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Abstract 

 

Rabies is a viral zoonosis with 61,000 estimated deaths per year. Rabies vaccine is 

the best treatment pre and post exposure and virus can be produced in animal cells 

for veterinary use. This work had two objectives. The first one was to test three viral 

inocula (MOI 0.01, MOI 0.03 and 1% of working volume) in BHK-21 cells cultivated 

in 1.5 L spinner, comparing kinects and virus titration to determine the best 

inoculum. The second one was to freeze dry 12 formulations of excipients with an 

inactivated viral suspension, comparing visual aspects and residual moisture to 

select the best formulations. The best inoculum was 1% of working volume and the 

best excipients were trehalose, sucrose, dextran and mannitol. 

 

Key words: Rabies, Multiplicity of Infection, Freeze Dry. 
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Resumo 

 

Raiva é uma zoonose viral com 61.000 mortes estimadas por ano. A vacina 

antirrábica é o melhor tratamento pré e pós-exposição e o vírus pode ser produzido 

em células animais para uso veterinário. Este trabalho teve dois objetivos. O 

primeiro foi testar três inóculos virais (MOI 0,01, MOI 0,03 e 1% do volume de 

trabalho) em células BHK-21 cultivadas em spinner de 1,5 L, comparando 

resultados de cinética e titulação viral para determinar o melhor inóculo. O 

segundo foi liofilizar 12 formulações de excipientes com uma suspensão viral 

inativada, comparando aspectos visuais e umidade residual para selecionar as 

melhores formulações. O melhor inóculo foi 1% do volume de trabalho e os 

melhores excipientes foram trealose, sacarose, dextrana e manitol. 

 

Palavras-chave: Raiva, Multiplicidade de Infecção, Liofilização. 
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1. Bibliographic Introduction 

 

 1.1 Rabies: disease, epidemiology and burden 

 

Rabies is a viral zoonosis that occurs in more than 100 countries and 

territories (Figure 1.1 in Annexes). There were 61,000 estimated cases of death 

from rabies in the world in the year 2010 according to the informal group Partners 

for Rabies Prevention (WHO, 2013). The estimated annual cost of rabies is US$ 6 

billion, covering pre and post exposure treatments and loss of productivity due to 

premature deaths of workers (WHO, 2013). 

 The infection usually occurs when an infected animal causes a transdermal 

bite or scratch in the victim. Transmission may also occur when infectious material, 

usually saliva, comes into direct contact with the victim’s mucosa or with fresh skin 

wounds. The incubation period is typically 1 to 3 months, but may vary from less 

than a week to more than a year (WHO, 2010). 

 Inoculated virus is transported to the central nervous system (CNS). On 

arrival in the brain, it replicates and disseminates rapidly in many different tissues 

including the salivary glands (WHO, 2010). The acute disease includes pain or 

paraesthesia close to the bite site and is often associated with fever, fatigue and 

weakness in associated limbs. Non-specific neurological symptoms including 

headache and anxiety are often experienced before the development of 

encephalitis and it is usually only at this point those patients seek medical help and 

admission to hospital (Johnson et al., 2010).  

As the virus spreads through the CNS, progressive fatal encephalomyelitis 

develops, characterized by hyperactivity and fluctuating consciousness and, in 

cases of furious rabies, hydrophobia or aerophobia, or both. Death occurs by 

cardiorespiratory arrest within a few days (WHO, 2010). 

 

 1.2 Rabies: classification, proteins and cell infection 

 

The rabies virus (RABV) belongs to order Mononegavirales and family 

Rhabdoviridae. This family has three genera: Vesiculovirus (which prototype is the 

vesicular stomatitis virus), Ephemerovirus (which prototype is the bovine ephemeral 

fever virus) and Lyssavirus (which prototype is the Rabies Virus) (Murphy et al., 

1995). RABV and variants known as “rabies related” virus belongs to one of the 
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fourteen Lyssavirus genotypes, all of them capable to produce a rabies-like 

encephalomyelitis (WHO, 2013). 

 The Lyssavirus stable infective particles (virions) have bullet-shaped form 

with average length of 180 nm and average diameter of 75 nm (Davies et al., 

1963). Lyssaviruses, like other Rhabdoviruses, consist mainly of RNA (2-3%), 

protein (67-74%), lipid (20-26%) and carbohydrate (3%) as integral components 

(percent of total mass) of their structure (Wunner, 1991). 

 The RABV genome is a non-segmented single-stranded RNA, which has a 

negative-sense polarity. This implies that the minus-strand genome RNA, when 

free of protein, is not infectious for the victim’s cells (Wunner, 2007). The genome 

analysis reveals the presence of five proteins: a nucleoprotein (N), a 

phosphoprotein (P), a matrix protein (M) a RNA polymerase RNA-dependent (L) a 

glycoprotein (G), which carries the main antigenic sites (Batista et al., 2007; WHO, 

2010). RABV structure is showed in Figure 1.2 in Annexes. 

 The cycle of infection and replication of RABV can be summarized in the 

following stages: (1) adsorption of virions to host cell, (2) penetration of the virion 

into the cell, (3) removal of protein-RNA complex proteins; (4) transcription of viral 

RNA, (5) translation of mRNAs, (6) processing of proteins, (7) viral RNA replication, 

(8) assembly of virions, and (9) budding (Nadin-Davis, 2010). A scheme of infection 

of a neuron cell is showed in Figure 1.3 in Annexes. 

 In the virion morphogenesis, the proteins N, P and L newly synthesized in 

the cytoplasm adhere to nascent viral RNA to form the nucleocapsid. The 

nucleocapsid is then stabilized by the M protein, which is responsible for giving the 

nucleocapsid its bullet-shaped morphology. The protein G, which requires 

glycosylation, is processed in rough endoplasmic reticulum and then goes to the 

host cell membrane. Finally, the nucleocapsid-protein M interact with cytoplasmic 

membrane fragments which contain protein G to finish virions assembling and 

proceeds to budding of these new virion to further spread of the virus (HIROSE & 

MONTAÑO-Villegas 1996; Wunner, 2007) 

 

1.3 Rabies vaccines: definition, generations and first rabies vaccine 

  

 A vaccine is any preparation intended to produce immunity to a disease by 

stimulating the production of antibodies (WHO, 2013). The most common method 

of administering vaccines is by injection. But some vaccines are given by mouth or 
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nasal spray (WHO, 2013). The first rabies vaccine was developed by Louis Pasteur 

and Emile Roux in 1885 (cited by Bunn, 1991).  

 Talking specifically about rabies, there were three generations of vaccine 

production: the first generation utilizes brains of rabbits, sheep, cows, horses and 

other animals as substrate for virus cultivation. In 1955, Fuenzalida and Palacios 

described a vaccine using suckling mouse brain as substrate (Fuenzalida & 

Palacios, 1955) and Peck and collaborators described a vaccine using duck 

embryonated eggs as substrate (Peck et al, 1955). The second generation uses 

cell cultures for producing rabies vaccine. In 1960, Fenje announced the first 

vaccine to be produced on hamster kidney tissue (Fenje, 1960). In the next years 

there were a great amount of reunions and congresses for debating of researches 

all over the world and standardization of the work which enabled the development 

and then the rapid commercialization of vaccines for veterinary use. This 

development benefitted from four favorable factors: (1) the cell lines, such as BHK 

(Baby Hamster Kidney), were accepted for the production of vaccines for use in 

animals; (2) viral multiplication is excellent in these cells; (3) these systems 

permitted an industrial scaling up of the cultures; (4) the addition of adjuvant was 

authorized to these veterinary vaccines (Roumiantzeff et al., 1985). The third 

generation of rabies vaccines is already available: the vaccinia-rabies glycoprotein 

recombinant vaccine is presently applied on a large scale in some European 

countries for immunization of wildlife. The canarypox recombinant vaccine has 

already been considered and successfully tested for human immunization (Sureau, 

1992). 

Talking about vaccine production itself, after cell growing and virus 

production it is necessary to inactivate the virus. Beta-propiolactone (BPL), 

ultraviolet (UV) light and acetylethyleneimine are used as inactivating agents, and 

BPL is the most utilized (Reculard, 1996). Once inactivated, adjuvants are added to 

increase the immune response to the antigen. The most used are aluminum 

hydroxide, aluminum phosphate, saponin and less commonly used are oil 

adjuvants (Precausta et al., 1991, Briggs et al., 2002).    

 

1.4 Rabies vaccines: TECPAR production 

 

TECPAR used Fuenzalida-Palacios method to produce rabies vaccine for 

veterinary use over forty years before change it for cell culture vaccine. Since 2010, 

the Brazilian regulatory agency (MAPA) that control the production of rabies 
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vaccine established mandatory the utilization of a different substrate other than 

mouse brain. To fit the new specifications, TECPAR started to use BHK-21 cells 

growing in suspension on a stirred bioreactor to produce rabies vaccine.  In 

addition, the bioreactors were equipped with a perfusion system (Aurelio Zeferino, 

personal communication, 2012). 

 Animal cells grow substantially slower than most microorganisms, and 

lacking a protective cell wall, they are also more fragile. Therefore, one is limited to 

very gentle culture conditions and relatively low cell concentrations. One way to 

increase the cell concentration, yet maintain gentle culture conditions is the 

perfusion method (Furey, 2000).  

A perfusion culture is one in which waste medium is continuously removed 

from the culture and the displaced medium is replenished with fresh medium. The 

constant addition of fresh medium and elimination of waste products provides the 

cells with the environment they require to achieve high cell concentrations and with 

that higher productivity (Furey, 2000). 

In the context of virus multiplication in cells, the concept of Multiplicity of 

infection (MOI) must be explained. MOI is a frequently used term in virology which 

refers to the number of virions that are added per cell during infection. If one million 

virions are added to one million cells, the MOI is one. If ten million virions are 

added, the MOI is ten. Add 100,000 virions, and the MOI is 0.1 (Racaniello, 2011).  

High MOI is used when the experiment requires that every cell in the culture 

is infected. By contrast, low MOI is used when multiple cycles of infection are 

required. However, it is necessary to determinate the virus titer in order to calculate 

the MOI (Racaniello, 2011). 

Perrin and collaborators (1995) tried to develop a rabies vaccine using BHK-

21 cell suspension culture in bioreactor with perfusion in 1995 with satisfactory 

results. They utilized different MOI for each stage of the adaptation of the cells from 

monolayer to suspension: 0.003; 0.01; 0.1 and 0.3 cells
-1

.  

Kallel and collaborators (2002) tested various serum and protein free media 

for production of rabies vaccines. In spinners, the MOI selected was 0.1 cells
-1

. In 

bioreactors the MOI was 0.1 or 0.3. Works with the same MOIs were conducted in 

Vero cells by Trabelsi and collaborators (2005, 2006). Guidolin and collaborators 

(1983) also tested two different MOI (0.07 and 0.046 cells
-1

) for producing rabies 

vaccines in BHK cells, obtaining satisfactory potency results.  
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1.5 Lyophilization: process, use for immunobiologicals and cryoprotectors 

most used for vaccines 

 

 Lyophilization, or freeze drying, is defined as a stabilizing process in which 

the substance is first frozen and the quantity of the solvent is reduced by 

sublimation (primary drying). After, a secondary drying (desorption) the reduction 

achieve values that will no longer support biological growth or chemical reactions. 

The lyophilization process is composed by five phases: (1) formulation, (2) freezing, 

(3) primary drying, submitted to vacuum, (4) secondary drying and (5) closure of 

recipients (Jennings, 2008). 

 Freeze drying is an established process to improve the stability of labile 

drugs, especially proteins and complex vehicles like virus vaccines, viral vectors, 

liposomes and lipid–DNA complexes. However, during freezing and subsequent 

drying, the drug is exposed to diverse stress factors which can cause significant 

loss of activity. During freezing, drug stability can be influenced by exposure to ice–

water interfaces, salt and drug concentration effects, pH shifts due to selective 

crystallization of buffer species, and mechanical damage by growing ice crystals. 

During drying, removal of stabilizing hydration shells can influence the stability of 

the drug, just to mention the most common known degradation causes (Wang 

2000; Lang & Winter, 2009). 

Then, to ensure the drug stability in step drying freeze and subsequent 

storage, stabilizing excipients have to be employed. Cryoprotectants such as salts, 

polyols, and sugars are used to stabilize the solution therapeutic in freeze thawing 

process. Lyoprotectants, especially the disaccharides sucrose and trehalose, can 

be used to stabilize the drug during drying. Additionally, bulking agents as like 

mannitol can be added to enable faster drying times and to maintain lyophilisates 

with an attractive appearance (Wang 2000; Lang & Winter, 2009).  Hubálek in 

2003 described a list of different cryoprotectors used in microorganism’s 

conservation. These include: sulfoxides; alcohols and derivatives; saccharides and 

polysaccharides; amides and imides; heterocyclic compounds; amino acids, 

proteins, peptides and polypeptides; complex compounds; and surfactants.  

 It’s not necessary to freeze dry the rabies vaccine for veterinary use 

according to Brazilian regulatory agency (MAPA). Although, the lyophilization does 

not exclude the cold chain (2 to 8°C), the vaccine in the lyophilized form is more 

stable, has more resistance to temperature shocks and has more shelf time.  
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2. Objectives 

 

This work has two main objectives: 1- study different multiplicities of 

infection in order to determine the best inoculum for infection of cell cultures in 

spinner; 2- select the best excipients in order to freeze dry the rabies vaccine for 

posterior in vivo tests.    

 To achieve that, the specific objectives are: 

1) Determine the cellular growing kinects before and after virus infection; 

2) Determine the viral production with different virus inoculum conditions;  

3) Determine the influence of these inoculum seeking greater productivity 

and higher quantity of harvests above cut off (established by TECPAR);  

4) Evaluate the visual aspects and residual moisture of different 

lyophilization conditions; 

5) Determine the best lyophilization conditions for posterior biological tests. 
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3. Material and Methods 

 

3.1 Culture Medium 

 

The medium used for growing BHK-21 cells before infection was nominated 

SCM (Standard Culture Medium). It was composed by a combination of DMEM 

(Dulbecco’s Modified Eagle Medium) and Ham’s F12 Nutrient Mixture Medium 

customized for TECPAR use, supplemented with 3% of fetal bovine serum (FBS) 

and with pH adjusted for 7.8.  

After the cell infection with virus particles the medium used was nominated 

SCMI (Standard Culture Medium for Infection). It was composed by DMEM and 

Ham’s F12 medium but supplemented with 1% of FBS and with pH adjusted for 

7.8. 

The BHK cells of seed bank and work bank were frozen in liquid nitrogen 

using a medium nominated FM (Freezing Medium). It was composed by 95% FBS 

and 5% dimethyl sulfoxide (DMSO). 

 

3.2 Cell line and virus strain 

 

The cell line used was BHK-21 C13 LVI and it came from Pan American 

Centre for Foot-and-Mouth Disease (Panaftosa) with 84 passages. The cells were 

adapted in SCM and a seed bank was made using 30 million cells/mL in FM 

aliquoted in cryotubes and stored at -196°C in liquid nitrogen with 105 passages.  

From the seed bank it was prepared a work bank which was used for the 

experiments of cultivation of cells in spinner flask. At the experiments, the cell line 

had 118 passages.  

The rabies virus strain was Pasteur Virus (PV) adapted for the infection of 

BHK-21 C13 cells and has one passage. The strain came from Minas Gerais’ 

Federal University (UFMG) and was storage at -80°C ultra freezer. From the 

original virus was created a seed bank and a work bank, both prepared in BHK 

cells cultivated with SCM and supplemented with 5% (w/v) sucrose before freezing. 

In the experiments virus from the work bank was directly used for infection of the 

spinners.  
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3.3 Cell counting 

 

The cells were counted in hemocytometer. The readings were performed in 

optical microscope Olympus with 100 times magnification. The cells were stained 

with 0.5% (w/v) Trypan blue in a dilution in which at least 20 cells could be counted 

per quadrant (Phillips, 1973). The cells were also visually evaluated in terms of 

morphology, light refringence and size.     

 

3.4 BHK-21 cell production for infection in spinner for development 

experiments 

 

 A cryotube with BHK-21 cells from the work bank was thawed at 37°C and 

used as cell inoculum in a 500 mL spinner (named 1A) with 80 mL of SCM. The 

spinner was incubated at 37°C at 55 rpm agitation and cell counting was made 

every day. When it achieved at least 800,000 cells/mL, more medium was added to 

dilute the cells to 200,000 cells/mL and the spinner was incubated again. This 

proceeded until the spinner has 500 mL of SCM.  

After that 250 mL of first spinner was transferred to a 1.5 L spinner. SCM 

was added to this second spinner to complete 1.25 L leaving it with 200,000 

cells/mL again and this second spinner was incubated at 37°C at 55 rpm. When the 

concentration reached 1 million cells/mL, the sample was divided in four spinners 

(1.1A, 1.2A, 1.3A and 1.4A) each one was completed to 1.5 L with SCM. The four 

spinners were incubated with the same conditions. When the concentration of the 

four spinners reached at least 1million cells/mL each, three of the spinners were 

infected with the virus strain.  

 

3.5 Cell culture infection in spinner for development experiments 

 

 The virus titer for the experiment was 10
6.18

 Fluorescent Focus-Forming 

Dose (FFD) per mL, titrated in microplate. The MOI calculations were made using 

the following formula: 

 

 

 

 

Figure 3.1: Formula for calculating the correct volume for infection of spinners. 

𝑉𝑜𝑙𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚 =  
𝑀𝑂𝐼 × 𝐶𝑒𝑙𝑇𝑜𝑡

𝐴𝑛𝑡𝑖 log10 𝑇𝑖𝑡
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 Where: 

- Volinoculum = volume of inoculum required for the infection, in mL; 

- MOI = multiplicity of infection selected, in FFD/cell; 

- Celtot = total number of cells, multiplying the cell concentration for the 

volume of the flask, in cell; 

- Antilog Tit = the anti-logarithm of virus titer, in FFD/mL;  

 

In the development stage assay there were selected three different MOI for 

infection. The virus used for all the infected spinners was at the same 

concentration, therefore the only difference was the volume inoculated in each 

spinner. The inoculum used corresponding to 1% of total flask volume (as example 

15 mL in 1.5 L spinner) is the positive control, used normally for rabies vaccine 

production on bioreactor. Using the formula it can be calculated that positive control 

has MOI 0.015 FFD/cell. The experiments also used MOI 0.01 and 0.03 FFD/cell.  

 When 1 million cells/mL was reached in the spinners, the infection protocol 

was started. In zero day of infection, the pH was adjusted for 7.4 with sodium 

bicarbonate 7.5% (w/v) and the spinner was placed in a cold room (2 to 8°C) for 2 

hours to sediment the cells. The supernatant was carefully removed from the 

spinner, leaving a final volume of 300 mL. Then diethylaminoethanol-dextran 

(DEAE) 0.5% (w/v) was added at 1% of the remaining volume to optimize the 

adsorption of the viral particles in the cells. The spinner was incubated at 33°C in 

intermittent agitation: 20 minutes stopped and 5 minutes with 30-35 rpm agitation 

for 90 minutes.  

The four spinners were nominated: Spinner 1.1A became positive control 

and received 15 mL of virus; Spinner 1.2A became negative control and it wasn’t 

inoculated with virus; Spinner 1.3A became MOI 0.01 and received 10 mL of virus; 

Spinner 1.4A became MOI 0.03 and received 30 mL of virus. 

After inoculation the volume was completed to 1.5 L with SCMI and 

incubated at 33°C at 55 rpm. The assay lasted 10 days after infection. The next 

days were called days post infection (dpi). In each day, samples were taken for cell 

counting, infection rate, pH evaluation, glucose and lactate determination and two 

samples were frozen for subsequent virus titration. The pH was adjusted to 7.4 with 

sodium bicarbonate 7.5% and the spinner was placed in cold room for cell 

sedimentation for 2 hours. The maximum volume of medium was discarded, 

without losing cells, and new SCMI was added in order to achieve 1.5 L again and 

the spinner was incubated in 33°C at 55 rpm. From 3 dpi to 8 dpi, the medium was 
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harvest instead of discarded, placed in 2 L roller bottles, identified and stored at -

80°C.  

  After counting the viable and total cells it was possible to calculate the 

viability in percentage. Also, the specific growth rate (µ) can be calculated with an 

formula adapted for using cell concentration values obtained at the assay (Figure 

3.2). The specific growth rate measures the rate of cell multiplication and it is 

calculated every day post infection.  

 

 

 

 

Figure 3.2: Formula for calculating specific growth rate of cell cultures. 

 

 Where: 

- µ = specific growth rate, in hours
-1

; 

- X = cell concentration, in cells/mL; 

- t = time, in hours; 

- n and n-1 means two succeeded sampling points.  

 

3.6 Glucose and lactate determination 

 

Every day a sample of each spinner was taken in microtube and centrifuged 

at 800 rpm for 5 minutes. Then the supernatant was injected in an YSI 2700 Select 

Dual-Channel Biochemistry Analyzer (Yellow Springs Instruments, Yellow Springs, 

Ohio, USA) for determination of residual glucose and lactate production 

concentration.  

 

3.7 Infection rate by direct immunofluorescence  

 

The direct immunofluorescence test was adapted from Batista and 

collaborators, 2009. 

The test was carried out with 50 µL of the three infected cultures in 

separated spaces of a lamina. The lamina was placed on a flat table for 20 min to 

sediment the cells and dried at room temperature. The next step was fixating the 

cells using 50 µL of acetone 80% (v/v) in purified water. The lamina was conserved 

𝜇 =
𝑙𝑛 (𝑋𝑛) − 𝑙𝑛 (𝑋𝑛−1)

(𝑡𝑛 − 𝑡𝑛−1)
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in freezer (-20°C) for 7 minutes. Then, the acetone was thawed and the lamina was 

dried at room temperature. 

Afterwards it was prepared a solution with anti-rabies nucleocapsid 

conjugate (Bio-rad code 357-2114) and Evans blue dye (dissolved at 1:40000 in 

purified water) at 1:20 proportion and 40 µL was added to three samples. The 

lamina was incubated at 37°C for 30 min and then washed three times with 50 µL 

of PBS.  

Finally a glass slide was put over the lamina (Figure 3.3) and it was 

observed in an immunofluorescence microscope Olympus with 100 times 

magnificence. 

 The samples were evaluated in terms of fluorescent focus inside the cells. 

The results were classified like described in Table 3.1 

 

Table 3.1: Classes and requirements for evaluate direct immunofluorescence. 

 

 

3.8 Rabies virus titration 

 

The rabies virus titration of samples was made following the Fuches, 2010, 

protocol previously validated by Moura and colleagues, 2008.   

From each infected spinner (in each dpi) a sample was taken totalizing 10 

samples per spinner, and centrifuged at 800 rpm for 5 minutes. The supernatant 

was collected and stored at -80°C. These samples were thawed at room 

temperature at the time of experiment. A reference rabies virus with known titration 

was used, in duplicate and 2 wells were used for cell control, without infection. 

Three microplates with 96 wells were made, each one with the 10 samples 

(one for each dpi) of one infection. The disposal of the samples and the dilutions 

used in the titration are described in Annexes (Table 3.2 and Figure 3.4). 

 

Class Requirements 

0 total absence of fluorescent focuses 

1 from rare fluorescent focuses to 25% fluorescent focuses 

2 from 25% to 50% fluorescent focuses 

3 from 50% to 75% fluorescent focuses 

4 more than 75% fluorescent focuses 
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3.9 Preparation of a vaccine for the lyophilization experiments 

 

For the lyophilization experiments, an inactivated viral suspension (IVS) 10 

times concentrated previously prepared in 75 L NBS bioreactor was used. This IVS 

was selected in order to test different lyophilization protocols before using the 

harvests obtained in the development stage and evaluate the performance of the 

excipients selected.  

The harvests from the bioreactor usually have a few cellular debris and 

another undesirable metabolites. When the IVS is concentrated, these debris are 

concentrated too. Then it was necessary to clarify this IVS, washing it with buffer 

solution. The buffer selected was NT (Table 3.3 in Annexes). Before the buffer 

exchange, it was necessary to concentrate the IVS in order to improve the wash 

results and to use a minor amount of buffer solution. 

The buffer exchange step was performed in a Pellicon tangential filtration 

system with 100 kDa of porosity (Merck-Millipore, Billerica, Massachusetts, USA). 

The Pellicon membrane was coupled with a peristaltic pump set up for 55rpm 

speed. Firstly, the IVS were concentrated from 2 liters to 400 mL, discarding the 

permeate. Secondly, buffer were continued added to the IVS to wash, totalizing a 5 

times volume, also discarding the permeate. Finally, the volume was reestablished 

with the same buffer and thimerosal 10% was added at 1:10,000 proportion to 

preserve the IVS. The IVS were stored at cold room.  

 

3.10 Selection of excipients for lyophilization  

 

For the lyophilization experiments, 11 excipients were selected: 

- 3 disaccharides: sucrose, trehalose and lactose;  

- 2 polyalcohols: sorbitol and mannitol;  

- 3 amino acids: L-proline, L-serine and L-glutamic acid,  

- 3 polymers: dextran 40 (a polysaccharide with molecular weight 40 kDa), 

polyethylene glycol (PEG) 3350 (a polyether with average molecular weight 3350 

Da) and gelatin.  

A summary of the selected excipients, theirs respective classes and their 

estimated prices in dollars is described in Table 3.4. The most expensive excipient 

is the polymer dextran 40 (4,522 dollars per kilogram) and the cheapest excipient is 

the polyalcohol sorbitol (55 dollars per kilogram). 
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Table 3.4: Type and cost of the selected excipients. 

 

 

The excipients were diluted in purified water (Milli-Q) for the lyophilization 

experiments and prepared 2 times concentrated in order to prepare stock solutions 

of each excipient which were used during all the experiments (Table 3.5)  

 

Table 3.5: Excipients selected and theirs stock solution concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Excipients Type Estimated Cost 

Sucrose Sugar US$ 86/kg 

Trehalose Sugar US$ 4,211/kg 

Lactose Sugar US$ 193/kg 

Sorbitol Polyalcohol US$ 55/kg 

Mannitol Polyalcohol US$ 232/kg 

Proline Amino acid US$ 1,263kg 

Serine Amino acid US$ 1,280/kg 

Glutamic Acid Amino acid US$ 162/kg 

Dextran 40 Polymer US$ 4,522/kg 

PEG 3350 Polymer US$ 254/kg 

Gelatin Polymer US$ 142/kg 

Excipients Stock Solution 2x concentrated (w/v) 

Sucrose 10% 

Trehalose 10% 

Lactose 10% 

Sorbitol 10% 

Mannitol 10% 

Proline 2% 

Serine 2% 

Glutamic Acid 2% 

Dextran 40 2% 

PEG 3350 2% 

Gelatin 2% 



14 
 

3.11 Preparation of excipient solutions and vaccine formulation  

 

Each vaccine is IVS with a different excipient solution. The vaccine 

formulation was done mixing together the IVS and the excipients at 1:1 proportion, 

homogenizing it and making 1 mL aliquots in 7.5 mL glass vials. The vials were 

partially closed with a rubber stopper (Figure 3.5 in Annexes) in order to permit 

water vapor from sublimation to escape. At the final, the vaccine had the IVS five 

times concentrated and the excipient solutions at half the stock solution 

concentration.  

Five vials were prepared for each excipient solution. An additional of five 

vials with 1 mL were prepared with only the IVS diluted in purified water to achieve 

five times concentration. This unprotected formulation was used for comparison of 

results.  

 

3.12 Lyophilization process 

 

The lyophilization experiments were developed in a freeze dryer Edwards 

RC-300 (Edwards Vacuum, Crawley, West Sussex, UK). After preparation of the 

partially closed glass vials with vaccine formulations, the vials were disposed in the 

trays of the equipment. The trays were placed inside the freeze dryer and the 

protocol was started. 

The protocol had 3 steps: freezing, primary drying and secondary drying. 

Several protocols were tested with the vaccine formulations in the freeze dryer, 

finally establishing the best lyophilization protocol. This protocol (Table 3.6) was 

used to freeze dry the different vaccine formulations.  

 

Table 3.6: Description of the best lyophilization protocol. 

Step Temperature Duration 

Freezing -42°C 3 hours 

Primary Drying -40°C 

-5°C 

24 hours 

96 hours 

Secondary Drying +25°C 3 hours 
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3.13 Visual aspects evaluation of lyophilized vials 

 

The lyophilized vials were visually evaluated using three parameters: color, 

integrity and uniformity. The color of the IVS without any excipient was white, so the 

excipient must not make modifications in the cake color to pass the color test. The 

cakes must have uniform mass distribution to pass the uniformity test. The cakes 

must not present cracks to pass the integrity test. 

The cakes were reconstituted with purified water. Two other parameters 

were evaluated under this condition: time of reconstitution and pH. The time of total 

reconstitution of cakes must not exceed one minute. The pH of the reconstituted 

cakes was also measured and must be between 6.8 and 8.5 (Brasil, 1988).  

 

3.14 Residual moisture test 

 

The residual moisture test was done by volumetric Karl Fischer titration in 

Titroline KF equipment (Schott SI Analytics, Mainz, Rhineland-Palatinate, 

Germany). The best three lyophilized vials of each formulation were selected for 

the test. The samples of each vial were weighted and titrated in the Karl Fischer 

equipment. The residual moistures as well as the mean values were calculated. 

The residual moisture must not pass 3% for the lyophilized rabies vaccine (Brazil, 

1988). 

4. Results and Discussion 

 

4.1 Kinects results and comparisons 

 

 The main objective of the development experiments was to evaluate the 

best viral production. However it was important to obtain growth curves of the four 

spinners in order to analyze and compare the infected cultures with the negative 

control in terms of kinects, specific growth rate and metabolites consumption and 

production. This development experiment was able to tell the influence of the 

different MOI in the spinners and compare the results with a not infected spinner. 

 

4.1.1 BHK-21 cell production 

 

After 10 days of experiment, the growth curves for the fours spinners were 

measured in terms of viable cells (Figure 4.1).  
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Figure 4.1: Cell growth curves obtained for the four spinners cultivation in 
development experiments. After 10 days of infection, the negative control of assay 
achieved maximum cell concentration of 1.78 million cells/mL (viable cells) at 6 dpi 
(days post infection). The positive control achieved maximum cell concentration of 
1.33 million cells/mL (viable cells) at 6 dpi. The spinner MOI 0.01 reached a 
maximum of 1.33 million cells/mL (viable cells) at 5 dpi. The spinner MOI 0.03 
achieved its maximum  with 1.22 million cells/mL (viable cells) at 4 dpi. 

 

In terms of cell production, the negative control of assay achieved maximum 

cell concentration of 1.81 million cells/mL (total cells) and 1.78 million cells/mL 

(viable cells) at 6 dpi. After 6 dpi, the growth rate began to decrease, reaching 1.08 

million viable cells/mL at the end of the assay. The cell concentration obtained in 

negative control was similar to normal cell production at TECPAR (data not 

showed). 

The positive control of the assay was infected with 15 mL of virus. Maximum 

cell concentration was 1.43 million cells/mL (total cells) and 1.33 million cells/mL 

(viable cells) at 6 dpi. After 6 dpi, the growth rate began to rapidly decrease, 

reaching 355,000 viable cells/mL at the end of the assay. The growth curve had a 

slightly decrease between 3 and 4 dpi, probably because of intense virus 

production, restarting the growth between 4 and 5 dpi.  

The spinner with MOI 0.01 was infected with 10 mL of virus. Cell 

concentration reached a maximum of 1.48 million cells/mL (total cells) and 1.33 

million cells/mL (viable cells) at 5 dpi. This growth achieved a peak at 5 dpi and 
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after this began to decrease reaching 600,000 viable cells/mL at the end of the 

assay.  

The spinner with MOI 0.03 was infected with 30 mL of virus. Cell 

concentration achieved its maximum with 1.29 million cells/mL (total cells) and 1.22 

million cells/mL (viable cells) at 4 dpi. After 4 dpi, the growth rate rapidly decreased 

at 5 dpi, stabilized at 6 and 7 dpi and then decreased again, reaching 450,000 

viable cells/mL at the end of the assay.  

The peak of growing for the different infected cultures was different: 6 dpi for 

positive control, 5 dpi for MOI 0.01 and 4 dpi for MOI 0.03. The peak of MOI 0.03 

was achieved faster probably due the virus concentration that was the highest and 

started to make effect on the culture earlier than the others. Nevertheless, the 

infected cultures achieved similar peaks of concentration and the oscillations of 

growing were practically constant. 

Perrin and collaborators (1995) used two different 2 L bioreactors (1.3 L 

working volume) to produce rabies vaccine using BHK-21 cells in perfusion mode. 

The maximum cell density in the two bioreactors was close to 6 million cells/mL. 

Kallel and collaborators (2002) also developed an experiment for producing rabies 

vaccines in BHK-21 cells in 250 mL spinner and 2 L (1.3 L working volume) 

bioreactor. The maximum cell concentration obtained was 2 million cells/mL in non-

infected spinners and 1.2 to 1.6 million cells/mL in infected spinners. In bioreactors, 

the maximum cell density achieved 3 million cells/mL in batch mode.  

The results for the four spinners were similar to those obtained by Kallel and 

collaborators (2002) although the four spinners used a higher amount of medium 

volume. Also cultures with the same volume in bioreactor had better cell production 

than spinner. This happened because the bioreactors possess better controls for 

temperature, dissolved oxygen, pH and agitation. So then, using bioreactors with 

the same volume of the experiment (1.5 L) would increase cell production. 

Additionally, using a perfusion system coupled with bioreactor would imply in even 

better results.  

Using the formula described in Figure 3.2, the specific growth rate (µ) could 

be calculated for each dpi (Table 4.1). 
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Table 4.1: Maximum specific growth rate for the four spinners. 

Spinner µ max (h
-1

) dpi of µmax  

Neg. Control 0.010 1 dpi 

Pos. Control 0.013 2 dpi 

MOI 0.01 0.014 5 dpi 

MOI 0.03 0.020 1 dpi 

 

A characteristic of animal cells like BHK-21 is that, even under optimized 

conditions of growing, present a low specific growth rate, between 0.01 h
-1

 and 0.05 

h
-1

. That µ is significantly lower than specific growth rates presented by 

microorganisms thus making the industrial process costlier (Tonso, 2000). 

The four spinners achieved a µmax compatible with the optimized cultures 

although the spinners had poor process controlling which means that the cultures 

grown satisfactorily. 

 

4.1.2 Viability of cell cultures 

 

The viability was obtained in percentage, dividing viable cells by total cells 

and multiplying 100 times. From the results, the highest, the lowest and the mean  

value for viability were obtained (Table 4.2). 

  

Table 4.2: Rate of cell culture viabilities for the four spinners. Between brackets is 
the days post infection (dpi) where the viability was achieved 

Spinner Highest viability  Lowest viability Mean viability 

Neg. Control 98.3% (6dpi) 88.2% (0dpi) 95.4% 

Pos. Control 96.2% (3dpi) 66% (8dpi) 87.7% 

MOI 0.01 95.4% (7dpi) 85.6% (8dpi) 91.1% 

MOI 0.03 97.5% (3dpi) 75.7% (8dpi) 90.8% 

 

The viability of negative control was the highest because of the absence of 

virus. Therefore cell concentration was limited by other factors like absence of gas, 

pH and temperature control, agitation and accumulation of some metabolites and 

debris that could interfere in cell growing.  

The virus does not kill the cell because the new virions are released outside 

by budding. Not infected cells replicate normally although, one infected cell does 

not replicate anymore, only producing more virus until its death. So then, with a 

lower quantity of virus as inoculum, the tendency is to achieve a better viability 
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because the cells will take a longer time to become infected and die. The spinner 

with MOI 0.01 has the best viability among infected spinners because of the lower 

quantity of virus inoculated. 

Chapman and collaborators (1973) studied the viability of BHK-21 cells 

infected with rabies virus and kept in two temperatures, 33°C and 36°C. MOI 0.05 

was used in this experiment, corresponding to 1% of the final volume of the vessel, 

just like the positive control. The viability of cells after infection at 36°C decreased 

from 3 dpi reaching almost 0%. However, the viability of infected cells at 33°C 

remained above 90%, just as founded in the development experiment. 

 

4.1.3 Metabolites consumption and production 

 

Daily samples were taken and evaluated in terms of glucose consumption 

and lactate production for the four spinners (Table 4.3).  

 

Table 4.3 Minimum glucose concentration and maximum lactate production for the 
culture cells in four spinners during the 10 days of infection. Between brackets is 
the days post infection (dpi) where the concentration was obtained. 

 

 

 

 

 

 

Animal cells need glucose and glutamine as carbon sources. In the glucose 

metabolism practically all of glucose is converted in lactose. Thus, the relation 

between glucose consumption and lactate production represent important 

parameters for process monitoring and providing information about the metabolic 

flow inside the cells (Zeng et al., 1998; Tonso, 2000).   

Cruz and collaborators (2000) studied the effects of lactate inhibition on 

BHK cells. When lactate concentration achieved 28 mM (which correspond to 2.52 

g/L), cell growth was reduced. Therefore in none of the spinners, the lactate 

reached a limiting concentration. Also, in none of the spinners the glucose was 

totally consumed. 

 

 

Spinner Min. Glucose Conc.  Max. Lactate Conc.  

Neg. Control 1.20 g/L (8dpi) 2.33 g/L (8dpi) 

Pos. Control 2.63 g/L (6dpi) 1.42 g/L (7dpi) 

MOI 0.01 2.04 g/L (5dpi) 1.81 g/L (5dpi) 

MOI 0.03 2.78 g/L (8dpi) 1.14 g/L (5dpi) 
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Usually the cultures in 1.5 L spinner are made with 1.25 L working volume. 

The volume used in the developed experiments was 1.5 L. This was an attempt of 

increase the cell production, providing more carbon source to cells. Unfortunately 

the cell production in the experiment was close to cell concentrations usually 

obtained in 1.25 L. Furthermore, the glucose remained with high concentration in 

positive control and MOI 0.03 spinners, which means that the medium change 

during days post infection threw away medium that was still good for cell growing, 

generating a waste of money.  

 

4.2 Infection rate results 

 

 The infection rate is a qualitative method to evaluate the behavior of virus 

inside the cells during the cultivation. Table 4.4 summarizes the results for infection 

rate found in the three infected spinners. Figure 4.2 in Annexes shows examples of 

classification of infection rate. 

 

Table 4.4: Infection rates of virus inside cells. 

 
 

However, the infection rate does not reflect on the production of virus inside 

the cells and the quality of virus produced. The direct immunofluorescence is one 

tool for process control and only classifies the infection rate inside the cells. This 

technique can be used to predict on which dpi the harvests can be initiated. 

Normally when the culture reaches Class 4 it means that harvests can be made. 

This happened for all spinners at 3 dpi, and that was the day that harvests were 

initiated. 

Dpi Pos. Control MOI 0.01 MOI 0.03 

1 Class 1 Class 1 Class 1 

2 Class 3 Class 2 Class 4 

3 Class 4 Class 4 Class 4 

4 Class 4 Class 4 Class 4 

5 Class 4 Class 4 Class 4 

6 Class 4 Class 4 Class 4 

7 Class 4 Class 4 Class 3 

8 Class 3 Class 4 Class 3 

9 Class 3 Class 4 Class 3 

10 Class 3 Class 4 Class 4 
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 From the results it can be concluded that the inoculum with the lowest 

concentration of virus took a longer time to achieve Class 4 (more than 75% of 

fluorescent focuses). Also, oscillations between Class 3 and Class 4 are normal 

depending if cells are replicating, which would imply in less fluorescent focuses, or 

producing virus, which would imply in more fluorescent focuses. 

 

4.3 Virus titration results 

 

 The virus titration is an important tool to evaluate viral production and quality 

in several stages of vaccine production (Fuches, 2010). It is a relatively fast in vitro 

test (when compared to in vivo tests) to evaluate the infection of virus produced in 

other cells and compare the results with a standard virus. Butantan Institute in 

Brazil made a comparative study which showed a good correlation between the 

virus titration results and the potency results performed in mice but the data was 

not published (Fuches, 2010). 

 The virus samples from the three infected spinners collected during the ten 

days of infection were titrated (Figure 4.3). Also, in Annexes shows examples of 

field classification in virus titer determination (Figure 4.4). 

 

Figure 4.3: Virus titration curves for the three infected spinners Only harvests 
above cut off are used for rabies vaccine production. The maximum titration value 
reached by positive control was 105.98 FFD/mL at 4 dpi. The maximum for MOI 
0.01 was 105.37 FFD/mL at 3 dpi and for MOI 0.03 was 105.77 FFD/mL at 4 dpi. 
The best graphic area above cut off means the best inoculum. In this case, the best 
inoculum corresponds to the positive control.    

 

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

A
n

ti
lo

g 
vi

ru
s 

ti
tr

at
io

n
 (

FF
D

/m
L)

 

Days post infection 

Positive Control

MOI 0.01

MOI 0.03

Cut Off



22 
 

The titration for the standard virus was 10
5.37

 FFD/mL. The maximum 

titration value reached by positive control was 10
5.98

 FFD/mL at 4 dpi. The 

maximum for MOI 0.01 was 10
5.37

 FFD/mL at 3 dpi and for MOI 0.03 was 10
5.77

 

FFD/mL at 4 dpi. Harvests of virus from infected spinners were made from 3 dpi to 

8 dpi and kept in ultrafreezer at -80°C.  

TECPAR uses harvests from the bioreactor to produce rabies vaccine. 

These harvests are also titrated in order to evaluate the virus production and 

determine the best results. After several attempts to produce a vaccine with great 

potency using different titers, it was established a cut off at 10
3.8

 FFD/mL and 

harvests with virus titer lower than cut off should not be used to produce rabies 

vaccine (no published data).  

Same reasoning was applied in the spinner cultures. The best viral inoculum 

determination took into account how many harvests were above the cut off and 

among these harvests which present the best results or in a better way, which 

inoculum obtained the larger graphic area above cut off. 

Among the days where harvests occurred, all of the infected spinners had 

six harvests above the cut off. However, positive control and MOI 0.03 obtained two 

more harvests above the cut off that were not collected. Between the harvests 

above cut off, it can be seen that the positive control have the largest graphic area 

above cut off.  

Based on all information showed and calculated it can be concluded that 

positive control is the best inoculum for spinner infection. This viral inoculum is 

made by adding a viral volume correspondent to 1% of the volume of the vessel 

utilized in the experiment is the best way to infected one BHK-21 culture with rabies 

virus. 

  

4.4 Lyophilization results 

 

4.4.1 Visual aspects evaluation 

 

 After the IVS was formulated with different excipients and aliquoted in the 

glass vials, the lyophilization protocol was started and the resultant lyophilized 

cakes for the twelve formulations were obtained (Figures 4.5 and 4.6).   

 

 

 



23 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5: Lyophilized cakes part one.  
A= IVS without excipient; B= Lactose 5%; C= Mannitol 5%; D= Sucrose 5%; E= 
Sorbitol 5%; F= Trehalose 5%. All the sugars presented good cakes as well as 
mannitol, the IVS without excipient formed a heterogeneous cake and the sorbitol 
cake collapsed.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Lyophilized cakes part two. 
G= Glutamic acid 1%; H= Serine 1%; I= Proline 1%; J= Dextran 40 1%; K= Gelatin 
1% and L= PEG 3350 1%. All the amino acids formed collapsed cakes, as well as 
PEG3350, dextran 40 formed an excellent cake and gelatin presented a 
heterogeneous cake. 
 

 The lyophilized cakes were visually evaluated in terms of the lyophilized 

cakes in terms of color, uniformity, integrity (Table 4.5).  

A B C D E F 

L K J I H G 
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Table 4.5: Visual aspects evaluation of lyophilized cakes. The “X” symbolizes cakes 
that pass the tests. 

Excipient Color Uniformity Integrity 

Pure IVS X  X 

Sucrose X X X 

Trehalose X X X 

Lactose X X X 

Sorbitol X   

Mannitol X X X 

Proline X   

Serine X   

Glutamic Acid X   

Dextran 40 X X X 

PEG 3350 X   

Gelatin X  X 

 

 The lyophilization of amino acids as excipients did not produce good cakes. 

The samples presented collapsed during lyophilization (process also known as melt 

back). The same phenomenon happened with sorbitol. PEG 3350 cakes melt back 

too but appeared drier than sorbitol and amino acids cakes. IVS and gelatin did not 

pass the uniformity test because of the bubbles presented.  

 All excipients did not aggregated color to the cake and passed the color test. 

The best excipients in this step were: sucrose, lactose, trehalose and dextran.  

After reconstituting the vaccine with purified water, two parameters were 

evaluated: time of reconstitution and pH of the reconstituted cakes (Table 4.6).  

Table 4.6: Time and pH evaluation of reconstituted cakes. The “X” symbolizes 
formulations that achieved the specified time of reconstitution.  

  

Excipient Time of reconstitution Final pH 

Pure IVS X 7.58 

Sucrose X 7.52 

Trehalose X 7.56 

Lactose X 7.54 

Sorbitol X 7.55 

Mannitol X 7.58 

Proline X 7.56 

Serine X 7.32 

Glutamic Acid X 3.47 

Dextran 40 X 7.56 

PEG 3350 X 7.57 

Gelatin  7.4 
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 The only excipient that did not pass the time of reconstitution test was 

gelatin which did not solubilize in purified water in less than a minute. Although the 

other excipients had passed, the time of reconstitution was better in pure IVS, 

sucrose, mannitol and dextran. Lactose and trehalose took a while longer to 

become homogenized. The excipients with worse cakes, like all amino acids and 

PEG, took more time for reconstitution but achieved total homogenization in less 

than one minute. 

The Brazilian regulatory agency (MAPA) demands that the reconstituted 

vaccine have pH between 6.8 and 8.5 (Brasil, 1988). The only excipient that did not 

pass the pH test was glutamic acid which turned the vaccine more acid than 

recommended.  

  

4.4.2 Residual moisture evaluation 

 

Three samples were measured by Karl Fischer volumetric titration in terms 

of residual moisture and the mean moisture was calculated (Table 4.7).  

 

Table 4.7: Residual moisture results for lyophilized cakes. 

  *NC: not calculated 

 

The Karl Fischer titration is done injecting a known mass in the equipment 

and analyzing the quantity of Karl Fischer reagent necessary to react with residual 

water in the sample. Cakes obtained for the amino acids and PEG 3350 could not 

be removed from lyophilized vials for injection in the titration equipment because 

Excipient RM1 RM2 RM3 Mean Residual Moisture 

Pure IVS 4.16 3.99 2.73 3.63% ± 0.78% 

Sucrose 2.30 2.98 2.32 2.53% ± 0.39% 

Trehalose 2.51 3.33 3.18 3.01% ± 0.44% 

Lactose 2.34 2.86 3.28 2.83% ± 0.47% 

Sorbitol NC* NC* NC* NC* 

Mannitol 1.93 2.78 2.72 2.48% ± 0.47% 

Proline NC* NC* NC* NC* 

Serine NC* NC* NC* NC* 

Glutamic Acid NC* NC* NC* NC* 

Dextran 40 3.15 2.95 2.74 2.95% ± 0.21% 

PEG 3350 NC* NC* NC* NC* 

Gelatin 3.42 3.10 2.85 3.12% ± 0.29% 
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the cakes were melt back and difficult to collect. Therefore residual moistures of 

these excipients could not be calculated. 

 The Brazilian regulatory agency (MAPA) recommends that residual moisture 

do not pass 3% (Brasil, 1988). The IVS without excipient addition and gelatin did 

not pass the test. The trehalose was slightly above the recommended but since the 

test is influenced by many factors (temperature, operating time, air humidity), it can 

be said that trehalose passed the test and furthermore the lyophilized trehalose 

cake will be reevaluated. The other excipients analyzed had residual moisture 

under the regulatory claims. 

 

4.4.3 Best excipients selection 

  

 The IVS without any excipient formed a cake that passed in the visual 

aspects tests and almost passed the residual moisture test. This was possible 

because the IVS is 10 times concentrated. Even with the 5 times buffer exchange, 

there could still be traces of sugar, fetal bovine serum, amino acids and other 

metabolites that probably stabilized the IVS during the lyophilization. Lang and 

Winter (2009) demonstrated that sodium chloride interfere in lyophilization in 

concentrations superior to 60 mmol/L by aggregating molecules. The sodium 

chloride concentration on NT buffer is 50 mmol/L, so the presence of this salt only 

improves the tonicity of the vaccine. 

 The amino acids cakes melt back. It occurred probably due theirs 

ineffectiveness in protecting the IVS when used as only excipient, despite the 

excipients already present in the pure IVS. It use can have better results when 

associated with excipients of a different kind.  

 The book Laboratory Techniques in Rabies describes two protocols utilizing 

gelatin as excipient. In this work gelatin provided good cakes but after 

reconstitution it did not homogenized within the desired time which discarded the 

use of this excipient in future in vivo tests. 

 Trehalose was described as a good cryo and lyoprotector by Gupta and 

collaborators (1996) and Sarkar and collaborators (2003) for respiratory syncytial 

virus vaccine and pest des petites ruminants vaccine respectively. Caricati (2010) 

also tested different excipients for rabies vaccine lyophilization, obtaining 

interesting results for trehalose, sucrose and PEG 3350. The present work also 

presented good results for trehalose and sucrose in terms of visual aspects and 

residual moisture. However PEG 3350 which is very used as stabilizing agent in 
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lyophilization had poor results which were a disappointing result. PEG performance 

can also be improved if coupled with other excipients. 

 Lang and Winter (2009) also tested mannitol as excipient. When used alone 

mannitol presented good results for appearance and residual moisture. When 

coupled with trehalose, the resultant cake had a very robust crystalline matrix 

leading to a more elegant final product and enabling shorter drying times. Based on 

these results, in next lyophilization experiments mannitol and trehalose could be 

coupled together to test the resultant cake.  

Sucrose, at concentrations 1 to 68% has quite frequently been used for the 

cryopreservation of microorganisms (Hubálek, 2003). Law and Hull (1968) tested 

the stabilizing effect of sucrose for the respiratory syncytial virus and its infectivity, 

obtaining good results. Sehgal and Das (1975) studied the effect of freezing upon 

the bean mosaic virus using sucrose as stabilizer and also obtained good results. 

 Dextran, as well as sorbitol and mannitol are inert excipients. They provide 

elegance to lyophilized cakes because easily crystallize under low temperatures 

and are used in biopharmaceutical vaccines that use lower doses per vial and 

consequently have lower mass. In these cases, the inert excipients provide more 

volume and can be coupled with amorphous excipients generating a two phase 

solid: one amorphous with the active principle and one crystalline with the inert 

excipient (Caricati, 2010). The use of dextran and mannitol in the present work 

provided cakes with good appearance but it is necessary to know if the antigen was 

protected during the lyophilization experiment. However sorbitol cakes collapsed 

and further investigation will occur to understand the problems involved. 

In summary, the best excipients tested were sucrose, trehalose, lactose, 

mannitol and dextran 40. Formulations with these excipients can be tested in vivo 

to evaluate if the viral proteins still active and the vaccine have potency. Also a 

formulation with the clarified IVS five times concentrated without excipients addition 

should be tested in vivo to verify if the residual metabolites alongside the buffer 

exchange are sufficient to maintain the rabies vaccine potency. Based on that, five 

excipients were selected for posterior in vivo test: pure IVS, sucrose, trehalose, 

mannitol and dextran 40. Also, the cost of excipients must be taken into account to 

determine the best excipients. Within the five best excipients, sucrose is the 

cheapest and dextran 40 is the most expensive, so it is necessary that the best 

excipient also doesn’t increase the final price of the product enabling the 

implementation of the lyophilization technique and scale up of the process.  
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5. Conclusions 

 

At the final of the development experiment the growth curves for four BHK-

21 cells cultivated in 1.5 L spinners under different viral inocula were determined. 

Parameters like kinects, viability, infection rate, and virus titration were calculated 

and discussed in order to comprehend the cell growth before and after the 

infection. The maximum specific growth rate of the four spinners was in accordance 

with those obtained in optimized animal cell cultures. The metabolic analysis 

showed that in none of the days glucose was absent and lactate production did not 

achieve a limiting concentration. The infection rate established the third day post 

infection as beginning of infected culture harvests. The virus titration showed that 

positive control had the best graphic area above the cut off, determining that 

positive control (1% of spinner volume) was the best viral inoculum. 

The best lyophilization protocol was determined and several excipients were 

tested with this protocol. The IVS without any excipient alongside trehalose, 

sucrose, lactose, mannitol and dextran 40 presented lyophilized cakes with the best 

appearance. Serine, glutamic acid, proline, PEG 3350 and sorbitol cakes collapsed 

during lyophilization. In the reconstitution tests only gelatin was reproved and in the 

pH tests only glutamic acid was reproved. Sucrose, mannitol, trehalose, lactose 

and dextran 40 passed the residual moisture test. The lyophilization experiments 

selected five excipients for posterior in vivo tests: pure IVS, sucrose, trehalose, 

mannitol and dextran 40. 

6. Perspectives 

 

Based on the results obtained in this experiment, future work can be done: 

the development experiment will be repeated with the same conditions to compare 

the results; a pool of positive control harvests will be made and inactivated with 

beta-propiolactone; this inactivated viral suspension will be concentrated ten times 

and the medium will be exchanged with NT buffer for lyophilization experiments; 

the IVS will be formulated and freeze dried using the same work protocol; the 

lyophilized vials will be tested for all in vitro and in vivo tests demanded by the 

Brazilian regulatory agency (MAPA) with the excipients selected and combinations 

of these excipients. Also an economical study will be made for the best in vivo 

excipients in order to determine the viability of industrial application of the 

lyophilization technique. 
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Annexes 

 

 

Figure 1.1: Rabies wide world distribution and risk exposition. Data source: WHO, 
2012.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Structure of rabies virus (RABV). Adapted from Bourhy et al. (1990). 
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Figure 1.3: Cycle of viral infection and replication of RABV inside one neuron. 
Adapted from Mazarakis et al. (2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Direct immunofluorescence assay ready for reading. Each blue square 
represents one sample. The markings are drawn on the opposite side of the lamina 
and the reading is done with the cell side upturned. 
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Table 3.2: Scheme of samples and dilutions for virus titration in 96 wells microplate. 

The sample “0” was applied without dilution. CC means Cell Control where no virus 

was added. Examples: “Std -2” signifies the standard diluted 100 times (10
-2

); “4dpi 

-4” signifies the sample from 4 dpi diluted 10 000 times (10
-4

). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Example of one microplate filled with samples. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

A Std -2
 

Std -2
 

1dpi 0 2dpi 0 3dpi 0 4dpi 0 5dpi 0 6dpi 0 7dpi 0 8dpi 0 9dpi 0 10dpi 0 

B Std -3
 

Std -3
 

1dpi -1
 

2dpi -1
 

3dpi -1
 

4dpi -1
 

5dpi -1
 

6dpi -1
 

7dpi -1
 

8dpi -1
 

9dpi -1
 

10dpi -1
 

C Std -4
 

Std -4
 

1dpi -2 2dpi -2 3dpi -2 4dpi -2 5dpi -2 6dpi -2 7dpi -2 8dpi -2 9dpi -2 10dpi -2 

D Std -5
 

Std -5
 

1dpi -3 2dpi -3 3dpi -3 4dpi -3 5dpi -3 6dpi -3 7dpi -3 8dpi -3 9dpi -3 10dpi -3 

E   1dpi -4 2dpi -4 3dpi -4 4dpi -4 5dpi -4 6dpi -4 7dpi -4 8dpi -4 9dpi -4 10dpi -4 

F   1dpi -5 2dpi -5 3dpi -5 4dpi -5 5dpi -5 6dpi -5 7dpi -5 8dpi -5 9dpi -5 10dpi -5 

G CC  1dpi -6 2dpi -6 3dpi -6 4dpi -6 5dpi -6 6dpi -6 7dpi -6 8dpi -6 9dpi -6 10dpi -6 

H CC            
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Figure 3.5: 7.5 mL glass vial filled with 1 mL and partially closed with a rubber 
stopper. 

 

 

 

 

 

 

Table 3.3: NT (NaCl – Tris) Buffer for buffer exchange of IVS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagent (molarity) Mass used 

NaCl (0.13 mol/L) 7.600g 

Tris-HCl (0.05 mol/L) 6.057g 

pH adjusted to 7.6 

Purified water added to complete 1 L 
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Figure 4.2 Examples of classes in a direct immunofluorescence assay. The cells 
are stained in red and the virus in green. The magnificence of the images is 50 
times although during the test the evaluation is done using 100 times. A – Class 1: 
from rare focus to 25% of fluorescent focuses (Pos. Control at 1 dpi); B – Class 2: 
from 25% to 50% of fluorescent focuses (MOI 0.01 at 2 dpi); C – Class 3: from 50% 
to 75% of fluorescent focuses (Pos. Control at 2 dpi); D – Class 4: more than 75% 
fluorescent focuses (MOI 0.03 at 4dpi). 

 

 

 

 

 

 

 

 

 

 

 

 

  

A B 

D C 



34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Examples of positive and negative fields in the rabies virus titration. The 
cells are stained in red and the virus in green. The magnificence of the images is 100 
times. A – Positive field with a great amount of virus (MOI 0.03 at 3 dpi with 10

-1
 

dilution); B – Positive field with more diluted virus (MOI 0.03 at 3 dpi with 10
-2

 
dilution); C – 2 fluorescent focus yet positive field (MOI 0.03 at 3 dpi with 10

-5
 

dilution); D – Negative field (MOI 0.03 at 5 dpi with 10
-5

 dilution). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  A B 

D C 
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