obesos.

H3 – Há diferença entre sobrepeso e obesos.
2.0 REVISÃO DE LITERATURA

2.1 Capacidade cardiorrespiratória e o consumo máximo de oxigênio (VO₂ máx)

O consumo máximo de oxigênio vem sendo muito utilizado, principalmente em pesquisas, como parâmetros para a avaliação da capacidade cardiorrespiratória. A sua mensuração significa saber qual é a maior quantidade de oxigênio que o sistema cardiovascular é capaz de entregar aos tecidos do organismo, durante um trabalho físico máximo. Para obter esse dado é necessário expor o indivíduo a realização de um esforço elevado até o seu limite máximo. A quantidade máxima de oxigênio consumida durante esse esforço máximo recebe o nome de consumo máximo de oxigênio (VO₂ máx) (MARCONDES, 1999. CHERNIACK, 2005. ACSM, 2003).

Vários métodos e protocolos foram criados para a medição do VO₂ máx de um indivíduo. Podendo ser classificados em calorimetria direta ou indireta, testes máximos ou submáximos e com a utilização de diferentes ergômetros, tais como esteira rolante e bicicleta ergométrica (FARDY, 2001). Para ACSM 2003, a calorimetria direta, refere-se a quantidade de calor dissipada pelo organismo, apesar de elevada precisão é inviável devido ser necessário que o avaliado permaneça confinado em um ambiente de laboratório. Assim sendo, fica difícil a mensuração no exercício. Uma alternativa é a calorimetria indireta, a qual, mede a taxa de consumo de oxigênio (VO₂) do exercício individual. A abreviatura VO₂ tem como significado o V para volume, o O₂ para oxigênio e a taxa de oxigênio referenciada por um ponto acima da letra V. Taxa define o volume de oxigênio por unidade de tempo (ARAÚJO, 2000). Os testes ergométricos máximos refere-se ao elevado consumo de oxigênio que mesmo aumentando a intensidade do esforço físico o VO₂ máx não aumenta, portanto seu limite aeróbico está no máximo. Os testes submáximos são os que utilizam a frequência cardíaca, em níveis submáximos, para cálculo do VO₂. O melhor ergômetro para medida do consumo de oxigênio em testes máximos é a esteira rolante, devido usar grandes grupos musculares, exigidos na posição ortostática e ser de fácil execução técnica (LEITE, 2000. REGENGA, 2002. FOSS, 2000).

A medida indireta real de VO₂ é geralmente realizada em ambientes laboratoriais ou clínicos, usando um procedimento chamado ergoespirometria com
analisador de gases. A ergoespirometria determina a captação de oxigênio e a produção de gás carbônico com o indivíduo em esforço máximo (CHERNIACK, 2005).

Uma forma mais simples e também eficaz para a determinação do VO$_2$ pode ser feitas através de equações de regressão derivada de dados de medidas mecânicas da taxa de trabalho e da captação de oxigênio, estimada em 3,5 ml de oxigênio por quilograma de peso do corpo por minuto (ml/Kg/min$^{-1}$). Os valores da captação máxima de oxigênio em indivíduos normais e saudáveis geralmente vão de 25 a 80 ml/Kg/min$^{-1}$ e depende de uma variedade de parâmetros fisiológicos incluindo a idade, peso corporal e nível de condicionamento (POLLOCK, 2003. II DIRETRIZ SBC, 2002).

A tolerância ao exercício, medida pelo teste ergômetro em esteira rolante é um método acessível, seguro, de baixo custo e um importante valor prognóstico quanto à mortalidade no sexo masculino. Um estudo com 6213 homens encaminhados ao teste ergômetro classificados em dois grupos, foram acompanhados quanto a mortalidade por um período de 6 anos. Concluíram que a tolerância ao exercício medida em consumo máximo de oxigênio, se destacou como o mais importante marcador prognóstico de risco de morte independente da causa (MYERS, 2002).

A captação de oxigênio máxima correlacionada ao grau de condicionamento físico é reconhecido como medida da capacidade cardiorrespiratória.

Segundo ACSM 2003, capacidade cardiorrespiratória relaciona-se com saúde porque níveis baixos de aptidão física tem sido associado ao aumento do risco de morte prematura por várias causas principalmente doenças cardiovasculares.

A atividade física exerce seu efeito protetor sobre a saúde cardiovascular através do endotélio e ênfase adicional deve ser dada à importância da prática de exercício físico durante toda a vida (ABBOT, 2002).

Para Nieman (2002), a resistência cardiorrespiratória é aumentada quando grandes massas musculares estão envolvidas numa atividade contínua e ritmica com frequência, tempo e intensidade adequada. Para isto a melhor forma de exercício é o aeróbio. Possuir uma boa resistência cardiorrespiratória pode ser exemplificado por características como capacidade de correr, pedalar, nadar por
longos períodos de tempo. Quando grandes grupos musculares estão envolvidos numa atividade contínua o sistema circulatório e respiratório aumentam suas atividades para fornecer oxigênio suficiente para gerar energia para os músculos que estão sendo recrutados para o movimento (MARCONDES, 1999. FROELICHER, 2000).

A resposta cardiorrespiratória ao exercício é diretamente proporcional à demanda de oxigênio da musculatura esquelética, ao consumo de oxigênio miocárdico, frequência cardíaca e a pressão arterial. Esses componentes aumentam linearmente, conforme o trabalho físico realizado (AMORETI, 2001).
2.2 A pressão arterial como fator para doenças cardiovasculares

A pressão arterial depende do rendimento cardíaco e da resistência oposta pelos vasos periféricos. Esses fatores variam muito de um indivíduo para outro, assim como variam num mesmo indivíduo ao longo do tempo (COATS et al, 1997).

Durante o sono, a pressão arterial média pode situar-se entre 30 e 40 mmHg abaixo da pressão registrada em estado de vigilia. O frio e a ansiedade são fatores que levam ao aumento passageiro da pressão arterial. No nascimento a pressão arterial está em torno de 80/60 mmHg, aumentando lentamente durante a infância. No adolescente, a pressão arterial em estado de repouso costuma ser de aproximadamente 120/70 mmHg; valores da ordem de 140/80 mmHg são mais comuns na meia-idade. A pressão sistólica continua muitas vezes a aumentar durante a velhice em virtude da rigidez cada vez maior da aorta. O esforço físico provoca aumento brusco da pressão sistólica, enquanto a pressão diastólica pouco se modifica (JULIAN, 2000. MION, 2006. SPRANGER, 2007).

Segundo Rocela et al. (2000), o aumento da pressão arterial sistólica durante o esforço é função do débito cardíaco que aumenta e das resistências periféricas que diminuem globalmente devido a vasodilatação dos músculos em atividade, contrastando com a vasoconstrição pela ativação simpática.

Durante o teste de esforço um aumento inadequado ou uma queda tensional no final do esforço indica um obstáculo a ejeção ou um defeito primário da contratilidade miocárdica ou mais frequentemente de uma isquemia (AMORETI, 2001).

Estudos epidemiológicos têm revelado uma associação entre o baixo nível de atividade física e a presença de hipertensão arterial. O exercício físico regular pode reduzir os níveis pressóricos. Desta forma, a partir de 1990, diretrizes de cardiologia e de reabilitação cardíaca passaram a recomendar a prática de atividade física como meio de prevenção da hipertensão arterial (ROCELA et al. 2000).

Quanto a hipertensão arterial sistêmica a OMS chama a atenção para o fato de que não se deve apenas valorizar os níveis de pressão arterial, fazendo-se também necessária uma avaliação do risco cardiovascular global.

Doença frequentemente silenciosa, a hipertensão arterial pode levar a importantes complicações cardiovasculares, renais e cerebrais. Pois sem apresentar
sintomas e sem um acompanhamento periódico, quando indentificada a hipertensão arterial o tratamento em muitos casos, tarde demais, pode levar a morte (JULIAN; COWAN, 2000).

A hipertensão primária aparece com frequência entre 25 e 55 anos de idade e é incomum antes dos 20 anos, faixa etária que também está relacionada a frequência da obesidade (VACANTI et al. 2004).

O aumento da massa corporal está associado a pressão arterial elevada, e a perda de peso em indivíduos hipertensos é geralmente acompanhada por uma redução na pressão arterial. De acordo com uma metaanálise, a perda de 1kg de massa corporal está associada com diminuição de 1,2–1,6 mmHg na pressão sistólica e 1,0 – 1,3 na pressão diastólica. A perda de peso é recomendada para todos os indivíduos hipertensos que apresentem excesso de peso (MINISTÉRIO DA SAÚDE, 2006).

O aumento da prevalência mundial de hipertensão arterial no jovem e no adulto guarda relação direta com o aumento da prevalência de obesidade. Vários mecanismos procuram explicar a relação entre obesidade e hipertensão: os distúrbios do metabolismo da insulina, aumento do tônus simpático, diminuição do tônus vagal, alterações vasculares estruturais e funcionais, aumento da agregação plaquetária e do estresse oxidativo, com queda dos níveis de óxido nítrico e distúrbios do sono (FROELICHER et al. 2000).

História familiar de hipertensão arterial parece ter um efeito de impacto da obesidade sobre os níveis tensionais no jovem e adulto. A hipertensão arterial sistêmica pode determinar complicações cardiovasculares, como a hipertrofia ventricular esquerda. Este risco parece ser tanto maior quanto maior o percentil de índice de massa corporal, demonstrando uma relação entre obesidade e hipertensão arterial (PICCINI, 2004).
2.3 O estado nutricional e sua relação com a pressão arterial e VO$_{2\text{máx}}$

As pessoas em geral têm se mostrado cada vez mais preocupadas com o aumento da massa corporal da população não apenas nos países industrializados, mas também nos países em desenvolvimento. A adoção de um estilo de vida inadequado vem favorecendo esta preocupação principalmente no que se refere aos baixos níveis de atividade física e aos hábitos alimentares. Essa preocupação se justifica na medida em que uma massa corporal acima de determinados valores encontra-se na maioria dos casos relacionada a uma série de problemas de saúde. A massa corporal excessiva é geralmente acompanhada por níveis pressóricos altos, taxa de colesterol elevada, doença arterial coronariana entre outros problemas. (LOPES, 2004. FRANCISCHI, 2000. MINISTÉRIO DA SAÚDE, 2006)

Os termos sobrepeso e obesidade são geralmente usados como sinônimo, mas não o são. Sobrepeso significa que a pessoa apresenta maior massa do que o normal para sua altura. Segundo Nahas (1999), obesidade tem como definição um aumento e armazenamento da gordura corporal relacionado à massa magra, associado a risco para a saúde, devido sua relação com várias complicações metabólicas.

A causa da obesidade pode ser multifatorial, decorrente de fatores genéticos, neuroendócrinos, dietéticos, psicológicos, culturais, socioeconômicos, dentre outros. A obesidade, numa concepção clínico-biológica, é uma forma de distrofia decorrente do excesso de calorias. Para outros pesquisadores várias explicações podem ser dadas para o aumento da prevalência do sobrepeso e da obesidade, podendo ser classificadas em três categorias: mudanças das características genéticas; as que atribuem a ocorrência desse fenômeno às condições ambientais; e as que acreditam serem as mudanças decorrentes da interação de fatores genéticos e ambientais as responsáveis por esse problema. Para alguns autores, os fatores externos sócio ambientais são mais relevantes na incidência de obesidade do que os fatores genéticos (SALVE 2006).

O sobrepeso por si não tem efeito imediato no desenvolvimento de doenças crônicas, porém história de excesso de peso pode contribuir para variações nos riscos à saúde. Quando se fala em sobrepeso três questões devem ser
consideradas: idade de aparecimento, duração e padrões de flutuações de peso (DUARTE, 2005).

O estatístico e biólogo Lambert-Adolphe-Jacques Quetelet propôs a relação entre peso e estatura conhecida como Índice de Quetelet ou Índice de Massa Corporal (IMC). A Organização Mundial de Saúde (OMS) propõe que o IMC seja utilizado para determinar obesidade em grupos populacionais, principalmente pela facilidade de se determinar o peso e a estatura. O IMC é definido como sendo o peso (em Kg) dividido pela estatura (em metros) elevada ao quadrado (ANJOS, 2002). A classificação mais utilizada para diagnóstico de obesidade e sobrepeso é o índice de massa corporal (IMC), onde são considerados eutróficos indivíduos com valores menores que 24,99 Kg/m², sobrepeso os que apresentam valores entre 25,00 Kg/m² e ≤ 29,99 Kg/m² e obeso os que apresentaram valores ≥ 30 Kg/m² (SAMPAIO, 2005).

A combinação do IMC com outros fatores, como hipertensão, dislipidemia, tabagismo, diabetes mellitus, pode levar a riscos diferentes de adoecer. Da mesma forma o excesso de peso resultante da combinação do baixo consumo de frutas, verduras, fibras e substâncias antioxidantes, alto consumo de gorduras saturadas e álcool associado a pouca atividade física pode levar ao desenvolvimento de dislipidemias e doença coronariana em virtude da predisposição genética (FRANCISCHI, 2000).

No Brasil estima-se que aproximadamente 32% da população adulta apresente algum grau de sobrepeso. Sendo os dados mais alarmantes em relação a mulheres, que apresentam 55% de prevalência de sobrepeso e obesidade, contra 37% dos homens quando se analisa a população entre 45 e 55 anos de idade (GUEDES, 2003).

Como a obesidade é claramente associada a um elevado nível de morbidade e de mortalidade e o sobrepeso é o estado inicial para a instalação desse quadro, a identificação de variáveis que interferem nesta processo se mostra relevante. Tais como pressão arterial e VO₂.

A maioria dos estudos sugere que os indivíduos obesos sao menos ativos fisicamente do que os magros e muitos tem pouca experiência com exercícios no passado. Faz sentido que a inatividade a longo prazo aumente o risco de ganho de gordura corporal extra, promovendo assim o sobrepeso e obesidade.
O aumento do peso corpóreo geralmente causa anormalidades na função respiratória, que incluem diminuição na capacidade funcional residual, devido à diminuição do volume de reserva expiratória e ao maior gasto energético durante exercício muscular (RIGATTO, 2005).

Halpern (1999), complementa que a obesidade associa-se a disfunções respiratórias, incluindo diminuição da resistência cardiorrespiratória e dispnéia. As alterações mais características na função pulmonar e na performance ventilatória nos indivíduos obesos são aumento de freqüência respiratória, diminuição da complacência pulmonar, aumento do trabalho elástico e muscular, alteração nos valores do VO$_2$ mág e altos índices de fadigabilidade, relacionados, por sua vez, com os níveis de obesidade, bem como com as alterações nos padrões de distribuição da gordura corporal (POLLOCK, 1993).

Em relação ao aumento da pressão arterial um estudo, realizado com uma amostra de 1088 adultos de Porto Alegre com o objetivo de determinar a associação entre índice de massa corporal (IMC) com a prevalência de hipertensão arterial (HAS) teve como resultado que obesidade aferida pelo IMC associou-se com a prevalência de HAS em ambos sexos (FUNCOR – DIRETRIZ CARDIOL, 2002).

A obesidade, por diversos mecanismos, contribui para a ocorrência da HA, sendo considerada um dos seus principais fatores de risco. Verifica-se que a prevalência da obesidade entre indivíduos hipertensos é consideravelmente maior quando comparada aos normotensos. A literatura mostra aumentos de três a oito vezes na freqüência de HA entre os obesos, sendo que o índice de massa corporal elevado poderia explicar até 30% dos casos da doença.
3.0 MATERIAIS E MÉTODOS

3.1 Planejamento da Pesquisa

Este estudo tem caráter expo facto e descritivo.

3.2 População e Amostra

A amostra foi constituída por conveniência sendo composta por 81 homens sedentários, com idades entre 25 e 65 anos da cidade de Curitiba, como critério de exclusão foram retirados da pesquisa os que apresentavam imperfeições físicas que comprometessem a análise e coleta dos dados, indivíduos com diagnóstico de hipertensão arterial e com problemas cardíacos graves que impedissem de realizar um teste máximo e indivíduos que utilizavam medicamentos que alterassem os resultados da pressão arterial máxima pós teste.

3.3 Instrumentos e Procedimentos

Massa Corporal: O avaliado posicionou-se em pé, no centro da plataforma da balança, procurando não se movimentar. O cursor da escala foi movido manualmente até haver equilíbrio; a massa corporal foi registrada em kg, com resolução de 100 gramas. Utiliza-se uma balança eletrônica, com capacidade para 150 KG e divisões de 1/10 de kg (Gordon, Chumlea & Roche, 1988).

Estatura Corporal: foi à distância compreendida entre a planta dos pés e o ponto mais alto da cabeça (vértece). O sujeito estará descalço. A postura padrão recomenda ângulo reto com o estadiômetro, procurando colocar em contato o aparelho de medida, os calcanhares, a cintura pélvica, a cintura escapular e a região occipital. A cabeça fica orientada no plano de Frankfurt. A medida será registrada em centímetros, estando o indivíduo em apnésia, após inspiração profunda (Gordon, Chumlea & Roche, 1988).

O Índice de massa corporal foi estimado pela razão entre a massa corporal em quilogramas pela estatura ao quadrado (QUETELET, 1970) e a classificação foi pelos dados da OMS, 1998 onde, foram considerados eutróficos os com valores menores que 24,99 Kg/m\(^2\), sobrepeso os que obtiveram valores entre 25,00 Kg/m\(^2\) e \(\leq 29,99\) Kg/m\(^2\) e obesos os que apresentaram valores \(\geq 30\) Kg/m\(^2\).
A pressão arterial sistólica (PAS) e diastólica (PAD) foi aferida mediante a utilização de um esfigmomanômetro de coluna de mercúrio da marca MOD/PLUS® para adultos.

A (PAS) foi determinada no aparecimento do primeiro som (fase I de Korotkoff), e a (PAD) com o desaparecimento do som (fase V de Korotkoff).

Os indivíduos foram classificados como hipertensos se a PAS fosse maior ou igual a 140 mmHg e a PAD maior ou igual a 100 mmHg (ACSM, 2003).

A pressão arterial média deu-se pela fórmula:

\[\text{PAM} = \frac{\text{PAS} + (\text{PAD} \times 2)}{3} \]

A freqüência cardíaca inicial foi verificada em repouso e durante todo o teste ergométrico de forma direta através de eletrodos fixados no tórax e conectados ao eletrocardiógrafo Micromed na derivação CM 5 para registro do eletrocardiograma (ECG) e análise do comportamento da freqüência cardíaca antes e durante todo o teste.

A medida do consumo máximo de oxigênio foi realizada através de equações de regressão, baseadas na duração do teste de esteira. A estimativa do VO₂ máximo (ml/kg-min⁻¹) para esteira rolante no protocolo de Ellestad foi calculada do seguinte modo: \[\text{VO}_2\text{máx} = 4,46 + 3,933 \times \text{tempo (duração do teste)} \] e constante utilizada para sedentários sadios, estando o indivíduo orientado a não apoiar os membros superiores no suporte da esteira. (II Diretrizes SPC, 2002).
3.3.1 Procedimentos

O protocolo constou da avaliação da massa corporal e da aptidão cardiorrespiratória por meio de ergometria em esteira rolante com protocolo contínuo e carga crescente, na qual se determinaram o consumo máximo de oxigênio, a frequência cardíaca máxima e a variação da pressão arterial. O protocolo de esteira rolante utilizado foi o de Ellestad, sendo o mais adequado para ser utilizados em indivíduos fisicamente ativos sem comprometimento cardiovascular (POLLOCK, 1993). Os avaliados assinaram o termo de consentimento livre e esclarecido, foram pesado, submetidos a verificação manual da pressão arterial de repouso. Pele preparada com fricção de algodão umedecido com álcool para garantir melhor fixação do eletrodo ao tórax. Foram orientados a permanecer na posição supina enquanto os eletrodos foram posicionados, a fim de assegurar uma localização precisa dos pontos com doze derivações para eletrocardiografia de esforço e verificação da frequência cardíaca. Em seguida os indivíduos receberam instruções previamente a realização do teste e foram posicionados na esteira rolante sem apoiar os membros superiores na esteira. No protocolo de Ellestad a velocidade aumenta progressivamente de 1,7 mph a 6,0 mph com inclinação de 10% até o estágio 4, quando, então, a inclinação aumenta para 15%. Esse protocolo nos estágios mais altos leva o individuo a corrida. Após atingida a frequência cardíaca máxima ou sinal de fadiga referida pelo avaliado o teste foi interrompido.

3.4 Tratamento dos Dados e Estatística

Após serem devidamente coletados os dados do estudo, foram realizados os seguintes teste compostos por uma estatística descritiva com média, desvio padrão e frequência percentílica, para verificar se existia diferenças entre os indivíduos eutróficos, com sobrepeso e obesidade foi realizado uma ANOVA one way seguida de um post Hoc de Tukey para verificar onde estão as diferenças. O nível de significância foi estipulado em 95% com um \(p < 0,05 \).
4.0 RESULTADOS E DISCUSSÃO

Os resultados analisados referiram-se a uma amostra composta por 81 homens, divididos em 3 grupos: 27 eutróficos, 27 sobrepesos e 27 obesos. A idade média de cada grupo: eutróficos (35,74±6,86 anos), sobrepeso (40,33±7,26 anos) e obesos (42,22±8,64 anos). A média do IMC entre os grupos foi: eutróficos (22,78±1,66 kg/m²), sobrepeso (27,57±1,31 kg/m²) e obesos (32,93±3,00 kg/m²).

As principais características dos grupos estudados encontram-se na tabela 1.

Tabela 1: Descrição da amostra e diferenças de valores médios entre eutróficos, sobrepeso e obesos.

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Eutróficos n=27</th>
<th>Sobrepeso n=27</th>
<th>Obeso n=27</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade (anos)</td>
<td>35,74 (±6,86)</td>
<td>40,33 (±7,26)</td>
<td>42,22 (±8,64)</td>
<td>-</td>
</tr>
<tr>
<td>Massa corporal (Kg)</td>
<td>67,51 a,b (±7,28)</td>
<td>84,92 c (±7,96)</td>
<td>98,37 (±12,09)</td>
<td>73,74*</td>
</tr>
<tr>
<td>Estatura (cm)</td>
<td>172,03 (±7,01)</td>
<td>175,33 (±6,43)</td>
<td>172,70 (±8,14)</td>
<td>1,56</td>
</tr>
<tr>
<td>IMC (Kg/m²)</td>
<td>22,78 a,b (±1,66)</td>
<td>27,57 c (±1,31)</td>
<td>32,93 (±3,00)</td>
<td>154,25*</td>
</tr>
<tr>
<td>PAS (mm/Hg)</td>
<td>118,14 a,b (±6,81)</td>
<td>128,14 (±11,44)</td>
<td>135,92 (±20,42)</td>
<td>10,81*</td>
</tr>
<tr>
<td>PAD (mm/Hg)</td>
<td>75,55 a,b (±6,86)</td>
<td>83,33 (±9,19)</td>
<td>88,33 (±11,84)</td>
<td>12,62*</td>
</tr>
<tr>
<td>FC máx (bpm)</td>
<td>177,66 (±15,07)</td>
<td>179,59 (±15,07)</td>
<td>171,18 (±15,07)</td>
<td>2,42</td>
</tr>
<tr>
<td>VO₂ máx (ml/Kg/min)</td>
<td>46,66 b (±7,32)</td>
<td>43,82 c (±7,28)</td>
<td>37,85 (±6,44)</td>
<td>11,05*</td>
</tr>
</tbody>
</table>

* = p<0,05.

a = Diferença significativa (p<0,05) entre Eutrófico e Sobrepeso.

b = Diferença significativa (p<0,05) entre eutróficos e Obeso.

c = Diferença significativa (p<0,05) entre Sobrepeso e Obeso.
A tabela acima demonstra que existe diferença nos valores médios entre eutróficos e indivíduos com sobrepeso nas seguintes variáveis MC, IMC, PAS e PAD. Neste sentido, as diferenças encontradas entre eutróficos e obesos foram MC, IMC, PAS, PAD e VO$_{2\text{máx}}$. Já as diferenças entre as média encontradas entre indivíduos com sobrepeso e obesidade foram MC, IMC e VO$_{2\text{máx}}$.

Quando se realiza um estudo verificando o comportamento das variáveis antropométricas em homens de diferentes estados nutricionais vários são os aspectos a serem discutidos, pois a literatura cada vez mais, mostra resultados apontando o aumento do peso como o principal fator de risco para saúde.

O excesso de peso e a obesidade vem sofrendo um aumento crescente e assustador em vários países do mundo, atingindo tanto países desenvolvidos como em desenvolvimento, entre eles o Brasil. Segundo informações do IBGE (2004), 12,7% das mulheres e 8,8% dos homens adultos brasileiros são obesos. Quanto as diferenças de gênero e idade, pode-se observar que as prevalências de obesidade são semelhantes para homens e mulheres até os 40 anos. A partir dos 40 anos as mulheres passam a apresentar obesidade duas vezes mais elevadas que os homens. Este fato pode ser explicado devido as mulheres apresentarem proporção maior de quantidade de gordura corporal que os homens (SALVE, 2006). Entretanto dados da pesquisa nacional sobre demografia e saúde PNDS (1998), comprovaram que da década de 80 para os anos 90 houve elevação acentuada na prevalência de obesidade, destacando-se um aumento de 137% em homens adulto e 67% em mulheres adultas. Devido ao menor número de pesquisas com adultos de sexo masculino quando comparado a adulto do sexo feminino o presente estudo teve por finalidade avaliar apenas homens adultos.

Considerando a obesidade um fator de risco cardiovascular, pode ser explicado devido o excesso de gordura corporal estar relacionado ao aparecimento de inúmeras disfunções metabólicas e funcionais, tornando um problema atual de saúde pública (McARDLE, 1990). Existe uma forte associação entre obesidade e desenvolvimento de diabetes mellitus, disfunções pulmonares, doenças cardiovasculares, problemas biliares e até de alguns tipos de câncer (LOPES, 2004).

Segundo o ministério da saúde (2006), o diabetes mellitus e hipertensão arterial ocorrem 2,9 vezes mais frequentemente em indivíduos obesos do que naqueles com peso adequado. Em se tratando da obesidade, afirma que um
indivíduo obeso tem 1,5 vezes mais propensão a apresentar níveis sanguíneos elevados de triglicerídeos e colesterol do que pessoas não obesas (SALVE, 2006).

Quando observamos os resultados antropométricos da presente amostra, verificamos uma grande diferença na massa corporal dos indivíduos com sobrepeso e obesidade, entretanto a estatura mantém a mesma média, sendo esta uma justificativa de que o problema está no aumento do peso. Gouvêa (2000), em seu estudo mostrou que o excesso de peso está claramente associado com o aumento da morbidade e mortalidade e que este risco aumenta progressivamente de acordo com o ganho de peso em pessoas com estatura aproximada.

Para avaliar a obesidade recorre-se ao índice de massa corpórea, sendo o método mais utilizado por ter boa correlação com a percentagem de gordura corporal (REZENDE, 2006). Devido à facilidade de sua mensuração e a grande disponibilidade de dados de massa corporal e estatura. Além da sua relação com morbi-mortalidade, é o método mais apropriado e utilizado como indicador do estado nutricional em estudos epidemiológicos até que outras metodologias que expressem a composição corporal sejam desenvolvidas (ANJOS, 2002).

Rezende (2006), observou em seu estudo que com o aumento do IMC houve elevação principalmente da glicemia, da pressão arterial e redução do HDL. Neste contexto o mesmo foi apresentado por Gigante (1997), que mostrou a frequência de síndrome metabólica maior em homens com sobrepeso e obesidade. Além disto, outros autores evidenciaram que a frequência de fatores de risco cardiovascular aumentaram com aumento do IMC (MONTEIRO, 1999).

No presente estudo os valores aumentados do IMC para o grupo obeso em comparação com os eutróficos e sobrepeso repercutiu em menor desempenho físico. De modo geral estas diferenças podem ser explicadas devido ao aumento do peso corporal estar diretamente relacionado com piora da capacidade física, principalmente ao estilo de vida adotado pelo mundo moderno, incluindo como fator importante o sedentarismo. (SOUZA, 2005)

Indivíduos com sobrepeso ou obesos que se mantêm ativos apresentam menores níveis de mortalidade quando comparados aos indivíduos com sobrepeso ou obesos que não se exercitam. O exercício aumenta o metabolismo basal e a oxidação de lipídios e glicose (Diretriz de reabilitação cardíaca, 2005).
Em relação à alteração da pressão arterial nos grupos eutróficos e obesos houve diferença significante de pressão elevada no grupo de obesos, como mostra o gráfico 1.

Gráfico 1: Porcentagem de indivíduos que apresentam a pressão arterial alterada em diferentes estados nutricionais.

O aumento da pressão arterial está associado ao aumento no débito cardíaco. Em indivíduos saudáveis, a pressão sistólica se eleva em aproximadamente 8 mmHg para cada 100 Kpm de trabalho (Kpm = quantidade de trabalho realizada por unidade de tempo), mas ocorre uma pequena mudança na pressão diastólica. (CHERNIACK 2005). Ocorre um aumento desproporcional na pressão sistólica em comparação com a diastólica que sofre um aumento mínimo durante o esforço em indivíduos normais.

Em relação à alteração da pressão arterial o risco de desenvolver doença arterial coronariana cresce na proporção que níveis pressóricos aumentam. Os hipertensos são indivíduos com maiores chances de patologias em comparação a populações com pressões arteriais menos elevadas (ROCELA et al. 2000).

A elevação da pressão arterial sendo de caráter patológico é um grave problema de saúde, pois estando a hipertensão arterial frequentemente associada ao infarto do miocárdio, acidente vascular cerebral e hemorragia. Em uma pesquisa
realizada no Rio Grande do Sul com 1657 pessoas sobre a prevalência e fatores de risco da hipertensão arterial sistêmica, revelou que entre os obesos a prevalência de HAS foi de 33% e para os indivíduos de peso corporal normal a prevalência foi de 2,52% (FERNANDES, 2006).

No presente estudo os avaliados com sobrepeso não apresentaram alteração significativa da pressão arterial quando comparados aos eutróficos, porém pesquisas apontam que mesmo os indivíduos com sobrepeso que tem pressão arterial elevada desenvolvem a hipertensão arterial sistêmica (GUS et al. 1998).

O consumo máximo de oxigênio avaliado em homens durante esforço máximo fornece informações a respeito da capacidade de transporte de oxigênio durante o exercício máximo. Por este motivo serve como critério de medida do condicionamento cardiorrespiratório de um indivíduo. Para pessoas com sobrepeso e obesas o comportamento do VO$_2$ máx se torna modificado, devido o aumento da massa de tecido adiposo interferir no desempenho físico.

O gráfico abaixo se refere aos valores de VO$_2$ máx obtidos durante esforço máximo de acordo com o estado nutricional de cada grupo avaliado.

Gráfico 2: Valores do consumo máximo de oxigênio de acordo com o estado nutricional.

O valor do VO$_2$ máx foi menor para os obesos em relação aos eutróficos. Tem sido sugerido que um dos principais fatores responsáveis pela condição física reduzida dos obesos seja a prática diminuída de atividade física, levando a um
menor condicionamento aeróbio, ao desenvolvimento de doenças cardiovasculares e ao aumento das taxas de morbidade e mortalidade (CONCEIÇÃO, 2006).

A redução da capacidade aeróbia reflete numa reduzida tolerância ao esforço, em razão das condições cardiopulmonares afetadas, leva facilmente a dispnéia e diminuição dos valores de VO$_2$ máx. Segundo Rigatto (2005), o acúmulo de massa de tecido adiposo na região torácica limita a função dos músculos respiratórios. Existem ainda vários estudos sobre a deficiência dos músculos respiratórios na obesidade. Todos estes estudos afirmam que a obesidade causa redução da complacência da caixa torácica, diminuição dos volumes pulmonares levando a deficiência dos músculos respiratórios e um VO$_2$ máx reduzido (HALPERN, 1999).

Os homens obesos apresentaram valores de VO$_2$ máx $\left(37,85\pm6,44\;\text{ml/kg/min}\right)$ significamente menores ($p<0,05$) do que os grupos eutróficos ($46,66\pm7,32\;\text{ml/kg/min}$) e sobrepeso ($43,82\pm7,28\;\text{ml/kg/min}$). Entre os grupos com sobrepeso e eutróficos não houve diferença significativa para cálculo do VO$_2$ máx.

No que se refere à capacidade cardiorrespiratória avaliada através VO$_2$ máx, foi verificado que no grupo de obesos os valores de VO$_2$ máx foram abaixo quando comparados com o grupo sobrepeso e eutróficos. Os grupos com IMC elevado apresentaram piores resultados de VO$_2$ máx. Num estudo realizado por Suenaga et al. (2002), concluiu existir uma relação significativa entre VO$_2$ máx e o índice de massa corporal e uma relação entre VO$_2$ máx e a atividade física desenvolvida. Outro estudo realizado por Janczak et al. (2002), comprovou a existência de uma relação significativa entre a captação máxima de oxigênio (VO$_2$ máx) e a adiposidade. Uma explicação para tal fato pode ser justificada através da industrialização, do desenvolvimento econômico e a globalização dos mercados, provocaram alterações profundas nos estilos de vida do cidadão comum, principalmente no que se refere, aos regimes alimentares, consumo de tabaco e sedentarismo. Acrescenta-se a prática regular da atividade física como um fator que poderá contribuir de forma significativa para um estilo de vida mais saudável, mas vários resultados têm demonstrado a manutenção de baixos índices de adesão da população em geral (Souza & Duarte, 2005).

Devido à relação direta do VO$_2$ máx com a obesidade se explica a necessidade do treinamento físico para obter melhora do VO$_2$ máx. Pois através de um aumento do VO$_2$ máx, próximo dos valores normais, consegue-se um melhor condicionamento
cardiorrespiratório reduzindo assim riscos de doenças cardíacas, respiratórias, entre outras.

Em relação à frequência cardíaca Amoretti (2001), diz existir uma relação linear entre o consumo máximo de oxigênio e a frequência cardíaca durante o esforço. A frequência cardíaca atingida no esforço submáximo e no máximo diminui com a idade, mas os coeficientes da relação entre idade e a frequência cardíaca máxima são médios. Marcondes (1999), salienta que a frequência cardíaca é responsável pela maior parte do aumento do débito cardíaco durante o exercício. Sendo aumenta linearmente com a carga de trabalho e a captação de oxigênio. Os aumentos de frequência cardíaca ocorrem primeiramente à custa do tempo diastólico e não do sistólico. A resposta da frequência cardíaca ao exercício é influenciada por vários fatores, inclusive idade, condicionamento físico e aumento de peso. Apesar da frequência cardíaca estar relacionada ao exercício e ao aumento de peso, nos indivíduos avaliados não houve diferença significativa dos valores da frequência cardíaca entre os grupos com diferentes estados nutricionais submetidos ao esforço.

Uma das limitações deste estudo foi a mensuração do \(\text{VO}_2 \text{ máx} \) de forma indireta impossibilitando obter o valor exato do \(\text{VO}_2 \text{ máx} \). O índice de massa corpórea possui a limitação de ser pouco descritivo quanto à distribuição de tecido adiposo muscular de um indivíduo. Os métodos de avaliação da distribuição de gordura corporal, embora eficazes, não foram avaliados apresentando-se como uma importante limitação deste estudo.
5.0 CONCLUSÕES

O presente estudo demonstrou o comportamento das variáveis antropométricas pressão arterial sistólica, pressão arterial diastólica, frequência cardíaca e consumo máximo de oxigénio (VO$_2$ máx) entre homens de diferentes estados nutricionais.

Os resultados mostraram que indivíduos do sexo masculino apresentam maiores valores antropométricos de pressão arterial sistêmica e VO$_2$ máx quando comparado com indivíduos eutróficos e obesos. O grupo sobrepeso não apresentou diferença significativa em relação aos eutróficos e sobrepeso.

Devido a avaliação de VO$_2$ máx de forma indireta impossibilitando a o valor exato do VO$_2$ máx e a não avaliação da porcentagem de gordura dos indivíduos, sugere-se novos estudos para identificar e comparar o poder desses indicadores antropométricos de obesidade.
REFERÊNCIAS

ANEXO A

FICHA DE COLETA DE DADOS

TESTE ERGOMÉTRICO: PROTOCOLO ELLESTAD

<table>
<thead>
<tr>
<th>NOME:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA DE NASCIMENTO:</td>
<td></td>
</tr>
<tr>
<td>PESO:</td>
<td></td>
</tr>
<tr>
<td>ALTURA:</td>
<td></td>
</tr>
<tr>
<td>IMC:</td>
<td></td>
</tr>
<tr>
<td>FC repouso:</td>
<td></td>
</tr>
<tr>
<td>FC máx:</td>
<td></td>
</tr>
<tr>
<td>PAS inicial:</td>
<td></td>
</tr>
<tr>
<td>PAS máx:</td>
<td></td>
</tr>
<tr>
<td>PAD inicial:</td>
<td></td>
</tr>
<tr>
<td>PAD máx:</td>
<td></td>
</tr>
<tr>
<td>DURAÇÃO TESTE:</td>
<td></td>
</tr>
<tr>
<td>DISTANCIA PERCORRIDA:</td>
<td></td>
</tr>
<tr>
<td>VO₂ máx</td>
<td></td>
</tr>
<tr>
<td>OBS:</td>
<td></td>
</tr>
</tbody>
</table>
ANEXO B

Termo de Consentimento Livre e Esclarecimento

O aumento de peso em indivíduos adultos vem se tornando cada vez mais freqüente, preocupando pesquisadores de todo o mundo. As pessoas com sobrepeso estão mais sujeitas a se tornarem obesas e apresentarem complicações como: hipertensão arterial, infarto, acidente vascular encefálico, entre outros.

Estamos realizando uma pesquisa que tem como objetivo verificar o comportamento das variáveis antropométricas PAS e PAD, FC e VO2 entre homens de diferentes estados nutricionais. É através das pesquisas que ocorrem avanços na saúde e sua participação é de fundamental importância.

Você será indicado a participar de um teste ergométrico realizado numa clinica de cardiologia. O teste consiste em caminhar numa esteira rolante, com aumento de velocidade e inclinação de rampa até atingir uma frequência cardíaca máxima ou até cansaço extremo, com todo o monitoramento necessário para coleta de dados.

Informamos que toda a pesquisa será feita preservando a identidade dos participantes. Estão garantidas todas as informações que você queira, antes durante e depois do estudo. A sua participação é voluntária. Você tem a liberdade de recusar a participar do estudo, ou se aceitar a participar, retirar seu consentimento a qualquer momento.

Todas as despesas necessárias para a realização da pesquisa não são de responsabilidade do avaliado.

Pela participação do estudo o avaliado não receberá nenhum valor em dinheiro.

Qualquer informação adicional poderá ser obtida através do meu telefone (41) - 9976-4156.
Termo de Consentimento

Eu, ___ abaixo assinado, portador de RG n°______________________________ li o texto acima e compreendi a natureza e objetivo do estudo ao qual fui convidado a participar. Confirmo que fui devidamente esclarecido sobre os motivos, os objetivos e os procedimentos desta pesquisa. Declaro que faço esta autorização de livre e espontânea vontade e que em nenhum momento eu me senti coagido a fazê-la.

A desistência de participar da pesquisa ou o não consentimento não trará nenhum prejuízo para mim.

Certifício estar ciente que o trabalho será realizado para fins de estudos científicos.

Assinatura legível do responsável _________________________________

Assinatura legível da testemunha (RG) ________________________________

Curitiba, ____ de___________________ de 2009.

Eu, Luciana da Rocha Pombo, aluna do curso de especialização em Fisiologia do Exercício, do Departamento de Educação Física, setor de Ciências Biológicas, Universidade Federal do Paraná certifico ter informado ao voluntário a ser avaliado que a utilização das informações obtidas será exclusivamente para fins de estudo científico.

Assinatura