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RESUMO 
 

Opções de alimentos com ingredientes funcionais são um nicho de grande 
potencial de mercado. Levando em consideração essa demanda, os compostos vegetais 
e os óleos funcionais podem ser utilizados como aditivos zootécnicos. Os óleos 
funcionais são definidos como óleos que têm uma ação além do seu valor nutricional. 
Devido à presença de compostos bioativos, os óleos funcionais têm diferentes ações 
terapêuticas, atuando como antioxidantes, anti-inflamatórios e reguladores de microbiota 
intestinal. O Brasil apresenta uma rica biodiversidade com grande potencial para a 
obtenção destes compostos alternativos. Diante disso, objetivamos avaliar os efeitos dos 
óleos funcionais de copaíba (Copaifera spp.), casca de caju (Anacardium occidentale), e 
espécies de pimenta (Schinus molle L. e Capsicum annum L.) sobre os coeficientes de 
digestibilidade aparente (CDA) de nutrientes, metabólitos fermentativos intestinais, 
microbiota fecal, e marcadores inflamatórios e oxidativos em cães submetidos à cirurgia 
periodontal. Foram avaliados dois tratamentos: controle e teste, contendo o blend de 
óleos funcionais (0,1 g/animal/dia). Os tratamentos foram oferecidos durante 35 dias a 
12 cães adultos da raça Beagle, distribuídos inteiramente ao acaso (n=6). No dia 30, os 
cães foram submetidos à cirurgia periodontal. Foram coletadas amostras de fezes (dias 
30 e 35) e sangue (dias 0, 30, e 35) para a avaliação de metabólitos fermentativos 
intestinais, microbiota fecal, e respostas inflamatórias e antioxidantes no sangue. Os cães 
do grupo controle apresentaram uma redução mais pronunciada nos gêneros Prevotella 
e Faecalibacterium após a cirurgia (dia 35) do que o grupo de teste (P<0,05). Além disso, 
os cães do grupo controle também apresentaram maior abundância de Streptococcus no 
dia 35 (P<0,05). Houve aumento na concentração de NF-κB no sangue após cirurgia 
apenas no grupo controle (P<0,05). Além disso, os cães alimentados com o blend de 
óleos mostraram menor peroxidação lipídica (P<0,05) e uma tendência (P=0,059) para 
maior atividade da glutationa transferase. O blend de óleos funcionais não altera a 
digestibilidade dos nutrientes e pode modular a microbiota intestinal. Além disso, controla 
os mecanismos inflamatórios e oxidativos após o desafio cirúrgico em cães. 

 
 
Palavras-chave: Capsicum annuum L; compostos bioativos; microbiota intestinal; NF-κB. 

Schinus molle L. 
 



ABSTRACT 
 
Food options with functional ingredients are a niche of great market potential. 

Considering this demand, the plants compounds and functional oils can be used as 
zootechnical additives. Functional oils are defined as oils that have an action in addition 
to their nutritional value. Due to the presence of bioactive compounds, functional oils have 
different therapeutic actions, acting as antioxidants, anti-inflammatory and gut microbiota 
regulators. Brazil presents a rich biodiversity with great potential to obtain these alternative 
compounds. Considering this, we aimed to evaluate the effects of functional oils from 
copaiba (Copaifera spp.), cashew nut shell (Anacardium occidentale), and pepper species 
(Schinus molle L. and Capsicum annum L.) on coefficients of total tract apparent 
digestibility (CTTAD) of nutrients, intestinal fermentative metabolites, fecal microbiota, 
and inflammatory and oxidative markers in dogs submitted to periodontal surgery. Two 
treatments were evaluated: control and test, containing the blend of functional oils (0.1 
g/animal/day). The treatments were offered for 35 days to 12 adult Beagle dogs, 
distributed in a completely randomized design (n=6). On day 30, the dogs were submitted 
to periodontal surgery. Fecal (days 30 and 35) and blood (days 0, 30, and 35) samples 
were collected for the evaluation of intestinal fermentative metabolites, fecal microbiota, 
and inflammatory and antioxidant responses in the blood. Dogs of the control group 
presented a more pronounced reduction in the genera Prevotella and Faecalibacterium 
after surgery (day 35) than the test group (P<0.05). Besides, dogs of the control group 
also presented a greater abundance of Streptococcus on day 35 (P<0.05). There was an 
increase in NF-κB concentration in the blood after surgery only in the control group 
(P<0.05). Additionally, dogs fed the oil blend showed lower lipid peroxidation (P<0.05) and 
a tendency (P=0.059) to higher glutathione transferase activity. The blend of functional 
oils does not alter the digestibility of nutrients and may modulate the intestinal microbiota. 
Furthermore, it controls the inflammatory and oxidative mechanisms after the surgical 
challenge in dogs. 
 
 
Keywords: Capsicum annuum L; gut microbiota; metabolic compounds; NF-κB; Schinus 
molle L. 
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CHAPTER I – GENERAL CONSIDERATIONS 
 

1. INTRODUCTION 
 

 Pets are more "humanized", and concerning pet food, there is a replication of  

human food trends (VIANA; MOTHÉ; MOTHÉ, 2020). In this context, the industry is 

investing to develop foods that attend nutritional needs, but also provide health and reduce 

the risk of diseases (WERNIMONT et al., 2020). This increased interest in more natural 

and sustainable feed ingredients, combined with an increase in demand for the treatment 

of dogs with chronic degenerative diseases, have resulted in new food options with 

functional ingredients, as a niche of high marketing potential. Considering this demand, 

plant compounds and functional oils can be used not only as technological additives, 

improving the quality and safety of food, but also as zootechnical, contributing to the 

animal's health (KARÁSKOVÁ; SUCHÝ; STRAKOVÁ, 2016). 

 Functional oils present different therapeutic properties acting as antioxidants, 

anti-inflammatory and regulators of the gut microbiota (KARÁSKOVÁ; SUCHÝ; 

STRAKOVÁ, 2016).  Due to these actions, the use of phytogenic additives for pets has 

been studied, both for its therapeutic potential as well as in a preventive mode, since 

inflammatory processes, oxidative stress and gut dysbiosis are commonly present in aged 

and obese animals. Moreover, these conditions are related to the progression of most 

chronic degenerative diseases such as arthritis, cancer, diabetes, and kidney disease 

(VALACCHI et al., 2018). 

 Brazil has a wide biodiversity with great potential to obtain these alternative 

compounds. Among these products are: Copaiba oil-resin, obtained from the tree of the 

species Copaifera spp.; the liquid extracted from the shell of cashew nuts; and the oils 

from the Schinus molle L. and the pepper tree Capsicum annuum L. Therefore, the aim 

of this review is to present how oxidative stress and inflammation occur in the animal 

organism and contribute, through literature, with new information about the action of these 

functional oils in these conditions. 
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1.1. OBJECTIVES  

 

1.1.2 General objective 
 

Through the literature review in chapter 1, the general objective is to understand 

the activity of functional oils from the Brazilian biodiversity in the animal organism. 

Through chapter 2 the aim of the study was to evaluate the effects of a blend composed 

by four functional oils on gut functionality and inflammatory and oxidative markers in dogs 

submitted to surgical challenge. 

 

1.1.3 Specific objective 
 

To evaluate the digestibility and palatability of a diet containing a blend of 

functional oils from Copaiba oil-resin, Cashew nut shell oil, and oils from pepper species 

of Capsicum annuum L. and Schinus molle L. Also, to evaluate the influence of these oils 

on the gut microbiota composition and diversity, fermentative metabolites, and parameters 

of inflammatory and oxidative response in dogs submitted to dental prophylaxis surgery. 
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2. LITERATURE REVIEW 
 

2.1 Phytogenic feed additives 

 

Phytogenic additives are substances derived from plants that, when incorporated 

into feed, have a positive effect on the diet and animal organism (PERIĆ; ŽIKIĆ; LUKIĆ, 

2009). According to processing and origin, phytogenic may be classified into four 

subclasses: I) Herbs (flowering product, non-woody and from non-persistent plants); II) 

Plants (entire or processed parts of a plant, e.g., root, leaves, and bark), III) Essential oils 

(hydrodistilled extracts of volatile compounds from plants as leaves, seeds, roots, and 

flowers); and IV) Oil-resin (natural solution of resin dissolved in essential oil) (HASHEMI; 

DAVOODI, 2011).  

In animal nutrition, these compounds are designated additives and, according to 

their function, they can be included in the classification defined by the European 

Community (EC 1831/2003), as sensory phytogenic additives, conferring flavor or odor to 

the food; technological additives, improving quality and safety of food; and as zootechnical 

additives, which can increase the performance and quality of animal products 

(KARÁSKOVÁ; SUCHÝ; STRAKOVÁ, 2015).  

Phytogenic additives can be formed by a single plant or through a combination of 

species. As each plant and its derivatives have several active substances, it is considered 

that the effect of a phytogenic product is due to the synergy among its compounds, and 

that these effects can be potentiated when species are used in combination (HASHEMI; 

DAVOODI, 2011).  

 In animal feed, the use of plant products emerged from the demand for more 

natural and sustainable feed ingredients (MARTIN; FERASYI, 2016). This occurred 

mainly from 2006, after the prohibition of the use of antibiotics by the European Union and 

discussion on the restriction of the use of this class of drugs in other countries. Since then, 

a new concept "Clean Green and Ethical" (MARTIN; FERASYI, 2016) has been applied 

in livestock production, valorizing a drug-free production, to reduce the risk of resistance, 

and valorizing the use of coproducts, which contributes to a reduced environmental impact 

(SALAMI et al., 2019).  
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In livestock, the use of phytogenics is not only an alternative to replace growth 

promoters, but also has demonstrated functions such as: improved palatability of food, 

benefits for digestive functions, gut microbiota and animal performance (KARÁSKOVÁ; 

SUCHÝ; STRAKOVÁ, 2015). In pet food, the concept of "natural and sustainable" has 

also been applied, and as a result, the use of phytogenics as an alternative to synthetic 

antioxidants has been studied (ROZENBLIT et al., 2018; SCHLIECK et al., 2021). Despite 

this, it is due to their pharmacological effects on the body, proving anti-inflammatory, 

antioxidant, and antimicrobial action (KARÁSKOVÁ; SUCHÝ; STRAKOVÁ, 2015) that the 

use of these additives has been receiving attention. Although most studies in dogs 

demonstrate effects of plant compounds through topical application (Table 1), the use of 

this type of additive as a dietary therapeutic alternative has already been demonstrated 

(Table 1). 
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2.2 Functional Oils   

 

Among the group of phytogenic additives are functional oils, which are 

compounds extracted from aromatic plants, usually found in Mediterranean and tropical 

countries, where they represent an important part of the local biodiversity. Functional oils 

are liquid, volatile at temperature ranges between (28 and 38 °C) (TUREK; STINTZING 

2012; OLADIMEJI; ORAFIDIYA; OKEKE, 2004), clear, lipid-soluble, and soluble in 

organic solvents. They can be synthesized by all tissues of the plant (buds, flowers, 

leaves, stems, twigs, seeds, fruits, roots, wood or bark), being stored in secretory cells, 

cavities, canals, epidermic cells or glandular trichomes (BAKKALI et al., 2008). 

Functional oils are defined as oils that have an action in addition to their nutritional 

value (MURAKAMI et al., 2014). In the category of functional oils are oil-resin and 

essential oils, which differ in the method of extraction (HASHEMI; DAVOODI, 2011). The 

oil-resin is usually extracted from different parts of plants (such as trunks and shells) 

directly or extracted in non-aqueous solvents. Oil-resin is composed of a resinous part 

and a volatile part. For isolation of the volatile fraction, called essential oil, the most 

conventional methods are: hydrodistillation or steam distillation, cold pressing method, 

and the extraction methods with organic solvents. Among the innovative extraction 

methods are: supercritical fluid extraction, subcritical liquid extraction using H2O and CO2, 

ultrasound-assisted extraction, microwave-assisted extraction, solventless microwave 

extraction, and microwave hydrodiffusion and gravity (ASBAHANI et al., 2015). 

Due to the volatile and reactive nature of functional oils, their effectiveness in the 

body can be influenced by different conditions.  During production and storage processes, 

functional oils can be degraded by oxidation, volatilization, temperature heating or by 

lighting (STEVANOVIĆ et al., 2018). In addition, it is necessary that the oil is able to be 

delivered to the intestine to be metabolized. In consideration of this, to ensure the stability 

of these compounds and their effective use in animal nutrition, functional oils must be 

microencapsulated. The benefits of microencapsulation are exemplified in figure 1.   

The microencapsulation process ensures, in addition to stability to external 

factors, thermostability at the temperature of the animal's body and a slow digestion of the 



23 
 

carrier matrix. Thus, oil carriers can be classified as polymer-based particles or lipid-based 

particles (STEVANOVIĆ et al., 2018). 

Polymer-based particles are generally composed of natural polymers, such as 

protein polysaccharide hydrogels. In addition to being rigid enough to ensure mechanical 

stability during mixing with granular feed, the combination of the amphiphilic properties of 

proteins and the hydrophilic properties of polysaccharides ensures greater stability 

(STEVANOVIĆ et al., 2018). Commonly, the structure of a polymer is composed of an 

external layer of polysaccharides and an internal layer of protein (TORCELLO-GÓMEZ et 

al., 2011; XU et al., 2017). 

 The techniques used are: simple and complex coacervation of functional oil 

droplets; extrusion; and combination of simple coacervation and extrusion (STEVANOVIĆ 

et al., 2018). 

Lipid-based particles include some vegetable oils and liposomes. Vegetable oils 

are a mixture of triglycerides, as main compounds, and secondary compounds such as 

glycerolipids, phospholipids, and non-glycerolipids (YARA-VARÓN et al., 2017). 

Vegetable oils with long-chain triglycerides such as corn oil and canola oil may be used 

due to the small digestion rate (MAJEED et al., 2016). Microemulsions, with droplet 

diameters less than 500 nm, are produced by microfluidization or micelle formation 

techniques (NAZZARO et al., 2012) that can be combined with spray cooling techniques, 

considered the most economical encapsulation technology (SILVA et al., 2014). 

Liposomes are a system composed of one or more bilayers, usually formed using 

a phospholipid involving a water-based nucleus. The main methods for this technique 

include mechanical dispersion method, solvent dispersion method, and detergent removal 

method (AKBARZADEH et al., 2013). The types of functional oil carriers are exemplified 

in figure 2. 
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FIGURE 1– BENEFITS OF MICROENCAPSULATION ON FUNCTIONAL OILS IN ANIMAL FEED 

 
SOURCE: Adapted from Stevanović et al. (2018). 

 

 
 

 

 

FIGURE 2 – APPROACHES FROM FUNCTIONAL OILS MICROENCAPSULATION 

 
 

SOURCE: Adapted from Stevanović et al. (2018). 
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2.3 Bioactive compounds 

 

The pharmacological action of functional oils is related to the secondary 

metabolites present in their composition. These metabolites are produced by different 

cells of the plant, and are responsible for the adaptation of the plant when they interact 

with the environment and for acting in the defense mechanisms of the plant (BAKKALI et 

al., 2008). These compounds can vary in their composition and concentration due to 

genetic and environmental factors, such as soil, light incidence, temperature, humidity, 

water, and nutrients availability. Usually, a functional oil has two or three components 

present in higher concentration (20 to 70%) and these components determine the main 

and unique pharmacological action of a variety of plants (BAKKALI et al., 2008; GANG et 

al., 2001)  

There are three major groups of secondary metabolites present in functional oils: 

terpenes (predominantly monoterpenes, sesquiterpenes and diterpenes), phenolic 

compounds (phenylpropanoids and flavonoids), and nitrogen compounds (alkaloids, 

glycosides, glucosinolates and cyanogenic glycosine) (VOON; BHAT; RUSUL, 2012).  

 

2.3.1 Terpenes 
 

Among the bioactive compounds, terpenes are the largest family of plant 

secondary metabolites. Terpenes are basically hydrocarbons, that is, formed only of 

carbon and H2O, and are the first line of defense of plants (CHO et al., 2017). When these 

terpenes are modified by oxidation of the methyl group and inclusion of different functional 

groups, they are named Terpenoids. Depending on their functional groups, terpenoids 

can have different chemical functions, such as: alcohols, acids, aldehydes, ketones, 

ethers, and phenols. Regardless of their functional group, their chemical structure is 

formed in blocks of 5 carbons, called isoprene unit (C5H8). Depending on the number of 

isoprene units, terpenes are classified as monoterpenes, sesquiterpenes, and diterpenes, 

as shown in figure 3. Terpenes have an enormous chemical structural diversity that is 

generated by both terpenoid metabolic pathways and the specialized cell types that 

participate in their biosynthesis (ZULAK; BOHLMANN, 2010).  
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These bioactive compounds are recognized for their anti-inflammatory action. 

This action occurs mainly through the suppression of pro-inflammatory enzymes and 

signaling of inflammatory pathways. In addition, a large number of studies demonstrate 

the antioxidant, antimicrobial, antiviral, anticancer, analgesic, and antidiabetic activity of 

these compounds (AMORATI; FOTI; VALGIMIGLI, 2013; ASTANI; REICHLING; 

SCHNITZLER, 2010; BHALLA; GUPTA; JAITAK, 2013; GUIMARÃES; QUINTANS; 

QUINTANS-JÚNIOR, 2013; HABTEMARIAM, 2017; NAZZARO et al., 2013; OZ et al., 

2015). 

 
FIGURE 3 – CHEMICAL STRUCTURE OF ISOPRENE AND MONOTERPENES AND 

SESQUITERPENE 

 
                                 SOURCE: Adapted from Mewalal et al. (2017). 

 
 
 
 
2.3.2 Phenolic compounds 

 

Phenolic compounds are originated from the secondary metabolism of plants, and 

are considered essential for their growth and reproduction, being formed under conditions 

of plant stress, such as infection, injury and UV radiation (ANGELO; JORGE, 2007; 

NACZK; SHAHIDI, 2004).  Phenolic compounds are a very diverse group of 

phytochemicals, chemically defined as substances that have at least one aromatic ring 
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with one (or more) hydroxyl. Phenolic compounds can be separated into two major groups: 

Flavonoids, formed by two aromatic rings, and non-flavonoids. The non-flavonoids, also 

called phenolic acids, contain an aromatic ring, at least one hydroxyl group, and different 

functional groups such as aldehydes, alcohols, or acids that can form esters with organic 

acids or bind to sugars (KARAKAYA, 2004; LUNA-GUEVARA et al., 2018). Among the 

most commonly known phenolic compounds are: resveratrol, quercetin, luteolin, and 

catechins (SHEN et al., 2022). The complete classification of phenolic compounds is 

represented in figure 4. 

In a functional oil the different phenolic compounds act by different mechanisms, 

and may act synergistically or not. Thus, the majority action of the oil will depend on the 

concentration and type of compounds that are present in the oil. In general, the phenolic 

compounds have as their main characteristic the antioxidant action, mainly related to the 

presence of the aromatic ring with oxireduction capacity. In addition, phenolic compounds 

also have antimicrobial, anti-inflammatory, antitumor, hypoglycemic, cholesterol-reducing, 

antidiabetic, and digestive action, through the increased secretion of bile (ALI 

GHASEMZADEH, 2011; PANCHE; DIWAN; CHANDRA, 2016). 

 
FIGURE 4 – CLASSIFICATION OF PHENOLIC COMPOUNDS  

 
 

SOURCE: Adapted from Karakaya (2004). 
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2.3.3 Alkaloids 

 

Plant alkaloids are a large class of secondary metabolites, containing more than 

20,000 molecules (FAISAL et al., 2023). They are characterized as cyclic organic 

compounds that have at least one nitrogen atom in their ring, and do not have nitrogen in 

an amide or peptide bond (O’CONNOR, 2010). They are predominantly found in 

angiosperms, synthesized in the endoplasmic reticulum, and concentrated in vacuoles. 

The definition for this class of bioactive compounds is difficult, since there is no clear 

separation between alkaloid compounds properly and naturally occurring complex amines 

(HENRIQUES; KERBER; MORENO, 1999). According to their chemical composition, 

alkaloids can be classified into “true alkaloids”, protoalkaloids and pseudoalkaloids (Figure 

5) (BRUNETON, 1995). 

Plant species that contain more than 0.001% of alkaloids are recognized as 

sources of these compounds. Plant groups such as Solanaceae, Fabaceae, Asteraceae, 

Papaveraceae, Amaryllidaceae, Rutaceae, Apocynaceae and Rubiaceae have potential 

to be used in pharmaceuticals (YANG; STÖCKIGT, 2010).  

Generally, plants have a variety of alkaloid compounds, forming a complex 

mixture that can be dominated by one main component. The quantities and composition 

present can vary depending on the plant. Many of these compounds have recognized 

pharmacological effects, such as the analgesic effects of morphine and codeine. In 

addition to these analgesic effects, many antiviral and antimicrobial drugs have been 

developed from these metabolites (BASITH et al., 2016; BRIBI et al., 2016; FAISAL et al., 

2023). Moreover, new findings have attributed to glucosinolate alkaloids, present in 

brassica vegetables such as broccoli and cauliflower, apoptosis-stimulating effects in 

human tumor cells (FAHEY; ZALCMANN; TALALAY, 2001). 
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FIGURE 5 – CHEMICAL STRUCTURE OF SOME WELL-KNOWN ALKALOID COMPOUNDS 

 

SOURCE: Adapted from Silva et al. (2020). 

 

 

2.4 Biological action of functional oils on the animal organism 

 

2.4.1 Anti-inflammatory action 
 

2.4.1.1 Inflammatory processes 
 

Inflammation and oxidative stress are correlated events in the animal organism. 

The inflammatory response is induced from exogenous or endogenous signals. The 

exogenous signals are linked to pathogen-associated molecular patterns (PAMPs), which 

are for example lipopolysaccharides and exotoxins. PAMPs are recognized by the host 

organism through receptor recognition patterns (PRRs), such as Toll-like receptors 

(TLRs). Endogenous signals are the damage-associated molecular patterns (DAMPs) that 

are produced when a tissue or organ is stressed or damaged. Among these endogenous 

factors are oxidized lipoproteins (LPO) (MEDZHITOV, 2008).  

From the initial signaling of the inflammatory process, the immune system is 

recruited to contain the damage. Normally, the immune response consists of the innate 
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response and the adaptive response. In this review the focus will be only on the innate 

response, which aims to provide immediate protection against pathogens or tissue 

damage (VAN DYKE; KORNMAN, 2008). The innate response initiates with the 

recognition of the initial inflammatory triggers (PRRS, DAMPS) by macrophages. The 

macrophages release cytokines, chemokines, and inflammatory mediators that induce an 

increase in inflammatory transcription factors, such as NF-κB. In this process there is also 

a recruitment of neutrophils. In the neutrophils the enzyme xanthine oxidase and the TLR4 

will induce the production of reactive oxygen species (ROS) in order to eliminate the 

pathogen and resolve the inflammation (LORNE et al., 2008). When inflammation is not 

controlled, the excessive release of ROS, and the incapability of neutralization by the 

antioxidant system, leads to oxidative stress, increased translocation of NF-κB, and the 

death of neutrophils, amplifying the inflammatory response, and potentially triggering 

chronic inflammation (WINTERBOURN; KETTLE; HAMPTON, 2016). 

 

2.4.1.2 NF-κB pathways 
 

In the inflammatory process, the activation of the NF-κB pathway is a determining 

factor, and for this reason it has been widely studied. NF-κB is a protein that represents a 

family that is involved with the transcription of genes responsible for the inflammatory 

response (OECKINGHAUS; GHOSH, 2009) such as IL-1, IL-6, iNOS, and COX-2 

(ROTHSCHILD et al., 2018). In mammals this family is composed of five members, and 

the most present and abundant in cells is RelA, also called p65 (ZHANG et al., 2015). NF-

κB activation has two signaling pathways: the non-canonical pathway and the canonical 

pathway. The canonical pathway responds to a diversity of stimuli from different immune 

receptors such as: cytokines, growth factors, microbial components, and stressors 

(ISRAEL, 2010). The primary mechanism for this activation is the degradation of the 

inhibitory protein IkBα, which is triggered via a complex of multiple subunit IκB kinase 

(IKK). After phosphorylation of IkBα the NF-κB makes a rapid translocation to the nucleus, 

to stimulate gene transcription (SUN; LEY, 2008).  

There are several therapeutic strategies to inhibit the signaling activity of this 

transcription factor, these are: I. inhibition of IKK activity; II. inhibition of protease activity; 
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III. inhibition of nuclear translocation; IV. inhibition of DNA binding (LIU et al., 2017). Some 

bioactive metabolites present in functional oils have specific function on the NF-κB 

pathway, controlling the inflammatory response. The group of terpenes, for example, 

specifically inhibit IKK and prevent the degradation of Ikα  (LIU et al., 2017; LUCCA et al., 

2018). The anti-inflammatory action of 32 metabolites belonging to the group of terpenes, 

through the inhibition of the NF-κB pathway, was widely discussed by Silveira e Sá et al. 

(2013). In this study, the authors concluded that terpenes act by decreasing the 

concentrations of ROS and inflammatory cytokines such as TNF-α, IL-1β, and IL-6, 

demonstrating great potential to act as an anti-inflammatory drug. 

This mechanism of anti-inflammatory action occurs not only systemically, but also 

in the gut mucosa. Phenolic compounds, for example, can suppress the TLR4 receptor 

pathway in the gut, decreasing the production of pro-inflammatory cytokines induced by 

NF-κB. The excessive production of pro-inflammatory cytokines causes damage to the 

gut mucosa, including increasing its permeability. These effects have implications for 

modulation of the gut microbiota, since the integrity of the mucosa and the activity of the 

gut-associated immune system interfere with eubiosis (LI et al., 2021). Both the action of 

terpenes and the action of polyphenols on the NF-κB pathway are demonstrated in figure 

7. In the same way that the nuclear transcription factor NF-κB acts by transcribing 

inflammatory genes, another transcription factor, Nrf2 acts in the opposite pathway, 

playing a role in protecting the endothelium against ROS damage (CHEN et al., 2006). 

Terpenes and phenolic compounds are able to induce the activation of Nrf2 (AMES SIBIN 

et al., 2018) regulating positively the antioxidant response. 
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FIGURE 6 – ACTION OF TERPENES AND POLYPHENOLS AS INHIBITORS OF NF-κB PATHWAY  

 

SOURCE: Adapted from Liu et al. (2017). 

 
 
2.4.2 Antioxidant action 

 

The antioxidant activity of functional oils is related to their capacity to act as an 

anti-inflammatory agent. A significant amount of ROS is produced by monocytes, 

neutrophils, eosinophils, and macrophages through the process of bacterial phagocytosis 

(SOEHNLEIN et al., 2017). In addition, ROS are involved in modulating the transcription 

factors Nrf2 and NF-κB, which are involved in the expression of important cytokines (SUN; 

LEY, 2008). Thus, through the inhibition of these transcription factors, functional oils may 

be able to decrease the production of ROS, reducing oxidative tissue damage. However, 

besides this indirect action on the production of free radicals through the anti-inflammatory 

action, bioactive metabolites also have a direct antioxidant action through some 

mechanisms of action: I. Oxireduction, the bioactive compounds of functional oils have 

free radical scavenging action, produced during metabolism, preventing the formation of 

superoxide anions, hydroxyl anions, and lipid peroxides (CALLEJA et al., 2013). This 
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effect occurs by the oxireduction ability of bioactive compounds, such as phenolic 

compounds for example, where an H+ atom from the hydroxyl group of the aromatic 

structure is donated to the free radical. This mechanism is represented in figure 7. 

II.Sparing consumption of endogenous antioxidant enzymes. As a consequence of the 

free radical scavenging action, bioactive compounds promote less degradation of 

endogenous antioxidant enzymes (ERYIGIT et al., 2017). The endogenous antioxidant 

enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH), 

and glutathione transferase (GST) are an important part of the antioxidant system and act 

together with the GSH system, contributing to oxidative balance (Figure 8). SOD acts by 

transforming two superoxide radical anions into hydrogen peroxide. CAT transforms 

hydrogen peroxide into water and oxygen (MASELLA et al., 2005). GSH cycles between 

its oxidized (GSH Px) and reduced (GSH- Rd) form catalyzes the dismutation of hydrogen 

peroxide into water and oxygen (MASELLA et al., 2005).  GST is an enzyme that has high 

specificity for GSH. GST plays a physiological function in triggering the detoxification of 

pharmacologically active compounds, which are generated intracellularly or present in the 

form of xenobiotics. The GST-catalyzed conjugation reaction of glutathione with 

xenobiotic compounds turns the compounds in the reactions less toxic and more soluble 

in water, facilitating their excretion (WHEATLEY et al., 1994). Some studies evaluating 

the levels of cellular activity of endogenous enzymes have observed that bioactive 

compounds are able to stimulate the activity of these enzymes such as SOD, CAT, and 

GST (CAMPOS et al., 2021; ERYIGIT et al., 2017; MORAIS et al., 2010).III. The chelation 

of metal ions such as iron, copper, chromium, and cobalt by polyphenol compounds 

prevents oxidative damage (SÁNCHEZ-VIOQUE et al., 2013). Pro-oxidative metals in 

excess react with reactive compounds such as the superoxide anion radical, and nitric 

oxide, which leads to oxidative stress which is responsible for lipid peroxidation, DNA 

damage, protein modification, and other effects (Figure 8). IV. Some bioactive compounds 

are capable of suppressing a variety of pro-oxidant enzymes involved in the production of 

ROS, preventing oxidative damage in cells (TREVISAN et al., 2006).  Among these 

enzymes is the xanthine oxidase, responsible for the metabolism of uric acid, which is one 

of the main producers of superoxide anions and hydrogen peroxide (MASUOKA; KUBO, 

2004; TREVISAN et al., 2006). Xanthine oxidase is formed from xanthine dehydrogenase 
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under oxidative conditions. This enzyme catalyzes the oxidation of hypoxanthine to 

xanthine and uric acid (BRAY 1975; PORRAS et al., 1981). Superoxide anion and 

hydrogen peroxide are formed from oxygen. The reaction progresses and depending on 

the oxidation state of the xanthine oxidase, more superoxide anions and hydrogen 

peroxide are generated, causing cell damage (EPSTEIN; MCCORD, 1985; FONG et al., 

1973) (Figure 9). 

 
FIGURE 7 – MECHANISMS OF FREE RADICAL SCAVENGING OF FUNCTIONAL OILS 

 
 

SOURCE: Trevisan et al. (2006). 
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FIGURE 8 – CHELATION OF METAL IONS THAT PARTICIPATE IN THE REACTIONS OF THE 
ENZYMATIC ANTIOXIDANT SYSTEM 

 

SOURCE: The author (2023). 

 

FIGURE 9 – REPRESENTATION OF THE INHIBITION OF THE XANTHINE OXIDASE ENZYME 

 
SOURCE: The author (2023). 
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2.4.3 Gut microbiota modulation action  
 

The gut microbiota communicates with inflammatory metabolic and oxidative 

stress pathways through direct and indirect mechanisms. As physiological changes in 

these three axes are cross-regulated, the gut microbiota can be influenced by the anti-

inflammatory action of bioactive compounds present in plants (LI et al., 2020). 

In addition to this indirect modulating action, bioactive compounds such as 

polyphenols and terpenes have antimicrobial characteristic and can alter the composition 

of the gut microbiota (BURT, 2004; LI et al., 2018). Considering that functional oils have 

different compounds, there is agreement that their antibacterial activity is not attributable 

to one specific mechanism, but to several cellular targets (Figure 10). Moreover, the 

mechanisms do not act separately, but may act as a consequence of others  (CARSON; 

MEE; RILEY, 2002; SKANDAMIS et al., 2001). One of the most discussed modes of action 

is related to the hydrophobicity of plant compounds, which act on the lipids of the cell 

membrane of potentially pathogenic bacteria, such as Clostridium perfringens, for 

example (FRIEDMAN; JUNEJA, 2010). This mechanism makes the membrane more 

permeable, causing leakage of ions and other cell contents, leading to cell death (BURT, 

2004; CARSON; MEE; RILEY, 2002; SKANDAMIS et al., 2001).  Gram-positive bacteria 

are more susceptible to this action (BURT, 2004; TIWARI et al., 2009). Gram-negative 

bacteria have a hydrophilic membrane of lipopolysaccharides creating a barrier to 

functional oils, which are hydrophobic, which gives more resistance to this type of bacteria 

(HUQ et al., 2014). 

Some studies report this modulating activity that functional oils have on the gut 

microbiota of domestic animals. Ruzauskas et al. (2020) demonstrated that pigs fed a 

combination of terpenes had lower abundance of the genus Streptococcus spp. This 

genus, when increased, is related to intestinal dysbiosis and inflammatory bowel disease 

in dogs (ALSHAWAQFEH et al., 2017). Also in pigs, by investigating the composition of 

the microbiota of weanling piglets, Li et al. (2018) observed that the group fed a mixture 

of carvacrol and thymol essential oils showed higher abundance of genera considered 

beneficial for the species. In dogs, an extract rich in polyphenols obtained from green tea 
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also provided a modulating effect on the microbiota, increasing bacteria considered 

beneficial that belong to the phylum firmicutes (LI et al., 2020). 

Despite the results, it is important to consider that the antimicrobial action of 

functional oils depends on factors such as the minimum concentration and chemical 

structure of the compounds that are present. Some studies show that oils with higher 

concentration of phenolic compounds have greater antimicrobial activity (DORMAN; 

DEANS, 2000). Furthermore, there are investigations related to the presence and 

positioning of hydroxyl in the phenolic structure, demonstrating that according to the 

positioning of the ring, the bioactive compound may have different action on gram-positive 

and gram-negative bacteria (DORMAN; DEANS, 2000). 

 

FIGURE 10 – LOCATIONS AND MECHANISMS OF FUNCTIONAL OILS IN THE BACTERIAL CELL 

 
 

SOURCE: Adapted from Burt (2004). 

 

 

In addition to the action of secondary metabolites on the gut microbiota, through 

anti-inflammatory and antimicrobial activity, some bioactive compounds of functional oils 
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have potential to stimulate the digestive system. Physiologically, proteins are digested in 

the stomach and small intestine, resulting in only small amounts of proteins reaching the 

large intestine (QAISRANI et al., 2015). When the proteins reach the distal segments of 

the gastrointestinal tract, the amino acids are fermented by proteolytic bacteria, producing 

compounds such as ammonia, amines, and branched chain fatty acids (RÍOS-COVIÁN et 

al., 2016). If protein digestion does not occur efficiently, these compounds are produced 

in excess, and can be toxic to the gut mucosa (BLACHIER et al., 2007), and also 

contribute to the odour of feces (WINDEY; DE PRETER; VERBEKE, 2012). 

According to Mellor (2000) some bioactive compounds, such as capsaicin for 

example, have the capacity to stimulate gastric and pancreatic enzymatic activity. 

Moreover, there is evidence that some bioactive plant compounds also stimulate the 

secretion of saliva, mucus and bile, contributing to intestinal functionality (PLATEL & 

SRINIVASAN, 2004). This action on digestion, by increasing the action of enzymes, such 

as pancreatic proteases and pepsin, optimizes the digestion of proteins, reducing the 

substrate for proteolytic bacteria. This fact modulates the composition of the microbiota, 

since some proteolytic bacteria, such as Clostridium perfringens for example, can be 

potentially pathogenic (SUCHODOLSKI et al., 2012). Furthermore, there is a correlation 

between increased proteolytic bacteria and decreased abundance of bacteria considered 

beneficial such as Lactobacillus and Bifidobacterium (ALESSANDRI et al., 2019). Also, 

the increase in mucus production stimulated by functional oils, can decrease the 

adherence of pathogenic bacteria to the intestinal mucosa, indirectly modulating the gut 

microbiota  (FRANZ; BASER; WINDISCH, 2010). 

 

2.5 Oils from Brazilian biodiversity 

 

2.5.1 Copaiba oil-resin 
 

Copaiba oil-resin is a light yellow-brown exudate extracted from the trunk of the 

Copaifera tree (Figure 11), consisting of a non-volatile resinous part and a portion of 

volatile compounds. Copaifera is a tree of the genus Copaifera L., family Leguminosae, 

commonly distributed in regions of the African continent and in tropical and subtropical 
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regions of Latin America. The trunk of the Copaiba tree, from where the oil is extracted, 

has aromatic bark and can measure up to 0.4 to 4 meters in diameter. There are 72 

described species of Copaiba, 16 of which are located exclusively in Brazil. The largest 

concentration of trees is in the Amazonas and Pará states (VEIGA JUNIOR; PINTO, 

2002), making this region the main commercial producer of Copaiba oil. Among the 

species belonging to the Brazilian flora, the most prominent are Copaifera officinalis L.; 

Copaifera reticulata Ducke; Copaifera multijuga Hayne; Copaifera langsdorffii; and 

Copaifera cearensis Huber ex Ducke (PIERI; MUSSI; MOREIRA, 2009; VEIGA JUNIOR; 

PINTO, 2002). 

The extraction of the oil-resin of copaiba must be performed using the correct 

technique, to avoid damaging the tree permanently. The trunk must be drilled with an 

auger of approximately 2 meters in diameter, in two holes (Figure 11). To obtain the oil, a 

PVC pipe is inserted into the hole, through which the oil flows. After the extraction is 

complete, the hole is closed with a sealing cover that is easy to remove, or with clay, so 

that the hole can be used for other harvests (VEIGA JUNIOR; PINTO, 2002). 

The concentration of bioactive compounds present in copaiba oil-resin can vary 

according to: tree species, biological factors (presence of insects and fungi) or abiotic 

factors such as light, solar radiation, temperature and soil composition (OLIVEIRA et al., 

2006). Despite this variation, studies conducted with different resin-oils show that the 

pharmacological properties have remained the same  (VEIGA et al., 2007) because there 

is a common pattern in the main compounds found. About 80% of the substances found 

in oil-resins are sesquiterpenes and 20% are diterpenes. Among the volatile 

sesquiterpenes, the most present is β-caryophyllene, corresponding to about 50% of the 

compositions. Among the diterpenes, copalic acid predominates, and its concentration 

varies among copaiba species (LUCCA et al., 2018; VEIGA et al., 2007). Table 2 shows 

some of the main compounds present in copaiba oil-resin. 

Several pharmacological properties are attributed to these bioactive compounds 

such as: anti-inflammatory effect (CARVALHO et al., 2005; VEIGA et al., 2007) , analgesic 

(CARVALHO et al., 2005), antimicrobial (PIERI; MUSSI; MOREIRA, 2009), and anti-tumor 

properties (LIMA et al., 2003).  

 



40 
 

2.5.1.1 Anti-inflammatory activity of the Copaiba oil-resin 
 

Although β-caryophyllene is not the only compound present in copaiba oil-resin 

with anti-inflammatory action, it is the main compound responsible for this action (AMES

SIBIN et al., 2018). 

Studies show that β-cariophyllene can negatively regulate the expression of 

cyclooxygenase 2, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-1β in 

models of neuroinflammation in vitro and in vivo. This is because this compound alone, 

as well as in conjunction with copaiba oil-resin, is able to inhibit the NF-κB pathway 

through a mechanism involving the activation of cannabinoid receptor (CB2) (GUO et al., 

2014; LUCCA et al., 2018; OJHA et al., 2016). This effect was proven by Ames Sibin et 

al. (2018) who observed a reduction in liver metalloproteinases, which activity is an 

indicator of polymorphonuclear cell infiltration. Similarly, a study evaluating both in vitro 

inflammatory parameters and the effect of copaiba oil-resin via oral and topical 

administration in humans with chronic psoriasis, observed neutralization of NF-κB 

translocation and reduced pro-inflammatory cytokine release, as well as a reduction in the 

characteristic clinical signs of the disease with doses of 0.1 to 10 μM of the oleoresin from 

Copaifera langsdorffii Delf.(GELMINI et al., 2013).  

 

2.5.1.2. Antioxidant activity of copaiba resin oil 
 

With regard to antioxidant capacity, it is possible that copaiba oil-resin acts by 

reducing oxidative stress through three main mechanisms already described in this 

review: I. Reduction of the inflammatory process, II. Stimulation of the endogenous 

antioxidant system III. Scavenging of free radicals (CALLEJA et al., 2013; OJHA et al., 

2016) 

These mechanisms were demonstrated in a study evaluating the isolated action 

of 430 mg/kg of β-caryophyllene, demonstrating reduction of ROS and increase of GSH 

(AMES SIBIN et al., 2018), and in a study using the oil-resin of C. reticulata Ducke, 

demonstrating reduction of oxidative stress in rats with induced colitis (BARBOSA et al., 

2018). Similarly, a study using Wistar rats as experimental models of skin flaps to simulate 
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necrosis caused by ischemia and reperfusion syndrome, showed increased GSH activity 

and reduced thiobarbituric acid-reactive substances (TBARS) when supplemented with 

Copaifera langsdorffii Desf resin oil (DE LIMA SILVA et al., 2009). 

 
 

2.5.1.3 Antimicrobial activity 
 

This action is related to the combination between sesquiterpenes and diterpenes 

of copaiba oil-resin and occurs through the loss of integrity of the bacteria cell wall (LIMA 

et al., 2003; SANTOS et al., 2008).  

This antimicrobial action has been demonstrated on many pathogens, including 

gram-negative and mainly gram-positive bacteria, such as Staphylococcus spp. 

(ALENCAR et al., 2015) and Streptococcus spp. (SIMÕES et al., 2016). In dogs, a study 

using topical oral copaiba oil (10ml)  (PIERI et al., 2010) demonstrated an effect against 

the bacteria: Streptococcus salivarius, Streptococcus pyogenes and Enterococcus 

faecalis, potential causes of periodontal disease in this specie. Furthermore, the use of 

oil-resin from Copaifera reticulata Ducke exercised bacteriostatic and bactericidal activity 

even in multidrug-resistant strains of coagulase-positive Staphylococcus isolated from 

dogs with external otitis (ZIECH et al., 2013). 

Many of these medicinal properties were previously known by the indigenous 

population and the people who live in the northern, northeastern, and mid-western regions 

of Brazil. For this reason, the topical and oral use of the oleoresin is considered popular. 

However, despite the cultural use, scientific investigations, and support from researchers 

in the processes of extraction and characterization of the oils and their properties are 

necessary. This is currently in progress at the regional federal universities and institutions 

such as a Brazilian Agricultural Research Corporation (EMBRAPA). 
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FIGURE 11 – COPAIBA TREE (COPAIFERA LANGSDORFFII); AUGER DRILLING, OIL RESIN 

 

SOURCE: Pieri (2009); https://www.gentedeopiniao.com.br/meio-ambiente/oleo-de-copaiba-riqueza-

da-amazonia-e-do-brasil; https://blog.useorganico.com.br/conheca-os-beneficios-e-usos-do-oleo-

vegetal-de-copaiba/ 

 
2.5.2 Cashew nut shell oil (CNSL) 
 

Cashew (Anacardium occidentale L.) belongs to the family Anacardiaceae and is 

a native plant of northeastern Brazil. Although it can be found in other regions of South 

America like Colombia, Costa Rica, Honduras, El Salvador and in other continents like 

Asia and Africa.   

The cashew tree has several functionalities, both food and pharmacological. The 

cashew consists of the pseudo-fruit (peduncle) of yellow to red color, and the nut, its true 

fruit (Figure 12) (PAIVA et al., 2000).  

The cashew nut is an aquenium fruit and consists of three parts: shell, skin and 

almond. The shell is rigid and straight. The region between the kernel and the shell, called 

mesocarp, has a spongy and alveolar structure, which contains a viscous, caustic, dark 

brown oil, known as cashew nut shell liquid (CNSL), considered a by-product of low added 

value, which represents 25% of the weight of the nut (MAZZETTO; LOMONACO; MELE, 

2009; PAIVA et al., 2000). 
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From the cashew nut processing, the kernel and the shell are obtained, which are 

the raw material for the production of the CNSL. After the extractive industrial process, 

18% of CNSL and 55% of a "residual cake" is obtained, which is used as a combustible 

in boilers (PAIVA, 2010). The CNSL is a natural source of phenolic lipids, such as 

anacardic acid, cardanol, cardol and metylcardanol (MAZZETTO; LOMONACO; MELE, 

2009). 

Different processes can be used to obtain the CNSL: cold extraction (presses), 

solvent extraction, supercritical CO2 extraction and thermal-mechanical process (hot oil 

process) (CORREIA; DAVID; DAVID, 2006; PHANI KUMAR et al., 2002). In the hot oil 

process, generally employed in industrial scale factories, the hot CNSL is used as a 

vehicle to heat the raw nuts to approximately 190°C. In this way, the outer shell is ruptured, 

which releases the alkylphenols present in the mesocarp, followed by the removal of the 

shell, which allows the recovery of almonds (PATEL; BANDYOPADHYAY; GANESH, 

2006). When subjected to high temperatures (180° C), the anacardic acid undergoes a 

reaction of decarboxylation converting to cardanol, producing the called CNSL technical 

(MAZZETTO; LOMONACO; MELE, 2009) 

According to the extraction method, the composition of the CNSL changes. The 

natural CNSL contains a high quantity of anacardic acid, and does not present polymeric 

material in its composition. However, the technical CNSL showed a high percentage of 

cardanol and also polymeric material, present in all samples analyzed (GEDAM; 

SAMPATHKUMARAN, 1986). 

Although the almond is the part of the cashew tree that is considered the most 

famous and which generates the most money, the CNSL has several industrial 

applications, such as paints, varnishes, resins, insulators and pharmacological 

applications (LUBI; THACHIL, 2000). Regarding pharmacological activities, phenolic lipids 

present in CNSL apparently exhibit activities: antitumoral (CORREIA; DAVID; DAVID, 

2006; WU et al., 2011), antioxidant, (KUBO et al., 2006; STASIUK; KOZUBEK, 2010; 

TAN; CHAN, 2014), antibacterial, gastroprotective and anti-inflammatory (HAMAD; 

MUBOFU, 2015).  In a recent study, Sahin et al. (2022) showed that phenolic lipids from 

CNSL have the potential to modulate PPAR α and γ transcription factors, and may be 

favorable for the treatment of obesity and diabetes. 
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2.5.2.1 Anti-inflammatory and antioxidant activity of CNSL 
 

Regarding anti-inflammatory activities, the CNSL compounds can prevent the 

release of TNF-α, decrease the gene expression of cytokines, and enzymes, such as 

prostaglandin synthase and lipoxygenase, through the inhibition of the NF-κB pathway 

(PARAMASHIVAPPA et al., 2001).  

The cashew shell liquid also has antioxidant properties, mainly due to the 

presence of anacardic acid. Its phenolic structure has capacity of oxireduction, donating 

hydrogen, removing the ROS, in addition to inhibiting the pro-oxidative enzyme xanthine 

oxidase (TREVISAN et al., 2006).  

These actions were proven by Souza et al. (2018) analyzing the phenolic lipids 

present in CNSL. Through in vitro assay, the authors demonstrated that CNSL reduced 

the gene expression of inflammatory markers and the production of nitric oxide and IL-6. 

Another study, with an animal model, evaluated the effect of anacardic acid, extracted 

from the CNSL. The authors evaluated anti-inflammatory and antioxidant parameters in 

rats that received an intraperitoneal dose of compounds causing inflammation and edema. 

The authors of the mentioned study observed that the animals that received the dose of 

anacardic acids before the induction of edema, showed reduced migration of leukocytes 

and neutrophils to the intraperitoneal cavity, lower concentration of malondialdehyde 

(MDA - a parameter to measure oxidative stress) and increased levels of GSH. In 

nociceptive tests, anacardic acids also decreased licking, abdominal contortions and 

latency to thermal stimulation, possibly via interaction with opioid receptors (GOMES 

JÚNIOR et al., 2020). 

 

2.5.2.2 Antimicrobial activity of CNSL 
 

The antimicrobial properties of CNSL are due to the high quantity of anacardic 

acid in its composition. As they are amphiphilic molecules, they act on the lipoprotein 

membrane of bacteria  (BURT, 2004).  
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This action has already been demonstrated in broilers, supplemented with CNSL, 

showed control of proliferation of intestinal Escherichia coli (LÓPEZ et al., 2012). Also, 

broilers challenged with Eimeria showed a lower impact on the gut microbiota when fed a 

mixture of CNSL and castor oil (0.15% of the blend) (VIEIRA et al., 2020). In pigs, the 

association of CNSL with Castor oil has been shown to benefit the intestinal functionality 

of nursery piglets by increasing potentially beneficial bacteria and reducing potentially 

pathogenic bacteria in the jejunal mucosa. In addition to maintaining villus height, without 

affecting overall growth performance (MOITA et al., 2021).  

 
 

FIGURE 12 – CASHEW APPLE (FRUIT), NUT AND SHELL. LONGITUDINAL SECTION OF CASHEW 
NUTS. 

 
SOURCE: Adapted from Soares (1986) 

 

 

2.5.3 Oil from the pepper specie Schinus molle L. 
 

Pink pepper, mastic, or red mastic fruit are the names used for Schinus molle L., 

a plant from the family Anacardiaceae, which includes about 30 species. Schinus molle L. 
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is native to southern Brazil but is distributed in several countries in Central and North 

America.  

The essential oil can be extracted from the fruit or leaves of Schinus molle L. by 

hydrodistillation or steam distillation. This oil is rich in monoterpenes such as: β-

felandrene, α-felandrene, myrcene, limonene and α-pinene (ZAHED et al., 2011).  

Its bioactive compounds exhibit antioxidant, antimicrobial, anti-inflammatory, anti-

parasitic, anti-viral and anti-allergic action (EL-NASHAR et al., 2022; ERYIGIT et al., 2017) 

(Figure 13). In addition, the use of Schinus molle L. essential oil is known for its larvicidal 

effect against Rhipicephalus sanguineus and Aedes Aegypti (BITENCOURT et al., 2022; 

REY-VALEIRÓN et al., 2018). 

 

2.5.3.1 Anti-inflammatory, antioxidant activity of Schinnus molle L. 
 

To the compound α-pinene is attributed the anti-inflammatory capacity of pink 

pepper oil. This compound attenuates inflammation by inhibiting NF-κB. This action has 

already been demonstrated in mice with induced allergic rhinitis. The animals treated with 

α-pinene showed improvement in clinical signs, and reduced levels of TNFα, IL-1, and 

IgE. In addition, the compound was able to inhibit IκB kinase (IKK)-β and nuclear factor-

κB (NF-κB) activation in mast cells (NAM et al., 2014). The antioxidant action of this oil is 

due to its ability to eliminate free radicals, as demonstrated by Eryigit et al. (2017) who 

observed free radical reduction through Trolox Equivalent Antioxidant Capacity (TEAC). 

 

2.5.3.2 Antimicrobial activity and gut functionality 
 

Due to the presence of terpenes as bioactive compounds, the oil of Shinus molle 

L. seems to exhibit antimicrobial activity (BURT, 2004). An in vitro study demonstrated 

antimicrobial capacity of Schinnus molle L. on Staphylococcus spp. and Streptococcus 

spp. bacteria which caused periodontal disease in dogs (ALVES et al., 2020). Another 

study, however, in vivo, using orange essential oil, which main active compound is 

limonene, also present in Schinnus molle L, achieved interesting results in the intestinal 

functionality of broiler chickens. The authors observed improvement in feed efficiency and 
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intestinal morphometric change, characterized by increased villus height in the jejunum  

(SOUZA et al., 2021). Similarly, Silva et al. (2011) also observed improvement in the 

intestinal absorptive surface of broilers fed with 0.4% essential oil of Schinnus molle L. 

 

2.5.4 Capsicum annuum L. oil-resin 
 

The species Capsicum annum L. is a member of the Solonaceae family and is 

one of the five most commercialized pepper species in the world. Of the well-known 

pepper genera, C. annuum is the pepper with the most variation in shape, size and color 

of its fruits, so its botanical identification can be difficult (PERRY et al., 2007). The 

Capsicum genus has a diversity of chemical compounds, such as: capsaionoides, 

carotenoids, flavonoids, vitamins and minerals (GÓMEZ-GARCÍA; OCHOA-ALEJO, 

2013). Due to its characteristic flavor and odor, and the variety of phytochemicals in its 

composition, the use of its fruits and seeds is widely used as raw material for food and 

pharmaceutical agroindustries.  

Pepper plants, since they are specialties, are subject to microbial and insect 

contamination (KURMUDLE et al., 2013). As an alternative to this, many food industries 

use oil resin as raw material to produce of sauces, snacks, instant noodles and meat 

products, instead of chili peppers in natura (ATTOKARAN, 2011). This is because the oil-

resin ensures more stability and biological control, since they are composed of little 

amount of water. Also, the use of oil-resin, because it is a concentrated product, requires 

fewer logistics of transport and storage, and gives uniformity of color, flavor and odor to 

the food. In addition, it is possible to dilute oil according to the type of food produced. This 

alternative, in addition to benefits for industries, such as the commercialization of excess 

oil-resin, also provides better use of raw material that is out of specification for 

consumption in natura (FERNÁNDEZ-RONCO et al., 2013). 

From a pharmacological point of view, the oil-resin is a rich source of bioactive 

compounds of great availability and has many applications for pharmaceutical industries. 

Extraction of the resin oil can be done by supercritical fluids or organic solvents and 

filtration (KURMUDLE et al., 2013). 
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The functional oil of Capsicum Annum L. presents as its main bioactive compound 

the capsaicin (8-methyl-N-vanillyl-6-nonenamide), belonging to the group of alkaloids, 

followed by the capsinoids dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, and 

homodihydrocapsaicin (PERRY et al., 2007).  Their main functions are: antipruritic, anti-

inflammatory, antiapoptotic, anticancer, antioxidant, and neuroprotective functions 

(ADASZEK et al., 2019; ANAND; BLEY, 2011; BAENAS et al., 2019; BOGUSZ et al., 

2018; CHUNG; CAMPBELL, 2016) (Figure 13). 

 

2.5.4.1 Mechanisms of capsaicin action 
 

The mechanisms of action leading to the pharmacological effects attributed to 

Capsaicin are complex and involve the activity of transient receptor potential vanilloid 

(TRPV1) ion channels. TRPs are a family of cation channels that are non-selective of 

several different stimuli such as, temperature, pH, ROS production, osmotic stress, and 

bacterial toxins (BUJAK et al., 2019). In addition, their activity can be regulated by some 

phytochemicals such as capsaicin (NILIUS; OWSIANIK, 2011). TRPs are present in 

various tissues of the human and animal body, and recent findings have shown their 

expression also in immune cells, such as dendritic cells, macrophages or T lymphocytes  

(WANG; SIEMENS, 2015). Thus, it is known that the TRPV1 canal is not only involved in 

thermal and pain sensation, but also in other physiological processes (SZALLASI et al., 

2007).  

Regarding pain control, according to Adaszek et al. (2019) capsaicin, after binding 

to the TRPV1 receptor, causes the opening of the cation channels. This results in the 

active potential of cations flowing into the cell and depolarizing it. This results in the active 

potential being passed to the spinal cord and is responsible for the sensation of heat and 

pain. However, if the alkaloid is administered several times, the vanilloid receptor is 

desensitized and the conduction of pain stimuli to the spinal cord is blocked, resulting in 

pain relief. It has been proven that TRPV1, if exposed to capsaicin for a longer period, 

changes its spatial conformation and becomes inactivated. This means that the receptor 

is no longer stimulated, even if the activating stimulus is present (WINTER et al., 1995). 



49 
 

The role of TRPV1 in inflammation is not fully established yet. Studies have 

related an overexpression of these receptors in inflammatory diseases such as: obesity, 

diabetes, cancer, asthma, rheumatoid arthritis, and inflammatory bowel diseases (CSEKŐ 

et al., 2019; HSIEH et al., 2017; KIM, 2018;FENG et al., 2017). Similarly, the literature 

shows that there is suppression of inflammation with the use of substances binding these 

channels, such as capsaicin, which acts by suppressing COX2 formation (KOBAYASHI 

et al., 2012), probably by inhibiting the transcription factor NF-κB (KIM et al., 2003). 

Besides the anti-inflammatory action, capsaicin also has antioxidant action, 

through the inhibition of nitric oxide (NO), which by reacting with superoxide anions, 

potentializing cellular oxidative damage (TSAI; TSAI; HO, 2005)  In addition, phenolic 

compounds, also present in the functional oil of Capsicum annum L., have oxireduction 

capacity, scavenging free radicals  (OLATUNJI; AFOLAYAN, 2019; SIM; SIL, 2008). 

In veterinary medicine, capsaicin was widely used for pain control in racing horses 

(Seino et al.,2003). However, due to welfare reasons and to prevent injuries, capsaicin 

was banned by the International Equestrian Federation. In broilers, McElroy et al. (1994) 

and Orndorff et al. (2005)  attributed to capsaicin antimicrobial effect, especially against 

Salmonella. Similarly, in ruminants, Capsaicin showed effects on rumen bacteria 

(CALSAMIGLIA et al., 2007).  This action occurs due to the hydrophobicity of the phenolic 

group present in capsaicin (BURT, 2004). 

In dogs, in a preliminary study, Adaszek et al. (2017) demonstrate that capsaicin 

supplemented via oral administration is well tolerated, and may have an anticancer effect, 

due to its antioxidant and antiproliferative actions. 
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FIGURE 13 – CAPSICUM ANNUM L. AND SCHINUS MOLLE L. AND THEIR MAIN 
PHARMACOLOGICAL EFFECTS 

SOURCE: Adapted from Adaszek et al. (2017) 

 

TABLE 2 – MAJOR BIOACTIVE COMPOUNDS PRESENT IN FUNCTIONAL OILS FROM BRAZILIAN BIODIVERSITY 
 

Functional oil Major Bioactive Compounds References 

   

Copaifera spp.  oil-resin 

β cariophyllene, β-bisabolene, α-bergamotene; δ-cadinene, α-
humulene, α-copaene, β-sesquifelandreno, β-selinene, α-

selinene,ciperene copalic acid, polyalthic acid, hardwickiic acid, 
clorechinic acid,  kaurenoic acid, kolavenic acid 

Aguilar et al. (2013); Lucca 
et al. (2008); Veiga e Pinto 
(2002); Veiga et al. (2007) 

Cashew nut shell oil 
(CNSL) 

Anacardic acids, cardanol, cardol, and 2-methylcardol 
Mazzeto et al. (2009) 

Schinnus molle L. β-phellandrene, αphellandrene, myrcene, limonene, and α-pinene 

Baser et al. (1997); Zahed et 
al. (2011); Eryigit et al. 

(2017) 

Capsicum annum L. 
Capsaicin,dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, 

and homodihydrocapsaicin  
Perry et al. (2007); Adaszek 

et al. (2017) 
 

SOURCE: The author (2023) 
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2.6 Legislation and Challenges 

 

Concerning legislation, international regulatory organizations such as the Food 

and Drug Administration (FDA, 2015) and the Council of the European Union (Directive 

70/524/EEC Cap. III) establish that functional oils and natural extracts are recognized as 

safe for use (GRAS – generally recognized as safe) (BURDOCK; CARABIN, 2004). In 

Brazil, there is a specific legislation (IN 42, law 6.198 of 26/12/1974) of the Ministry of 

Agriculture Livestock and Food Supply (MAPA), which regulates the inspection and 

supervision of ingredients used in animal feed. Because of this, some phytogenic 

compounds have already been released by MAPA, as flavoring additives (Normative 

ordinance No. 359, of July 9, 2021), bringing in not only benefits for animal health, but 

also competitiveness for the pet food industry. This is due to the fact that dog and cat 

tutors are increasingly interested in knowing the ingredients used in pet foods, showing 

preference for those denominated as functional (DI CERBO et al., 2017). 

Despite the pharmacological effects and the support of legislation, some aspects 

of the use of functional oils in animal feed may need to be discussed more widely: I. 

According to the EC (European Community), all phytogenic additives, including herbs and 

functional oils must follow safety standards for animals, employees and the environment. 

The extraction of CNSL for example, despite being a co-product with wide applicability on 

different fronts, faces sustainability challenges to the environment and occupational 

health. This is because, in addition to the causticity of CNSL, the artisanal burning of 

cashew nut shells to fire the boilers of the mini-factories can lead to the inhalation of toxic 

compounds (DE OLIVEIRA GALVÃO et al., 2014) Therefore, procedures to ensure the 

safety of the employee and the knowledge and development of new extraction methods 

are important. II. Obstacles in evaluating published results. These difficulties occur 

especially when commercial products are used in experimentation. Some authors have 

difficulty in identifying and distinguishing between herbs, extracts, oil resins, essential oils, 

compounds isolated from essential oils, etc. In addition, botanical identification can be a 

challenge. An example of this are the many popular names given to the plants Schinnus 

Molle L. and Capsicumm Annum. L, as well as the dozens of species of the genus 

Origanum called Oregano. For this, the identification of bioactive compounds presents in 
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the functional oil, through gas chromatography, is essential. III. Observe environmental 

concerns. Regarding the copaiba oil-resin, although the oil extraction is one of the most 

traditional non-timber forest products extracted from the Amazon, there are gaps 

regarding its technique and frequency of extraction (SANTOS et al., 2011).  Similarly, also 

considering a better use of the plant, and attempting to reduce the environmental impact, 

Chen and Kang (2013) evaluated the pharmacological activity of the stalks of pepper 

plants of the genus Capsicum annum. The extract of the stalks, which is usually discarded 

in rivers and landfills, contributing to environmental problems, showed higher antioxidant 

and anti-inflammatory effects than other parts of the fruit. This information highlights the 

importance of knowledge of the beneficiation and extraction processes, for researchers, 

incentive institutions, private industry and governmental agencies work together in pursuit 

of a sustainable production. 

 

2.7 Cytotoxicity  

 

Despite the support of the legislation, due to the large number of constituents, 

functional oils do not seem to have specific cellular targets (SAAD; MULLER; LOBSTEIN, 

2013). As lipophilic they cross the wall and the cytoplasmic membrane, and may cause 

disruption of the cellular structure (BURT, 2004). Because of this, studies evaluating the 

cytotoxicity of these compounds are needed. In cases where the toxicity of the tested 

agent is unknown, it is recommended to evaluate doses up to 2,000 mg/kg (TICE et al., 

2000). 

With respect to CNSL, studies in rats prove that the use of up to 5 g/kg of animal 

weight is considered safe (SURESH AND RAJ et al., 1990). In addition, studies in broilers 

demonstrate the use of doses from 0.1 ml/kg to 0.3 ml/kg of food as safe (LÓPEZ et al., 

2012). In ruminants, pharmacological effects were observed with doses of 3-4 g/100 kg 

body weight (MITSUMORI et al., 2014).  

Evaluating copaiba oil-resin in rats, Gomes et al. (2007) observed that the 500 

mg/kg body weight dose was well tolerated. The same researchers showed that the lethal 

dose (LD50) was 3.9 - 4.3 g/kg body weight depending on the Copaifera species. Teixeira 

et al. (2017) using the dose of 2 g/kg body weight for albino rats observed for 48 hours, 
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reported no acute toxicity effects, and using 10% of the limit dose (200 mg/kg) already 

observed anti-inflammatory effects. In broilers Noleto et al. (2018) obtained improved 

performance using 2 g/kg (of food) of copaiba oil. Concerning the extracts and oils of 

Schinnus molle. L., no signs of acute or subacute toxicity were observed in Wistar rats 

(BRAS et al., 2010; FERRERO et al., 2007).  The lethal dose (LD50) of Schinnus Molle L. 

essential oil was determined by  Martins et al. (2014) to be superior to 2000 mg/kg body 

weight. Capsaicin, on the other hand, the main component present in Capsicum annum 

L. pepper, was used at a dose of 74 mg/kg body weight in dogs. Of the 50 animals used, 

9 of the test group and 5 of the control had a temporary reaction of vomiting, diarrhea, and 

anal itching for 3-4 days (ADASZEK et al., 2017). In rats, LD50 values of capsaicin is 161.2 

mg/kg body weight in males and 148.1 mg/kg body weight in females (SAITO; 

YAMAMOTO, 1996). In dairy cows capsaicin supplementation at a much lower dose (250, 

300 e 1000mg/ cow) has already shown increased immune cell activity (OH et al., 2015). 

  

 

3. CONCLUDING REMARKS 
 

Functional oils have the ability to modulate the inflammatory and antioxidant 

system, because of their compounds from the secondary metabolism of plants. These 

compounds, especially those from the Brazilian biodiversity, have the potential to be used 

as additives in dog and cat food. This is due to the fact that, in addition to providing health 

benefits, they attend a demand from tutors and industries which are concerned with the 

use of ingredients more natural and sustainable for the environment. However, it is still 

necessary to standardize and identify the type of compound used and optimize extraction 

processes. Furthermore, for functional oils to have better applicability, as phytogenic 

additives, it is important that more experimental studies evaluate the use of these 

compounds in dogs and cats, so that we can establish a greater correlation between in 

vitro and in vivo results. 
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Abstract 

We aimed to evaluate the effects of functional oils from copaiba (Copaifera spp.), cashew nut shell 

(Anacardium occidentale), and pepper species (Schinus molle L. and Capsicum annum L.) on 

coefficients of total tract apparent digestibility (CTTAD) of nutrients, intestinal fermentative 

metabolites, fecal microbiota, and inflammatory and oxidative markers in dogs submitted to 

periodontal surgery. Two treatments were evaluated: control and test, containing the blend of 

functional oils (0.1 g/animal/day). The oil blend contained 280 g/kg cashew nut shell (Anacardium 

ocidentalle) oil, 60 g/kg Capsicum annuum L. and Schinus molle L. pepper species oils, and 60 

g/kg copaiba (Copaifera spp.) oil. The treatments were offered for 35 days to 12 adult Beagle dogs, 

distributed in a completely randomized design (n=6). On day 30, the dogs were submitted to 

periodontal surgery. Fecal (days 30 and 35) and blood (days 0, 30, and 35) samples were collected 

for the evaluation of intestinal fermentative metabolites, fecal microbiota, and inflammatory and 

antioxidant responses in the blood. Dogs of the control group presented a more pronounced 

reduction in the genera Prevotella and Faecalibacterium after surgery (day 35) than the test group 

(P<0.05). Besides, dogs of the control group also presented a greater abundance of Streptococcus 

on day 35 (P<0.05). There was an increase in NF-κB concentration in the blood after surgery only 

in the control group (P<0.05). Additionally, dogs fed the oil blend showed lower lipid peroxidation 

(P<0.05) and a tendency (P=0.059) to higher glutathione transferase activity. The blend of 

functional oils does not alter the digestibility of nutrients and may modulate the intestinal 

microbiota. Furthermore, it controls the inflammatory and oxidative mechanisms after the surgical 

challenge in dogs. 

Keywords: Capsicum annum L.; cashew nut shell oil; copaiba oil; intestinal microbiota; NF-κB; 

Schinus molle L. 
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Abbreviations: AHEE, acid-hydrolyzed ether extract; BCFA, branched-chain fatty acids; CAT, 

catalase; CF, crude fiber; CP, crude protein; CRP, C-reative protein; CTTAD, coefficients of total 

tract apparent digestibility; DM, dry matter; DMf, fecal dry matter; GALT, gut-associated 

lymphoid tissue; GE, gross energy; GSH, reduced glutathione; GST, glutathione transferase; IKα 

β, inhibitory protein; IKK, protein kinases; LPO, lipid peroxidation; ME, metabolizable energy; 

OM, organic matter; OTUs, observed taxonomic units; PCoA, principal coordinate analysis; ROS, 

reactive oxygen species; SCFA, short-chain fatty acids; SEM, standard error of the mean; SOD, 

superoxide dismutase; TLR4, Toll-like receptor. 

  

1. Introduction 

 
The correlation between the inflammatory process, oxidative stress, and intestinal 

dysbiosis in animals is already reported in the literature (Mittal et al., 2014; Minamoto et al., 2015). 

At the center of this relationship are the studies that evaluate the activation of transcription factors 

and especially their modulation through the diet. 

Among the nuclear transcription factors, NF-κB has been widely studied because it 

responds to a large variety of immune and inflammatory receptors in the body (Sun and Ley, 2008). 

Activation of the NF-κB pathway is related to diseases in humans such as rheumatoid arthritis, 

multiple sclerosis, and inflammatory bowel disease (Asahara et al., 1995; Schreiber et al., 1998; 

Hussman et al., 2016). In dogs, increased expression of this factor is suggested to be responsible 

for inflammation in aged animals (Alexander et al., 2018), obese patients (Li et al., 2019), and 

diseases such as chronic enteropathies (Luckschander et al., 2010) and cancer (Morrison et al., 

2012). Besides these physiological stress conditions, surgical procedures (Desborough, 2020), 

including periodontal procedures in dogs (Cutando et al., 2007), and psychogenic stress situations 

can also alter the inflammatory and antioxidant balance of the organism (Juodžentė et al., 2018), 
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activating the NF-κB pathway and altering the composition of the intestinal microbiota (Topol and 

Kamyshny, 2013). Thus, targeting the NF-κB signaling pathway is an interesting therapeutic 

approach, which can be modulated by diet. 

 In this context, functional oils from Brazilian biodiversity may provide benefits because 

they are rich in bioactive metabolites that can inhibit the NF-κB pathway (Liu et al., 2017). These 

additives are attracting interest from the pet food industry due to their biological action in animals, 

presenting the potential to be included in adjuvant foods or nutraceutical supplements. Moreover, 

these compounds satisfy demand from pet owners who are interested in the use of natural and 

environmentally sustainable ingredients (Di Cerbo et al., 2017).  

In the feeding of livestock animals, functional oils from copaiba (Copaifera spp.), cashew 

nut shell (Anacardium occidentale), and pepper species such as Schinus molle L. and Capsicum 

annum L., or the use of their bioactive compounds, have been studied. Bioactive compounds 

include the sesquiterpene β-caryophyllene (copaiba oil) (Pinto et al., 2000; Veiga et al., 2007); 

monoterpenes limonene, β-phellandrene, α-phellandrene, myrcene, and α-pinene (Schinus molle 

L.) (Zahed et al., 2011; Gomes et al., 2013); polyphenols anacardic acid, cardanol, and cardol 

(cashew nut shell oil) (Trevisan et al., 2006; Mazzetto et al., 2009); and the alkaloid capsaicin 

(Capsicum annum L.) (Kobata et al., 1999; Nadi et al., 2020). Preliminary studies show that besides 

benefits for digestive function and gut microbiota, the use of functional oils provides improved 

productive performance in animals (Aguilar et al., 2013; Mitsumori et al., 2014; Moura et al., 

2017). In dogs, studies are still lacking, but anti-inflammatory and antimicrobial actions (Pieri et 

al., 2010) and antioxidant and anticancer actions have been described (Adaszek et al., 2017). 

Therefore, we hypothesize that the use of functional oils is beneficial for dogs undergoing 

post-surgical stress. In this context, we aimed to evaluate the effects of a blend of functional oils 

from copaiba (Copaifera spp.), cashew nut shell (Anacardium occidentale), and pepper species: 
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Schinus molle L. and Capsicum annum L. on the coefficients of total tract apparent digestibility of 

nutrients and palatability of the diet and on fermentative metabolites, intestinal microbiota, and 

inflammatory and oxidative markers in dogs submitted to periodontal surgery. 

 

2. Material and methods 

 

2.1 Blend of functional oils 

 
The additive evaluated (Pet Pepper Phytus®, Phytus Feed, São José dos Campos, SP, 

Brazil) was a blend of microencapsulated functional oils powder containing cashew nut shell oil 

(Anacardium ocidentalle), Capsicum annuum L. and Schinus molle L. pepper species oils, and 

copaiba (Copaifera spp.) oil. The composition of the blend according to the manufacturer is 

described in Table 1 

 

2.2 Experiment I: Digestibility, fecal characteristics, intestinal fermentative metabolites, fecal 

microbiota, and blood parameters 

 
2.2.1. Animals and facilities  
 
 

The use of animals for this study was approved by the Ethics Committee on Animal Use 

of the Agrarian Sciences Sector of the Federal University of Paraná, Curitiba, PR, Brazil, under 

protocol n. 018/2021. The study was conducted at the Research laboratory in canine nutrition – 

LENUCAN in Curitiba, Paraná, Brazil (25º 25' 40" S, 49º 16' 23" W). 

Twelve adult Beagle dogs (6 years old) were used (6 males and 6 females) with a mean 

body weight of 13.1 ± 1.21 kg, and a mean body condition score of 5.91 ± 1.24, according to 

Laflamme (1997). All animals were submitted to previous clinical evaluation and were healthy. 
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The dogs were individually housed in brickwork kennels (5 m long x 2 m wide), containing a bed 

and free access to fresh water. During most of the experiment (until day 25), the dogs had free 

access to a grassy outdoor area of 1.137.84 m2 for 4 hours/day for voluntary exercise and 

socialization. During the collection period (between days 25 and 30), the dogs were individually 

housed in kennels. The facilities had bars on the side walls that allowed visual and limited 

interaction with neighboring dogs, in addition to receiving extra attention and environmental 

enrichment inside the kennel during this period. The ambient temperature ranged from 16ºC to 

28ºC, with a 12-h light-dark cycle (light from 6:00 am to 6:00 pm). 

 

2.2.2. Diets  
 

Two treatments were evaluated: control (3 males and 3 females), without supplementation 

of functional oils, and test (3 males and 3 females), with the supplementation of 0.1 g/animal/day 

of the blend of functional oils (Pet Pepper Phytus®, Phytus Feed, São José dos Campos, SP, Brazil). 

. The treatments were given to the animals for 35 days. The functional oil blend was weighed daily 

on a precision scale (MH-Series, PocketScale, China), added by coating on the diet, and 

homogenized by hand at the time of diet feeding. The basal diet for the experiment (used for both 

the control and test groups) was an extruded commercial dry food for adult dogs, that met the 

nutritional requirements for maintenance of adult dogs according to The European Pet Food 

Industry Federation (FEDIAF, 2019). The diet contained the following ingredients in its 

composition: poultry by-product meal, meat meal, corn, soybean meal, poultry fat, swine liver 

hydrolysate, sodium chloride, citric acid, antioxidants (BHT, BHA), propionic acid, vitamin A, 

vitamin D3, vitamin E, vitamin B1, vitamin B6, vitamin B12, vitamin K3, nicotinic acid, folic acid, 

biotin, calcium pantothenate, zinc sulfate, calcium iodate, sodium selenite, copper sulfate, iron 
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sulfate, manganese sulfate, and zinc oxide. The diet had no added functional additives that could 

interfere with the intestinal functionality of the animals. The chemical composition of the diet is 

described in Table 2. 

 

2.2.3. Digestibility test and fecal characteristics 
 
 

The digestibility assay followed the total fecal collection method recommended by the 

Association of American Feed Control Officials (AAFCO, 2016). The diets were offered during a 

25-day adaptation period followed by 5 days of total fecal collection. 

The animals were fed twice a day (08:00 a.m. and 05:00 p.m.) in amounts sufficient to 

supply the metabolizable energy (ME) requirement of adult dogs in maintenance as recommended 

by the National Research Council (NRC, 2006): ME (MJ/day) = 0.40 – 0.54 × body weight0.75. The 

cofactor varied among animals to maintain body weight throughout the study.  

Feces were collected and weighed twice a day and stored in individual plastic bags 

previously identified, covered, and stored in a freezer (-14°C) to be analyzed later. At the end of 

the collection period, the feces were thawed at room temperature and homogenized separately, 

forming a composite sample from each animal. The feces were dried in a forced ventilation oven 

(320-SE, Fanem, São Paulo, Brazil) at 55°C for 72h or until reaching a constant weight. After 

drying, feces and the experimental diet were ground using a 1 mm sieve in a grinder (Arthur H. 

Thomas Co., Philadelphia, PA, USA) and analyzed for dry matter (DM) at 105°C for 12 hours, 

crude protein (CP, method 954.01), ash (method 942.05), and ether extract in acid hydrolysis 

(EEAH, method 942.05). All analyses followed the recommendations of the Association of Official 

Analytical Chemists (AOAC, 1995). The total dietary fiber, insoluble fiber, and soluble fiber of 
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the diet were analyzed according to Prosky (1988). Gross energy (GE) was determined in a 

calorimeter pump (Parr Instrument Co., Model 1261, Moline, IL, United States of America).  

Fecal characteristics were evaluated during the collection period by total dry matter (DMf) 

content, fecal output, fecal consistency by score, ammonia, and pH. Fecal pH and ammonia were 

analyzed in feces collected up to 15 minutes after spontaneous defecation on days 30 and 35 of the 

experiment. 

The fecal score was always evaluated by the same researcher, assigning points from 1 to 5, 

being: 1 = feces are soft and have no defined shape; 2 = feces are soft and poorly formed; 3 = feces 

are soft, formed, and moist; 4 = feces are well formed and consistent; 5 = feces are well formed, 

hard and dry, according to Carciofi et al. (2009). Fecal pH was measured using a digital pH-meter 

(331, Politeste Instrumentos de Teste Ltda, São Paulo, SP, Brazil) using 3.0 g of fresh feces diluted 

in 30 mL of distilled water. Fecal ammonia concentration was determined according to Brito et al. 

(2010). Briefly, 5 g of fresh feces were incubated in a 500 mL lidded glass balloon, containing 

250 mL distilled water, for 1 h. Then, three drops of octyl alcohol (1-octanol) and 2 g of 

magnesium oxide were added to the solution, subsequently distilled in a Macro-Kjeldahl apparatus, 

and recovered in a beaker, containing 50 mL boric acid. Finally, ammonia was titrated using 

standardized sulphuric acid at 0.1N.  

 

2.2.4 Intestinal fermentative metabolites and fecal microbiota  
 

Stool samples for the analysis of intestinal fermentative metabolites and fecal microbiota 

were collected on days 30 and 35 of the experiment. For determination of short-chain (SCFA, 

acetate, butyrate, and propionate) and branched-chain (BCFA, isovalerate, and isobutyrate) fatty 

acids, fresh feces of the animals were collected up to 15 min after defecation. In a plastic container 
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with a lid, 10 g of stool sample was weighed and mixed with 30 mL of 16% formic acid. This 

mixture was homogenized and stored in a refrigerator at 4°C for a period of 3 to 5 days. After this 

period the solutions were centrifuged at 2500 gx (2K15, Sigma, Osterode am Hans, NI, Germany) 

for 15 min. At the end of centrifugation, the supernatant was separated and subjected to further 

centrifugation. Each sample underwent three centrifugations, and at the end of the last one, part of 

the supernatant was transferred to a properly labeled eppendorf tube for subsequent freezing at -

14 °C. Afterward, the samples were thawed and underwent new centrifugation at 18000 gx for 

15 min (Rotanta 460 Robotic, Hettich, Tuttlingen, BW, German). Both centrifugations were 

conducted under refrigeration (approximately 5oC). Fecal SCFA and BCFA were analyzed by gas 

chromatography (Shimadzu, model GC-2014, Kyoto, Honshu, Japan), using a glass column 

(Agilent Technologies, HP INNO wax - 19,091N, Santa Clara, CA, United States of America) 

30 m long and 0.32 mm wide. The injected volume of the supernatant was set to 1 μL. Nitrogen 

was used as the carrier gas with a flow rate of 3.18 mL/min. The working temperatures were 200 °C 

at the injector, 240 °C at the column (at a speed of 20 °C/min), and 250 °C at the flame 

ionization detector. 

For evaluation of the fecal microbiota, approximately 2 g of sample was taken from the 

interior of the freshly collected stool, placed in a sterile eppendorf tube and stored in a -80 ºC 

freezer until the moment of the analysis.  

For DNA extraction from the samples, the commercial kit "ZR Fecal DNA MiniPrep®" 

from Zymo Research (Zymo Research, Irvine, CA, USA) was used, following the protocol 

recommended by the manufacturer. The extracted DNA was quantified by spectrophotometry at 

260 nm using the NanoDrop® 2000 spectrophotometer (Thermo Scientific, Wilmington, VA, 

USA). To evaluate the integrity of the extracted DNA, all samples were run by electrophoresis in 
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1% agarose gel, stained with a 1% ethidium bromide solution and visualized with ultraviolet light 

in a transilluminator.  

A 460-base segment of the V4 hypervariable region of the 16S rRNA gene was amplified 

using the universal primers 515F and 806R and the following PCR conditions: 94°C for 3 min; 18 

cycles of 94°C for 45 sec, 50°C for 30 sec, and 68°C for 60 sec; followed by 72°C for 10 min. 

From these amplifications, a metagenomic library was built using the commercial Nextera DNA 

Library Preparation Kit from Illumina® (San Diego, CA, USA). The amplifications were pooled 

and subsequently sequenced in the Illumina® "MiSeq" sequencer (Degnan and Ochman, 2012). 

The reads obtained on the sequencer were analyzed on the QIIME (Quantitative Insights into 

Microbial Ecology) platform (Caporaso et al., 2010; Caporaso et al., 2011), followed by a 

workflow of the removal of sequences from low quality, filtration, removal of chimeras, and 

taxonomic classification. To generate the classification of bacterial communities by operational 

taxonomic units (OTU) identification, 29600 reads per sample were used, in order to normalize the 

data and not compare samples with different number of reads. Sequences were classified into 

bacterial genera by recognizing the OTUs through identity (>97%) between sequences when 

compared against a database. The update named "SILVA 132" from the year 2018 of the ribosomal 

sequence database "SILVA database" (Yilmaz et al., 2014) was used to compare the sequences. 

 

2.2.5 Blood parameters 
 

Blood was collected on days 0, 30, and 35 of the experiment. Before the collections, the 

dogs were submitted to a 12-hours fasting period. After physical contention and antisepsis with 

70% alcohol on the ventral region of the neck, 2.5 ml of blood was collected by jugular 

venipuncture and transferred to a tube without anticoagulant.  
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2.2.5.1 Pro-inflammatory and oxidative stress markers 
 

Quantitative detection of canine NF-κB p65 (Cat No. MBS2608289) in serum was 

measured using a specific ELISA kit according to the manufacturer's protocol (MyBioSource, Inc, 

San Diego, CA, USA). The quantification of C-reactive protein was analyzed by 

immunoturbidimetry assay (Pesce and Kaplan, 1987). 

Serum oxidative markers were evaluated by measuring the activities of the enzymes 

superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), reduced glutathione 

(GSH), and measuring the lipid peroxidation (LPO) and plasmatic proteins. For SOD and CAT 

analysis, samples were homogenized in potassium phosphate buffer solution (pH 6.5) at a 1:10 

dilution and centrifuged at a speed of 10000 g for 20 min under a temperature of 4˚C. SOD activity 

was quantified through its ability to inhibit the auto-oxidation of pyrogallol reagent (Gao et al., 

1998). CAT activity was quantified according to Aebi et al. (1984). For GST analysis, samples 

were homogenized in potassium phosphate buffer solution (pH 6.5), at a dilution of 1:30, and 

centrifuged at a velocity of 10000 g for 20 min under a temperature of 4°C. GST catalyzes the 

conjugation reaction of the substrate CDNB (1-chloro-2,4-dinitrobenzene) with GSH, forming a 

thioether that can be monitored by increasing absorbance, according to the method of Habig et al. 

(1974). GSH levels were measured by the Sedlak and Lindsay (1968) technique. For this, samples 

were homogenized in potassium phosphate buffer (pH 6.5) at 1:10 dilution. Subsequently, 100μL 

was mixed with trichloroacetic acid (80 μL, purity grade 12.5%). The supernatant was separated 

by centrifugation at 3000 g for 15 min at 4°C. The LPO rate was measured by the ferrous 

oxidation−xylenol orange (FOX) method as described by Jiang et al. (1991). This method 

quantifies the formation of hydroperoxides during lipid peroxidation, as hydroperoxides oxidize 

iron to ferric ion and in turn, this ion binds to the xylenol orange dye. Quantification of protein in 

the samples was done in microplates (Bradford, 1976) using bovine albumin as a standard. 10 μL 
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of the sample (homogenized in potassium phosphate buffer, pH 6.5, centrifuged at 10000 g, under 

4°C temperature, for 20 min, diluted 1:10) was used in each well of the microplate, which was 

reacted with 250 μL of Bradford's solution. The reading was performed in a microplate reader at 

595 nm. The value measured for protein was used to calculate the previous parameters, expressed 

in mg of protein. 

 

2.2.6 Periodontal surgery 

 
To promote stress and inflammation in the organism, the animals were submitted to a 

dental prophylaxis surgery with general anesthesia on the 30th experimental day. This surgery was 

chosen as a challenge to the organism, considering that all dogs naturally presented periodontal 

disease. Previously (day 0), the animals had a clinical dental appointment to visually assess the 

extent of gingivitis, plaque, calculus, and any obvious signs of attachment loss, according to the 

American Animal Hospital Association dental care guidelines for dogs and cats (Bellows et al., 

2019). This previous evaluation of the animals was used to allocate the dogs into the control and 

test groups, equalizing the groups according to the severity of the periodontal disease. Each 

experimental group (control and test) presented four dogs with degree 1 and two dogs with degree 

2 of periodontal disease, according to Bellows et al. (2019). 

The surgeries were performed at the Veterinary Hospital of the Federal University of 

Paraná (Curitiba, Brazil), after a 12-hour fasting period. The animals were premedicated with 

acepromazine (0.03 ml/kg body weight) (Acepran® 0.2%, Vetnil, SP, Brazil), methadone (0.3 

mg/kg body weight) (Mytedom® 1%, Cristália, SP, Brazil), and ketamine (0.05-0.1 mg/kg body 

weight) (Ketamin®, Cristália, SP, Brazil). Anesthesia was induced with propofol (3-4 mg/kg body 

weight) (Propotil® 1%, BioChimico, RJ, Brazil) associated or not with an adjuvant of the 
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anesthesiologist's choice, such as fentanyl (2.5 μg/kg body weight) (Fentanest®, Cristália, SP, 

Brazil) or remifentanil (10 μg/kg body weight) (Remifas®, Cristália, SP, Brazil).  After tracheal 

intubation, general anesthesia was maintained with isofluorane (Isoforine®, Cristália, SP, Brazil), 

through a universal vaporizer, dosed by bubbling. Together with isofluorane, adjuvants such as 

lidocaine (1 mg/kg body weight/1h) (Hypocaína® 2%; Hypofarma, MG, Brazil) and ketamine (0.6 

mg/kg body weight/1h) (Ketamin®, Cristália, SP, Brazil) were used for maintenance, according to 

the individual needs of each animal and the anesthesiologist's choice.  

Before the surgical procedure, the dogs were re-evaluated through a complete examination 

of each tooth and intra-oral radiography of the mouth, confirming their classification in stages 1 or 

2 of periodontal disease, according to Bellows et al. (2019). The technique used in the dental 

prophylaxis procedure was the scaling (supragingival and subgingival plaque and calculus 

removal) using an ultrasonic scaler (iM3 P6, Serona Animal Health, Canada) followed by the 

instrumentation with a curette to further remove plaque and calculus, and tooth polishing with 

paste.   

Postoperatively, the animals received an injectable single dose of meloxicam (0.1 mg/kg 

body weight) (Elo-xicam® 0.2%, Chemitec, SP, Brazil) and an injectable single dose of dipyrone 

(25 mg/kg body weight) (Febrax®, Lema-Injex, MG, Brazil). Oral hygiene was performed for 7 

days using chlorhexidine digluconate spray solution (Periovet®, Vetnil, SP, Brazil). 

 

2.2.7 Calculations and statistical analysis 

 
The organic matter (OM) was calculated by: 100 – Ash. 

The DMf = (DM at 55°C × DM at 105°C)/100.  
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The CTTAD and ME were estimated according to AAFCO (2016), based on the 

equations:  

CTTAD = (g nutrient intake - g nutrient excreted)/g nutrient intake  

ME (MJ/kg) = {kJ/g GE intake - kJ/g fecal GE - [(g CP intake - g fecal CP) × (5.23 

kJ/g)]}/g feed intake. 

Data were analyzed for normality by the Shapiro-Wilk test. Data with time effect 

(ammonia, fecal pH, SCFA, BCFA, and blood variables) and normal distribution were analyzed 

according to a completely randomized design in a split-plot arrangement (n=6), considering the 

effects of treatment, day, and the interaction between treatment and day (P<0.05). When an effect 

of the day (0, 30, and 35) or of the interaction (treatment × day) was observed, means were 

compared by Tukey`s test. Digestibility data and the difference (final – initial) in blood variables 

were analyzed by the Student t-test (P<0.05). Fecal score data were analyzed by Mann-Whitney’s 

test (P<0.05). P-values >0.05 and <0.10 were considered a tendency.  

Data of alpha-diversity indexes (Shannon, Chao1, and number of OTUs) and relative 

abundance of bacterial genera were analyzed by the Kruskal-Wallis test (P<0.05). To characterize 

the overall differences in fecal microbial communities among the groups, principal coordinate 

analysis (PCoA) was performed on unweighted UniFrac distances. The effect of treatments on 

beta-diversity was evaluated among groups by PERMANOVA (Permutational Multivariate 

Analysis of Variance) with P<0.05 (Anderson, 2001).  

 

2.3 Experiment II: Palatability 

 

2.3.1 Animals, housing, and experimental design 
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Sixteen adult Beagle dogs (8 males and 8 females), 6 years old with a mean body weight 

of 13.1± 1.21 kg were used. The health conditions and facilities were the same as described in 

Experiment I. The dogs were individually housed in the kennels only during the palatability test 

(for about 30 min per day). The experiment followed a completely randomized design. 

 

2.3.2 Palatability test  
 

For the palatability test, the control diet and the test diet containing the addition of 0.1g of 

the functional oil blend (Pet Pepper Phytus®, Phytus Feed, São José dos Campos, SP, Brazil) were 

compared. For each animal was offered the two diets simultaneously for two consecutive days. The 

amount of each diet provided was 30% higher than the NRC (2006) recommendations for 

maintenance of adult dogs, thus ensuring the presence of leftovers. The food remained available to 

the animals for 30 minutes or until they completely consumed one of the foods. The relative 

position of the feeders was alternated on the second day of the experiment so that the animals were 

not conditioned to the feeding location. The palatability test was determined using the first choice 

and intake ratio between the diets offered to the dogs. The first choice was defined by observing 

the first feeder the animal approached. To determine the intake ratio, the amount offered and the 

leftovers were quantified and then the following equation was used: Intake ratio = intake in g of 

diet A or B/ intake in g of diets A+B. 

 

2.3.3 Statistical analyses 
 

Intake ratio results were compared by Student t-test (P<0.05) and the first choice by Chi-

square test (P<0.05), totaling 32 repetitions per test (16 dogs x 2 evaluation days). 

 



88 
 

3. Results 

 

3.1 Experiment I 

 

3.1.1 Digestibility test and fecal characteristics  
 

No adverse effects to the diets were observed, such as episodes of vomiting, diarrhea, or 

feed refusal. There was no difference (P>0.05) in dietary intake between treatments during the 35 

days of the experiment (P>0.05, Table 3). The dogs ate all the feed offered, without the presence 

of leftovers. The intake (mg/kg of body weight/day) of each functional oil was 2.1 mg of cashew 

nut shell oil, 0.5 mg of pepper species oil, and 0.5 mg of copaiba oil.   

The blend of functional oils did not alter the CTTAD of nutrients and dietary ME (P>0.05, 

Table 3). However, there was a higher fecal score for dogs from the test group (P<0.05, Table 3) 

than for the control group. In addition, there was no influence of the treatments on fecal pH (P>0.05, 

Table 4). 

 

3.1.2 Intestinal fermentative metabolites and fecal microbiota  
 

There was a tendency for the fecal ammonia (P=0.050) and isobutyrate (P=0.062) 

concentrations to decrease in dogs fed the oil blend (Table 4). Dogs fed the oil blend had lower 

fecal acetate concentration (P<0.05; Table 4). Moreover, the animals fed the oil blend showed a 

lower concentration of isovalerate and total BCFA in the feces, regardless of the day (P<0.05; 

Table 4). Other fermentative metabolites did not differ between the groups (P>0.05).  

A reduction in microbial diversity (Shannon index) and richness (number of OTUs and 

Chao1 index) after the surgical challenge was verified in both groups (P<0.05). However, dogs fed 

the oil blend on day 35 did not statistically differ from the control group on day 30 for all alpha-
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diversity indexes (Figure 1). The PCoA analysis showed a significant (P<0.05) separation between 

the fecal samples from the control group after the surgical challenge (day 35) compared to the other 

groups (Figure 2). 

A total of 146 bacterial genera were identified in fecal samples. There was a reduction in 

the relative abundance of Prevotella spp. and an increase in Streptococcus spp. only in the control 

group after surgery on day 35 (P<0.05). The Faecalibacterium spp. genus showed lower relative 

abundance in dogs of the control group after surgery (day 35) when compared to the test group on 

day 30 (P<0.05; Table 5). 

 
3.1.3 Pro-inflammatory and oxidative stress markers 

 
The NF-κB showed an effect for the period, with an increase in its concentration on day 35, 

after the periodontal surgery, regardless of the treatment (P<0.05; Table 6). However, when 

evaluating the variation in serum concentration of NF-κB between day 35 minus day 30 (before 

the periodontal surgery), the increase in the concentration of this marker occurred only in the 

control group (P<0.05; Table 6). No dietary influence on C-reactive protein was observed in any 

of the evaluated periods (P>0.05; Table 6). 

Regarding the biomarkers of oxidative stress, there was a reduction in GSH, GST, and LPO 

and an increase in plasmatic proteins after the periodontal surgery in both groups (P<0.05, Table 

7). Dogs fed the oil blend had lower LPO (P<0.05) and a tendency (P=0.059) to higher GST activity 

compared to the control group, regardless of the day. There was no difference in the other oxidative 

variables analyzed (P>0.05, Table 7). 
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3.2 Experiment II: Palatability 

 
No difference was observed in the first choice, but there was a tendency (P=0.061) for a 

reduction in the intake ratio with the inclusion of the oil blend in the diet (P>0.05; Table 8). 

 

4 Discussion 

 
 Due to the biological activity of functional oils in the animal, it is important to identify 

the impact of these additives on diet digestibility and fecal characteristics. The present study 

observed no effect of the use of functional oils on nutrient digestibility and dietary ME, which is 

consistent with studies with broiler chickens (Jamroz et al., 2005).  

 To better understand the biological effects of the compounds present in the oils blend, we 

submitted the animals to a stressful situation, through periodontal surgery with general anesthesia. 

It was observed that, even without the use of antibiotics, the method of stress induction used in this 

study caused alterations that may be suggestive of intestinal dysbiosis such as a reduction in the 

alpha-diversity and alterations in the composition of the intestinal microbiota (Félix et al., 2022). 

This result suggests three possible factors causing this unbalance: I. Tissue injury capable of 

activating NF-κB transcription, triggering the inflammatory response also in the gut (Alazawi et 

al., 2016); II. Psychogenic stressors, such as the dogs' stay in a hospital environment, different 

people, and noises. According to the literature, non-physiological types of stress have already been 

applied in dog studies, causing similar changes in the intestinal microbiota (Venable et al., 2016); 

III. The topical use of chlorhexidine gluconate on teeth may also provide changes in the intestinal 

microbiota. The solution is one of the most widely used antiseptics, acting against Gram-negative 

and Gram-positive bacteria, yeasts, and fungi (Leshem et al., 2022). Antibacterial properties with 
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activity against pathogens such as Staphylococcus aureus and Enterococcus faecalis have already 

been demonstrated in humans and in vitro (Mohammadi, 2008). 

 Despite the effects of surgery on the gut microbiota, the concentrations of ammonia, 

isovalerate, and total BCFA in the feces were lower in the animals fed the oil blend. This effect 

may be attributed to the fact that some compounds of functional oils, such as capsaicin, for 

example, are able to increase gastric and pancreatic enzyme activity, as well as saliva, mucus, and 

bile production (Jang et al., 2004; Manzanilla et al., 2004; Platel and Srinivasan, 2004; Windisch 

et al., 2008). This process may optimize protein digestion, decreasing the substrate for proteolytic 

bacteria, and consequently reducing the production of nitrogen compounds in the feces. This effect 

has already been demonstrated in pigs fed functional oils (Zhang et al., 2018), and is very important 

in dog nutrition. This is because excessive nitrogen compounds can be toxic to the intestinal 

mucosa and contribute to increasing fecal odor (Windey et al., 2012). The oil blend also had the 

effect of decreasing the concentration of fecal acetate. Acetate is a product of fiber fermentation, 

which like other SCFA can have beneficial effects on the host, such as modulating the immune 

system through intestinal epithelial cells (Fukuda et al., 2012; Brestoff and Artis, 2013), so the 

lower production associated with the oil blend was not expected. However, since the intestinal 

microbial ecosystem is complex, it is not possible to associate acetate production with intestinal 

functionality, since this SCFA is not produced by a specific group of bacteria (Félix et al., 2022).  

 Regarding the composition of the fecal microbiota, our study observed that the oil blend 

possibly influences the modulation of the intestinal microbiota, influencing some bacterial genera 

considered sentinel in the gastrointestinal tract of dogs, such as Faecalibacterium spp. and 

Streptococcus spp. (AlShawaqfeh et al., 2017). There was a decrease of the genus Prevotella spp. 

in the feces of dogs only from the control group after surgery. Prevotella spp. is present in the 

intestine of healthy dogs and its reduction may be related to intestinal dysbiosis (Guard et al., 2015). 
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Also, dogs fed the oil blend presented a lower relative abundance of Streptococcus spp. after the 

surgery (day 35) when compared to the control group. This genus is associated with intestinal 

dysbiosis in dogs and is also associated with inflammatory bowel disease (Vázquez- Baeza et al., 

2016; AlShawaqfeh et al., 2017; White et al., 2017). In addition, Streptococcus are proteolytic 

bacteria, that at least in part may have contributed to the result of reduced BCFA in dogs fed the 

oil blend. This modulation of Streptococcus spp. was observed in a study with pigs (Ruzauskas et 

al., 2020) fed a combination of terpenes present in pepper and oregano oils, in which the control 

group had a higher relative abundance of this genus. One of the hypotheses for this effect is due to 

the antimicrobial action of terpenes, capable of acting on the stability of Gram-positive bacteria 

membranes, making them more permeable and causing cell death (Kubo et al., 1993; Burt, 2004; 

Tiwari et al., 2009; Nazzaro et al., 2013). This action has been proven both via oral topical 

application in dogs and in vitro in studies evaluating copaiba oil and Schinus molle L. Both studies 

observed the action of these oils on bacteria that cause periodontal diseases in dogs, such as 

Streptococcus spp. (Pieri et al., 2010; Alves et al., 2020). 

 There was a maintenance of the relative abundance of Faecalibacterium spp. in the feces 

of the dogs fed the oil blend after the surgery. Faecalibacterium spp. belong to the phylum 

Firmicutes and is considered a sentinel genus of gastrointestinal health considering that its 

abundance is reduced in dysbiosis and is increased when this condition improves (AlShawaqfeh et 

al., 2017; Félix et al., 2022). The modulation of bacterial genera of the phylum Firmicutes was also 

demonstrated in piglets fed functional oils (Li et al., 2018). The authors suggest that polyphenol 

compounds, such as anacardic acids present in cashew nut shell oil, act by suppressing the pro-

inflammatory Toll-like receptor 4 (TLR4) and inhibitory protein (IκBα), regulating the NF-κB 

inhibition pathway. These effects have implications for the modulation of intestinal microbiota 
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since mucosal integrity and gut-associated lymphoid tissue (GALT) activity interfere with eubiosis 

(De Kivit et al., 2014; Li et al., 2019).  

 Dogs receiving the oil blend supplementation also presented less variation of the gut 

microbiota after the surgical challenge, as demonstrated by the beta-diversity results, in agreement 

with a study with broilers chickens (Vieira et al., 2020). The authors observed that a blend 

containing cashew nut oil also had the effect of maintaining the total number of bacteria after 

challenging the broilers (Vieira et al., 2020). Similarly, a polyphenol-rich extract increased the 

diversity and richness of the fecal microbiota of dogs with dysbiosis (Li et al., 2019). Such results 

are promising, as stressful situations are inherent in the lives of companion animals, and general 

changes in the microbiota can lead to acute gastrointestinal disorders (Guard et al., 2015). 

 The present study also observed that one action of the oil blend was to control 

inflammation through the NF-κB pathway. Studies have shown that this anti-inflammatory action 

can be attributed mainly to the compounds: copalic acid and β-cariophyllene (copaiba oil); 

anacardic acid, cardanol, and cardol (cashew nut shell oil); α-felandrene, β-felandrene, myrcene, 

limonene, and α-pinene (Schinus molle L.); and capsaicin (Capsicum annum L.) (Kim et al., 2003; 

Mazzetto et al., 2009; Zahed et al., 2010; Lucca et al., 2018). These compounds specifically inhibit 

the protein kinases (IKK) complex and prevent the degradation of the inhibitory protein Ikβ, thus 

preventing NF-κB transcription (Jain et al., 2016, Liu et al., 2017). Moreover, some of them show 

inhibitory activity superior to conventional anti-inflammatory drugs, such as dexamethasone and 

acetyl salicylic acid (De Souza et al., 2018). 

 Besides suppressing the NF-κB pathway, which has a mutual relationship with the 

formation of reactive oxygen species (ROS) (Valachi et al., 2018), the bioactive compounds in the 

blend are known to have a direct antioxidant action. This action may be related to the oxireduction 

capacity of the bioactive compounds, neutralizing ROS, or stimulating the action of antioxidant 
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enzymes such as SOD, CAT, and GST (Campos et al., 2021). In the present study, dogs receiving 

the oil blend presented lower LPO, than the control group, regardless of the day. A similar result 

was attributed to anacardic acids in the study of Carvalho et al. (2013) in mice. This happens 

because these phenolic compounds present in cashew nut shell oil are able to suppress a variety of 

pro-oxidant enzymes, involved in the production of ROS. Among these enzymes is xanthine 

oxidase, responsible for the metabolism of uric acid, which is one of the main producers of 

superoxide anions and hydrogen peroxide (Trevisan et al., 2006). In addition, these phenolic 

compounds can act as chelators of divalent metal ions, preventing the formation of up to 82% 

superoxide ions (Kubo et al., 2006). 

 The use of the functional oil blend in this study did not cause an increase in the activity 

of the antioxidant enzymes SOD and CAT probably because they were measured in the blood. 

Nevertheless, it is known that cashew nut shell oil, copaiba oil, and Schinus molle L. oil have an 

action on antioxidant enzymes (SOD, CAT, and GTS) when measured intracellularly (Morais et 

al., 2010; Eryigit et al., 2017; Campos et al., 2021). On another hand, the test group presented 

higher GST activity regardless of the day. GST is a family of enzymes that have catalytic functions, 

acting after the damage, preventing the progress, and terminating the lipid peroxidation 

phenomenon (Dias et al., 2004). This fact corroborates the result of the reduction in the 

concentration of LPO in the animals fed with the oil blend. Curiously, GST activity and LPO were 

lower in both control and test groups after the surgery. This may possibly have occurred through 

the reduction of periodontal disease which is characterized by the generation of ROS (Waddington 

et al., 2000) by activated phagocytes at the gingival sulcus (Katsuragi et al., 2003). From this, we 

suggest that the lower inflammation five days after the surgery might had attenuate the oxidation 

process in the body, "sparing" the consumption of GST. 
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 In the present study, supplementation with the functional oil blend did not alter the 

concentration of C-reactive protein. Although this protein is synthesized in response to NF-κB-

mediated cytokine release, its half-life is only 19 hours, normalizing around 36-50 hours after 

stimulation (Mitaka, 2005). For this reason, it is likely that its concentration returned to baseline at 

the time of collection, which was 5 days after the procedure.  

 Regarding diet palatability, it is already known that the use of functional oils may reduce 

consumption, due to their volatile compounds that may alter the odor or flavor of foods (Benchaar 

et al., 2007). Despite this, there was no difference in the consumption of the diets or refusal to feed 

by the dogs during the study. However, a tendency to lower intake ratio was observed during the 

palatability trial, probably because the blend was added by coating. Considering this result, we 

suggest studies adding the oil blend to the dough during the processing of diets, since it is resistant 

to the high temperatures of the extrusion and drying processes because it is microencapsulated 

(Stevanović et al., 2018). 

 The main limitations of the present study were the low number of animals used, which 

limited the statistical power for some outcomes and made unfeasible a dose-response evaluation of 

the blend; the lack of quantification of the bioactive compounds of the blend; and that was not 

conducted a metagenomic analysis of the fecal microbiota, which would bring new insights about 

functional information of the gut microbiome of dogs receiving the oil blend. 

  

5 Conclusion 

 
 The inclusion of 0.1 g/animal/day of the blend of functional oils containing 280 g/kg 

cashew nut shell (Anacardium ocidentalle) oil, 60 g/kg Capsicum annuum L. and Schinus molle L. 

pepper species oils, and 60 g/kg copaiba (Copaifera spp) oil does not alter the apparent digestibility 
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of nutrients and the metabolizable energy of the diet. Furthermore, it may reduce the fermentation 

of nitrogenous compounds in the gut such as the production of ammonia and total branched-chain 

fatty acids. In addition, the blend seems to be able to modulate the gut microbiota, promoting the 

maintenance of the genus Faecalibacterium spp. and reducing the Streptococcus spp. after the 

surgical challenge. Finally, the use of the combination of these functional oils controlled the 

increase of the NF-κB and reduced the oxidative stress in dogs submitted to periodontal surgery. 
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Table 1.  

Ingredients and chemical composition (g/kg of dry matter) of the blend of functional 
oils. 

Item g/kg of dry matter 
Ingredients*  
  Cashew nut shell oil  280 
  Pepper species oil 60 
  Copaiba oil  60 
  Amorphous silica 225 
  Cornstarch 125 
  Lithothamnium calcareum 250 
Chemical composition  
  Dry matter 970.2 
  Ether extract 396.5 
  Ash 427.5 

*Each oil in the blend present 100% purity.  

The ingredients and chemical composition were provided by the manufacturer.  
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Table 2.  

Analyzed chemical composition (g/kg of dry matter) of the experimental diet. 

Item g/kg of dry matter 
Dry matter 910.3 
Crude protein 219.0 
Ether extract in acid hydrolysis 92.7 
Total dietary fiber 6.10 
Insoluble fiber  4.89 
Soluble fiber  1.21 
Ash 78.7 
Calcium 20.7 
Phosphorus 10.9 
Gross energy (MJ/kg of dry matter) 19.83 
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Table 3.  

Means of feed intake, coefficients of total tract apparent digestibility (CTTAD), metabolizable energy 
(ME, MJ/kg), and fecal characteristics of dogs fed without (Control) or with (Test) the functional oil 
blend. 

  
Item  

Treatments SEM¹ P-value 
Control* Test* 

Feed intake (g/dog/day) 190.0 181.0 5.97 0.222 
CTTAD     
  Dry matter 0.837 0.853 0.0069 0.467 
  Organic matter 0.882 0.894 0.0052 0.399 
  Crude protein 0.853 0.867 0.0076 0.772 
  Ether extract  0.912 0.924 0.0040 0.743 
  Gross energy 0.883 0.896 0.0051 0.512 
  ME (MJ/kg of dry matter) 17.50 17.76 0.102 0.512 
Fecal characteristics      
  Dry matter (g/kg) 375.1 406.0 11.02 0.408 
  Production2 (g/day) 103.20 80.70 4.903 0.980 
  Score3  4 (3.5/4) 4 (4/4)  - 0.031 
* n=6/treatment. 
1 SEM = standard error of the mean.  
2 Production = g feces produced as-is/animal/day.  
3 Score: Median (1˚/3˚ quartiles) analyzed by Mann-Whitney test (P<0.05). 
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Table 4.  

Means of fecal pH and concentration of short-chain (SCFA) and branched-chain (BCFA) fatty acids and 
ammonia of dogs fed without (Control) or with (Test) the functional oil blend before (D30) and after 
(D35) surgery. 
 Treatment (T)       
Item Control* Test* SEM¹  P- value 
  D30 D35 D30 D35 T Day (D) T × D 
Fecal characteristics           
  pH 6.62 6.52 6.70 6.70 0.073 0.220 0.645 0.633 
SCFA (μmol/g)           
  Acetate 155.34 143.56 148.18 137.80 3.951 0.016 0.213 0.935 
  Propionate 65.86 62.25 65.08 60.95 2.111 0.806 0.470 0.960 
  Butyrate 7.97 5.75 7.19 6.63 0.378 0.949 0.008 0.079 
  Valerate 2.38 2.23 2.07 2.00 0.083 0.198 0.395 0.767 
  Total SCFA  231.55 213.79 222.53 207.38 5.285 0.174 0.186 0.912 
BCFA (μmol/g)         
  Isovalerate 1.13 0.98 0.82 0.82 0.034 0.004 0.105 0.127 
  Isobutyrate 1.87 1.78 1.68 1.53 0.054 0.062 0.079 0.666 
  Total BCFA  3.00 2.76 2.50 2.35 0.078 0.017 0.013 0.532 
Ammonia (μmol/g) 78.34 97.01 78.34 80.04 4.072 0.0502 0.170 0.267 
* n=6/treatment.  
¹ SEM = standard error of the mean. 
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* n=6/treatment.  

Table 5. 

Medians (minimum-maximum) of relative abundance (%) of the most abundant genera in the 
fecal microbiota of dogs fed without (Control) or with (Test) the functional oil blend before 
(D30) and after (D35) surgery. 

Item Control* Test* P-value 
D30 D35 D30 D35 

Prevotella 40.7a 
(24.2-51.4) 

11.9b 
(0.2-40.8) 

32.2a 
(11.5-52.1) 

39.5a 
(1.28-57.1) 

0.047 

Megamonas 15.9 
(4.8-33.1) 

38.8 
(11.7-72.8) 

11.7 
(3.3-24.3) 

16.9 
(2.1-44.7) 

0.128 

Faecalibacterium 5.1ab 2.0b 9.1a 5.5ab 0.005 
 (1.5-8.3) (0.6-5.3)  (5.2-13.5) (4.4-8.4)  
Fusobacterium 5.7 3.5 4.0 3.6 0.692 
 (1.8-12.5) (1.3-15.6) (2.5-11.5) (2.1-14.9)  
Bacteroides 3.0 4.5 4.4 3.2 0.272 
 (0.6-5.7) (0.3-7.7) (3.5-7.3) (1.7-7.3)  
Blautia 1.3 1.8 2.6 2.8 0.177 
 (0.8-1.6) (0.2-2.8) (0.8-7.0) (1.4-8.3)  
Phascolarctobacterium 1.9 0.9 2.2 2.1 0.226 
 (1.4-6.3) (0.0-3.4) (1.6-3.2) (0.1-2.7)  
Collinsella 0.8 0.4 1.2 0.9 0.581 
 (0.4-1.9) (0.0-1.9) (1.1-3.1) (1.2-4.8)  
Catenibacterium 0.5 0.9 0.7 1.1 0.112 
 (0.2-0.8) (0.2-1.1) (0.3-1.2) (0.8-1.3)  
Holdemania 0.2 0.4 0.4 0.6 0.395 
 (1.3-0.6) (0.1-1.6) (1.2-0.9) (0.1-13.6)  
Allobaculum 0.6 1.2 0.4 0.7 0.375 
 (0.1-2.5) (0.2-2.3) (0.3-1.2) (0.6-0.9)  
Sutterella 1.0 0.5 0.9 0.6 0.145 
 (0.5-2.3) (0.0-1.5) (0.8-1.3) (0.0-1.0)  
Bifidobacterium 0.2 0.0 0.0 0.0 0.113 
 (0.0-4.5) (0.0-6.1) (0.0-0.5) (0.0-0.1)  
Turicibacter 0.4 0.7 0.4 0.5 0.835 
 (0.1-1.0) (0.1-1.2) (0.2-1.0) (0.2-1.0)  
Streptococcus 0.0b 0.5a 0.0b 0.1b 0.043 
 (0.0-0.4) (0.0-4.0) (0.0-0.1) (0.0-0.3)  
Clostridium 0.3 0.3 0.4 0.3 0.605 
 (0.0-0.7) (0.1-0.6) (0.2-0.7) (0.1-0.6)  
Dorea 0.1 0.2 0.3 0.2 0.616 
 (0.1-0.3) (0.1-0.3) (0.1-2.0) (0.1-0.8)  
Lactobacillus 0.1 0.1 0.0 0.0 0.784 
 (0.0-1.0) (0.0-0.7) (0.0-0.1) (0.0-0.1)  
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a,b Medians followed by different superscript letters differ by Kruskal-Wallis test (P<0.05). 

 

Table 6.  

Means of concentration and serum variation of nuclear factor NF-κB (pg/ml) and C-reactive protein 
(CRP, mg/l) in dogs fed without (Control) or with (Test) the functional oil blend before (D30) and 
after (D35) surgery. 

Item Treatments (T) SEM¹ P-value 
Control* Test* T Day (D) T × D 

NF-κB             
  Day 0 375.50b 421.24a 26.877 

0.577 0.032 0.144   Day 30 338.03b 417.61a 20.517 
  Day 35 510.84a 433.86a 30.448 
Variation NF-κB P-value 
  Day 30 - 0 -37.47 -3.63 34.018 0.642 
  Day 35 - 30 172.82 16.25 40.637 0.047 
CRP   
  Day 0 0.13a 0.13a 0.010 

1.000 0.005 0.978   Day 30 0.10a 0.10a 0.009 
  Day 35 0.06b 0.07b 0.019 
Variation CRP P-value 
  Day 30 - 0 -0.02 -0.03 0.010 0.880 
  Day 35 - 30 -0.04 -0.03 0.018 0.870 
* n=6/treatment.  
¹ SEM = standard error of the mean. 
a.b Means in the same column followed by distinct letters differ by Tukey's test (P<0.05). 
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Table 7.  

Mean concentrations of oxidative parameters and plasmatic protein concentration of dogs fed 
without (Control) or with (Test) the functional oil blend on day 0, before (D30), and after (D35) 
surgery. 

Item  
Treatments (T) 

SEM¹ 
P-value 

Control* Test* T Day (D) T × D 
GSH (μg GSH.ul-1)      
  Day 0 52.93ª 89.33ª 19.019 

0.605 0.001 0.345   Day 30 7.55b 3.29b 3.977 
  Day 35 14.11b 6.49b 4.429 
GST (mmol.min-1.mg of protein-1) 
  Day 0 10.48ª 11.84ª 0.840 

0.059 0.006 0.832   Day 30 10.83ª 12.13ª 0.937 
  Day 35 6.48b 9.02b 0.750 
CAT (mmol.min-1.mg of protein-1) 
  Day 0 0.24 0.17 0.069 

0.481 0.892 0.967   Day 30 0.26 0.20 0.115 
  Day 35 0.33 0.21 0.088 
SOD (mmol.min-1.mg of protein-1) 
  Day 0 162.49 157.33 4.517 

0.305 0.720 0.550   Day 30 157.38 152.78 5.363 
  Day 35 170.75 151.14 7.649 
LPO (mmol.min-1.mg of protein-1) 
  Day 0 74.74ª 56.50ª 5.665 

0.037 <0.001 0.860   Day 30 65.04ª 53.64ª 6.209 
  Day 35 34.87b 23.33b 3.211 
Protein (mg.mL-1)       
  Day 0 33.15b 34.95b 0.929 

0.164 0.004 0.297   Day 30 34.37b 34.16b 0.891 
  Day 35 36.30a 40.02a 1.145 
* n=6/treatment.   
¹ SEM = standard error of the mean. 
GSH= reduced glutathione; GST= glutathione transferase; CAT= catalase; SOD= superoxide 
dismutase; LPO= lipid peroxidation. 
a.b Means in the same column followed by distinct letters differ by Tukey’s test (P<0.05). 
P>0.05 for variation (Day 30-0 and Day 35-30) for all the analyzed variables (data not shown).  
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Table 8.  

First choice and intake ratio of the control and test diets containing the blend of functional oils. 

Item Control Test P-value 
1First choice  21 11 >0.05 
2Intake ratio  0.62 ± 0.42 0.38 ± 0.42  0.061 
1 First choice by Chi-square test (P< 0.05). 
2 Intake ratio by Student t-test (P<0.05). 
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a,b Medians followed by distinct letters differ by the Kruskal-Wallis test (P<0.05). 
 

Figure 1. Medians of alpha-diversity indexes of the fecal microbiota of dogs fed without 
(Control) or with (Test) the blend of functional oils before (D30) and after (D35) surgery. 
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Figure 2. Beta-diversity estimated by weighted Unifrac distance of the fecal microbiota of dogs 
fed without (Control) or with (Test) the blend of functional oils before (D30) and after (D35) 
surgery. Control group D35 differed from the other treatments by PERMANOVA (P=0.023).  
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