UNIVERSIDADE FEDERAL DO PARANÁ

JACKSON RAFHAELL FRAGOSO

DESENVOLVIMENTO DE SISTEMA DE MEDIDA PARA DIAGNÓSTICO DE ARBORESCÊNCIAS EM CABOS ISOLADOS DE MÉDIA TENSÃO

CURITIBA
2011
JACKSON RAFHAELL FRAGOSO

DESENVOLVIMENTO DE SISTEMA DE MEDIDA PARA DIAGNÓSTICO DE ARBORESCÊNCIAS EM CABOS ISOLADOS DE MÉDIA TENSÃO

Dissertação apresentada como requisito parcial à obtenção de grau de Mestre. Área de concentração: Engenharia e Ciência dos Materiais, Programa de Pós-Graduação em Engenharia e Ciência dos Materiais - PIPE. Setor de Tecnologia, Universidade Federal do Paraná.

Orientador: Prof. Dr. Vitoldo Swinka Filho.

CURITIBA
2011
RELATÓRIO DE DEFESA DE DISSERTAÇÃO DE MESTRADO

Curitiba, 26 de agosto de 2011.

Prof. Dr. Vitoldo Swinka Filho
Orientador

Prof. Dr. Patrício Redolfo Impinissi
Examinador

Prof. Dr. Milton Domingues Michel
Examinador
AGRADECIMENTOS

Primeiramente a Deus.
Ao professor Dr. Vitoldo Swinka Filho pela orientação e condução do meu trabalho.
Ao colega Rafael Pires Machado pelas sugestões dadas.
As demais pessoas que de alguma forma contribuíram.
Ao pesquisador Dr. Edemir Kowalski pela oferta da bolsa de estudos.
Ao Instituto de Tecnologia para o Desenvolvimento - LACTEC pelo apoio financeiro e por ter cedido suas instalações e equipamentos.
SUMÁRIO

AGRADECIMENTOS .. iv
RESUMO ... vii
ABSTRACT ... viii
LISTA DE FIGURAS ... ix
LISTA DE TABELAS .. xii
LISTA DE SIGLAS ... xiii
LISTA DE SÍMBOLOS ... xiv

1 INTRODUÇÃO .. 1
1.1 OBJETIVOS .. 3
1.2 ESTRUTURA DA DISSERTAÇÃO .. 3

2 FUNDAMENTAÇÃO TEÓRICA ... 4
2.1 POLIETILENO .. 4
2.2 PROPRIEDADES ELÉTRICAS DO POLIETILENO .. 6
2.3 ESTRUTURA DE UM CABO DE MÉDIA TENSÃO DE XLPE 7
2.4 O FENÔMENO DE ARBORESCÊNCIA .. 7
2.4.1 Arborescências Úmidas ... 8
2.4.2 Morfologia e Formação das Arborescências Em Água 10
2.4.3 Arborescência Elétrica .. 12
2.5 TÉCNICAS DE DIAGNÓSTICO DE ARBORESCÊNCIAS 15
2.5.1 Método Do Fator De Perdas Dielétricas ... 15
2.5.2 Método Da Potência Dissipada .. 17
2.5.3 Método Da Medição Da Tensão De Retorno .. 19
2.5.4 Método Da Medição Da Resistência Da Isolação .. 21
2.5.5 Método Da Componente Contínua Ou Componente DC 21
2.6 O MÉTODO DAS CORRENTES HARMÔNICAS ... 25
2.6.1 Modelagem Matemática De Arborescências Úmidas 28
2.6.2 Modelagem Matemática Para Sistema RC Série .. 28
2.6.3 Modelagem Matemática Por Diodos ... 29
2.6.4 Modelagem Matemática Por Regiões Degradadas 30
2.7 MEDIÇÃO DA CORRENTE DE PERDAS ... 34
2.7.1 Método do Ajuste por Resistência Elétrica ... 34
2.7.2 Método do Ajuste por Ponte Capacitiva ... 34

3 DESENVOLVIMENTO EXPERIMENTAL .. 36
3.1 REPRESENTAÇÃO POR ELEMENTOS CIRCUITAI S CONCENTRADOS PARA UM CABO ISOLADO EM XLPE 36
3.2 SISTEMA DE MEDIDAS .. 39
3.3 DESCRIÇÃO DO FUNCIONAMENTO DO AMPLIFICADOR DE CORRENTE E DO GERADOR DE CORRENTE CAPACITIVA 40
3.3.1 Amplificador de Corrente STANFORD RESEARCH SYSTENS MODEL SR570 ... 40
3.3.2 Circuito Gerador De Corrente Capacitiva ... 42
3.4 MONTAGEM DO ARRANJO EXPERIMENTAL ... 44
3.5 RESULTADOS OBTIDOS .. 44
3.5.1 Calibração Do Sistema ... 45
3.5.2 Análise Das Amostras De Cabos .. 46

4 DESENVOLVIMENTO DO PROTÓTIPO .. 49
4.1 CIRCUITO AMPLIFICADOR DE CORRENTE 49
4.2 DESCRIÇÃO DO ALGORITMO COMPUTACIONAL 51
4.3 RESULTADOS OBTIDOS ... 53
4.3.1 Limite Da Técnica ... 53
4.3.2 Cálculo Da Corrente Resistiva ... 58
4.3.3 Testes Utilizando Cabos Isolados Com XLPE 59

5 CONCLUSÃO .. 68
5.1 TRABALHOS FUTUROS ... 70
REFERÊNCIAS ... 71

APÊNDICE ... 74
RESUMO

Os cabos isolados em polietileno entrecruzado reticulado (XPLE) quando em operação estão sujeitos a degradação da sua isolação. Um dos principais fenômenos deste envelhecimento é conhecido como arborescência úmida (water tree), a qual pode causar à ruptura dielétrica prematura do cabo. Neste trabalho será utilizada a técnica da análise das componentes harmônicas da corrente elétrica de perdas, estando esta corrente relacionada à detecção de arborescências úmidas. Para medir as componentes harmônicas, foram estudadas duas técnicas. A técnica digital, a qual consiste em adquirir a corrente elétrica de perdas na blindagem do cabo, e usando um amplificador de corrente esse sinal é adquirido por uma placa de aquisição de dados. Os dados coletados pela placa foram analisados por meio de um método computacional, que permite obter as componentes harmônicas e, consequentemente, o estado de degradação da isolação em XLPE. A técnica analógica, que consiste em enviar um sinal capacitivo, gerado por um circuito eletrônico, à blindagem do cabo, a fim de anular a componente capacitiva da corrente total que percorre a blindagem, resultando apenas na corrente de perdas. As duas metodologias foram capazes de separar a corrente de perdas do cabo, sendo que a metodologia analógica se mostrou mais efetiva para realizar o diagnóstico.

Palavras chaves: arborescências úmidas, cabos isolados em polietileno, instrumentação, correntes harmônicas.
ABSTRACT

The cross-linked polyethylene (XPLE) cable when in operation are subject to deterioration of its insulation. A major phenomenon that contributes to aging process is known as water tree, which can cause premature rupture of the cable dielectric. In this work, the technique called Harmonic Analysis of the electric current losses was applied to detect water tree presence. To measure the harmonic components, two techniques were studied. The first one is a digital technique where a current amplifier is connected to the cable shield and output signal is acquired by a data acquisition board. The acquired data is analyzed using a computational method which gives the harmonic components and consequently the state of degradation of XLPE insulation. The second one is analog technique where a capacitive signal, generated by electronic circuit, is add to the cable shield in order to cancel the capacitive component of the total current that flows through the shield, resulting only in current losses. Both methods were able to separate the current cable losses, and the analog method was more effective to detect the harmonic component.
LISTA DE FIGURAS

FIGURA 1 - COMPARAÇÃO ENTRE REDES ELÉTRICAS [1]................................. 1
FIGURA 2 - REAÇÃO DE POLIMERIZAÇÃO DE ETILENO [14].......................... 5
FIGURA 3 - MODELO DA ESTRUCTURA DO POLIETILENO - ESFERAS ESCURAS REPRESENTAM ÁTOMOS DE CARBONO E AS ESFERAS CLARAS ÁTOMOS DE HIDROGÊNIO [15].. 6
FIGURA 4 - ESQUEMA DE UM CABO ISOLADO COM XPLE [18].................... 7
FIGURA 5 - MICROGRAFIA DE UMA "BOW TIE TREE" NUMA AMOSTRA DE ISOLAMENTO DE XLPE [26]... 9
FIGURA 6 - MICROGRAFIA DE UMA "VENTED TREE" NUMA AMOSTRA DE ISOLAMENTO DE XLPE [3]... 9
FIGURA 7 - MICROGRAFIA DE UMA "VENTED TREE" NUMA AMOSTRA DE ISOLAMENTO DE XLPE [5]... 10
FIGURA 8 - ARBORESCÊNCIA ELÉTRICA INDUZIDA POR UM ELETRODO [5]... 13
FIGURA 9 - ARBORESCÊNCIA EM ÁGUA SE CONVERTENDO EM ARBORESCÊNCIA ELÉTRICA [5]... 13
FIGURA 10 - DIAGRAMA VETORIAL DA CORRENTE FLUINDO NA ISOLAÇÃO [10]... 16
FIGURA 11 - REPRESENTAÇÃO DA ISOLAÇÃO DO CABO [2].......................... 17
FIGURA 12 - DIAGRAMA FASORIAL, CORRESPONDENTE A FIGURA 11...... 18
FIGURA 13 - REPRESENTAÇÃO ESQUEMATICA DE UMA MEDIDA DE TENSÃO DE RETorno [18]... 20
FIGURA 14 - TENSÃO APLICADA AO CABO E CORRESPONDENTE CORRENTE DE FUGA NA PRESENÇA DE ARBORESCÊNCIAS [3, 31]...... 22
FIGURA 15 - RELAÇÃO ENTRE A DENSIDADE DAS ARBORESCÊNCIAS E A DC COMPONENTE [31]... 23
FIGURA 16 – RELAÇÃO ENTRE O COMPRIMENTO DAS ARBORESCÊNCIAS E A DC COMPONENTE [31]... 23
FIGURA 17 – RELAÇÃO ENTRE A RESISTÊNCIA DE ISOLAÇÃO E A DC COMPONENTE [31]... 23
FIGURA 18: FORMA DE ONDA DA CORRENTE DE PERDAS PARA UM CABO DA CLASSE 22 KV [12]... 25
FIGURA 19 - A – LIVRE DE ARBORESCÊNCIAS, B - 3 kV/100 HORAS, C – 3 kV/300 HORAS E D – 3 kV/500 HORAS [10]... 26
FIGURA 20 - CURVA CARACTERÍSTICA V-I DE ARBORESCÊNCIAS [12]........ 27
FIGURA 21 - CIRCUITO EQUIVALENTE DA CORRENTE DE PERDAS NO ISOLAMENTO DE UM CABO, COM ARBORESCÊNCIAS [12].................. 28
FIGURA 22 - CIRCUITO EQUIVALENTE DA CORRENTE DE FUGA NO ISOLAMENTO DE UM CABO, COM ARBORESCÊNCIAS [21].................. 30
FIGURA 23 - MODELO PARA UMA AMOSTRA DEGRADADA POR ARBORESCÊNCIAS ÚMIDAS [9, 36]... 31
FIGURA 24 - CIRCUITO EQUIVALENTE PARA UMA AMOSTRA DEGRADADA POR ARBORESCÊNCIAS ÚMIDAS [9, 36]... 32
FIGURA 25 - DIAGRAMA PARA MEDIR A CORRENTE DE PERDAS [9, 36, 37]... 34
FIGURA 26: CIRCUITO PARA MEDIDA DA CORRENTE DE FUGA [11]...... 35
FIGURA 54 - PAINEl DE CONTROLe DO SOFTWARE – RESULTADO DA CALIBRAÇÃO USANDO UM CAPACITOR – FONTE: Autor................................. 61
FIGURA 55 – FOTO DA MONTAGEM DO ARRANJO EXPERIMENTAL – FONTE: Autor... 62
FIGURA 56 - MONTAGEM DO ARRANJO EXPERIMENTAL – FONTE: Autor... 62
FIGURA 57:DESENHO ESQUEMÁTICO - RESISTOR DE 100MΩ EM PARALELO COM O CABO – FONTE: Autor.. 63
FIGURA 58: FOTO - RESISTOR DE 100MΩ EM PARALELO COM O CABO – FONTE: Autor.. 63
FIGURA 59 - TESTE UTILIZANDO UM RESISTOR DE 100MΩ EM PARALELO COM A AMOSTRA DE CABO NOVO – FONTE: Autor................ 64
FIGURA 60 - RESULTADO PARA O TESTE REALIZADO COM A AMOSTRA DE CABO NOVO – FONTE: Autor.. 65
FIGURA 61 - RESULTADO PARA O TESTE USANDO O CABO ENVELHECIDO 1 – FONTE: Autor... 66
FIGURA 62 - RESULTADO PARA O TESTE USANDO O CABO ENVELHECIDO 2 – FONTE: Autor... 66
FIGURA 63 – DIAGRAMA DE BLOCOS – AQUISSIÇÃO DOS DADOS - FONTE: Autor.. 75
FIGURA 64: DIAGRAMA DE BLOCOS – PARTE A – SUBTRAÇÃO DOS SINAIS – LOOP - FONTE: Autor.. 76
FIGURA 67- DIAGRAMA DE BLOCOS - FONTE: Autor............................ 80
LISTA DE TABELAS

TABELA 1: PROPRIEDADES DO XLPE E DO PE [16] 6
TABELA 2: ALGUNS VALORES PARA O ÂNGULO DE PERDAS PARA
CABOS DA CLASSE 6,6 KV [34] .. 17
TABELA 3: CRITÉRIO PARA DIAGNÓSTICOS DE CABOS [34] 24
TABELA 4: RESULTADOS UTILIZANDO CIRCUITO TESTE. FONTE: O autor.
.. 55
TABELA 5: RESULTADOS UTILIZANDO CIRCUITO TESTE COM DIODOS.
FONTE: O autor. .. 57
TABELA 6: RESULTADOS OBTIDOS NOS TESTES USANDO CABOS 67
LISTA DE SIGLAS

FFT – Transformada rápida de Fourier.
HDPE - Polietileno de alta densidade.
LDPE - Polietileno de baixa densidade.
PE - Polietileno.
RDA - Redes de distribuição áreas
RDS - Redes de distribuição subterrâneas
TR-XLPE - polietileno entrecruzado reticulado com aditivos que impedem a formação de arborescências (conhecido como Tree Retardant).
XPLE - Polietileno entrecruzado reticulado.
LISTA DE SÍMBOLOS

X_c - reatância capacitiva.
f - freqüência de operação.
Ca - capacitância da amostra.
i - corrente elétrica no cabo.
U - tensão.
$\tan \delta$ - tangente delta
μ - dipolo induzido.
q - módulo da carga elétrica.
l - distância que separa as cargas.
P - polarização elétrica induzida.
\vec{D} - deslocamento elétrico.
E - campo elétrico.
χ - susceptibilidade elétrica.
ε_0 - permissividade do vácuo.
I_{perdas} - corrente dissipativa ou corrente de perdas
I_c - corrente capacitiva
I_f - corrente de fuga.
I_p - parcela da corrente referente as perdas pelo efeito Joule.
R_i - resistência da isolação.
V_i - tensão fase - neutra aplicada ao cabo.
ΔP - potência dissipada
I_{WT} - corrente de fuga.
V_R - tensão no resistor R.
k - constante.
V - tensão na fonte.
R - resistência.
C - capacitância.
I_{arb} - corrente de fuga devido as arborescências.
k_{arb} - constante relacionada com o nível de degradação em que se encontra o cabo.

$V_d(t)$ - tensão na região degradada.

$V(t)$ - tensão na fonte.

G_2 - condutância.

S - área por onde a corrente circula, ou a área do condutor.

ε_0 - permissividade elétrica do vácuo.

ε_{r2} - permissividade relativa da região com arborescências.

$i(t)$ - corrente total que flui pela isolação.

σ_0 - condutividade da região d_3.

J_{G2} - densidade de corrente

q_2 - carga elétrica em

I_X - corrente que flui em uma amostra de cabo com degradação.

I_S - corrente que flui em um capacitor padrão.

I_{S2}' - corrente de fuga devido às arborescências.
1 INTRODUÇÃO

No Brasil 97% das redes de distribuição de energia são aéreas (RDA), formadas por postes, condutores e acessórios. Esta configuração de rede polui de forma visual as paisagens das cidades, tendo como atrativo seu baixo custo de instalação.

As redes subterrâneas são muito mais robustas quando comparadas com as redes aéreas, em contrapartida possuem um custo elevado para a instalação, mas um baixo custo de manutenção, diferentemente das redes do tipo aéreas que possuem alto custo de manutenção porque estão muito expostas às ações do meio ambiente [1].

Na Europa, quase todos os projetos de redes utilizam a configuração subterrânea na sua concepção. Além disso, pela facilidade de instrumentação esta configuração de rede é considerada moderna, segura e traz muitos benefícios, tais como segurança, confiabilidade e economia para as comunidades onde estão instaladas. Quando se leva em conta os custos da poda de árvores, da interrupção do fornecimento de energia, dos custos sociais com acidentes, fica evidente que a médio prazo as redes subterrâneas são muito mais vantajosas, quando comparadas com as redes aéreas, tanto para quem instala quanto para quem as utiliza [1].

A FIGURA 1 mostra a comparação entre as redes áreas com as redes subterrâneas.

![Comparação entre redes elétricas](image-url)

FIGURA 1 - COMPARAÇÃO ENTRE REDES ELÉTRICAS [1]
Os problemas ligados à qualidade da energia elétrica podem ocasionar desde pequenas oscilações no funcionamento de equipamentos até cortes no abastecimento de energia. E grande parte dos problemas ligados com a qualidade da energia elétrica pode ser atribuída aos cabos elétricos que fazem à interligação geração/carga, estando sujeitos a operar fora das condições ideais [2, 3].

Materiais poliméricos, como o polietileno, têm sido utilizados como isolantes em cabos e acessórios para redes de distribuição de energia elétrica, por mais de quatro décadas. Os cabos de média tensão utilizados em redes subterrâneas são em sua maioria isolados com polietileno entrecruzado o XPLE que é um polímero semicristalino [4] que apresenta excelentes propriedades físicas e químicas, tais como: baixa permissividade (constante dielétrica) e fator de perdas (\(\tan \delta \)), elevada durabilidade, simples confecção, baixo preço, temperatura de operação podendo chegar até 90ºC [5, 6] e tem sido largamente utilizado em redes subterrâneas de distribuição de energia [2,4].

Quando em uso, o polietileno fica sujeito a muitos fatores que podem degradar a isolação do cabo. Em especial pode ser citada a água como um elemento altamente nocivo, podendo levar a ruptura dielétrica prematura do cabo trazendo prejuízos [7], já que devido à ação do campo elétrico em torno do cabo, a água penetra na isolação causando o fenômeno conhecido como arborescência úmida ou water tree.

Arborescência úmida é um fenômeno de degradação em cabos isolados com polietileno entrecruzado, que causa a falha na distribuição de energia elétrica. A presença desse tipo de defeito insere mecanismos de condução não linear na componente resistiva da corrente que percorre a isolação do cabo isolado em XLPE. Sendo assim, a corrente resistiva apresenta conteúdos harmônicos, os quais são indicativos da degradação do material isolante [8, 9, 10, 11, 12].

A motivação deste trabalho é fundamentada no fato em que existem muitos cabos isolados em operação que não possuem nenhum aditivo que venha a retardar o processo de formação de arborescências, e que necessitam de um método de diagnóstico para verificação de seu funcionamento.
Assim sendo, este trabalho tem como objetivo o desenvolvimento de um sistema que possibilite realizar diagnóstico de cabos isolados em polietileno utilizados em redes subterrâneas.

1.1 Objetivos

O objetivo geral desta dissertação é desenvolver um sistema de diagnóstico para ser aplicado em cabos isolados de média tensão com polietileno entrecruzado XLPE capaz de detectar a presença de arborescências úmidas.

Como objetivos específicos podemos citar:

a) Montar um arranjo experimental para determinar a eficiência da técnica das correntes harmônicas.

b) Desenvolver um protótipo de um sistema automatizado utilizando técnicas de aquisição e tratamento de sinais.

c) Utilizar ambiente de instrumentação virtual para aquisição, tratamento de sinais e apresentação do resultado.

1.2 Estrutura da dissertação

A dissertação está estruturada em capítulos conforme descritos a seguir.

O capítulo 2 apresenta a fundamentação teórica dos estudos realizados, começando com a descrição do polietileno e descresvendo a estrutura dos cabos isolados utilizados nas redes elétricas subterrâneas. Ainda descreve o mecanismo de degradação chamado de arborescência úmida, e algumas técnicas para avaliação de cabos degradados por esse fenômeno, dando maior ênfase ao método das correntes harmônicas.

O capítulo 3 apresenta o desenvolvimento experimental. Explica o funcionamento dos dispositivos que compõem o sistema que realiza a medida da corrente de perdas. Já o capítulo 4 descreve o protótipo montado cuja finalidade é automatizar o processo para obter a corrente de perdas.

O capítulo 5 traz a conclusão do trabalho, comentando sobre as vantagens e desvantagens do uso da técnica desenvolvida e os trabalhos futuros.
2 FUNDAMENTAÇÃO TEÓRICA

2.1 POLIETILENO

Em 1933, R.O. Gibson e outros químicos da *I.C.I.* (*Imperial Chemical Industries*), na Inglaterra, desenvolviam um programa de pesquisa sobre os efeitos de altas pressões em reações químicas. Uma das experiências consistia em submeter etileno e benaldeído a pressões elevadas (1000 atm a 1500 atm) e temperaturas em torno de 300 °C. Ao fim do experimento, foi encontrado nas paredes do reator, um sólido branco, que foi identificado como polietileno. Ao tentarem realizar novamente o experimento utilizando somente etileno, aconteceu um acidente em que uma violenta explosão destruiu o equipamento, devido às condições extremas (alta pressão e temperatura) [13].

Após ser projetado e construído um equipamento mais seguro capaz de suportar as altas pressões e temperatura, foi realizado um novo experimento, mas ao atingir certa temperatura, a pressão diminuiu subitamente devido a um vazamento e na tentativa de voltar à pressão anterior foi adicionado mais etileno no reator. Ao fim do experimento se constatou no reator, oito gramas de um sólido branco em forma de pó, que também foi identificado como polietileno e analisando os resultados, concluíram que o oxigênio contido na atmosfera atuou como catalisador, iniciado a reação de polimerização [13].

Mas na época de sua descoberta era um problema se obter o polietileno, devido às condições extremas que o etileno devia ser submetido. Desta forma muitas pesquisas foram feitas até que em 1953, na Alemanha o professor K. Ziegler conseguiu obter um polietileno à pressão atmosférica e a temperaturas, em torno de 50 °C a 70 °C, com o emprego dos catalisadores metálicos de titânio [14].

O polietileno (–CH\(_2\)–CH\(_2\)–) é um polímero sintético obtido pelo processo de polimerização do monômero etileno (C\(_2\)H\(_4\)). Nessa reação, a dupla ligação em cada molécula de etileno ‘abre’ e dois dos elétrons originalmente nessa ligação são usados para formar uma nova ligação simples C — C com duas
outras moléculas de etileno, de forma a se obter macromoléculas de massa molecular elevada (polímero) [14, 15]. A FIGURA 2 mostra esquematicamente a reação de polimerização.

![FIGURA 2 - REAÇÃO DE POLIMERIZAÇÃO DE ETILENO [14]](image)

Dependendo das condições impostas no processo de polimerização (adição de catalisadores, condições de temperatura e pressão), pode-se obter: polietileno de baixa densidade (LDPE) ou polietileno de alta densidade (HDPE).

Ligações entre átomos de carbono em cadeias vizinhas produzem uma rede de cadeias moleculares reticuladas, obtendo-se o polietileno reticulado (XLPE). Existem várias técnicas bem estabelecidas para promover a reticulação. Esta reticulação forma um grande número de ligações entre as cadeias do polímero, aumentando seu peso molecular e reduzindo a mobilidade entre estas cadeias [5, 15].

O polietileno entrecruzado possui uma estrutura composta por macromoléculas interligadas fortemente por ligações que compartilham o elétron de valência, é um polímero semicristalino, ou seja, possui parte cristalina e parte amorfa. A parte cristalina é uma organização das macromoléculas em planos cujas dimensões dependem do processo de produção [6].

A FIGURA 3, mostra o modelo da estrutura molecular do polietileno, que se apresenta como uma cadeia linear constituída pela repetição do monômero-\((\text{CH}_2)\), finalizada com grupos de \((\text{CH}_3)\). O comprimento das ligações de carbono é de cerca de 0,154 nm e ângulo de ligação entre eles é de 109,5° [14, 15].
Na TABELA 1 é possível verificar algumas propriedades do XLPE e do polietileno termoplástico (PE).

TABELA 1: PROPRIEDADES DO XLPE E DO PE [16]

<table>
<thead>
<tr>
<th>Características</th>
<th>Tipo de Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>Peso específico (g/cm²)</td>
<td>0,935</td>
</tr>
<tr>
<td>Resistência à tração (kgf/cm²)</td>
<td>1,2 a 1,5</td>
</tr>
<tr>
<td>Alongamento (%)</td>
<td>500 a 700</td>
</tr>
<tr>
<td>Temperatura de operação (°C)</td>
<td>70</td>
</tr>
<tr>
<td>Temperatura de sobrecarga (°C)</td>
<td>90</td>
</tr>
<tr>
<td>Temperatura mínima admisível (°C)</td>
<td>-60</td>
</tr>
<tr>
<td>Temperatura de curto-circuito (°C)</td>
<td>130</td>
</tr>
<tr>
<td>Rigididade dielétrica (kV/mm)</td>
<td>35 a 50</td>
</tr>
<tr>
<td>Resistividade elétrica volumétrica (Ω.cm)</td>
<td>10^{12}</td>
</tr>
<tr>
<td>Constante dielétrica</td>
<td>2,3</td>
</tr>
<tr>
<td>Tang δ (%)</td>
<td>0,03</td>
</tr>
</tbody>
</table>

2.2 PROPRIEDADES ELÉTRICAS DO POLIETILENO

O polietileno é um excelente isolante elétrico, com fator de dissipação na ordem de 10^{-4} (ver TABELA 1) apresentando uma pequena condução iônica e eletrônica. A iônica é atribuída a impurezas introduzidas durante o processo de polimerização, já a eletrônica é atribuída ao alto campo elétrico que faz com que cargas migrem do eletrodo para dentro do polietileno. Sendo um material apolar a condução eletrônica predomina sob a ação de campos elétricos moderados, o que leva a uma constante dielétrica pequena e quase independente da temperatura e da freqüência do campo elétrico [17].
2.3 ESTRUTURA DE UM CABO DE MÉDIA TENSÃO DE XLPE

Os cabos de média tensão apresentam a seguinte estrutura: núcleo condutor, camada semicondutora interna e externa, isolação de XLPE, blindagem metálica e proteção externa [5,19,20], como representado na FIGURA 4.

![Diagrama de um cabo isolado com XLPE](image)

FIGURA 4 - ESQUEMA DE UM CABO ISOLADO COM XPLE [18].

O condutor tem por finalidade transmitir a energia elétrica, as camadas semicondutoras possuem a função de uniformizar o campo elétrico. A proteção externa tem a finalidade de sustentar e proteger os demais elementos contra esforços mecânicos, contra a penetração de água e de outros agentes externos. Esta pode ser composta por uma única camada extrudada, ou por uma combinação de reforços mecânicos, como fios, fitas metálicas ou capas metálicas. A blindagem metálica possui a função de confinar o campo elétrico e, quando convenientemente aterrada, fornece segurança durante a operação do cabo. Serve também, na maioria dos casos, como caminho para correntes de curto-circuito [19, 20].

2.4 O FENÔMENO DE ARBORESCÊNCIA

Quando em uso contínuo, os cabos de isolação ficam submetidos a diversos fatores que podem levar a degradação da isolação, entre os quais é
possível citar: campo elétrico aplicado, freqüência de operação, gradiente de temperatura, esforços mecânicos e umidade. Esses fatores atuando individualmente ou de forma combinada podem levar a isolação em XLPE do cabo a um processo de deterioração das suas propriedades elétricas e mecânicas, e com a evolução destes fatores pode levar a ruptura dielétrica prematura do sistema de isolação (2, 21, 22).

As arborescências foram inicialmente identificadas no final da década de 60 e é principal fenômeno de degradação em materiais isolados em polietileno, o qual é a base do componente isolante utilizado em cabos subterrâneos de distribuição de energia. O fenômeno recebe o nome de arborescência devido ao formato geométrico das ramificações geradas pelo campo elétrico aplicado em formas de árvores e pode ser dividido em duas naturezas: arborescências úmidas (water tree) e arborescências elétricas (electrical tree). [2, 23, 24, 25]

2.4.1 Arborescências úmidas

As arborescências úmidas degradam a isolação dos cabos reduzindo a rigidez dielétrica. Surgem devido à ação da umidade e do campo elétrico, tendo como consequência a difusão de moléculas de água na estrutura do material isolante do cabo. Com a entrada de água na isolação começam a surgir lentamente canais micrométricos que crescem na mesma direção do campo elétrico e são compostos por um eixo principal e suas ramificações. O seu crescimento ocorre sem apresentar descargas detectáveis, e pode surgir devido a problemas causados durante a fabricação do cabo, como vazios ou imperfeições, no qual o campo elétrico não é homogêneo [5, 6, 22].

Levando em conta que as arborescências são um meio dielétrico de maior permissividade que o meio que está em volta, o seu surgimento modifica a distribuição do campo elétrico local, fazendo com que aumente no ponto do defeito produzindo a ruptura dielétrica pontual, ocasionando o crescimento do defeito no isolamento polimérico. Ainda quanto maior o teor de água infiltrada no isolamento maior será a permissividade, levando ao aumento do risco da ocorrência da ruptura dielétrica, uma vez que ela é diretamente proporcional ao teor de água na isolação [22].
As arborescências úmidas são classificadas em dois tipos: as "bow tie tree" e as "vented tree". As "bow tie tree" possuem a forma de uma gravata, conforme a FIGURA 5 e aparecem devido às impurezas contidas no XLPE enquanto as "vented tree", ver FIGURA 6 e FIGURA 7, são provenientes da umidade do meio ambiente. O crescimento das "bow tie tree" ocorre no interior da isolação do cabo a partir das impurezas encontradas no XLPE e crescem a partir de um ponto central e em sentidos opostos seguindo a coordenada radial. O crescimento da "vented tree" ocorre a partir da fronteira do XLPE e das camadas semicondutora interna e externa, fazendo com que a água penetre na isolação a partir da ação do campo elétrico e são mais nocivas que a "bow tie tree" [3,5,6,18].
2.4.2 Morfologia e formação das arborescências em água

Ainda não se chegou a um consenso a respeito da morfologia e sobre a formação e o crescimento das arborescências úmidas. Segundo E. MOREAU e W. Nichols [27, 28], existem dois modelos para explicar a morfologia. Um considera que elas são formadas por canais contínuos, enquanto o outro modelo diz que elas são constituídas por uma alta densidade de micros vazios não conectados. Ainda alguns autores consideram a ocorrência dos dois modelos simultaneamente para explicar a morfologia.

A difusão da água, oxidação, migração de íons sob a ação de campo elétrico e forças eletromecânicas, são processos que favorecem a formação e o desenvolvimento das arborescências. As pesquisas indicam que uma complexa combinação desses processos acorre simultaneamente, antes e durante o seu crescimento e que o domínio de um processo sobre o outro depende da morfologia do material [25, 27].

Existem atualmente três modelos que tentam explicar como é a formação e o crescimento das arborescências: mecânico, elétrico e a químico. O modelo mecânico sugere que vazios preenchidos com água são formados por forças mecânicas induzidas pelo campo elétrico. O modelo elétrico, afirma que o parâmetro principal é a tensão que pode iniciar o crescimento das arborescências. Já o modelo químico, íons e oxidação representam os
principais agentes. Mas, as arborescências são os efeitos da combinação desses processos [29].

Os sais dissolvidos na água são um dos fatores que contribuem para a formação das arborescências, uma vez que o aumento de íons presente na água tende a aumentá-las. Algumas pesquisas indicam que os sais são os pontos de partida para a formação das arborescências. Outro fator que pode ser citado é a dieletroforese (fenômeno em que uma força é exercida sobre uma partícula dielétrica quando é submetida a um campo elétrico não uniforme) que é considerado como um fator importante na geração e crescimento da arborescência. Neste mecanismo um pequeno corpo de maior permissividade que o meio a sua volta, como uma gotícula de água num dielétrico, apresenta um dipolo induzido e é atraída no sentido da maior intensidade do campo [25, 27].

A freqüência de operação dos cabos exerce grande influência no processo de formação das arborescências do tipo bow-tie [3]. Cabos submetidos a tensões com freqüência de 500 Hz, tiveram um aumento de 61% no tamanho das arborescências em relação às aquelas originadas de tensões com 50 Hz. Os estudos mostram também que a freqüência não contribui para o desenvolvimento de vented-trees. Dessa forma, pode-se esperar que redes que contenham altos índices de distorção harmônica de tensão, os cabos nelas instalados estejam sujeitos a níveis de degradação superiores àqueles encontrados em sistemas onde a tensão seja puramente senoidal [3].

A eletroosmose é também um mecanismo a ser considerado, onde íons são deslocados para o interior ou exterior de um dielétrico sob a ação de um campo alternado, sendo esse o mecanismo responsável pela penetração da água na isolação dos cabos de XLPE. Outro fator que pode ser considerado na formação das arborescências é o calor gerado pelo efeito Joule, devido à aplicação de campo elétrico alto sobre o material dielétrico [25].

A elevação de temperatura altera a solubilidade tanto da água quanto da isolação, permitindo que a umidade existente em volta do cabo penetre mais facilmente. Desta forma o desenvolvimento do fenômeno é acelerado até que ocorra um desequilíbrio de tal maneira que o aumento de temperatura seja tão
significativo que haja uma evaporação excessiva no interior do polímero, com isso criam-se micro-fissuras devido à alta pressão do vapor gerado [3, 25, 27].

Segundo algumas pesquisas, a oxidação também é um agente causador das arborescências em água. O desenvolvimento de hidroperóxidos conduz a uma decomposição do polímero sendo acelerada na presença de íons metálicos. Desta forma foi observado um alto índice de oxidação em cabos com arborescências, com seis a oito anos em serviço [25, 30].

2.4.3 Arborescência elétrica

A arborescência elétrica (electrical tree) foi descoberta em 1912 por Rayner, que analisou a influência da ruptura dielétrica na presença de descargas parciais em isolantes com papel e óleo. Geralmente a direção de propagação da arborescência elétrica tem o mesmo sentido do campo, sendo que sua duração pode variar de segundos, até alguns minutos.

O crescimento da arborescência elétrica é acompanhado por descargas parciais, diferentemente das arborescências úmidas que não provocam descargas parciais detectáveis, e sua presença pode ser mensurada sendo caracterizada pela geração de gás e luminescência [22].

A arborescência elétrica uma vez iniciada torna-se uma questão de dias ou semanas para que ocorra a ruptura do sistema de isolação, principalmente quando ocorrem impulsos produzidos por descargas atmosféricas. Na FIGURA 8 pode ser visto uma arborescência elétrica.

A electrical tree pode ser iniciada pela ação das descargas parciais em vazios ou inclusões na estrutura do material. Uma outra forma de ocorrência é a conversão de arborescência úmida em arborescência elétrica a qual pode ocorrer por dois processos. Um processo de conversão é quando ocorre um pulso de tensão elevado no cabo, por exemplo, um raio atingindo o cabo, carbonizando as ramificações das arborescências existentes, enquanto o outro consiste em uma injeção de carga na arborescência [31].
A injeção de cargas é causada pela tensão alternada no cabo, quando a tensão se encontra no semicírculo negativo, o núcleo condutor está em um potencial negativo, há cargas negativas penetrando na isolação. Enquanto no semicírculo positivo há cargas saindo da isolação, mas como a injeção de cargas depende da polaridade há um acúmulo de carga na arborescência intensificando o campo elétrico local, com esse fato ocorrem várias descargas que acabam criando um caminho composto por carbono [31]. Na FIGURA 9 é possível ver uma arborescência em água se convertendo em arborescência elétrica [5].

Atualmente já é possível retardar o aparecimento destes fenômenos com o uso de aditivos, que impedem as reações iônicas necessárias ao desenvolvimento das arborescências [32]. Os cabos isolados com polietileno entrecruzado reticulado com aditivos que impedem a formação de
arborescências são chamados de polietileno entrecruzado com *Tree Retardant* (TR – XLPE) [33]. Na década de 90, avanços na técnica de produção dos cabos melhoraram o que reduziu as falhas devido a estes fenômenos. Podem ser citados, como exemplos do avanço, a utilização de capas de polietileno de baixa densidade linear que mantém o meio mais seco e que aliado à utilização de compostos semicondutores superlimpos/superlisos, colaboraram no aumento da vida útil dos cabos de energia [22].

Estima-se que cabos isolados com XLPE sem nenhum aditivo, tenham vida útil de 20 a 25 anos e os isolados com TR – XLPE uma vida média mínima de 40 anos, apresentando uma ótima relação custo benefício, e uma grande capacidade de melhorar os padrões de qualidade e segurança no fornecimento e maximização da rentabilidade na distribuição da energia elétrica [22].
2.5 TÉCNICAS DE DIAGNÓSTICO DE ARBORESCÊNCIAS

As arborescências são um fenômeno que pode provocar a ruptura dielétrica do cabo, interrompendo o fornecimento de energia. Para evitar que o cabo venha a apresentar a ruptura devido às arborescências, existem algumas técnicas para avaliar o estado dos cabos isolados com XLPE.

As principais técnicas de diagnóstico são: o método da corrente contínua de fuga ou CC, do fator de dissipação do dielétrico ou medida da tgδ, método da potência dissipada, medição da tensão de retorno, resistência da isolação e medição da componente contínua.

As pesquisas indicam que o uso de apenas um método para avaliar o estado da isolação deve ser evitado, pois cada técnica apresenta seus prós e seus contras. Desta forma é mais seguro utilizar combinações de vários métodos para analisar o estado do material dielétrico do cabo.

Os métodos podem ser separados em dois grupos: on-line ou off-line. No primeiro estão os métodos em que não é necessário desligar a rede, ou seja, o teste pode ser realizado com a linha energizada. Já o outro grupo necessita que o cabo esteja desligado da rede para que a avaliação seja feita. Devido à dificuldade de interromper o fornecimento de energia, o uso das técnicas on-line são preferidas pelas companhias de energia.

2.5.1 Método do Fator de Perdas Dielétricas

A corrente que flui na isolação de um cabo ideal em operação é apenas capacitiva e está adiantada da tensão em 90°. Mas nos cabos reais o ângulo é próximo a 90° e aparece uma pequena corrente de perdas em fase com a tensão, que corresponde as perdas dissipativa da isolação. Essa diferença que aparece no ângulo é chamada de ângulo de perdas da isolação. O fator de perda dielétrica ou ângulo de perdas \((tg\delta)\) é a relação entre a corrente de perdas \((I_{perdas})\) e a corrente capacitiva \((I_c)\), sendo um indicador na avaliação do estado da isolação do cabo, uma vez que o ângulo de perdas é um valor conhecido, fornecido pelo fabricante do cabo. A FIGURA 10 mostra o diagrama vetorial da corrente fluindo na isolação de um cabo [10].
A equação (1) mostra a relação entre o ângulo de perdas, a corrente de perdas e a corrente capacitiva.

\[I_c \cdot \text{tg} \delta = \frac{I_{\text{perdas}}}{I_c} \]

Com o aumento da deterioração na isolação, a \(\text{tg} \delta \) também tende a aumentar. Desta forma mostra-se um método eficaz quando a deterioração é uniforme ao longo do cabo. Porém, pode levar a interpretações errôneas quando a degradação é não uniforme, uma vez que a \(\text{tg} \delta \) é um valor médio e pode acontecer que em algum ponto específico no material dielétrico, o fator de perdas dielétricas esteja alto (acima do valor limite determinado pelo fabricante), o que pode ocasionar o rompimento do cabo no ponto específico em questão [10].

Um fator importante em relação a esse método é que ele pode ser realizado com o cabo energizado (on – line) ou desligado (off – line), tornando o método muito utilizado. Os fatores que pesam contra ele são: o elevado tempo gasto na avaliação dos cabos, uma vez que o diagnóstico deve ser feito individualmente e as dificuldades enfrentadas para a realização da medida da corrente de perdas, já que ela é muito pequena na ordem de \(\mu \text{A} \). Na TABELA
2 é possível encontrar alguns resultados para a $\tan \delta$, para cabos da classe 6,6 kV [2, 3, 10, 34].

TABELA 2: ALGUNS VALORES PARA O ÂNGULO DE PERDAS PARA CABOS DA CLASSE 6,6 KV [34].

<table>
<thead>
<tr>
<th>$\tan \delta$ (valor fornecido)</th>
<th>Diagnóstico</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 % ou menos</td>
<td>Não apresenta deterioração</td>
</tr>
<tr>
<td>0,1% a 0,15%</td>
<td>Deteriorada, necessitando de cuidados especiais.</td>
</tr>
<tr>
<td>0,15% ou mais</td>
<td>Necessidade de substituição do cabo</td>
</tr>
</tbody>
</table>

2.5.2 Método da Potência Dissipada

Sendo a medida da $\tan \delta$ difícil de ser realizada devido ao fato da corrente de perdas ser muito pequena é necessário relacionar esse indicador com outro indicador que torne a tarefa mais fácil e confiável. Desta forma a $\tan \delta$ é relacionada com a potência ativa dissipada pela isolação dos cabos, pois estes dois indicadores estão fortemente relacionados [2]. Na FIGURA 11 é mostrada a representação circuital da isolação e na FIGURA 12 o diagrama fasorial correspondente a isolação de um cabo.

![FIGURA 11 - REPRESENTAÇÃO DA ISOLAÇÃO DO CABO [2]](image_url)
FIGURA 12 - DIAGRAMA FASORIAL, CORRESPONDENTE À FIGURA 11.

Onde I_f é corrente de fuga, I_p parcela da corrente referente às perdas pelo efeito Joule, I_c componente capacitiva, R_i resistência da isolação, X_c reatância capacitiva da isolação e V_1 tensão fase - neutro aplicada ao cabo.

Com base na tensão fase – neutro fornecida pela fabricante de cabo e a partir da FIGURA 12 (diagrama fasorial) é possível obter a corrente capacitiva da isolação I_c:

$$I_c = \frac{V_1}{X_c}$$

A reatância capacitiva apresentada na equação (2) é função da freqüência do sistema e da capacitância apresentada pela isolação do cabo. Levando em conta a hipótese em que a freqüência de trabalho das redes elétricas e que a capacitância dos cabos sejam constante, é possível afirmar que a corrente capacitiva será uma função da tensão no cabo. Considerando ainda que a tensão seja a nominal do cabo a corrente de fuga capacitiva do dielétrico será a nominal, assim a parcela ativa da corrente de fuga do dielétrico (I_p) pode ser obtida pelo diagrama fasorial da FIGURA 12 e será dada pela equação (3):

$$I_p = I_c \cdot \tan \delta$$
Substituindo a equação (3) na (4) e depois na equação (5), obtemos:

\[\Delta P = \frac{V_i^2}{R} \]

\[\Delta P = \frac{V_i^2 \ast \tan \delta}{X_c} \]

Levando em consideração que cada material possui uma \(\tan \delta \) máxima (encontrada no catálogo do fabricante) a qual corresponde a uma máxima potência ativa dissipada admissível pela isolação, é possível afirmar que se \(\tan \delta \) estiver superior ou muito próximo aos valores máximos permitidos pelo fabricante, a potência também estará uma vez que ambas são duas grandezas proporcionais. Sempre que ocorrer variação na potência dissipada é um sinal de que as propriedades dielétricas do material estão se modificando. Deste modo, é plausível afirmar que a potência dissipada pode ser utilizada para diagnosticar o estado de degradação do dielétrico, se mostrando um método mais fácil de ser utilizado do que a medida da \(\tan \delta \) [2, 34].

Um ponto negativo deste método é que, não é possível distinguir se o resultado vem de uma deterioração devido a muitas arborescências de pequeno comprimento ou de uma degradação em decorrência de poucas, porém longas arborescências, as quais apresentam maior risco para a isolação [2].

2.5.3 Método da Medicação da Tensão de Retorno

A tensão de retorno aparece como o resultado da formação de uma polarização em função do tempo envolvendo dipolos e carga espacial. Ao aplicar um campo elétrico em um material dielétrico, os dipolos deste material deixam sua posição de equilíbrio e ocorre um mecanismo de polarização
eletrônica, que pode ser de natureza: eletrônica, atômica, dipolar, interfacial e por cargas espaciais.

Essa técnica possui a vantagem de não ser tão suscetível em relação a ruídos eletromagnéticos, o que é importante para a realização de medidas em campo, mas apresenta a desvantagem que as medidas de tensão de retorno são afetadas pela umidade e pela temperatura.

A FIGURA 13 mostra o que ocorre com a tensão durante o processo. Nesta figura a tensão é aplicada durante certo tempo (tc), tendo como função polarizar a amostra. A tensão é retirada, o que remove o campo elétrico na isolação. Por fim a amostra é colocada em curto circuito por um período determinado (td), que possui a função de retirar cargas livres no eletrodo. Sendo atribuída a essas cargas a medida da tensão residual [18]

![Figura 13 - Representação esquemática de uma medida de tensão de retorno][18]

Quando o campo elétrico é retirado, na condição de curto-circuito (ver FIGURA 13) partículas polarizadas não retornam imediatamente às suas posições de equilíbrio, mas sim após um determinado tempo de relaxação. Como resultado da despolarização da amostra se observa uma tensão de retorno em função do tempo, que pode ser relacionada com o nível de degradação da amostra.

Para a realização da medida, alguns passos devem ser seguidos [18], conforme pode ser observado na FIGURA 13.
1. Primeiramente a amostra a ser analisada deve ser energizada durante um determinado período (1 carga).
2. Curto – circuito da amostra por um determinado período (2 curto).
3. Medida da tensão de retorno por meio do eletrômetro (3 medição).

O método utiliza o fato que os cabos degradados apresentam tensões residuais maiores que as verificadas em cabos livres de defeitos. Já em relação às desvantagens da técnica, podem ser citados os seguintes fatos [2, 18]:

- O cabo deve estar off – line, ou seja, desligado.
- As medidas devem ser feitas separadamente, fazendo com que os testes sejam demorados e ainda exige a utilização de fontes de tensão contínua de grande porte.
- A medida é afetada quando existe a presença de carga residual na isolação.

2.5.4 Método da Medicação da Resistência da Isolamento

Com o aumento da degradação no cabo, a corrente de perdas também tende a aumentar e com isso a resistência do isolamento do cabo diminui. A medida da resistência do isolamento pode ser utilizada como um indicativo do grau em que a isolação se encontra. Ao apresentar um valor abaixo dos valores mínimos estabelecidos, este método indica que o isolamento está com suas propriedades dielétricas comprometidas [2, 3].

Esse método é considerado on–line, o que facilita o seu uso em regiões onde não é possível desligar a rede, mas é um teste que leva muito tempo para ser realizado porque as medidas devem ser realizadas uma de cada vez [2].

2.5.5 Método da Componente Contínua ou componente DC

Quando aplicada uma tensão alternada em cabos degradados principalmente por arborescências elétricas, pode ser observada uma pequena componente de corrente contínua (DC contínua) na corrente de fuga alternada que flui entre a superfície do condutor e a blindagem da isolação [34]. A FIGURA 14 mostra a tensão no cabo e a corrente de fuga alternada e sua
correspondente componente contínua. Conforme YAMAGUCHI [34] existem várias causas que levam a criação dessa componente contínua, e uma delas diz respeito a ação de retificação da corrente alternada.

FIGURA 14 - TENSÃO APLICADA AO CABO E CORRESPONDENTE CORRENTE DE FUGA NA PRESENÇA DE ARBORESCÊNCIAS [3, 31].

A magnitude e a polaridade da componente DC estão relacionadas com a deterioração da isolação do cabo. A sua medida possibilita estimar a densidade de arborescências. Na FIGURA 15 observa-se o aumento da densidade de arborescências com o aumento da componente DC, linearmente. Da mesma forma que é possível avaliar o comprimento das arborescências, como mostra a FIGURA 16, ainda é possível relacionar essa componente com a resistência de isolação, a FIGURA 17 mostra que quanto maior a componente DC menor a resistência de isolação [31].
FIGURA 15 - RELAÇÃO ENTRE A DENSIDADE DAS ARBORESCÊNCIAS E A DC COMPONENTE [31].

FIGURA 16 – RELAÇÃO ENTRE O COMPRIMENTO DAS ARBORESCÊNCIAS E A DC COMPONENTE [31].

FIGURA 17 – RELAÇÃO ENTRE A RESISTÊNCIA DE ISOLAÇÃO E A DC COMPONENTE [31].
A resistência de isolação e a DC componente se mostram ótimos indicadores para avaliar a degradação da isolação por arborescências [31].

Esse método exige que o cabo esteja energizado e possui uma boa precisão quando associado com o método para medida da $\tan \delta$. Um fator que dificulta o seu uso é o fato que a intensidade da componente contínua é muito baixa, na ordem de nA tornando sua medida muito complexa, exigindo equipamentos eletrônicos sofisticados. Na TABELA 3 podem ser visualizados alguns valores para a DC contínua, para cabos da classe 6,6 kV [2, 31, 34].

TABELA 3: CRITÉRIO PARA DIAGNÓSTICOS DE CABOS [34].

<table>
<thead>
<tr>
<th>DC contínua</th>
<th>Diagnóstico</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5 nA ou menor</td>
<td>Não apresenta deterioração</td>
</tr>
<tr>
<td>0,5 nA a 30 nA</td>
<td>Deteriorada, necessitando de cuidados especiais.</td>
</tr>
<tr>
<td>30 nA ou mais</td>
<td>Necessidade de substituição do cabo</td>
</tr>
</tbody>
</table>
2.6 O MÉTODO DAS CORRENTES HARMÔNICAS

Neste trabalho será utilizado o método das correntes harmônicas porque ele permite determinar o comprimento das arborescências existentes no cabo. Esse método consiste em analisar o módulo e a fase da corrente de perdas permitindo diagnosticar o estado da degradação do polímero para diferentes comprimentos de arborescências e baseia-se no fato de que cabos degradados com arborescências úmidas apresentam componentes não lineares na corrente dissipativa [10, 12, 35].

Yagi e Tanaka [12] afirmam que sobre uma tensão elétrica aplicada de forma puramente senoidal, a componente de perdas da corrente elétrica de fuga entre o condutor e a blindagem de um cabo com presença de arborescências apresenta um comportamento não linear. Este conteúdo não linear apresenta harmônicas, que podem ser analisadas via transformada de Fourier (FFT). A predominância no espectro de frequência é da componente de terceira ordem, podendo ser correlacionada com a ocorrência de arborescências.

A FIGURA 18 mostra um exemplo da forma de onda obtida de um cabo XPLE classe 22 kV degradado por arborescências [12].

![Figura 18: Forma de onda da corrente de perdas para um cabo da classe 22 kV](image)

Na FIGURA 18 pode ser verificado que a corrente de perdas possui uma alteração no pico da senóide. Esta alteração é característica de interferência por conteúdo harmônico.
A corrente de perdas total I pode ser dividida em duas contribuições por I_0 (componente sem considerar a degradação) e I_{arb} (devido à arborescência). Estas correntes elétricas estão associadas pela equação (7).

$$I = I_0 + I_{arb}$$

A corrente elétrica capacitiva I_0 pode ser obtida neste modelo usando um capacitor padrão. Segundo a Equação (7) I_0 pode ser subtraída da corrente de fuga total I resultando na corrente elétrica de perdas devido a arborescências I_{arb}. Esta componente de perdas I_{arb} pode ser estudada usando a transformada rápida de Fourier (FFT) obtendo as componentes harmônicas de forma separadas [12].

Na FIGURA 19 é mostrada a forma de onda obtida de fatias de cabos XLPE com espessura de 0,5 mm com arborescências geradas artificialmente.

![FIGURA 19 - A – LIVRE DE ARBORESCÊNCIAS, B - 3 kV/100 HORAS, C – 3 kV/300 HORAS E D – 3 kV/500 HORAS [10].](image)
Para produzir as arborescências, às fatias do cabo foram imersas em uma solução com 1 mol de NaCl e uma tensão de 3 kV e frequência de 1 kHz, durante um tempo estabelecido. Na FIGURA 19 ainda é possível observar que quanto maior foi o tempo de exposição das amostras ao agente agressivo, maior o nível de degradação atingida e em consequência, maior a distorção da corrente de fuga [10].

Sendo a tensão $V = V \sin \omega t$, a corrente de perdas é expressa pela equação (8).

$$I_{arb} = \sum_{n=1}^{\infty} I_n \sin(\omega t + \theta_n)$$

Onde $\theta_1 = 0$.

As distorções encontradas na FIGURA 18 e na FIGURA 19 são causadas pelo conteúdo harmônico presente (com predominância do terceiro harmônico) na corrente de perdas, devido a presença de arborescências. Ainda analisando a amplitude do terceiro harmônico obtido via Transformada Rápida de Fourier (FFT) é possível afirmar que com o aumento da deterioração por arborescências no cabo, verifica-se aumento na amplitude e na fase do terceiro harmônico. Deste modo estes indicadores podem ser utilizados com precisão para o diagnóstico e a avaliação de cabos degradados por arborescências úmidas [10, 11, 12].

A FIGURA 20 mostra a curva característica V-I obtida de uma amostra altamente degradada por arborescências, submetida a uma tensão puramente senoidal [12].

![Curva característica V-I de arborescências](image-url)
Na FIGURA 20, o aparecimento do conteúdo harmônico na corrente de perdas pode ser atribuído à existência de um elemento não linear capaz de gerar as distorções. Deste modo são atribuídas as arborescências o elemento responsável pelo comportamento não-linear na corrente de fuga.

2.6.1 Modelagem Matemática de Arborescências Úmidas

Existem modelos matemáticos que buscam representar o fenômeno da arborescência úmida e a corrente de perdas gerada por esse fenômeno. Os modelos tentam representar as arborescências em forma de um circuito elétrico.

2.6.2 Modelagem Matemática para sistema RC série.

Um circuito equivalente da isolação com arborescências é representado pela FIGURA 21.

Na FIGURA 21 o elemento capacitivo \(C_0 \) com o elemento resistivo \(R_0 \) em paralelo estão vinculados com a parcela do cabo ainda livre de arborescências e \(I_0 \) representa a chamada componente da corrente elétrica capacitiva. A corrente total de perdas é representada por \(I \) e a tensão na fonte é representada por \(V \). Em paralelo com estes elementos, está a resistência \(R \).
em série com o elemento com capacitância C que estão relacionados com a parte degradada do cabo. \(V_R \) e \(V_C \) representam a tensão no elemento resistivo e no capacitivo respectivamente. A resistência R é responsável pela inserção das componentes não lineares encontradas na corrente de fuga e o capacitor C tem a função de representar a parte não degradada da isolação [12].

Segundo o modelo da FIGURA 21, pode-se representar matematicamente o circuito pela Equação (9).

\[
I_{arb} = \frac{1}{R} \left[V_R + kV_R^3 \right] = C \frac{d}{dt} [V - V_R]
\]

(9)

Na equação (9) \(k \) é uma constante a ser determinada

2.6.3 Modelagem Matemática por diodos.

A curva da FIGURA 20 pode ser aproximada a curva de um diodo polarizado diretamente operando em uma região que ainda não ocorreu o processo de condução plena [21]. Essa analogia leva a conclusão de que o fenômeno da arborescência úmida pode ser comparado a uma curva de operação de um diodo em sua região de polarização direta, submetido aos níveis de tensão em que o fluxo de elétrons não consegue atravessar a junção. O fenômeno da arborescência pode ser modelado de forma semelhante a dois diodos em antiparalelo, um polarizado diretamente no ciclo positivo e o outro no ciclo negativo, do sinal senoidal de alimentação. O circuito equivalente para o fenômeno é mostrado na FIGURA 22.
Na FIGURA 22, a resistência R_0 e a capacitância C_0 em paralelo representam a isolação sob condições sem degradação, enquanto que os dois diodos em antiparalelo D_1 e D_2, conectados em série com a capacitância C_r, estão vinculados com o fenômeno da degradação e C_r é responsável por representar a parte não degradada da isolação.

Segundo o modelo apresentado, a equação (9) pode ser reescrita conforme a Equação (10).

$$I_{arb} = \frac{1}{R^2} \left[k^2 \, a \, b \, V_d^3 - V_d \right] = C_r \frac{d}{dt} \left[V - V_d \right]$$

Onde, V_d é a tensão na região degradada e V é a tensão na fonte.

2.6.4 Modelagem Matemática por regiões degradadas.

Uma abordagem possível é dividir o cabo em três regiões enumeradas por d_1, d_2 e d_3. A região d_1 representa a parte não degradada, d_2 a parte degradada sem a presença de água e d_3 a região da amostra comprometida com a presença de canais preenchidos com água, conforme a FIGURA 23 [9, 36, 37].
Segundo o modelo, a região d_3 é mais condutiva que as outras regiões porque possui canais preenchidos com água e aplicando tensão na amostra essa região cresce, aumentando sua condutância G_2 que depende do campo elétrico aplicado, conforme a equação (11)

$$G_2 \propto \operatorname{senh}(hE)$$ (11)

Onde h caracteriza a dependência da condutância da camada d_3 em relação ao campo elétrico E. As condutâncias das camadas d_1 e $d_2 - d_3$ podem ser desprezadas porque são muito pequenas quando comparadas com a da região d_3. A região $d_2 - d_3$ é representada pela capacitância C_1 e a região d_3 pode ser expressa pela combinação em paralelo da condutância G_2 com a capacitância C_2. Na FIGURA 24 é possível ver o circuito equivalente para uma amostra degradada por arborescências, segundo esse modelo [9,36].
FIGURA 24 - CIRCUITO EQUIVALENTE PARA UMA AMOSTRA DEGRADADA POR ARBORESCÊNCIAS ÚMIDAS [9, 36].

A capacitância C_1 é expressa pela equação (12) e a capacitância C_2 pela equação (13).

\[C_1 = \frac{1}{d_2 - d_3} \left[\varepsilon_0 \varepsilon_r S \right] \] \hspace{1cm} (12)

\[C_2 = \frac{1}{d_3} \left[\varepsilon_0 \varepsilon_r S \right] \] \hspace{1cm} (13)

Onde S é área por onde a corrente circula, ou a área do condutor, ε_0 é a permissividade elétrica do vácuo e ε_r é a permissividade relativa da região com arborescências.

A densidade de corrente J_{G_2} que atravessa a região d_3 pode ser expressa pela equação (14), onde σ_0 corresponde a condutividade da camada [37].

\[J_{G_2} = \frac{\sigma_0}{h} \text{senh}(hE) \] \hspace{1cm} (14)

A corrente total $i(t)$ mostrada na FIGURA 24 pode ser expressa pela seguinte equação:

\[i(t) = \frac{dq_2}{dt} + \frac{\sigma_0 S}{h} \text{senh} \left[\frac{hq_2(t)}{d_3 C_2} \right] \] \hspace{1cm} (15)
Onde \(i(t) \) é a corrente total que flui pela isolação do cabo, \(\sigma_0 \) é a condutividade da região \(d_3 \), \(h \) caracteriza a dependência da condutância da camada \(d_3 \) em relação ao campo elétrico, \(S \) é a área do eletrodo \(C_2 \) e \(q_2 \) é a carga elétrica em \(C_2 \).

Resolvendo numericamente a equação (15) para \(q_2(t) \) é possível estimar a corrente de fuga total \(i(t) \) e subtraindo a componente capacitiva que percorre \(C_1 \) da corrente de fuga total \(i(t) \), é possível obter a corrente de perda, devida às arborescências.
2.7 MEDIÇÃO DA CORRENTE DE PERDAS

2.7.1 Método do ajuste por resistência elétrica

O circuito utilizado para efetuar as medidas dessa corrente é mostrado na FIGURA 25.

No circuito da FIGURA 25 um sinal senoidal de 500 Hz é gerado e amplificado para a tensão de 550 V no amplificador de tensão. Então este sinal é aplicado em duas amostras, uma com arborescências e outra sem arborescências. Elas são conectadas aos resistores R_1 e R_2, respectivamente. Estes resistores são conectados a um amplificador operacional diferencial. A resistência R_2 é ajustada até a corrente de fuga na amostra com arborescência e na amostra sem arborescência possuir a mesma fase. Quando isso ocorre, é possível subtrair os sinais, encontrando a corrente de perdas devido às arborescências. Em média o teste leva 10 minutos para ser realizado [9, 36, 37].

2.7.2 Método do ajuste por ponte capacitiva

No circuito representado na FIGURA 26 uma ponte capacitiva é utilizada para obter a componente de perdas da corrente elétrica [10,11].

Na FIGURA 26 a corrente \((I_X)\) que flui em uma amostra de cabo com degradação e a corrente que flui em um capacitor padrão \((I_S)\), representa uma amostra de cabo sem degradação. Neste circuito \(I_S\) se divide em duas componentes denominadas \(I_{S1}\) e \(I_{S2}\).

Para determinar a corrente de perdas o valor do transformador \(N_2\) e do capacitor \(C_d\) é ajustado até \(I_{S1}\) cancelar \(I_X\). Quando isso ocorre, a corrente \(I_{S2}\) flui diretamente para terra e \(C_d\) é ajustado novamente até zerar \(I_{S2}\) fazendo surgir uma nova corrente \(I_{S2}'\) na saída do transformador. Essa corrente gerada \(I_{S2}'\) é considerada a corrente de perdas devido às arborescências [11].
3 DESENVOLVIMENTO EXPERIMENTAL

Este capítulo descreve o arranjo experimental montado cuja finalidade é demonstrar a eficiência da técnica das correntes harmônicas.

3.1 Representação por elementos circuitais concentrados para um cabo isolado em XLPE

O sistema de isolação de um cabo isolado não degradado pode ser representado de forma simplificada como dois elementos em paralelo: uma capacitância (armazena energia em forma de campo elétrico) e uma resistência (representa os mecanismos de condução ôhmicos) (ver FIGURA 27). Desta forma, a corrente que flui pela isolação I_a apresenta uma componente capacitiva I_c, em quadratura com a tensão aplicada, e uma componente resistiva I_R, em fase com a tensão aplicada.

A partir da primeira lei Kirchhoff a corrente (I_a) que flui no cabo é igual a soma da corrente capacitiva (I_c) com a resistiva (I_R), sendo dada pela equação (16).

$$I_a = (I_R + I_c)$$ (16)

Um sistema de isolação degradado por arborescência úmida possui as componentes citadas mais uma componente resistiva não ôhmica em paralelo (ver FIGURA 28) sendo esta responsável pelas componentes não lineares verificados na corrente resistiva, onde a parte não linear insere componentes harmônicas que estão relacionadas com o comprimento das arborescências presentes no cabo [10, 11, 12,35].

FIGURA 27 – CIRCUITO EQUIVALENTE DO SISTEMA DE ISOLAMENTO DE UM CABO ISOLADO NOVO - Fonte: Autor.
Para um cabo degradado a corrente na amostra \((\text{I}_a) \) é igual à soma da corrente capacitiva \((\text{I}_c) \) com a resistiva \((\text{I}_R) \), sendo essa composta de uma parte linear \((\text{I}_{RL}) \) e outra não linear \((\text{I}_{RNL}) \), conforme a equação (17).

\[
\text{I}_a = (\text{I}_{RL} + \text{I}_{RNL} + \text{I}_c)
\]

Foi realizado um teste utilizando um cabo XLPE com capacitância \(\text{C}_a \) e um capacitor padrão \(\text{C}_p \) de 1 nF a fim de demonstrar a técnica de separação da corrente dissipativa (ver FIGURA 29).

Foi aplicada no cabo uma tensão \(\text{V}_1 \) de 8 kV rms e as correntes no cabo e no capacitor padrão foram medidas. Com o objetivo de simular a corrente dissipativa gerada pelas arborescências no cabo, foi conectado um resistor \(\text{R}_a \) de 16,8 M\(\Omega \) em paralelo com a amostra de cabo [26]. Os sinais resultantes são apresentados na FIGURA 30. A forma de onda (A) representa a corrente no capacitor utilizado como referência e (B) representa a corrente na amostra. O
sinal do capacitor de referência apresenta-se em quadratura com a tensão aplicada (adiantado de 90º) enquanto que o sinal de corrente no cabo (B) apresenta uma pequena defasagem devido a componentes de corrente dissipativa introduzida pelo resistor conectado em paralelo com o cabo.

FIGURA 30 - SINAIS DE CORRENTE DO ARRANJO EXPERIMENTAL PARA VERIFICAÇÃO DO MÉTODO DAS CORRENTES HARMÔNICAS [26].

A técnica desenvolvida neste trabalho consiste em determinar a parte dissipativa do sinal de corrente no cabo, através de uma operação algébrica entre os sinais em um capacitor de referência e o proveniente da isolação do cabo utilizando a equação (18), onde: (IR) é a corrente resistiva, (Ia) a corrente no cabo, (Icp) a corrente no capacitor de referência e (K) é uma constante a ser determinada.

\[
IR = (Ia - Icp.K)
\]

Esta operação consiste em encontrar a constante (K) que resulte em um sinal mínimo para a corrente resistiva. Quando a amplitude de (IR) é mínima a corrente é puramente dissipativa. A condição necessária para que (IR) seja mínima é que \(Icp.K = Ic \), ou em outras palavras, quando o sinal no capacitor de referência multiplicado pela constante k é igual a componente capacitiva do
sinal de corrente obtido na isolação no cabo, o resultado da equação (18) é a corrente dissipativa. Na FIGURA 30, o sinal da corrente dissipativa (C) é o resultado da equação (18).

Neste trabalho foi desenvolvida uma metodologia usando o método das correntes harmônicas e será aplicado em cabos isolados da classe de tensão 12/20KV (unipolares), utilizados em redes subterrâneas, uma vez que esse método se mostra mais sensível para cabos dessa classe de tensão [10].

3.2 Sistema de medidas

A FIGURA 31 mostra o diagrama do arranjo experimental desenvolvido para a aplicação da metodologia descrita acima. A amostra de cabos é alimentada por um amplificador de alta tensão (TREK 20/20) que recebe um sinal senoidal do gerador Agilent 32250A. A técnica consiste em enviar uma corrente capacitiva de referência I_c com fase oposta a fase do sinal de corrente que percorre a isolação do cabo I_a, com o objetivo de eliminar a componente capacitiva presente nessa corrente, restando apenas a componente de perdas I_R. Para isso foi desenvolvido um circuito eletrônico gerador de corrente capacitiva que possui a função de gerar uma corrente adiantada de 90° cuja amplitude pode ser ajustada (constante k da equação 18).

FIGURA 31: DIGRAMA DO ARRANJO EXPERIMENTAL - Fonte: Autor.
O teste é iniciado com baixa tensão, para que o amplificador STANFORD RESEARCH SYSTEMS MODEL SR570 que mede a resultante da subtração (IR) não atinja o fundo de escala (saturação do amplificador). A tensão aplicada é aumentada e o ganho no amplificador de corrente é ajustado de tal forma que o sinal obtido e mostrado no osciloscópio seja mínimo. Esse processo é repetido até que a tensão aplicada ao cabo em teste seja próxima a 8kV e toda a componente capacitiva que percorre a isolação do cabo seja eliminada, assim no final do processo o que será visualizado no osciloscópio será apenas a corrente de perdas em fase com a tensão aplicada ao cabo.

Para concluir o diagnóstico do cabo é necessário realizar a FFT da corrente de perdas e analisar o conteúdo harmônico dessa corrente para estimar o grau de deterioração da isolação devido às arboressências úmidas.

3.3 Descrição do funcionamento do amplificador de corrente e do gerador de corrente capacitiva.

3.3.1 Amplificador de corrente STANFORD RESEARCH SYSTEMS MODEL SR570

O amplificador de corrente SR570 fornece uma tensão de saída proporcional a corrente de entrada, com filtros de frequência reguláveis.

A FIGURA 32, retirada do manual de instruções do equipamento, representa o diagrama de funcionamento do amplificador. O sinal medido é ligado na entrada de um amplificador operacional na configuração inversor o qual mantém o potencial de massa virtual. O sinal passa por dois filtros de frequência R-C reguláveis via painel frontal e a saída destes está ligada a amplificadores operacionais para ganho de amplitude.
O painel frontal do equipamento é mostrado na FIGURA 33. Neste painel é possível configurar o tipo de filtro a ser usado (highpass – passa alta, bandpass – passa banda e lowpass – passa baixa), a freqüência de operação do filtro, a tensão de offset se necessário e a sensibilidade que pode variar de 1pA/V até 1mA/V.
3.3.2 Circuito gerador de corrente capacitiva

Foi desenvolvido um circuito eletrônico (ver FIGURA 34) contendo dois amplificadores operacionais 741 cn (U1 e U2) e três potenciômetros (R2=200Ω, R3=1kΩ e R4=10kΩ), conforme o diagrama mostrado na FIGURA 35. O circuito é alimentado por uma fonte simétrica de ± 9 Vcc.

A função do circuito é produzir uma corrente capacitiva com fase oposta à da corrente que percorre a isolação do cabo. Com o auxílio dos potenciômetros o sinal gerado pelo circuito é modificado e enviado a blindagem do cabo com o intuito de anular a componente capacitiva que será enviada ao amplificador de corrente, sobrando apenas a corrente de perdas.

A entrada do circuito está ligada ao gerador Agilent que fornece uma onda senoidal de 4 Vrms a 50 Hz. Esse sinal é enviado a um amplificador operacional 741 cn na configuração inversora com ganho 1,5, cuja função principal é inverter o sinal de entrada. O sinal amplificado e invertido é mandado a três potenciômetros ligados em série, que permitem o ajuste do valor da corrente capacitiva injetada (constante K da equação 18). A saída do potenciômetro R3 de 10 kΩ é ligada a um amplificador operacional 741 cn na configuração seguidor de tensão e na saída do 741 cn está conectado um capacitor que adianta em 90° a corrente a ser mandada a blindagem do cabo.
FIGURA 34: FOTO DO CIRCUITO GERADOR DE CORRENTE CAPACITIVA - FONTE: Autor.

FIGURA 35: DIAGRAMA DO CIRCUITO GERADOR DE CORRENTE CAPACITIVA - FONTE: Autor.
3.4 Montagem do arranjo experimental.

As medidas foram realizadas em dois cabos de seção 400 mm², sendo um uma amostra de cabo novo com aproximadamente 10 metros de comprimento e outra amostra retirada de campo (com aproximadamente 30 anos de uso) e 40 metros de comprimento. As amostras foram obtidas do almoxarifado do Lactec, cedidas pela COPEL.

A FIGURA 36 mostra uma fotografia do arranjo experimental montado inicialmente dentro de uma gaiola de Faraday no Laboratório de Metrologia do Lactec.

FIGURA 36: MONTAGEM DO ARRANJO EXPERIMENTAL - Fonte: Autor.

3.5 Resultados Obtidos

Foram realizados três testes sendo o primeiro a calibração do sistema, o segundo utilizando o cabo novo e o último com o cabo retirado de campo.
3.5.1 Calibração do sistema

Com o objetivo de calibrar o sistema, ou verificar se o arranjo experimental é capaz de determinar a corrente de perdas, foi utilizado a amostra de cabo novo ligado em paralelo com um resistor de 100 MΩ. Ao inserir esse resistor, uma corrente resistiva conhecida é gerada, desta maneira a corrente medida pelo sistema deve ser próxima ou igual a esperada devido ao resistor.

O resultado obtido na medição é mostrado na FIGURA 37. O ganho do amplificador estava ajustado em \(\frac{20 \mu A}{V} \) e a tensão medida na saída do amplificador SR570 foi de \(2,7 V_{rms} \). Multiplicando esse resultado pelo ganho ajustado a corrente dissipativa medida é \(52 \mu A_{rms} \), que corresponde a \(76 \mu A \) pico. Valor próximo ao esperado de \(80 \mu A \) pico (resistor de 100 MΩ com tensão 8 kV pico).

Ainda na FIGURA 37 é possível constatar que a forma de onda da corrente de perdas não apresenta componentes harmônicas conforme as mostradas na FIGURA 18 e na FIGURA 19, devidas ao fenômeno de arborescência úmida, o que era de se esperar.

FIGURA 37: RESULTADO OBTIDO PARA A CORRENTE DE PERDAS NA AMOSTRA DE CABO NOVO CONECTADO EM PARALELO COM UM RESISTOR DE 100 MΩ – Fonte: Autor.
3.5.2 Análise das amostras de cabos.

Os testes foram realizados com os cabos a uma tensão de 8 kV pico a 50 Hz. A avaliação do cabo novo foi realizada com o ganho do amplificador ajustado para $\frac{5 \mu A}{V}$ e a tensão medida na saída do amplificador SR570 foi de 1 Vrms, assim a corrente de perdas obtida é $5 \mu A$. Os resultados são mostrados na FIGURA 38.

FIGURA 38: RESULTADO OBTIDO PARA A CORRENTE DE PERDAS NA AMOSTRA DE CABO NOVO – Fonte: Autor.
A partir da FIGURA 38 é possível concluir que a amostra analisada não possui arborescências úmidas, uma vez que na análise da corrente de perdas não foi possível verificar as alterações na corrente de perda mostradas na FIGURA 18 e na FIGURA 19.

O resultado obtido é coerente, pois sendo o cabo novo, este não apresenta degradação por arborescências úmidas e por consequência a forma de onda da corrente de perdas não apresentou as componentes harmônicas esperadas para uma amostra degradada.

O segundo teste foi realizado com uma amostra de cabo retirado de campo. Os resultados obtidos são exibidos na FIGURA 39. Nessa medição o ganho do amplificador estava ajustado para \(\frac{10 \mu A}{V} \) e a tensão medida na saída do amplificador SR570 foi de 2,36\(V_{rms} \), assim a corrente de perdas obtida é 23,6\(\mu A \).

As alterações na forma de onda encontradas na FIGURA 39, coincidem com as verificadas na FIGURA 18 e na FIGURA 19, o que mostra que corrente de perdas possui componentes harmônicas e evidenciam que o cabo analisado está degradado com arborescências úmidas.

Para que seja possível afirmar se o cabo analisado possui de fato arborescências é necessário realizar a FFT da corrente de perdas, que permite separar todos os harmônicos contidos no sinal. Com esse resultado pode-se estimar o estado de degradação do XLPE. A FFT realizada é mostrada na FIGURA 40 e analisando essa figura é possível notar que a amplitude do terceiro harmônico (150 Hz) é maior que a amplitude dos demais harmônicos, confirmando que a isolação do cabo está degrada por arborescências úmidas.

O resultado obtido já era esperado e mostra que a técnica desenvolvida é capaz de determinar a partir da análise do conteúdo harmônico presente na corrente de perdas o estado de degradação do cabo, devido às arborescências úmidas.

4 DESENVOLVIMENTO DO PROTÓTIPO.

Com o objetivo de automatizar a técnica de análise das correntes harmônicas foi desenvolvido um protótipo de um equipamento que utiliza um amplificador de corrente em conjunto com uma placa de aquisição de dados. Também foi desenvolvido um algoritmo computacional, em ambiente de instrumentação virtual, onde o sinal de corrente é processado para a obtenção da componente dissipativa e posterior análise por Transformada Rápida de Fourier (FFT).

4.1 Circuito amplificador de corrente.

Foi desenvolvido um circuito amplificador de corrente, conforme a diagrama mostrado na FIGURA 41, e uma fonte simétrica estabilizada de ±12Vcc com entrada para a rede de 220 V ou 127 V.

FIGURA 41 - DIAGRAMA DO CIRCUITO ELETRÔNICO AMPLIFICADOR DE CORRENTE – FONTE: Autor.

A função deste circuito é amplificar a corrente que atravessa a isolação de XLPE e flui pela blindagem fazendo a transdução de corrente para tensão sem inserir componentes resistivas no sinal, como acontece quando se utiliza um resistor *shunt* diretamente. O ganho desse amplificador pode ser alterado pela comutação de resistores de realimentação. O sinal de saída do amplificador é
conectado na porta analógica A10 do módulo de aquisição (ver FIGURA 42) da *National Instruments*.

FIGURA 42: FOTO DO MÓDULO DE AQUISIÇÃO – FONTE: AUTOR

FIGURA 43 – FOTO DO AMPLIFICADOR DE CORRENTE – FONTE: Autor.

4.2 Descrição do algoritmo computacional

O algoritmo foi desenvolvido em ambiente de instrumentação virtual Labview®.

O fluxograma exibido na FIGURA 44 mostra de forma simplificada como é o funcionamento da rotina computacional. Inicialmente o sinal de corrente da blindagem do cabo é adquirido e convertido para sinal digital. A aquisição acontece de forma sincronizada com a tensão aplicada ao cabo em teste. Em seguida, os parâmetros amplitude e frequência são determinados e utilizados para gerar um sinal senoidal que representa a componente capacitiva da corrente. Para que este sinal gerado esteja em quadratura com a tensão aplicada ao cabo (adiantado de 90 graus) é necessário ajustar o ângulo de fase manualmente.

O sinal medido e o sinal gerado passam por um filtro de frequência do tipo passa – baixa para remoção de ruídos da medição. O sinal simulado é multiplicado por um valor, que aumenta a cada interação, (constante K da equação 18) e após é subtraído do sinal medido no cabo. Esse processo é repetido até que o valor da subtração seja mínimo. Os resultados das subtrações são armazenados para que o valor mínimo possa ser recuperado para ser realizada a FFT.

A descrição detalhada dos blocos em Labview® que compõem a rotina pode ser consultada no apêndice.
FIGURA 44: DIAGRAMA DE BLOCOS - FONTE: Autor.
4.3 Resultados obtidos.

4.3.1 Limite da técnica.

Para utilizar a técnica de maneira eficiente deve-se conhecer o limite de medição imposto pelo sistema. A placa de aquisição possui uma resolução de 16 bits para entrada analógica. Isso significa que o sinal analógico medido na entrada é transcrito para o programa em degraus digitais da ordem de 15 partes por milhão, ou seja, não é possível obter medidas que exijam essa precisão. Como a transcrição é feita por um sinal de tensão na faixa $\pm 10V$, o tamanho do degrau da tensão é da ordem de $300\mu V$. Utilizando a equação (19) é possível obter a resolução da corrente em que basta dividir a resolução da tensão pelo valor do resistor de realimentação de 750\,\Omega do amplificador transdutor, deste modo a resolução obtida é da ordem de $0,6\mu A$.

$$resolucao_da_corrente = \frac{tensao}{2^{bits}.resistencia}$$

(19)

Para determinar o limite da técnica e verificar o seu funcionamento foram realizados alguns testes. O primeiro foi usado o circuito ilustrado na FIGURA 45 onde foi utilizado apenas um capacitor C com capacitância de $3,3\mu F$ com uma tensão aplicada de $3,5\,V_{rms}$ a $50\,Hz$ obtida pelo gerador de função Agilent 33250A. Para obter a corrente dissipativa neste circuito, o capacitor C é conectado ao amplificador de corrente.

FIGURA 45 - CIRCUITO UTILIZADO PARA TESTAR A RESOLUÇÃO DO SISTEMA DE MEDIDA [26].
Como o sinal simulado e o procedente do capacitor estão inicialmente fora de fase é necessário calibrar o ângulo de fase. Para isso a fase do simulado é alterada manualmente via software até que a subtração dos sinais leve a menor corrente dissipativa. O valor do ângulo de fase obtido deve ser mantido constante em todos os demais testes, a fim de que seja possível comparar seus resultados.

O resultado da simulação usando o circuito mostrado na FIGURA 45 foi de $3 \mu A$, indicando que o sistema não é capaz de medir correntes de perdas menores que $3 \mu A$. Esse valor é maior que o limite imposto pelo sistema de aquisição e esperava-se que o valor encontrado fosse muito próximo ou igual ao limite digital, já que no circuito teste não existem elementos que venham gerar correntes dissipativas. Uma das razões para esse resultado pode ser o ruído eletromagnético proveniente do ambiente (lâmpadas, motores, etc.).

Com o sistema calibrado foi realizado o segundo teste usando resistores e capacitores a fim demonstrar o funcionamento da técnica. O teste realizado usou o circuito exibido na FIGURA 47. Os resultados obtidos estão agrupados na TABELA 4, e mostram que o sistema desenvolvido foi capaz de separar a componente dissipativa gerada pelo resistor colocado no circuito.
FIGURA 47: CIRCUITO TESTE – SINAL DE REFERÊNCIA GERADO VIA SOFTWARE [26].

O motivo de realizar esse teste é para que seja possível comparar o valor da corrente resistiva encontrado via software com a teórica. A corrente resistiva teórica é determinada pela divisão da tensão no circuito pelo valor da resistência usada. O teste foi repetido e durante as medidas foi mantido constante o valor do capacitor C_a, variando apenas o valor da resistência R_a.

TABELA 4: RESULTADOS UTILIZANDO CIRCUITO TESTE. FONTE: O autor.

<table>
<thead>
<tr>
<th>R_a (kΩ)</th>
<th>Valor RMS da Corrente resistiva encontrada via software (µA)</th>
<th>Valor RMS da Corrente resistiva teórica (µA)</th>
<th>Erro absoluto (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>349,50</td>
<td>350,00</td>
<td>0,50</td>
</tr>
<tr>
<td>20</td>
<td>175,20</td>
<td>175,5</td>
<td>0,30</td>
</tr>
<tr>
<td>47</td>
<td>75,01</td>
<td>74,46</td>
<td>0,55</td>
</tr>
<tr>
<td>100</td>
<td>36,13</td>
<td>36,50</td>
<td>0,37</td>
</tr>
<tr>
<td>200</td>
<td>18,02</td>
<td>17,77</td>
<td>0,25</td>
</tr>
<tr>
<td>247</td>
<td>15,52</td>
<td>14,33</td>
<td>1,19</td>
</tr>
<tr>
<td>475</td>
<td>9,01</td>
<td>7,46</td>
<td>1,55</td>
</tr>
<tr>
<td>675</td>
<td>7,28</td>
<td>5,24</td>
<td>2,04</td>
</tr>
</tbody>
</table>

A FIGURA 48 mostra que a diferença entre o valor da corrente medida via software com o valor teórico (erro na medida), aumenta conforme diminui a corrente resistiva, pois o valor da corrente resistiva se aproxima do limite do equipamento que é da ordem de 3µA a 8µA.
O terceiro teste foi realizado com o circuito (ver FIGURA 49) construído com um elemento resistivo não linear (diodos) cuja finalidade é inserir componentes não lineares na corrente a ser medida. Esse circuito é alimentado pelo mesmo gerador de função Agilent 33250A a uma tensão de 3,5Vrms a 50Hz. A fase do sinal simulado utilizada neste teste é a mesma encontrada no teste, em que foi usado apenas um capacitor.

FIGURA 48 - DIFERENÇA ENTRE A CORRENTE TEÓRICA E A MEDIDA – CIRCUITO TESTE SEM DIODOS.

FIGURA 49 - CIRCUITO UTILIZADO PARA TESTAR O MÉTODO DAS CORRENTES HARMÔNICAS [26].
O cabo degradado é representado pelo circuito Cd, conforme a FIGURA 49. No circuito Cd, o capacitor C representa a capacitância do XLPE enquanto a arborescência úmida é representada pelo resistor R em série com a associação de diodos, responsáveis pela geração da não linearidade na corrente resistiva.

Neste teste o valor do capacitor (C) é mantido constante e o valor do resistor (R) é variado. Os resultados são mostrados na TABELA 5.

TABELA 5: RESULTADOS UTILIZANDO CIRCUITO TESTE COM DIODOS.
FONTE: O autor.

<table>
<thead>
<tr>
<th>R (kΩ)</th>
<th>Valor RMS da Corrente resistiva encontrada via software (µA)</th>
<th>Valor RMS da Corrente resistiva teórica (µA)</th>
<th>Erro absoluto (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>348,00</td>
<td>350,00</td>
<td>2,00</td>
</tr>
<tr>
<td>20</td>
<td>173,00</td>
<td>175,00</td>
<td>2,00</td>
</tr>
<tr>
<td>47</td>
<td>74,94</td>
<td>74,46</td>
<td>0,48</td>
</tr>
<tr>
<td>100</td>
<td>36,40</td>
<td>36,50</td>
<td>0,10</td>
</tr>
<tr>
<td>147</td>
<td>25,53</td>
<td>24,08</td>
<td>0,73</td>
</tr>
<tr>
<td>200</td>
<td>18,69</td>
<td>17,77</td>
<td>0,92</td>
</tr>
<tr>
<td>247</td>
<td>15,78</td>
<td>14,33</td>
<td>1,45</td>
</tr>
<tr>
<td>475</td>
<td>8,90</td>
<td>7,46</td>
<td>1,44</td>
</tr>
<tr>
<td>675</td>
<td>7,60</td>
<td>5,24</td>
<td>2,36</td>
</tr>
</tbody>
</table>

Os resultados obtidos com o circuito mostrado na FIGURA 49 mostram que a rotina programada em Labview® foi capaz de separar as correntes harmônicas inseridas pelo elemento dissipativo não linear do circuito, nesse caso os diodos, de acordo com o esperado. A diferença entre o valor medido e o teórico da corrente resistiva pode ser devido aos ruídos eletromagnéticos existentes no ambiente e a tolerância dos resistores utilizados nos testes.

O motivo de repetir os testes utilizando valores diferentes para as resistências é demonstrar como a técnica se comporta para diferentes níveis
de degradação, uma vez que essas resistências inseridas nos circuitos esquemáticos mostrados na FIGURA 47 e na FIGURA 49 possuem a função de representar a degradação da isolação. A FIGURA 48 (referente ao teste utilizando resistores e capacitores) mostra que a diferença entre o valor medido via software com o valor teórico (erro absoluto), aumenta conforme diminui a corrente resistiva.

Com esses testes e os resultados obtidos é possível afirmar que a resolução do sistema está na ordem de 3µA, não sendo possível realizar medidas em cabos onde a corrente de perdas é menor que 3µA, ou muito próximo a esse valor.

Nos testes optou-se por utilizar a frequência de 50 Hz em vez de 60 Hz que é o padrão da rede. O período do sinal de 60 Hz (16,66... ms) não é exato e sim uma dízima periódica não possibilitando um ajuste correto da taxa de amostragem do sinal gerado em relação ao medido.

4.3.2 Cálculo da Corrente Resistiva

Com o objetivo de determinar qual é o comprimento mínimo de cabo que a técnica é capaz de avaliar é necessário saber a capacitância do cabo utilizado, a $\tan \delta$ máxima admitida e a tensão fase – terra aplicada ao cabo.

Usando a equação (20) para determinar a reatância capacitiva, a equação (21) para determinar a corrente capacitiva (I_c) e a equação 1 para determinar a corrente resistiva, foi traçado o gráfico da Figura 53 que relaciona a corrente resistiva com o comprimento para um cabo XLPE de secção 400 mm².

$$X_c = \frac{1}{2\pi f C}$$ \hspace{1cm} (20)

$$U = X_c \cdot I_c$$ \hspace{1cm} (21)
Onde X_c é a reatância capacitiva do cabo, f a freqüência de operação, C a capacitância da amostra, i a corrente elétrica no cabo e U a tensão fase – terra na fonte.

FIGURA 50: GRÁFICO DA CORRENTE RESISTIVA EM FUNÇÃO DO COMPRIMENTO DE UM CABO COM ISOLAMENTO EM XLPE – FONTE: AUTOR.

4.3.3 Testes utilizando cabos isolados com XLPE

A fim de demonstrar como o sistema se comporta quando utilizado em cabos isolados com XLPE, os testes foram realizados em dois cabos envelhecidos (secção de 400 mm2) com aproximadamente 40 metros de comprimento cada, denominadas amostras 1 e 2 e uma amostra de cabo novo (secção de 400 mm2) com 60 metros de comprimento. Essas amostras foram obtidas do almoxarifado do LACTEC, sendo que os cabos envelhecidos pertenciam à rede subterrânea de Curitiba e estavam em operação a mais de 30 anos.

Para a realização dos testes usando cabos, a fase do sistema foi calibrada com um capacitor (ver FIGURA 51) HAEFELY de 1000pF – 50kV. Para a calibração e os testes foi utilizado o gerador de sinal Agilent 33250A que possui a função de enviar um sinal de senoidal para o amplificador de tensão TREK 20/20C (ver FIGURA 52). Com o capacitor a 7 kV a fase do sinal
simulado foi alterada manualmente no painel frontal (da mesma forma que foi feito no primeiro teste com apenas um capacitor a 3,5 \textit{Vrms}) até o software encontrar a menor corrente de perdas. Na calibração a fase encontrada para o sinal simulado foi -89,5° e a menor corrente de perdas medida foi em torno de 3\(\mu\text{A}\) (ruído na medida). Na FIGURA 53 é possível ver o local onde o sinal proveniente do capacitor padrão é obtido e na FIGURA 54 é mostrado o painel de controle e os resultados obtidos.

A FIGURA 55 e a FIGURA 56 mostram como deve ser feita a montagem do arranjo experimental. Nestas FIGURAS o condutor do cabo é ligado a saída do amplificador de tensão *TREK 20/20C* (fio branco no centro da FIGURA) e o amplificador de corrente é conectado na blindagem (conector vermelho à direita) e para monitorar a tensão no cabo é utilizada a ponta de prova *TEKTRONIC P6015A*.

![Figura 55](image1)

FIGURA 55 – FOTO DA MONTAGEM DO ARRANJO EXPERIMENTAL – FONTE: Autor.

![Figura 56](image2)

FIGURA 56 - MONTAGEM DO ARRANJO EXPERIMENTAL – FONTE: Autor.

Devido a limitação de corrente imposta pela fonte *TREK 20/20C* que fornece 20 mA de corrente máxima, a tensão nos cabos foi ajustada a fim de que a corrente seja 20 mA em todos os cabos.
Para testar a técnica nessa tensão de trabalho foi utilizado um resistor de $100M\Omega$ em paralelo com a amostra de 60 metros de cabo novo como mostra a FIGURA 57 e a FIGURA 58.

FIGURA 57: DESENHO ESQUEMÁTICO - RESISTOR DE $100M\Omega$ EM PARALELO COM O CABO – FONTE: Autor.

FIGURA 58: FOTO - RESISTOR DE $100M\Omega$ EM PARALELO COM O CABO – FONTE: Autor.

O resultado esperado para a corrente resistiva é de $74.30\mu A$, valor este devido ao resistor de $100M\Omega$ quando aplicado tensão de 7,43 kV, e a obtida via software foi de $73.69\mu A$, como pode ser verificado na FIGURA 59. Nesta figura o gráfico referente à diferença dos dois sinais não apresentou a alteração característica (ver FIGURA 18) devido a presença de conteúdo harmônico na corrente de perda.
Feita a verificação, conclui-se que o protótipo desenvolvido é capaz de separar a corrente de perdas devido à inserção de um elemento resistivo. O teste feito acima foi repetido sem o resistor, a fim de verificar o comportamento do sistema em um teste simulando uma situação real.

A FIGURA 60 mostra o resultado do teste realizado com a amostra de cabo novo. Nesta figura o gráfico referente à diferença entre os sinais também não apresentou conteúdo harmônico, como já era de se esperar.

A FIGURA 61 e a FIGURA 62 mostram respectivamente o resultado para o teste realizado com o cabo envelhecido 1 (mesmo cabo utilizado no teste no capítulo anterior, e apresentou arborescências úmidas) e o cabo
envelhecido 2. Nestas figuras o gráfico referente à diferença dos dois sinais também não apresentou o conteúdo harmônico esperado.

Estando os cabos a mais de 30 anos em uso, deveriam apresentar certo grau de deterioração por arborescências úmidas, assim a corrente de perdas obtida devia apresentar conteúdo harmônico, o que não foi verificado com estes testes. Na TABELA 6 é possível verificar os valores obtidos para a corrente de perdas.

FIGURA 61 - RESULTADO PARA O TESTE USANDO O CABO ENVELHECIDO 1 – FONTE: Autor.

TABELA 6: RESULTADOS OBTIDOS NOS TESTES USANDO CABOS.

<table>
<thead>
<tr>
<th></th>
<th>Cabo Novo</th>
<th>Cabo envelhecido 1</th>
<th>Cabo envelhecido 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensão</td>
<td>4,15 kV</td>
<td>7,70 kV</td>
<td>7,43 kV</td>
</tr>
<tr>
<td>Valor RMS da Corrente Resistiva</td>
<td>8,90μA</td>
<td>10,46μA</td>
<td>11,54μA</td>
</tr>
</tbody>
</table>

Como pode ser verificado na tabela acima, os valores das correntes de perdas encontradas estão muito próximos, o que leva a conclusão que o sistema não possui resolução suficiente para realizar as medidas nestas condições, assim o que o sistema está medindo é apenas o ruído ambiente, não sendo possível encontrar as componentes harmônicas. Esse problema de falta de resolução em parte pode ser atribuído a fonte empregada nos testes não possess potência suficiente para alimentar os cabos, com uma corrente alta.
5 CONCLUSÃO

O sistema desenvolvido na qual é utilizado um circuito gerador de corrente capacitiva apresentou ótimos resultados, sendo capaz de identificar cabos degradados por arborescências úmidas a partir da análise do conteúdo harmônico presente na corrente de perdas, via FFT. Os testes realizados também mostraram que a corrente obtida nas medidas é de fato a corrente de perdas, como pode ser comprovado no ensaio realizado com o resistor em paralelo com o cabo.

Os testes realizados com o sistema em que foi utilizada a rotina computacional demonstram que o arranjo experimental desenvolvido é capaz de separar da corrente capacitiva a corrente de perdas, tanto em circuitos com apenas elementos lineares (capacitores e resistores) quanto em circuitos com a introdução de elementos não lineares (diodos).

Mas os testes realizados utilizando a rotina computacional mostraram que o sistema não foi capaz de identificar qual era o cabo degradado, devido ao fato da corrente de perdas nos cabos analisados ser muito pequena. Contudo no primeiro teste realizado o sistema foi capaz de encontrar a componente resistiva devido ao resistor conectado em paralelo com cabo, o que mostra que o sistema funciona desde que a corrente de perdas presente na isolação do cabo seja mensurável.

Uma limitação encontrada na técnica digital está no fato do sistema não ser capaz de medir correntes menores que $3\mu A$, limitando o tamanho do cabo que o arranjo é capaz de avaliar. Ainda outro ponto verificado, foi que com o aumento do comprimento do cabo, aumenta a precisão do sistema, uma vez que o sistema depende da corrente capacitiva e da resistiva que são proporcionais ao comprimento do cabo, e com a diminuição do comprimento do cabo o arranjo apresentou uma precisão menor (erro maior).

Uma desvantagem apresentada na aplicação da técnica em campo, está no fato de ser necessário o uso de uma fonte de alta tensão externa para alimentar o cabo, tornando restrito seu uso em locais onde seja possível alimentar a fonte de alta tensão.
Outra desvantagem apresentada é que o sistema travaolha com medidas de corrente na ordem de μA o que o torna muito sensível a ruídos eletromagnéticos externos, que podem gerar erros nas medidas. Ainda pesa contra o sistema o fato de que os cabos a serem inspecionados devem estar desligados, o que não é interessante para as companhias de energia e ainda os cabos devem ser analisados separadamente o que leva muito tempo.

A vantagem apresentada pelo sistema desenvolvido é que não existe ainda um sistema para a avaliação do estado de degradação por arborescências úmidas em cabos isolados, fabricados no Brasil, os que existem são todos importados, fato em que o protótipo desenvolvido se mostra promissor. Sendo assim, essa proposta pode se tornar viável para ser utilizada comercialmente.
5.1 Trabalhos futuros

- Modificar o software – Atualmente a fase que leva a menor corrente resistiva e encontrada manualmente. Fica a sugestão de modificar a rotina para que a calibração do sistema seja feita de forma automática.

- Filtros – Sendo o ruído ambiente um grande empecilho nas medidas, sugere-se testar filtros que eliminem ou diminuam o ruído ambiente, tornando o sistema mais preciso.

- Sensibilidade do equipamento: Melhorar a sensibilidade do equipamento, para que seja possível realizar medidas em cabos onde a corrente resistiva esteja na ordem de alguns \(\mu\text{A} \).

- Fazer estudos com cabos maiores, a fim de verificar como o protótipo desenvolvido se comporta.

- Fazer testes utilizando baixa freqüência.

- Utilizar uma fonte de tensão com maior potência, tornando a corrente de perdas maior.
REFERÊNCIAS

7 FERNANDO NOGUEIRA DE LIMA; JOSÉ CARLOS DE OLIVEIRA; DARIZON ALVES DE ANDRADE; BISMARCK CASTILLO CARVALHO; RILDO MARLEY TAVARES DA SILVA; ANTONIO DE PÁDUA FINAZZI. Diagnóstico da condição operativa de cabos isolados degradados por arborescência sob ação de suprimentos com distorções. SEMINÁRIO BRASILEIRO SOBRE QUALIDADE DA ENERGIA ELÉTRICA, V SBQEE. Agosto de 2009, Blumenau, Santa Catarina, Brasil.

8 T. TAKAHASHI E T. OKAMOTO. Study On Line Monitoring System Of Very Small Deterioration Signal Caused By Water Tree In XLPE Cables. PROCEEDINGS OF THE XIV INTERNATIONAL SYMPOSIUM ON HIGH VOLTAGE ENGINEERING TSINGHUA UNIVERSITY, BEIJING. China, August De 2005

10 T. TSUJIMOTO, M. NAKADE, Y. YAGI. Development Of On-Site Diagnostic Method For XLPE Cable By Harmonics In Ac Loss Current. – 7 TH INTERNATIONAL CONFERENCE ON PROPERTIES AND APPLICATIONS OF DIELECTRIC MATERIALS. June 2003, Nagoya, Japan.

18 BRESSAN, BRUNO NAHUILI. Desenvolvimento de Sistema e Metodologia Para Avaliar a Influência da Temperatura em Medidas de Tensão de Retorno em Cabos Isolados em XLPE.

22 CARVALHO, JOSÉ WILSON. Polietileno Retardante À Arborescência Para Cabos de Longa Duração. XVIII SEMINÁRIO NACIONAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA SENDE 2008 - 06 a 10 de outubro Olinda - Pernambuco – Brasil.

33 RIBEIRO, J. S. Análise da ruptura dielétrica em materiais isolantes elétricos de cabos isolados XLPE e EPR por tomografia 2D e 3 D. 177 f. Dissertação de mestrado - Universidade Tecnológica do Paraná – PR, 2008.

35 LIMA, F. N., OLIVEIRA, J. C., ANDRADE A. A. Impacto do suprimento apresentando distorção no diagnóstico da condição operativa de cabos isolados degradados por arborescência. XVIII SEMINÁRIO NACIONAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA SENDI 2008 - 06 a 10 de outubro Olinda - Pernambuco - Brasil.

APÊNDICE

DESCRIÇÃO DO DIAGRAMA DE BLOCOS EM LABVIEW®

O diagrama de blocos em Labview® mostra os detalhes do funcionamento da rotina computacional desenvolvida. Para descrever o funcionamento do programa, o diagrama de blocos foi dividido em três partes principais. A primeira parte do diagrama mostra como acontece a aquisição dos dados, e como o sinal de referência é simulado. A segunda foi fracionada em duas, e mostra como acontece a subtração dos sinais e a armazenagem dos dados. A última explica como é feita a FFT e os como os resultados são apresentados.

A FIGURA 63 exibe a rotina desenvolvida para adquirir e simular o sinal capacitivo e abaixo está a descrição dos blocos que compõem essa etapa da rotina.

- **DAQ Assistant2**: responsável pela aquisição do sinal proveniente do cabo. Neste bloco é possível configurar o tipo e a fonte do trigger, número deamostra que o software deve coletar “samples to read”. No caso estudado o tipo de trigger usado é do tipo digital e a sua fonte é o gerador de sinal usado nos testes.

- **Filter**: responsável por filtrar o sinal recebido. Conta com filtros de frequência do tipo passa baixa, passa alta, passa banda e outros. O que se mostrou mais eficaz nos testes foi o do tipo passa baixa - **BUTTER WORTH**, com frequência de corte de 600 Hz.

- **Tone Measurements**: determina a frequência e a amplitude do sinal medido e envia esses parâmetros para o bloco **Simulate Signal**.

- **Simulate Signal**: simula uma onda senoidal com os parâmetros determinados pelo bloco **Tone Measurements**. Possui comandos que permitem alterar a fase e o offset do sinal.
- Fase: indicador onde a fase do sinal simulado é alterada manualmente, no painel frontal.

Como pode ser visualizado na FIGURA 63, o DAQ Assistant2 recebe o sinal do cabo e o manda ao Tone Measurements que determina os seus parâmetros e o envia ao Simulate Signal o qual simula o sinal de referência. Ambos os sinais são filtrados pelo bloco Filter e são mandados a um LOOP, o qual é responsável pela subtração dos dois sinais. Esse LOOP pode ser visualizado na FIGURA 64.
Descrição dos elementos da FIGURA 64.

- Inicialmente os sinais chegam ao LOOP separados. A função deste bloco é mostrar graficamente no painel frontal os sinais juntos, no mesmo gráfico.

- R OUT: Local onde o resistor de realimentação ou resistor shunt é alterado no painel frontal.

- Índice da Interação: gera um número (índice) inteiro começando em zero a cada interação.
- *Index Array Function*: Gera uma matriz com o valor da subtração dos dois sinais e o seu respectivo índice.

- *Amplitude and Level Measurements2*: Recebe a corrente resistiva e retorna seu valor RMS.

- Mostra no painel frontal a diferença instantânea dos dois sinais.

- Sistema responsável pela multiplicação do sinal simulado.

A FIGURA 64 mostra a parte da rotina na qual ocorre a subtração dos sinais. Ao iniciar o LOOP um valor numérico é gerado (pelo bloco índice), que é somado com o resultado da multiplicação de duas constantes, denominadas \(A \) e \(B \). O resultado da soma é dividido pelo valor da constante \(A \) e o valor que resulta dessa divisão é então multiplicado pelo sinal simulado. A constante \(A \) é responsável pelo passo da subtração, ou seja, quanto maior seu valor maior será o número de subtrações que a rotina deverá fazer, e a constante \(B \) está relacionada com o início da subtração. Ou seja, na situação que a constante \(B \) é 0.9, a amplitude do sinal simulado é 90% da amplitude do sinal medido.

Após o sinal simulado ser multiplicado a corrente resistiva ou corrente de perdas é obtida através da subtração entre o sinal simulado e o medido no cabo. O resultado da subtração é dividido pelo valor do resistor de realimentação (*shunt*) do amplificador de corrente. O bloco *Index Array Function* recebe o valor da corrente de perdas e monta uma matriz com o seu valor e o seu respectivo índice, e o bloco *Amplitude and Level Measurements2* determina o valor RMS da corrente de perdas.
A FIGURA 65 mostra a segunda parte da rotina desenvolvida, responsável pela subtração dos sinais.

Descrição dos elementos da FIGURA 65.

- **Insert Into Array Function**: armazena os valores RMS da corrente de perdas e seu respectivo índice.

- **Array Max & Min Function**: encontra a menor corrente RMS e seu respectivo índice na matriz armazenada no bloco Insert Into Array function.

Critério de parada: rotina que determina quando o LOOP deve parar.

A FIGURA 65 mostra como os valores da corrente de perdas e seus respectivos índices são armazenados em forma de matriz pelo bloco Insert Into
Array Function e assim como seu menor valor e seu índice são encontrados pelo bloco Array Max & Min Function. Ao encontrar a menor corrente de perdas, a rotina ainda continua rodando até que seja encontrado um valor 10 ou 15 % maior que o menor valor encontrado. O motivo de se usar esse critério para encerrar o LOOP é para que o software não venha a encontrar resultados falsos.

A finalização do LOOP acontece quando o bloco Array Max & Min Function determina o índice que leva a menor corrente de perdas. Este índice é então somado com o resultado da multiplicação das constantes A e B (ver FIGURA 64), o resultado da soma é dividido pelo valor da constante A e o valor da divisão é multiplicado pelo sinal simulado. O sinal obtido com a multiplicação é subtraído do medido no cabo, e o resultado dessa subtração é dividido pelo resistor de realimentação do amplificador de corrente (shunt) para ser enviado para fora do LOOP. A FIGURA 66 exibe como isso ocorre.

Na FIGURA 67 é possível visualizar a última etapa da rotina desenvolvida, responsável por realizar a FFT e exibir os resultados no painel frontal. Abaixo a descrição de alguns elementos que compõem essa figura.

Spectral Measurements Express VI: responsável por realizar a FFT da corrente de perdas, e mostrar o resultado no painel frontal.

Mostra o valor da menor corrente de perdas no painel frontal.

Mostra graficamente o resultado da subtração dos dois sinais.

O processo para determinar a corrente de perdas é repetido várias vezes, e em cada ciclo o valor da menor corrente de perdas e seu respectivo
índice são armazenados em forma de matriz no bloco *Insert Into Array Function*. Ao final das interações, o bloco *Array Max & Min Function* encontra o menor valor na matriz que contém os dados armazenados e o envia a um bloco que mostra seu valor no painel frontal. Ainda cada vez que um ciclo completo é realizado a rotina faz a FFT da corrente de perdas com o uso do bloco *Spectral Measurements Express VI*.