UNIVERSIDADE FEDERAL DO PARANÁ

GUILHERME CAMPOS FILL

MODELAGEM HIDRODINÂMICA 3D DE ESCOAMENTOS EM VERTEDOUROS

CURITIBA

2011
MODELAGEM HIDRODINÂMICA 3D DE ESCOAMENTOS EM VERTEDOUROS

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre no programa de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental do Setor de Tecnologia da Universidade Federal do Paraná.

Orientador: Prof. Dr. José Junji Ota
Co-orientador: Prof. André Luiz Tonso Fabiani

CURITIBA

2011
Aos meus pais
AGRADECIMENTOS

Ao Professor Doutor José Junji Ota, pela sugestão do tema, auxílio e orientação do trabalho. Ao Professor André Fabiani pela ajuda e co-orientação do trabalho. À minha mãe pelo apoio e por tudo que já fez por mim e ao meu pai Professor Doutor Heinz Dieter Fill pelas muitas ajudas e “aulas” durante toda a minha vida.
Aos Professores Doutores Tobias Blenninger e Alexandre Guetter por suas valiosas contribuições em consultas e na qualificação do trabalho.
À Camila e amigos pelo apoio durante elaboração desta dissertação.
A Intertechne pelas muitas experiências profissionais, pelo apoio, por possibilitar a conclusão do curso e por possibilitar o uso do software FLOW 3-D. Em especial gostaria de agradecer ao Engenheiro Renato Grube pela paciência e muitos ensinamentos, ao Engenheiro Kamal Kamel pelas muitas aulas nas reuniões profissionais na Intertechne, ao Engenheiro Roberto Bertol e a Engenheira Mônica Carvalho que incentivaram e possibilitaram o início e conclusão do curso de pós-graduação.
Finalmente agradeço ao PPG ERHA e aos demais Professores pela dedicação nas diversas disciplinas do curso.
A Deus por tudo.
SUMÁRIO

LISTA DE FIGURAS .. iii
LISTA DE tabela ... v
LISTA DE SÍMBOLOS ... vi
RESUMO .. viii
ABSTRACT ... ix

1 INTRODUÇÃO .. 1

1.1 O PROBLEMA .. 1
1.2 OBJETIVOS DA PESQUISA ... 4

1.2.1 Objetivo Amplo ... 4
1.2.2 Objetivos Específicos .. 4
1.3 ORGANIZAÇÃO DO TRABALHO ... 4

2 EQUAÇÕES GOVERNANTES E MODELOS DE TURBULÊNCIA 5

2.1 TURBULÊNCIA ... 5

2.1.1 Geral .. 5
2.1.2 Decomposição de Reynolds ... 9

2.2 MODELOS DE TURBULÊNCIA .. 13

2.2.1 Equações Gerais da Turbulência ... 13
2.2.2 Modelos sem Equação de Transporte ... 15
2.2.3 Modelos Contendo uma Equação de Transportes 20
2.2.4 Modelos contendo duas equações de transporte – o modelo k-ε 23
2.2.5 Solução Numérica ... 31

2.3 APLICAÇÕES RECENTES DE MODELOS DE TURBULÊNCIA 37

3 ESTUDO DE CASO ... 38

3.1 USINA HIDRELÉTRICA SÃO SALVADOR ... 39
3.2 MODELO MATEMÁTICO .. 41

3.2.1 Geral .. 41
3.2.2 Geometria ... 46
3.2.3 Rugosidade .. 49
3.2.4 Condições de Contorno ... 50

3.2.4.1 Simetria ... 50
3.2.4.2 Pressão ..50
3.2.4.3 Continuativo ...51
3.2.4.4 Parede (Wall) ..52
3.2.5 Condições de Contorno Usadas nas Simulações ...52
3.2.6 Simulações e Tempos de Processamento ..53
3.3 Modelos Físicos ..56

4 RESULTADOS OBTIDOS ..59
4.1 Geral ...59
4.2 Pressões Médias ...60
4.3 Superfície Livre ..68
4.4 Capacidade de Descarga e Velocidades ..75

5 CONCLUSÕES E RECOMendações ...78

6 REFERÊNCIAS BIBLIOGRÁFICAS ..82

7 ANEXO I ...87
LISTA DE FIGURAS

FIGURA 2.1– TÍPICO ESPECTRO DE UM ESCOAMENTO TURBULENTO 7
FIGURA 3.1 – PLANTA VERTEDouro UHE SÃO SALVADOR 40
FIGURA 3.2 – CORTE VERTEDouro UHE SÃO SALVADOR 40
FIGURA 3.3 – MODELO FÍSICO OPERANDO COM A CHEIA MÁXIMA PROVÁVEL – VISTA DE MONTANTE – COMPORTAS TOTALMENTE ABERTAS 44
FIGURA 3.4 – MODELO NUMÉRICO OPERANDO COM A CHEIA MÁXIMA PROVÁVEL – VISTA DE MONTANTE – COMPORTAS TOTALMENTE ABERTAS 44
FIGURA 3.5 – MODELO FÍSICO GERAL OPERANDO COM CHEIA DECAMILENAR – VISTA DE JUSANTE – COMPORTAS TOTALMENTE ABERTAS 45
FIGURA 3.6 – MODELO NUMÉRICO OPERANDO COM A CHEIA MÁXIMA PROVÁVEL – VISTA DE JUSANTE – COMPORTAS TOTALMENTE ABERTAS 45
FIGURA 3.7 – MODELO AUTOCAD DA UHE SÃO SALVADOR 46
FIGURA 3.8 – VISTA ESQUEMÁTICA MOSTRANDO A MALHA (ESPAÇAMENTO 1,0 M) .. 47
FIGURA 3.9 – PLANTA ESQUEMÁTICA MOSTRANDO A MALHA (ESPAÇAMENTO 1,0 M) .. 48
FIGURA 3.10 – SISTEMAS DE COORDENADAS NOS MODELOS FÍSICO E COMPUTACIONAL .. 49
FIGURA 3.11 – CONDIÇÕES DE CONTORNO .. 53
FIGURA 3.12 – RELAÇÃO DO TEMPO DE PROCESSAMENTO E TAMANHO DA MALHA .. 56
FIGURA 3.13 – MODELO REDUZIDO FÍSICO – VISTA GERAL 57
FIGURA 3.14 – MODELO FÍSICO SECCIONAL OPERANDO COM A CHEIA DECAMILENAR ... 58
FIGURA 4.1 – PRESSÕES MÉDIAS AO LONGO DO ESCOAMENTO NA BASE DO ESCOAMENTO NO VÃO QUATRO ... 61
FIGURA 4.2 – SUPERFÍCIE LIVRE AO LONGO DO MURO LATERAL DA ESQUERDA HIDRÁULICA (N.A. RESERVATÓRIO = 287,02) 70
FIGURA 4.3 – SUPERFÍCIE LIVRE AO LONGO DO MURO LATERAL DA ESQUERDA HIDRÁULICA CONSIDERANDO DIFERENTES RUGOSIDADES (N.A. RESERVATÓRIO = 287,02) ... 71
FIGURA 4.4 – PERFIS DE VELOCIDADES A MONTANTE E NA CRISTA DO VERTEDOURO..77
FIGURA 4.5 - PERFIS DE VELOCIDADES NA BACIA DE DISSIPAÇÃO...............77
LISTA DE TABELAS

TABELA 3.1 – PRINCIPAIS CARACTERÍSTICAS DA USINA DE SÃO SALVADOR ..39
TABELA 3.2 - CONDIÇÕES DO ESCOAMENTO ...43
TABELA 3.3 – CARACTERÍSTICAS DAS SIMULAÇÕES ...55
TABELA 4.1 – PRESSÕES MÉDIAS PARA MALHA DE 2,0 m ..62
TABELA 4.2 – PRESSÕES MÉDIAS PARA MALHA DE 1,75 m ..63
TABELA 4.3 – PRESSÕES MÉDIAS PARA MALHA DE 1,5 m ..64
TABELA 4.4 – PRESSÕES MÉDIAS PARA MALHA DE 1,25 m ..65
TABELA 4.5 – PRESSÕES MÉDIAS PARA MALHA DE 1,0 m ..66
TABELA 4.6 - PRESSÕES MÉDIAS PARA MALHA DE 0,75 m ..67
TABELA 4.7 – NÍVEIS DE ÁGUA JUNTO AO MURO LATERAL ESQUERDO (MALHA DE 2,0 E 1,75 m) ...72
TABELA 4.8 – NÍVEIS DE ÁGUA JUNTO AO MURO LATERAL ESQUERDO (MALHA 1,5 E 1,25 m) ...73
TABELA 4.9 – NÍVEIS DE ÁGUA JUNTO AO MURO LATERAL ESQUERDO (MALHA 1,0 E 0,75 m) ...74
TABELA 4.10 – NÍVEIS DE ÁGUA PARA DIFERENTES RUGOSIDADE ..75
TABELA 4.11 – VAZÕES OBTIDAS NAS DIFERENTES SIMULAÇÕES ..76
TABELA 4.12 – VAZÕES PARA DIFERENTES CARGAS VERTEDOURO (MALHA 0,75) ..76
LISTA DE SÍMBOLOS

C - concentração de um constituinte no fluido
Fr - número de Froude
g - aceleração da gravidade
L - comprimento característico
k - energia cinética turbulenta
n - contador numérico
N - função base
p - pressão pontual
P - pressão média
Q - vazão
Re - número de Reynolds
Rh - raio hidráulico
Ri - número de Richardson
t - tempo
T - temperatura
T0 - temperatura de referência
u - velocidade na direção x
u' - flutuação da velocidade na direção x
U* - velocidade de atrito ou velocidade de corte
v - velocidade na direção y
v' - flutuação da velocidade na direção y
V - velocidade média
w - velocidade na direção z
w' - flutuação da velocidade na direção z
x - abscissa do sistema de eixos cartesianos
y - ordenada do sistema de eixos cartesianos
z - cota do sistema de eixos cartesianos
a - coeficiente de dilatação térmica
dii - delta de Kronecker
\(\Delta x \) - tamanho do elemento
e - taxa de dissipação de energia
\(k \) - constante de Von Kárman
\(\ell \) - fator de escala, escala de Kolmogorov
\(\nu \) - viscosidade cinemática
\(\eta_t \) - viscosidade turbulenta
\(\rho \) - densidade
\(\rho_0 \) - densidade de referência
\(P \) - termo de produção de energia cinética de turbulência
\(S_{t,c} \) - número de Schmidt
\(\tau \) - tensão de cisalhamento
\(\tau_0 \) - tensão de cisalhamento no contorno
\(G_t \) - coeficiente de difusão turbulenta
RESUMO

Esta pesquisa visa apresentar os resultados de um modelo numérico e comparar com os de um modelo reduzido em escoamentos turbulentos. Foi enfocado o escoamento sobre o vertedouro da UHE São Salvador e foram comparados os resultados (pressões, velocidades, vazão e linha de água) dos modelos numérico e físico. A aplicação de modelos numéricos como uma primeira análise de arranjos de estruturas hidráulicas pode ser de grande utilidade facilitando posteriores estudos em modelos reduzidos físicos. Também pode ser uma importante ferramenta quando questões econômicas ou de cronograma não permitem a utilização de um modelo físico reduzido. Foi utilizado o software FLOW-3D® que usa o método dos volumes finitos para a solução de diversos problemas de mecânica dos fluidos tanto em regime forçado como com superfície livre. Em termos gerais, o método dos volumes finitos utiliza uma malha retangular para resolver o balanço de massa e de quantidade de movimento em um elemento (volume) através da discretização das equações de Reynolds. São apresentados os resultados das simulações numéricas utilizando diferentes discretizações de malha e as diferenças em relação ao modelo físico. Verifica-se que os resultados numéricos dependem fortemente do tamanho da malha. Também foi feita uma análise de sensibilidade dos efeitos da variação da rugosidade mostrando a necessidade de calibração do modelo numérico. Em muitos casos de aplicação de modelos numéricos não se dispõem de medidas físicas para tal calibração, sendo necessário à adoção de valores apresentados na literatura. Também pôde ser constatada a importância das condições de contorno e da abrangência do domínio de cálculo nos resultados computacionais.

PALAVRAS CHAVES: Modelos numéricos; Modelos físicos reduzido; Modelos de Turbulência.
ABSTRACT

This research presents and compares results from numerical simulations and measurements obtained in the corresponding physical model regarding turbulent flows. Particularly the results of the flow over the spillway of the São Salvador hydro plant were focused upon. The compared characteristics are pressure, velocities, discharge and free surface elevation. The application of numerical methods as a first analysis of the performance of hydraulic structures may be useful as a guidance for further physical model testing. It’s also an important tool when physical testing is not possible due to economical or time limitations. The FLOW-3D® software which uses the finite volume numerical method to solve a large range of hydraulic problems was used. It allows the simulation of both forced and free surface flows. In general terms the finite volume method uses a rectangular grid to solve the balance of mass and momentum of the Reynolds equations. Numerical results are presented using different mesh sizes and compared with the physical model results. Numerical results depend strongly on the mesh size. A sensitivity analysis of wall roughness was also performed showing the need of previous roughness calibration. Often one has no physical results to calibrate the numerical model and the roughness value has to be assumed based on the literature. It was also concluded that boundary conditions and the size of the computational domain plays an important role on the results of numerical models.

Key-words: Numerical methods; Hydraulic physical model; Turbulence modeling.
1 INTRODUÇÃO

1.1 O PROBLEMA

No projeto de obras hidráulicas complexas, como por exemplo, usinas hidrelétricas, a análise do escoamento através das diferentes estruturas da obra, geralmente têm características tridimensionais (3D) e ocorre em regime turbulento com números de Reynolds bastante elevados, da ordem de 10^7. A análise de escoamentos com condições de contorno complexas e superfície livre, como ocorre em algumas estruturas de obras hidráulicas é feita frequentemente através de testes em modelos reduzidos físicos. Entretanto mais recentemente tem sido proposto em substituição dos modelos físicos o uso de modelos matemáticos que procuram resolver numericamente as equações de Reynolds em computadores digitais. Essa abordagem se tornou viável pelo desenvolvimento recente da capacidade dos computadores tanto em termos de memória como na velocidade de processamento.

Vários modelos de simulação numérica de escoamentos turbulentos tridimensionais têm sido desenvolvidos e estão comercialmente disponíveis tais como o FLOW 3D, usado nesta dissertação, o CFX, o SISBAHIA e muitos outros. Entretanto persiste a questão da precisão dos resultados obtidos via simulação numérica refletindo aproximações na representação detalhada dos contornos, a formulação das condições de contorno, e na discretização das equações. Também a questão qual modelo seria mais adequado a um dado problema prático não deixa de ser relevante.

A presente dissertação pretende abordar essas questões ao comparar resultados obtidos com um modelo matemático, no caso o FLOW 3D, com os seus equivalentes observados em um modelo físico construído na escala 1:100. Para tanto serão comparados pressões, velocidades, vazões e o perfil da superfície livre, usando nas simulações diferentes escalas de discretização (malha) e duas opções de rugosidades.

A representação matemática da turbulência constitui-se em um grande desafio a pesquisadores e engenheiros desde o seu descobrimento em 1883 por O. Reynolds até os dias atuais. A dificuldade de modelar a turbulência resulta do caráter aleatório e não linear das flutuações de velocidade e pressão resultantes de instabilidades provocadas por gradientes de velocidade, de densidade e temperatura e da separação do fluxo ao redor dos corpos. Essas flutuações alcançam uma faixa de escalas
variando das dimensões do escoamento até as escalas de dissipação que podem chegar a frações de milímetros. Essa enorme faixa de escalas impede a solução direta das equações de Navier-Stokes, a menos em casos muito especiais, pois para um escoamento com $Re \approx 10^7$ seria necessária a solução de um sistema com 10^{16} equações para representar todas as escalas de turbulência (combinando as eq. 1.1, 2.1 e 2.5). Isso está certamente muito além da capacidade dos computadores mesmo que de grande porte.

Por outro lado ao escrever as equações de Navier-Stokes em termos das grandezas médias temporais, mediante a decomposição de Reynolds $(u_i(t) = U_i + u'_{i})$, que representa as velocidades (e pressão) instantâneas por uma componente média e uma flutuação turbulenta surge o chamado “problema do fechamento”. Esse problema consiste no surgimento, devido a não linearidade das equações de Navier-Stokes, de parâmetros adicionais nas equações (correlações das flutuações de velocidade) que precisam ser avaliados mediante equações adicionais, que constituem o modelo de turbulência.

Ao longo de mais de 100 anos de pesquisa relacionada à turbulência vários destes modelos foram propostos e estudados sendo os mais clássicos, anteriores aos computadores digitais, o modelo de comprimento de mistura de Prandtl (1925) e o modelo da turbulência homogênea e isotrópica de Taylor (Fischer et. al., 1979). O modelo de Prandtl tem sido extensivamente usado em escoamentos 1D ou reduitíveis a 1D (tubos, canais, camada limite) e o de Taylor encontrou grande aplicação no estudo da dispersão turbulenta de massa. Entretanto para escoamentos 3D com condições de contornos complexos esses modelos mostraram-se insatisfatórios.

A solução por meio de métodos numéricos que seria natural para estes casos só se tornou viável a partir do desenvolvimento de computadores digitais de alta velocidade, basicamente a partir da década de 1975-1985. Esses modelos foram usados tanto em obras artificiais quanto em escoamentos naturais como rios e lagos e podem analisar uma gama extensa de problemas práticos. A física representada nestes modelos é de grande complexidade mesmo que para escoamentos simples. Embora cada modelo possa ser elaborado para um diferente mecanismo de transporte, existe um tipo de transporte comum a todos; a turbulência. Assim sendo, todos os modelos precisam representar adequadamente os efeitos da turbulência na determinação das diversas variáveis de um escoamento.
Considerando as discussões gerais de Bradshaw (1971, 1976), Tennekes e Lumley (1972) e Hinze (1975), a turbulência pode ser representada por vórtices altamente aleatórios e instáveis de natureza tridimensional distribuídos sobre uma grande faixa de tamanhos e freqüências de flutuações. Os maiores vórtices, associados às menores freqüências de flutuações são geralmente do tamanho do domínio do escoamento. Vórtices pequenos associados a altas freqüências de flutuação onde ocorre a dissipação viscosa da energia cinética turbulenta são associados à chamada escala de Kolmogorov \(\lambda \) dada por:

\[
\lambda = \left(\frac{\nu^3}{\varepsilon} \right)^{\frac{1}{4}}
\]

(1.1)

onde \(\nu \) é a viscosidade cinemática \((m^2.s^{-1}) \) e \(\varepsilon \) é a taxa de dissipação de energia \((W.kg^{-1}) \). Apesar da recente evolução computacional, modeladores ainda estão muito distantes de resolver esse movimento de pequena escala representado pelos menores vórtices do escoamento de modo que modelos de turbulência se fazem necessários para descrever algum problema prático de escoamento.

Como apresentado anteriormente a grande dificuldade dos modelos de turbulência é representar as correlações turbulentas nas equações médias do escoamento de modo a fechar as equações relacionando as correlações turbulentas com as variáveis médias do escoamento. Para tal, hipóteses são assumidas para descrever essa correlação que são baseadas em informações empíricas; assim todos os modelos possuem constantes e funções empíricas. É importante notar que os modelos de turbulência não descrevem detalhes das flutuações turbulentas, apenas os efeitos destes termos no escoamento médio. O centro da modelação turbulenta é a parametrização da turbulência, o que significa que o estado local da turbulência e assim a correlação turbulenta é descrita apenas por alguns parâmetros. Por razões dimensionais as escalas de velocidade e comprimento do escoamento turbulento são de grande importância.
1.2 OBJETIVOS DA PESQUISA

1.2.1 Objetivo Amplo

O objetivo amplo e geral desta pesquisa é analisar se, e em que condições, modelos matemáticos que simulam o escoamento turbulento podem substituir os modelos reduzidos físicos no projeto de obras hidráulicas complexas na área da engenharia civil. Para tanto se pretende comparar os resultados quantitativos e qualitativos de simulações numéricas com medidas homólogas em um modelo físico para o escoamento sobre um vertedouro de superfície com bacia de dissipação.

1.2.2 Objetivos Específicos

Adicionalmente ao objetivo geral acima explicitado a presente pesquisa procurará avaliar a influência de certos parâmetros do modelo numérico nos resultados obtidos. Os parâmetros analisados são:

- Tamanho da malha de discretização;
- Extensão do domínio de cálculo;
- Decomposição do domínio de cálculo em blocos;
- Rugosidades e condições de contorno.

1.3 ORGANIZAÇÃO DO TRABALHO

A presente dissertação será desenvolvida em cinco capítulos incluindo esta introdução (capítulo um). O capítulo dois será dedicado à revisão bibliográfica e do estudo da turbulência além da apresentação de vários modelos de turbulência propostos na literatura, suas limitações e aplicações preferenciais. O capítulo três descreve o modelo matemático usado neste trabalho (FLOW – 3D), as características da obra utilizada no estudo de caso e do seu modelo físico reduzido. Também as condições de contorno, o domínio de cálculo e as características da malha serão detalhados no capítulo três. No capítulo quatro serão apresentados os resultados numéricos obtidos nas simulações, a sua comparação com as grandezas homólogas observadas no modelo físico e os comentários relativos a diferenças observadas. Finalmente o capítulo cinco apresenta as conclusões alcançadas e as recomendações.
A imensa maioria dos escoamentos encontrados na prática da engenharia são turbulentos, sendo a exceção os escoamentos em meios porosos, alguns casos de camadas limites e escoamentos superficiais de chuva. O escoamento turbulento caracteriza-se por flutuações aleatórias da velocidade, pressão e, no caso de fluidos compressíveis, da densidade. Essas flutuações são provocadas por instabilidades decorrentes do caráter não linear das equações gerais que governam o movimento dos fluidos (equações de Navier-Stokes) e de sua extrema sensibilidade às condições iniciais e a perturbações externas.

Esse caráter aleatório caótico do escoamento turbulento foi pela primeira vez demonstrado por O. Reynolds em 1883. A sua ocorrência depende de um parâmetro denominado número de Reynolds que quando superior a um valor crítico induz a turbulência. O número de Reynolds é dado por:

\[\text{Re} = \frac{V L}{\nu} \]

Onde \(V \) = velocidade, \(L \) = um comprimento característico e \(\nu \) a viscosidade cinemática do fluido.

Dependendo das escalas adotadas para velocidade e comprimentos característicos, distinguem-se diferentes números de Reynolds tais como o número de Reynolds de rugosidade \(\frac{u^* L}{V} \), o número de Reynolds formado pelas escalas de Kolmogorov (que é igual à unidade), o número de Reynolds para a camada limite \(\frac{x}{V l} \) e muitos outros. No caso de escoamentos em tubos e canais o número de Reynolds é
definido como \(\frac{VR_h}{\nu} \) sendo \(R_h \) o raio hidráulico (quociente entre a área e perímetro molhado da seção do escoamento). O valor crítico do número de Reynolds depende do tipo de escoamento e da definição do mesmo.

Os escoamentos turbulentos podem ser considerados como compostos de vórtices que se sobrepõem ao movimento geral. Estes vórtices abrangem escalas que variam da ordem de metros até centésimos de milímetros. É justamente essa enorme amplitude de escalas que coloca as principais dificuldades na representação matemática dos escoamentos turbulentos pelas equações clássicas de Navier-Stokes (Kundu e Cohen, 2002). Tais equações representam o princípio de impulsão-quantidade de movimento (2° lei de Newton) e que juntamente com a equação da continuidade e uma equação de estado permitem determinar as três componentes de velocidade, a pressão e a densidade em qualquer ponto e qualquer instante. Como já foi comentado a principal característica dos escoamentos turbulentos é a presença de uma miríade de vórtices, numa vasta gama de escalas espaciais e temporais, fluindo simultaneamente. A maior parte da energia transferida ao escoamento por agentes externos alimenta inicialmente os maiores vórtices. Kolmogorov citado por Kundu e Cohen (2002) descreveu como tais vórtices geram outros menores, e outros menores ainda num processo de transferência de energia cinética formando uma cascata contínua de escalas decrescentes, em direção a uma escala onde a energia é dissipada pelas tensões viscosas atingindo se um estado de equilíbrio. Estas escalas denominadas de Kolmogorov podem ser obtidas por análise dimensional com a hipótese que dependem apenas da viscosidade cinemática \(n \) e da taxa de dissipação de energia \(\varepsilon \) sendo iguais a:

\[
\lambda_k = \frac{1}{\varepsilon^{\frac{3}{4}}} \quad \text{(escala de comprimento)} \quad (2.2)
\]

\[
v_k = \left(\frac{\nu}{\varepsilon} \right)^{\frac{1}{4}} \quad \text{(escala de velocidade)} \quad (2.3)
\]

A figura 2.1 mostra um típico espectro de potência para escoamentos turbulentos, isto é, um gráfico representando a distribuição da energia cinética turbulenta ao longo das escalas espaciais do escoamento.
Os maiores vórtices são bastante anisotrópicos uma vez que dependem fortemente da geometria do corpo de água e do modo de formação. Quando observamos os grandes vórtices, apesar de um comportamento algo flutuante, eles parecem ter escalas bem determinadas. Em corpos de água rasos o comprimento característico dos maiores vórtices é geralmente muito maior do que as escalas de profundidade. Ao focalizarmos vórtices cada vez menores, a influência da geometria do escoamento vai desaparecendo, e as características dos vórtices tornam-se crescentemente aleatórias. Na maioria dos escoamentos usuais em obras hídricas há uma faixa de escalas de pequenos vórtices onde prevalece a isotropia. Evidentemente, no caso de escoamentos em corpos de água rasos, para haver prevalência da isotropia é preciso que as escalas envolvidas sejam bastante inferiores à profundidade. Vórtices nesta situação estão numa gama de escala denominada sub-gama inercial. Os escoamentos usuais em obras hídricas têm espectros com sub-gama inercial por terem números de Reynolds bem maiores que 10^5, condição suficiente para que tenham um espectro de turbulência complexo como o da figura 2.1 (Tennekes & Lumley, 1972). Para sermos consistentes com o uso das equações de Navier-Stokes tais como são, somos obrigados a resolver o problema até as escalas onde às tensões viscosas tenham significado físico, ou seja, dentro de escalas capazes
de resolver os vórtices onde a dissipação viscosa ocorre. Resolver um problema até certa gama de escalas, significa utilizar no modelo numérico correspondente discretizações espaciais e temporais compatíveis. Por exemplo, se queremos resolver um vórtice de tamanho L, temos que ter pontos discretos com espaçamento inferior a L/2, e no mínimo L/4 para uma resolução razoável. Entretanto, tal requerimento tornaria o problema praticamente impossível de ser resolvido computacionalmente, conforme apontado por Aldama (1985), Yoshisawa (1987) e outros. Isto é, o modelo numérico para resolver um problema dentro de tais escalas teria um número avassalador de equações para escoamentos usuais em obras hidráulicas:

Experimentos mostram que a taxa de dissipação de energia por unidade de massa e (W/kg = m²/s³) da equação (2.2) está fortemente relacionado à escala de velocidade de u´RMS que nos vórtices maiores é da ordem da velocidade de corte u* = √τo/ρ, e a escala espacial, L, desses grandes vórtices. Por análise dimensional pode-se então mostrar que:

\[\varepsilon = \frac{u^3}{L} \] \hspace{1cm} (2.4)

Para canais hidraulicamente rugosos (caso mais comum na prática) u* é da ordem de 0,1 V sendo V a velocidade média (Jirka e Lang, 2009). Substituindo este valor em (2.4) resulta:

\[\varepsilon \approx \left(\frac{V^3}{L} \right) \cdot 10^{-3} \] \hspace{1cm} (2.5)

Combinando (2.2) e (2.5) obtém-se

\[\frac{L}{\lambda_e} \approx \left(\frac{Re}{10} \right)^\frac{3}{2} \] \hspace{1cm} (2.6)

Sendo Re = (V.L) / n o número de Reynolds.

Das relações acima, conclui-se que em um escoamento 3D o número de pontos de discretização, N, necessários para resolver tal escoamento até a escala de dissipação viscosa seria:
Nos escoamentos usuais em obras hidráulicas frequentemente \(\text{Re} > 10^7 \), devido às grandes dimensões espaciais dos corpos de água. Conseqüentemente, para utilizarmos as três equações de Navier-Stokes além da equação da continuidade tais como são, teríamos que resolver sistemas da ordem de \(10^{16} \) equações simultâneas. Tal tarefa excede em muito a capacidade dos atuais computadores, e provavelmente de qualquer computador no futuro previsível. E mesmo que houvesse computadores capazes de lidar com tantas equações, restaria ainda o problema de especificar na escala de Kolmogorov as condições de contorno apropriadas.

2.1.2 Decomposição de Reynolds

A maneira clássica de contornar este problema tem sido a chamada decomposição de Reynolds que consiste em escrever as equações de Navier-Stokes em termos de quantidades médias (velocidade e pressão). Omitiu-se aqui a variação aleatória da densidade para os escoamentos, porque o objeto deste trabalho são fluidos essencialmente incompressíveis e, portanto, com densidade constante. Considera-se que as componentes de velocidade e da pressão instantâneas podem ser decompostas em um valor médio (média temporal ou média de eventos) e uma chamada flutuação turbulenta:

\[
\begin{align*}
\mathbf{u}(t) &= \mathbf{U} + \mathbf{u}' \\
\mathbf{v}(t) &= \mathbf{V} + \mathbf{v}' \\
\mathbf{w}(t) &= \mathbf{W} + \mathbf{w}' \\
p(t) &= P + p'
\end{align*}
\]

(2.8)
Sendo U, V e W as componentes cartesionas das velocidades médias temporais e P a pressão media. Evidentemente as médias temporais de \(u', v', w' \) e \(p' \) bem como as de suas derivadas são nulas, mas as médias de seus produtos ou potências não o são necessariamente. As médias temporais de U, V, W e P obviamente são os próprios valores.

A equação da continuidade para fluidos incompressíveis em coordenadas cartesionas pode ser escrita como (Kundu e Cohen, 2002):

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \tag{2.9}
\]

Substituindo \(u, v \) e \(w \) resulta:

\[
\frac{\partial (U + u')}{\partial x} + \frac{\partial (V + v')}{\partial y} + \frac{\partial (W + w')}{\partial z} = \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} + \frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} + \frac{\partial w'}{\partial z} = 0 \tag{2.10}
\]

Tomando médias e tendo em vista que:

\[
\frac{\partial u'}{\partial x} = \frac{\partial v'}{\partial y} = \frac{\partial w'}{\partial z} = 0 \tag{2.11}
\]

Resulta:

\[
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = 0 \tag{2.12}
\]

Desta expressão e da (2.10) resulta que
\[
\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} + \frac{\partial w'}{\partial z} = 0
\] (2.13)

E, portanto tanto as médias temporais como os valores instantâneos das flutuações turbulentas obedecem à equação da continuidade. As equações de Navier-Stokes também para fluidos incompressíveis e considerando o eixo \(z \) na vertical são para coordenadas cartesianas (Daily e Harleman, 1966):

\[
\begin{align*}
\frac{\partial u}{\partial t} + u \cdot \frac{\partial u}{\partial x} + v \cdot \frac{\partial u}{\partial y} + w \cdot \frac{\partial u}{\partial z} &= - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \\
\frac{\partial v}{\partial t} + u \cdot \frac{\partial v}{\partial x} + v \cdot \frac{\partial v}{\partial y} + w \cdot \frac{\partial v}{\partial z} &= - \frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) \\
\frac{\partial w}{\partial t} + u \cdot \frac{\partial w}{\partial x} + v \cdot \frac{\partial w}{\partial y} + w \cdot \frac{\partial w}{\partial z} &= -g - \frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)
\end{align*}
\] (2.14)

Somando na equação relativa à direção \(x \) a quantidade nula (devido à equação da continuidade)

\[
\frac{d}{dx} \left(u \frac{\partial u}{\partial x} + u \frac{\partial v}{\partial y} + u \frac{\partial w}{\partial z} \right) = 0
\] (2.15)

Resulta:

\[
\begin{align*}
\frac{\partial u}{\partial t} + u \frac{\partial^2 u}{\partial x^2} + \frac{\partial (uv)}{\partial y} + \frac{\partial (uw)}{\partial z} &= - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)
\end{align*}
\] (2.16)

Substituindo as expressões 2.8 e desenvolvendo os produtos vem:
\[
\frac{\partial U}{\partial t} + \frac{\partial U'}{\partial x} + \frac{\partial U''}{\partial x} + 2 \frac{\partial (U')}{\partial x} + \frac{\partial U'}{\partial y} + \frac{\partial (V')}{\partial y} + \frac{\partial (U')}{\partial z} + \frac{\partial (W')}{\partial z} + \frac{\partial (U)'}{\partial z} + \frac{\partial (W)'}{\partial z} + \frac{\partial (U'')}{\partial z} + \frac{\partial (U'')'}{\partial z} = \\
- \frac{1}{\rho} \frac{\partial P}{\partial x} - \frac{1}{\rho} \frac{\partial p'}{\partial x} + \nu \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} \right) + \nu \left(\frac{\partial^2 U'}{\partial x^2} + \frac{\partial^2 U'}{\partial y^2} + \frac{\partial^2 U'}{\partial z^2} \right) \quad (2.17)
\]

Tomando as médias temporais e considerando que:

\[
\frac{\partial U'}{\partial t} = \frac{\partial (U')}{\partial x} = \frac{\partial (V')}{\partial y} = \frac{\partial (U')}{\partial z} = \cdots = \frac{\partial (U')}{\partial x} + \frac{\partial (U')}{\partial x} = 0 \quad (2.18)
\]

Resulta:

\[
\frac{\partial U}{\partial t} + \frac{\partial U''}{\partial x} + \frac{\partial (U')}{\partial y} + \frac{\partial (U''')}{\partial z} + \frac{\partial (U')}{\partial x} + \frac{\partial (U')}{\partial y} + \frac{\partial (U')}{\partial z} = - \frac{1}{\rho} \frac{\partial P}{\partial x} + \nu \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} \right) \quad (2.19)
\]

Ou

\[
\frac{\partial U}{\partial t} + 2 \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial W}{\partial z} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} = - \frac{1}{\rho} \frac{\partial P}{\partial x} + \nu \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} \right) \quad (2.20)
\]

Sendo:

\[
U \frac{\partial U}{\partial x} + U \frac{\partial V}{\partial y} + U \frac{\partial W}{\partial z} = 0 \quad (2.21)
\]

E, portanto:
Esta equação e seus similares nas direções y e z constituem as equações de Reynolds, sendo os argumentos das derivadas no último parênteses, quando multiplicados por \(\rho \) as tensões de Reynolds, resultantes da transferência turbulenta de quantidade de movimento.

Observa-se, no entanto que o processo de decomposição de Reynolds introduziu novos termos (incógnitas) \(\overline{u'v}, \overline{u'w}, \overline{u'^2} \) etc. o que exige novas equações para tornar o problema solúvel. Essa necessidade de equações adicionais é conhecida na literatura como o “problema de fechamento”. As equações suplementares para resolver o problema do fechamento são designadas como “modelos de turbulência” para os quais existem várias formulações, dependendo do tipo específico do problema a ser analisado.

2.2 MODELOS DE TURBULÊNCIA

2.2.1 Equações Gerais da Turbulência

A seguir será adotada a convenção de Einstein onde, quando aparece um índice repetido em um mesmo termo, pressupõe-se o somatório deste termo com o índice repetido variando de um a três. Também se convenciona \(x = x_1 \); \(y = x_2 \) e \(z = x_3 \) e ainda \(u = u_1 \); \(v = u_2 \) e \(w = u_3 \).

Os modelos de turbulência mais comuns são descritos em vários textos sobre modelagem turbulenta (ver, por exemplo, Eiger, 1989) e classificam-se a grosso modo em modelos de zero, uma ou duas equações de transporte. A base da maioria destes modelos é o conceito de “viscosidade turbulenta” \(n_t \) proposta inicialmente por Boussinesq em 1877 (Eiger, 1989), análogo às tensões viscosas e definida através da relação:

\[
\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} = -1 \frac{\partial P}{\partial x} + \nu \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} \right) - \left(\frac{\partial u'^2}{\partial x} + \frac{\partial u'v'}{\partial y} + \frac{\partial u'w'}{\partial z} \right) \tag{2.22} \]
\[- u_i u_j = v_i \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right) - \frac{2}{3} k \delta_{ij} = \frac{\tau_{ij}}{\rho} \]

(2.23)

sendo k a energia cinética turbulenta por unidade de massa dada por:

\[k = \frac{1}{2} u_i' u_i' = \frac{1}{2} \left(u_1'^2 + u_2'^2 + u_3'^2 \right) \]

(2.24)

e \(\delta_{ij} \) o delta de Kronecker, igual à unidade para i=j e zero caso contrário.

Se \(u_i' \) e \(L \) são escalas características das flutuações turbulentes e do tamanho dos vórtices a análise dimensional conduz a:

\[v_i \approx u_i' \cdot L \]

(2.25)

A equação 2.25 é à base do modelo de turbulência do comprimento de mistura de Prandtl (Kundu e Cohen, 2002). Este modelo, quando aplicado a um escoamento do tipo \(\vec{v} = U_1(x_2) \hat{\mathbf{i}} \) (shear flow), e supondo ainda (Daily e Harleman, 1966):

\[- u_2' \approx u_1' = L \frac{dU_1}{dx_2} \]

(2.26)

resulta:

\[v_i = L^2 \left| \frac{dU_1}{dx_2} \right| \]

(2.27)

Prandtl chamou o parâmetro L de comprimento de mistura.

Considerando a energia cinética turbulenta \(k \) dado por (2.24) e sendo \(L \) um tamanho característico dos vórtices turbulentos a análise dimensional neste caso leva a:

\[v_i \approx \sqrt{k} \cdot L \]

(2.28)

A equação 2.28 é à base dos modelos com uma equação de transporte. Finalmente também por considerações dimensionais ainda é possível exprimir a
viscosidade turbulenta em função da energia cinética turbulenta e da taxa de dissipação viscosa por unidade de massa \(\varepsilon \) (m\(^2\)/s\(^3\)) como:

\[

\nu_t \approx \frac{k^2}{\varepsilon}
\]

(2.29)

Esta última equação é usada em modelos com duas equações de transporte como, por exemplo, o famoso modelo k- \(\varepsilon \).

2.2.2 Modelos sem Equação de Transporte

Conforme descrito por Eiger (1989) e já mencionado acima um parâmetro bastante usado em modelos de turbulência é o conceito de viscosidade turbulenta \(\nu_t \) (eddy viscosity), expresso pela equação (2.23). Esse modelo foi à primeira tentativa de se modelar os efeitos da turbulência, baseando-se na analogia entre tensões viscosas e tensões de Reynolds.

Entretanto dois aspectos fundamentais diferenciam a eq. 2.23 da equação análoga para as tensões viscosas. Primeiro o parâmetro \(\nu_t \) não é constante como o coeficiente de viscosidade cinemática molecular \(\nu \). De acordo com a teoria cinética dos gases, \(\nu \) é proporcional ao produto do caminho livre médio das moléculas que compõem o fluido com a velocidade característica destas moléculas. Isto significa que dadas certas condições de temperatura e pressão, o coeficiente \(\nu \) assume um valor constante característico do fluido. Por outro lado à analogia entre vórtices turbulentos e moléculas não é completa, pois os equivalentes turbulentos de velocidade característica e caminho livre médio variam de ponto a ponto dentro do escoamento. Por exemplo, os vórtices são menores próximos aos contornos físicos do escoamento, o que faz com que os valores de \(\nu_t \) sejam menores nestas regiões do que no resto do escoamento. Em resumo, \(\nu_t \) não é uma propriedade do fluido como \(\nu \), mas sim do escoamento. Além disto, \(\nu_t \) geralmente varia de ponto a ponto de forma não previsível teoricamente, sendo necessária à introdução de informações experimentais para estabelecer esta variação. Em alguns casos, como os escoamentos unidimensionais em condutos forçados e canais, onde a turbulência esteja plenamente desenvolvida, a
variação de \(n_t \) é conhecida com um grau de precisão satisfatório para aplicações práticas (ver equação 2.27).

A segunda diferença entre as tensões viscosas e as análogas turbulentas como colocadas pela equação 2.23 é a presença do termo que contém \(k \). Este termo é necessário para tornar a equação 2.23 também aplicável às tensões normais, isto é, quando \(i \) igual a \(j \). Caso não existisse este termo, a somatória das tensões normais seria igual à zero para haver conservação de massa no escoamento médio, ou seja:

\[
\sum \tau_{ii} = -\rho \rho \left(\overline{u_1^2} + \overline{u_2^2} + \overline{u_3^2} \right) = -2 \cdot \rho \nu \cdot \left(\frac{\partial U_1}{\partial x_1} + \frac{\partial U_2}{\partial x_2} + \frac{\partial U_3}{\partial x_3} \right) = 0
\]

(2.29)

Entretanto esta soma não pode ser igual à zero já que por definição as tensões normais são quantidades positivas, cuja soma deve ser igual a \(2 \cdot k \). Deve-se observar também que a inclusão do delta de Kronecker faz com que as tensões de cisalhamento não sejam afetadas nesta formulação. Uma deficiência importante deste modelo é que as tensões de cisalhamento turbulentas desaparecem na ausência de gradientes de velocidade, de forma análoga às tensões viscosas. Assim não haveria tensões turbulentas no centro de um conduto forçado circular, o que não é verdade. Experimentalmente constatou-se que tais tensões existem, pois vórtices passam constantemente por esta região, afetando o escoamento médio. Fazendo uma analogia entre o transporte turbulento da quantidade de movimento com o transporte turbulento de massa ou calor, tal modelo implicaria a impossibilidade de transporte turbulento de massa ou calor através do centro deste conduto, o que também é irreal. Finalmente, a introdução do modelo de viscosidade turbulenta além de introduzir estas deficiências conceituais, simplesmente deslocou o problema da indeterminação das tensões de Reynolds para o problema da indeterminação do coeficiente de viscosidade turbulenta. Sabe-se que este coeficiente é variável dentro de um escoamento e entre escoamentos, de forma que a adoção de uma constante para ele significa uma hipótese grosseira, mesmo que ele tenha sido obtido através de um processo de calibração. De forma análoga ao exposto para \(n_t \), define-se para o transporte de massa um coeficiente de difusão turbulenta \(\Gamma_t \), tal que:
onde C é a concentração de um constituinte no fluido e c' é a sua flutuação turbulenta.

A determinação de Γ_t também é atingida pelos mesmos problemas já expostos para n_t, sendo sua determinação usualmente feita através da seguinte expressão:

$$\Gamma_t = \frac{\nu}{\sigma_{t,c}}$$ \hspace{1cm} (2.31)

Onde $\sigma_{t,c}$ é o número de Schmidt turbulento para o transporte de massa. O caso de transporte de calor é similar com a temperatura T em lugar de C e o número de Prandtl em lugar do número de Schmidt.

Para fenômenos de transporte governados por turbulência, e na ausência de estratificação $\sigma_{t,c}$ têm valor próximo da unidade. Essa hipótese ($\sigma_{t,c} = 1$) geralmente é denominada de analogia de Reynolds. A determinação exata de $\sigma_{t,c}$ é um assunto que demanda mais pesquisas, sendo normalmente seu valor adotado igual à unidade. Uma das poucas e bem sucedidas tentativas de se estabelecer uma forma de variação de n_t foi proposta por Prandtl (1925) com o modelo de comprimento de mistura ($mixing length model$). Uma limitação deste modelo consiste no fato de que produz resultados aceitáveis apenas em escoamentos com um comprimento característico único, como no caso de escoamentos turbulentos plenamente desenvolvidos em canais de grande largura, onde o comprimento característico é a profundidade do canal ou escoamento em tubos, com comprimento característico igual ao diâmetro.

No modelo de Prandtl, considerando que o escoamento médio ocorra apenas na direção longitudinal x_1 e que as variações de velocidade longitudinal U_1 ocorram apenas na direção transversal perpendicular x_2, o coeficiente n_t é dado pela equação (2.27). O comprimento de mistura L, na concepção de Prandtl, que considerou uma analogia com o movimento molecular, seria a distância percorrida por uma partícula de fluido na direção x_2 antes de se integrar ao fluxo de outras partículas do fluido em movimento. Novamente o problema da indeterminação é transferido para outra
entidade mais fácil de visualização. O comprimento de mistura representa de alguma forma o tamanho dos vórtices característicos do escoamento sendo menores perto de contornos físicos e maiores quando afastado dos contornos. Assim a forma de se especificar \(L \) depende do tipo de escoamento considerado, sendo diferente para tubos, canais, jatos, camadas limites entre outros. Em problemas com mais de uma dimensão característica a determinação de \(L \) torna-se complicada e o modelo raramente é usado.

Uma importante aplicação deste modelo é o da descrição da variação do comprimento de mistura próximo a paredes. Considerando uma parede localizada na origem do eixo \(x_2 \), é um fato razoavelmente bem estabelecido que próximo a esta parede \(L \) seja dado por:

\[
L = \kappa \cdot x_2
\]

(2.32)

Sendo \(\kappa \) a constante de Von Kárman, cujo valor é próximo a 0,4. Desta forma para regiões mais afastadas da parede a definição do comprimento de mistura é mais complexa e várias formulações tem sido propostas.

A equação acima considera que o tamanho característico dos vórtices cresce de forma linear à medida que se afastam da parede. Essa variação é limitada ou por outros contornos físicos ou porque a influência desta parede deixa de existir a distâncias suficientemente grandes. Assim a equação 2.32 não é válida em toda a profundidade do escoamento.

Uma observação que deve ser feita é relativa à constante de Von Kárman que apesar de ser qualificada como universal, não existe unanimidade em relação ao seu valor. Vanoni e Nomicos (1960) demonstraram que, por exemplo, a presença de sedimentos na água pode reduzir consideravelmente seu valor.

Também ocorre que a estratificação afeta a estrutura da turbulência de um escoamento. A influência da estratificação é usualmente considerada através do número de Richardson de gradiente \(Ri \), que para a situação em discussão é definido por (Eiger, 1989):
onde \(\rho_0 \) é uma densidade de referência, \(\rho \) é a densidade local, \(g \) é a aceleração da gravidade e \(U_1 \) é a velocidade média temporal na direção \(x_1 \).

A equação 2.33 considera que o eixo \(x_3 \) seja na vertical e orientado de baixo para cima. O número de Richardson de gradiente \(Ri \) mede uma relação entre as forças de inércia criadas pela estratificação e as forças que geram a turbulência, ou seja, se a densidade crescer rapidamente com a profundidade o meio tende a se tornar cada vez mais estável. Valores altos de \(Ri \) representam situações nas quais o efeito da turbulência pode ser bastante amortecido pela estratificação estável, tornando os processos de mistura turbulenta pouco ativos. Esta estratificação ocorre frequentemente em inversões térmicas na atmosfera e em oceanos e lagos, fazendo com que a dispersão de poluentes torne-se bastante atenuada. Para meios estratificados de forma instável, caracterizados por valores baixos ou negativos de \(Ri \), ocorre o inverso quando a turbulência não é absorvida e sim transportada mais facilmente.

A influência de \(Ri \) sobre a turbulência é usualmente considerada de forma empírica utilizando medidas de laboratório ou de campo construindo correlações, as quais apresentam elevado grau de dispersão estatística. Munk e Anderson (1948) propuseram as seguintes equações para expressar a redução nos coeficientes \(n_t \) e \(\Gamma_t \) em casos de estratificação estável, resultando os coeficientes \(n_{t,estr} \) e \(\Gamma_{t,estr} \) apresentados abaixo:

\[
\nu_{t,estr} = \nu_t \cdot (1 + 10Ri)^{-0.5} \tag{2.34}
\]

\[
\Gamma_{t,estr} = \Gamma_t \cdot (1 + 3,33Ri)^{-1.5} \tag{2.35}
\]

De acordo com as equações 2.34 e 2.35 observa-se que o efeito da estratificação estável é mais intenso em \(\Gamma_t \) do que em \(n_t \), mostrando que o transporte de massa por difusão turbulenta sofre um maior decréscimo que o correspondente
transporte de quantidade de movimento. Isto pode ser explicado pelo fato que uma parcela de fluido pode transferir quantidade de movimento ao seu redor através de flutuações de pressão sem misturar-se com parcelas vizinhas, enquanto que isto não ocorre com o transporte de massa.

2.2.3 Modelos Contendo uma Equação de Transportes

Quando não for possível definir uma única dimensão característica (escoamentos onde não é aplicável o modelo unidimensional de análise), o modelo de Prandtl não é válido e outra formulação se torna necessária. Também no caso da turbulência ser gerada por mecanismos distintos do gradiente de velocidade (por exemplo, por gradientes de densidade, agitadores) o modelo do comprimento de mistura não é aplicável. Além disso, o modelo do comprimento de mistura considerava que a turbulência é dissipada no mesmo local onde é gerada dispensando uma equação de transporte da energia cinética. Para superar essas deficiências referentes à teoria do comprimento de mistura, foram desenvolvidos modelos considerando os efeitos de transporte da energia cinética turbulenta resolvendo equações diferenciais descrevendo este transporte. O primeiro passo para este desenvolvimento foi o de desistir de criar uma relação direta entre a escala de flutuações de velocidade com os gradientes de velocidades médios. Caracterizando a escala de flutuações de velocidade é natural a escolha de √k, onde k é a energia cinética do movimento turbulento por unidade de massa como definido na equação 2.24. De acordo com esta equação, k é uma medida direta da intensidade da flutuação turbulenta nas três dimensões. Quando a escala de velocidade segue de acordo com √k a relação para a viscosidade turbulenta é:

\[\nu_t = c'_\mu \sqrt{k} \cdot L \]

(2.36)

Onde \(c'_\mu \) é uma constante empírica. Essa fórmula é conhecida como equação de Kolmogorov-Prandtl pelo fato de Kolmogorov (1942) e Prandtl (1945) ter introduzido, de forma independente esta equação bem como a equação determinando k. Os modelos apresentados aqui se baseiam nesta relação. Uma equação precisa para o
transporte da energia cinética turbulenta k pode ser derivado das equações de Navier-Stokes multiplicando estas por \(U_i \) e somando para \(i = 1, 2, 3 \) (ver Hinze 1975). O transporte da energia cinética turbulenta pode então ser descrito pela equação:

\[
\frac{\partial k}{\partial t} + \frac{\partial}{\partial x_i} (U_i k) = \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \frac{\partial U_i}{\partial x_j} - \frac{\partial}{\partial x_i} \left(\frac{\rho u_i k}{\rho} + \frac{\partial k}{\partial x_i} \right) + \frac{g_i}{\rho} \left(u_i \rho \right) - \nu \frac{\partial u_i}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
\] (2.37)

Onde letras maiúsculas representam quantidades médias e minúsculas flutuações turbulentes. Note que na equação 2.37 foi adotada a convenção de Einstein. Os primeiros e segundos termos da equação 2.37 representam a taxa de variação temporal de \(k \) e a advecção de \(k \) respectivamente e estão em suas formas originais. O terceiro termo apresenta um gradiente representando o transporte difusivo. Este termo é considerado como sendo o responsável pela produção de energia cinética da turbulência, a qual ocorre quando existem gradientes de velocidade no escoamento médio. As tensões de Reynolds que ocorrem neste termo são modeladas de acordo com a viscosidade turbulenta, a qual é dada pela equação 2.23. Neste caso, o termo de produção de \(k \) fica igual a:

\[
\nu_i \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \frac{\partial U_i}{\partial x_j}
\] (2.38)

O quarto termo é o mais complexo da equação, contendo a influência de diferentes correlações pouco entendidas. Todas estas influências afetam o transporte de \(k \) de forma difusiva, o que sugere a seguinte forma de modelar este termo, conforme proposto por Harlow e Nakayama (1967):

\[
\frac{\partial}{\partial x_j} \left(\frac{\nu_i \frac{\partial k}{\partial x_j}}{\sigma_k} \right)
\] (2.39)
Na equação 2.39, σ_k é o número de Prandtl turbulento. A equação 2.39 constitui-se provavelmente no ponto mais fraco da forma modelada da equação para k. Os mecanismos por ela considerados na forma de uma simples lei de difusão são consideravelmente mais complexos.

O quinto termo, denominado termo ascensional ou de empuxo, representa a influência no fluxo turbulento das variações de densidade. Este termo considera o efeito de um campo variável de salinidade ou temperatura na estrutura da turbulência de determinado escoamento. Em casos de densidade constante este termo é nulo. O sexto termo representa a taxa de dissipação de energia cinética de turbulência devido ao efeito da viscosidade. Tal termo é usualmente representado por ϵ. Reunidos todos os termos a equação para a energia cinética de turbulência k na sua forma modelada, resulta igual a:

$$\frac{\partial k}{\partial t} + \frac{\partial}{\partial x_j} (U_j \cdot k) = \nu \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \cdot \frac{\partial U_i}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\frac{V_i}{\sigma_k} \cdot \frac{\partial k}{\partial x_j} \right) + 2 \sigma \left(T - T_0 \right) \cdot \frac{V_i}{\sigma_T} \cdot \frac{\partial T}{\partial x_i} - \epsilon \quad (2.40)$$

onde T é a temperatura, T_0 uma temperatura de referência, σ o coeficiente de dilatação térmica e ϵ a taxa de dissipação de energia. s_k e s_T são constantes.

Para que a equação 2.40 seja empregada é necessário que as constantes s_k, s_T que nela ocorrem sejam conhecidas. Também é necessária a obtenção da taxa de dissipação de energia cinética ϵ de alguma forma.

Conforme exposto anteriormente, esta dissipação de energia ocorre predominantemente nos menores vórtices do escoamento. Em situações de números de Reynolds elevados, os vórtices maiores contêm a maior parcela de energia. De acordo com Launder e Spalding (1972), a taxa de dissipação é controlada pelos processos que transferem energia dos vórtices maiores para os menores. Tal processo pode ser suposto como sendo dependente de k e de um comprimento característico L dos maiores vórtices. Por razões dimensionais resulta:

$$\epsilon = C_d \cdot \frac{k^{\frac{3}{2}}}{L} \quad (2.41)$$
Sendo C_d uma constante. É importante ressalta que a equação 2.40 implica a existência de uma taxa de dissipação isotrópica, sendo válida somente para escoamentos com números de Reynolds elevados. Com as equações 2.28 e 2.40, a indeterminação passa agora a definição do comprimento característico L. Vários modelos têm sido propostos para a determinação de L, conforme pode ser verificado nos trabalhos de Launder e Spalding (1972), Rodi (1980) e Bradshaw, Cebeci e Whitelaw (1981), entre outros. Como nenhuma equação diferencial é proposta para L, deve ser obtido através de equações algébricas relacionando L com grandezas do escoamento médio. Esta situação é bastante semelhante àquela discutida para o comprimento de mistura, inclusive no que se refere às suas deficiências. Em escoamentos mais complexos fica por vezes bastante difícil estimar L, o que restringe a aplicação deste modelo a situações mais simples. Apesar dos últimos comentários a introdução da equação da energia cinética de turbulência proposta por Kolmogorov e Prandtl introduz vários conceitos importantes em relação à situação anterior. Em primeiro lugar, a introdução de k como medida de intensidade da turbulência é um conceito com bases mais sólidas do que as medidas consideradas pelo conceito de comprimento de mistura. A equação para k também ressalta que a turbulência em um ponto afeta e é afetada pela turbulência em outros pontos. Este fato serve para mostrar um aspecto bastante simplificado do modelo de comprimento de mistura, que é baseado na hipótese de equilíbrio local. De acordo com esta hipótese, a turbulência é gerada e dissipada no mesmo local, o que restringe a aplicação do modelo de comprimento de mistura a tais situações.

2.2.4 Modelos contendo duas equações de transporte – o modelo k-ϵ

A introdução de uma equação diferencial para o transporte de uma entidade turbulenta serviu de base para uma série de ideias posteriores. Normalmente, um modelo de turbulência com duas equações de transporte utiliza a equação de transporte para k, e outra equação para uma variável auxiliar. Dentre diferentes modelos estudados resultou como modelo preferido por muitos pesquisadores o modelo k-ϵ. Alguns motivos da preferência deste modelo são: as constantes deste modelo estão em melhor acordo com experimentos, ϵ aparece naturalmente na equação de k enquanto isto não ocorre com as outras variáveis e a qualidade dos resultados deste modelo é superior à de outros. A combinação das equações 2.28 e
2.41 produzem a seguinte expressão para a viscosidade turbulenta, sendo esta equação uma das equações básicas do modelo k-ε.

\[v_i = C_\mu \frac{k^2}{\varepsilon} \]

(2.42)

Sendo \(C_\mu \) presumivelmente uma constante dada por:

\[C_\mu = C_D \cdot C'_\mu \]

(2.43)

Uma forma do modelo k-ε foi inicialmente proposta por Harlow e Nakayama (1968). Este modelo utiliza uma equação diferencial que rege o transporte de \(\varepsilon \), a qual é consideravelmente mais complexa e não será apresentada aqui. A dedução desta equação pode ser encontrada na referência acima. Para os presentes propósitos será apresentada a forma modelada da equação para \(\varepsilon \), conforme apresentado por Svensson (1978). De forma análoga à equação modelada para \(k \), (eq. 2.40) a equação modelada para \(\varepsilon \) é apresentada a seguir é válida para valores elevados do número de Reynolds.

\[\frac{\partial \varepsilon}{\partial t} + U_i \frac{\partial \varepsilon}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\nu \frac{\partial \varepsilon}{\partial x_j} \right) + C_{1\varepsilon} \frac{\varepsilon}{k} \left(\frac{\varepsilon}{\sigma_\varepsilon} \right) + C_{2\varepsilon} \frac{\varepsilon^2}{k} + C_{3\varepsilon} \frac{\varepsilon}{k} \left(T - T_0 \right) \frac{\partial T}{\sigma_T} \]

(2.44)

Onde \(C_{1\varepsilon}, C_{2\varepsilon}, C_{3\varepsilon}, \sigma_\varepsilon \) e \(\sigma_T \) são constantes a serem determinadas, e \(\Pi \) é o termo de produção de energia cinética de turbulência, dado por:

\[\Pi = \nu \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \frac{\partial U_i}{\partial x_j} \]

(2.45)
O modelo de turbulência k-ε apresenta as características desejadas discutidas anteriormente, como representar o coeficiente de viscosidade turbulenta com escalas mais adequadas, considerar a turbulência de um escoamento como um todo, isto é, considerar o transporte de turbulência propriamente dita através das variáveis k e ε.

Uma das características interessantes do modelo k-ε é relativa às suas constantes. Estas constantes são geralmente bem definidas, o que levou principalmente no início de seu uso a suposição da universalidade do modelo. Posteriormente verificou-se que alguns tipos de escoamentos não são satisfatoriamente simulados com as constantes inicialmente propostas. Adicionalmente verificou-se que tais constantes eram na realidade funções de variáveis do escoamento, limitando seu uso em alguns casos. Alguns pesquisadores inseriram além das constantes funções do escoamento nas equações (2.44) e (2.45) obtendo resultados melhores. Para a aferição das limitações deste modelo estes autores apresentam uma discussão envolvendo as constantes deste modelo. Algumas destas constantes foram obtidas aplicando-se o modelo k-ε em escoamentos simples, e supondo-se que os mesmos sejam válidos também para escoamentos mais complexos. Outras constantes foram obtidas através de comparação entre situações observadas e simuladas, ajustando as constantes satisfatoriamente.

A constante $C_{2\varepsilon}$ é obtida analisando-se escoamentos através de grades (grid turbulence). Estes escoamentos são predominantemente ao longo da direção longitudinal x, e apresentam perfis de velocidade aproximadamente constantes ao longo de x e das seções transversais. Isto significa a ausência de gradientes de velocidade, de forma que os termos de aceleração temporal e convectiva, bem como a produção de energia cinética da turbulência Π, são desprezíveis. Nestes casos k deve diminuir com x, e experimentos têm indicado a seguinte expressão para este decaimento:

\[k = \alpha \cdot x^{-n} \]

Na equação acima, α e n são constantes, sendo o valor de n usualmente entre 1,0 e 1,1. Devido à quase ausência de gradientes de velocidade transversais, e a maior

25
magnitude dos efeitos convectivos longitudinais devido à velocidade U em relação aos efeitos difusivos na mesma direção resulta:

Para k: \[U \frac{\partial k}{\partial x} = -\varepsilon \] (2.47)

Para ε: \[U \frac{\partial \varepsilon}{\partial x} = -C_{2\varepsilon} \frac{\varepsilon^2}{k} \] (2.48)

A solução simultânea das equações 2.46, 2.47 e 2.48 permitem escrever que:

\[C_{2\varepsilon} = \frac{n+1}{n} \approx 1.90 \] (2.49)

A constante $C_{2\varepsilon}$ resulta da proposição feita por Bradshaw, Ferris e Atwell (1967) para um modelo de turbulência com uma equação de transporte para escoamentos com gradiente de velocidade (shear flow), baseados na constatação experimental que nestes casos ocorre:

\[\frac{u_1 u_2}{k} \approx 0.3 \] (2.50)

Sendo u_1 a flutuação turbulenta de velocidade na direção longitudinal x_1, e u_2 a flutuação turbulenta de velocidade na direção transversal x_2. É possível em algumas regiões deste tipo de escoamento assumir como válida a hipótese de equilíbrio local, igualando produção e dissipação da turbulência ou seja, $\Pi = \varepsilon$. Assim:

\[\nu \left(\frac{\partial U_1}{\partial x_2} \right)^2 = \varepsilon \] (2.51)
Da equação 2.23, e considerando um escoamento tipo *shear flow* \(\vec{V} = U_1(x_2) \hat{i} \) e usando (2.50) pode-se escrever que:

\[
- \frac{u_1 u_2}{k} \approx \frac{\nu_t \partial U_1}{k \partial x_2} \approx -0.3
\]

(2.52)

A combinação das equações 2.42, 2.51 e 2.52 anteriores produz:

\[
C_\mu \approx 0.09
\]

(2.53)

O que permite escrever:

\[
\frac{\tau}{\rho k} = 0.3 = \sqrt{C_\mu}
\]

(2.54)

Sendo:

\[
\tau = \rho \cdot \nu_t \left(\frac{\partial U_1}{\partial x_2} \right)
\]

(2.55)

Para \(\sigma_k \) e \(\sigma_T \), números de Schmidt e Prandtl adotam-se um valor unitário \(\sigma_k = \sigma_T = 1 \) em conformidade com a analogia de Reynolds. As constantes \(\sigma_\varepsilon \), e \(C_{3\varepsilon} \) foram obtidas através de ajustes computacionais, comparando-se situações observadas e simuladas. Obteve-se \(\sigma_\varepsilon \approx 1.3 \), sendo este valor considerado adequado em função do significado físico desta constante (número de Prandtl para a dissipação de energia turbulenta). Não existe concordância em relação ao valor de \(C_{3\varepsilon} \), o que indica a ausência de
universalidade para esta constante, tendo sido propostos valores entre zero (Lauder, 1975) e 0,8 (Svenson, 1978).

A constante \(C_{1e} \) também é determinada com base em escoamentos mais simples, sendo utilizados no caso de escoamentos não estratificados em regiões próximas a paredes. Neste caso os termos de aceleração convectiva são desprezíveis face aos intensos efeitos difusivos existentes nesta região em função dos elevados gradientes transversais. Para escoamentos uniformes em regime permanente e fluido incompressível, a equação 2.44 do transporte da taxa de dissipação para escoamento unidimensional toma o seguinte aspecto:

\[
\frac{\partial}{\partial x_2} \left(\frac{v_t}{\sigma_{e}} \frac{\partial \varepsilon}{\partial x_2} \right) + C_{1e} \cdot v_t \cdot \frac{\varepsilon}{k} \left(\frac{\partial U_1}{\partial x_2^2} \right) - C_{2e} \frac{\varepsilon^2}{k} = 0
\]

(2.56)

É fato bem estabelecido pela teoria de turbulência e observações experimentais que nesta região é válida a lei da parede (law of the wall) (Tennekes e Lumley, 1972). De acordo com esta lei, a tensão de cisalhamento \(\tau \) nesta região é aproximadamente constante e igual à tensão de cisalhamento na parede \(\tau_w \) e vale a equação 2.55. Como conseqüência, a velocidade média na direção longitudinal varia logaritmicamente na direção transversal, ou seja:

\[
\frac{U_1}{U_*} = \frac{1}{\kappa} \ln \left(\frac{x_2 \cdot U_*}{\nu} \right) + C
\]

(2.57)

Sendo \(U_* \) a velocidade de atrito, igual a \(\sqrt{\tau_w / \rho} \) e \(C \) uma constante que depende da natureza da parede que confina o escoamento. Derivando a equação 2.57 resulta:

\[
\frac{\partial U_1}{\partial x_2} = \frac{U_*}{\kappa} \cdot x_2
\]

(2.58)
Na região próxima à parede, a maior parte da energia cinética de turbulência produzida é dissipada localmente devido à pequena intensidade dos termos convectivos. Neste caso é válida a aproximação $\Pi = \varepsilon$, ou seja:

$$\varepsilon = \nu_t \left(\frac{\partial U_1}{\partial x_2} \right)^2$$ (2.59)

Seja L um comprimento característico definido de forma que:

$$v_i = \sqrt{k} \cdot L$$ (2.60)

Combinando-se as equações 2.54, 2.55, 2.58 e 2.60, resulta (Launder e Spalding, 1972)

$$L = C_{\mu}^\frac{1}{4} \cdot \kappa \cdot x_2$$ (2.61)

A variável ε pode ser expressa da seguinte maneira, sabendo que esta região são válidas as equações 2.51, 2.55 e 2.58:

$$\varepsilon = \frac{\tau \cdot U_*}{\rho \cdot \kappa \cdot x_2}$$ (2.62)

Considerando o fato de que τ é aproximadamente constante nesta região, o primeiro termo da equação 2.56 pode ser escrito como:

$$\frac{\partial}{\partial x_2} \left(\frac{v_i}{\sigma_z} \frac{\partial \varepsilon}{\partial x_2} \right) = \frac{\tau}{\rho \cdot \kappa \cdot \sigma_z} \left(\frac{v_i}{\kappa \cdot x_2^2} \right) = \frac{\tau}{\rho \cdot \sigma_z} \left(-\frac{\tau}{\rho \cdot x_2} \right) = \left(\frac{\tau}{\rho} \right)^2 \cdot \frac{1}{\sigma_z \cdot x_2} = C_{\mu} \cdot k^2$$ (2.63)
O segundo termo da equação 2.29 pode ser escrito da seguinte forma, em função da equação 2.51:

\[
C_{1e} \cdot V' \varepsilon \left(\frac{\partial u_1}{\partial x_2} \right)^2 = \frac{\varepsilon^2}{k} \cdot C_{1e}
\]

(2.64)

Também, usando as equações 2.42, 2.60 e 2.61 pode-se escrever:

\[
\frac{\varepsilon^2}{k} = \frac{C_{2e}^2 \cdot k^2}{L^2} = \frac{C_{3e}^2 \cdot k^2}{\kappa^2 \cdot x_2^2}
\]

(2.65)

Substituindo 2.63, 2.64 e 2.65 na equação 2.56 resulta:

\[
C_{1e} = C_{2e} - \frac{\kappa^2}{\sigma \sqrt{C_{\mu}}}
\]

(2.66)

Portanto o valor de \(C_{1e}\) é dependente dos valores de outras constantes, e situa-se em torno de 1,44. É importante observar que os valores destas constantes podem variar conforme relatados por diferentes autores, principalmente em função do tipo de escoamento em estudo.

Resumindo o exposto resultam as seguintes constantes para as equações 2.40 e 2.44:

- \(C_{\mu} = 0,09\)
- \(C_{1e} = 1,44\),
- \(C_{2e} = 1,90\),
- \(C_{3e} = 0,0 \text{ a } 0,8\),
- \(\sigma_v = 1,3\),
\[\sigma_k = 1,0, \]
\[\sigma_T = 1,0. \]

A solução simultânea do sistema de sete equações constituídos pela equação da continuidade (2.12), pelas três equações de Reynolds (2.22) com a substituição de \[\overline{u_i u_j} \] pela equação (2.23), pela equação do transporte de energia cinética modelada (2.40), pela equação de transporte da taxa de dissipação (2.44) e pela equação básica do modelo k-ε (2.15) permite obter as grandezas médias do escoamento \((x, U_1, U_2, U_3) \), além das grandezas \(k, \epsilon \) e \(n_t \).

Entretanto para essa solução são ainda necessárias as respectivas condições de contorno que devem ser estabelecidas em todo contorno do escoamento. Um dos aspectos mais críticos da modelagem de turbulência consiste no estabelecimento destas condições de contorno. Isto reside no fato de que a maioria dos modelos, como o modelo k – ε na forma aqui apresentado, são aproximações válidas para valores elevados do número de Reynolds. Tais aproximações não são aplicáveis nas proximidades de contornos sólidos, onde os efeitos viscosos são importantes.

A alternativa encontrada para este problema consiste em não se estender o domínio de integração até os contornos sólidos, mas sim iniciar a integração em um subdomínio desta região, cujo início seja aproximadamente coincidente com o domínio físico do ponto de vista prático. Nos contornos deste subdomínio é possível estabelecer condições de contorno de forma aceitável em relação ao critério do número de Reynolds elevado. A modelagem das condições de contorno em contornos sólidos e na superfície livre é descrito detalhadamente em Eiger (1989).

2.2.5 Solução Numérica

Para resolver numericamente o problema acima descrito, isto é, o sistema de sete equações diferenciais e respectivas condições de contorno, elas devem ser discretizadas espacial e/ou temporalmente resultando um sistema de equações algébricas geralmente de grande porte.

Existem vários métodos para a solução numérica de equações diferenciais e cada um apresenta diferentes variantes nos detalhes de sua formulação. O método das diferenças finitas, o método dos volumes finitos e o método dos elementos finitos são
os mais usados embora outros métodos como o método dos elementos de contorno e o método das características são encontrados na literatura. A simulação na presente dissertação utilizou o método dos volumes finitos.

O método das diferenças finitas talvez seja o método mais usado em problemas unidimensionais da mecânica dos fluidos e é certamente o mais adequado quando se usa uma malha retangular regular (Yu e Righetto, 1999). Neste método representam-se as derivadas por quocientes entre as diferenças das quantidades analisadas em pontos adjacentes da malha de discretização. Considere as expansões em série de Taylor:

\[f(x + \Delta x) = f(x) + \frac{\partial f}{\partial x} \bigg|_x \Delta x + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \bigg|_x \Delta x^2 + ... \]
\[f(x - \Delta x) = f(x) - \frac{\partial f}{\partial x} \bigg|_x \Delta x + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \bigg|_x \Delta x^2 + ... \]

Somando as expressões (2.67) resulta:

\[f(x + \Delta x) + f(x - \Delta x) = 2.f(x) + \frac{\partial^2 f}{\partial x^2} \Delta x^2 \]
ou:

\[\frac{\partial^2 f}{\partial x^2} = \frac{f(x + \Delta x) - 2.f(x) + f(x - \Delta x)}{\Delta x^2} \]

E subtraindo as expressões (2.67) resulta:

\[f(x + \Delta x) - f(x - \Delta x) = 2 \frac{\partial f}{\partial x} \Delta x \quad \text{ou} \quad \frac{\partial f}{\partial x} = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \]

Entretanto (no caso unidimensional) sendo \(f = f(x, t) \) resta à questão quais os valores de \(t \) a serem usadas para as derivadas espaciais nas expressões (2.69) e (2.70). Esta questão é que define o chamado esquema de discretização que por sua vez condiciona a convergência e a estabilidade da solução. As derivadas temporais são normalmente obtidas por diferenças “forward” entre valores de \(f = f(x, t) \) e \(f(x, t+\Delta t) \):

\[\frac{\partial f}{\partial t} = \frac{f(x,t + \Delta t) - f(x,t)}{\Delta t} \]

32
Entretanto existe também o esquema de discretização com quatro pontos onde índices superiores indicam t e índices inferiores x. Para uma célula entre as coordenadas $i\Delta x$, $(i+1)\Delta x$, $j\Delta t$, $(j+1)\Delta t$:

\[
\frac{\partial f}{\partial x} = \theta \frac{f_{i+1,j+1}^{t+1} - f_{i+1,j+1}^{t}}{2\Delta x} + (1 - \theta) \frac{f_{i+1,j}^{t+1} - f_{i+1,j}^{t}}{2\Delta x} \tag{2.72}
\]

\[
\frac{\partial f}{\partial t} = \frac{1}{2} \frac{f_{i+1,j+1}^{t+1} - f_{i+1,j}^{t}}{\Delta t} + \frac{1}{2} \frac{f_{i+1,j+1}^{t+1} - f_{i,j}^{t+1}}{\Delta t} \tag{2.73}
\]

Sendo θ um parâmetro de ponderação.

Este último esquema é bastante utilizado na solução numérica das equações de Saint-Venant para escoamentos não permanentes em canais, onde é referido geralmente como esquema de Preissmann.

A ideia básica da técnica dos volumes finitos consiste na divisão do domínio computacional em um número de volumes de controle pequenos, porém finitos, definidos pela malha computacional. O método consiste em integrar os fluxos das várias grandezas \vec{F} sobre o volume de controle usando o teorema de Gauss:

\[
\int_{V_j} \int_{S_j} \text{div} \vec{F} \, dv = \int_{S_j} \vec{F} \cdot \vec{n} \, ds \tag{2.74}
\]

Na forma discreta essa igualdade se torna:

\[
\int_{V_j} \int_{S_j} \text{div} \vec{F} \, dv = \sum \vec{F} \cdot \vec{n} \, \Delta S \tag{2.75}
\]

Sendo a somatória referente a todas as faces do volume de controle V_j.

Se o volume de controle não varia com o tempo a derivada temporal da variável conservativa \vec{F} resulta:

\[
\frac{\partial}{\partial t} \int_{V_j} \vec{F} \, dv = \Delta V \frac{\partial \vec{F}}{\partial t} \tag{2.76}
\]

Os fluxos através das faces do volume de controle são calculados com as mesmas fórmulas para todo o domínio. Com relação ao método das diferenças finitas o método dos volumes finitos apresenta as seguintes diferenças:
O valor de f_i não aparece como um valor num ponto no interior do domínio, mas como um valor médio no interior do volume elementar;

- As coordenadas da malha só aparecem para a determinação das áreas e volumes do volume elementar;
- Permite a introdução natural de condições na fronteira, por exemplo, se a fronteira é sólida, o fluxo de massa é zero através da superfície do volume adjacente à fronteira.

O método dos volumes finitos é o método mais usado para a solução das equações de Navier-Stokes e de Reynolds (caso dos escoamentos turbulentos) em escoamentos tridimensionais por ser um método conservativo. Devido a sua generalidade, qualquer tipo de malha pode ser usado.

Com o propósito de representar adequadamente os contornos irregulares do domínio, definem-se os chamados coeficientes de blocagem, usadas para indicar a fração do volume de controle que pertence ao domínio.

Dois tipos de coeficientes de blocagem são usados, o coeficiente de blocagem do volume (CBV) e o coeficiente de blocagem da face (CBF), indicando a fração do volume ou da face que participa do escoamento. Estes coeficientes são então aplicados aos termos das equações algébricas correspondentes a cada célula (CBF para forças de superfície e CBV para escalares e forças de volume) corrigindo os respectivos valores.

Outro método para a solução de problemas de valor de contorno é o método dos elementos finitos. Este método foi originalmente desenvolvido para resolver o problema das relações tensão-deformação em análise estrutural onde está firmemente estabelecido por meio de softwares comerciais. A principal vantagem do método dos elementos finitos sobre os das diferenças ou volumes finitos é que permite facilmente uso de malhas não retangulares e, portanto, permite representar com detalhes contornos irregulares.

Embora menos usado que o método das diferenças finitas em mecânica dos fluidos computacional tem sido usado na modelagem da turbulência em certas circunstâncias especiais. Também para modelar escoamentos de percolação através de barragens de terra tem sido empregado com sucesso.
O método dos elementos finitos baseia-se essencialmente em estabelecer funções de interpolação que definem aproximadamente o comportamento das grandezas de interesse dentro dos elementos limitados pela malha. As grandezas de interesse (velocidade e pressão) são geralmente uma combinação linear das funções de interpolação (trial functions) que por sua vez são normalmente aproximadas por polinômios, usando o conceito de resíduos ponderados. A descrição do método que segue foi essencialmente retirado de Greenberg (1978). Considere como exemplo o sistema físico descrito pela equação \(L^* y = f(x) \) para \(a \leq x \leq b \), onde \(L \) é um operador diferencial linear, mais condições de contorno homogêneas em a e b. Suponha que desejamos obter uma solução aproximada:

\[
y \approx y_n(x) = \sum_{j=1}^{N} c_j \phi_j(x) \quad (2.74)
\]

Onde \(\phi_j(x) \) são as funções de interpolação. Integrando a equação original com \(y = y_n(x) \) sobre o domínio \((a, b) \) usando pesos \(W_i(x) \) resulta:

\[
\sum_{j=1}^{N} \int_a^b (Lc_j \phi_j(x) W_i(x))dx = \int_a^b f(x) W_i(x)dx
\]

A questão agora reside na escolha das funções peso. O método de Galerkin, o procedimento mais usado no método dos elementos finitos, usa:

\[
W_i(x) = \phi_i(x) \quad (2.76)
\]

De modo que resulta:

\[
\sum_{j=1}^{N} \int_a^b \left[Lc_j \phi_j(x) \phi_i(x) \right]dx c_j = \int_a^b \left[\phi_i(x) f(x) \right]dx \quad i = 1, 2, \ldots, N
\]

A solução deste sistema linear fornece os coeficientes \(c_j \) e portanto a solução aproximada (2.74). No método dos elementos finitos o domínio é dividido em \(N \) elementos finitos e as funções \(\phi_j(x) \) são escolhidas de modo que são não nulas no intervalo \((x_{j-1}, x_{j+1})\) e nulas fora deste intervalo.

Por exemplo se, para um problema unidimensional, dividirmos o domínio \((0, 1) \) em \(N \) intervalos de largura \(h \) temos \(x_j = jh \) e um exemplo de função \(\phi_j \) seria:
\[
\phi_j(x) = \begin{cases}
1 - j + \frac{x}{h} & \text{para} \ldots x_{j-1} \leq x \leq x_j \\
1 + j - \frac{x}{h} & \text{para} \ldots x_j \leq x \leq x_{j+1} \\
0 & \text{caso contrário}
\end{cases}
\]

(2.78)

Neste caso o sistema de equações (2.77) resulta:

\[
a_i c_{i-1} + b_i c_i + ac_{i+1} = h^3 i
\]

(2.79)

O que permite obter os coeficientes \(c_i\) e, portanto, as soluções em cada intervalo.

\[
y_j(x) = c_i \phi_{i-1} + c_i \phi_i + c_{i+1} \phi_{i+1}
\]

(2.80)

A essência do método dos elementos finitos é a escolha dos \(\phi_j(x)\) como polinômios que se anulam na maior parte do domínio. Também vale a pena notar que os coeficientes \(c_j\) são os valores de \(y_N(x)\) nos pontos \(x_j\). Além disso apenas \(\phi_{j-1}, \phi_{j+1}\) se sobrepõem a \(\phi_j\) de modo que a matriz de coeficientes do sistema 2.79 é tri diagonal o que permite esquemas especiais de solução. Descrições mais detalhados e aplicações práticas do método dos elementos finitos em mecânica dos fluidos podem ser encontrados em Rosman,(2001), que desenvolveu um modelo baseado no método dos elementos finitos chamado SISBAHIA.

2.3 Aplicações Recentes de Modelos de Turbulência

No caso de obras hidráulicas, Grube e Fill (2008) aplicaram o modelo FLOW-3D ao escoamento sobre vertedouros de superfícies livres. As simulações numéricas apresentaram quantitativamente bons resultados quanto à capacidade de descarga e também se mostraram bons qualitativamente quando comparados ao modelo reduzido físico.

Grube (2001) desenvolveu um modelo numérico 2D para escoamento sobre ogivas de vertedouros obtendo resultados de linha piezométrica bastante bons. Ele desenvolveu um modelo numérico baseado no método dos elementos de contorno aplicado a escoamentos sobre ogivas de vertedouros. O modelo fornece resultados sobre a capacidade de descarga, distribuição de pressões e o perfil da linha de água ao longo do vertedouro. O modelo é baseado na equação de Laplace considerando um meio contínuo, escoamento bidimensional, permanente, incompressível, irrotacional de fluído ideal e homogêneo.

Friedrich (2004) analisou um escoamento 2D em um trecho de rio (escoamento fluvial) utilizando a aproximação de águas rasas. Obteve resultados bastante razoáveis tendo adotada malhas correspondente a um número de Reynolds da malha (grid Reynolds number) igual a 20. Neste estudo foi utilizado o programa RMA2 que se baseia no método dos elementos finitos.

Inoue (2005) utilizando o software CFX simulou várias situações de escoamento para testar a adequação do modelo numérico. Entre os escoamentos analisados foi estudado o desenvolvimento da camada limite em tubos, o escoamento na tomada de água da UHE Itaipu e o escoamento com superfície livre sobre um vertedouro de ogiva baixa (Rio Aipim). Neste último estudo de caso utilizou também uma aproximação 2D para um escoamento com largura unitária. Os resultados foram bastante satisfatórios mas Inoue também verificou que o tamanho da malha influencia bastante a precisão dos resultados.
Willey et. al (2010) estudaram o escoamento sobre um vertedouro em degraus com o modelo numérico FLUENT usando formulação 2D e também 3D. Os resultados do modelo numérico foram comparados com parâmetros de projeto publicados pelo US Corps of Engineers (1987). Entretanto, para um refinamento do projeto, foi também construído um modelo físico reduzido na escala 1:45 que permitiu uma série de ajustes finos no projeto. Os autores concluíram que o modelo numérico foi bastante útil na fase inicial do projeto e que o modelo físico seja usado apenas no refinamento final do projeto. O uso do modelo numérico na fase inicial representou apenas 10% do custo do modelo físico.

3 ESTUDO DE CASO

Os objetivos do presente trabalho, como definido na seção 1.2 deverão ser alcançados através da comparação dos resultados de um modelo matemático de simulação de escoamentos turbulentos com resultados homólogos obtidos em um modelo físico em escala reduzida. Essa comparação será realizada para o escoamento sobre o vertedouro da usina hidrelétrica (UHE) São Salvador.

As grandezas a serem analisadas são pressões, velocidades e níveis de água em pontos particulares da ogiva do vertedouro e da bacia de dissipação. Também a vazão correspondente a vários níveis de água será comparada. A comparação dos valores dessas grandezas entre modelo físico e o modelo numérico permitirá tecer considerações sobre a adequação do uso de um modelo numérico em diferentes fases do projeto de obras hidráulicas complexas, bem como discutir as diferenças tanto do ponto de vista qualitativo como quantitativo. Essas comparações serão feitas para diferentes tamanhos da malha de discretização do modelo numérico cotejando a precisão dos resultados com o tempo de simulação. Adicionalmente será efetuada uma análise de sensibilidade da variação do nível de água em função da rugosidade dos contornos.
3.1 Usina Hidrelétrica São Salvador

A Usina Hidrelétrica São Salvador situa-se no rio Tocantins entre as usinas de Cana Brava e Peixe no estado de Tocantins, Brasil, e atualmente encontra-se em operação.

Em linhas gerais, o arranjo é composto por uma barragem de terra, casa de força, tomada de água e vertedouro controlado, localizados na margem direita, e barragem de terra, fechando as obras de barramento, no leito do rio e margem esquerda.

A barragem de terra da margem direita possui comprimento aproximado de 540 m e altura máxima de cerca de 37 m. A barragem no leito do rio e margem esquerda possui comprimento aproximado de 360 m e altura máxima de cerca de 33 m. O nível normal do reservatório situa-se na El. 287,00 m enquanto que a crista das estruturas situa-se na El. 290,00 m. A casa de força e tomada de água formam uma estrutura única abrigando duas unidades geradoras tipo Kaplan (eixo vertical), resultando numa potência instalada total da usina de 243,2 MW.

A tabela 3.1 apresenta as principais características físicas da UHE São Salvador.

<table>
<thead>
<tr>
<th>TABELA 3.1 – PRINCIPAIS CARACTERÍSTICAS DA USINA DE SÃO SALVADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potência Instalada</td>
</tr>
<tr>
<td>Rio</td>
</tr>
<tr>
<td>Área de Drenagem</td>
</tr>
<tr>
<td>Vazão MLT</td>
</tr>
<tr>
<td>Cheia Máxima Provável</td>
</tr>
<tr>
<td>N.A. montante Máximo Normal</td>
</tr>
<tr>
<td>N.A. montante Máximo Maximorum*</td>
</tr>
<tr>
<td>N.A. jusante Máximo Normal</td>
</tr>
<tr>
<td>N.A. jusante Máximo Maximorum</td>
</tr>
<tr>
<td>Tipo de Vertedouro</td>
</tr>
<tr>
<td>Número de vãos</td>
</tr>
<tr>
<td>Largura do vão</td>
</tr>
<tr>
<td>Cota da Soleira</td>
</tr>
<tr>
<td>Número de Unidades</td>
</tr>
<tr>
<td>Potência Unitária</td>
</tr>
<tr>
<td>Vazão Turbinada Total</td>
</tr>
</tbody>
</table>

* O nível máximo no modelo físico resultou em 287,02 m.

As figuras 3.1 e 3.2 apresentam um corte característico e a planta do vertedouro da UHE São Salvador.
FIGURA 3.1 – PLANTA VERTEDOURO UHE SÃO SALVADOR

FIGURA 3.2 – CORTE VERTEDOURO UHE SÃO SALVADOR
O vertedouro controlado situa-se entre a casa de força e a barragem no leito do rio. O vertedouro apresenta seis vãos de 15,4 m de largura com crista na El. 265,0 m e comportas segmento de 15,4 por 23,62 m (a soleira da comporta situa-se na elevação 263,78 m). A restituição do escoamento é efetuada através de uma bacia de dissipação a jusante da ogiva do vertedouro. O vertedouro foi dimensionado para escoar uma vazão igual à cheia máxima provável (CMP) de 19,300 m³/s. Para escoar a CMP o nível do reservatório no modelo reduzido resulta na elevação 287,02 m (carga sobre a ogiva de 22,02 m). O vertedouro conta com uma bacia de dissipação com cerca de 60 m de comprimento e 112,40 m de largura. O projeto do vertedouro foi baseado nos critérios usuais do U.S. Bureau of Reclamation e do U.S.Corps of Engineers com posterior verificação em modelo reduzido.

3.2 Modelo Matemático

3.2.1 Geral

As simulações foram efetuadas com o software FLOW-3D®, desenvolvido por Flow Science Inc. cuja descrição é detalhada no ANEXO I.

O referido software é baseado no método dos volumes finitos para a resolução das equações de Reynolds e da continuidade. Com este software é possível modelar fluxos tridimensionais de fluidos compressíveis e incompressíveis em regime permanente ou transiente. Também o emprego de modelagem mais simples tais como o comprimento de mistura de Prandtl, a representação 2D vertical ou horizontal ou a aproximação de águas rasas é possível. Este software foi selecionado devido a algumas características específicas listadas a seguir:

- Capacidade de modelar fluxos tridimensionais com contornos sólidos complexos. Esta capacidade é devido à utilização de um método denominado “FAVOR” – Fraccional Area/Volume Obstacle Representation Method, onde se estabelece uma função de permeabilidade para obstáculos permeáveis ou não. Com este método é possível modelar contornos complexos mesmo trabalhando com uma malha ortogonal;
- Capacidade de modelar fluxos incompressíveis com superfície livre. Como a definição da superfície livre é necessária para a determinação do fluxo sobre
o vertedouro, essa capacidade torna-se um aspecto fundamental para as modelagens consideradas no presente trabalho;

- Capacidade de modelar escoamentos turbulentos através de vários modelos de turbulência, especificamente *Mixing-Length, One-Equation Method, Two-Equation Method, Renormalized Group Model e Large Eddy Simulation*.

Em termos gerais, o método dos volumes finitos já descrito no item 2.2.5 utiliza o balanço de massa e da quantidade de movimento em um elemento volumétrico (paralelepípedo) para a discretização das equações de Reynolds. A referida discretização resulta em um sistema de equações algébricas cuja resolução possibilita conhecer os valores dos componentes da velocidade e da pressão para cada elemento. Na discretização temporal o software utiliza um método explícito para o avanço da solução ao longo do tempo. O software fornece uma descrição detalhada dos passos temporais, porém condiciona que por questões de estabilidade numérica os incrementos temporais (\(\Delta t\)) sejam bastante pequenos dado a condição de estabilidade de Courant

\[
\Delta t \leq \frac{\Delta x}{u + c}
\]

A discretização da malha utilizada depende da complexidade dos contornos sólidos, podendo utilizar vários blocos de volumes que possibilitam detalhar as variações dos contornos sólidos resultando em uma melhor discretização do modelo numérico. As simulações efetuadas neste estudo usam uma malha ortogonal para as análises, contudo com diferentes níveis de discretização. A configuração geométrica das estruturas, bem como do terreno natural foram obtidas através de modelo tridimensional gerado no AutoCad. O modelo de turbulência adotado foi o clássico modelo \(\kappa-\varepsilon\), baseado em estudos anteriores (Grube e Fill, 2008) onde apresentou bons resultados para escoamentos tridimensionais sem aumentar demasiadamente o tempo de processamento. Deverá ser usada uma simulação 3-D completa tendo em vista que tanto sobre a crista como na bacia de dissipação a hipótese de distribuição hidrostática de pressão não se aplica.

Como condições de contorno consideraram-se os níveis de água a montante (nível do reservatório) e a jusante (curva chave do rio) e condições de simetria nos limites da malha. Maiores detalhes sobre a metodologia e equações utilizadas pelo Software FLOW-3D® podem ser encontradas no ANEXO I do presente trabalho.

As figuras 3.3 a 3.6 mostram os modelos físico e numérico operando em condições similares, podendo-se observar que os escoamentos pelo menos no aspecto
qualitativo e visual mostram-se bastante similares. Foi simulado nestas figuras a condição de escoamento da cheia máxima provável (CMP) que corresponderia a um nível de água (N.A.) no reservatório de 287,02 m e uma vazão total de 19.300 m3/s como observados no modelo físico reduzido. No modelo físico geralmente impõe-se a vazão e mede-se o nível de água resultante.

No modelo numérico o N.A. é especificado pela condição de contorno e a vazão se apresenta como resultado da simulação. A vazão resultante da simulação numérica apresenta alguns desvios em relação ao valor especificado no modelo físico, sendo que estes desvios variam conforme o tamanho da malha adotada (espaçamento “e”) e são mostradas na tabela 4.11. Para as condições de escoamento mencionadas foram calculados os números de Froude e de Reynolds em seções representativas do escoamento, a saber (1) a montante do vertedouro (aproximação), (2) sobre a crista da ogiva (seção de controle), (3) a montante do ressalto (calha) e (4) a jusante do ressalto (bacia de dissipação). Os resultados são mostrados na tabela 3.2.

TABELA 3.2 - CONDIÇÕES DO ESCOAMENTO

<table>
<thead>
<tr>
<th>Seção</th>
<th>X</th>
<th>Protótipo</th>
<th>Modelo Reduzido</th>
<th>Modelo Numérico (e=1,25 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fr</td>
<td>Re</td>
<td>Fr</td>
<td>Re</td>
</tr>
<tr>
<td>1</td>
<td>-35,0</td>
<td>0,86</td>
<td>2,48 106</td>
<td>2,48 105</td>
</tr>
<tr>
<td>2</td>
<td>0,0</td>
<td>1,26</td>
<td>2,95 106</td>
<td>2,95 105</td>
</tr>
<tr>
<td>3</td>
<td>19,5</td>
<td>1,29</td>
<td>2,82 106</td>
<td>2,82 105</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>0,48</td>
<td>1,86 106</td>
<td>1,86 105</td>
</tr>
</tbody>
</table>

Os valores foram calculados segundo as fórmulas tradicionais

$$Re = \frac{4 VR_h}{\nu} = \frac{4Q}{v \cdot P}$$

(3.1)

e:

$$Fr = \frac{V}{\sqrt{g \cdot h}} = \sqrt{\frac{Q^2 \cdot b}{g \cdot A^3}}.$$

(3.2)

Onde: R_h = raio hidráulico, P = perímetro molhado, ν = viscosidade cinemática, V = velocidade média, h = profundidade do escoamento e b = largura do escoamento.
FIGURA 3.3 – MODELO FÍSICO OPERANDO COM A CHEIA MÁXIMA PROVÁVEL – VISTA DE MONTANTE – COMPORTAS TOTALMENTE ABERTAS

FIGURA 3.4 – MODELO NUMÉRICO OPERANDO COM A CHEIA MÁXIMA PROVÁVEL – VISTA DE MONTANTE – COMPORTAS TOTALMENTE ABERTAS
FIGURA 3.5 – MODELO FÍSICO GERAL OPERANDO COM CHEIA DECAMILENAR – VISTA DE JUSANTE – COMPORTAS TOTALMENTE ABERTAS

FIGURA 3.6 – MODELO NUMÉRICO OPERANDO COM A CHEIA MÁXIMA PROVÁVEL – VISTA DE JUSANTE – COMPORTAS TOTALMENTE ABERTAS
3.2.2 Geometria

Para a definição do modelo matemático para simulação é necessário determinar os contornos sólidos que representem o problema a ser simulado. Devida a pequena praticidade de modelar contornos diretamente no software FLOW 3-D e a possibilidade de importar arquivos elaborados em software tipo CAD, foi elaborado um modelo geral da Usina de São Salvador no AutoCad. Esse processo foi usado devido à facilidade de modelagem geométrica no software AutoCad. O modelo AutoCad usado para as simulações deste estudo é apresentado na figura 3.7. Foram usados dois sólidos, o primeiro representa a área de aproximação contendo escavações efetuadas na área da usina e o segundo contém as estruturas de concreto da usina (compreendem o vertedouro e a casa de forca). O programa AutoCad permite exportar arquivos em formato binário possibilitando assim a implementação das características geométricas do domínio de resolução da malha.

![Figura 3.7 - Modelo AutoCAD da UHE São Salvador](image)

Com a importação dos contornos sólidos define-se um ou mais blocos *mesh* onde são estabelecidos os contornos e o domínio da simulação. A definição de um bloco *mesh* consiste na determinação de coordenadas X, Y e Z bem como o número de divisões em cada eixo ortogonal. Quanto maior o número de divisões mais bem discretizado fica a malha e melhor serão os resultados finais. No entanto isso aumenta significativamente o tempo de processamento e o tamanho dos arquivos de resultados. Foram usados dois blocos nas presentes simulações. Como já foi mencionado, o
primeiro bloco representa o terreno já incluídas as escavações e também a barragem de terra. O segundo bloco é constituído pelas estruturas de concreto (vertedouro, tomada de água casa de força). Os blocos usados consideraram um espaçamento uniforme em todas as direções. Como recomendação do manual do programa, a relação entre tamanhos de células nas diferentes direções não devem ser maiores que 1,25. Na interface dos blocos é recomendado o uso de uma relação máxima de dois para as diferentes direções. O uso de blocos “esticados” pode causar dificuldades na convergência do problema causando erros e imprecisão na simulação. Para a definição do tempo a ser simulado, de modo que o escoamento se estabilize (isto é torna-se permanente), foram arbitrados 120 segundos. As figuras 3.8 e 3.9 mostram a malha utilizada no bloco das estruturas de concreto.

FIGURA 3.8 – VISTA ESQUEMÁTICA MOSTRANDO A MALHA (ESPAÇAMENTO 1,0 M)
No processamento a origem dos sistemas de coordenadas difere entre o modelo físico e o computacional, mas na apresentação dos resultados nesta dissertação foi adotado apenas o sistema de coordenadas usado no modelo físico onde a origem situa-se na linha base do vertedouro no centro do vão #4. O eixo X é definido na direção do fluxo e o eixo Y na direção da linha base. O eixo Z e na direção vertical e as coordenadas Z são referidas ao nível do mar. A figura 3.10 compara esquematicamente os dois sistemas de coordenadas.
3.2.3 Rugosidade

Como condição para reproduzir no escoamento as condições de perdas de carga além da turbulência é considerada uma rugosidade nos elementos geométricos simulados no FLOW – 3D. A rugosidade é imposta em metros e é definida uniformemente para cada um dos sólidos. Nas simulações feitas no presente trabalho foi considerada uma rugosidade básica de 0,15 m para o terreno natural e 0,001 m para as estruturas de concreto, o que está em concordância com valores usuais tabelados na literatura (ver, por exemplo, Jirka e Lang, 2009).

Após analisar os resultados das simulações foi efetuada uma análise de sensibilidade sobre a influência da mudança das rugosidades nos resultados, principalmente na superfície livre e vazão. Foi feita uma simulação alterando os parâmetros para 0,10 m no terreno e 0,002 m nas estruturas de concreto. Os resultados desta simulação são apresentados no capítulo IV.
3.2.4 Condições de Contorno

Para as simulações de escoamentos é necessária a definição de condições de contorno apropriadas para o problema. O programa FLOW-3D possibilita a imposição de dez tipos de condições de contorno. Nas presentes simulações foram utilizadas apenas quatro destas (simetria, pressão, continuativa e parede).

As condições de contorno não utilizadas na presente simulações são: Periodic, Specified velocity, grid overlay, Outflow, Wave e Volume Flow rate. As condições utilizadas nas simulações desta dissertação são descritas a seguir.

3.2.4.1 Simetria

A condição de contorno de simetria é bastante útil em problemas de escoamento com superfície livre. Esta condição de contorno considera uma simetria na região da malha de modo a prever as mesmas condições do fluido na região fora da malha. Esta condição de contorno é aplicável em todas as faces da malha em que não exista uma condição imposta de velocidade ou pressão, basicamente mantendo as características do escoamento no interior da malha evitando ondas de pressão para dentro ou fora do campo computacional do problema.

3.2.4.2 Pressão

A especificação da pressão como condição de contorno em uma ou mais regiões é uma importante ferramenta para simulações de escoamentos em superfície livre. Principalmente quando o domínio de cálculo não abrange todo o domínio físico do escoamento o que muitas vezes é adotado para reduzir a quantidade de células da malha. Este tipo de condição de contorno pode representar reservatórios, controle hidráulico em canais ou pressões advindas de equipamentos mecânicos. Normalmente a especificação da pressão não pode ser utilizada quando as velocidades são prescritas.

Existem tipicamente duas condições de contorno pressão, estática ou de estagnação. Na condição de pressão estática a pressão é especificada
independentemente das velocidades. Isso ocorre quando a derivada normal da velocidade é zero no contorno. Já a condição de estagnação considera condições de estagnação fora da região de contorno ou seja considera as velocidades iguais à zero. Essa consideração requer uma redução da pressão na entrada da região onde o escoamento “entra” no domínio computacional.

Como a condição de pressão estática não especifica nada sobre as velocidades fora da região de contorno (a não ser que elas são as mesmas na região de contorno), ela é menos específica que a condição de estagnação. Neste sentido a pressão de estagnação geralmente é mais física que a estática e mais recomendada na maioria das aplicações. Nas simulações aqui feitas foi considerada a condição de pressão de estagnação.

No caso da condição de estagnação o que na verdade se especifica é o plano de carga do escoamento ou seja a soma da pressão, medida em coluna de água, com a altura de velocidade.

\[p_{est} = p + \rho \frac{V^2}{2} \quad ou \quad \frac{p_{est}}{\gamma} = \frac{p}{\gamma} + \frac{V^2}{2g} \]

(3.1)

Essa consideração é útil no caso de fronteiras de água em local de velocidade não nula, mas com o fluxo proveniente de um reservatório. Isso ocorre quando o domínio computacional é menor que o domínio físico do corpo de água. No presente estudo foi usado essa condição de contorno na face de montante do domínio computacional (canal de aproximação) e também na face de jusante (saída da bacia de dissipação).

Para esta condição é necessário especificar a altura de pressão (ou nível de água para estagnação), assim especifica-se a pressão para obter a vazão que passa em determinada estrutura. Nessas duas regiões foi imposto o nível de água apresentado nos relatórios dos estudos em modelo reduzido da usina (Reservatório N.A. = 287,02 m e a jusante na saída da bacia de dissipação 276,13 m).

3.2.4.3 Continuativo

Em muitas simulações é necessário que o fluido saia ou entre de uma ou mais regiões do domínio. Nestas situações surge o questionamento de qual pode ser uma
boa condição de contorno. Em escoamentos compressíveis quando as velocidades na região de contorno são supersônicas pouco importa qual seja a condição de contorno, já que perturbações não se propagam para montante, o mesmo ocorre para fluidos incompressíveis quando o escoamento é supercrítico. Já em escoamentos com velocidades baixas (escoamento subcrítico) perturbações causadas nas regiões de contorno podem se propagar para montante e causar efeitos indesejáveis em todo o domínio computacional.

A mais simples e mais usada condição de contorno é a continuativa. Esta opção consiste em zerar todas as derivadas normais na região de contorno para todas as quantidades. Zerando as derivadas normais ocasiona uma transição suave pela região de contorno.

3.2.4.4 Parede (Wall)

A condição de contorno “parede” considera velocidades nulas na fronteira, não possibilitando a saída de fluido da malha. Esta condição foi usada no fundo do domínio onde todas as células se situam junto a contornos sólidos caracterizados pelo terreno e estrutura do vertedouro. É possível aplicar também neste caso a condição de simetria nesta fronteira, de modo que o método FAVOR reconheça o sólido e elimine o fluido das células englobadas pelo sólido. Optou-se por usar a condição “parede” supondo que esta condição convergisse mais rapidamente ao resultado.

3.2.5 Condições de Contorno Usadas nas Simulações

Considerando os vários tipos de condições de contorno apresentadas anteriormente, utilizou-se no modelo a condição de pressão de estagnação no sentido do fluxo principal (eixo X), simetria nos contornos perpendicular ao fluxo (eixo Y), parede no limite inferior vertical, simetria no limite superior vertical (superfície livre) e continuativo na interface entre os dois blocos. A figura 3.11 apresenta as condições de contorno para o caso de dois blocos, sendo P = pressão, S = simetria, C = continuativa e W = parede, sendo que esta última, correspondente ao fundo, não aparece na figura.
Para a inicialização das simulações é possível criar regiões de fluido de forma a reduzir o tempo para a convergência da solução. Isso faz com que não seja necessário o enchimento do domínio computacional com o fluido (água). Desta forma criaram-se duas regiões de fluido, uma considerando o nível de água de montante e abrangência um pouco a jusante da crista do vertedouro e a segunda região com o restante do volume considerando o nível de água de jusante para o resto do modelo.

O programa FLOW – 3D também apresenta a possibilidade de fazer uma simulação “restart” de forma que inicialmente usa-se uma malha mais grosseira convergindo para uma solução aproximada para posteriormente refinar a malha utilizando como ponto de partida os resultados finais da simulação mais grosseira. Desta forma é possível convergir mais rapidamente para resultados com malhas mais finas que de outra forma outra demandaram muito tempo de processamento.

3.2.6 Simulações e Tempos de Processamento

Foram efetuadas cinco simulações variando o tamanho da malha de 2,0 a 0,75 m com número de elementos variando de 227,696 a 1,394,960. Em um computador com 1,6 GHz e 504 MB de memória os tempos de processamento variaram de 21,640 a 267,500 segundos (6,01 a 79,19 horas). Foi utilizado um tempo de escoamento de
120 segundos. Considera-se que neste tempo o escoamento já tenha convergido para o regime permanente e esteja estabilizado. As simulações consideraram a passagem da cheia máxima provável (Q = 19.300 m³/s) com todas as comportas abertas e condições de contorno através dos níveis de água observados nos estudos de modelo reduzido. Além das simulações da cheia máxima provável foram simuladas duas vazões parciais para verificação do coeficiente de descarga obtido através do modelo numérico. Todas as simulações utilizaram o modelo k-ε. A tabela 3.3 apresenta alguns detalhes das simulações efetuadas.

Como se pode ver na tabela 3.3 os tempos de processamento cresceram muito de acordo ao se reduzir as dimensões da malha, pois em geral, uma malha com espaçamento menor resulta em um maior número de células. As simulações sete e oito apresentaram um menor número de células para um menor espaçamento, e, portanto um tempo de processamento menor, devido a considerarem vazões menores em que o campo computacional é reduzido na direção z. A figura 3.12 mostra o tempo de processamento em relação ao número de células o domínio de cálculo.
<table>
<thead>
<tr>
<th></th>
<th>Simulação 1</th>
<th>Simulação 2</th>
<th>Simulação 3</th>
<th>Simulação 4</th>
<th>Simulação 5</th>
<th>Simulação 6</th>
<th>Simulação 7</th>
<th>Simulação 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de Células</td>
<td>227696</td>
<td>290238</td>
<td>471471</td>
<td>1127574</td>
<td>1394960</td>
<td>1341184</td>
<td>1099776</td>
<td>950272</td>
</tr>
<tr>
<td>Espaçamento Células (m)</td>
<td>2</td>
<td>1.75</td>
<td>1.5</td>
<td>1.25</td>
<td>1</td>
<td>1</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Modelo Turbulência</td>
<td>k-ε</td>
<td>k-ε</td>
<td>k-ε</td>
<td>k-ε</td>
<td>k-ε</td>
<td>k-ε</td>
<td>k-ε</td>
<td>k-ε</td>
</tr>
<tr>
<td>Tempo Simulação (s)</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Tempo Processamento (s)</td>
<td>21640</td>
<td>52780</td>
<td>60910</td>
<td>274700</td>
<td>285100</td>
<td>267500</td>
<td>202000</td>
<td>178000</td>
</tr>
<tr>
<td>Tempo Processamento (h)</td>
<td>6.01</td>
<td>14.66</td>
<td>16.92</td>
<td>76.31</td>
<td>79.19</td>
<td>74.31</td>
<td>56.11</td>
<td>49.44</td>
</tr>
</tbody>
</table>
3.3 Modelos Físicos

Os estudos em modelo reduzido foram realizados pelo laboratório de hidráulica do Centro de Hidráulica e Hidologia Prof. Parigot de Souza - CEHPAR, tendo sido construído um modelo geral na escala 1:100 baseado no critério de semelhança de Froude. Para o estudo detalhado do vertedouro (estudo de erosões a jusante, determinação de pressões médias e instantâneas) foi construído um modelo seccional na escala 1:60. A figura 3.13 apresenta a planta do modelo reduzido geral enquanto que a figura 3.14 apresenta o modelo seccional operando com uma vazão equivalente a cheia máxima provável (19.300 m³/s) e abertura total das comportas. As figuras 3.4 e 3.6 apresentam o modelo matemático operando com a cheia máxima provável.

Os resultados dos estudos nos modelos reduzidos foram publicados em cinco relatórios, sendo que para a presente dissertação o relatório cinco (CEHPAR, 2003) apresenta os resultados mais relevantes objeto da comparação com o modelo numérico. O modelo geral foi construído abrangendo todas as estruturas de concreto, as duas barragens de terra, parte do reservatório e cerca de 800 m do curso natural do rio a jusante das estruturas de concreto. A alimentação foi implantada mediante dois tubos de 200 e 300 mm de diâmetro e uma grade de tranqüilização entre alimentação e modelo, com a vazão medida por medidores venturi em cada um dos tubos de alimentação.
FIGURA 3.13 – MODELO REDUZIDO FÍSICO – VISTA GERAL
A restituição ocorre através de duas comportas basculantes que impõem o nível de água desejado nas réguas limnimétricas a jusante das estruturas. Para a medida das pressões e do nível de água no vertedouro foram implantados 123 tomadas de pressão, distribuídas ao longo do eixo da passagem #4 (24 tomadas), na soleira junto ao pilar P3 e a jusante deste (13 tomadas), nas faces do pilar P3 (38 tomadas) e no muro lateral esquerdo (48 tomadas). O nível de água no reservatório foi medido pela ponta limnimétrica PL-12, situada cerca de 400 m a montante das estruturas.

Foram ainda efetuadas medições de velocidades em 30 locais, essencialmente na região de aproximação do vertedouro. Também foram obtidas fotografias com flutuantes para visualizar as linhas de corrente na superfície. Como já foi mencionado além do modelo geral foi construído também um modelo parcial (seccional) do vertedouro na escala 1:60. Neste modelo foram analisadas pressões, níveis de água, características do ressalto hidráulico e erosão a jusante da bacia de dissipação. O modelo abrange um vão completo e mais duas metades de vãos adjacentes do vertedouro. A figura 3.14 mostra o modelo reduzido seccional, operando com a cheia máxima provável.

FIGURA 3.14 – MODELO FÍSICO SECCIONAL OPERANDO COM A CHEIA DECA MILLENAR
4 RESULTADOS OBTIDOS

4.1 Geral

Devido à grande quantidade de variáveis e elementos em cada simulação, a extração de resultados do programa computacional é bastante trabalhosa. O programa possibilita ao usuário a determinação das componentes das velocidades nas três direções do escoamento, pressões médias no centro de cada célula do campo computacional e, as áreas com fluido nas três dimensões do escoamento. Ainda são disponíveis outras variáveis como a dissipação turbulenta de energia, viscosidade turbulenta dinâmica e energia cinética turbulenta. A vazão não pode ser extraída diretamente, sendo necessário efetuar o produto de velocidades e áreas de escoamento sobre a seção considerada. Também não é possível especificar uma vazão e verificar o nível de água como é praxe no modelo físico, sendo sempre necessário primeiro definir como condição de contorno os níveis de água para então calcular a vazão associada a estes níveis. Todos os resultados do modelo numérico devem ser extraídos ponto a ponto que devem ser especificados pelas suas coordenadas.

Para efetuar a comparação dos valores medidos no modelo físico e no modelo numérico é necessário que estes valores sejam avaliados em pontos homólogos, o que nem sempre é possível (a posição da tomada de pressão no modelo físico nem sempre coincide com a localização das células no modelo numérico). Para facilitar a comparação dos resultados foi estabelecido um referencial de coordenadas único, cuja origem situa-se na linha base do vertedouro (crista do vertedouro) no centro do vão #4. O eixo das abscissas (eixo X) está orientado na direção do fluxo e coincide com o centro do vão #4. O eixo das ordenadas (eixo Y) coincide com a linha base do vertedouro e está orientado em direção à margem esquerda e o eixo Z está orientado na vertical de baixo para cima. Embora a origem do referencial esteja na linha base às cotas (coordenadas Z) são medidas em relação ao nível do mar.
4.2 Pressões Médias

As pressões médias foram avaliadas confrontando os resultados do modelo físico com os resultados do modelo matemático na seção central do quarto vão do vertedouro. Os resultados do modelo foram determinados no ponto mais próximo ao ponto apresentado no modelo reduzido, sendo registrada a cota da tomada de pressão e a partir desta determinada a cota piezométrica do ponto.

Conforme pode ser visto na figura 4.1 (pressões médias mostradas para vários tamanhos de malha) o escoamento simulado no modelo numérico segue a mesma tendência das pressões observadas no modelo físico, observando-se entretanto diferenças significativas particularmente nas proximidades da crista do vertedouro. Para o caso da malha com 1,75 m de espaçamento houve junto à crista do vertedouro uma diferença da ordem de quatro m.c.a. Entretanto nota-se que para malhas mais finas essas diferenças diminuem bastante. Por exemplo no caso da malha de 1,25 m o erro na crista do vertedouro reduziu-se para 0,77 m.c.a. Curiosamente malhas mais finas (1,0 m e 0,75 m) aparentemente não apresentam ganhos significativos de precisão no que tange às pressões nas proximidades da crista. Também é de se notar pela figura 4.1 que a linha piezométrica ao longo do escoamento apresentou-se qualitativamente bastante similar à tendência observada no modelo físico.

As tabelas 4.1, 4.2, 4.3, 4.4 e 4.5 apresentam os resultados numéricos das pressões observadas no modelo físico e calculadas no modelo numérico para pontos selecionados no meio do vão # 4, bem como as respectivas diferenças para vários tamanhos da malha. As diferenças nas coordenadas X entre o modelo físico e o modelo numérico resulta da discretização da malha que impede a definição da cota piezométrica no local exato.
FIGURA 4.1 – PRESSÕES MÉDIAS AO LONGO DO ESCOAMENTO NA BASE DO ESCOAMENTO NO VÃO QUATRO PARA A CHEIA MÁXIMA PROVÁVEL
TABELA 4.1 – PRESSÕES MÉDIAS PARA MALHA DE 2,0 m

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Coordenadas da Tomada de Pressão</th>
<th>Resultados Modelo Físico</th>
<th>Resultado Flow</th>
<th>Diferença Absoluta</th>
<th>Dif. Relativa Pressão %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modelo Físico</td>
<td>Modelo Flow</td>
<td>Cota Piez.</td>
<td>Pressão (m.c.a.)</td>
<td>Cota Piez.</td>
</tr>
<tr>
<td></td>
<td>X (m)</td>
<td>Z (m)</td>
<td>X (m)</td>
<td>Z (m)</td>
<td>Cota Piez.</td>
</tr>
<tr>
<td>1</td>
<td>-4.80</td>
<td>263.58</td>
<td>4.00</td>
<td>263</td>
<td>276.00</td>
</tr>
<tr>
<td>2</td>
<td>-2.40</td>
<td>264.67</td>
<td>2.00</td>
<td>265</td>
<td>270.20</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>265.00</td>
<td>-0.66</td>
<td>265</td>
<td>266.00</td>
</tr>
<tr>
<td>4</td>
<td>2.40</td>
<td>264.73</td>
<td>2.00</td>
<td>265</td>
<td>266.20</td>
</tr>
<tr>
<td>5</td>
<td>6.60</td>
<td>263.65</td>
<td>6.00</td>
<td>263</td>
<td>266.50</td>
</tr>
<tr>
<td>6</td>
<td>8.40</td>
<td>262.57</td>
<td>8.00</td>
<td>261</td>
<td>266.60</td>
</tr>
<tr>
<td>7</td>
<td>12.00</td>
<td>260.44</td>
<td>11.00</td>
<td>261</td>
<td>269.50</td>
</tr>
<tr>
<td>8</td>
<td>14.40</td>
<td>258.72</td>
<td>14.00</td>
<td>257</td>
<td>271.90</td>
</tr>
<tr>
<td>9</td>
<td>16.80</td>
<td>256.76</td>
<td>16.00</td>
<td>255</td>
<td>274.50</td>
</tr>
<tr>
<td>10</td>
<td>22.17</td>
<td>252.94</td>
<td>22.00</td>
<td>253</td>
<td>277.30</td>
</tr>
<tr>
<td>11</td>
<td>26.97</td>
<td>250.99</td>
<td>26.00</td>
<td>251</td>
<td>278.10</td>
</tr>
<tr>
<td>12</td>
<td>31.77</td>
<td>250.09</td>
<td>31.00</td>
<td>251</td>
<td>277.70</td>
</tr>
<tr>
<td>13</td>
<td>36.57</td>
<td>250.00</td>
<td>36.00</td>
<td>251</td>
<td>275.10</td>
</tr>
<tr>
<td>14</td>
<td>43.77</td>
<td>250.00</td>
<td>43.00</td>
<td>251</td>
<td>273.70</td>
</tr>
<tr>
<td>15</td>
<td>48.57</td>
<td>250.00</td>
<td>48.00</td>
<td>251</td>
<td>273.30</td>
</tr>
<tr>
<td>16</td>
<td>55.77</td>
<td>250.00</td>
<td>55.00</td>
<td>251</td>
<td>273.30</td>
</tr>
<tr>
<td>17</td>
<td>65.37</td>
<td>250.00</td>
<td>65.00</td>
<td>251</td>
<td>274.50</td>
</tr>
<tr>
<td>18</td>
<td>68.37</td>
<td>250.00</td>
<td>68.00</td>
<td>251</td>
<td>275.50</td>
</tr>
<tr>
<td>19</td>
<td>72.37</td>
<td>250.00</td>
<td>72.00</td>
<td>251</td>
<td>277.40</td>
</tr>
</tbody>
</table>
TABELA 4.2 – PRESSÕES MÉDIAS PARA MALHA DE 1,75 m

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Coordenadas da Tomada de Pressão</th>
<th>Resultados Modelo Físico</th>
<th>Resultado Flow</th>
<th>Diferença Absoluta</th>
<th>Dif. Relativa Pressão</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modelo Físico</td>
<td>Modelo Flow</td>
<td>Cota Piez. (m)</td>
<td>Pressão (m.c.a.)</td>
<td>Cota Piez. (m)</td>
</tr>
<tr>
<td></td>
<td>X (m)</td>
<td>Z (m)</td>
<td>X (m)</td>
<td>Z (m)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-4.80</td>
<td>263.58</td>
<td>-4.65</td>
<td>262.88</td>
<td>276.00</td>
</tr>
<tr>
<td>2</td>
<td>-2.40</td>
<td>264.67</td>
<td>-2.90</td>
<td>264.63</td>
<td>270.20</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>265.00</td>
<td>0.60</td>
<td>264.63</td>
<td>266.00</td>
</tr>
<tr>
<td>4</td>
<td>2.40</td>
<td>264.73</td>
<td>2.35</td>
<td>264.63</td>
<td>266.20</td>
</tr>
<tr>
<td>5</td>
<td>6.60</td>
<td>263.65</td>
<td>5.85</td>
<td>262.88</td>
<td>266.50</td>
</tr>
<tr>
<td>6</td>
<td>8.40</td>
<td>262.57</td>
<td>7.60</td>
<td>261.13</td>
<td>266.60</td>
</tr>
<tr>
<td>7</td>
<td>12.00</td>
<td>260.44</td>
<td>12.85</td>
<td>259.38</td>
<td>269.50</td>
</tr>
<tr>
<td>8</td>
<td>14.40</td>
<td>258.72</td>
<td>14.60</td>
<td>257.63</td>
<td>271.90</td>
</tr>
<tr>
<td>9</td>
<td>16.80</td>
<td>256.76</td>
<td>16.35</td>
<td>255.88</td>
<td>274.50</td>
</tr>
<tr>
<td>10</td>
<td>22.17</td>
<td>252.94</td>
<td>21.60</td>
<td>252.38</td>
<td>277.30</td>
</tr>
<tr>
<td>11</td>
<td>26.97</td>
<td>250.99</td>
<td>26.85</td>
<td>250.63</td>
<td>278.10</td>
</tr>
<tr>
<td>12</td>
<td>31.77</td>
<td>250.09</td>
<td>32.10</td>
<td>250.63</td>
<td>277.70</td>
</tr>
<tr>
<td>13</td>
<td>36.57</td>
<td>250.00</td>
<td>37.35</td>
<td>250.63</td>
<td>275.10</td>
</tr>
<tr>
<td>14</td>
<td>43.77</td>
<td>250.00</td>
<td>44.35</td>
<td>250.63</td>
<td>273.70</td>
</tr>
<tr>
<td>15</td>
<td>48.57</td>
<td>250.00</td>
<td>47.85</td>
<td>250.63</td>
<td>273.30</td>
</tr>
<tr>
<td>16</td>
<td>55.77</td>
<td>250.00</td>
<td>54.85</td>
<td>250.63</td>
<td>273.30</td>
</tr>
<tr>
<td>17</td>
<td>65.37</td>
<td>250.00</td>
<td>65.35</td>
<td>250.63</td>
<td>274.50</td>
</tr>
<tr>
<td>18</td>
<td>68.37</td>
<td>250.00</td>
<td>68.85</td>
<td>250.63</td>
<td>275.50</td>
</tr>
<tr>
<td>19</td>
<td>72.37</td>
<td>250.00</td>
<td>72.35</td>
<td>250.63</td>
<td>277.40</td>
</tr>
</tbody>
</table>
TABELA 4.3 – PRESSÕES MÉDIAS PARA MALHA DE 1,5 m

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Coordenadas da Tomada de Pressão</th>
<th>Resultados Modelo Físico</th>
<th>Resultado Flow</th>
<th>Diferença Absoluta</th>
<th>Dif. Relativa Pressão %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modelo Físico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X (m)</td>
<td>Z (m)</td>
<td>X (m)</td>
<td>Z (m)</td>
<td>Cota Piez. (m)</td>
</tr>
<tr>
<td>1</td>
<td>0.80</td>
<td>263.58</td>
<td>5.17</td>
<td>263.75</td>
<td>276.00</td>
</tr>
<tr>
<td>2</td>
<td>2.40</td>
<td>264.67</td>
<td>2.17</td>
<td>265.25</td>
<td>270.20</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>265.00</td>
<td>-0.67</td>
<td>265.25</td>
<td>266.00</td>
</tr>
<tr>
<td>4</td>
<td>2.40</td>
<td>264.73</td>
<td>2.33</td>
<td>265.25</td>
<td>266.20</td>
</tr>
<tr>
<td>5</td>
<td>6.60</td>
<td>263.65</td>
<td>6.83</td>
<td>263.75</td>
<td>266.50</td>
</tr>
<tr>
<td>6</td>
<td>8.40</td>
<td>262.57</td>
<td>8.33</td>
<td>262.25</td>
<td>266.60</td>
</tr>
<tr>
<td>7</td>
<td>12.00</td>
<td>260.44</td>
<td>12.83</td>
<td>260.75</td>
<td>269.50</td>
</tr>
<tr>
<td>8</td>
<td>14.40</td>
<td>258.72</td>
<td>14.33</td>
<td>257.75</td>
<td>271.90</td>
</tr>
<tr>
<td>9</td>
<td>16.80</td>
<td>256.76</td>
<td>15.83</td>
<td>256.25</td>
<td>274.50</td>
</tr>
<tr>
<td>10</td>
<td>22.17</td>
<td>252.94</td>
<td>21.83</td>
<td>253.25</td>
<td>277.30</td>
</tr>
<tr>
<td>11</td>
<td>26.97</td>
<td>250.99</td>
<td>26.33</td>
<td>251.75</td>
<td>278.10</td>
</tr>
<tr>
<td>12</td>
<td>31.77</td>
<td>250.09</td>
<td>30.83</td>
<td>250.25</td>
<td>277.70</td>
</tr>
<tr>
<td>13</td>
<td>36.57</td>
<td>250.00</td>
<td>36.83</td>
<td>250.25</td>
<td>275.10</td>
</tr>
<tr>
<td>14</td>
<td>43.77</td>
<td>250.00</td>
<td>44.33</td>
<td>250.25</td>
<td>273.70</td>
</tr>
<tr>
<td>15</td>
<td>48.57</td>
<td>250.00</td>
<td>47.33</td>
<td>250.25</td>
<td>273.30</td>
</tr>
<tr>
<td>16</td>
<td>55.77</td>
<td>250.00</td>
<td>54.83</td>
<td>250.25</td>
<td>273.30</td>
</tr>
<tr>
<td>17</td>
<td>65.37</td>
<td>250.00</td>
<td>65.33</td>
<td>250.25</td>
<td>274.50</td>
</tr>
<tr>
<td>18</td>
<td>68.37</td>
<td>250.00</td>
<td>68.33</td>
<td>250.25</td>
<td>275.50</td>
</tr>
<tr>
<td>19</td>
<td>72.37</td>
<td>250.00</td>
<td>72.83</td>
<td>250.25</td>
<td>277.40</td>
</tr>
</tbody>
</table>
TABELA 4.4 – PRESSÕES MÉDIAS PARA MALHA DE 1,25 m

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Coordenadas da Tomada de Pressão</th>
<th>Resultados Modelo Físico</th>
<th>Resultado Flow</th>
<th>Diferença Absoluta</th>
<th>Dif. Relativa Pressão %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modelo Físico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X (m)</td>
<td>Z (m)</td>
<td>X (m)</td>
<td>Z (m)</td>
<td>Cota Piez. (m)</td>
</tr>
<tr>
<td>1</td>
<td>-4.80</td>
<td>263.58</td>
<td>-5.16</td>
<td>263.44</td>
<td>276.00</td>
</tr>
<tr>
<td>2</td>
<td>-2.40</td>
<td>264.67</td>
<td>-2.66</td>
<td>264.68</td>
<td>270.20</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>265.00</td>
<td>-0.16</td>
<td>264.88</td>
<td>266.00</td>
</tr>
<tr>
<td>4</td>
<td>2.40</td>
<td>264.73</td>
<td>2.34</td>
<td>264.68</td>
<td>266.20</td>
</tr>
<tr>
<td>5</td>
<td>6.60</td>
<td>263.65</td>
<td>6.09</td>
<td>263.44</td>
<td>266.50</td>
</tr>
<tr>
<td>6</td>
<td>8.40</td>
<td>262.57</td>
<td>8.59</td>
<td>262.21</td>
<td>266.60</td>
</tr>
<tr>
<td>7</td>
<td>12.00</td>
<td>260.44</td>
<td>12.34</td>
<td>259.74</td>
<td>269.50</td>
</tr>
<tr>
<td>8</td>
<td>14.40</td>
<td>258.72</td>
<td>14.84</td>
<td>258.50</td>
<td>271.90</td>
</tr>
<tr>
<td>9</td>
<td>16.80</td>
<td>256.76</td>
<td>16.09</td>
<td>256.03</td>
<td>274.50</td>
</tr>
<tr>
<td>10</td>
<td>22.17</td>
<td>252.94</td>
<td>21.09</td>
<td>252.32</td>
<td>277.30</td>
</tr>
<tr>
<td>11</td>
<td>26.97</td>
<td>250.99</td>
<td>26.09</td>
<td>251.09</td>
<td>278.10</td>
</tr>
<tr>
<td>12</td>
<td>31.77</td>
<td>250.09</td>
<td>31.09</td>
<td>248.62</td>
<td>277.70</td>
</tr>
<tr>
<td>13</td>
<td>36.57</td>
<td>250.00</td>
<td>36.09</td>
<td>249.85</td>
<td>275.10</td>
</tr>
<tr>
<td>14</td>
<td>43.77</td>
<td>250.00</td>
<td>44.84</td>
<td>249.85</td>
<td>273.70</td>
</tr>
<tr>
<td>15</td>
<td>48.57</td>
<td>250.00</td>
<td>47.34</td>
<td>249.85</td>
<td>273.30</td>
</tr>
<tr>
<td>16</td>
<td>55.77</td>
<td>250.00</td>
<td>54.84</td>
<td>249.85</td>
<td>273.30</td>
</tr>
<tr>
<td>17</td>
<td>65.37</td>
<td>250.00</td>
<td>64.84</td>
<td>249.85</td>
<td>274.50</td>
</tr>
<tr>
<td>18</td>
<td>68.37</td>
<td>250.00</td>
<td>68.59</td>
<td>249.85</td>
<td>275.50</td>
</tr>
<tr>
<td>19</td>
<td>72.37</td>
<td>250.00</td>
<td>72.34</td>
<td>249.85</td>
<td>277.40</td>
</tr>
</tbody>
</table>
TABELA 4.5 – PRESSÕES MÉDIAS PARA MALHA DE 1,0 m

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Coordenadas da Tomada de Pressão</th>
<th>Resultados Modelo Físico</th>
<th>Resultado Flow</th>
<th>Diferença Absoluta</th>
<th>Dif. Relativa Pressão</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modelo Físico</td>
<td>Modelo Flow</td>
<td>Cota Piez. (m)</td>
<td>Pressão (m.c.a.)</td>
<td>Cota Piez. (m)</td>
</tr>
<tr>
<td>1</td>
<td>X (m)</td>
<td>Z (m)</td>
<td>X (m)</td>
<td>Z (m)</td>
<td>276.00</td>
</tr>
<tr>
<td>2</td>
<td>-4.80</td>
<td>263.58</td>
<td>4.64</td>
<td>262.50</td>
<td>270.20</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>265.00</td>
<td>-0.16</td>
<td>264.50</td>
<td>266.00</td>
</tr>
<tr>
<td>4</td>
<td>2.40</td>
<td>264.73</td>
<td>2.24</td>
<td>264.50</td>
<td>266.20</td>
</tr>
<tr>
<td>5</td>
<td>6.60</td>
<td>263.65</td>
<td>6.44</td>
<td>263.50</td>
<td>266.50</td>
</tr>
<tr>
<td>6</td>
<td>8.40</td>
<td>262.57</td>
<td>8.24</td>
<td>262.50</td>
<td>266.60</td>
</tr>
<tr>
<td>7</td>
<td>12.00</td>
<td>260.44</td>
<td>11.84</td>
<td>260.50</td>
<td>269.50</td>
</tr>
<tr>
<td>8</td>
<td>14.40</td>
<td>258.72</td>
<td>14.24</td>
<td>258.50</td>
<td>271.90</td>
</tr>
<tr>
<td>9</td>
<td>16.80</td>
<td>256.76</td>
<td>16.64</td>
<td>256.50</td>
<td>274.50</td>
</tr>
<tr>
<td>10</td>
<td>22.17</td>
<td>252.94</td>
<td>22.01</td>
<td>252.50</td>
<td>277.30</td>
</tr>
<tr>
<td>11</td>
<td>26.97</td>
<td>250.99</td>
<td>26.81</td>
<td>250.50</td>
<td>278.10</td>
</tr>
<tr>
<td>12</td>
<td>31.77</td>
<td>250.09</td>
<td>31.61</td>
<td>250.50</td>
<td>277.70</td>
</tr>
<tr>
<td>13</td>
<td>36.57</td>
<td>250.00</td>
<td>36.41</td>
<td>250.50</td>
<td>275.10</td>
</tr>
<tr>
<td>14</td>
<td>43.77</td>
<td>250.00</td>
<td>43.61</td>
<td>250.50</td>
<td>273.70</td>
</tr>
<tr>
<td>15</td>
<td>48.57</td>
<td>250.00</td>
<td>48.41</td>
<td>250.50</td>
<td>273.30</td>
</tr>
<tr>
<td>16</td>
<td>55.77</td>
<td>250.00</td>
<td>55.61</td>
<td>250.50</td>
<td>273.30</td>
</tr>
<tr>
<td>17</td>
<td>65.37</td>
<td>250.00</td>
<td>65.21</td>
<td>250.50</td>
<td>274.50</td>
</tr>
<tr>
<td>18</td>
<td>68.37</td>
<td>250.00</td>
<td>68.21</td>
<td>250.50</td>
<td>275.50</td>
</tr>
<tr>
<td>19</td>
<td>72.37</td>
<td>250.00</td>
<td>72.21</td>
<td>250.50</td>
<td>277.40</td>
</tr>
<tr>
<td>Ponto</td>
<td>Coordenadas da Tomada de Pressão</td>
<td>Resultados Modelo Físico</td>
<td>Resultado Flow</td>
<td>Diferença Absoluta</td>
<td>Difer. Relativa Pressão %</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Modelo Físico</td>
<td>Modelo Flow</td>
<td>Cota Piez. (m)</td>
<td>Pressão (m.c.a.)</td>
<td>Cota Piez. (m)</td>
</tr>
<tr>
<td>1</td>
<td>-4.80 263.58</td>
<td>-4.28 262.50</td>
<td>276.00</td>
<td>12.42</td>
<td>279.31</td>
</tr>
<tr>
<td>2</td>
<td>-2.40 264.67</td>
<td>-2.03 264.50</td>
<td>270.20</td>
<td>5.53</td>
<td>273.02</td>
</tr>
<tr>
<td>3</td>
<td>0.00 265.00</td>
<td>-0.53 264.50</td>
<td>266.00</td>
<td>1.00</td>
<td>266.51</td>
</tr>
<tr>
<td>4</td>
<td>2.40 264.73</td>
<td>2.47 264.50</td>
<td>266.20</td>
<td>1.47</td>
<td>267.56</td>
</tr>
<tr>
<td>5</td>
<td>6.60 263.65</td>
<td>6.22 263.50</td>
<td>266.50</td>
<td>2.85</td>
<td>268.39</td>
</tr>
<tr>
<td>6</td>
<td>8.40 262.57</td>
<td>8.47 262.50</td>
<td>266.60</td>
<td>4.03</td>
<td>268.97</td>
</tr>
<tr>
<td>8</td>
<td>12.00 260.44</td>
<td>11.47 260.50</td>
<td>269.50</td>
<td>9.06</td>
<td>271.61</td>
</tr>
<tr>
<td>9</td>
<td>14.40 258.72</td>
<td>14.47 258.50</td>
<td>271.90</td>
<td>13.18</td>
<td>273.51</td>
</tr>
<tr>
<td>10</td>
<td>16.80 256.76</td>
<td>16.72 256.50</td>
<td>274.50</td>
<td>17.74</td>
<td>275.74</td>
</tr>
<tr>
<td>11</td>
<td>22.17 252.94</td>
<td>21.97 252.50</td>
<td>277.30</td>
<td>24.36</td>
<td>279.12</td>
</tr>
<tr>
<td>12</td>
<td>26.97 250.99</td>
<td>26.47 250.50</td>
<td>278.10</td>
<td>27.11</td>
<td>279.61</td>
</tr>
<tr>
<td>13</td>
<td>31.77 250.09</td>
<td>31.72 250.50</td>
<td>277.70</td>
<td>27.61</td>
<td>279.47</td>
</tr>
<tr>
<td>14</td>
<td>36.57 250.00</td>
<td>36.22 250.50</td>
<td>275.10</td>
<td>25.10</td>
<td>278.24</td>
</tr>
<tr>
<td>16</td>
<td>43.77 250.00</td>
<td>43.72 250.50</td>
<td>273.70</td>
<td>23.70</td>
<td>277.47</td>
</tr>
<tr>
<td>17</td>
<td>48.57 250.00</td>
<td>48.22 250.50</td>
<td>273.30</td>
<td>23.30</td>
<td>277.10</td>
</tr>
<tr>
<td>18</td>
<td>55.77 250.00</td>
<td>55.72 250.50</td>
<td>273.30</td>
<td>23.30</td>
<td>277.00</td>
</tr>
<tr>
<td>20</td>
<td>65.37 250.00</td>
<td>65.47 250.50</td>
<td>274.50</td>
<td>24.50</td>
<td>277.79</td>
</tr>
<tr>
<td>21</td>
<td>68.37 250.00</td>
<td>68.47 250.50</td>
<td>275.50</td>
<td>25.50</td>
<td>278.34</td>
</tr>
<tr>
<td>22</td>
<td>72.37 250.00</td>
<td>72.22 250.50</td>
<td>277.40</td>
<td>27.40</td>
<td>279.67</td>
</tr>
</tbody>
</table>
4.3 Superfície Livre

A comparação entre as superfícies livres do escoamento foram verificadas para a posição do muro lateral da esquerda hidráulica do vertedouro. A figura 4.2 mostra os resultados para o modelo físico e o modelo numérico, este último para vários tamanhos de malha e usando as rugosidades mencionadas no item 3.2.3 (0,15 m nas escavações e 1 mm no concreto). Embora podem-se observar diferenças significativas entre os resultados do modelo físico e numérico a linha de superfície de água segue a mesma tendência qualitativa. O modelo numérico apresentou uma precisão razoável para aplicações mais simples como posicionamento de munhóes, dimensionamento de muros laterais, ou definição de cargas hidrostáticas para cálculos de estabilidade. Conforme pode ser visto na figura 4.2 e nas tabelas 4.6, 4.7 e 4.8 na maioria dos casos o ressalto fica aparentemente confinado entre as abscissas x = 25 m e x = 40 m com algumas oscilações em função da discretização da malha. Com exceção da malha de 1,00 m, as simulações com o modelo numérico proporcionam um comprimento menor para o ressalto comparado com o modelo físico (10 m para malha de 1,25 contra 15 m no modelo físico). Na simulação com a malha de 1,00 m o ressalto resultou maior que o modelo físico com um comprimento aproximado de 28 m. A altura do ressalto é modesta da ordem de quatro metros no modelo físico o que se explica pelo número de Froude baixo (1,3 a montante do ressalto). No modelo numérico a altura do ressalto tem sido sistematicamente maior, da ordem de 5 a 6 metros.

Entretanto há de se observar que as dimensões mencionadas baseiam-se tão somente na principal subida dos níveis de água entre as abscissas x = 20 m e x = 45 m. Uma análise mais detalhada dos níveis de água e da posição do ressalto poderia ser realizada utilizando resultados do modelo seccional e uma simulação 2D. Nota-se na figura 4.2 e nas tabelas 4.7, 4.8 e 4.9 que, de um modo geral, as diferenças entre modelo físico e numérico diminuem com o refinamento da malha o que leva a acreditar que com malhas mais finas (talvez e = 0,1 m) resultados melhores podem ser obtidos via modelo numérico, porém a um custo de tempo de processamento bastante superior. De acordo com os resultados obtidos nas simulações numéricas verificaram-se no modelo numérico níveis de água a montante do ressalto sistematicamente mais baixos que no modelo físico. Este fato ensejou a realizar simulações com as mesmas condições anteriores exceto para as rugosidades. Baseado em avaliações simplificadas
das perdas de carga, considerou-se uma rugosidade mais baixa nas escavações de 0,1 m e mais alta para o concreto de 0,002 m. Denominou-se esta hipótese de “rugosidade B”; em contraposição a rugosidade estipulada anteriormente (0,15 m para o terreno e 0,001 m para o concreto) foi denominada “rugosidade A”.

Essa mudança de rugosidade visa reduzir a perda de carga na entrada do vertedouro já que o domínio não engloba todo reservatório e aumentar-la no concreto, procurando aumentar os níveis de água dentro da estrutura do vertedouro. A figura 4.3 apresenta a comparação dos níveis de água para as duas hipóteses de rugosidades, considerando uma malha de 1,5 m, tamanho escolhido de modo a reduzir o tempo de processamento da simulação. A nova simulação melhorou ligeiramente os resultados da superfície livre, mostrando a necessidade da calibração de modelos numéricos para obtenção de resultados mais próximos da realidade.

Cumpre ainda assinalar que a rugosidade do concreto não é reproduzida exatamente no modelo físico, onde a estrutura é reproduzida em acrílico e madeira, de modo que também os níveis do modelo físico devem diferir ligeiramente do protótipo. A tabela 4.10 compara os níveis de água para as duas hipóteses de rugosidade apresentando também os valores para o modelo físico. Todavia considera-se que também diferentes imposições nas condições de contorno de montante devem ser testadas para melhorar os resultados assim como aumentar o domínio computacional para melhor reproduzir as condições naturais do escoamento.

Também a geometria exata das condições de aproximação deve ser melhor analisada para que se consiga uma reprodução mais precisa dos níveis de água. Entretanto simulações adicionais para resolver estas questões não foram realizadas devido aos prazos rígidos estabelecidos para esta dissertação.

Vale ainda mencionar que a alteração da rugosidade não modificou significativamente a vazão (20.775 m3/s para a rugosidade A contra 20.667 m3/s para a rugosidade B) o que se justifica pelo caráter essencialmente potencial do escoamento sobre a estrutura.
FIGURA 4.2 – SUPERFÍCIE LIVRE AO LONGO DO MURO LATERAL DA ESQUERDA HIDRÁULICA (N.A.-RESERVATÓRIO = 287,02 m)
FIGURA 4.3 – SUPERFÍCIE LIVRE AO LONGO DO MURO LATERAL DA ESQUERDA HIDRÁULICA CONSIDERANDO DIFERENTES RUGOSIDADES

\(N_A_{\text{RESERVATÓRIO}} = 287,02 \, \text{m} \)
TABELA 4.7 – NÍVEIS DE ÁGUA JUNTO AO MURO LATERAL ESQUERDO (MALHA DE 2,0 m E 1,75 m)

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Modelo Físico</th>
<th>Modelo Flow e = 2,0 m</th>
<th>Modelo Flow e = 1,75 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X (m)</td>
<td>N.A. (m)</td>
<td>X (m)</td>
</tr>
<tr>
<td>5</td>
<td>-28.60</td>
<td>285.20</td>
<td>-28.66</td>
</tr>
<tr>
<td>6</td>
<td>-27.60</td>
<td>282.70</td>
<td>-27.60</td>
</tr>
<tr>
<td>7</td>
<td>-26.00</td>
<td>280.30</td>
<td>-26.66</td>
</tr>
<tr>
<td>8</td>
<td>-24.00</td>
<td>279.70</td>
<td>-24.66</td>
</tr>
<tr>
<td>9</td>
<td>-21.70</td>
<td>280.30</td>
<td>-22.66</td>
</tr>
<tr>
<td>10</td>
<td>-19.20</td>
<td>280.48</td>
<td>-18.66</td>
</tr>
<tr>
<td>11</td>
<td>-16.80</td>
<td>281.18</td>
<td>-16.66</td>
</tr>
<tr>
<td>12</td>
<td>-14.80</td>
<td>282.79</td>
<td>-14.66</td>
</tr>
<tr>
<td>13</td>
<td>-12.30</td>
<td>282.87</td>
<td>-12.66</td>
</tr>
<tr>
<td>14</td>
<td>-9.80</td>
<td>283.15</td>
<td>-10.66</td>
</tr>
<tr>
<td>15</td>
<td>-4.80</td>
<td>283.39</td>
<td>-4.66</td>
</tr>
<tr>
<td>16</td>
<td>0.20</td>
<td>283.08</td>
<td>-0.66</td>
</tr>
<tr>
<td>17</td>
<td>5.20</td>
<td>282.48</td>
<td>5.34</td>
</tr>
<tr>
<td>18</td>
<td>10.20</td>
<td>279.70</td>
<td>9.34</td>
</tr>
<tr>
<td>19</td>
<td>15.20</td>
<td>276.20</td>
<td>15.34</td>
</tr>
<tr>
<td>20</td>
<td>20.20</td>
<td>273.05</td>
<td>19.34</td>
</tr>
<tr>
<td>21</td>
<td>25.20</td>
<td>271.20</td>
<td>25.34</td>
</tr>
<tr>
<td>22</td>
<td>30.20</td>
<td>271.98</td>
<td>29.34</td>
</tr>
<tr>
<td>23</td>
<td>35.20</td>
<td>272.30</td>
<td>35.34</td>
</tr>
<tr>
<td>24</td>
<td>40.20</td>
<td>275.52</td>
<td>39.34</td>
</tr>
<tr>
<td>25</td>
<td>50.20</td>
<td>275.79</td>
<td>49.34</td>
</tr>
<tr>
<td>26</td>
<td>60.20</td>
<td>276.10</td>
<td>59.34</td>
</tr>
<tr>
<td>27</td>
<td>70.20</td>
<td>276.30</td>
<td>69.34</td>
</tr>
<tr>
<td>28</td>
<td>80.20</td>
<td>277.80</td>
<td>79.34</td>
</tr>
<tr>
<td>29</td>
<td>89.15</td>
<td>278.80</td>
<td>89.34</td>
</tr>
</tbody>
</table>
TABELA 4.8 – NÍVEIS DE ÁGUA JUNTO AO MURO LATERAL ESQUERDO (MALHA 1,5 m E 1,25 m)

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Modelo Físico</th>
<th>Modelo Flow e = 1,5 m</th>
<th>Modelo Flow e = 1,25 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X (m) N.A. (m)</td>
<td>X (m) N.A. (m) ∆ N.A. (m)</td>
<td>X (m) N.A. (m) ∆ N.A. (m)</td>
</tr>
<tr>
<td>5</td>
<td>-28.60 285.20</td>
<td>27.74 283.72 1.48</td>
<td>28.86 283.60 1.60</td>
</tr>
<tr>
<td>6</td>
<td>-27.60 282.70</td>
<td>27.60 283.68 -0.98</td>
<td>27.61 283.54 -0.84</td>
</tr>
<tr>
<td>7</td>
<td>-26.00 280.30</td>
<td>26.24 283.35 -3.05</td>
<td>26.37 281.61 -1.31</td>
</tr>
<tr>
<td>8</td>
<td>-24.00 279.70</td>
<td>24.73 282.45 -2.75</td>
<td>23.87 281.95 -2.25</td>
</tr>
<tr>
<td>9</td>
<td>-21.70 280.30</td>
<td>21.73 281.71 -1.41</td>
<td>21.37 281.26 -0.96</td>
</tr>
<tr>
<td>10</td>
<td>-19.20 280.48</td>
<td>18.72 280.93 -0.45</td>
<td>18.88 280.28 0.20</td>
</tr>
<tr>
<td>11</td>
<td>-16.80 281.18</td>
<td>17.21 280.90 0.28</td>
<td>16.38 279.89 1.29</td>
</tr>
<tr>
<td>12</td>
<td>-14.80 282.79</td>
<td>14.20 281.18 1.61</td>
<td>15.13 280.04 2.75</td>
</tr>
<tr>
<td>13</td>
<td>-12.30 282.87</td>
<td>12.70 281.35 1.52</td>
<td>12.64 281.13 1.74</td>
</tr>
<tr>
<td>14</td>
<td>-9.80 283.15</td>
<td>-9.69 282.21 0.94</td>
<td>10.14 281.30 1.85</td>
</tr>
<tr>
<td>15</td>
<td>-4.80 283.39</td>
<td>-5.18 281.86 1.53</td>
<td>-5.15 281.90 1.49</td>
</tr>
<tr>
<td>16</td>
<td>0.20 283.08</td>
<td>-0.67 280.57 2.51</td>
<td>-0.15 281.13 1.95</td>
</tr>
<tr>
<td>17</td>
<td>5.20 282.48</td>
<td>5.35 278.62 3.86</td>
<td>4.84 279.72 2.76</td>
</tr>
<tr>
<td>18</td>
<td>10.20 279.70</td>
<td>9.86 276.45 3.25</td>
<td>9.83 277.43 2.27</td>
</tr>
<tr>
<td>19</td>
<td>15.20 276.20</td>
<td>14.38 274.51 1.69</td>
<td>14.83 274.47 1.73</td>
</tr>
<tr>
<td>20</td>
<td>20.20 273.05</td>
<td>20.39 269.89 3.16</td>
<td>19.82 271.33 1.72</td>
</tr>
<tr>
<td>21</td>
<td>25.20 271.20</td>
<td>24.91 267.48 3.72</td>
<td>24.81 268.36 2.84</td>
</tr>
<tr>
<td>22</td>
<td>30.20 271.98</td>
<td>29.42 274.27 -2.29</td>
<td>29.80 272.56 -0.58</td>
</tr>
<tr>
<td>23</td>
<td>35.20 272.30</td>
<td>35.44 274.00 -1.70</td>
<td>34.80 274.67 -2.37</td>
</tr>
<tr>
<td>24</td>
<td>40.20 275.52</td>
<td>39.95 273.42 2.10</td>
<td>39.79 273.73 1.79</td>
</tr>
<tr>
<td>25</td>
<td>50.20 275.79</td>
<td>50.48 272.45 3.34</td>
<td>49.78 273.72 2.07</td>
</tr>
<tr>
<td>26</td>
<td>60.20 276.10</td>
<td>59.51 273.76 2.34</td>
<td>59.76 273.87 2.23</td>
</tr>
<tr>
<td>27</td>
<td>70.20 276.30</td>
<td>70.04 274.88 1.42</td>
<td>69.75 275.26 1.04</td>
</tr>
<tr>
<td>28</td>
<td>80.20 277.80</td>
<td>80.57 275.60 2.20</td>
<td>79.73 275.81 1.99</td>
</tr>
<tr>
<td>29</td>
<td>89.15 278.80</td>
<td>89.59 276.05 2.75</td>
<td>88.47 276.48 2.32</td>
</tr>
</tbody>
</table>
TABELA 4.9 – NÍVEIS DE ÁGUA JUNTO AO MURO LATERAL ESQUERDO (MALHA 1,0 m E 0,75 m)

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Modelo Físico</th>
<th>Modelo Flow e = 1,0 m</th>
<th>Modelo Flow e = 0,75 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X (m)</td>
<td>N.A. (m)</td>
<td>X (m)</td>
</tr>
<tr>
<td>5</td>
<td>-28.60</td>
<td>285.20</td>
<td>-29.16</td>
</tr>
<tr>
<td>6</td>
<td>-27.60</td>
<td>282.70</td>
<td>-27.16</td>
</tr>
<tr>
<td>7</td>
<td>-26.00</td>
<td>280.30</td>
<td>-26.16</td>
</tr>
<tr>
<td>8</td>
<td>-24.00</td>
<td>279.70</td>
<td>-24.16</td>
</tr>
<tr>
<td>9</td>
<td>-21.70</td>
<td>280.30</td>
<td>-22.16</td>
</tr>
<tr>
<td>10</td>
<td>-19.20</td>
<td>280.48</td>
<td>-19.16</td>
</tr>
<tr>
<td>11</td>
<td>-16.80</td>
<td>281.18</td>
<td>-17.16</td>
</tr>
<tr>
<td>12</td>
<td>-14.80</td>
<td>282.79</td>
<td>-15.16</td>
</tr>
<tr>
<td>13</td>
<td>-12.30</td>
<td>282.87</td>
<td>-12.16</td>
</tr>
<tr>
<td>14</td>
<td>-9.80</td>
<td>283.15</td>
<td>-10.16</td>
</tr>
<tr>
<td>15</td>
<td>-4.80</td>
<td>283.39</td>
<td>-5.16</td>
</tr>
<tr>
<td>16</td>
<td>0.20</td>
<td>283.08</td>
<td>-0.16</td>
</tr>
<tr>
<td>17</td>
<td>5.20</td>
<td>282.48</td>
<td>4.84</td>
</tr>
<tr>
<td>18</td>
<td>10.20</td>
<td>279.70</td>
<td>9.84</td>
</tr>
<tr>
<td>19</td>
<td>15.20</td>
<td>276.20</td>
<td>14.84</td>
</tr>
<tr>
<td>20</td>
<td>20.20</td>
<td>273.05</td>
<td>19.84</td>
</tr>
<tr>
<td>21</td>
<td>25.20</td>
<td>271.20</td>
<td>24.84</td>
</tr>
<tr>
<td>22</td>
<td>30.20</td>
<td>271.98</td>
<td>29.84</td>
</tr>
<tr>
<td>23</td>
<td>35.20</td>
<td>272.30</td>
<td>34.84</td>
</tr>
<tr>
<td>24</td>
<td>40.20</td>
<td>275.52</td>
<td>39.84</td>
</tr>
<tr>
<td>25</td>
<td>50.20</td>
<td>275.79</td>
<td>49.84</td>
</tr>
<tr>
<td>26</td>
<td>60.20</td>
<td>276.10</td>
<td>59.84</td>
</tr>
<tr>
<td>27</td>
<td>70.20</td>
<td>276.30</td>
<td>69.84</td>
</tr>
<tr>
<td>28</td>
<td>80.20</td>
<td>277.80</td>
<td>79.84</td>
</tr>
<tr>
<td>29</td>
<td>89.15</td>
<td>278.80</td>
<td>88.84</td>
</tr>
</tbody>
</table>
TABELA 4.10 – NÍVEIS DE ÁGUA PARA DIFERENTES RUGOSIDADE

<table>
<thead>
<tr>
<th>Ponto</th>
<th>X (m)</th>
<th>N.A. (m)</th>
<th>Modelo Físico</th>
<th>X (m)</th>
<th>N.A. (m)</th>
<th>∆ N.A. (m)</th>
<th>Modelo Flow Rugosidade B</th>
<th>X (m)</th>
<th>N.A. (m)</th>
<th>∆ N.A. (m)</th>
<th>Modelo Flow Rugosidade A</th>
<th>X (m)</th>
<th>N.A. (m)</th>
<th>∆ N.A. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-28.60</td>
<td>285.20</td>
<td>-27.74</td>
<td>283.75</td>
<td>1.45</td>
<td>-27.74</td>
<td>283.72</td>
<td>1.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-27.60</td>
<td>282.70</td>
<td>-27.60</td>
<td>283.70</td>
<td>-1.00</td>
<td>-27.60</td>
<td>283.68</td>
<td>-0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-26.00</td>
<td>280.30</td>
<td>-26.24</td>
<td>283.22</td>
<td>-2.92</td>
<td>-26.24</td>
<td>283.35</td>
<td>-3.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-24.00</td>
<td>279.70</td>
<td>-24.73</td>
<td>282.51</td>
<td>-2.81</td>
<td>-24.73</td>
<td>282.45</td>
<td>-2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-21.70</td>
<td>280.30</td>
<td>-21.73</td>
<td>281.87</td>
<td>-1.57</td>
<td>-21.73</td>
<td>281.71</td>
<td>-1.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-19.20</td>
<td>280.48</td>
<td>-18.72</td>
<td>280.85</td>
<td>-0.37</td>
<td>-18.72</td>
<td>280.93</td>
<td>-0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-16.80</td>
<td>281.18</td>
<td>-17.21</td>
<td>280.77</td>
<td>0.41</td>
<td>-17.21</td>
<td>280.90</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-14.80</td>
<td>282.79</td>
<td>-14.20</td>
<td>281.01</td>
<td>1.78</td>
<td>-14.20</td>
<td>281.18</td>
<td>1.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-12.30</td>
<td>282.87</td>
<td>-12.70</td>
<td>281.26</td>
<td>1.61</td>
<td>-12.70</td>
<td>281.35</td>
<td>1.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-9.80</td>
<td>283.15</td>
<td>-9.69</td>
<td>281.83</td>
<td>1.32</td>
<td>-9.69</td>
<td>282.21</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.80</td>
<td>283.39</td>
<td>-5.18</td>
<td>282.24</td>
<td>1.15</td>
<td>-5.18</td>
<td>281.86</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.20</td>
<td>283.08</td>
<td>-0.67</td>
<td>281.03</td>
<td>2.05</td>
<td>-0.67</td>
<td>280.57</td>
<td>2.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5.20</td>
<td>282.48</td>
<td>5.35</td>
<td>279.14</td>
<td>3.34</td>
<td>5.35</td>
<td>278.62</td>
<td>3.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>10.20</td>
<td>279.70</td>
<td>9.86</td>
<td>277.09</td>
<td>2.61</td>
<td>9.86</td>
<td>276.45</td>
<td>3.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>15.20</td>
<td>276.20</td>
<td>14.38</td>
<td>274.36</td>
<td>1.84</td>
<td>14.38</td>
<td>274.51</td>
<td>1.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20.20</td>
<td>273.05</td>
<td>20.39</td>
<td>270.56</td>
<td>2.49</td>
<td>20.39</td>
<td>269.89</td>
<td>3.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>25.20</td>
<td>271.20</td>
<td>24.91</td>
<td>268.45</td>
<td>2.75</td>
<td>24.91</td>
<td>267.48</td>
<td>3.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>30.20</td>
<td>271.98</td>
<td>29.42</td>
<td>273.84</td>
<td>-1.86</td>
<td>29.42</td>
<td>274.27</td>
<td>-2.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>35.20</td>
<td>272.30</td>
<td>35.44</td>
<td>273.53</td>
<td>-1.23</td>
<td>35.44</td>
<td>274.00</td>
<td>-1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>40.20</td>
<td>275.52</td>
<td>39.95</td>
<td>273.90</td>
<td>1.62</td>
<td>39.95</td>
<td>273.42</td>
<td>2.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>50.20</td>
<td>275.79</td>
<td>50.48</td>
<td>273.52</td>
<td>2.27</td>
<td>50.48</td>
<td>272.45</td>
<td>3.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>60.20</td>
<td>276.10</td>
<td>59.51</td>
<td>274.54</td>
<td>1.56</td>
<td>59.51</td>
<td>273.76</td>
<td>2.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>70.20</td>
<td>276.30</td>
<td>70.04</td>
<td>275.40</td>
<td>0.90</td>
<td>70.04</td>
<td>274.88</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>80.20</td>
<td>277.80</td>
<td>80.57</td>
<td>276.11</td>
<td>1.69</td>
<td>80.57</td>
<td>275.60</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>89.15</td>
<td>278.80</td>
<td>89.59</td>
<td>276.42</td>
<td>2.38</td>
<td>89.59</td>
<td>276.05</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4 Capacidade de Descarga e Velocidades

Foram calculadas as vazões em todas as simulações de modo a verificar a influência do tamanho da malha sobre os resultados. O modelo numérico, no caso das malhas mais finas (1,0 m ou 0,75 m), apresenta valores dentro da precisão das medidas de vazão no modelo físico. Malhas mais grossas no entanto conduziram a erros maiores mostrando a influência da malha nos resultados. A vazão foi calculada multiplicando a velocidade na direção principal do escoamento pela área de fluido na célula. A tabela 4.11 apresenta os resultados obtidos e os erros percentuais para as simulações da cheia máxima provável com as diferentes malhas utilizadas. Adicionalmente foram simulados os escoamentos com cargas hidráulicas parciais no vertedouro para comparar a curva de descarga do vertedouro. A tabela 4.12 apresenta os resultados obtidos nas simulações com carga parcial. Essas simulações foram feitas considerando uma malha de 0,75 m de espaçamento mas
abrangendo apenas metade do vertedouro, o que deve gerar erros, já que as condições de aproximação não são simétricas. A redução dos níveis de água também gera uma diferença relativa no tamanho da malha explicando em parte o maior erro percentual para vazões baixas simuladas.

<table>
<thead>
<tr>
<th>e = 2 m</th>
<th>e = 1.75 m</th>
<th>e = 1.5 m</th>
<th>e = 1.25 m</th>
<th>e = 1 m</th>
<th>e = 0.75 m</th>
<th>Mod.Físico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vazão (m³/s)</td>
<td>21380</td>
<td>20792</td>
<td>20775</td>
<td>20088</td>
<td>19213</td>
<td>19371</td>
</tr>
<tr>
<td>Erro Abs.(m³/s)</td>
<td>2080</td>
<td>1492</td>
<td>1475</td>
<td>788</td>
<td>-87</td>
<td>71</td>
</tr>
<tr>
<td>Erro (%)</td>
<td>10.8%</td>
<td>7.7%</td>
<td>7.6%</td>
<td>4.1%</td>
<td>0.5%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

TABELA 4.12 – VAZÕES PARA DIFERENTES CARGAS VERTEDOURO (MALHA 0,75 m)

<table>
<thead>
<tr>
<th>N.A. montante</th>
<th>Vazão (m³/s)</th>
<th>Erro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modelo Físico</td>
<td>Modelo Numérico</td>
</tr>
<tr>
<td>277.32</td>
<td>7500</td>
<td>8029</td>
</tr>
<tr>
<td>281.89</td>
<td>12500</td>
<td>12984</td>
</tr>
<tr>
<td>287.02</td>
<td>19300</td>
<td>19371</td>
</tr>
</tbody>
</table>

Outra aplicação do modelo numérico é a possibilidade da obtenção de velocidades em qualquer direção e ponto da malha, inclusive possibilitando o traçado de perfis de velocidades tanto vertical quanto horizontalmente. Os perfis de velocidades possibilitam a obtenção de vazões em diferentes seções, como por exemplo, verificar a diferença de vazão nos vão extremos em relação aos vão centrais. Esses resultados possibilitam estimar coeficientes de contração de pilares e ombreiras melhorando as estimativas que aparecem em ábacos de projeto com bastante dispersão dos resultados.

As figuras 4.3 e 4.4 mostram o perfil de velocidades a montante do vertedouro, na crista do vertedouro e na bacia de dissipação. Nota-se na crista um perfil bastante próximo do escoamento potencial com linhas de corrente circulares (vórtice potencial: V.r = cte). Na aproximação o perfil reproduz uma distribuição de velocidades típica em um canal e na bacia de dissipação notam-se velocidades elevadas próximo ao fundo provocadas pelo jato submerso do ressalto.
FIGURA 4.4 – PERFIS DE VELOCIDADES A MONTANTE E NA CRISTA DO VERTEDOURO

FIGURA 4.5 – PERFIS DE VELOCIDADES NA BACIA DE DISSIPAÇÃO
5 CONCLUSÕES E RECOMENDAÇÕES

O presente trabalho apresentou comparações entre pressões, velocidades e níveis de água obtidos em modelos físico e numérico para o caso de um escoamento turbulento sobre um vertedouro com ogiva curva. Constatou-se uma boa aproximação qualitativa da pressão e níveis de água. Pode se observar uma influência considerável do tamanho da malha na precisão dos resultados do modelo numérico. A necessidade de usar uma malha bastante pequena constitui uma importante limitação nas simulações numéricas para manter o tempo de processamento em valores razoáveis, principalmente para escoamentos 3D.

Também a extensão do domínio de cálculo do modelo numérico constitui-se em um problema da modelagem numérica tendo em vista a grande extensão espacial de obras hidráulicas complexas e grandes tais como usinas hidrelétricas. Entretanto, apesar dessas limitações, o modelo numérico pode ser bastante útil em casos onde modelos reduzidos físicos são inviáveis devido a restrições financeiras ou de tempo. Pode também ser uma forma de desenvolver o projeto antes do início dos testes em modelo reduzido que então seriam utilizados para refinar o projeto e analisar problemas pontuais. De uma forma geral, os resultados reproduziram bem as condições do modelo reduzido qualitativamente, ocorrendo contudo no detalhe erros numéricos às vezes consideráveis para malhas grosseiras. Além do problema do tamanho da malha, estes erros também podem ser oriundos das condições de contorno e da extensão do domínio de cálculo, sendo aconselhável uma melhor avaliação das mesmas em um trabalho futuro. Também a redução do tamanho da malha deve trazer melhoria nos resultados quantitativos.

Os resultados de pressão resultaram satisfatórios para aplicações mais simples como dimensionamentos de pilares e muros laterais, porém não são suficientemente precisos para avaliar, por exemplo, problemas de cavitação em estruturas hidráulicas. Os resultados seguiram a mesma tendência dos valores observados no modelo físico porém com diferenças no detalhe para todas as malhas. Os erros no entanto diminuíram com a redução do tamanho da malha. As avaliações da superfície livre também mostraram erros sistemáticos para todas as malhas simuladas, o que pode em parte ser atribuído às rugosidades usadas nas simulações e também a simplificações no domínio de cálculo. Acredita-se que os
erros nos níveis de água resultam de diferenças nas perdas de carga na aproximação (rugosidade e geometria). A geometria foi bastante simplificada para reduzir o domínio de cálculo e a rugosidade carece de uma calibração mais precisa. Os resultados das vazões obtidas mostraram uma diminuição do erro de acordo com a malha utilizada, reproduzindo aproximadamente a curva chave do modelo reduzido. Recomenda-se mais pesquisas utilizando o software Flow-3D para avaliar a influência da rugosidade nos resultados e comprovando a necessidade de uma calibração do modelo antes de seu uso.

Os principais problemas para o uso de modelos numéricos na simulação de escoamentos complexos em obras hidráulicas na fase de projeto são:

(1) – A ausência de dados medidos no protótipo para calibração. Geralmente as estruturas ainda não estão executadas quando da modelação e, portanto, medidas diretas são impossíveis. Além disso, normalmente, não há a ocorrência de vazões correspondentes à condição de projeto, levando à necessidade de extrapolações nem sempre confiáveis.

(2) – A falta de informações sobre a redução viável do domínio de cálculo, redução esta necessária para manter o tempo de processamento e os requisitos de memória em limites razoáveis.

(3) – A dificuldade da definição a priori do tamanho da malha apropriada ao problema em questão.

Por outro lado, a principal vantagem do modelo numérico sobre o físico reside nos prazos e custos consideravelmente menores que os valores correspondentes para modelos físicos. No caso da simulação de corpos de água naturais (baías, lagos, estuários etc.) estas limitações, via de regra, não existem, pois sempre é possível efetuar medidas diretas de níveis e velocidades além do domínio ser melhor definido e muitas vezes a hipótese de águas rasas (2D) ser aplicável. Isso se reflete no grande número de situações deste tipo simulados com sucesso usando malhas bastante grosseiras.

Entretanto, no caso de obras hidráulicas de grande responsabilidade, parece ainda recomendável, sempre que possível, a realização de testes em modelos físicos, principalmente na fase de refinamento do projeto. O modelo numérico pode ser bastante útil numa etapa inicial do projeto, para definir o lay-out geral e o
dimensionamento preliminar das estruturas, sujeito a alterações posteriores em função dos resultados do modelo físico. O modelo utilizado nesta dissertação, isto é, o FLOW-3D parece adequado para esta finalidade, porém outros modelos numéricos também seriam viáveis.

Por outro lado há de se considerar que o modelo físico, via de regra executado pela semelhança de Froude, também é sujeito aos efeitos de escala, principalmente quando a viscosidade (por exemplo perdas de carga) ou problemas de aeração passam a influir significativamente nos resultados do modelo. Este problema é particularmente importante quando comparações com dados medidos no protótipo para calibragem são impossíveis e portanto impõe limitações também aos modelos físicos.

Para pesquisas futuras recomenda-se a realização de simulações com malhas mais finas (da ordem de centímetros), usando computadores mais avançados que o disponível por este autor. Também a representação no modelo numérico da estrutura completa, incluindo a região de aproximação, seria recomendável.

Recomenda-se ainda a realização em protótipos já executados de medidas do nível de água para inferir melhor as rugosidades de escavações em rocha, concreto e outras superfícies para um melhor ajuste destes parâmetros.

Além disto uma análise mais aprofundada dos valores das constantes empíricas usadas no modelo k – e ou outros modelos de turbulência, base do FLOW-3D, seria bastante útil.

Finalmente deve se mencionar que a presente dissertação constitui-se apenas em uma primeira análise neste campo e que muita pesquisa ainda deve ser realizada antes de se poder substituir de forma definitiva os modelos físicos por modelos numéricos no projeto de obras hidráulicas complexas onde predominam escoamentos turbulentos tridimensionais.

Porém acredita-se que, no futuro, com a evolução dos computadores e o esclarecimento definitivo das várias questões levantadas neste trabalho, tais como extensão do domínio de cálculo, condições de contorno, dimensão da malha, rugosidades e constantes do modelo seja possível substituir os testes em modelos físicos reduzidos por simulações em modelos matemáticos de escoamento turbulento.
6 REFERÊNCIAS BIBLIOGRÁFICAS

CEHPAR; Projeto HL-120 Estudos Hidráulicos em Modelo Reduzido do Aproveitamento Hidrelétrico São Salvador, Relatório no 01, Estudo do Projeto Original e da Alternativa 01 do Vertedouro, Modelo Parcial, Curitiba 2002.

CEHPAR; Projeto HL-120 Estudos Hidráulicos em Modelo Reduzido do Aproveitamento Hidrelétrico São Salvador, Relatório no 01 – Adendo 01, Estudo do Projeto Original e da Alternativa 01 do Vertedouro, Modelo Parcial, Curitiba 2002.
CEHPAR; Projeto HL-120 Estudos Hidráulicos em Modelo Reduzido do Aproveitamento Hidrelétrico São Salvador, Relatório no 05, Estudos do Vertedouro, Curitiba, 2003.

FRIEDRICH, M. F.; Aplicação de Modelagem Física e Computacional a um Escoamento Fluvial, Tese de Mestrado, Curso de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental, UFPR, Curitiba, 2004.

7 ANEXO I
7.1 THEORY OVERVIEW

FLOW-3D is a general-purpose computer program with many capabilities. Using input data, the user can select different physical options to represent a wide variety of fluid flow phenomena. In the following sections we present the fluid equations of motion used in FLOW-3D and describe the available equation options. Following the equation description is an outline of the numerical solution algorithms used to approximate these equations. Our approach is to subdivide the flow region into a grid of variable-sized rectangular cells. For each cell, values are retained for the basic flow quantities (e.g., velocity, pressure, and density). Finite-difference (or finite-volume) approximations to the equations of motion are then used to compute the spatial and temporal evolution of these values.

It is important to note that FLOW-3D can be operated in several "modes" corresponding to different limiting cases of the general fluid equations. For instance, one mode is for compressible flows, while another is for purely incompressible flow situations. In the latter case, the fluid density and energy may be assumed constant and do not need to be computed. Intermediate modes include limited compressibility for acoustic effects or temperature-dependent densities for thermally buoyant flows. Additionally, there are separate modes for one and two fluid problems and for one incompressible fluid with a free-surface. These special cases, or modes of operation, correspond to different choices for the governing differential equations.

Some physical and numerical models are described in more detail in Flow Science's Technical Notes, which also include examples. A complete list of the Notes is given in Appendix A at the end of this chapter.

7.2 EQUATIONS OF MOTION

7.2.1 Coordinate Systems

The differential equations to be solved are written in terms of Cartesian coordinates (x, y, z). For cylindrical coordinates (r, θ, z) the x-coordinate is interpreted as the radial direction, the y-coordinate is transformed to the azimuthal coordinate, θ, and z is the axial coordinate. For cylindrical geometry, additional terms must be added to the
Cartesian equations of motion. In the following, these terms are included with a coefficient \(\xi \), such that \(\xi = 0 \) corresponds to Cartesian geometry, while \(\xi \) corresponds to cylindrical geometry.

All equations are formulated with area and volume porosity functions. This formulation (called FAVOR™ for Fractional Area/Volume Obstacle Representation Method [1]) is used to model complex geometric regions.

For example, zero-volume porosity regions are used to define obstacles, while area porosities may be used to model thin porous baffles. Porosity functions also introduce some simplifications in the specification of free-surface and wall boundary conditions.

Generally, in FLOW-3D area and volume fractions are time independent. However, these quantities may vary with time when the moving obstacle model is employed.

7.2.2 Mass Continuity Equation and Its Variations

The general mass continuity equation is:

\[
VF \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u A_x) + \frac{\partial}{\partial y}(\rho v A_y) + \frac{\partial}{\partial z}(\rho w A_z) + \xi \frac{\rho u A_x}{x} = R_{\text{DIF}} + R_{\text{SOR}} \tag{3.1}
\]

where \(VF \) is the fractional volume open to flow, \(\rho \) is the fluid density, \(RDIF \) is a turbulent diffusion term, and \(RSOR \) is a mass source. The velocity components \((u, v, w) \) are in the coordinate directions \((x, y, z) \) or \((r, \theta, z) \). \(A_x \) is the fractional area open to flow in the \(x \)-direction, \(A_y \) and \(A_z \) are similar area fractions for flow in the \(y \) and \(z \) directions, respectively. The coefficient \(R \) depends on the choice of coordinate system in the following way. When cylindrical coordinates are used, \(y \) derivatives must be converted to azimuthal derivatives,

\[
\frac{\partial}{\partial y} \rightarrow \frac{1}{r} \frac{\partial}{\partial \theta} \tag{3.2}
\]

In the code this transformation is accomplished by using the equivalent form

\[
\frac{1}{r} \frac{\partial}{\partial \theta} = \frac{r}{r} \frac{\partial}{\partial y} \tag{3.3}
\]
where \(y = r_m \theta \) and \(r_m \) is a fixed reference radius. The transformation given by Equation (3) is particularly convenient because its implementation only requires the multiplier \(R = r_m/r \) on each \(y \) derivative in the original Cartesian coordinate equations. When Cartesian coordinates are to be used, \(R \) is set to unity and \(\theta \) is set to zero.

The first term on the right side of Equation (3.1), is a turbulent diffusion term,

\[
R_{\text{diff}} = \frac{\partial}{\partial x} \left(\nu_p A_x \frac{\partial \rho}{\partial x} \right) + R \frac{\partial}{\partial y} \left(\nu_p A_y R \frac{\partial \rho}{\partial y} \right) + \frac{\partial}{\partial z} \left(\nu_p A_z \frac{\partial \rho}{\partial z} \right) + \frac{\xi}{x} \frac{\partial \rho A_x}{x}
\]

where the coefficient \(\nu_p \) is equal to \(c_p \mu/\rho \), in which \(\mu \) is the coefficient of momentum diffusion (i.e., the viscosity) and \(c_p \) is a constant whose reciprocal is usually referred to as the turbulent Schmidt number. This type of mass diffusion only makes sense for turbulent mixing processes in fluids having a non-uniform density.

The last term, \(R_{\text{SOR}} \), on the right side of Equation (3.1) is a density source term that can be used, for example, to model mass injection through porous obstacle surfaces.

Compressible flow problems require solution of the full density transport equation as stated in Equation (1). For incompressible fluids, \(\theta \) is a constant and Equation (3.1) reduces to the incompressibility condition

\[
\frac{\partial}{\partial x} (u A_x) + R \frac{\partial}{\partial y} (v A_y) + \frac{\partial}{\partial z} (w A_z) + \frac{\xi}{x} \frac{u A_x}{x} = \frac{R_{\text{SOR}}}{\rho}
\]

For problems in which the propagation of acoustic pressure waves is important, but the fluid may otherwise be treated as incompressible, the density time derivative is approximated by

\[
\frac{\partial \rho}{\partial t} = \frac{1}{c^2} \frac{\partial p}{\partial t}
\]

where \(c^2 \) is the square of the sound speed and \(p \) is the pressure. This approximation is valid in the range

\[
\left| \frac{\partial \rho}{\rho} \right| < 0.1
\]

With this approximation the modified continuity equation then becomes

\[
\frac{V}{\rho c^2} \frac{\partial p}{\partial t} + \frac{\partial u A_x}{\partial x} + R \frac{\partial v A_y}{\partial y} + \frac{\partial w A_z}{\partial z} + \frac{\xi u A_x}{x} = \frac{R_{\text{SOR}}}{\rho}
\]
7.2.3 Momentum Equations

The equations of motion for the fluid velocity components \((u, v, w)\) in the three coordinate directions are the Navier-Stokes equations with some additional terms,

\[
\frac{\partial u}{\partial t} + \frac{1}{V_f} \left(u A_x \frac{\partial u}{\partial x} + v A_y \frac{\partial u}{\partial y} + w A_z \frac{\partial u}{\partial z} \right) - \frac{1}{\rho} \frac{\partial p}{\partial x} + G_x + f_x - b_x - \frac{R_{sor}}{\rho V_f} (u - u_w - \delta u) = \frac{1}{V_f} \left(u A_y \frac{\partial v}{\partial y} + v A_y \frac{\partial v}{\partial y} + w A_z \frac{\partial v}{\partial z} \right) + \frac{A_y \mu v}{xV_f} + \frac{1}{\rho} \left(R \frac{\partial p}{\partial y} \right) + G_y + f_y - b_y - \frac{R_{sor}}{\rho V_f} (v - v_w - \delta v),
\]

\[
\frac{\partial w}{\partial t} + \frac{1}{V_f} \left(u A_x \frac{\partial w}{\partial x} + v A_y \frac{\partial w}{\partial y} + w A_z \frac{\partial w}{\partial z} \right) - \frac{1}{\rho} \frac{\partial p}{\partial z} + G_z + f_z - b_z - \frac{R_{sor}}{\rho V_f} (w - w_w - \delta w),
\]

(3.8)

In these equations, \((G_x, G_y, G_z)\) are body accelerations, \((f_x, f_y, f_z)\) are viscous accelerations, \((b_x, b_y, b_z)\) are flow losses in porous media or across porous baffle plates, and the final terms account for the injection of mass at a source represented by a geometry component.

The term \(U_w=(u_w, v_w, w_w)\) in Equation (3.8) is the velocity of the source component, which will generally be non-zero for a mass source at a General Moving Object (GMO).

The term \(U_s=(u_s, v_s, w_s)\) is the velocity of the fluid at the surface of the source relative to the source itself. It is computed in each control volume as

\[
U_z = \frac{dQ}{\rho \text{RHOQS} \cdot \text{R} \cdot dA} \cdot \mathbf{n},
\]

where \(dQ\) is the mass flow rate, \(\text{RHOQS}\) fluid source density, \(dA\) area of the source surface in the cell and \(\mathbf{n}\) outward normal to the surface. When \(\delta=0.0\) in Equation (3.8) the source is of the stagnation pressure type. If \(\delta=1.0\), the source is of the static pressure type.

At a stagnation pressure source, fluid is assumed to enter the domain at zero velocity. As a result, pressure must build up at the source to move the fluid away from the source. Such sources are designed to model fluid emerging at the end of a rocket or a deflating balloon. In general, stagnation pressure sources apply to cases when the momentum of the emerging fluid is created inside the source component, like in a rocket engine.
At a static pressure source the fluid velocity is computed from the mass flow rate and the surface area of the source. In this case, no extra pressure is required to propel the fluid away from the source. An example of such source is fluid emerging from a long straight pipe. Note that in this case the fluid momentum is created far from where the source is located.

The distinction between those two types of mass sources is important when the force acting from the fluid on the source component must be computed accurately. This is the case with coupled-motion GMO components. Note that the static or stagnation pressure property does not apply to negative mass source, i.e., sinks.

For a variable dynamic viscosity μ, the viscous accelerations are

$$
\rho V_x \frac{\partial f_x}{\partial x} = w_{sx} - \left\{ \frac{\partial}{\partial x} \left(A_x \tau_{xx} \right) + R \frac{\partial}{\partial y} \left(A_y \tau_{xy} \right) + \frac{\partial}{\partial z} \left(A_z \tau_{xz} \right) + \frac{\partial}{\partial x} \left(A_x \tau_{xx} - A_y \tau_{yx} \right) \right\}
$$

$$
\rho V_y \frac{\partial f_y}{\partial y} = w_{sy} - \left\{ \frac{\partial}{\partial x} \left(A_x \tau_{xy} \right) + R \frac{\partial}{\partial y} \left(A_y \tau_{yy} \right) + \frac{\partial}{\partial z} \left(A_z \tau_{yz} \right) + \frac{\partial}{\partial x} \left(A_x \tau_{yx} + A_y \tau_{yy} \right) \right\}
$$

$$
\rho V_z \frac{\partial f_z}{\partial z} = w_{sz} - \left\{ \frac{\partial}{\partial x} \left(A_x \tau_{xz} \right) + R \frac{\partial}{\partial y} \left(A_y \tau_{yz} \right) + \frac{\partial}{\partial z} \left(A_z \tau_{zz} \right) + \frac{\partial}{\partial x} \left(A_x \tau_{xz} + \frac{\partial}{\partial \xi} \left(A_x \tau_{xz} \right) \right) \right\}
$$

where

$$
\tau_{xx} = -2\mu \left\{ \frac{\partial u}{\partial x} + \frac{1}{3} \left(\frac{\partial u}{\partial x} + R \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right\}
$$

$$
\tau_{yy} = -2\mu \left\{ \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right\} \left\{ \frac{\partial v}{\partial x} + \frac{1}{3} \left(\frac{\partial u}{\partial x} + R \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right\}
$$

$$
\tau_{zz} = -2\mu \left\{ \frac{\partial w}{\partial z} + \frac{\partial v}{\partial x} \right\} \left\{ \frac{\partial w}{\partial z} + \frac{1}{3} \left(\frac{\partial u}{\partial x} + R \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right\}
$$

$$
\tau_{xy} = -\mu \left\{ \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} \right\}
$$

$$
\tau_{yz} = -\mu \left\{ \frac{\partial w}{\partial z} + \frac{\partial v}{\partial y} \right\}
$$

$$
\tau_{zx} = -\mu \left\{ \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right\}
$$

$$
\tau_{zx} = -\mu \left\{ \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right\}
$$

(3.10)

7.2.3.1 Wall-Shear Stress
In the above expressions the terms \(w_{sx}, w_{sy} \) and \(w_{sz} \) are wall shear stresses. If these terms are omitted, there is no wall shear stress because the remaining terms contain the fractional flow areas \((A_x, A_y, A_z) \) which vanish at walls. The wall stresses are modeled by assuming a zero tangential velocity on the portion of any area closed to flow. Mesh and moving obstacle boundaries are an exception because they can be assigned non-zero tangential velocities. In this case the allowed boundary motion corresponds to a rigid body translation of the boundary parallel to its surface. For turbulent flows, a law-of-the-wall velocity profile is assumed near the wall, which modifies the wall shear stress magnitude. These details are more fully explained in Turbulence Models.

7.2.3.2 Viscosity Evaluation

The dynamic viscosity, \(\nu \), can be assigned constant molecular values for each fluid in a one or two fluid problem. In mesh cells containing a mixture, the viscosity is evaluated as a volume fraction weighted average of the constant values. In the single-fluid model the fluid can consist of two components, each with its own constant density and viscosity. In this case the mixture fluid viscosity is evaluated as a volume fraction weighted average of the two constants. Furthermore, fluid viscosity can be a function of solid fraction for partially solidified fluids (see Solidification Drag Model).

When the turbulence option is used, the viscosity is a sum of the molecular and turbulent values. For non-Newtonian fluids the viscosity can be a function of the strain rate and/or temperature. A generic expression based on the "Carreau" model is used in FLOW-3D for the strain rate-dependent viscosity:

\[
\mu = \mu_\infty + \frac{\mu_0 E_T - \mu_\infty}{\lambda_\infty + \left(\lambda_0 E_T \right)^{\frac{1}{n}} + \frac{\lambda_2}{\sqrt{c_{ij} c_{ij}}}^{\frac{1}{2}}}
\]

(3.11)

where

\[
c_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
\]

(3.12)

is the fluid strain rate in Cartesian tensor notation, \(\mu_\infty, \mu_0, \lambda_\infty, \lambda_0, \lambda_2 \) and \(n \) are constants and
\[E_r = \exp \left[a \left(\frac{T^*}{T - b} - C \right) \right] \]

(3.13)

and \(T^* \), \(a \), \(b \) and \(c \) are also constants, and \(T \) is fluid temperature.

Expressions given by Equations (3.11) and (3.13) can be specified using input variables according to the following correspondence table:

- \(\mu_0 = \text{MU1} \)
- \(a = \text{MUTMP1} \)
- \(T^* = \text{TSTAR} \)

- \(\lambda_0 = \text{MUC0} \)
- \(b = \text{MUTMP2} \)

- \(\lambda_1 = \text{MUC1} \)
- \(c = \text{MUTMP3} \)

- \(\lambda_2 = \text{MUC4} \)

- \(n = \text{MUC2} \)

- \(\mu_{\infty} = \text{MUC3} \)

- \(\lambda = \text{MUC00} \)

The quantity \(\text{TSTAR} \) serves as a reference temperature. Note that \(\text{TSTAR} \) and the constant \(b \) have dimensions of a temperature. A temperature-dependent viscosity can be defined even when there is no shear dependence.

Because the viscosity is evaluated in a separate subroutine (MUCAL), the user should find it relatively easy to customize other FLOW-3D non-Newtonian and temperature-dependent viscosity models.

If the viscosity, \(\mu \), is zero, no viscous stresses are computed. Furthermore, wall shear stress evaluation may be turned off by the user in the input data file (see \textit{IWSH}).

7.2.3.3 Baffle Flow Losses

Flow losses across porous baffle plates have the form (e.g., in the x-direction),

\[b_x = \frac{1}{L} (KBAF1 \cdot u + 0.5 \cdot KBAF2 \cdot u | u |) \]

(3.14)

where \(KBAF1 \) is an input constant having dimensions of velocity, \(KBAF2 \) is a dimensionless input constant, and \(L \) is the length over which the loss occurs. In the
code, this length is set equal to the distance between pressure values located on either side of the baffle. At constant flow speed, \(u \), this form ensures a fixed pressure drop, \(\Delta p \), across the baffle independent of mesh spacing:

\[
\Delta p = \rho \cdot (KBAF1 \cdot u + 0.5 \cdot KBAF2 \cdot u |u|) \tag{3.15}
\]

The \(y \) and \(z \) direction losses are defined in a similar manner with the velocity and length in the corresponding direction. If \(KBAF1 \) and \(KBAF2 \) are zero, no flow loss calculations are performed.

7.2.3.4 Non-Inertial Reference Frame

For applications to fluid sloshing in moving containers, for example, it is useful to modify the equations of motion to have a formulation for general non-inertial accelerations. The form of such accelerations on a fluid element at \(r \) and moving with velocity \(u \) is

\[
G = g - \left(\dot{U} + \dot{\Omega} \times (r - R) + 2\Omega \times u + \Omega \times \left[\Omega \times (r - R) \right] \right) \tag{3.16}
\]

In this expression \(g \) is a constant gravitational acceleration and \(\dot{U} \) is the translational acceleration of point \(R \) in the mesh coordinate system with respect to an inertial reference frame. \(\Omega \) and \(\dot{\Omega} \) are the rotation rate (\(\text{rad/s} \)) and rotation rate of change (\(\text{rad/s}^2 \)) of the mesh coordinate system about point \(R \) with respect to an inertial frame [2].

Equation (3.16) is easily derived from Equation 3.2.9 in Reference [2] by a translation of origins.

Inclusion of the vector \(R \) is useful in applications to rigid bodies where \(R \) is often chosen to be the center of mass of the body. If this choice is made and no external forces act on the system, then \(\dot{U} = 0 \). Often the origin of the body-fixed (mesh) coordinate system is at the center of gravity, in which case \(R = 0 \).
The user can specify constant gravitational accelerations through the g term or time-dependent translational accelerations through the \dot{U} term.

To use this latter option, or for more general accelerations, the user must specify the quantities \dot{U}, Ω and $\dot{\Omega}$ in the subroutine reserved for this purpose (MOTION). Furthermore, these quantities must be expressed in terms of the mesh coordinate system (i.e., body-fixed system). They are always specified in Cartesian coordinates regardless of whether Cartesian or cylindrical mesh coordinates are used. For cylindrical coordinates, the accelerations are automatically transformed by the code to the proper local components. The components of the local accelerations experienced by the fluid are automatically calculated by the program from the nine reference frame motion components through Equation (3.16). This is a completely general computation and does not require intervention by the user.

For special cases, the user must supply his or her own (MOTION) routine for each new application. The standard version of MOTION can handle a limited number of situations via input data. These include harmonic variations of the acceleration components and tabular specification, including impulses.

Another special case of the non-inertial reference frame is handled by the coupled rigid body dynamics model in FLOW-3D. This model solves the dynamic equations for the movement of a rigid body in which the computational reference frame is embedded. Use of this model usually involves specification of control and environmental forces and torques experienced by the body through input parameters or by modifications to the two subroutines RBCTRL and RBENVR. See Coupled Rigid Body Dynamics for a more detailed description.

7.2.3.5 Fluid Interfaces and Free-Surfaces

Fluid configurations are defined in terms of a volume of fluid (VOF) function, $F(x,y,z,t)$ [3]. This function represents the volume of fluid #1 per unit volume and satisfies the equation

$$
\frac{\partial F}{\partial t} + \frac{1}{V_f} \left[\frac{\partial}{\partial x} (FA_x) + R \frac{\partial}{\partial y} (FA_y) + \frac{\partial}{\partial z} (FA_z) + \frac{\partial}{\partial x} (FA_{xt}) \right] = F_{\text{DIFF}} + F_{\text{SOR}}
$$

(3.17)
The diffusion coefficient is defined as

\[\nu F = c_F \mu / \rho \]

where \(c_F \) is a constant whose reciprocal is sometimes referred to as a turbulent Schmidt number. This diffusion term only makes sense for the turbulent mixing of two fluids whose distribution is defined by the \(F \) function.

The term \(F_{SOR} \) corresponds to the density source \(R_{SOR} \) in Equation (3.1); \(F_{SOR} \) is the time rate of change of the volume fraction of fluid #1 associated with the mass source for fluid #1.

The interpretation of \(F \) depends on the type of problem being solved. Incompressible problems must involve either a single fluid with a free-surface or two fluids and no free-surfaces. For a single fluid, \(F \) represents the volume fraction occupied by the fluid. Thus, fluid exists where \(F=1 \), and void regions correspond to locations where \(F=0 \). "Voids" are regions without fluid mass that have a uniform pressure assigned to them. Physically, they represent regions filled with a vapor or gas whose density is insignificant with respect to the fluid density.

Two-fluid problems may be composed of either two incompressible fluids or one incompressible and one compressible fluid. \(F \) represents the volume fraction of the incompressible fluid component in either case, which is referred to as fluid #1. The complementary region with volume fraction, \(1-F \), represents fluid #2 and may have either a constant density or its density is computed from the compressible fluid equation-of-state.

7.2.3.6 Fluid Energy Equations

For compressible or thermal flow problems, the internal energy equation is

\[
V_F \frac{\partial}{\partial t} (\rho I) + \frac{\partial}{\partial x} (\rho I u A_x) + R \frac{\partial}{\partial y} (\rho I v A_y) + \frac{\partial}{\partial z} (\rho I w A_z) + \frac{\partial}{\partial x} \left(\rho \mu A_x \right) =
\]

\[
- \rho \left[\frac{\partial u A_x}{\partial x} + R \frac{\partial v A_y}{\partial y} + \frac{\partial w A_z}{\partial z} + \frac{\partial u A_z}{\partial x} \right] + RI_{diff} + T_{DF} + RI_{SOR}
\]

(3.19)
where \(I \) is the macroscopic mixture internal energy. For two-fluid problems

\[
\rho I = F \rho_1 I_1 + (1-F) \rho_2 I_2 \tag{3.20}
\]

where \(F \) is the volume fraction of fluid \#1 and indexes indicate quantities related to fluid \#1 or fluid \#2.

7.2.3.7 Heat of Transformation

Energy is assumed to be a linear function of temperature,

\[
I = CV_1 \cdot T + (1 - f_s) \cdot CLHT_1 \tag{3.21}
\]

where \(CV_1 \) is the specific heat at constant volume of fluid \#1, \(f_s \) is solid fraction, and \(CLHT_1 \) the latent heat. Latent heat associated with the melting or freezing of fluid \#1 can be defined in one of two ways. The simplest method consists of specifying the solidus temperature, \(TS_1 \), the liquidus temperature, \(TL_1 \), and the specific energy of the phase transformation occurring between these two temperatures, \(CLHT_1 \). In this case the latent heat is removed linearly with temperature between \(TL_1 \) to \(TS_1 \).

In many real materials, however, this is not the case. Furthermore, it is possible for some materials to exhibit solid-state phase changes; that is, as they cool, they assume more stable crystalline states releasing heats-of-transformation with each change. The second method of defining phase changes consists of inputting a specific-energy-versus-temperature table for the material. The table consists of pairs of numbers \(CLTP(L) \) and \(CLHT(L) \), where \(CLTP(L) \) is the temperature of point \(L \) and \(CLHT(L) \) is the total energy between temperature \(CLTP(L-1) \) and \(CLTP(L) \) as shown in the figure below. \(CLHT(1) \) is the specific energy at \(CLTP(1) \). The temperatures \(CLTP(L) \) must be monotonically increasing with increasing \(L \), although it is permissible to have phase change discontinuities by assigning the same value to two successive temperatures in the table. The last temperature in the table must be equivalent to the liquidus temperature \(TL_1 \) or else \(TL_1 \) must be input explicitly and must be greater than the last \(CLTP(L) \) temperature. The value of \(TS_1 \) must agree with one of the \(CLTP(L) \) values.

The specific heat \(CVS_1 \) is used between a temperature of absolute zero and the first value of \(CLTP(L) \). At temperatures above \(TL_1 \) or above the last \(CLTP(L) \) value, the specific heat is constant and equal to \(CV_1 \).
Only fluid #1 can undergo a liquid/solid or solid/solid phase change. Both solidification and melting are allowed. Solidification shrinkage is a separate option that can be activated (see Solidification Shrinkage and Porosity Models).

It is permitted to have $T_{S1}=T_{L1}$, which implies a discontinuity in the energy-versus-temperature relation. It is important to note that a non-zero value for T_{S1} is the flag that tells the code to do a solidification analysis.

![Example of energy vs. temperature input table with phase transformation both in liquid and solid](image)

7.2.3.8 Segregation Model

The segregation model describes the evolution of binary alloy composition due to phase transformation, diffusion in both liquid and solid phases and convection in the liquid metal. The transport equation for the liquid-solid mixture composition, C_m, is

$$V_e \frac{\partial C_m}{\partial t} + \left(u \frac{\partial C_l}{\partial x} + v R A_y \frac{\partial C_l}{\partial y} + w A_z \frac{\partial C_l}{\partial z} \right) = \frac{\partial}{\partial x} \left(A_x D_x \frac{\partial C_l}{\partial x} \right) + \frac{\partial}{\partial y} \left(R A_y D_y \frac{\partial C_l}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z D_z \frac{\partial C_l}{\partial z} \right)$$

(3.22)

where C_l and C_s are the liquid and solid phase compositions, and D_l and D_s the mass diffusion coefficients in the liquid and solid phases. Composition can be described as solute mass per unit metal volume or as weight percentage. In this equation, the solid phase is assumed to be at rest with respect to the computational domain.

The mixture composition C_m is obtained by averaging the liquid and solid phase compositions over the control volume. Assuming that C_l and C_s are constant within the control volume, i.e., using the lever rule, we have
\[C_m = (1 - f_t)C_t + f_t C_s \]
\[\text{with} \]
\[C_s = PCOEF \cdot C_t \]
where \(PCOEF \) is the partition coefficient [25]. \(PCOEF \) is constant, therefore, the liquidus and solidus lines of the phase diagram are straight lines

\[T_i = T_{MELT} - (T_{MELT} - T_{L1}) \cdot \frac{C}{C_{STAR}} \]
\[T_s = T_{MELT} - (T_{MELT} - T_{S1}) \cdot \frac{C}{C_{STAR}} \]
where \(T_{S1} \) and \(T_{L1} \) are the solidus and liquidus temperatures at \(C=C_{STAR} \). If composition and temperature in a control volume are known, then the solid fraction can be computed using Equations (3.23), (3.24), (3.25), and (3.26) as

\[f_s = \frac{1}{1 - PCOEF} \cdot \frac{T - T_i}{T - T_{MELT}} \]
Eutectic reaction is included in the phase diagram. In a eutectic reaction, phase transformation proceeds isothermally at the eutectic temperature \(T=TEUT \). Then the mass fraction of the eutectic in the solidified casting is given by

\[f_e = 1 - \left(1 - \frac{C}{C_{EUT}}\right) \cdot \frac{1}{1 - PCOEF} \]
Liquid metal density variation due to the changes in the composition are taken into account by using a linear expression for the liquid mixture density

\[\rho_l = \rho_0 \left[1 - CEXF1(C - C_{STAR})\right] \]
where \(\rho_0 \) is the liquid density at the composition \(C= C_{STAR} \) and

\[CEXF1 = \frac{\rho_0 \left(1 - \frac{1}{100} \frac{C_s}{C_t} \right)}{100} \]
if the composition is defined as percentage of weight and
if the composition is defined as mass per unit volume; \(\rho \) and \(\rho' \) are the densities of the solvent and solute, respectively.

Liquid metal density can also include a temperature-dependent term, as described in \textit{Buoyant Flow Model}. Finally, the liquid/solid mixture density is computed as the straight average of the liquid density given by Equation (3.29) and the solid phase density \(\rho_{\text{IFS}} \).

\[
\rho = (1 - f_s') \rho_l + f_s' \rho_{\text{IFS}}
\]
(3.32)

7.2.3.9 Thermal Diffusion and Sources

Two diffusion processes are included in the above expression: one (\(\text{RIDIF} \)) for the turbulent diffusion of \(I \) and the other (\(\text{TIDIF} \)) for heat conduction. These terms are defined as

\[
\text{RI}_{\text{dif}} = \frac{\partial}{\partial x} \left(v_i A_i \frac{\partial I}{\partial x} \right) + \frac{\partial}{\partial y} \left(v_i A_i \frac{\partial I}{\partial y} \right) + \frac{\partial}{\partial z} \left(v_i A_i \frac{\partial I}{\partial z} \right) + \xi v_i A_i \frac{\partial I}{\partial x}
\]
(3.33)

\[
\text{T}_{\text{dif}} = \frac{\partial}{\partial x} \left(k A_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k A_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k A_z \frac{\partial T}{\partial z} \right) + \xi k A_x \frac{T}{x}
\]
(3.34)

The coefficient \(\nu \) is equal to \(c_{11} \mu / \rho \), where \(c_{11} \) is a reciprocal turbulent Prandtl number. In the thermal conduction term, the thermal conductivity \(k \) can be directly specified or the Prandtl number \(C_T \) can be specified, in which case the conductivity is \(k = \mu c_{11} / C_T \). For two-fluid problems the conductivities for each fluid are locally weighted by the fluid volume fraction \(F \).

The last term, \(\text{RISOR} \), on the right side of Equation (3.19) is an energy source term. Sources can be associated with the mass source \(\text{RSOR} \), with heat transfer mechanisms at solid boundaries, distributed heat sources within the fluid or viscous heating. A detailed discussion of wall heat transfer is given in \textit{Wall Heat Transfer}. The viscous heating source term is

\[
2\mu \left[e_{ij} e_{ij} - \frac{1}{3} (e_{11} + e_{22} + e_{33})^2 \right]
\]
(3.35)

where \(e_{ij} \) are the components of the strain rate tensor, and
7.2.4 Shallow Water Model

This section describes how the Volume-of-Fluid (VOF) method for tracking fluid interfaces and the FAVOR™ method for the description of geometry can be combined in a shallow water model [30]. The volume fraction variable, VF, can be used to define a variable bottom contour and F the depth of fluid.

A shallow flow is one in which the horizontal extent of the flow is much larger than the vertical extent. Examples include the ocean, large estuaries, seasonal floods, liquid coatings, lubricating films, and water on automobile windshields.

If a flow is shallow enough that vertical accelerations can be neglected, then it can be shown [31] that a good approximation to the flow is to replace all flow variables by their averages in the vertical direction. The resulting depth-averaged, three-dimensional equations of motion then become a two-dimensional representation in the horizontal plane. The most interesting cases involve a top fluid surface that is free to exhibit wave phenomena. In some instances non-uniform horizontal boundaries (e.g., a sloping beach) may also induce small deviations from purely horizontal flow. In this sense the depth-averaged approximation still includes some three-dimensional effects. There are excellent discussions of the shallow-water equations and higher order refinements of those equations in references [32, 33].

When the depth averaging treatment is applied to the three-dimensional vertical momentum equation, it reduces to a hydrostatic relation for the pressure

$$p = \rho gh$$ \hspace{1cm} (3.128)

in terms of the fluid density ρ, vertical acceleration of gravity g and the fluid height h [31].

The general three-dimensional formulation used in FLOW-3D is limited to two dimensions for the shallow water approximation to be valid. This is done by restricting fluid to reside in only one vertical layer of control volumes (i.e., the first layer of real cells in the z-direction). Let the height of this layer be z. The two-dimensional momentum equations used in FLOW-3D are identical to the shallow water equations if the fluid pressure is defined correctly. In FLOW-3D the pressure in an element containing a free-surface is defined as

$$p = p_0 + \rho gh$$ \hspace{1cm} (3.129)

where p_0 is the external pressure on the surface of the liquid, including the surface tension forces, and H is the height of the surface above the bottom of the grid. H is, therefore, the sum of the fluid and obstacle heights.
The volume/area blockages used in the FAVOR™ method can be interpreted as the height of the bottom contour. When making this correspondence, it is only necessary to make sure all the approximations used in FLOW-3D consider the solid blockage to lie at the bottom of the control volumes.

Substituting the fluid height expressions into the shallow water continuity equation, and using the appropriate area fractions for the x and y directions, we arrive at

$$H = (1 - V_f) \cdot \delta_z + F \cdot V_f \cdot \delta_z$$

(3.130)

This is precisely the equation for F used in the VOF method for flow in a single, horizontal layer of control volumes provided there is no transport of F in the z-direction, a restriction that is necessary in the shallow-flow model (see Equation (3.17)). It shows that there is an equivalence between the VOF and FAVOR™ representations as used for a single layer of control volumes and the usual shallow water formulation. Additions of Coriolis forces and viscous stresses are straightforward and need no further comment.

Equation (3.131) can be solved explicitly, in which case, there is a limitation on the size of the time step to prevent gravity waves from moving more than one grid cell in one time step. An implicit solution (IMP=1) is also available that removes the limitation on time-step size. The implicit option is used by default.

Fluid can move into dry regions or withdraw from previously wet regions. Nonlinear waves and weak hydraulic jumps are automatically included in the model. The addition of surface tension forces with wall adhesion to the depth averaged equations is described in [30].

The shallow water model assumes that the shallow direction is the z-direction. There must be at least two real cells defined in each mesh block in the z-direction (there is no reason to have more than two cells). Fluid is only allowed to exist in the lower layer of cells. Therefore, the cell size in the z-direction should be sufficient to contain all fluid in that layer throughout the simulation, i.e., it must be larger than any fluid depth occurring in the model. Any fluid crossing into the second layer of cells will be removed resulting in a loss of mass conservation. To be on a safe side, the cell size in the z-direction can be made significantly larger than fluid depth, but it should not be excessively great or there could be a loss of accuracy.

Cells in the upper layer of z-cells should be left empty of fluid and geometry. This will enable the model to properly treat the free surface in the lower layer.
The shallow water model is not compatible with any of the turbulent models, but viscous forces are usually important in large-scale shallow-water flows. These can be included by defining a laminar viscosity and/or the roughness of the bottom of the reservoir.

Activation of the shallow water model in FLOW-3D is accomplished by setting the parameter ISWAT=1. Definition of the bottom contour is made by using obstacles to fill the space below the contour.

Initial fluid configurations, Coriolis forces, and bottom roughness (i.e., obstacle roughness) are defined in the same way as for three-dimensional simulations. A wind shear on the free-surface can be imposed in terms of the top wall tangential velocity components (UBC(6) and VBC(6)) or their time-dependent counterparts (UBCT(n,6) and VBCT(n,6)). A non-zero value for the wind shear coefficient, WNDSHR, is needed to activate this model and set the strength of the applied shear stress.

7.2.4.1 Turbulence Models

It is well known that the wide spectrum of length scales associated with turbulent flows precludes a direct simulation of such flows for all practical purposes. This fact has led to the development of simplified models for describing the average effects of turbulence. In some cases these models take the form of a simple Prandtl mixing length assumption in which the fluid viscosity is enhanced by turbulent mixing processes in regions of high shear (e.g., near solid boundaries). More generally, however, it is necessary to account for some transport processes (e.g., convection and diffusion) that control the space-time distributions of turbulence intensity.

In FLOW-3D we have implemented five turbulence models: the Prandtl mixing length, one-equation, two-equation k-ε and RNG models, and a large eddy simulation model. Our formulation, however, differs slightly from previous formulations in that we have included the influence of the fractional areas/volumes of the FAVOR™ method and have generalized the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.

The simplest model consists of a transport equation for the specific kinetic energy associated with turbulent velocity fluctuations plus a parameter that characterizes some other property of the turbulence. The choice of parameters is arbitrary provided it can be used with the kinetic energy to determine length and time scales characterizing the turbulence.
A slightly more sophisticated (and more widely used) model consists of two transport equations for the turbulent kinetic energy k and its dissipation ϵ, the so-called $k-\epsilon$ model [5]. The $k-\epsilon$ model has been shown to provide reasonable approximations to many types of flows, although it sometimes requires modification of its dimensionless parameters (or even functional changes to terms in the equations) [6].

Another, more recent turbulence model is based on Renormalization-Group (RNG) methods [7, 8]. This approach applies statistical methods for a derivation of the averaged equations for turbulence quantities, such as turbulent kinetic energy and its dissipation rate. The RNG-based models rely less on empirical constants while setting a framework for the derivation of a range of models at different scales.

The RNG model uses equations similar to the equations for the K-E model. However, equation constants that are found empirically in the standard $k-\epsilon$ model are derived explicitly in the RNG model.

Generally, the RNG model has wider applicability than the standard $k-\epsilon$ model. In particular, the RNG model is known to describe more accurately low intensity turbulence flows and flows having strong shear regions.

The Large Eddy Simulation (LES) model of turbulence arose from atmospheric modeling efforts. The basic idea is that one should directly compute all turbulent flow structures that can be resolved by the computational grid and only approximate those features that are too small to be resolved [9].

When using the LES model, it is important to remember that the model is inherently three dimensional and time-dependent. Furthermore, fluctuations must be initialized and/or input at inflow boundaries. Although this requires more effort, and computations can be quite CPU-intensive, LES results often provide more information than that produced by models based on Reynolds averaging. For example, when LES models are used to compute turbulent flow around large buildings, one gets not only mean wind stresses but also an estimate of the magnitude and standard deviation of force fluctuations associated with the turbulent flow.

In the LES model, the effects of turbulence too small to compute are represented by an eddy viscosity, which is proportional to a length scale times a measure of velocity fluctuations on that scale. For the length scale, Smagorinsky uses a geometric mean of the grid cell dimensions,

$$L = (\delta x \delta y \delta z)^{\frac{1}{3}}$$

(3.132)
and scales velocity fluctuations by the magnitude of L times the mean shear stress. These quantities are combined into the LES kinematic eddy viscosity

$$v_T = (cL)^2 \cdot \sqrt{e_{ij} e_{ij}}$$

(3.133)

where c is a constant having a typical value in the range of 0.1 to 0.2 and e_{ij} denotes the strain rate tensor.

7.2.4.2 Turbulence Viscosity

The principal goal of any turbulence model is to provide a mechanism for estimating the influence of turbulent fluctuations on mean flow quantities. This influence is usually expressed by additional diffusion terms in the equations for mean mass, momentum, and energy, Equations (3.1), (3.8) (3.17), and (3.19). Wherever the coefficient of dynamic viscosity appears, we assume that it is a sum of the molecular and turbulent viscosities,

$$u = \rho (v_T + v)$$

(3.134)

Strictly speaking, this is not always correct, but it is a good approximation for high levels of turbulence (i.e., when the turbulent viscosity is much larger than the molecular value). At low levels of turbulence the k-ε model is not correct without additional modifications. In what follows we shall assume that turbulence models will only be used when turbulence in the physical problem is important (i.e., in the high intensity limit). The reader should note that in FLOW-3D we use the notation q and D in place of k and ε, as used in Reference [5].

A viscosity associated with turbulence is computed from a conceptual model of turbulent eddies transporting momentum (and other quantities) as they move about. This transport is characterized by the velocity and length scales of the eddies. Defining $TLEN$ as the characteristic length scale of the energy containing eddies (inertial length scale) and using the square root of the turbulence kinetic energy, q, to characterize the velocity scale, we define the turbulent kinematic viscosity, v_T, as

$$v_T = TLEN \sqrt{\frac{2q}{3}}$$

(3.135)

In the two-equation model of turbulence the constant length scale parameter is replaced by the turbulence energy dissipation function D, and the viscosity is then expressed as
where \(\text{CNU} \) is a user-definable constant (a typical value in the standard k-\(\varepsilon \) model is \(\text{CNU}=0.09 \), and \(\text{CNU}=0.085 \) in the RNG model). Combining the above two expressions we see that \(D \), \(q \) and \(\text{TLEN} \) are related according to

\[
D = \text{CNU} \sqrt{\frac{3}{2}} \frac{q^{3/2}}{\text{TLEN}}
\]

(3.137)

Because it is more natural to think in terms of \(\text{TLEN} \) than \(D \), we usually define initial and boundary values for \(\text{TLEN} \) and \(q \) and then use Equation (3.137) to compute corresponding values of \(D \) for the two-equation turbulence models.

7.2.4.3 Turbulence Kinetic Energy Equation

The turbulence kinetic energy per unit mass, \(q \), is governed by the equation

\[
\frac{\partial q}{\partial t} + \frac{1}{V_F} \left\{ w_A \frac{\partial q}{\partial x} + w_A \frac{\partial q}{\partial y} + w_A \frac{\partial q}{\partial z} \right\} = P + G + \text{Diff} - D
\]

(3.138)

where the first three terms on the right side are defined as:

- shear production, \(P \),

\[
P = \text{CS} \text{PRO} \left(\frac{\mu}{\rho V_F} \right) \left\{ 2 A_x \left(\frac{\partial u}{\partial x} \right)^2 + 2 A_y \left(\frac{\partial v}{\partial y} + \xi \frac{u}{x} \right)^2 + 2 A_z \left(\frac{\partial w}{\partial z} \right)^2 \right\}
\]

(3.139)

- buoyancy production, \(G \),
diffusion, \(\text{Diff} \),

\[
\text{Diff} = \frac{1}{V_r} \left\{ \frac{\partial}{\partial x} \left(\nu_q A_x \frac{\partial q}{\partial x} \right) + R \frac{\partial}{\partial y} \left(\nu_q A_y R \frac{\partial q}{\partial y} \right) + \frac{\partial}{\partial z} \left(\nu_q A_z \frac{\partial q}{\partial z} \right) + \xi \frac{\nu_q A_x q}{x} \right\}
\]

(3.141)

The diffusion coefficient \(\nu_q \) is defined as

\[
\nu_q = K_{\text{RMTKE}} \left(\frac{\mu}{\rho} \right)
\]

where \(K_{\text{RMTKE}} \) is a user-adjustable constant as is the coefficient \(\nu_q \) in the buoyancy production term and \(\nu_q \) in the shear production term. The last term, \(\text{D} \), on the right side of Equation (3.138) represents the dissipation of turbulence energy into heat and is considered below.

If the area/volume fractions are unity, this equation for \(q \) differs from the usual equation in the \(k-\varepsilon \) model [6] only by a slightly different formulation for the buoyancy term. In the \(k-\varepsilon \) model the pressure gradients appearing in the buoyancy term, Equation (3.140), are replaced by a constant hydrostatic pressure gradient. The formulation in Equation (3.140) is more correct for systems far from hydrostatic equilibrium and also includes buoyancy effects arising from rotations and local flow accelerations.

Appearance of area/volume fractions in the shear production term, Equation (3.139), are required to ensure a consistency between the viscous stresses in the mean momentum equations and the work done by these stresses that is producing turbulence energy.

7.2.4.4 Turbulence Dissipation

Two options are available for determining the turbulence dissipation \(\text{D} \). First, if a characteristic length scale, \(TLEN \), for turbulent fluctuations is known, then the dissipation can be approximated by Equation (3.137). This relation, together with the energy equation, Equation (3.138), constitutes the one-equation turbulence model.

Unfortunately, in many practical cases it is difficult to select a realistic value for \(TLEN \) because the length scale is either unknown or varies significantly in space and time. In such
cases it may be necessary to use a full transport equation for computing the dissipation. This second option has the advantage of effectively allowing for space and time-dependent scales, but it does require more computational effort. The transport equation for D is

$$
\frac{\partial D}{\partial t} + \frac{1}{V_F} \left(\mu A_x \frac{\partial D}{\partial x} + \nu A_y \frac{\partial D}{\partial y} + \nu A_z \frac{\partial D}{\partial z} \right) = \frac{CDIS1 \cdot D}{q} (P + CDIS3 \cdot G) + D_{diff} - CDIS2 \cdot \frac{D^2}{q}
$$

(3.142)

where CDIS1, CDIS2, and CDIS3 are constants. The production terms P and G are defined in Equations (3.139) and (3.140). D_{diff} is a diffusion term similar to the one given by Equation (3.141) with q replaced by D and with the constant RMTKE replaced by RMDTKE. For the RNG model, CDIS2 is a function of shear rate.

7.2.4.5 Turbulence Boundary Conditions

Equations (3.138) and (3.142) constitute the two-equation turbulence models used in FLOW-3D. Boundary conditions for these equations are partly built into the equations through the fractional areas. For instance, all advective and diffusive fluxes are automatically zero at rigid walls where the fractional areas vanish. At free-surfaces, tangential stresses are zero because of vanishing velocity derivatives across the surface.

Tangential stresses evaluated at wall boundaries are also zero because of zero flow areas. However, there should be contributions to the q and D equation arising from tangential wall shear stresses. These stresses occur in laminar sub-layers and are proportional to the molecular viscosity and local velocity gradients. Thus, we could incorporate wall shear stress contributions in the production term P. Unfortunately, this approach does not always seem to work well. It does not properly limit the values of q and D near boundaries. Therefore, we have followed the more standard procedure (see, e.g., Reference [6]) in which q and D are specified at mesh locations adjacent to wall boundaries.

Because the FAVOR™ method accounts for wall boundaries that can pass through a mesh cell at any angle, the calculation of suitable boundary values for q and D has been generalized beyond a simple cell edge evaluation.

In FLOW-3D we assign values to q and D in every mesh cell that has one or more of its faces partially blocked or wholly blocked by a rigid wall. To determine boundary values for q and D, the usual procedure assumes a local equilibrium between turbulent shear production and decay processes and a law-of-the-wall velocity profile [6]. Combined with the definition of the turbulent viscosity, Equation (3.136), this leads to the values.
where \(u^* \) is the local shear velocity determined from the equation

\[
q = \frac{u^2}{\sqrt{CNU}} \quad \text{and} \quad D = \frac{u^3}{(\kappa d)}
\]

(3.143)

and \(\mathbf{u} \) is the parallel component of the velocity computed adjacent to the wall. The normal distance of the computed velocity from the wall is denoted by \(d \) and \(\kappa \) is the von Karman constant.

Since the FAVOR™ method does not precisely locate wall locations within a cell, approximations must be introduced to find \(u, u^* \) and \(d \). For this purpose, we first determine the direction of the wall normal in the cell, then \(u \) can be computed as the component of the cell-centered velocity that is parallel to the wall. The average distance to the wall, \(d \), is estimated to be half of the cell width in the wall normal direction. That is, the triplet \((\delta x, \delta y, \delta z)\) is treated as a vector whose inner product with the wall normal is defined as the cell width in the normal direction. Finally, \(u^* \) is iteratively computed from Equation (3.144) in terms of \(\mathbf{u} \) and \(d \). If there is a mass source at the wall surface, then we add to \(u^* \) a term equal to \(u \) times the effective normal injection speed of the mass. This roughly accounts for the additional shear stress induced by mass injection. Once these quantities have been computed, Equation (3.143) is then used to specify the cell-centered values of \(q \) and \(D \), which represent the desired boundary conditions.

7.2.4.6 Prandtl Mixing Length Model

A simple, local turbulence model without transport effects can be constructed by assuming that turbulent production and dissipation are everywhere in balance,

\[
P + G = D
\]

(3.145)

In other words, advection, diffusion, and the time rate of change of turbulent energy are neglected. Using this local equilibrium assumption and Equation (3.137) connecting \(D \) with \(q \) and \(\text{TLEN} \), one can compute \(q \) in terms of \(\text{TLEN} \) and the local shear rates and pressure/density gradients. Then \(q \) and \(\text{TLEN} \) can be used to compute the turbulent viscosity from Equation (3.135). It has been shown that this procedure produces a result which is a generalization of the original Prandtl mixing length model [6].
Because of its restrictive assumptions, this model is less useful than the one- and two-equation turbulence models. It should only be used in situations where there is good reason to believe that it offers a reasonable approximation to the physical problem.

7.3 NUMERICAL APPROXIMATIONS

7.3.1 Overview

FLOW-3D numerically solves the equations described in the previous sections using finite-difference (or finite-volume) approximations. The flow region is subdivided into a mesh of fixed rectangular cells. With each cell there are associated local average values of all dependent variables. As explained in the following, all variables are located at the centers of the cells except for velocities, which are located at cell-faces (staggered grid arrangement).

Curved obstacles, wall boundaries, or other geometric features are embedded in the mesh by defining the fractional face areas and fractional volumes of the cells that are open to flow (the FAVOR™ method [1]).

To construct discrete numerical approximations to the governing equations, control volumes are defined surrounding each dependent variable location. For each control volume, surface fluxes, surface stresses, and body forces can be computed in terms of surrounding variable values. These quantities are then combined to form approximations for the conservation laws expressed by the equations of motion.

Most terms in the equations are evaluated using the current time-level values of the local variables, i.e., explicitly, although various implicit options exist as well. This produces a simple and efficient computational scheme for most purposes but requires the use of a limited time-step size to maintain computationally stable and accurate results.

One important exception to this explicit formulation is in the treatment of pressure forces. Pressures and velocities are coupled implicitly by using time-advanced pressures in the momentum equations and time-advanced velocities in the mass (continuity) equation. This semi-implicit formulation of the finite-difference equations allows for the efficient solution of low speed and incompressible flow problems. The semi-implicit formulation, however, results in coupled sets of equations that must be solved by an iterative technique. In FLOW-3D, two such techniques are provided. The simplest is a successive over-relaxation (SOR) method. In some instances, where a more implicit solution method is required, a special alternating-direction, line-implicit method (SADI) is available. As described later, the SADI technique can
be used in one, two, or in all three directions depending on the characteristics of the problem to be solved.

The basic numerical method used in FLOW-3D has a formal accuracy that is first-order with respect to time and space increments. Special precautions have been taken to maintain this degree of accuracy even when the finite-difference mesh is non-uniform. Second-order accurate options are also available. In any case, boundary conditions are at least first-order accurate in all circumstances. For example, in cells partially occupied by an obstacle, the FAVOR™ method is equivalent to a first-order interpolation of boundary conditions within the cell. However, the implementation of the heat transfer boundary conditions at fluid-obstacle interfaces is second-order accurate with respect to the cell size.

In the following sections these numerical techniques are made more precise through specific examples of the finite-difference and control volume approximations used throughout FLOW-3D.

7.3.2 Notation

The finite-difference mesh used for numerically solving the governing equations consists of rectangular cells of width \(\delta x \), depth \(\delta y \), and height \(\delta z \). The active mesh region has IBAR cells in the \(x \)-direction labeled with the index \(i \), JBAR cells in the \(y \)-direction labeled with the index \(j \), and KBAR cells in the \(z \)-direction labeled with the index \(k \). This region is surrounded by layers of fictitious or boundary cells used to set mesh boundary conditions. Thus, there are usually \((IBAR + 2)(JBAR + 2)(KBAR + 2)\) total cells in a complete mesh. If periodic or specified pressure boundary conditions are used in a given coordinate direction, however, one additional layer of boundary cells is used in that direction. This fact must be remembered only when setting dimension statements. The preprocessor will automatically initialize the necessary number of boundary cells needed to satisfy all boundary conditions. The figure below illustrates the cell labeling nomenclature.
Mesh arrangement and labeling convention

Fluid velocities and pressures are located at staggered mesh locations as shown for a typical cell in the figure below: \(\mathbf{u} \) velocities and fractional areas \(A_x \) at the centers of cell-faces normal to the \(x \)-direction, \(\mathbf{v} \) velocities and fractional areas \(A_y \) at the centers of cell-faces normal to the \(y \)-direction, and \(\mathbf{w} \)-velocities and fractional areas \(A_z \) at the centers of cell-faces normal to the \(z \)-direction. Pressures \((p) \), fluid fractions \((F) \), fractional volumes \((V) \), densities \((\rho) \), internal energy \((I) \), turbulence quantities for energy \((q) \), dissipation \((D) \), and viscosity \((\mu) \) are at cell centers.

Location of variables in a mesh cell
The finite-difference notation used here corresponds to that used in the code where fractional index values cannot be used. The code convention is that all fractional indexes are decreased to the nearest whole integer. For example, the u velocity at $i + \frac{1}{2}$ which is located on the cell-face between cells (i, j, k) and $(i+1, j, k)$, is denoted by $u^n_{i,j,k}$. A superscript n refers to the n-th time-step value. Similarly,

$$F^n_{i,j,k} = \text{fluid fraction at center of cell } (i, j, k) \text{ at time level } n.$$

$$P^n_{i,j,k} = \text{pressure at center of cell } (i, j, k) \text{ at time level } n.$$

(Similarly for ρ, l, q, D, and μ.)

$$u^n_{i,j,k} = \text{x-direction velocity at middle of } i + \frac{1}{2} \text{ cell-face at time level } n.$$

$$v^n_{i,j,k} = \text{y-direction velocity at middle of } j + \frac{1}{2} \text{ cell-face at time level } n.$$

$$w^n_{i,j,k} = \text{z-direction velocity at middle of } k + \frac{1}{2} \text{ cell-face at time level } n.$$

Fractional areas and volumes appear in the code with the following notation:

$$AFR^n_{i,j,k} = \text{fractional area } A, \text{ for flow in x-direction at } i + \frac{1}{2} \text{ cell-face.}$$

$$AFB^n_{i,j,k} = \text{fractional area } A, \text{ for flow in y-direction at } j + \frac{1}{2} \text{ cell-face.}$$

$$AFT^n_{i,j,k} = \text{fractional area } A, \text{ for flow in z-direction at } k + \frac{1}{2} \text{ cell-face.}$$

$$VF^n_{i,j,k} = \text{fractional volume for flow at center of cell } (i, j, k).$$

When free-surfaces or fluid interfaces are present, it is necessary to distinguish those cells that are empty, contain a surface, or are full of one fluid. By definition, a surface cell is a cell containing fluid #1 and having at least one adjacent cell (at $i \pm 1$, $j \pm 1$, or $k \pm 1$), that is empty or full of fluid #2. A cell with an F value less than unity, but with no empty neighbor, is considered a full cell in one-fluid problems. A flag $NF^n_{i,j,k}$ is used to label the cells and also, in the case of surface cells, to indicate which neighboring cell lies in the direction of the inward normal to the surface. The flag values are

$NF^n_{i,j,k} = 0$ full or obstacle cell

$= 1$ surface (i-1 inward neighbor)

$= 2$ surface (i+1 inward neighbor)

$= 3$ surface (j-1 inward neighbor)
= 4 surface (j+1 inward neighbor)
= 5 surface (k-1 inward neighbor)
= 6 surface (k+1 inward neighbor)
= 7 cell undergoing cavitation
= 8 empty cell

\textbf{NF} is used to indicate the orientation of the surface between two fluids in an analogous manner.

\section{7.3.2.1 Outline of Finite Difference Solution Method}

The basic procedure for advancing a solution through one increment in time, δt, consists of three steps:

1. Explicit approximations of the momentum equations, Equation (3.8), are used to compute the first guess for new time-level velocities using the initial conditions or previous time-level values for all advective, pressure, and other accelerations.

2. To satisfy the continuity equation, Equation (3.1), (3.5), or (3.7), when the implicit option is used, the pressures are iteratively adjusted in each cell and the velocity changes induced by each pressure change are added to the velocities computed in Step (1). An iteration is needed because the change in pressure needed in one cell will upset the balance in the six adjacent cells. In explicit calculations, an iteration may still be performed within each cell to satisfy the equation-of-state for compressible problems.

3. Finally, when there is a free-surface or fluid interface, it must be updated using Equation (3.17) to give the new fluid configuration. For compressible problems, density, Equation (3.1), and energy, Equation (3.19), values must be updated to reflect advective, diffusive, and source processes. Turbulence quantities and wall temperatures are also updated in this step.

Repetition of these steps will advance a solution through any desired time interval. At each step, of course, suitable boundary conditions must be imposed at all mesh, obstacle, and free-boundary surfaces. Details of these steps and boundary conditions are given in the following subsections.
7.3.2.2 Momentum Equation Approximations

A generic form for the finite-difference approximation of Equation (3.8) is (remember the fractional index convention)

\[
\begin{align*}
\frac{u^{n+1}_{l,j,k} - u^n_{l,j,k}}{\delta t} = & \frac{\rho^{n+1}_{l,j,k} - \rho^n_{l,j,k}}{\delta x_i} + G_x - FUX - FUY - FUZ + VISX - BX - WSX \\
\frac{v^{n+1}_{l,j,k} - v^n_{l,j,k}}{\delta t} = & \frac{\rho^{n+1}_{l,j,k} - \rho^n_{l,j,k}}{\delta y_j} + G_y - FVX - FVY - FYVZ + VISY - EY - WSY \\
\frac{w^{n+1}_{l,j,k} - w^n_{l,j,k}}{\delta t} = & \frac{\rho^{n+1}_{l,j,k} - \rho^n_{l,j,k}}{\delta z_{k+1}} + G_z - FWX - FWY - FWZ + VISZ - BZ - WSZ
\end{align*}
\]

here, e.g.,

\[(\rho \delta x)^n_{i,j,k} = \frac{(\rho^n_{l,j,k} \delta x_i + \rho^n_{l+1,j,k} \delta x_{i+1})}{2} \tag{3.156}\]

and

\[
R_{i+\frac{1}{2}} = \begin{cases}
1.0 \text{ in Cartesian coordinates} \\
\frac{x_{\text{max}}}{\frac{1}{2}(x_i + x_{i+1})} \text{ in cylindrical coordinates}
\end{cases} \tag{3.157}
\]

The advective, viscous, and acceleration terms have an obvious meaning, e.g., FUX means the advective flux of \(u\) in the \(x\)-direction; VISX is the \(x\)-component viscous acceleration; BX is the flow loss for a baffle normal to the \(x\)-direction; WSX is the viscous wall acceleration in the \(x\)-direction; and GX includes gravitational, rotational, and general non-inertial accelerations.

7.3.2.3 First-Order Method

The simplest \(FLOW-3D\) finite-difference approximation is first-order accurate in both space and time increments. In this case the advective and viscous terms are all evaluated using
old-time level \((n)\) values for velocities. Wall shear stresses are implicitly evaluated as described below. Because the pressures at time level \(n+1\) are generally unknown at the beginning of the cycle, these equations cannot be used directly to evaluate the \(n+1\) level velocities but must be combined with the continuity equation. In the first step of a solution, the \(p^{n+1}\) values in these equations are replaced by \(p^n\) values to get a first guess for the new velocities. In an explicit approximation the pressure gradient in Equation (3.155) is evaluated at time \(n\), therefore further adjustment to \(p\) does not influence the evaluation of \(u^{n+1}\).

![Control volume (dashed line) in x-z plane used in finite-difference approximation for U momentum](image)

Specific approximations chosen for the various acceleration terms in Equation (3.155) are relatively unimportant provided they lead to a numerically stable algorithm. Special care must be exercised, however, when making approximations in a mesh with non-uniform cell sizes. This problem has been discussed elsewhere (e.g., Reference [3]) but is repeated here because it is a problem that has often been overlooked. Consider the approximation procedure used in the original MAC method for Cartesian coordinates [11, 12]. Let us also assume for simplicity that all fractional areas and volumes are equal to unity. In the MAC scheme the continuity and momentum equations, Equations (3.5) and (3.8), were first combined so that the advective flux terms could be written in a divergence form (i.e., \(\nabla \cdot u\) instead of \(u \nabla u\)). Thus \(FUX\) would be, for example, \(\partial \bar{u}^2/\partial x\) rather than \(u \partial u/\partial x\). The divergence form was preferred in MAC because it provided a simple way to ensure conservation of momentum in the difference approximations. This may be seen by considering an \(x\)-\(z\) cross section of the control volume used for \(u\), as indicated by dashed lines in Figure 110. With the divergence form, Gauss' theorem may be used to convert the integrated value of \(FUX\) over the control volume to boundary fluxes at its sides. Then, the flux leaving one control volume will be gained by the adjacent one and conservation during advection is assured.

This idea worked well in the original MAC scheme, which was developed for use in uniform meshes. Unfortunately, in non-uniform meshes, conservation does not automatically imply accuracy. To see this, suppose an upstream or donor-cell difference approximation is used
\[
FUX = \frac{\partial u^2}{\partial x},
\]
which provides a conditionally stable algorithm. The donor-cell approximation is

\[
FUX = \left(\frac{u_R < u_R > - u_L < u_L >}{\delta x_{i+\frac{1}{2}}} \right)
\]

(3.158)

where

\[
u_R = \frac{1}{2}(u_{i+1, j, k} + u_{i, j, k})
\]

(3.159)

and

\[
< u_R > = \begin{cases}
 u_{i, j, k} & \text{if } u_R \geq 0 \\
 u_{i+1, j, k} & \text{if } u_R < 0
\end{cases}
\]

(3.160)

To check the accuracy of Equation (3.158) we expand it in a Taylor series about the \(x\)-position where \(FUX\) is evaluated (assuming \(u\)-velocities are positive)

\[
FUX = \frac{1}{2} \left(\frac{3\delta x_i + \delta x_{i+1}}{\delta x_i + \delta x_{i+1}} \right) \frac{\partial u^2}{\partial x} + O(\delta x)
\]

(3.161)

Clearly, the coefficient on the zeroth order term is incorrect unless the cell widths are equal, \(\delta x_i = \delta x_{i+1}\). In other words, the variable mesh reduces the order of the conservative difference approximation by one, which in this case leads to an incorrect zeroth order result. If a centered- rather than a donor-cell-approximation had been used, the result would have been first-order accurate, not second-order, as it is in a uniform mesh.

It does not necessarily follow from the above analysis that variable meshes are always less accurate in practice. For example, they allow improved resolution in regions where flow variables are rapidly varying. Nevertheless, variable meshes must be used with considerable care. It is best, for example, to use a gradual variation in cell size to minimize the reduction in approximation order. It is also worthwhile to look for other approximations that do not lose their formal accuracy when applied to variable meshes. In this regard, it should be noted that the reason the conservative form of the advective term loses accuracy is because the control volume is not centered about the position of \(u\). The shifted control volume leads directly to the reduction in accuracy computed in Equation (3.161).
In **FLOW-3D** a modified donor-cell approximation has been developed that retains its accuracy in a variable mesh and reduces to a conservative difference expression when the mesh is uniform [1]. This method approximates advective fluxes in the non-conservative form, \(u \nabla u \), which is necessary because of the inherent difficulty with conservative approximations noted above. In this approximation it is also possible to combine the donor-cell and centered-difference approximations into a single expression with a parameter that controls the relative amount of each. The general form of this approximation for

\[
FUX = \left(\frac{A_x}{V} \right) \frac{u \partial u}{\partial x}
\]

is

\[
FUX = \frac{0.5}{VFC} \left[(UAR - \alpha |UAR|) \cdot DUDR + (UAL + \alpha |UAL|) \cdot DUDL \right] \tag{3.162}
\]

where

\[
DUDL = \frac{u_{i,j,k} - u_{i-1,j,k}}{\delta x_i} \\
DUDR = \frac{u_{i+1,j,k} - u_{i,j,k}}{\delta x_i+1} \tag{3.163}
\]

\[
UAR = 0.5(u_{i+1,j,k} \cdot AFR_{i+1,j,k} + u_{i,j,k} \cdot AFR_{i,j,k}) \\
UAL = 0.5(u_{i,j,k} \cdot AFR_{i,j,k} + u_{i-1,j,k} \cdot AFR_{i-1,j,k})
\]

and

\[
VFC = \frac{(\delta x_i V_{e_{i,j,k}} + \delta x_i+1 V_{e_{i,j,k}})}{(\delta x_i + \delta x_i+1)} \tag{3.164}
\]

If the mesh is uniform, this approximation reduces to a spatially second-order accurate, centered-difference approximation when \(\alpha = 0 \). When \(\alpha = 1 \), the first-order, donor-cell approximation is recovered. In either case, the method reduces to the correct zeroth order expression in a variable mesh. In a uniform mesh the advective flux approximations can be shown to reduce to a conservative approximation form \(\nabla uu \).

The basic idea underlying Equation (3.162) is to weight the upstream quantity being fluxed more than the downstream value. The weighting factors are \((1 + \alpha)\) and \((1 - \alpha)\) for the upstream and downstream directions, respectively. This type of first-order approximation scheme is used for all advective flux terms appearing in Equation (3.155).
All other acceleration terms in the momentum equations are approximated by standard centered differences.

7.3.2.4 Second-Order Method

The approximations described above have truncation errors proportional to the first power of the time increment δt and, if $\alpha \neq 0$ or the mesh is non-uniform, the first power of the space increments dx, dy and dz. The advantage of these first-order approximations is that they are simple and easy to keep computationally stable. For a great many applications they also provide good solutions. In some cases, however, it may be too costly to use the mesh resolution necessary for an accurate first-order solution. When this happens, it may be useful to employ a second-order accurate approximation for the advective and viscous accelerations. Two optional second-order approximation schemes for the momentum equations can be requested through the input data. The essence of the first scheme is a double pass through the advection and viscous subroutines. In the first pass, the first-order method is used with the donor cell parameter $\alpha=1.0$. These new velocities are then stored in the arrays for the previous time velocities. The first-order calculations are then repeated, but this time the parameter is set to $\alpha=-1.0$. Finally, the results of the two calculations are averaged to give the desired second-order approximation to the new time-level velocities.

These approximations are second-order in time because the first pass uses time-n velocities, while the second pass uses (first-order) approximations for velocities at time $n+1$. The average then has level $n + 1/2$, which is second-order in δt. Likewise, using $\alpha = +1.0$ in the first pass and $\alpha = -1.0$ in the second results in an average α-value of zero, which is second-order in dx, dy, dz if the mesh is uniform. (See Reference [13] for a more complete analysis of this second-order scheme.)

This algorithm is the least numerically diffusive of the three advection methods available in FLOW-3D. However, it does not possess the transportive property, which in standard upstream differencing schemes ensures that a flow disturbance only propagates downstream from its initial location. In addition, this method is the most CPU intensive. Finally, this method may occasionally generate a numerically unstable solution for flows with transient free-surfaces.

7.3.2.5 Second-Order Monotonicity Preserving Method
The other higher order advection algorithm in *FLOW-3D* is based on a second-order, monotonicity-preserving upwind-difference method [14]. It is as robust as the original first-order advection scheme. It requires slightly more CPU time than the first-order method, although in most cases the difference is insignificant.

The monotonicity-preserving method may be applied in *FLOW-3D* to approximate momentum advection, as well as density, energy and fluid fraction advection. The higher-order discretization scheme is derived by using second-order polynomial approximations to the advected quantity in each of the coordinate directions [15]. For a variable Q advected in the x-direction, the value fluxed through a cell-face, Q^*, is computed as

$$Q^* = Q_i + \frac{1}{2} A(1 - C) \delta x_i$$ \hspace{1cm} (3.165)

where Q_i is the cell-centered value, C is the Courant number, and δx_i is the cell size. A is a second-order approximation to the first derivative of Q at the location

$$x_0 = \frac{1}{6}(1 - 2C) \delta x_i$$ \hspace{1cm} (3.166)

within the cell. Coefficient A can easily be computed from two neighboring first derivatives by linear interpolation, provided these derivatives are second-order accurate. The latter can be achieved by computing the derivatives at the midpoints between Q_i locations; for example,

$$\frac{dQ}{dx_{i+\frac{1}{2}}} = 2 \cdot \frac{Q_{i+1} - Q_i}{\delta x_{i+\frac{1}{2}} + \delta x_i}$$ \hspace{1cm} (3.167)

is a second-order accurate first derivative of Q at the point between Q_i and Q_{i+1}. With this approach it is easy to extend the higher-order, monotonicity-preserving method to non-uniform grids.

An advantage of Equation (3.165) is that the first term on the right side gives the usual first-order donor-cell approximation. Thus, the second-order approximation, which is generated by the addition of the second term on the right side of Equation (3.165), can easily be made an option in a computer program.

To ensure monotonicity, it is NECESSARY to restrict the value of the derivative A. According to Reference [14], the value of A is not allowed to exceed twice the minimum magnitude of the centered Q derivatives used in its computation.
Furthermore, if \(Q_i \) is a local minimum or maximum value - that is, if the two centered derivatives appearing in Equation (3.168) are of opposite sign - then \(A \) is set to zero and the donor-cell approximation is used.

7.3.2.6 Turbulence Model Boundary Conditions

At all boundaries, except for rigid no-slip boundaries, the turbulence energy and dissipation functions are treated as analogous to other cell-centered quantities such as density. At symmetry boundaries no special conditions are needed, as there are zero velocity derivatives across the boundary, and hence zero turbulence production. Also, there is a zero flow area that automatically ensures no advective or diffusive fluxes.

At rigid, no-slip boundaries, special considerations are necessary because numerical resolution is usually too coarse to resolve details of a laminar boundary layer region. The wall shear-stress model based on a turbulent (power law) velocity profile has already been discussed (see Prandtl Mixing Length Model). To be consistent with this, it is necessary to define wall boundary values for the turbulence energy and turbulence dissipation functions.

Within the context of the FAVOR™ method, in which rigid walls may cut at any angle through a mesh cell, it is not obvious how these boundary conditions are to be satisfied. We have elected to use the following procedure.

The turbulence energy and dissipation values are set in all cells having one or more faces partially or wholly blocked by a no-slip, rigid boundary. Wall boundary values are deduced from the assumed velocity profile (1/7 power law approximation) and the assumption of a local equilibrium between turbulent production and decay processes. Prandtl Mixing Length Model describes the method by which this is accomplished, which includes an approximate treatment for wall orientation and multiple wall effects.

7.3.2.7 Step 1: Evaluation of Environmental Forces and Torques

This step is clearly very problem-dependent. The results of this step are three net force components and three net torque components. These components are in the body-fixed Cartesian coordinate system. Typically, these may represent forces arising from aerodynamic drag, solar wind and/or geomagnetic effects. This routine can also incorporate the torque due to gravitational gradients or the fictitious forces and torques that compensate for an earth-fixed reference frame. Three components of gravitational acceleration (in the inertial coordinate system) are also evaluated by RBENVR and stored in common. These
values are calculated at the location of the rigid-body center of mass and do not account for variations of gravity through the body.

The location of the rigid-body center of mass (in inertial coordinates) and the rigid-body attitude are available for the evaluation of these forces and torques. For some purposes the gravitating body coordinates may be simpler to use. Vector quantities can readily be transformed between inertial and body-fixed coordinates by use of the transformation matrix and its inverse. Additional input that may be required to evaluate control functions can be specified through the \textit{FLOW-3D} user data namelist (USRDAT) or the "dummy" variables in namelist XPUT.

7.3.2.8 Step 2: Evaluation of Control Forces and Torques

This step is directly analogous to Step 1. The two are separated to simplify the combination of models for various phenomena. The control forces and torques are transferred through body-fixed components, which are stored in variables separate from the environmental force and torque components. To provide an elementary control capability, we have developed a skeleton version which treats a few special cases.

7.3.2.9 Step 3: Solution of the Fluid Dynamics Equations

Decomposition of the analysis as described is motivated by the desire to retain the fluid analysis capabilities of \textit{FLOW-3D} intact. Only peripheral changes to the usual solution algorithm are needed by this approach.

It is important to note that we are choosing to consider the fluid as a separate entity in our solution algorithm. Thus, when we consider the rigid body, we are specifically excluding any onboard liquids. The fluid part of the analysis is handled explicitly in Step 3.

All usual \textit{FLOW-3D} models and solution methods are available for the solution of the fluid component of the simulation. The continuity, volume-of-fluid and momentum equations are solved to determine the location and velocity of the fluid within the body-fixed reference frame.

The influence of the gravitating body must be added through transient evaluation of the local gravitational field since the apparent direction of this force will vary as the rigid body rotates, and its strength may vary as the center of mass moves. This acceleration must be incorporated in the fluid equations directly since it influences both the fluid and the rigid body.
We have simplified this calculation by using the gravitational vector at the rigid-body center of mass throughout the fluid. Thus we can account for neither displacement of the fluid from the rigid-body mass centroid nor the variation of gravity within the fluid region. The gravitating body force is accounted for by modifying the components of linear acceleration used by the fluid-flow solution calculated by the rigid-body center of mass motion algorithm in Step 4. This is accomplished in subroutine MOTION. The constant gravity components GX, GY and GZ are not used by this model and generally should not be combined with the coupled rigid-body dynamics model.

The net force and torque exerted on the rigid body by the fluid are calculated in subroutine FEVAL. The components of these vectors are resolved in the body-fixed Cartesian coordinate system (even if the fluid calculation uses cylindrical coordinates). The torque is converted to that about the rigid-body center of mass for use in Step 5. Force moments for other purposes are evaluated about the origin of the body-fixed coordinates and are still available in the FLGRF data file.

Since the fluid-dynamic calculation occurs before the rigid-body dynamics, we must deal with an initialization difficulty. The flow analysis requires knowledge of the rotation and acceleration of the rigid body. To resolve this difficulty, we temporarily assume (for the first cycle only) either that the fluid mass acts as if frozen in position or that the body acceleration can be calculated by ignoring the fluid. This permits evaluation of approximate values of the rigid-body acceleration and rotation for the purpose of solving the flow equations during the first cycle.

7.3.2.10 Step 4: Solution of the Dynamic Equations for the Rigid-Body Center of Mass

Standard analysis shows that the equations for the motion of any rigid body can be separated into an equation for the motion of the center of mass of the body and independent dynamic equations for the rotation of the body about the mass center [2, 20 and 21]. In our algorithm we identify the rigid body as excluding the fluid mass for the specific purpose of allowing this separation.

Therefore, Step 4 solves the linear momentum equation:

\[M \frac{d\mathbf{V}_\text{CM}}{dt} = \mathbf{F}_r + \mathbf{F}_c + \mathbf{F}_z + \sum \mathbf{F}_f \]

(3.232)
where V'_{CM} is the velocity of the center of mass of the dry rigid body. This velocity is relative to the inertial reference frame and is resolved in the (x', y', z') coordinates. M is the total dry mass of the rigid body, F'_{e}, F'_{c}, F'_{f} are the environmental, control and fluid forces that are evaluated in Steps 1-3, respectively, and F'_{g} is the force due to the gravitating body. Note that the environmental, control and fluid force vectors are resolved in the inertial reference frame in this equation. This requires application of the attitude transformation (see Step 6) to the components stored in common since those components are in the body-fixed reference frame. The gravitational force is, of course, already evaluated in the inertial reference frame.

For the explicit coupling algorithm, we use a simple first-order forward difference technique to integrate the momentum equation. The technique is explicit in that the most recently calculated values of the forces are used at each cycle. The difference technique is motivated by the difficulty of calculating the fluid force, which normally involves many nonlinear equations. This makes the use of more accurate integration techniques of questionable value.

The implicit algorithm uses a "frozen fluid" approximation to estimate the acceleration to be used for the next iteration. This approximation adds the "frozen fluid" mass (which is taken to equal the total liquid mass) times the acceleration vector to both sides of the momentum equation. The term on the left hand side is treated implicitly (that is with the new estimate of the acceleration), while the right hand side is treated explicitly. This removes the limitation on fluid/rigid mass ratio, since the resulting equation uses the total (fluid + rigid) mass in calculating the new estimate of acceleration. Once converged, the original equation is almost satisfied, since the old and new accelerations are nearly equal.

The center-of-mass velocity is used to integrate directly for the position of the rigid-body center of mass relative to the inertial reference frame coordinates (x', y', z'). This position is then converted to spherical coordinates. Finally, the influence of the gravitating body rotation is accounted for in calculating longitude and latitude relative to the gravitating body.

7.3.2.11 Step 5: Solution of the Dynamic Equations for the Rotation of the Rigid Body

The separation of translational and rotational momentum used in Step 4 to evaluate the position of the rigid-body center of mass results in the angular momentum conservation equation:
where \(J \) is the dry-rigid-body inertial matrix, \(\omega \) is the angular velocity and \(T_e, T_c \) and \(T_t \) are the torques due to environment, control and fluid forces, respectively. Note that this equation is written in the body-fixed reference frame although the angular velocity is that with respect to the inertial reference frame. This accounts for the "additional" cross product term, which is absent if the equation is written in the inertial frame. The inertia matrix and torques are also resolved along the body-fixed \((x, y, z)\) coordinate system.

Equation (3.233) is solved in a manner analogous to the linear momentum equation in Step 4. Thus, we use an explicit, forward-time formulation or a "frozen fluid" approximation, depending on the time algorithm selected. The results of this step are the components of the angular velocity and angular acceleration of the dry rigid body in the body-fixed reference frame. These components are available for Steps 1-3 of the next cycle.

7.3.2.12 Step 6: Integration of the Kinematic Equations for the Rigid-Body Attitude

There are several popular representations of the attitude of a rigid body [20]. We choose to describe the attitude by the full transformation matrix. The matrix \([A]\) is defined to transform an arbitrary vector \((G')\) from inertial coordinates to body-fixed coordinates through the equation

\[
G' = [A] \cdot G
\]

(3.234)

As shown in reference [20], the components of \([A]\) are then the direction cosines between the axes of the two systems

\[
A_{ij} = x_i \cdot x_j'
\]

(3.235)

where we have switched to subscripted unit vectors to simplify the notation. As usual, \(x_1\) is equal to \(x\), \(x_2\) is equal to \(y\), etc.

By definition, this matrix must be orthogonal, and therefore its inverse is equal to its transpose, and we have the relationship

\[
G' = [A^T] \cdot G
\]

(3.236)
The kinematic equation relating the transformation matrix $[A]$ to the rigid-body velocity is

$$\frac{d}{dt} [A] = [\Omega^*] [A]$$

(3.237)

where

$$[\Omega^*] = \begin{pmatrix} 0 & \omega_z & -\omega_y \\ -\omega_z & 0 & \omega_x \\ \omega_y & -\omega_x & 0 \end{pmatrix}$$

(3.238)

Step 6 of our algorithm implements a first-order, forward-time difference approximation to determine the variation of the transformation matrix $[A]$ with time.

One potential problem with this approach is the accumulation of errors in the matrix elements. The most serious difficulty associated with these errors is the potential for generating non-orthogonal matrices. To ensure that this does not occur, we orthogonalize the matrix at the completion of every cycle using a simple Gram-Schmidt orthonormalization procedure on the implied inertial coordinates. That is, we define the approximate inertial unit vectors as the column vectors of the transformation matrix $[A]$. These vectors are orthonormalized in the usual way, and the transformation matrix columns are replaced with the modified unit vectors. This ensures that $[A]$ represents a physical rotation transformation at all times. Therefore, the errors are limited to incorrect rotation angles. Accumulated error magnitudes are evaluated as part of the orthonormalization procedure.

The result of Step 6 is the current value of the transformation matrix. The matrix can be used directly to transform between the inertial and body-fixed reference frames as necessary in Steps 1-5.

7.4 REFERENCES

3. C.W. Hirt and B.D. Nichols, "Volume of Fluid (VOF) Method for the Dynamics of

28. C.W. Hirt, "Self-Consistent Electric Fields and Electric Forces on Charged

