PATRICIA SOTOMAIOR

CONSTRUÇÃO E EXPRESSÃO DA PROTEÍNA QUIMÉRICA NifAQ1Ab DE *Azospirillum brasiliense*

CURITIBA
2009
PATRICIA SOTOMAIOR

CONSTRUÇÃO E EXPRESSÃO DA PROTEÍNA QUIMÉRICA NifAQ1Ab DE

Azospirillum brasilense

Monografia apresentada à matéria BQ016 – Estágio em Bioquímica como requisito parcial à conclusão do curso de Ciências Biológicas, Setor de Ciências Biológicas, Universidade Federal do Paraná.

Orientador: Prof. Dr. Emanuel M. de Souza.
Co-orientadora: Dr.ª Luíza Maria de Araújo

CURITIBA

2009
AGRADECIMENTOS

Agradeço a minha co-orientadora, professora Drª. Luíza Maria de Araújo, pela orientação, apoio, dedicação, confiança, interesse e amizade, sem os quais este trabalho não seria possível.

Ao meu orientador, professor Dr. Emanuel M. de Souza, pela oportunidade de realizar este trabalho, orientação, sugestões e interesse.

À professora Drª. Rose Adele Monteiro pelo convite para trabalhar no grupo como Iniciação Científica, pelas sugestões, apoio, idéias e amizade.

Ao professor Dr. Fábio de Oliveira Pedrosa pela oportunidade de trabalhar no grupo de Fixação Biológica de Nitrogênio.

A todos os professores do Instituto de Fixação Biológica de Nitrogênio pelas sugestões, ajuda e conselhos.

Aos funcionários do Departamento de Bioquímica e Biologia Molecular, em especial a Roseli Prado, Valter de Baura e Dona Julieta, pela colaboração, disponibilidade e ajuda.

À professora Marina e ao colega Lucas pela ajuda durante os experimentos com MALDI.

Aos colegas dos laboratórios 271 e 272 pela amizade, carinho, colaboração, dedicação, força, conselhos, incentivo e ajuda demonstrados durante todo o meu trabalho no laboratório.

À minha família, em especial minha mãe e meu pai, pelo amor, confiança, ajuda e incentivo incondicionais.

Ao meu namorado Vinicius, pelo amor, compreensão e confiança dedicados.

Ao Departamento de Bioquímica e Biologia Molecular e aos órgãos financiadores, CNPq e INCT – Fixação Biológica de Nitrogênio pelos auxílios prestados e apoio financeiro.
SUMÁRIO

LISTA DE FIGURAS ... 6
LISTA DE TABELAS .. 9
LISTA DE ABREVIATURA .. 10
RESUMO ... 12
1 INTRODUÇÃO ... 13
 1.1 FIXAÇÃO BIOLÓGICA DE NITROGÊNIO .. 13
 1.1.1 Complexo da nitrogenase ... 14
 1.2 ASSIMILAÇÃO DE NITROGÊNIO ... 14
 1.3 GENES nif .. 15
 1.3.1 Regulação da expressão dos genes nif ... 16
 1.3.2 Regulação da expressão do gene $nifA$.. 17
 1.4 PROTEÍNA NifA .. 18
 1.5 CONTROLE DA ATIVIDADE DA PROTEÍNA NifA ... 19
2 OBJETIVOS .. 21
 2.1 OBJETIVO GERAL ... 21
 2.2 OBJETIVOS ESPECÍFICOS ... 21
3 MATERIAIS E MÉTODOS .. 22
 3.1 BACTÉRIAS E PLASMÍDIOS ... 22
 3.2 MEIOS DE CULTURA .. 23
 3.2.1 Meios empregados para o cultivo de E. coli ... 23
 3.2.2 Meio empregado para o cultivo de A. brasilense ... 24
 3.3 ANTIBIÓTICOS ... 25
 3.4 CONDIÇÕES DE CULTIVO ... 26
 3.5 ESTOCAGEM DAS BACTÉRIAS ... 26
 3.6 EXTRAÇÃO DO DNA TOTAL DE $Azospirillum brasilense$ 26
 3.7 AMPLIFICAÇÃO DO DNA POR PCR ... 27
 3.8 SEPARAÇÃO ELETROFORÉTICA DE DNA ... 28
 3.9 LIGAÇÃO DOS FRAGMENTOS AO VETOR $pCR2.1$.. 28
 3.10 DIGESTÃO DO DNA COM ENZIMAS DE RESTRIÇÃO E PREPARO DOS VETORES ... 28
3.11 LIGAÇÃO DO INSERTO AO VETOR... 29
3.12 TRANSFORMAÇÃO BACTERIANA POR ELETROPORAÇÃO 29
 3.12.1 Preparo de bactérias eletrocompetentes para eletroporação 29
 3.12.2 Transformação bacteriana ... 30
3.13 PURIFICAÇÃO DE DNA PLASMIDIAL ... 30
3.14 ANÁLISE DOS PLASMÍDIOS ... 31
3.15 SEQUENCIAMENTO DO DNA .. 31
3.16 EXPRESSÃO DA PROTEÍNA NifAQ1Ab EM E. coli 32
3.17 ELETROFORESE DE PROTEÍNAS SOB CONDIÇÕES DESNATURANTES... 32

4 RESULTADOS E DISCUSSÕES... 34
 4.1 AMPLIFICAÇÃO DAS REGIÕES CODIFICADORAS DOS DOMÍNIOS N-TERMINAL E CENTRAL + C-TERMINAL DA PROTEÍNA NifA DE Azospirillum brasiliense E Azotobacter vinelandii... 34
 4.2 CONSTRUÇÃO DE PLASMÍDIOS RECOMBINANTES CONTENDO SEQÜÊNCIAS CODIFICADORAS PARA OS DOMÍNIOS MODULARES DA PROTEÍNA NifA DE A. brasiliense E A. vinelandii... 42
 4.3 CONSTRUÇÃO DOS PLASMÍDIOS RECOMBINANTES CONTENDO OS GENES QUE CODIFICAM PARA AS PROTEÍNAS QUIMÉRICAS NifAQ1Ab E NifAQ2Ab .. 53
 4.4 ANÁLISE DA EXPRESSÃO E SOLUBILIZAÇÃO DA PROTEÍNA QUIMÉRICA NifAQ1Ab.. 61

5 CONCLUSÕES .. 67

6 REFERÊNCIAS BIBLIOGRÁFICAS ... 68
APÊNDICE 1 ... 74
APÊNDICE 2 ... 75
APÊNDICE 3 ... 76
LISTA DE FIGURAS

FIGURA 1 – ESQUEMA DO ALINHAMENTO DOS OLIGONUCLEOTÍDEOS À SEQUÊNCIA CODIFICADORA DOS DOMÍNIOS MODULARES DA PROTEÍNA NifA DE A. brasilense E A. vinelandii ... 37

FIGURA 2 – PADRÃO ELETROFORÉTICO DO PRODUTO DE PCR OBTIDO NA AMPLIFICAÇÃO DA REGIÃO QUE CODIFICA PARA O DOMÍNIO N-TERMINAL DA PROTEÍNA NifA DE A. brasilense ... 38

FIGURA 3 - PADRÃO ELETROFORÉTICO DO PRODUTO DE PCR OBTIDO NA AMPLIFICAÇÃO DA REGIÃO QUE CODIFICA PARA O DOMÍNIO CENTRAL + C-TERMINAL DA PROTEÍNA NifA DE A. brasilense ... 39

FIGURA 4 - PADRÃO ELETROFORÉTICO DO PRODUTO DE PCR OBTIDO NA AMPLIFICAÇÃO DA REGIÃO QUE CODIFICA PARA O DOMÍNIO N-TERMINAL DA PROTEÍNA NifA DE A. vinelandii ... 40

FIGURA 5 - PADRÃO ELETROFORÉTICO DO PRODUTO DE PCR OBTIDO NA AMPLIFICAÇÃO DA REGIÃO QUE CODIFICA PARA O DOMÍNIO CENTRAL + C-TERMINAL DA PROTEÍNA NifA DE A. vinelandii ... 41

FIGURA 6 – PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAB-1 DIGERIDO COM ENZIMA DE RESTRIÇÃO EcoRI ... 45
FIGURA 7 – PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSCAB-1 DIGERIDO COM ENZIMA DE RESTRIÇÃO EcoRI ... 46

FIGURA 8 – PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAV-1 DIGERIDO COM ENZIMA DE RESTRIÇÃO EcoRI ... 47

FIGURA 9 – PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSCAV-1 DIGERIDO COM ENZIMA DE RESTRIÇÃO EcoRI .. 48

FIGURA 10 – ESQUEMA DA CONSTRUÇÃO DOS PLASMÍDIOS RECOMBINANTES CONTENDO AS SEQUÊNCIAS CODIFICADORAS PARA OS DOMÍNIOS MODULARES DA PROTEÍNA NifA DE A. brasilense e A. vinelandii ... 49

FIGURA 11 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAB-2 e pPSCAV-2 DIGERIDOS COM ENZIMAS DE RESTRIÇÃO XbaI E HindIII .. 50

FIGURA 12 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSCAB-2 DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E HindIII .. 51

FIGURA 13 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAV-2 DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E HindIII .. 52

FIGURA 14 - ESQUEMA DA CONSTRUÇÃO DOS PLASMÍDIOS pNifAQ1Ab e pNifAQ2Ab ... 56
FIGURA 15 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAB-3 DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E Xhol
.. 57

FIGURA 16 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAV-3 DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E Xhol
.. 58

FIGURA 17 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pNifAQ1Ab DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E Xhol
.. 59

FIGURA 18 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pNifAQ2Ab DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E Xhol
.. 60

FIGURA 19 - PERFIL ELETROFORÉTICO DA PROTEÍNA QUIMÉRICA NifAQ1Ab EXPRESSA EM E. coli A PARTIR DO PLASMÍDIO pNifAQ1Ab EM DIFERENTES CONDIÇÕES DE EXPRESSÃO 63
LISTA DE TABELAS

TABELA 1 – ESTIRPES DE BACTÉRIAS ... 22

TABELA 2 – PLASMÍDIOS .. 22

TABELA 3 – CONCENTRAÇÃO DOS ANTIBIÓTICOS ... 25

TABELA 4 – SEQUÊNCIA DOS OLIGONUCLEOTÍDEOS UTILIZADOS PARA AMPLIFICAÇÃO DO GENE nifA DE A. brasilense E A. vinelandii .. 35
<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Expansão</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosina difosfato</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicilina</td>
</tr>
<tr>
<td>Atase</td>
<td>Enzima adenosíntranferase</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosina trifosfato</td>
</tr>
<tr>
<td>Cm</td>
<td>Cloranfenicol</td>
</tr>
<tr>
<td>D.O.</td>
<td>Densidade ótica</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimetilsulfóxido</td>
</tr>
<tr>
<td>DNA</td>
<td>Ácido desoxirribonucleico</td>
</tr>
<tr>
<td>dNTPs</td>
<td>5'-trifosfato de 2'-desoxinucleotídeo</td>
</tr>
<tr>
<td>DTT</td>
<td>Ditiotreitol</td>
</tr>
<tr>
<td>e⁻</td>
<td>Elétron</td>
</tr>
<tr>
<td>EBP</td>
<td>“Enhancer binding protein”</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ácido etilenodiamino-tetra-acético</td>
</tr>
<tr>
<td>GDH</td>
<td>Glutamato desidrogenase</td>
</tr>
<tr>
<td>GOGAT</td>
<td>Glutamato sintase</td>
</tr>
<tr>
<td>GS</td>
<td>Glutamina sintetase</td>
</tr>
<tr>
<td>IHF</td>
<td>“Integration Host Factor”</td>
</tr>
<tr>
<td>IPTG</td>
<td>β-D-tiogalactopiranosídeo</td>
</tr>
<tr>
<td>kDa</td>
<td>Quilo dalton</td>
</tr>
<tr>
<td>kΩ</td>
<td>Quilo ohms</td>
</tr>
<tr>
<td>Km</td>
<td>Canamicina</td>
</tr>
<tr>
<td>L</td>
<td>Litro</td>
</tr>
<tr>
<td>m/v</td>
<td>Massa por volume</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamida-adenina dinucleotídeo fosfato reduzido</td>
</tr>
<tr>
<td>NtrC-P</td>
<td>Proteína NtrC fosforilada</td>
</tr>
<tr>
<td>PCR</td>
<td>Reação em cadeia da polimerase</td>
</tr>
<tr>
<td>PEG</td>
<td>Polietileno glicol</td>
</tr>
<tr>
<td>Pi</td>
<td>Fosfato inorgânico</td>
</tr>
<tr>
<td>PII-UMP</td>
<td>Proteína PII uridililada</td>
</tr>
<tr>
<td>RNA</td>
<td>Ácido ribonucleico</td>
</tr>
<tr>
<td>Termo</td>
<td>Descrição</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>SDS</td>
<td>Dodecilsulfato de sódio</td>
</tr>
<tr>
<td>TAE</td>
<td>Tampão Tris-acetato-EDTA</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N,N’ – tetrametil, etilenodiamina</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hidroximetil)-aminometano</td>
</tr>
<tr>
<td>UAS</td>
<td>“Upstream Activation Sequence”</td>
</tr>
<tr>
<td>UMP</td>
<td>5’ monofosfato de uridina</td>
</tr>
<tr>
<td>UTase</td>
<td>Enzima uridiltransferase</td>
</tr>
</tbody>
</table>
RESUMO

A fixação biológica de nitrogênio é fundamental para disponibilizar este elemento em uma forma que seja metabolicamente utilizável pela maioria dos organismos. Nas bactérias diazotróficas, que são capazes de fixar nitrogênio, a transcrição dos genes envolvidos neste processo é ativada pela proteína NifA, que tem sua atividade controlada pelos níveis de amônio e oxigênio. Em Azotobacter vinelandii, os genes nifLA estão agrupados em um operon; a proteína NifA tem atividade constitutiva, mas é inativada por NifL em altas concentrações de amônio e/ou oxigênio. Por outro lado, em Azospirillum brasilense, apenas o gene que codifica para a proteína NifA está presente e, neste caso, a própria proteína NifA responde às alterações dos níveis de amônio e oxigênio, através de um mecanismo que envolve sua auto-inibição via o domínio N-terminal. A proteína NifA de A. brasilense é composta por três domínios separados por duas regiões interdomínios. O domínio N-terminal está relacionado com o controle da atividade da proteína por amônio enquanto que a sensibilidade ao oxigênio está relacionada ao interdomínio que conecta o domínio central ao domínio C-terminal. O domínio central é responsável pela interação com a RNA polimerase e ativação da transcrição, enquanto o domínio C-terminal interage com sequências específicas de DNA. Para estudar o mecanismo de regulação da atividade da proteína NifA de A. brasilense e obter uma proteína NifA insensível aos níveis de amônio foram construídos dois genes quiméricos: nifAQ1Ab, que codifica o domínio N-terminal da proteína NifA de A. brasilense ligado ao domínio central + C-terminal da proteína NifA de A. vinelandii, e nifAQ2Ab, que codifica o domínio N-terminal da proteína NifA de A. vinelandii ligado ao domínio central + C-terminal da proteína NifA de A. brasilense. Fragmentos de DNA contendo as regiões de interesse foram obtidos por reação de PCR utilizando DNA genômico de A. brasilense e um plasmídeo contendo o gene nifA de A. vinelandii como moldes. Os produtos de PCR foram clonados separadamente no vetor pCR2.1. Após confirmação das sequências de DNA clonadas, os insertos foram clivados com HindIII e XbaI e ligados no vetor pDK7. Em seguida, os genes quiméricos foram montados no vetor de expressão pET28a, unindo as regiões que correspondem aos domínios N-terminal de A. brasilense e central + C-terminal de A. vinelandii ou aos domínios N-terminal de A. vinelandii e central + C-terminal de A. brasilense. A partir da montagem dos genes quiméricos no vetor pET28a foi possível fazer a expressão da proteína quimérica NifAQ1Ab em E. coli e determinar as melhores condições para sua solubilização. Os genes quiméricos foram construídos com sucesso e a expressão da proteína quimérica NifAQ1Ab revelou alta insolubilidade dessa proteína. Os ensaios de expressão mostraram que as melhores condições de expressão foram obtidas após indução a 37°C a partir de 2 horas ou a 18°C durante a noite, utilizando IPTG 0,5mmol/L ou lactose 0,5% como indutores.

Palavras-chave: Azospirillum brasilense, Azotobacter vinelandii, proteína NifA.
1 INTRODUÇÃO

1.1 FIXAÇÃO BIOLÓGICA DE NITROGÊNIO

Um número relativamente pequeno de bactérias e cianobactérias é capaz de transformar o nitrogênio atmosférico, não assimilável pelas plantas e animais, em amônia, que é utilizada por todos os seres vivos na construção de suas moléculas vitais (PEDROSA, 1987). O processo de redução do dinitrogênio gasoso (N$_2$) a amônia (NH$_3$) é chamado de fixação biológica de nitrogênio e é catalisado pelo complexo enzimático denominado nitrogenase (POSTGATE, 1982).

O estudo da fixação biológica de nitrogênio é de grande importância, pois o nitrogênio é um dos fatores limitantes para o desenvolvimento das plantas (DIXON & KAHN, 2004) e também o mais caro dos fertilizantes agrícolas. A utilização dos fertilizantes nitrogenados não só encarece os custos da produção agrícola, como também acarreta diversos danos ecológicos. Uma alternativa biológica, barata e não poluente seria a presença de microrganismos diazotrofos que convertam o nitrogênio atmosférico a amônia e o disponibilizem para o vegetal (PEDROSA, 1987).

A enzima responsável pela fixação biológica de nitrogênio presente nos organismos diazotrofos é a nitrogenase. Esta enzima catalisa a redução do dinitrogênio gasoso a amônia como mostra a reação abaixo (POSTGATE, 1982):

$$N_2 + 8 H^+ + 8 e^- + 16 ATP.Mg \rightarrow 2 NH_3 + H_2 + 16 ADP.Mg + 16 Pi$$

Este processo é energeticamente custoso para a célula e só ocorre em condições favoráveis. O nitrogênio fixado e o oxigênio afetam a expressão e atividade das proteínas envolvidas na fixação de nitrogênio nos diversos diazotrofos (POSTGATE, 1982).
1.1.1 Complexo da nitrogenase

O complexo enzimático nitrogenase é constituído de duas proteínas: a dinitrogenase redutase ou proteína ferro (Fe) e a dinitrogenase ou proteína ferro-molibdênio (FeMo) (DEAN & JACOBSEN, 1992). A proteína Fe é um homodímero constituído por duas subunidades γ de massa molecular total de 60kD e codificada pelo gene nifH (HOWARD & REES, 1996). Ela possui um núcleo FeS (Fe₄S₄) ancorado entre as duas subunidades e é responsável pela transferência de elétrons para a proteína FeMo (YATES, 1980). A proteína FeMo é um tetrâmero α₂β₂ de massa molecular total de cerca de 220kD. A subunidade α é codificada pelo gene nifD e a subunidade β é codificada pelo gene nifK (ROBERTS et al., 1978; KIM & REES, 1994). A proteína FeMo contém 2 átomos de Mo, 30 átomos de Fe e 32 átomos de S organizados em 2 tipos de núcleos metálicos: núcleo P (FeS) e cofator ferro-molibdênio (FeMoco). Cada dímero αβ contém um núcleo P e um cofator FeMoco (KIM & REES, 1994; SCHINDELIN et al., 1997).

Além dos genes nifHDK, a biossíntese e o funcionamento do complexo da nitrogenase requer o produto de outros genes, necessários para o transporte de elétrons, regulação transcricional, biossíntese de cofatores e transporte de íons (DIXON & KAHN, 2004).

1.2 ASSIMILAÇÃO DE NITROGÊNIO

A amônia formada no processo de fixação de nitrogênio ou captada do meio externo é utilizada para a síntese de glutamina e glutamato. Na maioria das células, o glutamato e a glutamina funcionam como doadores de nitrogênio em reações biossintéticas. Em procariotos, a assimilação de amônia pode ocorrer por duas vias: na primeira, a glutamina sintetase (GS) catalisa a conversão de glutamato e amônia a glutamina (Reação 1) e a glutamato sintase (GOGAT) catalisa a transferência do grupo amida da glutamina para o α-cetoglutarato, produzindo duas moléculas de
glutamato, em uma reação dependente de NAD(P)H (Reação 2). Na segunda via, a glutamato desidrogenase (GDH) catalisa a conversão de amônia e α-cetoglutarato em glutamato, em uma reação também dependente de NAD(P)H (Reação 3) (MERRICK & EDWARDS, 1995).

VIA 1
REAÇÃO 1 (catalisada pela glutamina sintetase - GS)
\[\text{NH}_4^+ + \text{L-glutamato} + \text{ATP} \rightarrow \text{L-glutamina} + \text{ADP} + \text{Pi} \]

REAÇÃO 2 (catalisada pela glutamato sintase – GOGAT)
\[\text{L-glutamina} + \alpha-\text{cetoglutarato} + \text{NAD(P)H} \rightarrow 2 \text{L-glutamato} + \text{NADP}^+ \]

VIA 2 (catalisada pela glutamato desidrogenase – GDH)
\[\text{NH}_4^+ + \alpha-\text{cetoglutarato} + \text{NAD(P)H} \rightarrow \text{glutamato} + \text{NADP}^+ \]

1.3 GENES nif

Os produtos dos genes nif são responsáveis pela estrutura, montagem e biossíntese do complexo enzimático da nitrogenase.

Em K. pneumoniae, os genes nif estão dispostos em 8 operons (nifJ, nifHDKTY, nifENX, nifUSVW, nifZM, nifF, nifLA e nifBQ), compreendendo 20 genes. As proteínas codificadas pelos genes nifLA são responsáveis pelo controle da transcrição dos demais genes nif, sendo a proteína NifA ativadora da transcrição e a NifL reguladora de NifA em K. pneumoniae (MERRICK, 1983; MERRICK et al., 1982).

Em Azospirillum brasilense, o gene nifA faz parte de um operon monocistrônico (SINGH et al., 1989), diferente do que ocorre em K. pneumoniae e A. vinelandii, onde o gene nifA faz parte do operon nifLA.
1.3.1 Regulação da expressão dos genes *nif*

A transcrição dos genes *nif* é ativada a partir de promotores contendo uma seqüência conservada (CTGGYAYR_N4_TTGCA) nas regiões -25/-24 e -13/-12 em relação ao início da transcrição (FISCHER, 1994). Estes promotores são reconhecidos por uma forma da holoenzima RNA polimerase contendo o fator σ^{54} ou σ^N.

A proteína NifA, uma proteína ativadora de transcrição da família das EBP (“enhancer binding protein”), atua em conjunto com a enzima σ^N-RNA polimerase para catalisar a formação do complexo aberto para início da transcrição (AUSTIN et al., 1990). Sem a presença da proteína ativadora, a σ^N-RNA polimerase é incapaz de se isomerizar de complexo fechado para complexo aberto. A proteína ativadora atua como um efetor positivo da transcrição de promotores σ^N e sua atividade é controlada por sinais fisiológicos. A interação da RNA polimerase com a proteína ativadora requer a formação de dobras no DNA. O dobramento do DNA pode ser facilitado ou induzido pela ligação da proteína IHF (“Integration Host Factor”).

As EBP são de uma classe única de reguladores transcriptionais procarióticos que ativam a expressão do gene através de sítios distantes do promotor. A proteína NifA liga-se a uma seqüência conservada, denominada UAS (“Upstream Activator Sequence”) (5’-TGT_N10_ACA-3’), localizada a montante do promotor -24/-12. Essa seqüência está presente na maioria dos promotores dependentes de NifA e localiza-se a uma distância de 80 a 150 nucleotídeos a montante do sítio de início da transcrição (MORETT & BUCK, 1988). A formação do complexo aberto e início de transcrição requer a hidrólise de ATP catalisada pela proteína NifA (AUSTIN et al., 1990).

A sequência UAS juntamente com a sequência reconhecida pela σ^N-RNA polimerase formam uma região promotora ativa. Aparentemente, a função da UAS seria orientar corretamente a NifA para facilitar a interação com o complexo σ^N-RNA polimerase e aumentar a concentração da proteína NifA na vizinhança do complexo fechado (BUCK et al., 1987).
A regulação da transcrição dos genes *nif* é mediada inteiramente pela regulação da expressão e controle da atividade da proteína NifA. Não existem evidências que mostrem que a transcrição seja regulada de forma negativa por algum repressor de transcrição. Em todos os diazotrofos estudados, a fixação biológica de nitrogênio é regulada, principalmente, a nível transcricional e este controle é mediado em resposta ao oxigênio e nitrogênio fixado.

1.3.2 Regulação da expressão do gene *nifA*

nifA e a repressão máxima desse gene depende do efeito combinado entre amônio e oxigênio (FADEL-PICHETH et al., 1999).

1.4 PROTEÍNA NifA

A maioria das proteínas NifA conhecidas possuem três domínios estruturais típicos. O domínio N-terminal varia de 64 a 216 aminoácidos, possui um baixo grau de identidade e é o domínio mais variável entre as proteínas NifA (FISCHER, 1994). Este domínio está relacionado com o controle da atividade de NifA frente ao nitrogênio fixado e, em H. seropedicae, este domínio parece estar envolvido no controle da atividade da proteína NifA por íons amônio, uma vez que, ao ser deletado, não interfere na atividade de ativação de transcrição da proteína, eliminando, porém, a inibição por amônio (SOUZA et al., 1999). Em Azospirillum brasilense, esse domínio também possui função inibitória sobre a atividade de NifA na presença de amônia (ARSÈNE et al., 1996). Por outro lado, a proteína NifA de A. brasilense sem o domínio N-terminal é menos ativa que a selvagem em condições de fixação de nitrogênio, sugerindo que esse domínio possa ser necessário para uma atividade ótima, provavelmente por manter os outros domínios em uma conformação mais favorável ou por aumentar a estabilidade da proteína (ARSÈNE et al., 1996). O domínio N-terminal compreende um domínio GAF que corresponde a um motivo sinalizador encontrado em várias proteínas sensoras e sinalizadoras (ARAVIND & PONTING, 1997; HO et al., 2000), sendo capaz de ligar pequenas moléculas. Foi mostrado por Little e Dixon (2003) que a ligação do efetor α-cetoglutarato à proteína NifA de A. vinelandii é uma propriedade do seu domínio GAF isolado. Esses mesmos autores sugerem que a ligação do α-cetoglutarato no domínio GAF da proteína NifA possa levar a mudanças conformacionais na proteína, tornando-a capaz de resistir a inibição por NifL.

Em A. vinelandii, a atividade da proteína NifA é inibida pela proteína NifL em resposta a altas concentrações de oxigênio ou amônia. O controle de NifA pela
proteína NifL é dependente da proteína paráloga de GlnB, GlnK (HE et al., 1998; JACK et al., 1999; REYES-RAMIREZ et al., 2001; LITTLE et al., 2000; 2002).

Os domínios central e C-terminal da proteína NifA de A. vinelandii estão ligados diretamente. Já em A. brasiliense, estes domínios estão conectados por uma seqüência interdomínio (FISCHER, 1994). Este interdomínio possui duas cisteínas que, juntamente com mais duas cisteínas do domínio central, constituem um sítio de ligação de metais em potencial. Foi proposto que íons Fe possam se ligar a este sítio, sendo, portanto, sensível a variações no potencial redox intracelular, estando envolvido na sensibilidade da proteína NifA à inativação por oxigênio (FISCHER et al., 1989; SOUZA et al., 1999).

O domínio C-terminal, com cerca de 50 resíduos, contém um motivo conservado em hélice-volta-hélice, que é envolvido na ligação ao DNA (LEE et al., 1993).

1.5 CONTROLE DA ATIVIDADE DA PROTEÍNA NifA

Em K. pneumoniae e A. vinelandii, a atividade da proteína NifA é inibida pela proteína NifL em resposta a altas concentrações de oxigênio ou íons amônio (DIXON et al., 1997). Estas duas proteínas são expressas estequiometricamente e formam um complexo protéico.

Apesar de a proteína NifA apresentar similaridade com a proteína NtrC, ela não é uma proteína clássica da família de reguladores de resposta de sistema de dois componentes. O domínio N-terminal não possui o resíduo de aspartato conservado, que é o sítio de fosforilação em proteínas reguladoras de resposta como NtrC e não existe nenhuma evidência de que NifA seja fosforilada em qualquer condição (MERRICK, 2004). Assim, as proteínas NifL e NifA fazem parte de um sistema atípico de dois componentes, sendo que a comunicação entre as proteínas não envolve fosforilação e sim uma comunicação proteína-proteína (DIXON et al., 1997). É possível que a proteína NifL possa interferir em vários passos do mecanismo de ação da proteína NifA. Em A. vinelandii, a proteína NifL inibe a
capacidade de ligação ao DNA, a atividade ATPásica e a capacidade de ativadora de transcrição da proteína NifA nativa in vitro (AUSTIN et al., 1994).

A proteína NifL é uma flavoproteína redox-sensitiva, capaz de modular a atividade da proteína NifA de acordo com o estado de oxidação do FAD (HILL et al., 1996). Ela também exerce uma atividade inibitória sobre a proteína NifA na presença de altos níveis de nitrogênio fixado. Evidências sugerem que componentes do sistema geral de sensoriamento de nitrogênio (sistema ntr) possam estar envolvidos (CONTRERAS et al., 1991). A inativação de um gene homólogo a glnD em A. vinelandii resulta em um fenótipo nif. Esse fenótipo é revertido por uma mutação no gene nifL, sugerindo que a Útase possa ser necessária para manter a NifL inativa em condições de baixos níveis de amônio (CONTRERAS et al., 1991).

Em H. seropedicae e A. brasilense, não há proteína NifL. A proteína NifA tem sua atividade controlada negativamente pelos níveis de oxigênio e pela concentração de amônia (FISCHER et al., 1988). Em A. brasilense, a proteína NifA é expressa tanto na presença quanto na ausência de nitrogênio fixado. A proteína NifA parece estar presente em uma forma ativa ou inativa dependendo dos níveis de oxigênio e nitrogênio fixado. A proteína NifA de A. brasilense só foi capaz de ativar a expressão de uma fusão nifH:lacZ em E. coli quando a proteína GlnB de A. brasilense estava presente na ausência de amônio (ARAÚJO et al., 2004). Já a proteína NifA sem o domínio N-terminal é ativa independente da presença da proteína PII e de nitrogênio fixado (ARSÈNE et al., 1996). Vários dados levam a formulação de uma hipótese de que, em A. brasilense, a região N-terminal da NifA inibe a atividade da proteína em condições de excesso de nitrogênio e que em condições de fixação de nitrogênio, GlnB-UMP se ligaria à NifA, removendo o efeito inibitório do domínio N-terminal (ARSÈNE et al., 1999).

Portanto, em organismos como A. vinelandii e K. pneumoniae, a proteína NifL sofre alterações na presença de oxigênio e amônio, podendo assim atuar sobre a proteína NifA, inibindo-a. Já em organismos como A. brasilense e H. seropedicae, a própria proteína NifA é que sofre as alterações em resposta direta a variação dos níveis de oxigênio e amônio, não havendo participação da proteína NifL.
2 OBJETIVOS

2.1 OBJETIVO GERAL

Estudar o mecanismo de regulação da atividade da proteína NifA de *Azospirillum brasilense* e obter uma proteína NifA insensível aos níveis de amônio.

2.2 OBJETIVOS ESPECÍFICOS

- Construção do gene quimérico *nifAQ1Ab*, que codifica o domínio N-terminal da proteína NifA de *Azospirillum brasilense* ligado ao domínio central + C-terminal da proteína NifA de *Azotobacter vinelandii*.

- Construção do gene quimérico *nifAQ2Ab*, que codifica o domínio N-terminal da proteína NifA de *A. vinelandii* ligado ao domínio central + C-terminal da proteína NifA de *A. brasilense*.

- Expressão da proteína quimérica NifAQ1Ab em *E. coli*.
3 MATERIAIS E MÉTODOS

3.1 BACTÉRIAS E PLASMÍDIOS

TABELA 1 – ESTIRPES DE BACTÉRIAS

<table>
<thead>
<tr>
<th>Estirpes de Bactéria</th>
<th>Característica</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL21 (ADE3) pLysS</td>
<td>hsdS, gal(λclts 857 ind1 Sam7 nin5 lacUV5-T7 gene 1) (produtora da RNA polimerase do fago T7, New England Biolabs).</td>
<td>SAMBROOK et al., 1989</td>
</tr>
<tr>
<td>DH10B</td>
<td>F' [proAB, lacZΔM15], NalR</td>
<td>SAMBROOK et al., 1989</td>
</tr>
</tbody>
</table>

TABELA 2 – PLASMÍDIOS

<table>
<thead>
<tr>
<th>Plasmídeos</th>
<th>Característica</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCR2.1</td>
<td>Vetor de clonagem/ promoter lac. KmR. AmpR.</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pDK7</td>
<td>Vetor de expressão/ promoter tac. CmR.</td>
<td>KLEINER et al., 1988</td>
</tr>
<tr>
<td>pET28a</td>
<td>Vetor de expressão/ promoter T7. KmR. Gera proteína de fusão com His-Tag.</td>
<td>Novagen</td>
</tr>
<tr>
<td>pNifAQ1Ab</td>
<td>Contém a região codificadora do domínio N-terminal da proteína NifA de A. brasilense ligada à região codificadora do domínio central + C-terminal da proteína NifA de A. vinelandii clonada no vetor pET28a.</td>
<td>Este trabalho</td>
</tr>
<tr>
<td>pNifAQ2Ab</td>
<td>Contém a região codificadora do domínio N-terminal da proteína NifA de A. vinelandii ligada à região codificadora do domínio central + C-terminal da proteína NifA de A. brasilense clonada no vetor pET28a.</td>
<td>Este trabalho</td>
</tr>
<tr>
<td>pPSCAB-1</td>
<td>Contém a região codificadora do domínio central + C-terminal da proteína NifA de A. brasilense clonada no vetor pCR2.1.</td>
<td>Este trabalho</td>
</tr>
</tbody>
</table>
pPSCAB-2 Contém a região codificadora do domínio central + C-terminal da proteína NifA de *A. brasilense* clonada no vetor pDK7. Este trabalho

pPSCAV-1 Contém a região codificadora do domínio central + C-terminal da proteína NifA de *A. vinelandii* clonada no vetor pCR2.1. Este trabalho

pPSCAV-2 Contém a região codificadora do domínio central + C-terminal da proteína NifA de *A. vinelandii* clonada no vetor pDK7. Este trabalho

pPSNAB-1 Contém a região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* clonada no vetor pCR2.1. Este trabalho

pPSNAB-2 Contém a região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* clonada no vetor pDK7. Este trabalho

pPSNAB-3 Contém a região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* clonada no vetor pET28a. Este trabalho

pPSNAV-1 Contém a região codificadora do domínio N-terminal da proteína NifA de *A. vinelandii* clonada no vetor pCR2.1. Este trabalho

pPSNAV-2 Contém a região codificadora do domínio N-terminal da proteína NifA de *A. vinelandii* clonada no vetor pDK7. Este trabalho

pPSNAV-3 Contém a região codificadora do domínio N-terminal da proteína NifA de *A. vinelandii* clonada no vetor pET28a. Este trabalho

3.2 MEIOS DE CULTURA

3.2.1 Meios empregados para o cultivo de *E. coli*

Os meios de cultura utilizados no cultivo das estirpes de *E.coli* foram: Luria-Broth (LB) e LA.

O meio LB (SAMBROOK *et al.*, 1989) apresentou a seguinte composição:
O meio LA foi obtido a partir da adição de ágar na concentração de 15g/L ao meio líquido LB.

Para preparo de células competentes, foi utilizado o meio SOB (SAM BROOK et al., 1989), com a seguinte composição:

<table>
<thead>
<tr>
<th></th>
<th>gramas/litro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrato de Levedura</td>
<td>5,0</td>
</tr>
<tr>
<td>Cloreto de sódio</td>
<td>10,0</td>
</tr>
<tr>
<td>Triptona</td>
<td>10,0</td>
</tr>
</tbody>
</table>

O meio SOC foi obtido com a adição de glucose 3,6g/L, MgCl₂ 0,94g/L e MgSO₄ 1,2g/L ao meio SOB.

3.2.2 Meio empregado para o cultivo de *A. brasilense*

O meio NFbHP foi utilizado para o cultivo de *A. brasilense* (PEDROSA & YATES, 1984) e apresentou a seguinte composição:

<table>
<thead>
<tr>
<th></th>
<th>gramas/litro</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH₂PO₄</td>
<td>4,0</td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>6,0</td>
</tr>
<tr>
<td>MgSO₄.7H₂O</td>
<td>2,0.10⁻¹</td>
</tr>
<tr>
<td>NaCl</td>
<td>1,0.10⁻¹</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>2,0.10⁻¹</td>
</tr>
<tr>
<td>Ácido nitrilo triacético</td>
<td>5,6.10⁻²</td>
</tr>
<tr>
<td>FeSO₄.7H₂O</td>
<td>2,0.10⁻²</td>
</tr>
</tbody>
</table>
Lactato de sódio
Biotina
$\text{Na}_2\text{MoO}_4\cdot2\text{H}_2\text{O}$
$\text{MnSO}_4\cdot\text{H}_2\text{O}$
H_3BO_3
$\text{CuSO}_4\cdot5\text{H}_2\text{O}$
$\text{ZnSO}_4\cdot7\text{H}_2\text{O}$

Como fonte de nitrogênio foi utilizado NH_4Cl 20mmol/L. A mistura de fosfato e a solução NH_4Cl foram autoclavadas separadamente e adicionadas ao meio no momento do uso. O meio NFbHP sólido foi obtido pela adição ao meio líquido de ágar bacteriológico 15g/L.

3.3 ANTIBIÓTICOS

TABELA 3 – CONCENTRAÇÃO DOS ANTIBIÓTICOS

<table>
<thead>
<tr>
<th>Antibióticos</th>
<th>Solução estoque (mg/mL)</th>
<th>Concentração final (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicilina (Amp)</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Canamicina (Km)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Cloranfenicol (Cm)</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

As soluções estoque de antibióticos, exceto cloranfenicol, foram preparadas em água destilada autoclavada e esterilizada por filtração (Millipore HAWP 0,22µm). A solução estoque de cloranfenicol foi preparada em etanol 70%. Todas as soluções de antibióticos foram mantidas a -20ºC.
3.4 CONDIÇÕES DE CULTIVO

As estirpes de *E. coli* foram cultivadas em meio líquido LB, SOB ou SOC a temperatura de 37°C sob agitação. Para estes cultivos, sempre foi mantida a relação 1/5 de volume de meio para volume total do frasco. Esta relação foi utilizada para manutenção da aeração durante o crescimento.

Para cultivo de *E. coli* em meio sólido foi utilizado o meio LA e as placas mantidas a 37°C.

3.5 ESTOCAGEM DAS BACTÉRIAS

Os estoques das estirpes de *E. coli* foram preparados centrifugando 1,5mL da cultura saturada por 60 segundos a 13.000 x g. O sedimento de células obtido foi ressuspendido em 400µL de glicerol 50% e conservado a -20°C.

3.6 EXTRAÇÃO DO DNA TOTAL DE *Azospirillum brasilense*

Cinco mililitros de uma cultura saturada de *A. brasilense* em NfbHPN foi centrifugada a 4000 x g por 5 minutos, 4°C. O sedimento de células foi lavado uma vez com 5mL de GET (50mmol/L glucose, 25mmol/L Tris.HCl pH 8.0, 10mmol/L EDTA) e, em seguida, ressuspendido em 500µL da mesma solução. Foi adicionado 50µL de SDS 10% e lisozima (100µg/mL). Esta suspensão foi incubada a 55°C por 40 minutos. Após a lise celular, foi adicionado Proteinase K (50µg/mL) e a mistura incubada a 37°C durante a noite.

Para a purificação do DNA, foi feita uma extração com fenol:clorofórmio:álcool isoaamilico (25:24:1) e outra com clorofórmio:álcool isoaamilico (24:1). O DNA genômico foi precipitado com um volume de isopropanol, depois com
1,5mL de etanol absoluto e lavado com etanol 80%. Depois de seco a vácuo, o DNA foi dissolvido em 30µL de água.

3.7 AMPLIFICAÇÃO DO DNA POR PCR

A amplificação das regiões que codificam para os domínios N-terminal e central + C-terminal da proteína NifA de *A. brasilense* e *A. vinelandii* foi realizada através da técnica de reação em cadeia da polimerase (PCR) como descrito por Kocher e Wilson (1991). Foram utilizados oligonucleotídeos sintetizados quimicamente e que se alinhavam em diferentes regiões do gene nifA de *A. brasilense* e *A. vinelandii* para permitir a amplificação das regiões de interesse separatamente.

Para a reação de amplificação foram utilizados: tampão 1X de PCR (20mmol/L Tris.HCl pH 8.4 e 50mmol/L KCl), 0,8mmol/L dNTPs, 10pmol de cada “primer”, 0,6mmol/L MgCl₂, aproximadamente 20ng de DNA molde e 0,8µL de Taq DNA polimerase em um volume final de 20µL. Para a amplificação da região central e C-terminal de *A. brasilense* foi utilizado, além dos reagentes acima descritos, 1µL de DMSO.

Os parâmetros utilizados para os ciclos de amplificação foram 1 ciclo de 5 minutos a 94ºC, 25 ciclos de 1 minuto a 94ºC, 1 minuto na temperatura de anelamento dos “primers”, 1,5 minutos a 72ºC e 15 minutos a 72ºC. Para as temperaturas de anelamento foram utilizados gradientes de temperatura de 50ºC ± 5ºC para a amplificação das regiões N-terminal e central + C-terminal do gene nifA de *A. brasilense* e 41ºC ± 5ºC para a amplificação das regiões N-terminal e central + C-terminal do gene nifA de *A. vinelandii*. A confirmação das amplificações se deu através de eletroforeses em gel de agarose 1% utilizando tampão TAE 1X.
3.8 SEPARAÇÃO ELETROFORÉTICA DE DNA

As eletroforeses de DNA foram realizadas em gel de agarose horizontal conforme descrito por Sambrook (1989). Os géis de agarose foram preparados em tampão TAE (40mmol/L Tris-acetato e 1mmol/L EDTA pH 8.3). A concentração de agarose variou de 1,0 a 1,5%, dependendo do tamanho de DNA analisado.

O DNA foi visualizado em um transiluminador de luz ultravioleta após tratamento com solução de brometo de etídio.

3.9 LIGAÇÃO DOS FRAGMENTOS AO VETOR pCR2.1

O vetor pCR2.1 (Invitrogen) já vem linearizado. A ligação dos produtos de PCR foi realizada em um sistema contendo tampão de ligação (50mmol/L Tris.HCl pH 7.6, 10mmol/L MgCl₂, 1mmol/L DTT, 0,5mmol/L ATP, 5% de PEG 8000) e 0,8 U de T4 DNA Ligase, incubado a 18°C durante a noite. A proporção usada de vetor:inserto foi de 1:5 (mol).

3.10 DIGESTÃO DO DNA COM ENZIMAS DE RESTRIÇÃO E PREPARO DOS VETORES

A digestão do DNA para clonagem nos vetores de expressão pDK7 e pET28a foi feita segundo protocolo descrito por Sambrook et al. (1989) ou especificado pelo fabricante.

Uma a cinco unidades das diferentes enzimas de restrição foram utilizadas para digestão de 0,2-1,0µg de DNA, em um volume de 50µl durante a noite na presença do tampão e temperatura adequados para cada enzima. Para apenas análise do padrão de restrição, o volume final utilizado foi de 10µL.
3.11 LIGAÇÃO DO INSERTO AO VETOR

Após a digestão do DNA e do vetor, as enzimas foram desnaturadas por calor (85°C por 20 minutos). Então, o vetor linearizado foi ligado ao inserto na proporção de 1:5 e esta mistura foi aquecida a 65°C por 5 minutos e resfriada no gelo, como descrito em Sambrook et al. (1989). Em seguida, foi adicionado ao sistema o tampão de ligação (50mmol/L Tris.HCl pH 7.6, 10mmol/L DDT, 0,5mmol/L ATP, 5% de PEG 8000) e 1,0µL de T4 DNA ligase e incubado a 18º-21ºC durante a noite.

3.12 TRANSFORMAÇÃO BACTERIANA POR ELETROPORAÇÃO

3.12.1 Preparo de bactérias eletrocompetentes para eletroporação

Trezentos mililitros de meio LB foram inoculados com 3mL de uma cultura de E. coli crescida durante 12 horas. A cultura ficou a 37°C sob agitação até atingir uma D.O.600 igual a 0,5. Então, a cultura foi mantida em gelo durante 20 minutos e transferida para tubos estéreis, sendo em seguida centrífugada a 2500 x g durante 5 minutos a 4°C. As células foram lavadas com 300mL de água estéril gelada e, postiormente, com 5mL de glicerol 10%. Após centrifugação, o sedimento foi ressuspensido em 0,5mL de glicerol 10% e a suspensão aliquotada em tubos tipo “eppendorf” (40µL) e armazenada a -70°C por até 6 meses.
3.12.2 Transformação bacteriana

O método utilizado para transformação bacteriana foi descrito pelo fabricante do Cell Porator (Life-Technologies). A mistura da ligação ou plasmídios purificados foram adicionados a 40µL da suspensão de células eletrocompetentes e incubado por 1 minuto no gelo. Em seguida, as células foram transferidas para uma cubeta de eletroporção e submetidas a um campo elétrico (4KΩ, 330µF) a fim de possibilitar a entrada do plasmídeo na célula. Após a eletroporção, as células foram ressuspendidas em 200µL de meio SOC e incubadas por 40 minutos a 37ºC sob agitação. Então, alíquotas da suspensão foram plaqueadas em meio LA contendo antibiótico adequado para a seleção dos transformantes de interesse.

3.13 PURIFICAÇÃO DE DNA PLASMIDIAL

O isolamento dos plasmídios e vetores contidos nas bactérias E. coli foi feita segundo o método de lise alcalina (SAM BROOK et al., 1989). 1,5mL de cultura incubada durante 12 horas foi centrifugado por 60 segundos a 13000 x g a temperatura ambiente. O sedimento de células foi ressuspendido em 150µL de GET e as células lisadas pela adição de 150µL de solução de lise (SDS 1% e NaOH 0,2mol/L). Em seguida, foi adicionado mais 150µL de acetato de potássio 3mol/L pH 4.8 e incubado por 10 minutos no gelo. Após a incubação, as amostras foram centrifugadas a 13000 x g por 5 minutos. O sobrenadante foi retirado e a ele adicionado 100µL de clorofórmio:álcool isoamilico (24:1). Essa mistura novamente foi centrifugada a 13000 x g por 5 minutos e ao sobrenadante foi adicionado 2 volumes de etanol absoluto para precipitar o DNA plasmidial por 15 minutos. Então, a mistura foi centrifugada a 13000 x g por 15 minutos e depois lavada com etanol 80%. Depois de seco, o DNA plasmidial foi dissolvido em 30µL de água.
3.14 ANÁLISE DOS PLASMÍDIOS

As colônias resultantes da transformação bacteriana e que cresceram no meio selecionado pelo antibiótico adequado foram crescidas em 3mL de meio líquido LB com o antibiótico. 1,5mL foram utilizados para preparar a solução estoque (Material e Métodos item 3.5) e os outros 1,5mL foram utilizados para extração do plasmídeo (Material e Métodos item 3.13) e posterior análise por padrão de restrição. O volume total de 10µL foi utilizado em uma eletroforese em gel de agarose 1% para confirmar a presença do inserto de interesse.

3.15 SEQUENCIAMENTO DO DNA

A reação de sequenciamento de DNA se baseou no método descrito por Sanger e Coulson (1977), utilizando didesoxirribonucleotídeos fluorescentes como terminadores de cadeia. A leitura dos produtos da reação de sequenciamento foi feita em um seqüenciador automático de DNA (Applied Biosystems modelo 377). Como DNA molde, foram usados plasmídios purificados pelo método de lise alcalina como descrito no item 3.13, com duas modificações: foram realizadas duas ressuspensões em GET em vez de apenas uma e antes do DNA plasmidial ser precipitado com etanol absoluto, foi adicionado RNAse 10µg/mL e incubado por 1 hora a 37°C.

A reação de sequenciamento continha 2µL de DNA purificado (1-5µg), 3µL de tampão ET terminator (GE Healthcare), 10pmol do oligonucleotídeo específico para a seqüência de interesse e água para um volume final de 7,5µL. Os parâmetros de amplificação foram definidos de acordo com os iniciadores utilizados.

Após a reação de sequenciamento, o produto foi transferido para um tubo tipo eppendorf de 0,6mL e acrescentado 2,0µL de acetato de amônio, 60,0µL de etanol absoluto e 12,5µL de água. Esta mistura foi mantida a temperatura ambiente por 30 minutos e centrifugada a 13000 x g por mais 30 minutos. Então, o DNA foi
lavado com etanol 80% e seco a vácuo. O produto foi dissolvido em solução contendo bluedextran e formamida, conforme recomendação do fabricante e a amostra foi lida no seqüenciador automático.

A análise das seqüências de nucleotídeos obtida foi realizada utilizando o programa BLAST Search (NCBI/GenBank) (ALTschUL et al., 1997).

3.16 EXPRESSÃO DA PROTEÍNA NifAQ1Ab EM E. coli

Seis mililitros de meio LB foram inoculados na proporção de 1/100 com uma cultura de E. coli BL21 (λDE3) pLysS transformada com os plasmídios pNifAQ1Ab1 ou pNifAQ2Ab crescida durante a noite. As células foram cultivadas a 37ºC sob agitação até atingir a DO600 próximo a 1,0. Neste ponto, foi adicionado IPTG para concentração final de 0,5mmol/L ou 0,5% (p/v) de lactose, seguido de incubação sob agitação constante a 30ºC por 3 horas. Após a indução, as células foram coletadas por centrifugação (13000 x g por 5 minutos a 4ºC). Para análise das proteínas, o sedimento de células foi ressuspender em 400µL de tampão de sonicação (50mmol/L Tris.HCl pH 7.5, 100mmol/L KCl, glicerol 20%). As células foram lisadas por sonicação por 2 minutos em ciclos de 20 segundos seguidos de 1 minuto de intervalo, no gelo, utilizando o sonicador Heat System equipado com microponta. A mistura lisada foi centrífugada a 13000 x g por 5 minutos a 4ºC. As frações solúvel e insolúvel foram separadas e analisadas através de separação eletroforética em géis de poliacrilamida/SDS (SDS-PAGE) segundo Laemmli (1970). Os géis foram corados com Coomassie Blue R250.

3.17 ELETROFORESE DE PROTEÍNAS SOB CONDIÇÕES DESNATURANTES

A eletroforese de proteínas sob condições desnaturantes (SDS-PAGE) foi realizada em gel de poliacrilamida como descrito por Laemmli (1970). A
concentração do gel de corrida variou de 10% a 15% de acordo com a massa molecular da proteína analisada. A eletroforese foi realizada em sistema vertical seguindo recomendação do fabricante (BioRad ou Höeffer). A corrida foi realizada a 180 V por 1 hora e o gel corado com Coomassie Blue.
4 RESULTADOS E DISCUSSÕES

4.1 AMPLIFICAÇÃO DAS REGIÕES CODIFICADORAS DOS DOMÍNIOS N-TERMINAL E CENTRAL + C-TERMINAL DA PROTEÍNA NifA DE *Azospirillum brasiliense* E *Azotobacter vinelandii*

A proteína NifA é ativadora da transcrição dos genes envolvidos no processo de fixação biológica de nitrogênio. Em *Azotobacter vinelandii*, a proteína NifA faz parte do operon *nifLA*; a proteína NifA tem atividade constitutiva, mas é inativada por NifL em altas concentrações de amônio e/ou oxigênio. Por outro lado, em *Azospirillum brasiliense*, apenas o gene que codifica para a proteína NifA está presente e, neste caso, a própria proteína NifA responde às alterações dos níveis de amônio e oxigênio, através de um mecanismo que envolve sua auto-inibição via o domínio N-terminal. Este domínio está relacionado com o controle da atividade da proteína por amônio enquanto que a sensibilidade ao oxigênio está relacionada ao interdomínio que conecta o domínio central ao domínio C-terminal. O domínio central é responsável pela interação com a RNA polimerase e ativação da transcrição, enquanto o domínio C-terminal interage com sequências específicas de DNA. Para estudar o mecanismo de regulação da atividade da proteína NifA de *A. brasilense* e obter uma proteína NifA insensível aos níveis de amônio foram construídos dois genes quiméricos: *nifAQ1Ab*, que codifica o domínio N-terminal de *A. brasilense* ligado ao domínio central + C-terminal de *A. vinelandii*, e *nifAQ2Ab*, que codifica o domínio N-terminal de *A. vinelandii* ligado ao domínio central + C-terminal de *A. brasilense* (Figura 1). Para realizar estas construções, as sequências codificadoras para os domínios N-terminal e central + C-terminal da proteína NifA de *A. brasilense* e *A. vinelandii* foram obtidas através de reações de PCR. Foram desenhados oligonucleotídeos específicos para cada região. As sequências dos oligonucleotídeos encontram-se na Tabela 4. Os “primers” foram construídos de modo a possuírem sítios de restrição na sequência desejada para facilitar as clonagens e montagem dos genes quiméricos.
TABELA 4 – SEQUÊNCIA DOS OLIGONUCLEOTÍDEOS UTILIZADOS PARA AMPLIFICAÇÃO DO GENE nifA DE A. brasilense E A. vinelandii

<table>
<thead>
<tr>
<th>Sequência</th>
<th>Iniciador</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>5’ N-terminal</td>
<td>CAT ATG CCG GGT GCA ATG CG</td>
<td>N-terminal – nifA de A. brasilense, sentido 5’, posição 437-456</td>
</tr>
<tr>
<td>Ab2Q</td>
<td>GAC CAC GTC ACT AGT CGG GGC</td>
<td>N-terminal – nifA de A. brasilense, sentido 3’, posição 1037-1057</td>
</tr>
<tr>
<td>Ab1Q</td>
<td>GCC CCG ACT AGT GAC GTG GTC</td>
<td>Central e C-terminal – nifA de A. brasilense, sentido 5’, posição 1037-1057</td>
</tr>
<tr>
<td>3’ C-terminal</td>
<td>GGT GGA TCC CGC GTA CAT GAT</td>
<td>Central e C-terminal – nifA de A. brasilense, sentido 3’, posição 2363-2383</td>
</tr>
<tr>
<td>AV1</td>
<td>CGA CAG GGA TCC CAT ATG AAT</td>
<td>N-terminal – nifA de A. vinelandii, sentido 5’, posição 317-337</td>
</tr>
<tr>
<td>NifA AV2Q</td>
<td>CAC CAC CAT ACT AGT GAA GCC</td>
<td>N-terminal – nifA de A. vinelandii, sentido 3’, posição 947-967</td>
</tr>
<tr>
<td>NifA AV1Q</td>
<td>GGC TTC ACT AGT ATG GTG GTG</td>
<td>Central e C-terminal – nifA de A. vinelandii, sentido 5’, posição 947-967</td>
</tr>
<tr>
<td>AV2</td>
<td>GTC CCG GGA TCC CTT GCG CAT</td>
<td>Central e C-terminal – nifA de A. vinelandii, sentido 3’, posição 1886-1906</td>
</tr>
</tbody>
</table>

Os nucleotídeos em vermelho indicam os sítios de restrição. A sequência CAT ATG corresponde ao sítio de restrição para a enzima NdeI, a sequência ACT AGT para a enzima SpeI e a sequência GGA TCC para a enzima BamHI.

Para a amplificação da região que codifica para o domínio N-terminal da proteína NifA de A. brasilense foram utilizados os iniciadores 5’ N-terminal e Ab2Q e para a amplificação da região que codifica para os domínios central + C-terminal da proteína NifA de A. brasilense foram utilizados os iniciadores Ab1Q e 3’ C-terminal. O DNA genômico de A. brasilense serviu de molde para ambas as reações. Para a amplificação da região que codifica para o domínio N-terminal da proteína NifA de A. vinelandii foram utilizados os iniciadores AV1 e NifA AV2Q e para a amplificação da região que codifica para os domínios central + C-terminal da proteína NifA de A. vinelandii foram utilizados os iniciadores NifA AV1Q e AV2.

Os parâmetros utilizados para os ciclos de amplificação foram 1 ciclo de 5 minutos a 94°C, 25 ciclos de 1 minuto a 94°C, 1 minuto na temperatura de anelamento dos “primers”, 1,5 minutos a 72°C e 15 minutos a 72°C. Vários
programas e condições foram testadas até que a obtenção dos fragmentos do tamanho esperado fosse atingida. Para as temperaturas de anelamento foram utilizados gradientes de temperatura de 50ºC ± 5ºC para a amplificação das regiões do gene \textit{nifA} de \textit{A. brasilense} e 41ºC ± 5ºC para a amplificação das regiões do gene \textit{nifA} de \textit{A. vinelandii}. A temperatura ideal de anelamento obtida para os “primers” que amplificam as regiões do gene \textit{nifA} de \textit{A. brasilense} foi de 50ºC para a região que codifica para o domínio N-terminal e de 51,8ºC para a região que codifica para o domínio central + C-terminal. Para a amplificação da região que codifica para o domínio central + C-terminal de \textit{A. brasilense} foi necessário utilizar 1µL de DMSO 5%. Já para a amplificação das regiões do gene \textit{nifA} de \textit{A. vinelandii}, a temperatura de anelamento ótima foi de 45,1ºC.

Através da análise dos produtos de amplificação por eletroforese em gel de agarose 1,5%, verificou-se que os fragmentos obtidos possuíam o tamanho esperado para cada região amplificada. O fragmento obtido com tamanho aproximado de 600 pares de bases corresponde ao tamanho da região que codifica para o domínio N-terminal da proteína NifA de \textit{A. brasilense} (Figura 2). O fragmento de aproximadamente 1400 pares de bases corresponde ao tamanho da região que codifica para o domínio central + C-terminal da proteína NifA de \textit{A. brasilense} (Figura 3). A amplificação da região que codifica para o domínio N-terminal da proteína NifA de \textit{A. vinelandii} resultou em duas bandas. Uma corresponde ao tamanho esperado da região de interesse com 650 pares de bases e a outra banda, de aproximadamente 1000 pares de bases corresponde a uma amplificação inespecífica (Figura 4). Mesmo testando um gradiente de temperatura para o anelamento dos “primers”, esta condição não foi eliminada, já que em outras temperaturas não havia amplificação ou apareciam outras bandas de tamanho não esperado. O fragmento de aproximadamente 1000 pares de bases corresponde ao tamanho esperado para a região que codifica para o domínio central + C-terminal da proteína NifA de \textit{A. vinelandii} (Figura 5).
FIGURA 1 – ESQUEMA DO ALINHAMENTO DOS OLIGONUCLEOTÍDEOS À SEQUÊNCIA CODIFICADORA DOS DOMÍNIOS MODULARES DA PROTEÍNA NifA DE A. brasilense E A. vinelandii

A figura mostra o alinhamento dos oligonucleotídeos às regiões do gene nifA de A. brasilense e A. vinelandii e o tamanho dos seus respectivos fragmentos. Os iniciadores 5’ N-terminal e AbQ2 foram utilizados para a amplificação da região que codifica para o domínio N-terminal da proteína NifA de A. brasilense; os iniciadores Ab1Q e 3’ C-terminal foram utilizados para a amplificação da região que codifica para os domínios central + C-terminal da proteína NifA de A. brasilense; os iniciadores AV1 e NifA AV2Q foram utilizados para a amplificação da região que codifica para o domínio N-terminal da proteína NifA de A. vinelandii; os iniciadores NifA1Q e AV2 foram utilizados para a amplificação da região que codifica para os domínios central + C-terminal da proteína NifA de A. vinelandii.
FIGURA 2 – PADRÃO ELETROFORÉTICO DO PRODUTO DE PCR OBTIDO NA AMPLIFICAÇÃO DA REGIÃO QUE CODIFICA PARA O DOMÍNIO N-TERMINAL DA PROTEÍNA NifA DE *A. brasilense*

Linha 1 – Padrão de massa molecular 1 kb ladder; linha 2 – Fragmento de DNA correspondendo à região que codifica para o domínio N-terminal da proteína NifA de *A. brasilense*, com aproximadamente 600 pares de bases. A figura mostra eletroforese em gel de agarose 1,5% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta indica o fragmento obtido por PCR na amplificação da região que codifica para o domínio N-terminal da proteína NifA de *A. brasilense*.
FIGURA 3 - PADRÃO ELETROFORÉTICO DO PRODUTO DE PCR OBTIDO NA AMPLIFICAÇÃO DA REGIÃO QUE CODIFICA PARA O DOMÍNIO CENTRAL + C-TERMINAL DA PROTEÍNA NifA DE *A. brasilense*

Linha 1 – Padrão de massa molecular 1 kb ladder; linhas 2 e 3 – Fragmento de DNA correspondendo à região que codifica para o domínio central + C-terminal da proteína NifA de *A. brasilense*, com aproximadamente 1400 pares de bases. A figura mostra eletroforese em gel de agarose 1,5% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta indica o fragmento obtido por PCR na amplificação da região que codifica para o domínio central + C-terminal da proteína NifA de *A. brasilense*.
FIGURA 4 - PADRÃO ELETROFORÉTICO DO PRODUTO DE PCR OBTIDO NA AMPLIFICAÇÃO DA REGIÃO QUE CODIFICA PARA O DOMÍNIO N-TERMINAL DA PROTEÍNA NifA DE *A. vinelandii*

Linha 1 – Padrão de massa molecular 1 kb ladder; linha 2 – Fragmento de DNA correspondendo à região que codifica para o domínio N-terminal da proteína NifA de *A. vinelandii*, com aproximadamente 650 pares de bases. A figura mostra eletroforese em gel de agarose 1,5% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta indica o fragmento obtido por PCR na amplificação da região que codifica para o domínio N-terminal da proteína NifA de *A. vinelandii*. O outro fragmento corresponde ao produto de amplificação não específica.
FIGURA 5 - PADRÃO ELETROFORÉTICO DO PRODUTO DE PCR OBTIDO NA AMPLIFICAÇÃO DA REGIÃO QUE CODIFICA PARA O DOMÍNIO CENTRAL + C-TERMINAL DA PROTEÍNA NifA DE A. vinelandii

Linha 1 – Padrão de massa molecular 1 kb ladder; linhas 2 e 3 – Fragmento de DNA correspondendo à região que codifica para o domínio central + C-terminal da proteína NifA de A. vinelandii, com aproximadamente 1000 pares de bases. A figura mostra eletroforese em gel de agarose 1,5% utilizando tampão TAE 1X corado com brometo de etidio. Os marcadores estão indicados em pares de bases. A seta indica o fragmento obtido por PCR na amplificação da região que codifica para o domínio central + C-terminal da proteína NifA de A. vinelandii.
4.2 CONSTRUÇÃO DE PLASMÍDIOS RECOMBINANTES CONTENDO SEQUÊNCIAS CODIFICADORAS PARA OS DOMÍNIOS MODULARES DA PROTEÍNA NifA DE A. brasilense E A. vinelandii

As seqüências codificadoras para os domínios N-terminal e central + C-terminal da proteína NifA de A. brasilense e A. vinelandii obtidas através de PCR foram clonadas e subclonadas em diferentes vetores.

Primeiramente, os produtos de PCR foram clonados no vetor pCR2.1 (Apêndice 1). O vetor pCR2.1 é um vetor de clonagem que possui um promotor lac e resistência aos antibióticos kanamicina e ampicilina, produzido pela Invitrogen. Este vetor possui, em seu sítio de policlonagem, extremidades de timina, que são complementares a extremidade de adeninas presente no produto de PCR, introduzido pela enzima Taq DNA polimerase ao final do processo de replicação do DNA. Assim, a ligação do produto de PCR ao vetor já linearizado não requer o uso de enzimas de restrição e pode ser feito logo após a amplificação das regiões de interesse. A clonagem dos produtos de PCR ao vetor pCR2.1 está descrito em Matérias e Métodos (item 3.9).

A análise dos produtos de ligação foi realizada através de reação de restrição com a enzima EcoRI, que possui dois sítios de restrição localizados na região de policlonagem do vetor.

Foram obtidos quatro diferentes plasmídios com perfil de restrição esperados correspondendo as regiões codificadoras para os domínios modulares da proteína NifA de A. brasilense e A. vinelandii (Figuras 6, 7, 8 e 9). Estes plasmídios foram totalmente sequenciados. A reação de sequenciamento foi realizada utilizando-se os “primers” Reverso ou Universal que anelam ao vetor pCR2.1. As seqüências obtidas foram comparadas com o banco de dados GENBANK, apresentando 100% de identidade com o gene nifA de A. brasilense ou A. vinelandii, confirmando assim a clonagem no vetor pCR2.1.

Os clones obtidos foram denominados pPSNAB-1 (contém a região codificadora do domínio N-terminal da proteína NifA de A. brasilense clonada no vetor pCR2.1), pPSCAB-1 (contém a região codificadora do domínio central + C-terminal da proteína NifA de A. brasilense clonada no vetor pCR2.1), pPSNAV-1
O DNA plasmidal de cada um dos clones obtidos foi extraído e submetido a uma reação de restrição com as enzimas de restrição XbaI e HindIII a fim de liberar o inserto correspondente às regiões de interesse. Os fragmentos resultantes da reação de restrição foram ligados ao vetor de expressão pDK7 (Apêndice 2) (Figura 10). Este vetor possui um promotor tac e resistência ao antibiótico cloranfenicol. Pela diferença na resistência ao antibiótico, o vetor pDK7 foi escolhido para a subclonagem das regiões que codificam os domínios modulares da proteína NifA de A. brasilense e A. vinelandii. Desse modo, seria possível a posterior montagem dos genes que codificam para as proteínas quiméricas NifAQ1Ab e NifAQ2Ab no vetor de expressão pET28a (Apêndice 3). O vetor pET28a possui promotor T7 e um gene de resistência ao antibiótico kanamicina. Se a montagem dos genes quiméricos fosse realizada diretamente do vetor pCR2.1 para o vetor pET28a, não seria possível a seleção dos clones de interesse por todos serem resistentes ao mesmo antibiótico. O vetor pDK7 também foi clivado com as enzimas de restrição XbaI e HindIII. Após a digestão, vetor e DNA inserto foram ligados como descrito em Materiais e Métodos (item 3.11). Foram analisados 18 clones através de reação de restrição com as enzimas de restrição XbaI e HindIII. Os padrões de restrição esperados foram confirmados em 10 clones, sendo que 1 apresentou um fragmento de 750 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de A. brasilense mais uma porção relativa à região de policlonagem do vetor pDK7 (Figura 11). Outros 2 clones apresentaram um fragmento de 1500 pares de bases, tamanho esperado para a região codificadora do domínio central + C-terminal da proteína NifA de A. brasilense mais a região de policlonagem do vetor pDK7 (Figura 12); 2 apresentaram um fragmento de 750 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de A. vinelandii mais a porção do vetor pDK7 (Figura 13) e 5 apresentaram um fragmento de 1200 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de A. vinelandii mais a
FIGURA 6 – PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAB-1 DIGERIDO COM ENZIMA DE RESTRIÇÃO EcoRI

Linha 1 – Marcador de peso molecular 1 kb ladder; linha 2 e 3 – Padrão eletroforético da reação de restrição com a enzima EcoRI dos plasmídios recombinantes obtidos com a ligação do produto de PCR correspondente à região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* ao vetor pCR2.1. A figura mostra eletroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta em preto indica o fragmento correspondente à região codificadora do domínio N-terminal da proteína NifA de *A. brasilense*, com, aproximadamente, 600 pares de bases e a seta em azul indica o fragmento que corresponde ao tamanho do vetor pCR2.1 linearizado, de 3,9 kb.
FIGURA 7 – PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSCAB-1 DIGERIDO COM ENZIMA DE RESTRIÇÃO EcoRI

Linha 1 – Marcador de peso molecular 1 kb ladder; linha 2 - 3 – Padrão eletroforético da reação de restrição com a enzima EcoRI dos plasmídios recombinantes obtidos com a ligação do produto de PCR correspondente à região codificadora do domínio central + C-terminal da proteína NifA de *A. brasilense* ao vetor pCR2.1. A figura mostra eletroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta em preto indica o fragmento correspondente à região codificadora do domínio central + C-terminal da proteína NifA de *A. brasilense*, com, aproximadamente, 1400 pares de bases e a seta em azul indica o fragmento que corresponde ao tamanho do vetor pCR2.1 linearizado, de 3,9 kb.
FIGURA 8 – PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAV-1 DIGERIDO COM ENZIMA DE RESTRIÇÃO EcoRI

Linha 1 – Marcador de peso molecular 1 kb ladder; linha 2 – Padrão eletroforético da reação de restrição com a enzima EcoRI do plasmídio recombinante obtido com a ligação do produto de PCR correspondente à região codificadora do domínio N-terminal da proteína NifA de *A. vinelandii* ao vetor pCR2.1. A figura mostra eletroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta em preto indica o fragmento correspondente à região codificadora do domínio N-terminal da proteína NifA de *A. vinelandii*, com, aproximadamente, 650 pares de bases e a seta em azul indica o fragmento que corresponde ao tamanho do vetor pCR2.1 linearizado, de 3,9 kb.
FIGURA 9 – PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSCAV-1 DIGERIDO COM ENZIMA DE RESTRIÇÃO EcoRI

Linha 1 – Marcador de peso molecular 1 kb ladder; linha 2 – Padrão elektroforético da reação de restrição com a enzima EcoRI do plasmídio recombinante obtido com a ligação do produto de PCR correspondente à região codificadora do domínio central + C-terminal da proteína NifA de A. vinelandii ao vetor pCR2.1. A figura mostra elektroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. As setas em preto indicam os dois fragmentos que correspondem à região codificadora do domínio central + C-terminal da proteína NifA de A. vinelandii, com aproximadamente 1000 pares de bases. A obtenção dos dois fragmentos foi devido a região codificadora do domínio central + C-terminal da proteína NifA de A. vinelandii possuir um sítio de restrição para a enzima EcoRI na posição 1192. A seta em azul indica o fragmento que corresponde ao tamanho do vetor pCR2.1 linearizado, de 3,9 kb.
Os plasmídios pPSNAB-1, pPSNAV-1, pCAB-1 e pPSCAV-1 foram digeridos com as enzimas HindIII e Xbal para que fossem liberados os fragmentos que codificam para os domínios N-terminal e central + C-terminal da proteína NifA de *A. brasilense* e *A. vinelandii*. Estes fragmentos, então, foram ligados ao vetor pDK7, originando os plasmídios pPSNAB-2 (contém a região codificadora do domínio N-terminal da proteína NifA de *A. brasilense*), pPSNAV-2 (contém a região codificadora do domínio N-terminal da proteína NifA de *A. vinelandii*), pPSCAB-2 (contém a região codificadora do domínio central + C-terminal da proteína NifA de *A. brasilense*) e pPSCAV-2 (contém a região codificadora do domínio central + C-terminal da proteína NifA de *A. vinelandii*).
FIGURA 11 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAB-2 e pPSCAV-2 DIGERIDOS COM ENZIMAS DE RESTRIÇÃO XbaI E HindIII

Linha 1 – Marcador de peso molecular 1 kb ladder. Linha 2 – Padrão eletroforético da reação de restrição do vetor pDK7 com as enzimas XbaI e HindIII (controle). Linha 3 – Padrão eletroforético da reação de restrição com as enzimas XbaI e HindIII do plasmídio recombinante obtido com a ligação do fragmento correspondente à região codificadora do domínio N-terminal da proteína NifA de A. brasilense ao vetor pDK7. Linhas 4 – 8 – Padrão eletroforético da reação de restrição com as enzimas XbaI e HindIII dos plasmídios recombinantes obtidos com a ligação do fragmento correspondente à região codificadora do domínio central + C-terminal da proteína NifA de A. vinelandii. A figura mostra eletroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta em vermelho indica o fragmento de 750 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de A. brasilense mais uma porção relativa à região de policlonagem do vetor pDK7. A seta em preto indica o fragmento de 1200 pares de bases, tamanho esperado para a região codificadora do domínio central + C-terminal da proteína NifA de A. vinelandii mais a região do vetor pDK7. A seta em azul indica o fragmento que corresponde ao tamanho do vetor pDK7 linearizado, de 4,8 kb.
FIGURA 12 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSCAB-2 DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E HindIII

Linha 1 – Marcador de peso molecular 1 kb ladder; linha 2 – Padrão eletroforético da reação de restrição do vetor pDK7 com as enzimas XbaI e HindIII (controle). Linha 3 - 5 – Padrão eletroforético da reação de restrição com as enzimas XbaI e HindIII dos plasmídios recombinantes obtidos com a ligação do fragmento correspondente à região codificadora do domínio central + C-terminal da proteína NifA de *A. vinelandii* ao vetor pDK7. A figura mostra eletroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta em preto indica o fragmento de 1500 pares de bases, tamanho esperado para a região codificadora do domínio central + C-terminal da proteína NifA de *A. vinelandii* mais uma porção relativa à região do vetor pDK7. A seta em azul indica o fragmento que corresponde ao tamanho do vetor pDK7 linearizado, de 4,8 kb.
FIGURA 13 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAV-2 DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E HindIII

Linha 1 – Marcador de peso molecular 1 kb ladder; linha 2 - 7 – Padrão eletroforético da reação de restrição com as enzimas XbaI e HindIII dos plasmídios recombinantes obtidos com a ligação do fragmento correspondente à região codificadora do domínio N-terminal da proteína NifA de A. vinelandii ao vetor pDK7. A figura mostra eletroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta em preto indica o fragmento de 750 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de A. vinelandii mais uma porção relativa à região do vetor pDK7. A seta em azul indica o fragmento que corresponde ao tamanho do vetor pDK7 linearizado, de 4,8 kb.
4.3 CONSTRUÇÃO DOS PLASMÍDIOS RECOMBINANTES CONTENDO OS GENES QUE CODIFICAM PARA AS PROTEÍNAS QUIMÉRICAS NifAQ1Ab E NifAQ2Ab

Com o objetivo de melhor estudar o mecanismo de regulação da atividade da proteína NifA de *Azospirillum brasilense* foram construídos dois genes quiméricos, *nifAQ1Ab*, que codifica o domínio N-terminal da proteína NifA de *A. brasilense* ligado ao domínio central + C-terminal da proteína NifA de *A. vinelandii* e *nifAQ2Ab*, que codifica o domínio N-terminal da proteína NifA de *A. vinelandii* ligado ao domínio central + C-terminal da proteína NifA de *A. brasilense*. Através da construção de plasmídios contendo estes genes quiméricos, será possível fazer a expressão das proteínas quiméricas e utilizá-las para posteriores estudos *in vivo* e *in vitro*, que elucidem o mecanismo de regulação da proteína NifA de *Azospirillum brasilense*.

Para a construção dos genes quiméricos, as regiões que codificam os domínios modulares da proteína NifA foram amplificadas por PCR, ligadas ao vetor pCR2.1, subclonadas no vetor pDK7 e, em seguida, a ligação dos genes quiméricos foi realizada no vetor pET28a (Figura 14). O vetor pET28a é um vetor de expressão, que possui um promotor do tipo T7, reconhecido pela RNA polimerase do fago T7, proporcionando uma alta taxa de expressão da proteína de interesse. O vetor pET28a origina uma proteína de fusão com um oligopeptídeo de 24 aminoácidos contendo seis resíduos de histidina em sequência (His-tag) ligados à proteína de interesse. Esta proteína de fusão pode ser purificada utilizando uma resina contendo metais, como, por exemplo, níquel. O sistema é baseado na formação de um complexo entre os resíduos de histidina da proteína de fusão ao metal imobilizado na resina.

Incialmente, os plasmídios pPSNAB-2 (contém a região codificadora do domínio N-terminal da proteína NifA clonada no vetor pDK7) e pPSNAV-2 (contém a região codificadora do domínio N-terminal da proteína NifA clonada no vetor pDK7) foram utilizados para uma reação de restrição com as enzimas Ndel e BamHI e Ndel e HindIII, respectivamente. O vetor pET28a também foi clivado com as mesmas enzimas de restrição, Ndel, BamHI e HindIII. Após a digestão, vetor e DNA insertos
foram ligados como descrito em Materiais e Métodos (item 3.10 e 3.11). Foram analisadas 11 clones através de reação de restrição com as enzimas de restrição XbaI e XhoI. Os padrões de restrição esperados foram confirmados em 2 clones, sendo que 1 apresentou um fragmento de aproximadamente 750 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* mais uma porção relativa à região de policlonagem do vetor pET28a (Figura 15); o outro clone apresentou também um fragmento de 750 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de *A. vinelandii* (Figura 16). Estes plasmídios foram denominados pPSNAB-3 (contém a região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* clonada no vetor pET28a) e pPSNAV-3 (contém a região codificadora do domínio N-terminal da proteína NifA de *A. vinelandii* clonada no vetor pET28a).

Os plasmídios pPSCAV-2 e pPSCAB-2, juntamente com os plasmídios obtidos pPSNAB-3 e pPSNAV-3, foram utilizados para uma nova reação de restrição com as enzimas SpeI e BamHI para que fossem liberados os fragmentos que codificam para o domínio central + C-terminal da proteína NifA de *A. brasilense* e *A. vinelandii*. Estes fragmentos foram então ligados aos plasmídios pPSNAB-3 e pPSNAV-3, originando os genes quiméricos *nifAQ1Ab* (ligação do fragmento que codifica para o domínio central + C-terminal da proteína NifA de *A. vinelandii* ao plasmídio pPSNAB-3) e *nifAQ2Ab* (ligação do fragmento que codifica para o domínio central + C-terminal da proteína NifA de *A. brasilense* ao plasmídio pPSNAV-3). Foram analisados 27 clones através de reação de restrição com as enzimas XbaI e XhoI. O padrão de restrição esperado para o gene quimérico *nifAQ1Ab* foi obtido em 3 clones (Figura 17), que apresentaram uma banda de 5400 pares de bases, correspondente ao tamanho esperado para o vetor pET28a linearizado e outra banda de, aproximadamente, 1500 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* ligada à região codificadora do domínio central + C-terminal da proteína NifA de *A. vinelandii*. Já o padrão de restrição esperado para o gene quimérico *nifAQ2Ab* foi obtido nos 15 clones analisados (Figura 18), que apresentaram uma banda de 5400 pares de bases, correspondente ao tamanho esperado para o vetor pET28a e outras duas bandas de aproximadamente 750 e 1300 pares de bases.
Neste caso foram obtidas duas bandas pelo fato da região codificadora do domínio central + C-terminal da proteína NifA de *A. vinelandii* apresentar um sítio de restrição para a enzima XhoI na posição 838. O valor somado das duas bandas corresponde ao tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* ligada à região codificadora do domínio central + C-terminal da proteína NifA de *A. vinelandii*.
FIGURA 14 – ESQUEMA DA CONSTRUÇÃO DOS PLASMÍDIOS pNifAQ1Ab e pNifAQ2Ab

Os plasmídios pPSCAB-2 e pPSCAV-2, juntamente com os plasmídios obtidos pPSNAB-3 e pPSNAV-3, foram digeridos com as enzimas SpeI e BamHI para que fossem liberados os fragmentos que codificam para o domínio central + C-terminal da proteína NifA de A. brasilense e A. vinelandii. Estes fragmentos, então, foram ligados aos plasmídios pPSNAB-3 e pPSNAV-3, originando os genes quiméricos nifAQ1Ab (ligação do fragmento que codifica para o domínio central + C-terminal da proteína NifA de A. vinelandii ao plasmídio pPSNAB-3) e nifAQ2Ab (ligação do fragmento que codifica para o domínio central + C-terminal da proteína NifA de A. brasilense ao plasmídio pPSNAV-3). Os clones contendo os genes quiméricos foram denominados pNifAQ1Ab e pNifAQ2Ab.
FIGURA 15 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAB-3 DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E XhoI

Linha 1 – Marcador de peso molecular 1 kb ladder. Linha 2 – Padrão eletroforético da reação de restrição com as enzimas XbaI e XhoI do plasmídio recombinante obtido com a ligação do fragmento correspondente à região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* ao vetor pET28a. A figura mostra eletroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta em preto indica o fragmento de 750 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* mais uma porção relativa à região de policlonagem do vetor pET28a. A seta em azul indica o fragmento que corresponde ao tamanho do vetor pET28 linearizado, de 5,4 kb.
FIGURA 16 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pPSNAV-3 DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E XhoI

Linha 1 – Marcador de peso molecular 1 kb ladder. Linha 2 – Padrão eletroforético da reação de restrição do vetor pET28a com as enzimas XbaI e XhoI (controle). Linhas 3 – Padrão eletroforético da reação de restrição com as enzimas XbaI e XhoI do plasmídio recombinante obtido com a ligação do fragmento correspondente à região codificadora do domínio N-terminal da proteína NifA de A. vinelandii ao vetor pET28a. A figura mostra eletroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etidio. Os marcadores estão indicados em pares de bases. A seta em preto indica o fragmento de 750 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de A. vinelandii mais uma porção relativa à região do vetor pET28a. A seta em azul indica o fragmento que corresponde ao tamanho do vetor pET28 linearizado, de 5,4 kb.
FIGURA 17 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pNifAQ1Ab DIGERIDO COM ENZIMAS DE RESTRIÇÃO XbaI E XhoI

Linha 1 – Marcador de peso molecular 1 kb ladder. Linhas 2 - 4 – Padrão eletroforético da reação de restrição com as enzimas XbaI e XhoI dos plasmídios recombinantes obtidos com a ligação do fragmento correspondente à região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* ligada à região codificadora do domínio central + C-terminal da proteína NifA de *A. vinelandii*. A figura mostra eletroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. A seta em preto indica o fragmento de, aproximadamente, 1500 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de *A. brasilense* ligada à região codificadora do domínio central + C-terminal da proteína NifA de *A. vinelandii*. A seta em azul indica o fragmento que corresponde ao tamanho do vetor pET28 linearizado, de 5,4 kb.
FIGURA 18 - PERFIL DO PADRÃO DE RESTRIÇÃO DO PLASMÍDIO pNifAQ2Ab CORTADO COM ENZIMAS DE RESTRIÇÃO XbaI E XhoI

Linha 1 – Marcador de peso molecular 1 kb ladder. Linhas 2-16 – Padrão eletroforético da reação de restrição com as enzimas XbaI e XhoI dos plasmídiros recombinantes obtidos com a ligação do fragmento correspondente à região codificadora do domínio central + C-terminal da proteína NifA de A. brasilense ao plasmídio pPSNAV-3. A figura mostra eletroforese em gel de agarose 1,0% utilizando tampão TAE 1X corado com brometo de etídio. Os marcadores estão indicados em pares de bases. As duas setas em preto indicam os fragmentos de, aproximadamente, 750 e 1300 pares de bases, tamanho esperado para a região codificadora do domínio N-terminal da proteína NifA de A. brasilense ligada à região codificadora do domínio central + C-terminal da proteína NifA de A. vinelandii. A seta em azul indica o fragmento que corresponde ao tamanho do vetor pET28 linearizado, de 5,4 kb.
4.4 ANÁLISE DA EXPRESSÃO E SOLUBILIZAÇÃO DA PROTEÍNA QUIMÉRICA NifAQ1Ab

A confirmação da montagem do gene quimérico nifAQ1Ab foi realizada através da expressão da proteína quimérica NifAQ1Ab a partir do vetor pET28a. Para que ocorra a expressão, é necessário que a bactéria hospedeira produza a RNA polimerase do fago T7. A linhagem de E. coli BL21 (λDE3) pLysS na presença de um indutor, como IPTG ou lactose, é capaz de expressar esta enzima. A figura 19 mostra que a estirpe de E. coli BL21 (λDE3) pLysS contendo o plasmídio pNifAQ1Ab foi capaz de superexpressar uma proteína de, aproximadamente, 66 kDa, que não está presente no extrato celular dos transformantes contendo somente o vetor pET28a. Esta proteína superexpressa corresponde ao tamanho esperado da proteína quimérica NifAQ1Ab ligada a cauda de histidina, mostrando dessa forma que os clones obtidos são capazes de superexpressar o domínio N-terminal da proteína NifA de A. brasilense ligado ao domínio central + C-terminal da proteína NifA de A. vinelandii.

Foi verificado que a proteína superexpressa se apresenta predominantemente na fração insolúvel do extrato celular. Para determinar as condições ótimas de indução da proteína quimérica NifAQ1Ab a fim de obter uma máxima solubilidade e quantidade de proteína, foram realizados vários ensaios de expressão. Os parâmetros testados foram: agente indutor (IPTG 0,5mmol/L ou lactose 0,5%), tempo de indução (1 a 4 horas e durante a noite) e temperatura (37ºC, 30ºC e 18ºC). Os resultados podem ser visualizados na figura 19.

A expressão realizada a 37ºC, tanto com IPTG, como com lactose, a partir de 2 horas de indução, resultaram em maior quantidade de proteína expressa (Figura 19-B e C). A maior quantidade de proteína foi obtida com a indução com IPTG por 3 horas (Figura 19-C). Houve também significativa expressão da proteína na condição de indução a 18ºC durante a noite com IPTG e lactose (Figura 19-D). No entanto, a diminuição da temperatura de indução não resultou em significativa melhora da solubilidade da proteína. A quantidade de proteína obtida na fração
solúvel, apesar de pequena, já se mostra significativa para uma possível purificação através de cromatografia de afinidade em uma coluna de níquel.
FIGURA 19 – PERFIL ELETROFORÉTICO DA PROTEÍNA QUIMÉRICA NifAQ1Ab EXPRESSA EM E. coli A PARTIR DO PLASMÍDIO pNifAQ1Ab EM DIFERENTES CONDIÇÕES DE EXPRESSÃO

Legenda: **Marcador** = marcador de peso molecular (kDa); **37°C** = Indução a 37°C; **30°C** = Indução a 30°C; **IPTG** = Indução com IPTG 0,5mol/L; **Lac** = Indução com lactose 0,5%; **s/ induzir** = sem agente indutor; **1h** = Indução por 1 hora; **I** = fração insolúvel do extrato celular; **S** = fração solúvel do extrato celular.

O painel A mostra eletroforese em gel de poliacrilâmida desnaturante (SDS-PAGE) 10% corado com coomassie blue. Linha 2-5 e 14-15 - Extrato celular de bactérias E. coli BL21 (λDE3) pLysS transformadas com o plasmídio pNifAQ1Ab. Linhas 6-13 - Extrato celular de bactérias E. coli BL21 (λDE3) pLysS transformadas com o vetor pET28a e induzidas por 3 horas.
Legenda: **Marcador** = marcador de peso molecular (kDa); **37ºC** = Indução a 37ºC; **30ºC** = Indução a 30ºC; **IPTG** = Indução com IPTG 0,5mmol/L; **Lac** = Indução com lactose 0,5%; **1h** = Indução por 1 hora; **2h** = Indução por 2 horas; **I** = fração insolúvel do extrato celular; **S** = fração solúvel do extrato celular.

O painel B mostra eletroforese em gel de poliacrilamida desnaturante (SDS-PAGE) 10% corado com coomassie blue. Linhas 2-15 - Extrato celular de bactérias *E. coli* BL21 (λDE3) *pLysS* transformadas com o plasmídio pNiFAQ1Ab. A seta indica a proteína quimérica NiFAQ1Ab superexpressa com, aproximadamente, 66 kDa.
<table>
<thead>
<tr>
<th>Temp.</th>
<th>Método</th>
<th>Hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°C</td>
<td>Indução a 37°C</td>
<td>3h - S</td>
</tr>
<tr>
<td>4ºC</td>
<td>Indução com IPTG 0,5mmol/L</td>
<td>3h - S</td>
</tr>
<tr>
<td>30°C</td>
<td>Indução com lactose 0,5%</td>
<td>3h - S</td>
</tr>
<tr>
<td>37°C</td>
<td>Indução com lactose 0,5%</td>
<td>4h - S</td>
</tr>
<tr>
<td>30°C</td>
<td>Indução com lactose 0,5%</td>
<td>4h - S</td>
</tr>
<tr>
<td>37°C</td>
<td>Indução com lactose 0,5%</td>
<td>4h - S</td>
</tr>
<tr>
<td>30°C</td>
<td>Indução com lactose 0,5%</td>
<td>4h - S</td>
</tr>
<tr>
<td>37°C</td>
<td>Indução com lactose 0,5%</td>
<td>4h - S</td>
</tr>
</tbody>
</table>

Legenda: 37°C = Indução a 37°C; 30°C = Indução a 30°C; IPTG = Indução com IPTG 0,5mmol/L; Lac = Indução com lactose 0,5%; 3h = Indução por 3 horas; 4h = Indução por 4 horas; I = fração insolúvel do extrato celular; S = fração solúvel do extrato celular.

O painel C mostra eletroforese em gel de poliacrilamida desnaturante (SDS-PAGE) 10% corado com coomassie blue. Linhas 3-15 - Extrato celular de bactérias *E. coli* BL21 (ADE3) pLysS transformadas com o plasmídio pNifAQ1Ab. A seta indica a proteína quimérica NifAQ1Ab superexpressa com, aproximadamente, 66 kDa.
Legenda: Marcador = marcador de peso molecular (kDa); 30ºC = Indução a 30ºC; 18ºC = Indução a 18ºC; IPTG = Indução com IPTG 0,5mmol/L; Lac = Indução com lactose 0,5%; 4h = Indução por 4 horas; OV = Indução durante a noite; I = fração insolúvel do extrato celular; S = fração solúvel do extrato celular.
O painel D mostra eletroforese em gel de poliacrilamida desnaturante (SDS-PAGE) 10% corado com coomassie blue. Linhas 2-15 - Extrato celular de bactérias E. coli BL21 (ADE3) pLysS transformadas com o plasmídio pNifAQ1Ab. A seta indica a proteína quimérica NifAQ1Ab superexpressa com, aproximadamente, 66 kDa.
5 CONCLUSÕES

- As regiões codificadoras dos domínios N-terminal e central + C-terminal da proteína NifA de *A. brasilense* e *A. vinelandii* foram obtidas com sucesso por PCR.

- Os produtos de PCR obtidos foram clonados no vetor pCR2.1 e totalmente sequenciados. As sequências obtidas foram 100% idênticas a do gene *nifA* de *A. brasilense* ou *A. vinelandii*.

- O gene quimérico *nifAQ1Ab* foi construído com sucesso no vetor pET28a e a expressão da proteína quimérica NifAQ1Ab em *E. coli* foi confirmada através de eletroforese em gel de poliacrilamida desnaturante (SDS-PAGE) e análise por MALDI-TOF.

- A proteína quimérica NifAQ1Ab superexpressa encontrava-se quase que totalmente na fração insolúvel do extrato celular da estirpe de *E. coli* BL21 (λDE3) *pLysS* transformada com o plasmídio pNifAQ1Ab nas condições testadas.

- Os maiores níveis de expressão de NifAQ1Ab foram obtidos após indução a 37ºC a partir de 2 horas ou a 18ºC durante a noite, utilizando IPTG 0,5mmol/L ou lactose 0,5% como indutores.
6 REFERÊNCIAS BIBLIOGRÁFICAS

APÊNDICE 1 – Vetor de clonagem pCR2.1 (Invitrogen)

comments for pCR®2.1
3929 nucleotides

LacZα gene: bases 1-545
M13 Reverse priming site: bases 205-221
T7 promoter: bases 362-381
M13 (-20) Forward priming site: bases 389-404
fl origin: bases 546-983
Kanamycin resistance ORF: bases 1317-2111
Ampicillin resistance ORF: bases 2129-2989
pUC origin: bases 3134-3807
APÊNDICE 2 – Vetor de expressão pDK7 (KLEINER et al., 1988)

pDK7
4,8 kb

lacI
Cm
Ap

Hind III **Sph I** **Pst I** **Sal I** **Xba I** **Bam HI** **Sma I** **Kpn I** **Sac I** **Eco RI**

Ptac
APÊNDICE 3 – Vetor de expressão pET28a (Novagen)

The maps for pET-38b(+) and pET-38c(+) are the same as pET-28a(+) (shown) with the following exceptions: pET-38b(+) is a 3536bp plasmid; subcloned Sph I from each site beyond Bam HI I at 198. pET-38c(+) is a 5357bp plasmid; subcloned Xba I from each site beyond Bam HI I at 198.