MARIZA KOLODA

CINÉTICA DE PRODUÇÃO DE ANTICORPOS EM BEZERRAS IMUNIZADAS COM A CEPA B-19 DE *Brucella abortus* (Frederick Bang, 1897)

CURITIBA

2005
CINÉTICA DE PRODUÇÃO DE ANTICORPOS EM BEZERRAS IMUNIZADAS COM CEPA B-19 DE Brucella abortus (Frederick Bang, 1897)

Dissertação apresentada como requisito parcial à obtenção do grau de Mestre em Ciências Veterinárias, Curso de Pós-Graduação em Ciências Veterinárias, Setor de Ciências Agrárias, Universidade Federal do Paraná.

Orientador: Prof. Dr. José Francisco Warth
Co-orientadora: Profª. Dra. Rosangela Locatelli Dittrich

CURITIBA
2005
SUMÁRIO

LISTA DE GRÁFICOS .. v
LISTA DE TABELAS ... vi
LISTA DE ANEXOS ... vii
LISTA DE ABREVIATURAS .. viii
RESUMO .. ix
ABSTRACT .. x
1 INTRODUÇÃO .. 01
2 OBJETIVOS .. 03
3 REVISÃO DE LITERATURA .. 04
 3.1 ETIOLOGIA ... 04
 3.2 ASPECTOS HISTÓRICOS DA BRUCELose .. 05
 3.2.1 BRUCELose NO MUNDO.. 05
 3.2.1.1 OCORRÊNCIA NO HOMEM.. 06
 3.2.2 BRUCELose NO BRASIL ... 06
 3.2.2.1 OUTROS ANIMAIS .. 08
 3.2.3 BRUCELose NO PARANÁ ... 09
 3.3 MECANISMOS DE INFECÇÃO ... 11
 3.3.1 NOS BOVINOS ... 11
 3.3.2 OUTROS ANIMAIS .. 11
 3.3.3 NO HOMEM .. 12
 3.4 EPIDEMIOLOGIA ... 12
 3.4.1 BOVINOS .. 13
 3.4.2 OUTROS ANIMAIS .. 14
 3.4.3 HOMEM .. 15
 3.5 SINAIS CLÍNICOS .. 15
 3.5.1 BOVINOS .. 15
Ao Senhor meu Deus, que toda a honra e glória lhe sejam dadas!

Salmo 2: 1-9

DEDICO
<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Explicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAT</td>
<td>Antígeno Acidificado Tamponado</td>
</tr>
<tr>
<td>B. abortus</td>
<td>Brucella abortus</td>
</tr>
<tr>
<td>2-ME</td>
<td>2 – Mercaptoetanol</td>
</tr>
<tr>
<td>FC</td>
<td>Fixação de Complemento</td>
</tr>
<tr>
<td>IS</td>
<td>Instrução de Serviço</td>
</tr>
<tr>
<td>IN</td>
<td>Instrução Normativa</td>
</tr>
<tr>
<td>MAPA</td>
<td>Ministério da Agricultura Pecuária e da Abastecimento</td>
</tr>
<tr>
<td>PECEBT</td>
<td>Programa Estadual de Controle e Erradicação da Brucelose e da Tuberculose Animal</td>
</tr>
<tr>
<td>PNCEBT</td>
<td>Programa Nacional de Controle e Erradicação da Brucelose e da Tuberculose Animal</td>
</tr>
<tr>
<td>SAR</td>
<td>Soroaglutinação Rápida em Placa</td>
</tr>
<tr>
<td>TPF</td>
<td>Teste de Polarização de Fluorescência</td>
</tr>
</tbody>
</table>
ABSTRACT

With the objective to verify the cinetic of production of antibodies in heifers vaccinated against brucellosis, 47 females had been folloied, vaccinated with age between three and eighth months, with commercial vaccine, alive attenuated, B19 standard, strain of Brucella abortus. The samples of heifers blood had been harvested in the vaccination day (zero day) and after 30, 60, 90, 150, 180, 210, 240, 270, 300, 300 and 360 days. The serum had been evaluated by the techniques of: plate agglutination, rose bengal plate and mercaptoethanol. Before the vaccination the serum had been submitted to the plate agglutination with the objective to verify the presence of maternal antibodies against the illness. All the samples had presented negative result before the vaccination. Two vaccinated animals had not presented antibodies after-vaccine during all the experiment. After 30 days, 45 females presented level above of 1:25 in the plate agglutination and rose bengal plate positive. In the mercaptoethanol, the biggest headings were observed to the 30 days, when 40 animals presented levels above of 1:25. On the 90 days, the 45 females had kept with level > 1:25 to the plate agglutination, but only 20 of them ≥ 1:100. In the rose bengal plate, 30 animals had been presented positive result, while in the mercaptoethanol, 19 animal presented this result. In the 180 days, 33 animals had presented negative to the rose bengal plate, 37 to the mercatoethanol and one of the animals got with level ≥ 1:100 in the plate agglutination, being considered positive. In 240 days, the 45 animals had presented negative result to the plate agglutination, in 300 days in the mercaptoethanol and in the 360 days in the rose bengal plate. In 360 days after the vaccination the 45 animals had gotten negatives result in the three tests, suggesting that agglutination tests can be used in heifers vaccinated between three and eight months of age, twelve months after this vaccination.

Key words: Brucellosis, Brucella abortus, immunization, agglutination test.
AGRADECIMENTOS

A Deus, meu protetor e defensor, por mais esta benção em minha vida;

A minha família, em especial a minha mãe e minhas irmãs que sempre estiveram por perto para que eu pudesse segui-lhes o exemplo;

Aos amigos, que sempre confiaram em mim;

Ao TECPAR e seus funcionários, em especial ao Médico Veterinário Jorge Victor Bacila Agottani e ao técnico de laboratório Rafael Igreja, pelo apoio, generosidade e valiosa colaboração;

Ao meu orientador Prof. Dr. José Francisco Warth e a Co-orientadora Profª. Drª. Rosangela Locatelli Dittrich, pelas lições que aprendi;

A UFPR, seus professores e funcionários;

Aos meus amigos, Aglaci Tomporoski e José Carlos Fantini Filho, pela “força” que me levou adiante;

Aos pesquisadores que mesmo sem me conhecer, se dispuseram a me auxiliar;

Ao Médico Veterinário José Cirino pela ajuda, amizade e colaboração neste trabalho;

Ao Dr. Nélio Ribas Centa e ao Sr. Garcia, pela generosidade e disposição em auxiliar as pesquisas, em especial este trabalho;

A Secretaria de Estado da Agricultura e Abastecimento do Paraná – SEAB, pelo auxílio e apoio a esta pesquisa;

Aqueles que não foram citados aqui, mas por quem eu peço uma benção especial de Deus.
LISTA DE ANEXOS

ANEXO 1 - TÉCNICA DA PROVA DO MERCAPTOETANOL - 2-ME 56
ANEXO 2 - TÉCNICA DA PROVA DE SOROAGLUTINAÇÃO RÁPIDA EM
 PLACA - SAR... 59
ANEXO 3 - TÉCNICA DA PROVA DO ANTÍGENO ACIDIFICADO
 TAMPONADO – AAT... 61
LISTA DE GRÁFICOS

GRÁFICO 1 - Animais com resultados considerados positivos ao teste de SAR (≥1/100), conforme interpretação da tabela do PNCEBT/MAPA/2001, para fêmeas não vacinadas e machos com idade superior a oito meses, em relação ao tempo decorrido (dias), após a vacinação com a cepa B19, amostra de Brucella abortus.. 35

GRÁFICO 2 - Animais com resultados considerados positivos ao teste de 2-ME (1/25), conforme interpretação da tabela do PNCEBT/MAPA 2001, para fêmeas não vacinadas e machos com idade superior a oito meses, em relação ao tempo decorrido (dias) após a vacinação com a cepa B19, amostra de Brucella abortus......... 36

GRÁFICO 3 - Animais com resultados positivos ao teste de AAT, em relação ao tempo decorrido (dias) após a vacinação com a cepa B19, amostra de Brucella abortus... 37
1 INTRODUÇÃO

A brucelose bovina é uma das zoonoses de maior importância nas Américas, não somente por sua implicação para a saúde humana, mas também pelas sérias perdas que causa à criação industrial, com a conseqüente diminuição da oferta de gêneros alimentícios (CARRILLO, 1990 A).

A ocorrência da brucelose já causou elevados prejuízos à criação de bovinos, como no período de 1930 a 1945, quando a prevalência atingiu cifras entre 40% - 60%. Em 1955 teve início, em alguns países com ocorrência endémica, os Programas de erradicação, obtendo sucesso graças à identificação e eliminação dos animais reagentes (ISHIZUKA, 2004).

No Brasil, a brucelose bovina é endémica em todo o território nacional e existe heterogeneicidade entre as regiões quanto a sua freqüência (PAULIN e FERREIRA NETO, 2003). O último diagnóstico da brucelose bovina no país foi realizado em 1975. A porcentagem de animais soropositivos foi estimada em 4,0% na Região Sul; 7,5% na Região Sudeste; 6,8% na Região Centro-Oeste; 2,5% na Região Nordeste e 4,1% na Região Norte (BRASIL/MAPA, 2001).

O controle da brucelose no Brasil estava regulamentado pela Portaria Ministerial 23/76, mas não obteve a eficácia desejada, por falta de um programa estruturado, que estimulasse os produtores a adotarem ações sanitárias adequadas em suas propriedades. Em 2001, o Ministério da Agricultura Pecuária e Abastecimento – MAPA - iniciou o Programa Nacional de Controle e Erradicação da Brucelose e Tuberculose Animal - PNCEBT, que objetivas baixar a prevalência e a incidência da brucelose e entre outras medidas, determina a obrigatoriedade da vacinação de fêmeas entre três e oito meses de idade com a vacina B19 e o uso dos
LISTA DE TABELAS

TABELA 1 - TABELA DE RUGG - COEFICIENTES DE CORRELAÇÃO ENTRE DUAS VARIÁVEIS ... 32

TABELA 2 - TITULAÇÃO AOS TESTES DE SAR, AAT E 2-ME, APRESENTADA POR 45 FÊMEAS VACINADAS COM CEPA B19 DE Brucella abortus, EM RELAÇÃO AO TEMPO DECARRIDO (DIAS) PÓS-VACINAÇÃO ... 33
1. INTRODUÇÃO

A brucelose é uma enfermidade de evolução crônica e de caráter infeccioso, altamente transmissível. Causada por uma bactéria denominada Brucella abortus, acomete preferencialmente fêmeas em idade de reprodução, e eventualmente os machos. O caráter intracelular da bactéria dificulta as medidas terapêuticas, assim às medidas preventivas de vacinação das fêmeas, tem importância fundamental no combate a doença (ACHA e SZYFRES, 1987; LORD et al., 1998; POESTER, 1998; CAMPANÃ et al. 2003).

A brucelose bovina é uma das zoonoses de maior importância nas Américas, não somente por sua implicação para a saúde humana, mas também pelas sérias perdas que causa à criação industrial, com a conseqüente diminuição da oferta de gêneros alimentícios (CARRILLO, 1990 A).

A ocorrência da brucelose já causou elevados prejuízos à criação de bovinos, como no período de 1930 a 1945, quando a prevalência atingiu cifras entre 40% - 60%. Em 1955 teve início, em alguns países com ocorrência endêmica, os Programas de erradicação, obtendo sucesso graças a identificação e eliminação dos animais reagentes (ISHIZUKA, 2004).

No Brasil, a brucelose bovina é endêmica em todo o território nacional e existe heterogenicidade entre as regiões quanto a sua frequência (PAULIN e FERREIRA NETO, 2003). O último diagnóstico da brucelose bovina no país foi realizado em 1975. A porcentagem de animais soropositivos foi estimada em 4,0% na Região Sul; 7,5% na Região Sudeste; 6,8% na Região Centro-Oeste; 2,5% na Região Nordeste e 4,1% na Região Norte (BRASIL/MAPA, 2001).

O controle da brucelose no Brasil estava regulamentado pela Portaria Ministerial 23/76, mas não obteve a eficácia desejada, por falta de um programa estruturado, que estimulasse os produtores a adotarem ações sanitárias adequadas em suas propriedades. Em 2001, o Ministério da Agricultura Pecuária e Abastecimento – MAPA - iniciou o Programa Nacional de Controle e Erradicação da Brucelose e Tuberculose Animal - PNCEBT, que objetivava baixar a prevalência e a incidência da brucelose e entre outras medidas, determina a obrigatoriedade da vacinação de fêmeas entre três e oito meses de idade com a vacina B19 e o uso dos testes sorológicos: Antígeno Acidificado Tamponado – AAT, para triagem e o teste do 2-Mercaptoetanol - 2-ME, como confirmatório. Estes
testes devem ser feitos após os 24 meses de idade nas fêmeas vacinadas para evitar que anticorpos vacinais interfiram nos resultados (BRASIL/MAPA, 1976; BRASIL/MAPA, 2001).

O presente estudo objetiva avaliar durante 12 meses, a resposta sorológica de bezerras vacinadas contra a brucelose entre três e oito meses de idade, possibilitando a avaliação da situação sanitária de um rebanho, utilizando testes sorológicos em bezerras antes dos 24 meses de idade, sem a interferência de anticorpos induzidos pela vacinação.

HIPÓTESE: Demonstrar a partir de que idade as fêmeas bovinas vacinadas com a cepa B19 de *Brucella abortus*, podem ser examinadas com testes de soroaglutinação, sem que ocorram falsos positivos, uma vez que os testes hoje disponíveis a baixo custo, não diferenciam animais vacinados com a cepa B19 daqueles infectados.
2. OBJETIVOS

Considerando a ocorrência de resultados falso-positivos em testes sorológicos de bezerras antes dos 24 meses de idade em virtude da vacinação de bezerras contra a brucelose, o presente trabalho tem como objetivos:

- Demonstrar a partir de que idade as fêmeas bovinas vacinadas com a cepa B19 de *Brucella abortus*, tem o declínio dos títulos vacinais, uma vez que os testes hoje disponíveis a baixo custo, não diferenciam animais vacinados com a cepa B19 daqueles infectados.

- O acompanhamento do perfil sorológico de animais vacinados contra a brucelose, entre três e oito meses de idade, com a vacina viva atenuada de *Brucella abortus*, cepa B19.

- Verificar a possibilidade da realização de testes sorológicos para brucelose, em fêmeas vacinadas, antes da idade de 24 meses, permitindo assim a avaliação do estatus sanitário de um rebanho, sem que os resíduos de anticorpos pós-vacinais interfiram nestes resultados.
3. REVISÃO DA LITERATURA

3.1 ETIOLOGIA

As bactérias do gênero *Brucella* apresentam-se como cocobactérias gram negativas, curtas (0,6 – 1,5 mm x 0,5 – 0,7 mm), não capsuladas não esporuladas, aeróbicas ou microaerófilas, imóveis e podem apresentar-se em cultivos primários com morfologia colonial lisa ou rugosa (rugosa estrita ou mucóide). Esta morfologia está diretamente associada à composição bioquímica da molécula lipopolissacarídeo da parede celular e para algumas espécies tem relação com a virulência. É uma bactéria intracelular facultativa (POESTER, 1998; CAMPANHA et al., 2003).

A *B. melitensis*, *B. abortus* e a *B. suis*, são denominadas “Brucelas Clássicas” e são divididas em biovares que se distinguem por diferentes características bioquímicas, de comportamento, ou ambas, frente a soros monoespecíficos *A. (abortus)* e *M. (melitensis)*. Assim a *B. melitensis* está dividida em três biovares, de 1 a 3, a *B. abortus* em sete biovares, de 1 a 7 e a *B. suis* em cinco biovares, de 1 a 5 (ACHA e SZYFRES, 2001).

Os bovinos são suscetíveis à *B. melitensis* e *B. suis*, mas a espécie mais importante para os bovinos e a responsável pela maior parte das infecções é a *B. abortus* (CORREIA e CORREIA, 1975; BRASIL/MAPA, 2001).

O homem é suscetível à brucelose causada por *B. melitensis*, *B. suis*, *B. abortus* e *B. canis*, sendo um grande risco à saúde pública principalmente em países em desenvolvimento (BRASIL/MAPA, 2001).

3.2 ASPECTOS HISTÓRICOS DA BRUCELOSE
3.2.1 BRUCLOSE NO MUNDO

Sob o nome genérico de brucelose incluem-se, atualmente, todas as doenças causadas por agentes do gênero *Brucella*, sem considerar-se as espécies animais infectadas e as manifestações decorrentes da infecção.

David Bruce em 1887, isolou pela primeira vez, um microorganismo gram negativo de casos fatais de infecção em soldados ingleses aquartelados na Ilha de Malta, acometidos de “febre do Mediterrâneo” ou "febre ondulante", já conhecida por Hipócrates e bastante disseminada no Velho Mundo no século XVII. Sendo então o agente isolado, denominado de *Micrococcus melitensis* (ISHIZUKA, 2004).

Concomitantemente ao achado de Sir Bruce, Nocard em 1885, já havia observado numeroso organismos cocócides em casos de abortos bovinos e em 1987 Bang e Stribolt cultivaram e isolaram o agente dos abortos (ISHIZUKA, 2004).

Em Nova Jersey, no ano de 1906, foi detectado a *B. melitensis* no leite de cabras importadas da Ilha de Malta. Estas mesmas cabras já haviam contagiado grande parte da tripulação e dos passageiros do barco “Joshua Nicholson”. Nas Américas, a brucelose pode ter suas origens na época das conquistas e a infecção ingressada com os animais domésticos importados da Espanha e de outros países europeus (CARRILLO, 1990 B).

Desde seu isolamento e descrição, a brucelose tornou-se uma das enfermidades zoonóticas mais difundidas no mundo, sendo encontrada em mais de 200 espécies de mamíferos, bem como em muitas espécies de aves (ACHA e SZYFRES, 1977).

3.2.1.1 OCORRÊNCIA NO HOMEM
Em 1863, Marston fez uma descrição minuciosa da doença, mas esta já era conhecida anteriormente a esta data, por ocorrer no homem, recebendo nomes diversos, como febre de Chipre, ou de Malta (CORREA e CORREA, 1992).

No homem, a doença está relacionada com a prevalência da infecção nos reservatórios animais. O homem é suscetível a infecção por B. melitensis, B. abortus, B. canis e B. suis. A espécie de maior importância para o homem é a B. melitensis, seguida pela B. suis (exceto pelo biovar 2), B. abortus e B. canis, sendo que a B. ovis e B. neotomae não foram comprovados. As infecções por B. abortus e B. suis ocorrem com maior frequência em grupos ocupacionais, como veterinários, tratadores de animais, etc., e a B. melitensis é mais frequente na população em geral, sendo neste caso os quadros humanos mais graves (ACHA e SZYFRES, 2001; BRASIL/MAPA, 2001).

Na América Latina os países que registram maiores números de casos são a Argentina o México e o Peru. O mesmo acontece nos países que rodeiam o Mar Mediterrâneo, no Iram, na Antiga União Soviética e na Mongólia, entre outros (ACHA e SZYFRES, 2001).

Nos países onde foram instituídos programas de controle da brucelose, o índice em humanos diminuiu significativamente, como por exemplo, na Dinamarca, que entre 1931 e 1939 registrava 500 casos por ano, e após erradicar a doença nos animais em 1962, a doença em humanos desapareceu (ACHA e SZYFRES, 1977; ACHA e SZYFRES, 2001).

3.2.2 BRUCELOSE NO BRASIL

O primeiro estudo sobre brucelose bovina no Brasil foi feito por Tineciro Icibaci, por ocasião do I Congresso Nacional de Medicina Veterinária, em 1922. Pesquisando tecidos oriundos de fetos abortados, descreveu um foco de brucelose bovina no Município de São Carlos, São Paulo. Em 1917, Thomaz Pompeo Sobrinho, havia estudado abortos em eqüinos, em ovinos e em bovinos. Em 1928 os pesquisadores Tiago Melo e Neiva, isolaram B. abortus do sangue de uma vaca que havia abortado. Silvio Torres em 1931, verificou a existência de oito animais soropositivos para brucelose e 19 suspeitos em um lote de 51 bovinos importados (BRASIL/MAPA, 1997; BRASIL/MAPA, 2001).
Em 1933, Silvio Pinto propôs testes em animais importados como forma de impedir a disseminação da doença no país, logo após em 1936, Desidério Finamor detectou a brucelose bovina pela primeira vez no Rio Grande do Sul pelo sorodiagnóstico. Mello em 1950, relatou a disseminação da brucelose bovina por todo o país apontando para uma prevalência de 10 a 20%, sendo que os índices mais altos estavam nas regiões leiteiras do Rio Grande do Sul, São Paulo, Rio de Janeiro e Minas Gerais (PAULIN e FERREIRA NETO, 2002).

Estudos mostram que a brucelose bovina está disseminada em todo o território nacional, com variações regionais. Em 1975 foi efetuado o primeiro e mais amplo inquérito epidemiológico nacional, onde verificou-se uma prevalência regional de 4% na região Sul; 7,5% na região Sudeste; 6,8% na região Centro-Oeste; 2,5% na região Nordeste e 4,1% na região Norte (BRASIL/MAPA, 2001).

Posteriormente, outros levantamentos sorológicos por amostragem, realizados em alguns estados, revelaram pequenas alterações na prevalência de brucelose desde 1975. No Rio Grande do Sul a prevalência passou de 2,0%, em 1975, para 0,3% em 1986; em Santa Catarina passou de 0,2%, em 1975, para 0,6% em 1996; no Mato Grosso do Sul a prevalência estimada em 1998 foi de 6,3%, idêntica ao valor encontrado em 1975 no antigo estado do Mato Grosso; em Minas Gerais passou de 7,6%, em 1975, para 6,7% em 1980; no Paraná, a prevalência estimada em 1975 foi de 9,6%, passando para 4,6% de bovinos soropositivos em 1989 (BRASIL/MAPA, 2001; POESTER et al., 2002; DIAS, 2003).

Desde 1944, o Ministério da Agricultura vem propondo tentativas de controle da brucelose bovina por meio de programas, que visavam principalmente a vacinação e a identificação de animais, abate voluntário e diagnóstico nos rebanhos (DIAS, 2003).

Em 1976, o controle da brucelose bovina foi regulamentado pela portaria ministerial 23/76, que continha medidas regulamentadas para a profilaxia da brucelose animal, prevendo a notificação de focos, aconselhava a eliminação ou o isolamento dos positivos e a vacinação de fêmeas entre três e oito meses de idade.
Contudo, as medidas não estavam atingindo a eficácia desejada, em razão da ausência de um programa estruturado que criasse estímulos para os pecuaristas adotarem ações sanitárias mais adequadas (BRASIL/MAPA, 1976).

Apesar das medidas adotadas pela Instrução Normativa 23/76, os dados oficiais do Boletim de Defesa Sanitária Animal, demonstraram que a prevalência de animais positivos se manteve entre 4% e 5%, no período entre 1988 e 1998 (BRASIL/MAPA, 2001).

3.2.2.1 OUTROS ANIMAIS

A brucelose em suínos é controlada de acordo com as normas de certificação de Granjas de Reprodutores de Suínos Certificada – GRSC, da Secretaria de Defesa Agropecuária, que estabelecem procedimentos de diagnóstico e controle na população de matrizes, utilizando o monitoramento sorológico.

3.2.3 BRUCÉLOSE NO PARANÁ

Palmquist em 1947 diagnosticou, pela primeira vez no Estado do Paraná, a brucelose bovina, utilizando provas de soro-aglutinação (PALMQUIST, 1949).
Um levantamento sobre a incidência da doença, a fim de determinar o mais precisamente possível a sua freqüência, foi iniciado em 1947. Os trabalhos foram iniciados pelo gado leiteiro da região de Curitiba, mas por dificuldades encontradas nas condições, principalmente de locomoção, não foi possível examinar todos os estábulos da região, sendo então escolhidos 647 estábulos em distritos diferentes da região. Nos nove distritos estudados, foram coletados soros de 647 animais, onde foram encontrados 11 positivos e 11 suspeitos, dando uma porcentagem de 3,4 % de reagentes à prova.

Na zona Norte foram examinados 569 animais, obtendo 110 animais positivos e 39 suspeitos, resultando em uma porcentagem de 21,18% de reagentes à prova. Na zona do centro, foram examinados 183 animais, obtendo 15 positivos e 14 suspeitos, perfazendo o índice de 15,83% de animais reagentes. Na zona Sul foram examinados 104 animais, obtendo somente um animal com resultado positivo, resultando em 0,96% de animais reagentes à prova (PALMQUIST, 1949).

Em 1975 o Ministério da Agricultura promoveu o primeiro levantamento nacional, por meio de um inquérito soroepidemiológico por amostragem. Neste inquérito o estado do Paraná obteve o índice de prevalência de 9,6%. Posteriormente cada estado brasileiro fez seu levantamento soroepidemiológico, quando então o Paraná demonstrou que suas medidas de profilaxia e a vacinação de bezerras entre três e oito meses de idade, apesar de não ser obrigatória no estado, estavam obtendo alguns resultados, mas não o esperado. Neste levantamento obteve-se a prevalência de animais positivos de 4,6% (BRASIL/MAPA, 2001).

No ano de 2001, em consonância com o PNCEBT, o Paraná lançou o Programa Estadual de Controle e Erradicação da Brucelose e da Tuberculose Animal- PECEBT, cujo regulamentar técnico prevê a obrigatoriedade da vacinação de bezerras entre três e oito meses de idade, a eliminação de
animais reagentes positivos e a certificação de propriedades como livre ou monitoradas para estas enfermidades (PARANÁ, 2001).

Em 2002, o Estado do Paraná promoveu seu último levantamento soroepidemiológico da brucelose bovina. O estado foi dividido em sete circuitos produtores, representadas pelo número de propriedades, número total de bovinos e fêmeas com idade igual ou superior a 24 meses. Foram coletadas amostras de 14.855 animais, provenientes de 2.098 propriedades (de escolha aleatória) distribuídos nos sete circuitos. Dos 2.094 rebanhos analisados, 97 foram positivos, obtendo a prevalência de 3,89% em propriedades e dos 14.808 animais analisados, 149 foram sororreagentes à brucelose, com uma prevalência de 2,34% (DIAS, 2003).

3. 3 MECANISMOS DE INFECÇÃO

3.3.1. NOS BOVINOS

A principal fonte de infecção bovina são os restos fetais, envolturas fetais e descargas vaginais contendo grande número de brucelas. O pasto também pode ser contaminado por fezes de bezerros que se alimentam de leite infectado, pois nem todas as brucelas são eliminadas pelo trato digestivo (ACHA e SZYFRES, 2001).

A principal porta de entrada do agente no animal é a mucosa do aparelho digestivo (via oral). Após atravessar a barreira intestinal, alcança a circulação sanguínea por meio do sistema porta. A primeira infecção ocorre quando estas entram nos macrófagos, multiplicando-se e posteriormente dirigindo-se aos órgãos de seleção (aparelho reprodutor) (ACHA e SZYFRES, 2001; CAMPANÁ, 2003).

A principal causa da ocorrência da doença em um rebanho de animais livres é com a entrada de animais infectados, podendo ainda entrar pela inseminação artificial ou ainda quando uma vaca entra em contato com pasto contaminado, restos placentários, placentas, etc. (DERIVAUX, 1982).

Quando a brucelose recém-ingressa em uma criação ela pode comportar-se como epidemia, causando surto de abortos (CORREA e CORREA, 1992).
3.3.2 OUTROS ANIMAIS

Nos suínos a *B. suis* é o principal agente, sendo a *B. abortus* e a *B. melitensis*, de ocorrência ocasional. As fontes de infecção são as mesmas que para os bovinos. As vias principais de transmissão são a digestiva e a venérea, sendo a monta natural um modo comum e importante de transmissão da infecção (DERIVAUX, 1982; ACHA e SZYFRES, 2001).

As cabras e em menor grau, as ovelhas, são suscetíveis a *B. melitensis* e se infectam de forma similar ao bovino. A contaminação se dá por via digestiva, respiratória e pela penetração da bactéria pelas mucosas, especialmente pela digestiva (DERIVAUX, 1982). O macho pode contrair a brucelose depois de cobrir uma fêmea infectada e depois transmiti-la a outras fêmeas, porém este papel do macho na transmissão ainda não está bem definido. A excreção se dá pela urina e pelo leite. Na epididimite no carneiro pela *B. ovis*, o sêmen é a principal fonte de infecção, e a transmissão se dá por contato retal e prepucial entre um macho e outro. A infecção nas fêmeas é pouco freqüente, se dá por via venérea e normalmente de pouca duração (DERIVAUX, 1982; ACHA e SZYFRES, 2001).

3.3.3 NO HOMEM

A transmissão da brucelose ocorre pelo contato do agente com mucosas ou soluções de continuidade da pele. A carne crua com restos de tecido linfático e o sangue de animais infectados, embora apresente menor risco, pode conter microorganismos viáveis e, portanto significa risco para a população humana consumidora (BRASIL/MAPA, 2001).

O homem pode se infectar ao auxiliar os animais brucélicos no parto, com o feto, líquidos fetais e restos de placenta. O hábito de consumir leite cru e outros produtos de origem animal sem cozimento também representam fonte de infecção ao homem (ACHA e SZYFRES, 2001).

3. 4 EPIDEMIOLOGIA
A brucelose é uma doença de distribuição mundial, apesar de alguns países da Europa, Canadá e EUA a manterem sob controle ou já a erradicaram, como os nórpicos.

O papel dos animais na epidemiologia é essencial, pois a brucelose é uma zoonose. Os casos de transmissão entre humanos são raros (ACHA e SZYFRES, 2001).

3.4.1 BOVINOS

A infecção entra em um rebanho sadio pela compra de um animal infectado ou pela inseminação artificial. Uma fêmea sadia, gestante, que entra em contato com material contaminado, pode ser infectada rapidamente e abortar (CAMPANÃ, 2003).

A eliminação da brucela pelo animal contaminado ocorre principalmente no momento do parto, contaminando o ambiente (solo, pasto, água, etc.) com restos e líquidos fetais, bem como as pessoas que os manipulam e os animais que o ingerem, contribuindo com a disseminação da doença. Após o aborto, a infecção se localiza no úbere e nos gânglios supramamários, e a eliminação do agente pelo leite pode durar muito tempo, mas de forma irregular e intermitente (DERIVAUX, 1982).

Os bezerros são relativamente resistentes, mas se forem alimentados com leite de vacas brucelicas podem eliminar o agente nas fezes, tornando-se assim fontes de infecção nas propriedades (DERIVAUX, 1982). Bezerros infectadas antes do nascimento, ou logo após o nascimento, se permanecerem infectadas, podem tornar-se fontes de infecção nos rebanhos (CORREA e CORREA, 1992).

O período de incubação pode variar conforme o período da prenhez em que a vaca se infectou. Quanto mais adiantada a prenhez, menor o período de incubação. Em uma contaminação via oral, em período de monta, o tempo de incubação pode chegar a 200 dias. O período desde a infecção ao aparecimento de anticorpos, é variável de semanas até meses. Fatores como a virulência da bactéria, doses e vias de infecção fazem com que o período de incubação varie (ACHA e SZYFRES, 2001).

3.4.2 OUTROS ANIMAIS
Nos suínos a brucelose é eliminada via espermática, e pode prolongar-se por um grande período. Quando a brucelose entra em uma propriedade livre, todos os animais são suscetíveis. Os leitões podem permanecer infectados até a idade adulta, sendo de importância para o controle da doença em uma propriedade. As fêmeas infectadas podem eliminar a brucela em grande quantidade no momento do parto e com o leite (DERIVAUX, 1982).

Em algumas espécies como ovinos, tanto a via venérea quanto a contaminação de pastos e instalações podem ser responsáveis pela infecção. Animais domésticos tais como o gato, o cachorro e as aves, não tem papel relevante na eliminação da brucelose ao homem ou a outros animais (MERCK, 1986).

Nos carnívoros, a infecção é adquirida pela ingestão de fetos ou restos fetais de aborto, mas não há comprovação da transmissão de um indivíduo para outro entre um carnívoro e outro. É provável que ao se controlar a brucelose dos animais domésticos, esta seja extinta neste grupo. Os animais domésticos também podem transmitir a infecção para os animais silvestres, como no caso da Argentina onde ocorre a infecção de raposas (Dusicyon gymnocercus, D griseus) por B. abortus biotipo 1. A situação se torna relevante quando há transmissão de animais domésticos aos silvestres onde a brucelose se perpetua, como no caso do antílope das estepes (Saiga tatarica) ou o bisonte americano (Bison bison) (ACHA e SZYFRES, 2001).

3.4.3 HOMEM

A brucelose zoonótica é considerada uma doença de caráter ocupacional, pois pode infectar a pessoa que manipula anexos e fluídos fetais e carcaças de oriundas de animais infectados, como bovinos, suínos, caprinos e ovinos. Magarefes, trabalhadores das indústrias de laticínios e até mesmo...
donas de casa estão sujeitos a infecção pelo contato com a carne ou leite contaminados (BRASIL/MAPA, 2001).

O grande risco para a saúde pública é decorrente da ingestão de leite cru e produtos lácteos oriundos de animais infectados e não submetidos a tratamento térmico (queijo fresco, iogurte, etc.). O período de incubação pode variar de uma a três semanas, mas pode prolongar-se por até alguns meses (ACHA e SZYFRES, 2001).

3.5 SINAIS CLÍNICOS

3.5.1 BOVINOS

Quando a brucelose entra em um rebanho, o principal sinal clínico é o aborto, principalmente entre o sétimo e o oitavo mês de gestação, mas pode ser mais precoce. A esterilidade temporária ou permanente, repetição de cio e perdas na produção de leite por mastites inespecíficas, também são características da enfermidade (DERIVAUX, 1982; ACHA e SZYFRES, 2001).

O período de incubação varia entre 14 a 180 dias, sendo a febre um sinal presente.

A secreção vaginal, purulenta ou não, é freqüente, com coloração cinza ou vermelho pardo, e a infecção ocorre na glândula mamária. A imunidade é lenta, o que pode ocasionar até três abortos na mesma fêmea, até que as gestações sigam normalmente. Estima-se que em torno de 10 a 25% das vacas abortam pela segunda vez e depois voltam a ter uma função reprodutora normal. As gestações seguem normalmente e os bezerros nascem a termo (ACHA e SZYFRES, 1977).

Nos machos as brucelas podem localizar-se nos testículos e nas glândulas genitais anexas e quando a enfermidade se manifesta clinicamente, os testículos podem aumentar de volume, com diminuição da libido e infertilidade (ACHA e SZYFRES, 2001).

Observa-se artrite no tarso e metatarso ou poliartrite, tenosinovite, bursites e abcessos cutâneos. As lesões observadas nos fetos abortados são: edema de pele, pericárdio e no cordão umbilical e transudado sero-hemorrágico nas cavidades torácica e abdominal e no pericárdio (CAMPANÃ et al., 2003).
3.5.2 OUTROS ANIMAIS

Nos suínos a infecção por *B. abortus*, é geralmente assintomática, limitando-se aos gânglios da cabeça. Quando a brucelose por *B. suis* entra em uma propriedade livre, a enfermidade apresenta-se de forma aguda. Ocorrem abortos, infertilidade, nascimento de leitões fracos, orquite, epididimite e artrite (ACHA e SZYFRES, 2001).

Nos caprinos a sintomatologia é similar às aquelas observadas em outras espécies, com o aborto entre o terceiro e quarto mês, a principal manifestação. Em uma infecção natural, outros sintomas como artrite ou mastite são raros. As cabras não prenhes, mas sexualmente maduras são suscetíveis e sofrem infecção crônica, inaparente e podem apresentar riscos a outros animais do rebanho. A brucelose ovina tem a sintomatologia similar à caprina, sendo os ovinos mais resistentes que os caprinos (ACHA e SZYFRES, 2001).

3.5.3 HOMEM

A *Brucella* mais patogénica ao homem é a *B. melitensis*, seguida pela *B. suis* (exceto pelo biovar 2) *B. abortus* e *B. canis*. O período de incubação da brucelose dura de uma a três semanas, mas pode prolongar-se por vários meses. É uma doença septicêmica, de início repentino, com febre contínua, intermitente ou irregular (BRASIL/MAPA, 2001). Os sintomas da brucelose aguda são semelhantes aos de diversas outras enfermidades, como calafrios, sudorese profusa e febre. Um sintoma muito comum é a astenia e qualquer exercício produz um profundo cansaço. A temperatura pode variar de normal pela manhã, até 40º C à tarde. A sudorese apresenta-se durante a noite e tem um odor característico (CORRÊA e CORRÊA, 1992; ACHA e SZYFRES, 2001).

Os sintomas comuns são: insônia, impotência sexual, constipação, anorexia, dor de cabeça, dores articulares e dores generalizadas. A doença produz um grande impacto sobre o sistema nervoso, traduzido por irritabilidade, nervosismo e depressão. Muitos pacientes ficam com os gânglios
periféricos aumentados e também com o baço e o fígado inchados. A icterícia é rara (ACHA e SZYFRES, 2001).

3.6 RESPOSTA IMUNOLÓGICA

A *Brucella* tem estrutura antigénica completa, entre os antígenos mais importantes estão o lipopolissacarídeo–LPS, o hapteno nativo–HP, proteínas citoplasmáticas e de membrana externa. Por estar localizada na superfície da célula e por sua imunogenicidade, o LPS é o primeiro antígeno a induzir o aparecimento de anticorpos (SANCHES *et al.*, 2000).

Uma vez que a *Brucella* invadiu a mucosa, macrófagos e neutrófilos presentes na submucosa, fagocitam a bactéria (GORVEL e MORENO, 2002).

A *Brucella* utiliza-se de macrófagos e neutrófilos como proteção contra organismos celulares e humorais durante a bactéria. Esta bacteremia ocorre após duas a quatro semanas, e quando ela se liberta dos neutrófilos, é fagocitado exclusivamente por macrófagos dos órgãos onde se encontra, se multiplicará, causando uma reticuloendoteliose difusa (CORREIA e CORREIA, 1992).

Após uma a duas semanas aparecerá a IgM e após quatro semanas a IgG e IgM. Poderá ocorrer a formação de nodulação de macrófagos em células epitélioides e infiltração por linfócitos e plasmócitos, ocorrendo necrose de caseificação, quando a distribuição do agente não for muito difusa (POSTER, 1975).

Na placenta da vaca, ocorre grande quantidade de eritritol, um hidrato de carbono, que estimula a multiplicação da espécie, o que explicaria a grande suscetibilidade dos tecidos fetais dos bovinos. Estando na placenta a bactéria tem predileção pelo epitélio trofoblástico, resultando em placentite necrótica, causando aborto por comprometimento da circulação materno-fetal (ACHA e AZYFRES, 2001).

Em geral a infeção com *Brucella* induz a respostas imunológicas humorais e mediadas por células. Em magnitude e duração, estas respostas podem ser influenciadas por muitos fatores, como a virulência da cepa infectante, a quantidade de inócuo, a idade, sexo, gestação, espécie e estado imunológico dos hospedeiros (OMS, 1986).
Os anticorpos circulantes estão ligados a frações séricas denominadas imunoglobulinas. A macroglobulina IgM, do grupo 19S, aparece nos períodos iniciais da infecção enquanto as microglobulinas IgG, do grupo 7S, aparecem posteriormente. No leite de vacas brucélicas são encontradas as imunoglobulinas do grupo 12S, sendo que o aparecimento de outras imunoglobulinas como a IgA e a IgD, não está bem esclarecido (CARRILLO, 1970).

3.7 DIAGNÓSTICO

No diagnóstico da brucelose, os sinais clínicos devem ser considerados como indicativos da enfermidade, mas o diagnóstico final deverá ser sempre sorológico ou bacteriológico, por ser o aborto um sinal clínico de diversas enfermidades em animais (CORREA e CORREA, 1992).

Para um exame bacteriológico, os materiais a serem enviados são fetos, envolturas fetais, secreções vaginais, leite e semen. A eliminação da bactéria pelo leite de uma vaca infectada é constante e intermitente, sendo um excelente material para o isolamento da Brucella (ACHA e AZYFRES, 2001).

A Brucella tem um bom crescimento em ágar sangue 5 –10%, no entanto o conteúdo abomasal do feto e o colostro normalmente estão contaminados por fungos e bactérias, sendo então necessário um meio seletivo composto de ágar sangue com 5% de soro negativo equino ou bovino e um suplemento antibiótico. O suplemento antibiótico normalmente utilizado para B.ovis é diferente daquele utilizado para B. abortus (QUINN, et al., 1994).

Existem diferenças entre a B. abortus biotipo 1, de campo e a amostra cepa B19, derivada da B. abortus, utilizada na vacinas. Ocorrem reações similares no teste do CO₂, mas a cepa B19 é inibida pelo eritritol e suscetível a penicilina, enquanto a B. abortus tem crescimento em presença do eritritol e apresenta-se resistente a penicilina (QUINN, et al., 1994).

O diagnóstico diferencial da brucelose é realizado com o isolamento e a identificação do agente. No entanto há circunstâncias em que não é possível o diagnóstico bacteriológico, sendo então conveniente utilizar os métodos sorológicos, como por exemplo os realizados nos Programas de erradicação (OMS, 1986).
Os testes de soroaglutinação são os principais métodos de diagnóstico da brucelose bovina e bubalina no Brasil. Ressalta-se o papel, quase exclusivo, da soroaglutinação como prova utilizada para diagnóstico individual da brucelose. Estas provas contribuíram muito para os Programas de controle e erradicação desta enfermidade em diversos países, apesar de não diferenciarem animais vacinados com a cepa B19 daqueles realmente infectados (SAMARTINO, 2002).

Vários países tem como eleição as provas de soroaglutinação para o diagnóstico da brucelose nos seus programas de controle da enfermidade. As provas mais utilizadas são: AAT, SAR e o 2-ME.

No Brasil são utilizados os testes do AAT como triagem e o 2-ME ou a Fixação de Complemento – FC, como confirmatórios. No trânsito internacional é exigido a FC. O SAR, a partir de 2003, não é mais aceita como prova de triagem no Brasil, por ser considerada inadequada. Estudos comparativos entre diversos testes de diagnóstico, demonstraram que esta prova é inapta por não apresentar resultados confiáveis, não sendo mais permitida sua comercialização e utilização (BRASIL/MAPA, 2001).

Os resultados das provas sorológicas apresentam interferência dos anticorpos vacinais, quando os animais são vacinados com amostra B19 de *Brucella abortus*, sendo necessário precaução na interpretação destas provas, em conjunto com boa coleta de dados dos animais em questão (JACOBO *et al.*, 2001).

Para evitar a ocorrência de falsos positivos por causa da vacinação, o MAPA determina que em fêmeas vacinadas com amostra B19, os testes sorológicos sejam feitos após os 24 meses de idade do animal (BRASIL/MAPA, 2001).

Vários testes estão sendo desenvolvidos com o intuito de diferenciar os anticorpos vacinais daqueles resultantes de infecção por *Brucella abortus*, ou ainda que apresentem reações cruzadas com outros microorganismos como por exemplo a *Yersinia enterocolitica* O:9, *Salmonella urbana* O:30, *Pseudomonas maltophilia* e *Vibrio cólera* O:1 (OMS, 1986).

3.7.1 NO HOMEM
O diagnóstico da brucelose no homem é baseado na sintomatologia apresentada e complementada pelo diagnóstico laboratorial. Para confirmar a enfermidade, são utilizados o isolamento e a tipificação da bactéria, o que também pode identificar a fonte de infecção. O material utilizado para os exames de diagnóstico são entre outros, gânglios e líquido cefalorraquidiano e de abcessos.

Em áreas enzoóticas de *B. abortus*, é recomendada a repetição dos exames, pois muitas vezes o paciente faz uso de antibióticos antes do diagnóstico final (ACHA e SZYFRES, 2001).

3.7.2 TESTES DE DIAGNÓSTICO INDIRETO

Entre os testes desenvolvidos estão o Teste de Polarização de Fluorescência – TPF, o Teste de Elisa Indireto (I-Elisa), o Teste de Elisa Competitivo (C-Elisa) e o Teste do Anel do Leite – TAL e para o Programa Nacional ficaram estabelecidos os testes de AAT e o 2-ME, em conjunto com a Prova Lenta em Tubo – PL (BRASIL/MAPA, 2001).

O TPF, sendo que o antígeno utilizado neste testes é preparado com polissacáride O (cadeia O) de *B. abortus* conjugado com isotiocianato de fluoresceína. A prova baseia-se no movimento ao acaso de uma molécula em ação, sendo que o tamanho molecular é o principal fator que influencia a taxa de rotação de uma molécula e é inversamente proporcional a esta. O soro ou o leite podem ser utilizados neste teste (BRASIL/MAPA, 2001). O TPF, apresenta boa acurácia quanto a detecção de anticorpos de infecção e não de vacinação e pode ser utilizado como confirmatório (OMS, 1986).

Para o teste de Elisa Indireto (I-Elisa) existem várias técnicas que apresentam bons resultados. Utiliza-se como antígeno o lipopolissacarídeo de *B. abortus* imobilizado em placas de 96 poços. Como conjugado utiliza-se um anticorpo monoclonal anti-IgG1 bovina conjugado à peroxidase. Agentes quelantes (EDTA/EGTA) são utilizados para minimizar reações não específicas.

Este teste apresenta alta sensibilidade, no entanto sua especificidade assemelha-se a do AAT (BRASIL/MAPA, 2001).

Para efetuar o teste de Elisa Competitivo (C-Elisa) utiliza-se como antígeno na fase sólida o lipopolissacarídeo de *B. abortus*. O soro a testar é misturado a um anticorpo monoclonal específico
contra o polissacarídeo O (cadeia O) de *B. abortus*. Um conjugado peroxidade-anti-IgG de camudongo é utilizado para a detecção do anticorpo monoclonal ligado ao polissacarídeo na fase sólida do teste. Quanto maior a quantidade de anticorpos anti-antígeno O de *Brucella* sp no soro testado, maior a competição com o anticorpo monoclonal específico e menor a quantidade de cor desenvolvida. Por comparação a um controle, é possível quantificar a quantidade relativa de anticorpos anti-*brucella* no soro teste. Este teste é muito sensível e específico, porém de custo elevado. Está aprovada para utilização como teste confirmatório pela OIE (BRASIL/MAPA, 2001).

O Teste do Anel do leite – TAL, deve ser aplicado em misturas de leite de vários animais, pois a baixa concentração celular do antígeno (4%), torna-o bastante sensível. Se houver anticorpos presentes no leite, a combinação de antígenos corados com hematoxilina combinam com *B. abortus* do antígeno e se aderem aos glóbulos de gordura, fazendo com que se forme um anel azulado com a coluna de leite branca abaixo, representado reação positiva. Não havendo anticorpos presentes, o anel será branco e a reação negativa. Esta prova é útil na detecção de rebanhos infectados e no monitoramento dos livres, no entanto pode apresentar falsos-positivos em presença de leite ácido de animais em início de lactação ou portadores de mamites (BRASIL/MAPA, 2001).

O SAR ou Prova de Huddleson foi desenvolvida por Huddleson em 1920, sendo esta técnica difundida mundialmente, especialmente nas Américas, onde é um método de rotina, pois tem as vantagens de ser rápida e simples. Esta prova detecta IgM e IgG, e é feita com soro dos animais contra antígeno padronizado, constituído por suspensão de *B. abortus* corada com cristal-violeta ou verde brilhante (CARRILLO, 1970).

No Brasil, o SAR não é mais utilizado desde 2003 (BRASIL/MAPA, 2001).

A prova do AAT teve sua origem no Departamento de Agricultura dos Estados Unidos. O desenvolvimento da prova ocorreu a partir da observação de que a IgG1 bovina é menos ativa em pH neutro, mudando o seu comportamento bioquímico em meio ácido. O pH 3,65 ± 0,05 aumenta o poder da aglutinação da IgG1, reduz a reatividade da IgM e destrói aglutininas inespecíficas (GARCIA e CARRILLO, 1982; WRIGHT e NIELSEN, 2002).
O AAT é uma prova qualitativa e não quantitativa, pois não determina a concentração de anticorpos no soro. Nesta prova o antígeno é tamponado em pH baixo, o que reduz a atividade da IgM, tornando-a seletiva à identificação da subclasse IgG₁ (MEGID et al., 2000).

O AAT, em substituição do SAR, possibilita estratégias de controle da brucelose em menor espaço de tempo, em virtude de sua alta sensibilidade, especificidade, praticidade e baixo custo. Esta prova é utilizada nos Estados Unidos e na Inglaterra, como prova rápida para separar bovinos positivos de negativos e posteriormente confirmada com outras provas (MEGID et al., 2000). No Brasil esta prova é utilizada como prova de triagem a campo, quando da certificação de propriedades livres ou monitoradas para brucelose (BRASIL/MAPA, 2001).

A prova do 2-ME detecta tanto a IgG₁ como IgG₂, sendo que o reagente do 2-ME aumenta a sensibilidade do teste, pela reatividade da IgG₁, aumentando a tendência de detectá-la, em comparação a IgG₂. Isto provavelmente ocorra pelo pH ácido (5,5) do 2-ME a 0,714%, utilizado na prova. Os compostos químicos com grupos sulfidrilos (radical tiol), como o 2-ME, por exemplo, conferem ao teste a propriedade de inativar as imunoglobulinas IgM, que tem sua formação em pentâmeros degradada, perdendo assim sua atividade aglutinante. Esta prova é utilizada como prova confirmatória, após o AAT (ALTON, 1976; PAULIN, 2002).

Para auxiliar na interpretação da prova do 2-ME, ela deve ser realizada com conjunto com a prova lenta em tubo “standard”, que consiste no mesmo método do 2-ME, apenas sem a presença do reagente e com as mesmas diluições (GARCIA e CARRILLO, 1971).

3.8 CONTROLE

O controle da brucelose está baseado principalmente no diagnóstico presuntivo, na vacinação das bezerras, no isolamento dos animais reagentes positivos do restante do rebanho e a eliminação destes (SAMARTINO et al., 2000).

Para se obter um bom controle e profilaxia da enfermidade, com a eliminação das fontes de infecção e o descarte dos animais reagentes positivos, após um teste de triagem, seguido por um teste confirmatório, devem ser tomadas medidas relativas aos animais suscetíveis como, a vacinação
das bezerras entre três e oito meses de idade, entrada controlada de animais na propriedade, medidas de higiene, principalmente pós-parto, e sorologia periódica (ISHIZUKA, 2003).

Uma das vacinas mais utilizadas em programas governamentais é a B19, de *Brucella abortus*, mas esta vacina causa a grande maioria dos falso-positivos, nos testes de soroaglutinação. Esta reação advém do fato de que a amostra 19 de *Brucella abortus* apresenta morfologia colonial lisa, que é incapaz de alterar sua virulência por passagens sucessivas em animais (ALTON, 1998).

A vacina RB51 foi desenvolvida a partir da amostra 2308 virulenta, uma mutante rugosa que tem a característica de não induzir no animal vacinado a formação da cadeia O – polissacárido-específico, que interfere nos testes sorológicos, e poderá ser utilizada em programas governamentais (LORD, 1998).

O uso da vacina RB51 no Brasil está liberada para uso em casos especiais como os surtos em uma área determinada ou outros casos determinados pelo Serviço Oficial, mas ainda não há produção nacional. A vacina oficial estabelecida para programa de controle empreendido pelo governo brasileiro e utilizada para diminuir a prevalência da doença no país é a B19 (BRASIL/MAPA, 2001).

3.8.1 PROGRAMA DE CONTROLE DA BRUCELOSE

As decisões quanto às estratégias apropriadas para combater e/ou erradicar a brucelose, devem ser adaptadas para uso nacional, entretanto alguns países delegam aos Estados ou Províncias as aplicações que mais se adaptem às condições epidemiológicas e socioeconômicas existentes (OMS, 1986).

Em 2001 o Ministério da Agricultura lançou o Programa Nacional de Controle e Erradicação da Brucelose e da Tuberculose Animal- PNCBT, e entre as medidas adotadas estão: a vacinação compulsória, padronização dos testes de diagnóstico utilizados, isolamento e abate dos animais reagentes positivos, controle da movimentação de animais para a reprodução, cursos de treinamento para médicos veterinários e a certificação de propriedades como livres ou monitoradas para estas enfermidades (POESTER *et al*., 2002).
A vacinação obrigatória das bezerras com idade entre três e oito meses, visa diminuir a prevalência e a incidência desta enfermidade. A certificação de propriedades como Livres ou Monitoradas para a brucelose e a tuberculose, que estão dentro dos princípios técnicos sugeridos pelo Código Zoosanitário Internacional e são aceitos internacionalmente, e são instrumentos para que os produtores e o setor agro-industrial valorizem os seus produtos (BRASIL/MAPA, 2001).

A adesão à certificação de uma propriedade é voluntária, sendo a certificação monitorada, indicada para as propriedades destinadas a gado de corte e genética e a certificação de livre, para as propriedades especializadas em gado de leite.

Nas propriedades a serem certificadas como livres, serão feitos testes em todo o rebanho, respeitando a faixa etária, obtendo-se a certificação após três testes consecutivos negativos. Em propriedades monitoradas, os testes são realizados por amostragens de reprodutores no plantel, utilizando-se o conceito de gestão de risco. Após a obtenção do certificado, somente podem ingressar na propriedade animais oriundos de outras propriedades com a mesma situação sanitária ou com dois exames de diagnóstico negativos, um na origem e outro no destino (BRASIL/MAPA, 2001).

3.9 RESPOSTAS SOROLÓGICAS PÓS-VACINAIS

A vacina recomendada para utilização em programas governamentais é a cepa B19 de Brucella abortus. Em pesquisa realizada em 24 países americanos, nove utilizam a cepa B19, dois utilizam a cepa RB51, seis deles aplicam ambas as cepas e sete deles não informaram qual delas utilizam (OPS/OMS, 2000).

Preparada a partir de cepa atenuada de B. abortus, a B19 induz a imunidade celular e humoral. Os anticorpos decorrentes da imunidade humoral são reduzidos a níveis não detectáveis ou discrimináveis em sorologia realizada quando os animais chegam a fase adulta. Esta vacina protege os animais contra o aborto, mas não impede totalmente a infecção, principalmente no ubere (ISHIZUKA, 2003).
A vacina cepa B19 é uma vacina viva atenuada, que apresenta morfologia colonial lisa e incapacidade de alterar sua virulência por passagens sucessivas em animais e não cresce em presença de eritritol (ALTON, 1998).

Um dos pontos mais preocupantes no uso da vacina é a persistência de anticorpos sorológicos pós-vacinais, o que gera muitos resultados falso-positivos nas provas sorológicas hoje utilizadas, sendo difícil distinguir anticorpos de infecção, daqueles resultantes da vacinação. Com a utilização da vacina, podem ocorrer reações cruzadas com outros microorganismos como: Escherichia coli O157, Yersinia enterocolitica O:9, Francisella tularensis, Salmonella urbana, Pseudomonas maltophilia (OMS, 1986; MEGID et al., 2000).

Ao ser vacinado, o animal produz anticorpos das classes IgM e IgG. As IgM se formam primeiramente, podendo ser detectadas entre cinco a sete dias após a vacinação, com pico entre 13 e 21 dias. Depois sua concentração diminui, mas não desaparece por vários meses. As IgG se formam logo após, entre os 14 e 21 dias após a vacinação, com a máxima concentração em 28 e 42 dias. Em um animal vacinado as IgG (7S) declinam rapidamente e desaparecem antes que os anticorpos IgM (19S) (OLASCOAGA, 1976).

Os testes hoje preconizados pelo Ministério da Agricultura e adotados nos programas de controle e erradicação dos estados, que são o AAT, como prova de triagem e o 2-ME para confirmação, com opção para Fixação de Complemento-FC, não são capazes de fazer a distinção de resposta vacinal, daquela resultante de infecção (BRASIL/MAPA, 2001). Para que não ocorram estes resultados falsos-positivos, são necessários testes com alta especificidade e habilidade para diagnosticar como positivo um animal que fora vacinado com a B19 (DAFDNER et al., 1999).

Quando os animais são vacinados entre três e oito meses de idade, nas provas de soroaglutinação, há uma rápida resposta imunológica humoral, quando então os animais apresentam altos títulos de anticorpos. Este pico de anticorpos, segundo os pesquisadores MATHIAS et al. (1998) ocorre aproximadamente aos 14 dias, utilizando a prova do SAR, já RIBEIRO et al. (1997) descrevem ter observado o pico de anticorpos nas provas do AAT e 2-ME, entre 28 a 42 dias pós-vacinação, verificando declínio dos anticorpos após este período. Os pesquisadores COCKS e DAVIES (1972) descrevem em sua pesquisa, ter encontrado o pico de anticorpos, em fêmeas vacinadas aos cinco
meses de idade, entre sete e quatorze dias pós-vacinação na prova do SAR e na prova do AAT aos cinco dias, porém neste teste os anticorpos começaram a declinar somente após a oitava semana (56 dias) pós vacinação.

O tempo de permanência dos animais com títulos de anticorpos pós-vacinais pode durar vários meses e os relatos destes períodos variam consideravelmente. Os pesquisadores COCKS e DAVIES (1976) descreveram que todas as 24 fêmeas vacinadas entre quatro e cinco meses de idade, não apresentavam reação de aglutinação aos testes de SAR e AAT, 38 semanas (266 dias) após a vacinação e CARRILLO e OLASCOAGA (1976) obtiveram todas as 40 fêmeas vacinadas entre três e seis meses de idade, sem reação de aglutinação no 2-ME, aos 270 dias após a vacinação; já RIBEIRO et al. (1998) demonstraram em seu experimento que todas as 33 fêmeas vacinadas entre três e oito meses de idade, não apresentaram reação a soroaglutinação nos testes de AAT e 2-ME, aos 308 dias após a vacinação. Os resultados descritos por MATHIAS et al. (1998) demonstram que todas as 10 fêmeas vacinadas entre três e nove meses de idade, não apresentaram reação de aglutinação ao teste de SAR, aos 160 dias após a vacinação e no teste de AAT, aos 259 dias.

Quando a vacinação é feita em fêmeas com idade superior a oito meses, os títulos de anticorpos pós-vacinais persistem por mais tempo do que quando a fêmea é vacinada mais jovem (MATHIAS et al., 1998). Os títulos pós-vacinais podem permanecer por mais de 18 meses após a vacinação, conforme descrito por MATHIAS et al. (2001) em estudo feito com 108 fêmeas vacinadas aos 18 meses de idade. Destas 108 fêmeas adultas, nove ainda apresentavam reação positiva ao teste do AAT aos 18 meses após a vacinação.
4. MATERIAL E MÉTODOS

4.1 PROCEDÊNCIA DOS ANIMAIS

Os animais são provenientes de duas propriedades com um bom controle de brucelose, no município de Piraquara, região metropolitana de Curitiba.

Uma propriedade é de gado leiteiro, predominantemente animais de raça Holandesa e a outra de gado de corte, predominantemente de raça Simental. Ambas praticam a vacinação sistemática contra a brucelose e realizam testes de soroaglutinação periódicos.

4.2 ANIMAIS

Foram inicialmente utilizados 47 bovinos fêmeas, com idade entre três e oito meses de idade, ainda não vacinadas contra a brucelose, sendo dois animais da raça Jersey, 38 da raça Holandesa e sete da raça Simental.

4.3 VACINAÇÃO

No dia zero, foram colhidas amostras de sangue de todas as fêmeas e logo após, os animais receberam uma dose de vacina comercial liofilizada, viva, atenuada de *Brucella abortus*, cepa 19, via subcutânea.

4.4 COLHEITA DE AMOSTRAS SANGUÍNEAS

As colheitas de sangue foram feitas na veia caudal ou na jugular, utilizando tubos "vacutainer" de 10 ml e agulhas descartáveis. As amostras foram centrifugadas a 7.000 rpm por cinco minutos, para obtenção do soro.

Nos dias 30, 60, 90, 150, 180, 210, 240, 270, 300, 330 e 360, foram colhidas amostras de
sangue destas fêmeas para posterior análise dos níveis de anticorpos por provas sorológicas de: SAR, AAT e 2-ME.

4.5 BASE FÍSICA LABORATORIAL

As amostras de soro foram processadas no Instituto de Tecnologia do Paraná - TECPAR, na Unidade de Curitiba.

4.6 PROCEDÊNCIA DOS ANTÍGENOS

Os antígenos utilizados na presente pesquisa foram produzidos pelo Instituto de Tecnologia do Paraná - TECPAR, licenciado pelo MAPA sob nº 3362/90.

4.7 TÉCNICAS SOROLÓGICAS

A escolha das provas sorológicas foi baseada no PNCEBT, que preconiza o uso do testes do AAT, como triagem e o 2-ME como confirmatória. A prova do SAR, apesar de ter seu uso proibido a partir de 2003 por apresentar resultados inespecíficos, também foi utilizada, pois é uma prova que foi utilizada por Médicos Veterinários, à campo e por detectar tanto a IgG e IgM. As provas foram realizadas conforme descrito no Manual Técnico do PNCEBT (BRASIL/MAPA, 2001). As técnicas das três provas estão descritas nos anexos 1, 2 e 3.
5. ANÁLISE ESTATÍSTICA

5.1 CORRELAÇÃO

Em estatística, em particular na estatística biológica, é importante conhecer a associação ou interdependência entre duas variáveis, medindo o grau de correlação entre elas. Na afirmação de que duas variáveis “são relacionadas” há o significado de que a dependência entre elas é de fato definitiva e imutável ou apenas uma pequena associação entre as duas (WAUGH, 1963; SPIEGEL, 1968; SOUNIS, 1975).

No presente estudo, foi observado o comportamento conjunto de duas variáveis utilizando gráficos de dispersão, e medidos por uma constante determinada de “coeficiente de correlação”, representado pela notação “r”. Os coeficientes de correlação variam de uma maneira contínua entre os limites de –1 e + 1, e quando a correlação tem valor compreendido entre zero e 1, é positiva e representada por r2.

Demonstramos os valores de r2 nos gráficos apresentados no presente estudo, utilizando a tabela de Rugg para determinar se o valor encontrado é “alto” ou “baixo”, conforme TABELA 1. Coeficientes iguais a ± 1 indicam correlação perfeita.

<table>
<thead>
<tr>
<th>Valor de r</th>
<th>Interpretação</th>
</tr>
</thead>
<tbody>
<tr>
<td>r < 0,15</td>
<td>Desprezível</td>
</tr>
<tr>
<td>0,15 < r < 0,29</td>
<td>Baixo</td>
</tr>
<tr>
<td>0,30 < r < 0,49</td>
<td>Apreciável</td>
</tr>
<tr>
<td>r < 0,50</td>
<td>Acentuado</td>
</tr>
</tbody>
</table>

Fonte: SOUNIS, 1975
6. RESULTADOS

O acompanhamento das 47 fêmeas bovinas, vacinadas com a cepa B19 de *B. abortus*, teve início com a colheita do sangue antes da vacinação (dia zero), seguindo até o dia 360 pós-vacinação. Duas das fêmeas vacinadas não apresentaram resposta imunológica humoral em nenhum dos três testes sorológicos, sendo então considerados os resultados apresentados por 45 fêmeas.

Os resultados dos testes sorológicos de SAR, AAT e 2-ME, estão apresentados na Tabela 2.

No dia zero, todos os animais apresentaram resultado negativo ao teste de SAR, ou seja, nenhuma fêmea apresentava anticorpos contra a *B. abortus*.

TABELA 2 – Titulação aos testes de SAR, AAT e 2-ME, apresentada por 45 fêmeas vacinadas com cepa B19 de *Brucella abortus* em relação ao tempo decorrido (dias) pós-vacinação.

<table>
<thead>
<tr>
<th>DIA</th>
<th>REAG.</th>
<th>1:25</th>
<th>1:50</th>
<th>1:100</th>
<th>1:200</th>
<th>REAG.</th>
<th>1:25</th>
<th>1:50</th>
<th>1:100</th>
<th>1:200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>%</td>
<td>F</td>
<td>%</td>
<td>F</td>
<td>%</td>
<td>F</td>
<td>%</td>
<td>F</td>
<td>%</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>45</td>
<td>100</td>
<td>45</td>
<td>100</td>
<td>45</td>
<td>100</td>
<td>36</td>
<td>80</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>60</td>
<td>45</td>
<td>100</td>
<td>45</td>
<td>100</td>
<td>45</td>
<td>100</td>
<td>36</td>
<td>80</td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>90</td>
<td>45</td>
<td>100</td>
<td>45</td>
<td>100</td>
<td>39</td>
<td>87</td>
<td>20</td>
<td>44</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>150</td>
<td>42</td>
<td>93</td>
<td>42</td>
<td>93</td>
<td>32</td>
<td>71</td>
<td>13</td>
<td>29</td>
<td>05</td>
<td>11</td>
</tr>
<tr>
<td>180</td>
<td>20</td>
<td>44</td>
<td>20</td>
<td>44</td>
<td>10</td>
<td>22</td>
<td>01</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>210</td>
<td>19</td>
<td>42</td>
<td>19</td>
<td>42</td>
<td>13</td>
<td>29</td>
<td>01</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>240</td>
<td>13</td>
<td>29</td>
<td>13</td>
<td>29</td>
<td>09</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>270</td>
<td>05</td>
<td>11</td>
<td>05</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>03</td>
<td>7</td>
<td>03</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>330</td>
<td>01</td>
<td>2</td>
<td>01</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>360</td>
<td>0</td>
</tr>
</tbody>
</table>

SAR = Soroaglutinação Rápida em Placa; AAT = Antígeno Acidificado Tamponado; 2-ME = 2 Mercaptoetanol; DIA = Dias após a vacinação; REAG = Reagente; F = Fêmeas;

- 0 = resultado negativo
- 1 = resultado positivo
Aos 30 dias após a vacinação com *B. abortus*, 45/45 (100%) fêmeas vacinadas apresentaram titulação ao teste de SAR (≥ 1:25), sendo que 20/45 (44%) apresentavam titulação ≥ 1:200, sendo consideradas positivas ao teste, segundo a tabela da I.S. 20/02 do DDA/MAPA, para fêmeas com idade igual ou superior a 24 meses, vacinadas entre três e oito meses de idade (Anexo 2). O pico de reação de soroaglutinação ao teste de AAT, deu-se aos 30 dias pós-vacinação, quando então 45/45 (100%) das fêmeas apresentaram resultado positivo ao teste. Os maiores títulos ao teste do 2-ME foram observados aos 30 dias pós-vacinação, quando 40/45 (89%) das fêmeas apresentavam títulos 1:25; 32/45 (71%) com 1:50; 16/45 (36%) com 1:100 e 05/45 (11%) com 1:200 (Tabela 2).

Aos 60 dias pós-vacinação observou-se o pico de titulação ao teste de SAR, quando 45/45 (100%) das fêmeas apresentaram titulação 1:50; 36/45 (80%) com 1:100 e 21/45 (47%) com 1:200.

Após 90 dias da vacinação 45/45 (100%) fêmeas ainda apresentavam reação à soroaglutinação no teste de SAR, no entanto 16/45 (36%) delas com titulação suficiente para considerá-las positivas (≥1:200). No teste do 2-ME 19/45 (42%) mantinham o resultado positivo (≥1:25), sendo que no 2-ME e no AAT, respectivamente, 28/45 (62%) e 17/45 (38%) das fêmeas apresentavam resultados negativos aos 90 dias após a vacinação.

Aos 150 dias após a vacinação, 53% (24/45) das fêmeas apresentaram-se negativas no AAT, e 73% (33/45) ao 2-ME. No SAR, aos 150 dias pós-vacinação, apenas 11% (05/45) apresentaram resultados positivos ao teste (≥1:200). Das fêmeas, 5/45 (11%) apresentaram-se não reagentes ou com títulos menores que 1:25 no teste de SAR, aos 150 dias pós-vacinação.

Após os 180 dias da vacinação (100%) 45/45, das fêmeas vacinadas apresentaram titulação igual ou abaixo de 1:100, sendo consideradas negativas segundo a I.S. 20/02 do DDA/MAPA, (Gráfico 1), sendo que apenas uma delas permanecia com resultado considerado inconclusivo ao SAR (1:100).

GRÁFICO 1 - Animais com resultados considerados positivos ao teste de SAR (≥1/200), conforme a tabela da I.S. 20/02 do DDA/MAPA, para fêmeas com idade igual
ou superior a 24 meses, vacinadas entre três e oito meses de idade, em relação ao tempo decorrido (dias), após a vacinação com a cepa B19, amostra de *Brucella abortus*.

A linha de tendência logarítmica apresentada no Gráfico 1, demonstra que o $R^2 = 0.873$ é positivo, pois tem seu valor compreendido entre zero e um. Por ter o valor de $r<50$, o coeficiente de correlação entre as duas variáveis é “acentuado”. Indica também uma correlação perfeita, pois o coeficiente está muito próximo a ± 1.
Aos 270 dias após a vacinação, 01/45 (2%) das fêmeas apresentou resultados positivo ao 2-ME, tornando-se negativa ao 300 dias, quando então 45/45 (100%) das fêmeas tornaram-se negativas (Gráfico 2).
GRÁFICO 2 - Animais com resultados considerados positivos ao teste de 2-ME (1/25), conforme interpretação da tabela do PNCEBT/MAPA/2001, para fêmeas não vacinadas e machos com idade superior a oito meses de idade, em relação ao tempo decorrido (dias) após a vacinação com a cepa B19, amostra de *Brucella abortus*.

A linha de tendência logarítmica do Gráfico 2, demonstra um $R^2 = 0,9839$ positivo e a correlação entre as duas variáveis é “acentuado”. Indica também uma correlação perfeita, pois o coeficiente está muito próximo a ± 1.
No teste do AAT, 01/45 (2%) das fêmeas apresentava resultado positivo aos 300 dias pós-vacinação. Este resultado foi mantido aos 330 dias pós-vacinação e aos 360 dias esta fêmea tornou-se negativa, quando então 45/45 (100%) das fêmeas tornaram-se negativas (Gráfico 3).
GRÁFICO 3 – Animais com resultados positivos ao teste de AAT, em relação ao tempo decorrido (dias) após a vacinação com a cepa B19, amostra de *Brucella abortus*.

A linha de tendência logarítmica do Gráfico 3, demonstra um $R^2 = 0,955$ positivo e a correlação entre as duas variáveis é “acentuado”. Indica também uma correlação perfeita, pois o coeficiente está muito próximo a ± 1.
7. DISCUSSÃO

Os trabalhos de pesquisa desenvolvidos recentemente com a vacina B19 são escassos, porque esta vacina está sendo gradativamente substituída pela vacina não indutora de anticorpos aglutinantes - RB51. Nos Estados Unidos, em 1996, a vacina RB51 foi licenciada condicionalmente, substituindo gradualmente a B19 (COTRINA et al., 1999). No entanto no Brasil, com o lançamento do PNCEBT em 2001, foi normatizada como obrigatória o uso da vacina B19 de Brucella abortus nas bezerras entre três e oito meses de idade.

Os resultados deste estudo com a vacina B19 serão discutidos em relação ao período em que os testes sorológicos foram realizados, após a vacinação.

Antes da vacinação todas as fêmeas apresentaram resultados negativos no SAR, não apresentando nenhuma reação de aglutinação. Estes dados conferem com aqueles descritos por BARDÓN et al. (2001), que avaliaram 146 fêmeas antes da vacinação, onde todas apresentaram resultados negativos. MATHIAS et al. (2001) encontraram resultados semelhantes ao avaliar 108 fêmeas, aos 18 meses de idade, antes de serem vacinadas com a B19, embora oito animais tenham apresentado título de 1:25.

Na análise das 45 fêmeas vacinadas com cepa B19 de Brucella abortus, verificou-se que, após apresentarem resultados negativos aos testes de SAR, aos 150 dias após a vacinação, quatro fêmeas apresentaram leve oscilação nos níveis de anticorpos, de 1:25 para 1:50, o que não foi o suficiente para torná-las positivas, retornando a 1:25 na próxima colheita, 30 dias após. MATHIAS et al. (1998), verificaram este fenômeno em uma das fêmeas examinadas em seu experimento e citam que GONZALEZ et al. (1978), também verificaram estas oscilações nos títulos aglutinantes e atribuíram estas variações a fatores estressantes decorrentes das práticas de manejo.

No teste de SAR, o pico de títulos foi atingido pelo maior número de fêmeas aos 60 dias pós-vacinação, quando 45 animais apresentavam títulos entre 1:25 a 1:200, sendo que 21 animais obtiveram o título de 1:200, desde então teve início o declínio de anticorpos. Estes resultados diferem dos encontrados por outros pesquisadores (COCKS e DAVIS, 1972; RIBEIRO et al. 1997; MATHIAS et al., 1998), pois a média encontrada por eles, foi de 20 dias.
COCKS e DAVIS (1972), que acompanhamaram 23 fêmeas vacinadas aos cinco meses de idade, com cepa B19 amostra de Brucella abortus, por 38 semanas (266 dias), demonstraram que aos cinco dias após vacinação todos os animais apresentavam-se positivos aos teste de SAR, sendo que a mais alta média registrada foi entre sete e 14 dias após a vacinação. RIBEIRO et al. (1997), que avaliaram 33 fêmeas vacinadas entre três e oito meses de idade, com a cepa B19, amostra de Brucella abortus, por 728 dias após vacinação, por meio de testes de SAR, AAT e 2-ME, obtiveram como resultado a titulação máxima aos 14º-18º dias pós-vacinação no teste de SAR.

No estudo desenvolvido por MATHIAS et al. (1998), onde foram avaliadas 17 fêmeas entre três e 18 meses de idade, sendo sete com três a cinco meses, três entre seis e nove meses e sete com idade entre 10 e 18 meses, vacinadas com cepa B19 amostra de Brucella abortus, por um período de 364 dias, as fêmeas apresentaram a mais alta média de títulos de anticorpos no SAR, aos 14 dias após a vacinação, sendo que aos seis dias foram detectados títulos entre 1:25 e 1:400 nesta prova.

Aos 180 dias após a vacinação, nenhuma das fêmeas do presente estudo seria considerada positiva ao teste do SAR, conforme a tabela de interpretação da I.S. nº 20/02 do DDA/MAPA (ANEXO 4) para fêmeas acima de 24 meses, vacinadas entre três e oito meses de idade, que considera positivos os resultados ≥1:200. Entretanto 20 (44%) das fêmeas ainda apresentavam reação de aglutinação ao teste, sendo 20 com título 1:25; 10 com 1:50 e uma com 1:100. Esta última considerada inconclusiva pela referida IS, manteve este resultado aos 210 dias, tornando-se negativa aos 240 dias após a vacinação. Estes resultados diferem daqueles encontrados por COCKS e DAVIS (1972) que observaram resultados não reagentes a soroaglutinação em todas as fêmeas examinadas em 28 semanas (196 dias) e por MATHIAS et al., (1998) que observaram duas das 17 bezerras avaliadas por eles, com título aglutinante após 215 dias da vacinação; uma delas com título de 1:25 e a outra de 1:50, sendo que esta persistiu até o 364º dias pós vacinação. Entretanto os resultados da presente pesquisa são similares aos encontrados por RIBEIRO et al., (1997) que observaram um animal positivo e dois suspeitos (atualmente denominados inconclusivos) aos 210 dias após a vacinação no teste de SAR, sendo que animais apresentaram-se negativos aos 273 dias pós-vacinação.
Nesta pesquisa, observou-se que o teste do AAT foi aquele em que mais tempo (360 dias) uma das fêmeas vacinadas manteve o resultado positivo. Aos 240 dias, 42 (93%) fêmeas já se apresentavam negativas ao AAT e aos 300 dias, apenas uma delas permanecia positiva, tornando-se negativa aos 360 dias, quando 100% delas tornaram-se negativas. Resultados próximos a estes foram descritos por RIBEIRO et al., (1997), que obtiveram resultado não reagente ao AAT em todas as bezerras aos 308 dias pós-vacinação e aos 182 dias pós-vacinação somente cinco animais apresentavam resultado positivo neste teste.

No presente trabalho, aos 240 dias após a vacinação, cinco animais ainda apresentavam reação de aglutinação ao AAT, entretanto os resultados encontrados por MATHIAS et al., (1998) diferem desta pesquisa, pois aos 98 dias pós vacinação, apenas uma das 17 bezerras avaliadas por estes pesquisadores apresentava títulos na prova do AAT. Contudo, quando analisados os resultados finais, a diferença de dados encontrados diminui, sendo que no presente trabalho todos os animais vacinados tornam-se negativos aos 360 dias e os pesquisadores chegaram a este resultado aos 259 dias. O presente trabalho também difere daquele encontrado por COCKS e DAVIS (1972), quanto aos testes de AAT, pois estes relatam que as 23 fêmeas avaliadas por eles, deixaram de apresentar reação de soroaglutinação no teste de AAT às 28 semanas (196 dias) após a vacinação.

Resultados similares aos encontrados nesta pesquisa, quanto a persistência de reações positivas no teste de AAT, foram descritos por HERR e BRUGGE (1985), que acompanharam dez animais adultos vacinados com B19, por 47 semanas (329 dias). Os autores observaram que no teste de AAT, todos os animais permaneceram positivos após a 11ª semana (77 dias) da vacinação, sendo que dois deles negativaram na 20ª e 34ª semanas (140 e 238 dias), mas um deles retornou ao resultado positivo e somente um se manteve negativo até a 47ª semana (329 dias).

Nesta pesquisa observou-se que aos 90 dias, 28 (62%) fêmeas apresentaram resultados negativos ao teste do 2-ME, e aos 210 dias, 42 (93%) delas já apresentavam este resultado. Das fêmeas vacinadas apenas uma delas persistiu com resultado positivo aos 270 dias, tornando-se negativa aos 300 dias, quando então 45 (100%) fêmeas vacinadas obtiveram este resultado no 2-ME.

Observamos no presente estudo que uma das fêmeas, após apresentar resultado negativo ao teste de AAT aos 150 dias, apresentou novamente resultado positivo ao teste, 60 dias após,

Os resultados encontrados no teste do 2-ME, conferem com aqueles descritos por RIBEIRO et al., (1997) que avaliaram 33 fêmeas vacinadas entre três e oito meses de idade. Os autores demonstraram que a titulação máxima no 2-ME foi encontrada aos 28º e 42º dias pós-vacinação e que aos 182 dias pós-vacinação somente seis animais eram positivos ao teste, sendo que todas as bezerras apresentavam resultados negativos ao 2-ME aos 308 dias pós-vacinação.

Estes resultados também conferem com aqueles descritos por BARDÔN et al., (2001), onde foram avaliados com provas de diagnóstico incluindo o 2-ME, dois grupos de fêmeas bovinas com idade média de seis meses. Um grupo composto de 100 fêmeas e o outro com 46, vacinadas com cepa B19 amostra de Brucella abortus. No grupo de 100 fêmeas, 98% delas apresentaram resultado positivo ao 2-ME 25 dias após a vacinação, mas aos 240 dias após a vacinação, apenas uma das fêmeas ainda apresentava resultado positivo ao teste. No grupo de 46 fêmeas, 100% delas apresentaram resultado positivo ao 2-ME, aos 25 dias da vacinação, mas 150 após a vacinação 2,2% das fêmeas ainda apresentavam resultado positivo ao teste.

Os resultados do presente estudo, demonstram que as maiores titulações no 2-ME foram encontradas aos 30 dias pós-vacinação. Estes resultados conferem com aqueles encontrados por CARRILLO e OLASCOAGA (1976), que descrevem ter encontrado estas titulações aos 21 dias após a vacinação. Porém na presente pesquisa, aos 180 dias, 14 (31%) fêmeas testadas ainda apresentavam reação à soroaglutinação ao teste do 2-ME, sendo 10 (22%) delas, com reação consideradas positivas (≥1:25), já estes pesquisadores descrevem que todos os 40 animais avaliados por eles, tornaram-se não reagentes à soroaglutinação no teste do 2-ME aos 180 dias após a vacinação.

Alguns pesquisadores observaram animais adultos vacinados com cepa B19 de Brucella abortus, obtendo rápido declínio nos títulos sorológicos nos testes de soroaglutinação, como POESTER et al., (2001) que descreveram que ao comparar duas vacinas, entre elas a B19, vacinaram 25 fêmeas entre dois e cinco anos, e obtiveram resultados negativos ao teste de AAT, aos 270 dias após a vacinação com cepa B19 de Brucella abortus. Também MATHIAS et al., (2001), observaram em sua pesquisa com 108 fêmeas vacinadas aos 18 meses de idade, que há uma sensível redução
no título sorológico após 12 meses da vacinação. No teste do AAT, 89,81% das fêmeas vacinadas apresentavam resultados negativos ao teste após 12 meses da vacinação, porém 11 das 108 fêmeas ainda apresentando resultado positivo ao teste.

Estes resultados confirmam os observados na presente pesquisa de que ocorre um rápido declínio do título de anticorpos, desde que a vacinação seja efetuada entre os três e oito meses de idade. Aos 300 dias após a vacinação, 100% das fêmeas vacinadas apresentam resultado negativo na prova do 2-ME, considerada prova confirmatória segundo o PNCEBT.

Neste experimento, aos 360 dias todas as fêmeas apresentaram resultados negativos ao AAT, no entanto, quando submetidas ao exame do 2-ME, apresentaram-se negativas já aos 300 dias. Estes resultados conferem com o que foi descrito por PAULIN et al., (2002), de que o 2-ME apresenta boa sensibilidade para validar os testes de triagem a campo e também com o que determinam as normas do PNCEBT/MAPA quanto ao uso do AAT como triagem e o 2-ME como confirmatório (BRASIL/MAPA, 2001).

Duas fêmeas não apresentaram resposta imunológica humoral em nenhum dos três testes de soroaglutinação. Após 12 meses de acompanhamento e ainda sem apresentarem resultados, estas fêmeas foram submetidas a testes sorológicos de diagnóstico de leptospirose, no qual ambas apresentaram resultado negativo. Após estes testes, as fêmeas receberam uma dose de vacina L-7, contra leptospirose, composta por sete diferentes sorovares: Leptospira icterohaemorrhagiae, L. copenhageni, L. canicola, L. pomona, L. grippotyphosa, L. hebdomadis, L. wolffi, L. tarassovi, L. hardjo e L. bratislava. Quinze e trinta dias após a vacinação, os soros destes animais foram testados para os sete sorovares, sendo que as fêmeas não apresentaram resposta a nenhum dos testes. Não obtendo resposta imunológica humoral também à vacinação contra leptospirose, conclui-se que pode ser descartada a possibilidade de erro na vacinação anterior.

CORREA e CORREA, (1992), descreveram que existem várias causas de problemas relacionados a resposta imunológica em um animal, como a imuno-paralisia - quando uma dose de antígeno é muito alta e estes consomem todos os anticorpos até impedir a produção dos mesmos e a imuno-indiferença ou imuno-tolerância – quando o antígeno é reconhecido pelo sistema retículo-histiocitário e linfóide como próprio, não havendo produção anticorpos contra ele. Isto ocorre porque
os fetos já produzem anticorpos quando seu sistema retículo-histiocitário e linfóide estão formados e diferenciados, ou seja, se tornam imunocompetentes, aproximadamente aos 2/3 da gestação e se as células deste sistema entrarem em contato com um antígeno estranho neste período, estas células ao se diferenciarem, o reconhecerão como próprio.

Quando a fêmea bovina se infecta durante o terço inicial da gestação, ocorre uma infecção fetal, causando o nascimento de bezerros imunotolerantes, ou persistentemente infectados - PI. Estes animais apresentam importante papel na epidemiologia de uma doença, pois podem eliminar o agente infectante continuamente em suas secreções (BOTTOM, et al., 1998; CAMARGO et al., 2003).

Os resultados das provas sorológicas a que foram submetidas as fêmeas do presente estudo, demonstraram declínio contínuo dos títulos de anticorpos, sendo que todas as fêmeas apresentaram resultados negativos aos seis meses após a vacinação no SAR, aos dez meses no 2-ME e aos 12 meses no AAT. Estes resultados concordam com as recomendações feitas por RIBEIRO et al., (1997), de que estas provas poderiam ser empregadas mais cedo do que preconizava o Ministério da Agricultura em 1979, que era de 30 meses após vacinação. Com o lançamento do PNCEBT em 2001, este prazo foi alterado para 24 meses após a vacinação.

No teste do AAT, oficialmente designado para triagem a campo, os resultados do presente estudo demonstraram que os animais tornaram-se negativos após 12 meses da vacinação, ou seja, se vacinados entre três e oito meses, estarão com idade entre com idade entre 15 e 20 meses, quando então os rebanhos poderão ser testados sem que ocorram resultados falso positivos em virtude da vacinação. Também, segundo os pesquisadores MEGID et al., (2000) a substituição da prova do SAR pelo AAT, que é mais sensível e específico, possibilita aos veterinários um diagnóstico mais apurado e reduz o envio de grande número de amostras aos laboratórios especializados e o reteste de animais suspeitos.
8. CONCLUSÕES E CONSIDERAÇÕES FINAIS

As conclusões encontradas neste experimento em relação aos títulos sorológicos pós-vacinais em bezerras imunizadas com cepa B19 de *Brucella abortus* foram:

1 - Em fêmeas vacinadas entre três e oito meses de idade, o declínio dos anticorpos pós-vacinais, detectáveis na soroaglutinação, inicia aos 30 dias após a vacinação, com o desaparecimento total destes anticorpos, aos 360 dias da vacinação;

2 - É possível utilizar a prova do AAT, aos 150 dias após a vacinação, obtendo resultados negativos ao teste em 50% das fêmeas vacinadas entre três e oito meses de idade;

3 - Utilizando o teste do 2-ME como confirmatório, é possível obter estes resultados em 60% das fêmeas, aos 90 dias após a vacinação;

4 - Após 360 dias da vacinação, é possível utilizar o teste de AAT, como triagem a campo, em 100% das fêmeas vacinadas, sem que ocorram reações de falso-positivos em virtude da vacinação.

5 – Aos 30 dias após a vacinação, duas das 47 fêmeas (4,25%) não apresentaram resposta imunológica humoral, frente à vacina B19, e este resultado persistiu pelos 360 dias em que foram acompanhadas.

6 – Animais vacinados entre três e oito meses de idade, após 360 dias desta vacinação, quando estarão entre 15 e 20 meses de idade, poderão ser testados sem que ocorram resultados falsos positivos.
9. REFERÊNCIAS

ANEXOS
ANEXO 1 – TÉCNICA DA PROVA DO MERCAPTOETANOL – 2-ME

Material: Antígeno para soroaglutinação lenta em tubos; 2-mercaptoetanol; salina 0,85%; salina 0,85%, fenicada 0,5%; tubos de 10x75mm ou 10x100mm; pipetas de Bang ou micropipetador de volume ajustável; dispensador automático de 1ml e 2 ml; pipetas de 10ml; caixa de luz indireta; vidrarias.

Técnica: Colocar em estante 2 fileiras de 4 tubos 10 x 100mm ou 10x75; Marcar a 1ª fileira com a letra T (Lenta) e a 2ª com a letra M (2-ME).

Com pipeta graduada ou de Bang, fluir no 1º tubo da 1ª fileira 0,08ml de soro, no 2º tubo 0,04, no 3º tubo 0,02 e no 4º 0,01ml. Repetir o procedimento na segunda fileira.

Inclui-se um soro controle conhecido com atividade aglutinante na prova lenta em tubos com título de 1:200 ou superior e outro negativo na prova 2-ME.

Na fileira "T", com o dispensador automático de 2ml ou pipeta de 10ml, pipetar em cada um dos 4 tubos, 2ml do antígeno diluído 1:100 (0,045% de células) em salina fenicada (0,5% de fenol).

Na fileira "M", com o dispensador automático de 2ml (regulado para 1ml) ou pipeta de 10ml, pipetar 1 ml de solução de 2-mercaptoetanol 0,1M (diluída em solução salina sem fenol), em cada tubo.

Mistura-se agitando bem a estante.

Aguardar em temperatura ambiente 30 minutos. Após este tempo, agregar em cada tubo "M", 1 ml do antígeno diluído 1:50 (0,09% de células) em solução salina fisiológica (sem fenol). A concentração final do antígeno na solução será 0,045%;

Agitar os frascos. Incubar a 37º por 48h ± 3h;

A leitura deve ser com fonte de luz indireta contra um fundo escuro e opaco, com uma fonte de luz que atravesse os tubos.

Interpretação: O grau de aglutinação em cada uma das distintas diluições deve ser classificado como: completo (+), incompleto (I) ou negativo (-).

Reação Completa (+) – O líquido da mistura antígeno + soro aparece translúcida, com formação de película e os grumos não se rompem com a agitação suave.
Reação Incompleta (I) – O líquido da mistura antígeno + soro aparece parcialmente translúcida e os grumos não rompem com agitação suave.

Reação Negativa (-) – O líquido da mistura antígeno + soro aparece opaco e uma agitação suave não revela grumos.

A interpretação das provas é feita utilizando-se os quadros a seguir:

a) Interpretação da prova do 2-ME, para fêmeas com idade igual ou superior a 24 meses e vacinadas entre três e oito meses.

<table>
<thead>
<tr>
<th>SAL \ 2ME</th>
<th>NR</th>
<th>25</th>
<th>25</th>
<th>50</th>
<th>50</th>
<th>100</th>
<th>100</th>
<th>200</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25 I</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50 I</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100 I</td>
<td></td>
<td>Inc</td>
<td>Inc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>200</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>200 I</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>200</td>
<td>Inc</td>
<td>Inc</td>
<td>Inc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Fonte: PNCEBT/MAPA, 2001

CONVENÇÕES:

2-ME – 2 -Mercaptoetanol
SAL – Soro-Aglutinação Lenta
NR – Não reagiu
I – Reação Incompleta
Inc – Reação Inconclusiva
Cinza – Reação que não pode ocorrer
b) Interpretação da prova do 2-ME, para fêmeas não vacinadas e machos com idade superior a oito meses.

<table>
<thead>
<tr>
<th>SAL \ 2ME</th>
<th>NR</th>
<th>25 l</th>
<th>25</th>
<th>50 l</th>
<th>50</th>
<th>100 l</th>
<th>100</th>
<th>200 l</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25 l</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50 l</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>Inc</td>
<td>Inc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100 l</td>
<td>Inc</td>
<td>Inc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>Inc</td>
<td>Inc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>200 l</td>
<td>Inc</td>
<td>Inc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>200</td>
<td>Inc</td>
<td>Inc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Fonte: PNCEBT/MAPA, 2001

CONVENÇÕES:

2-ME – 2-Mercaptoetanol
SAL – Soro-Aglutinação Lenta
NR – Não reagiu
I – Reação Incompleta
Inc – Reação Inconclusiva
Cinza – Reação que não pode ocorrer
ANEXO 2 – TÉCNICA DA PROVA DE SOROAGLUTINAÇÃO RÁPIDA EM PLACA – SAR

Material: Antígeno para prova rápida; caixa especial; pipetas sorológicas de 0,2 ml com graduação de 0,01 ml ou de Bang 0,2 ml; micropipetador de 30 μl ou ajustável ou conta-gotas calibrado; Misturador múltiplo ou simples.

Técnica: Deixar antígeno e soro à temperatura ambiente; homogeneizar muito bem o antígeno, antes e no decorrer da prova.

Adicionar 0,08 – 0,04 – 0,02 – 0,01 ml de soro, com a pipeta de Bang ou micropipetador, tocando a placa em posição de 45º.

Posicionar o conta-gotas na vertical e sem tocar o soro, deixar cair uma gota (0,03ml) do antígeno, em cada quadrado.

Misturar com o misturador, iniciando na diluição (1:200), 0,01 ml de soro + 0,03 ml de antígeno, (diâmetro da mistura 18mm), terminando na diluição (1:25) 0,08 ml + 0,03 ml de antígeno (diâmetro da mistura 27mm). Limpar o misturador a cada soro processado.

Proceder 3 a 4 movimentos basculantes e rotativos para homogeneizar a mistura. Tampar a placa para evitar evaporação; marca-se o tempo e após 4 minutos fazer novos movimentos; no oitavo minuto acender a luz e fazer a leitura, direcionando a placa para o fundo da caixa.

Interpretação:

1º - Reação Completa – presença de grumos azulados (pequenos e grandes) suspensos em líquido transparente.

2º - Reação Incompleta (I) – presença de grumos azulados (pequenos) suspensos em líquido com turbidez.

A interpretação dos resultados como negativos ou positivos da prova do SAR, em animais vacinados ou não, encontram-se nos quadros seguintes.

a) Interpretação da prova do SAR, para fêmeas não vacinadas e machos com idade superior a 8 meses de idade.
<table>
<thead>
<tr>
<th>1: 25</th>
<th>1:50</th>
<th>1:100</th>
<th>1:200</th>
<th>Interpretação</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 UI/ml</td>
<td>50 UI/ml</td>
<td>100 UI/ml</td>
<td>200 UI/ml</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>+</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>Inconclusivo</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Inconclusivo</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>I</td>
<td>-</td>
<td>Inconclusivo</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Positivo</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>i</td>
<td>Positivo</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>positivo</td>
</tr>
</tbody>
</table>

Fonte: Instrução de Serviço DDA 20/02

b) Interpretação da prova do SAR, para fêmeas com idade igual ou superior a 24 meses, vacinadas entre três e oito meses de idade.

<table>
<thead>
<tr>
<th>1: 25</th>
<th>1:50</th>
<th>1:100</th>
<th>1:200</th>
<th>Interpretação</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 UI/ml</td>
<td>50 UI/ml</td>
<td>100 UI/ml</td>
<td>200 UI/ml</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>+</td>
<td>I</td>
<td>-</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Negativo</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>I</td>
<td>-</td>
<td>Inconclusivo</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>i</td>
<td>Inconclusivo</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>positivo</td>
</tr>
</tbody>
</table>

Fonte: Instrução de Serviço DDA 20/02

CONVENCÕES:
i – Aglutinação Incompleta
+ - Aglutinação Completa
UI – Unidades Internacionais
ANEXO 3 – TÉCNICA DA PROVA DO ANTÍGENO ACIDIFICADO TAMPONADO – AAT

Material: Antígeno para AAT; pipetas de Bang; micropipetador 30 μl ou ajustável; conta gotas; placa de vidro; misturador de plástico ou metal; caixa de luz indireta.

Técnica: A suspensão do antígeno e os soros em temperatura ambiente uma hora antes de iniciar a prova. A temperatura de execução desejável do teste deve ser em torno de 22ºC ± 4ºC, devendo-se evitar temperaturas muito abaixo ou acima deste valor.

Homogeneizar o antígeno agitando suavemente o frasco.

Com o auxílio do pipetador de 30 μL (ou de Bang 0,04 a 0,01l), encostando a ponta na placa μ de vidro em ângulo de 45º, dispensar 30μL de soro na placa.

Desprezar as duas primeiras gotas de antígeno para eliminar o ar contido no conta gotas, colocar uma gota (30μL) ao lado do soro.

Misturar o antígeno e o soro com movimentos circulares, de modo a obter um círculo de aproximadamente 2 cm.

Com movimentos oscilatórios, em uma freqüência de 30 movimentos por minuto, agitar a placa por 4 minutos, continuamente.

Após os 4 minutos, proceder a leitura com luz indireta. Desconsiderar as reações de aglutinação que ocorreram após os 4 minutos.

Interpretação: Presença de grumos = reagente.

Ausência de grumos = não reagente.
RESUMO

Com o objetivo de verificar a cinética de produção de anticorpos em bezerras vacinadas contra Brucelose, foram acompanhadas 47 fêmeas, vacinadas com idade entre três e oito meses, com vacina comercial, viva atenuada de *Brucella abortus*, cepa B19. As amostras de sangue das bezerras foram colhidas no dia da vacinação (dia zero) e após 30, 60, 90, 150, 180, 210, 240, 270, 300, 330 e 360 dias. Os soros foram avaliados pelas técnicas de Soroaglutinação Rápida em Placa - SAR; Antígeno Acidificado Tamponado – AAT e ao 2-Mercaptoetanol - 2-ME. Antes da vacinação os soros foram submetidos ao teste de SAR, com o objetivo de verificar a presença de anticorpos maternos contra a doença. Todas as amostras apresentaram resultado negativo pré vacinação. Dois animais vacinados não apresentaram anticorpos pós–vacinais durante todo o experimento. Após 30 dias, 45 fêmeas apresentaram títulos acima de 1:25 no teste de SAR e AAT positivo. No 2-ME, os maiores títulos foram observados aos 30 dias, quando 40 animais apresentaram títulos acima de 1:25. Aos 90 dias 45 fêmeas mantiveram a titulação >1:25 ao SAR, mas apenas 20 delas ≥100. No AAT, 30 animais apresentaram-se positivos, enquanto no 2-ME 19 animais apresentavam este resultado. Aos 180 dias, 31 animais apresentaram-se negativos ao AAT, 35 ao 2-ME e um dos animais obteve titulação ≥1:100 no SAR, sendo considerado positivo. Aos 240 dias os 45 animais apresentaram resultados negativos ao SAR, aos 300 dias no 2-ME e aos 360 dias no AAT. Aos 360 dias após a vacinação os 45 animais obtiveram resultados negativos aos três testes, sugerindo que os testes sorológicos podem ser utilizados em bezerras vacinadas entre três e oito meses de idade, doze meses após esta vacinação.

Palavras-chave: Brucelose, *Brucella abortus*, imunização, soroaglutinação.