UNIVERSIDADE FEDERAL DO PARANÁ

GUILHERME BERTOLDO

OTIMIZAÇÃO AERODINÂMICA DE NEWTON COM BASE NAS EQUAÇÕES DE NAVIER-STOKES

CURITIBA

GUILHERME BERTOLDO

OTIMIZAÇÃO AERODINÂMICA DE NEWTON COM BASE NAS EQUAÇÕES DE NAVIER-STOKES

Tese apresentada ao Programa de Pós-Graduação em Engenharia Mecânica, área de concentração de Fenômenos de Transporte e Mecânica dos Sólidos, do Setor de Tecnologia da Universidade Federal do Paraná, como requisito parcial para a obtenção do título de Doutor em Engenharia Mecânica.

Orientador: Prof. Carlos Henrique Marchi, Dr. Eng. Mec.

CURITIBA 2014

Bertoldo, Guilherme

Otimização aerodinâmica de Newton com base nas equações de Navier-Stokes / Guilherme Bertoldo. – Curitiba, 2014. 229 f. : il., tabs.

Tese (doutorado) – Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós Graduação em Engenharia Mecânica Orientador: Carlos Henrique Marchi Bibliografia: p. 190-194

1. Otimização. 2. Navier-Stokes (Equações de). 3. Superfícies de resposta (Estatística). I. Marchi, Carlos Henrique. II. Título.

CDD 620.1064

TERMO DE APROVAÇÃO

GUILHERME BERTOLDO

OTIMIZAÇÃO AERODINÂMICA DE NEWTON COM BASE NAS EQUAÇÕES DE NAVIER-STOKES

Tese aprovada como requisito parcial à obtenção do grau de Doutor em Engenharia Mecânica do Curso de Doutorado do Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal do Paraná, área de concentração Fenômenos de Transporte e Mecânica dos Sólidos.

Banca Examinadora:

Prof^a. Dr^a. Ana Cristina Avelar Instituto de Aeronáutica e Espaço Examinadora externa

Prof. Dr. António Fábio Carvalho da Silva Universidade Federal de Santa Catarina Examinador externo

Prof^a. Dr^a. Viviana Cocco Mariani Pontifícia Universidade Católica do Paraná Examinadora externa

Prof. Dr. Luciano Kiyoshi Araki Universidade Federal do Paraná Examinador interno

Prof. Dr. Carlos Henrique Marchi Universidade Federal do Paraná Presidente da Banca Examinadora

Curitiba, 2 de setembro de 2014.

AGRADECIMENTOS

Ao professor Carlos Henrique Marchi, pela orientação, apoio e confiança.

À Fábia Cristiane Felippi, pelo companheirismo e carinho.

Ao professor Jonas Joacir Radtke, pela amizade e companheirismo.

Ao professor Alexandre Mikowski, pelo apoio e confiança.

Aos meus familiares, amigos e demais pessoas que de alguma forma contribuíram para a realização deste trabalho.

À equipe da COGETI e ao câmpus da UTFPR-Francisco Beltrão, pelo apoio em TI.

Aos CENAPADs da Universidade Federal do Ceará e da Universidade Federal do Rio Grande do Sul, pelo suporte computacional, sem o qual este trabalho não seria possível.

RESUMO

O problema da otimização aerodinâmica de Newton, formulado e resolvido primeiramente por Newton no século XVII e extensivamente estudado a partir do século XX devido às suas aplicações em Aeronáutica e Astronáutica, foi abordado neste trabalho com base nas equações de Navier-Stokes para um amplo intervalo do número de Reynolds no intuito de avaliar como os efeitos viscosos afetam as formas otimizadas. Mais precisamente, foram considerados escoamentos para seis valores de Reynolds $\operatorname{Re}_{\infty}^{-1} \in \{0; 10^{-7}; 10^{-6}; 10^{-5}; 10^{-4}; 10^{-3}\},\$ dois valores de razão de aspecto (comprimento/diâmetro de base) $f_r \in \{2, 4\}$ e três valores do número de Mach $M_{\infty} \in \{1,5; 3; 6\}$. A otimização foi realizada com base no Método de Otimização de Forma e os perfis geométricos aproximados por três modelos: (1C) lei de potência, (2C-S) lei potência com face plana e (2C-NS) lei de potência deslocada com face plana. O coeficiente de arrasto sobre estas formas foi calculado com base no Método dos Volumes Finitos e os coeficientes da otimização determinados com base no algoritmo de Evolução Diferencial conjugado ao Método das Superfícies de Resposta. Os resultados mostraram que a redução do número de Reynolds, ou seja, o aumento dos efeitos viscosos, reduz a área superficial e o volume das formas otimizadas e que, para os modelos 2C-S e 2C-NS, esta redução não implica em formas mais pontiagudas. Estes resultados contrastam com os de Horstmann et al. e de Bryson Jr., obtidos com outra abordagem. Os resultados também mostraram que, no intervalo de Reynolds estudado, os efeitos viscosos alteram significativamente os perfis otimizados e os seus coeficientes de arrasto. A variação da área superficial e do volume de um extremo a outro deste intervalo, por exemplo, chegaram a 19 e 25%, respectivamente. Entretanto, há um intervalo amplo do número de Reynolds, dependente de M_{∞} e f_r , em que a viscosidade pouco afeta os perfis das formas otimizadas e os seus coeficientes de arrasto, dentro de uma tolerância prescrita. Neste intervalo, as formas otimizadas com base nas equações de Euler são praticamente tão eficientes quanto aquelas otimizadas com base nas equações de Navier-Stokes. Quanto ao coeficiente de arrasto, não se observou diferença significativa entre os Modelos 2C-S e 2C-NS, contudo, a diferença relativa entre os Modelos 1C e 2C-NS chegou a 7,7%, o que mostra o quanto a presença da face plana frontal pode contribuir para a redução do arrasto nas formas otimizadas, mesmo em escoamentos viscosos. O coeficiente de arrasto do Modelo 2C-NS também foi comparado ao das formas otimizadas de von Kármán, Newton e Kraiko et al. Em todas as condições simuladas, o coeficiente de arrasto do Modelo 2C-NS foi menor que o das formas de von Kármán e de Newton. As diferenças relativas chegaram a 28% e 12%, respectivamente. Como esperado, o coeficiente de arrasto Modelo 2C-NS foi maior que o das formas otimizadas de Kraiko et al., obtidas com o Cálculo Variacional no caso limite de $\operatorname{Re}_{\infty}^{-1} = 0$. A maior diferença relativa foi de 3,7%, mas, em geral não ultrapassou 0,8%.

Palavras-chave: Otimização aerodinâmica. Navier-Stokes. CFD. Evolução Diferencial. Superfícies de Resposta.

ABSTRACT

The aerodynamics problem of Newton, firstly formulated and solved by Newton in the XVII century and extensively studied from the XX century due to its applications in the Aeronautics and Astronautics, was aborded in this work based on the Navier-Stokes equations for a wide range of the Reynolds number in order to evaluate the influence of the viscous effects over the optimized shapes. More precisely, it was considered six values of the Reynolds number $\operatorname{Re}_{\infty}^{-1} \in \{0; 10^{-7}; 10^{-6}; 10^{-5}; 10^{-4}; 10^{-3}\}$, two values of the aspect ratio (length/base diameter) $f_r \in \{2; 4\}$ and three values of the Mach number $M_{\infty} \in \{1,5; 3; 6\}$. The Shape Optimization method was applied assuming three models for the geometric profiles: (1C) power-law, (2C-S) bluff power-law and (2C-NS) bluff shifted power-law. The fore-drag over these shapes was calculated based on the Method of Finite Volumes and the coefficients of the optimization method were determined with a method that combines the Differential Evolution Algorithm and the Response Surface Methodology. The results showed that decreasing the Reynolds number, that is, increasing the viscous effects, the wetted area and volume of the optimized shapes decrease, while the optimized profiles (of the models 2C-S and 2C-NS) do not become necessarily sharper. These results contrast with those by Horstmann *et al.* and Bryson Jr., obtained with different approaches. Another remarkable aspect was how the viscous effects modify significantly the optimized shapes and their fore-drags in the range of Reynolds number considered. The relative variation of the wetted area and volume, from one extreme to the other of this range, for instance, reached 19 and 25%, respectively. However, there is a wide range of the Reynolds number, depending on M_{∞} and f_r , for which the viscosity has a small effect on the optimized profiles and their fore-drag, within a given tolerance. Within this range, the optimized shapes based on the Euler equations are almost as efficient as those shapes optimized based on the Navier-Stokes equations. Comparing the fore-drag coefficients of the models, it was not observed a significative difference between the Models 2C-S and 2C-NS, but the relative difference between Models 1C and 2C-NS reached 7.7%. This result shows how the bluff portion of the body may contribute for the drag reduction, even for viscous flows. The fore-drag of the Model 2C-NS was also compared with those of the optimized shapes of von Kármán, Newton and Kraiko et al. For all the simulated conditions, the fore-drag of Model 2C-NS was less than those of the von Kármán's and Newton's shapes. The relative differences reached 28% and 12%, respectively. As expected, the fore-drag of the Model 2C-NS was greater than those of the optimized shapes by Kraiko *et al.*, obtained with the Calculus of Variations in the limiting case of $\operatorname{Re}_{\infty}^{-1} = 0$. The greatest relative difference was of 3.7%, but, in general, did not exceed 0.8%.

Key-words: Aerodynamics optimization. Navier-Stokes. CFD. Differential Evolution. Response Surfaces.

LISTA DE ABREVIATURAS E SIGLAS

- ASME American Society of Mechanical Engineers
- CDS Central Differencing Scheme
- CFD Computational Fluid Dynamics
- ED Evolução Diferencial
- DEPP Differential Evolution Parallel Program
- GCI Grid Convergence Index
- MSI Modified Strongly Implicit Procedure
- PNS Parabolized Navier-Stokes equations
- MSR Método das Superfícies de Resposta
- SIMPLE Semi-Implicit Method for Pressure-Linked Equations
- SIMPLEC SIMPLE-Consistent
- UDS Upstream Differencing Scheme
- TM Taylor-Maccoll

LISTA DE SÍMBOLOS

Símbolo	Descrição	Unidade
A	Área	m^2
a	Parâmetro geométrico para a geração da malha	m
A	Função para a geração da geometria de Chernyi e Gonor e	-
	Hayes e Probstein	
A	Função para a geração da geometria de Bryson Jr.	-
A^{ϕ}	Coeficientes dos sistemas lineares obtidos das equações de	Várias
	transporte	
A_b	Área da base	m^2
A_i	Coeficiente para o cálculo de $(c_p)_i$	-
A'_i	Coeficiente para o cálculo de μ_i	-
A_i''	Coeficiente para o cálculo de κ_i	-
A_r	Área superficial relativa	-
a_v	Viscosidade artificial para a geração da malha semialgébrica	-
a_{vf}	Valor final de a_v	-
a_{vi}	Valor inicial de a_v	-
a_{wf}	Viscosidade artificial para a geração da malha semialgébrica	-
B	Vetor com os coeficientes $\beta_i \in \beta_{ij}$	-
b	Vetor para o cálculo de X^*	-
\mathfrak{B}	Função para a geração da geometria de Chernyi e Gonor e	-
	Hayes e Probstein	
\mathscr{B}	Função para a geração da geometria de Bryson Jr.	-
b^{ϕ}	Termos fontes dos sistemas lineares obtidos das equações	Várias
	de transporte	
B_i	Coeficiente para o cálculo de $(c_p)_i$	K^{-1}
B'_i	Coeficiente para o cálculo de μ_i	К
B_i''	Coeficiente para o cálculo de κ_i	Κ
C	Parâmetro da geometria de Horstmann <i>et al.</i>	-
С	Coeficiente de convergência	-
c_{ϕ}	Coeficiente de convergência para a variável ϕ	-
C^{ϕ}	Função genérica presente nas equações de transporte	Várias
C_{bl}	Múltiplo da espessura da camada limite estimada	-
$C_{\rm Df}$	Coeficiente de arrasto frontal	-
C^p_{Df}	Coeficiente de arrasto frontal devido à pressão	-
C^{μ}_{Df}	Coeficiente de arrasto frontal devido às tensões viscosas	-
C_f	Coeficiente de fricção	-

C_f^*	Coeficiente de fricção crítico	-
C_i	Coeficiente para o cálculo de $(c_p)_i$	K^{-2}
C'_i	Coeficiente para o cálculo de μ_i	K^2
C_i''	Coeficiente para o cálculo de κ_i	K^2
c_p	Calor específico a pressão constante	J/kg.K
$(c_p)_i$	Calor específico a pressão constante da espécie molecular \boldsymbol{i}	J/kg.K
C_r	Constante de cruzamento do ED	-
D_{ij}	Coeficientes da discretização das equações de transporte	Várias
d^{ϕ}	Coeficientes do acoplamento pressão-velocidade	Várias
D_i	Coeficiente para o cálculo de $(c_p)_i$	K^{-3}
D'_i	Coeficiente para o cálculo de μ_i	-
D_i''	Coeficiente para o cálculo de κ_i	-
E	Métrica de validação	-
E	Função para a geração da geometria de Chernyi e Gonor e	-
	Hayes e Probstein	
${\mathscr E}$	Função para a geração da geometria de Bryson Jr.	-
$oldsymbol{E}_{\xi}$	Vetor localmente tangente à linha de η constante	m
E_i	Coeficiente para o cálculo de $(c_p)_i$	K^{-4}
F	Constante de diferenciação do ED	-
Ŧ	Função para a geração da geometria de Miele e Hull	-
F_i	Componente i da força de arrasto \boldsymbol{F} $(i \in \{x, y, z\})$	Ν
f_{l_o}	Razão entre $l_{p1} \in l_r$	-
f_{p1}	Fração de volumes na primeira parte da malha	-
f_{p2}	Fração de volumes na segunda parte da malha	-
f_r	Razão de aspecto (comprimento/diâmetro de base)	-
F_s	Fator de segurança do estimador GCI	-
f_s	Parâmetro para a geração da malha algébrica	-
g	Função que define os perfis geométricos	m
G	Número de gerações do ED	-
\hat{g}	Razão ρ/p	$\rm kg/J$
H	Parâmetro de similaridade supersônico-hipersônico	-
h	Razão de raios (r_f/r_b)	-
\hat{h}	Variável para a geração da malha semialgébrica	m
$ ilde{h}$	Função para o ajuste dinâmico de Δt	-
h_i	Partições de malha $(i \in \{1, 2, 3\})$	m^2
\hat{h}_0	Variável para a geração da malha semialgébrica	m
$ ilde{h}_0$	Parâmetro para o controle dinâmico de Δt	-
$h_{ m N}$	Razão de raios (r_f/r_b) para a forma de Newton	-
Ι	Função objetivo	-

Ι	Vetor com os valores de I	-
J	Jacobiano da transformação $xy \to \xi\eta$	m^{-2}
K	Parâmetro da geometria de Miele e Hull	-
\hat{K}	Parâmetro da geometria de Horstmann <i>et al.</i>	-
K_f	Parâmetro da geometria de Miele e Hull	-
Kn	Número de Knudsen	-
L	Vetor com o limite inferior das variáveis de otimização	-
l_a	Parâmetro geométrico para a geração da malha	m
l_b	Parâmetro geométrico para a geração da malha	m
l_c	Comprimento do cilindro	m
L_j	Componente j de \boldsymbol{L} $(j \in \{1, \cdots, N_u\})$	-
L_c	Comprimento característico	m
l_{p1}	Parâmetro geométrico para a geração da malha	m
L_{p_1}	Parâmetro geométrico para a geração da malha	m
l_r	Comprimento dos perfis geométricos	m
l_r^*	Parâmetro geométrico da geometria de Bryson Jr.	-
M	Número de Mach	-
M	Massa molar	$\rm kg/mol$
\mathcal{M}	Massa em um volume elementar	kg
M	Função para a geração da geometria de Chernyi e Gonor e	-
	Hayes e Probstein	
$\dot{\mathcal{M}}$	Taxa de fluxo de massa em uma face de um volume elementar	$\rm kg/s$
\mathscr{M}_i	Massa molar da espécie molecular i	$\rm kg/mol$
m_i	Malhas $(i \in \{1, \cdots, 5\})$	-
n	Expoente da lei de potência	-
\hat{n}	Vetor unitário normal a um contorno	-
N	Função para a geração da geometria de Chernyi e Gonor e	-
	Hayes e Probstein	
N_b	Número de coeficientes do polinômi o ${\cal P}$	-
N_g	Número máximo de gerações do ED	-
N_i	Número de parâmetros de entrada	-
N_m	Número de pontos onde I é avaliada para o ajuste de P	-
n_{m_f}	Número de malhas	-
N_p	Número de indivíduos da população do ED	-
N_s	Número de simulações	-
N_u	Número de variáveis de otimização	-
n_x	Número de volumes reais ao longo das linhas de η constante	-
n_{x1}	Número de volumes na primeira parte da malha	-
n_y	Número de volumes reais ao longo das linhas de ξ constante	-

p	Pressão	Pa
Р	Polinômio quadrático multidimensional	-
P	Vetor com os valores de P	-
p_m	Valor médio da pressão	Pa
P^{ϕ}	Função genérica presente nas equações de transporte	Várias
p_0	Pressão de estagnação	Pa
p_A	Ordem de acurácia arbitrária	-
p_L	Ordem de acurácia assimptótica	-
P_m	Medida de convergência do ED	-
Pr	Número de Prandtl	-
p_U	Ordem de acurácia aparente	-
q	Pressão dinâmica	Pa
Q	Função para a geração da geometria de Horstmann $et\ al.$	-
r	Razão de refino de malha	-
\mathcal{R}	Variável aleatória	-
R	Função para a geração da geometria de Chernyi e Gonor e	-
	Hayes e Probstein	
R_{L_1}	Soma do resíduo dos sistemas lineares obtidos das equações	-
	de transporte	
$R_{L_1}^{\phi}$	Resíduo do sistema linear obtido da equação de transporte	-
	para a variável ϕ	
$R_{p'}$	Parâmetro de convergência do sistema linear para p^\prime	-
r_b	Raio da base dos perfis geométricos	m
Re	Número de Reynolds	-
r_f	Raio frontal	m
R_g	Constante do gás	J/kg.K
$(R_g)_i$	Constante do gás da espécie molecular i	J/kg.K
S	Superfície	-
s	Variável para a geração da malha semialgébrica	-
\tilde{S}^{ϕ}	Parte de S^{ϕ} que não envolve $\phi_{\rm P}$	Várias
\hat{S}^{ϕ}	Parte de S^{ϕ} que multiplica $\phi_{\rm P}$	Várias
S	Função para a geração da geometria de Chernyi e Gonor e	-
	Hayes e Probstein	
S^{ϕ}	Função genérica presente nas equações de transporte	Várias
s_0	Variável para a geração da malha semialgébrica	-
t	Tempo	S
T	Temperatura	Κ
(T_b, T_e)	Intervalo de temperatura onde os coeficientes para o cálculo	Κ
	de c_p , $\mu \in \kappa$ foram determinados	

$oldsymbol{u}$	Vetor velocidade	m/s
u	Componente axial do vetor velocidade \boldsymbol{u}	m/s
$oldsymbol{U}$	Vetor com o limite superior das variáveis de otimização	-
U	Componente contravariante sem normalização métrica do	m^2/s
	vetor velocidade \boldsymbol{u}	
U_j	Componente j de \boldsymbol{U} $(j \in \{1, \cdots, N_u\})$	-
$U_{\mathcal{X}_i}$	Incerteza padrão de \mathcal{X}_i	-
U^{input}	Incerteza na solução numérica causada pela variabilidade	-
	dos parâmetros de entrada	
U^{read}	Incerteza devido à leitura de dados de gráficos	-
U^{val}	Métrica de validação	-
U_C	Estimativa do erro numérico obtida com o estimador con-	-
	vergente	
$U_{\rm GCI}$	Estimativa do erro numérico obtida com o estimador GCI	-
v	Componente radial do vetor velocidade \boldsymbol{u}	m/s
V	Componente contravariante sem normalização métrica do	m^2/s
	vetor velocidade \boldsymbol{u}	
V_r	Volume relativo	-
W	Matriz com os coeficientes que multiplicam β_i e β_{ij} em P	-
w	Largura do domínio de cálculo	m
x	Coordenada axial	m
X	Vetor das variáveis de otimização	-
\mathscr{X}_i	Fração molar da espécie molecular i	-
\mathcal{X}_i	i-ésimo parâmetro de entrada	-
X_j	Componente j de \boldsymbol{X} $(j \in \{1, \cdots, N_u\})$	-
x_t	Parâmetro geométrico da geometria de Powers	m
X'	Indivíduo obtido por diferenciação no ED	-
X''	Indivíduo obtido por diferenciação e cruzamento no ED	-
X^*	Indivíduo que minimiza $P(\boldsymbol{X})$ no ED	-
$oldsymbol{X}^{a}$	Indivíduo que minimiza a função objetivo ${\cal I}$	-
$oldsymbol{X}^m$	Indivíduo médio do ED	-
y	Coordenada radial	m
z	Altitude	m
Z	Matriz para o cálculo de X^*	-
Z_{ij}	Elementos de \boldsymbol{Z}	-

Símbolos Gregos

Símbolo	Descrição	Unidade
α	Métrica da transformação $xy \to \xi \eta$	m^2
$\hat{\alpha}$	Coeficiente do esquema UDS	-
α_c	Parâmetro para a geração da geometria de Chernyi e Gonor	-
	e Hayes e Probstein	
α_{ξ_s}	Expoente da lei de potência para a concentração de nós ao	-
	longo das linhas de η constante	
β	Métrica da transformação $xy \to \xi \eta$	m^2
\hat{eta}	Coeficiente do esquema UDS-CDS	-
β_{ij}	Coeficientes de P	-
β_i	Coeficientes de P	-
γ	Métrica da transformação $xy \to \xi \eta$	m^2
γ^*	Razão de calores específicos	-
Γ^{ϕ}	Função genérica presente nas equações de transporte	Várias
δ	Espessura estimada da camada limite	m
$\Delta \phi$	Variação da variável genérica ϕ	-
Δt	Incremento de tempo	S
Δt_0	Valor inicial de Δt	S
δ_{ij}	Delta de Kronecker	-
δ^{model}	Incerteza padrão no erro de modelagem	-
ϵ	Função objetivo parametrizada	-
ε	Diferença relativa	-
$\varepsilon_{\rm ED}$	Tolerância para o critério de parada do ED	-
ζ	Variável paramétrica	-
ζ_b	Valor inicial de ζ	-
ζ^*	Parâmetro geométrico da geometria de Bryson Jr.	-
η	Coordenada curvilínea	-
θ	Ângulo da inclinação local dos perfis geométricos	-
θ_b	Valor de θ avaliado em $x = l_r$	-
$ heta_f$	Valor de θ avaliado em $x = 0$	-
κ	Condutividade térmica	W/m.K
κ_i	Condutividade térmica da espécie molecular \boldsymbol{i}	W/m.K
λ	Módulo do vetor velocidade sobre a parede	m/s
μ	Viscosidade	Pa.s
μ_0	Parâmetro da geometria de Horstmann <i>et al.</i>	-
μ_i	Viscosidade da espécie molecular \boldsymbol{i}	Pa.s
ν	Variável paramétrica	-

ν_c	Parâmetro para a geração da geometria de Chernyi e Gonor	-
	e Hayes e Probstein	
$ u_i$	Parâmetro para a geração da geometria de Chernyi e Gonor	-
	e Hayes e Probstein	
ξ	Coordenada curvilínea	-
ρ	Massa específica	kg/m^3
Q	Variável paramétrica	-
ϱ_b	Parâmetro geométrico da geometria de Miele e Hull	-
ϱ_c	Parâmetro geométrico da geometria de Chernyi e Gonor e	-
	Hayes e Probstein	
σ_{ij}	Componentes do tensor tensão viscoso	Pa
ς	Variável paramétrica	-
ς_b	Valor final de ς para a geometria de Horstmann $et \ al.$	-
ς_c	Parâmetro para a geração da geometria de Chernyi e Gonor	-
	e Hayes e Probstein	
ς_f	Valor inicial de ς para a geometria de Horstmann $et \ al.$	-
v	Inclinação local das linhas de η constante	-
ϕ	Função genérica	Várias
Φ	Solução exata de um modelo matemático	Várias
ϕ_C	Solução extrapolada com o estimador convergente	Várias
ϕ_η	Derivada parcial de ϕ em relação a η	Várias
$\phi_{ m Ri}$	Solução extrapolada com o estimador de Richardson	Várias
ϕ_{ξ}	Derivada parcial de ϕ em relação a ξ	Várias
χ	Variável para a geração da malha semialgébrica	-
ψ	Função genérica	Várias
Ψ_{ij}	Função para o cálculo de μ e κ para misturas gasosas	-
ω^{ϕ}	Contribuição da correção adiada para o termo fonte dos	Várias
	sistemas lineares	

Índices

Unidade	\mathbf{S} ímbolo
desvio entre o valor exato $\ -$,
ım valor estimado para a $\ $ -	*
-	+
el de tempo discretizado -	0
ate livre -	∞
- el de tempo discretizado - nte livre -	+ o

\exp	Relativo à experiência	-
i,j,k	Índices inteiros	-
i_1, i_2, i_3	Índices de três indivíduos mutuamente diferentes no ED	-
i_b	Índice do melhor indivíduo do ED	-
i_w	Índice do pior indivíduo do ED	-
max	Indica o valor máximo de uma variável	-
min	Indica o valor mínimo de uma variável	-
m	No contexto do Cap. 4, indica o valor da variável da iteração	-
	anterior à iteração corrente	
num	Relativo à solução numérica	-
ref	Indica um valor de referência	-
n, s, e, w,	Pontos cardeais do método dos volumes finitos	-
sw, se, nw,		
ne		
N, S, E,	Pontos cardeais do método dos volumes finitos	-
W, SW, SE,		
NW, NE, P		
nb, NB	Indicam pontos cardeais vizinhos ao ponto de referência	-

SUMÁRIO

1	INTRODUÇÃO	19
1.1	Um breve histórico	19
1.2	Definição do problema	22
1.3	Organização do texto	25
2	REVISÃO BIBLIOGRÁFICA	27
2.1	Resultados analíticos	27
2.1.1	Escoamento supersônico linearizado	27
2.1.1.1	Von Kármán	27
2.1.1.2	Parker	28
2.1.2	Escoamento hipersônico	29
2.1.2.1	Newton, Eggers <i>et al.</i> , Miele	29
2.1.2.2	Bryson Jr., Miele e Hull	31
2.1.2.3	Horstman et al.	33
2.1.2.4	Chernyi e Gonor, Hayes e Probstein, Miele	35
2.2	Resultados numéricos	37
2.2.1	Zandbergen	37
2.2.2	Powers	37
2.2.3	Fink	38
2.2.4	Manson e Lee	39
2.2.5	Kraiko et al.	41
2.3	Resultados experimentais	43
2.3.1	Eggers et al.	43
2.3.2	Perkins et al	44
2.4	Visão geral	44
3	ΜΈΤΟΟΟ DE ΟΤΙΜΙΖΑÇÃΟ	46
3.1	Método de Otimização de Forma	46
3.2	Algoritmo de Evolução Diferencial	47
3.3	Método das Superfícies de Resposta	48
3.4	Algoritmo de Evolução Diferencial Hibridizado	50
3.5	Aproximações para $g(x)$	50
4	MÉTODO DE SIMULAÇÃO DO ESCOAMENTO	55
4.1	Modelo físico	55
4.2	Modelo matemático	56
4.2.1	Equações de transporte em coordenadas cilíndricas	56

7	FORMAS OTIMIZADAS: MODELO 2C-S
6.5	Função objetivo
6.4	Formas otimizadas
6.3	Evolução das otimizações
6.2	Testes preliminares do simulador
6.1	Parâmetros de entrada e método de geração da malha $\ .\ .\ .\ .\ .\ .\ .$ 109
6	FORMAS OTIMIZADAS: MODELO 1C
5.3.4	Conclusão
5.3.3.2.2	Validação
5.3.3.2.1	Verificação
5.3.3.2	Modelo de Navier-Stokes
5.3.3.1	Modelo de Euler
5.3.3	Kesultados e Discussao 99
5.3.2.3	Validação
5.3.2.2	verincação 96 Val: da aza 96
5.3.2.1	Simulação do escoamento
5.3.2	Metodologia
5.3.1	Descrição dos testes
0.3 F 0 1	1estes com o simulador 94
5.2.3 5.2	Conclusao
5.2.2	Kesultados
5.2.1 5.2.2	Descrição dos testes
5.2	Testes com o otimizador 89
0.1 5-0	Testes com a atimizador
D	VERIFICAÇUES E VALIDAÇUES
E	
4.3.7	Algoritmo
4.3.6	Aproximações para as grandezas de interesse
4.3.5	Resolução dos sistemas lineares
4.3.4	Aproximações para as condições de contorno
4.3.3	Equação para a correção da pressão
4.3.2	Integração das equações de transporte
4.3.1	Geração e indexação da malha
4.3	Modelo numérico
4.2.6	Equações de transporte em coordenadas curvilíneas
4.2.5	Coeficiente de arrasto frontal
4.2.4	Análise dimensional
4.2.3	Condições de contorno
4.2.2	Propriedades termofísicas

7.1	Parâmetros de entrada, método de geração da malha e tempo de proces-
	samento
7.2	Formas otimizadas
7.3	Função objetivo
8	FORMAS OTIMIZADAS: MODELO 2C-NS
8.1	Parâmetros de entrada, método de geração da malha e tempo de proces-
	samento
8.2	Formas otimizadas
8.3	Função objetivo
9	COEFICIENTE DE ARRASTO DAS FORMAS OTIMIZADAS 174
9 9.1	COEFICIENTE DE ARRASTO DAS FORMAS OTIMIZADAS 174 Introdução
9 9.1 9.2	COEFICIENTE DE ARRASTO DAS FORMAS OTIMIZADAS174Introdução174Coeficiente de arrasto175
9 9.1 9.2 9.3	COEFICIENTE DE ARRASTO DAS FORMAS OTIMIZADAS174Introdução174Coeficiente de arrasto175Comparações180
 9 9.1 9.2 9.3 10 	COEFICIENTE DE ARRASTO DAS FORMAS OTIMIZADASIntroduçãoCoeficiente de arrastoComparações180CONSIDERAÇÕES FINAIS
 9 9.1 9.2 9.3 10 10.1 	COEFICIENTE DE ARRASTO DAS FORMAS OTIMIZADASIntroduçãoCoeficiente de arrastoComparações180CONSIDERAÇÕES FINAISConclusão
 9 9.1 9.2 9.3 10 10.1 10.2 	COEFICIENTE DE ARRASTO DAS FORMAS OTIMIZADAS174Introdução174Coeficiente de arrasto175Comparações180CONSIDERAÇÕES FINAISConclusão186Contribuições deste trabalho188

Referências	r																•		19	90)

	Apêndices 195
	APÊNDICE A – Modelagem numérica: informações complementa-
	res
A.1	Aproximações para as variáveis geométricas
A.2	Coeficientes e termo fonte das equações de transporte discretizadas 199
A.3	Coeficientes e termo fonte da equação da correção da pressão $\ .\ .\ .\ .\ 202$
	APÊNDICE B – Parâmetros numéricos e resultados parciais do co-
	eficiente de arrasto sobre alguns perfis otimizados 204
B.1	Parâmetros de entrada
B.2	Resultados numéricos
	APÊNDICE C – Campos de pressão e do número de Mach para os
	perfis otimizados do Modelo 2C-NS 219
C.1	Campos de pressão
C.2	Campos do número de Mach

1 INTRODUÇÃO

1.1 UM BREVE HISTÓRICO

O problema de otimização a ser abordado neste trabalho é tão antigo quanto a formulação matemática da Mecânica, chamou a atenção de um ilustre cientista e esteve relacionado com a formulação de uma poderosa ferramenta de otimização, o Cálculo Variacional. De modo mais preciso, em 1687, Isaac Newton publicou em sua famosa obra "Princípios Matemáticos da Filosofia Natural"¹, o perfil geométrico g(x) (Fig. 1.1) de um corpo de simetria axial, com comprimento l_r e diâmetro $2r_b$ prescritos, que teoricamente teria a menor resistência ao se mover com velocidade constante em um fluido ao longo de seu eixo axial. Este problema mais tarde ficou conhecido como "problema de Newton"².

Figura 1.1 – Ilustração do problema de Newton.

A resistência sofrida pelo corpo refere-se à força de arrasto aplicada pelo fluido sobre a sua superfície frontal. De acordo com a Mecânica dos Fluidos³, esta resistência decorre da pressão e das tensões viscosas que o fluido exerce sobre a superfície do corpo. Ocorre que na época de Newton, a Mecânica dos Fluidos, como é hoje conhecida, nem sequer havia nascido. Newton, engenhosamente, propôs uma fórmula para a distribuição de pressão sobre a superfície do corpo, atualmente chamada de fórmula de pressão de Newton^{4,5}, aplicou o Cálculo Variacional e determinou que a forma otimizada deveria ter uma face plana seguida por arco suave (Fig. 1.2). Os resultados de Newton, contudo, ficaram adormecidos até meados do século XX.

Passados dois séculos e meio da publicação do *Principia*, mais precisamente em 1935, von Kármán⁶ apud Miele⁷ aplicou a teoria do escoamento supersônico linearizado em conjunção com o Cálculo Variacional e obteve, para corpos delgados, a ogiva de von Kármán, um corpo que teoricamente sofreria o menor arrasto causado pela pressão sobre a superfície frontal. Embora baseada em uma teoria aproximada, esta foi a primeira contribuição para o problema de otimização de Newton baseada nos princípios da Mecânica dos Fluidos.

Figura 1.2 – Ilustração da forma otimizada de Newton.

A partir do trabalho de von Kármán, muitos outros trabalhos foram realizados. Outros vínculos (além do vínculo sobre o comprimento e o diâmetro, característico do problema de Newton) foram considerados, tipicamente envolvendo combinações de dois dos seguintes parâmetros geométricos: comprimento, diâmetro da base, área da superfície frontal e volume. O ápice da otimização aerodinâmica ocorreu nas décadas de 1950 e 1960. Além da teoria do escoamento supersônico linearizado⁴, principal teoria factível ao tratamento analítico disponível à época, os aerodinamicistas reconheceram que a simples fórmula de pressão de Newton, não acurada para escoamentos subsônicos, poderia ser empregada a escoamentos hipersônicos sob condições especiais. De fato, em um compêndio⁷ sobre formas aerodinâmicas otimizadas, editado em 1965 por Angelo Miele, observa-se que os trabalhos de otimização, até então, estavam divididos em dois grupos: um baseado na teoria para escoamentos supersônicos linearizados e o outro baseado na fórmula de pressão de Newton, e suas variações, para escoamentos hipersônicos. Dentre as principais contribuições para o problema de Newton, Parker^{7,8} estendeu os resultados de von Kármán, eliminando a restrição de corpos delgados, e mostrou que a geometria da forma otimizada deveria variar com o número de Mach. Eggers *et al.*^{7,9} aplicaram a fórmula de pressão de Newton, obtiveram resultados equivalentes aos de Newton e conjecturaram que a forma otimizada deveria se aproximar de uma lei de potência (x^n) com expoente 3/4 à medida que se aumentasse a razão entre o comprimento e o diâmetro do corpo (ou simplesmente razão de aspecto f_r). Esta conjectura foi provada por Miele⁷ anos mais tarde. Chernyi e Gonor^{7,10} e, independentemente, Hayes e Probstein^{7,11}, determinaram as formas otimizadas com base na fórmula de Newton com a correção de Busemann. Bryson Jr.⁷, baseado na fórmula de pressão de Newton e supondo que o coeficiente de fricção ao longo da superfície do corpo fosse uma constante, investigou a influência dos efeitos viscosos sobre a geometria das formas otimizadas. De acordo com este autor, as formas sofrem grandes mudanças qualitativas com o aumento do coeficiente de fricção.

Perkins *et al.*¹², bem como Eggers *et al.*⁹, realizaram experimentos com diversas formas geométricas e mostraram que na maior parte do número de Mach M_{∞} testado (1,24 a 6,28) (nos experimentos, o número de Reynolds, baseado no comprimento do corpo, foi mantido próximo de 10⁶), a forma tipo lei de potência com expoente 3/4 apresentava o menor valor para o coeficiente de arrasto frontal, inclusive menor que o da ogiva de von Kármán. A única exceção ocorria nas proximidades de $M_{\infty} = 1$, situação em que a lei de potência com expoente 1/2 apresentou o menor coeficiente de arrasto. O resultado insatisfatório da ogiva de von Kármán foi atribuído à violação, no experimento, da hipótese de corpo delgado assumida na teoria.

Ainda na década de 1960, Zandbergen¹³, Powers¹⁴ e Fink¹⁵ aplicaram métodos numéricos a fim de determinar os perfis geométricos que minimizavam o coeficiente de arrasto de pressão frontal. Zandbergen¹³ conjugou o Método das Características ao Cálculo Variacional e, devido às limitações da metodologia para resolver o escoamento, assumiu que o corpo deveria ter uma ponta cônica (cerca de 15% da sua extensão). Powers¹⁴ aplicou o Método das Características a uma geometria base, formada por uma ponta hemisférica acoplada suavemente a uma curva do tipo lei de potência com expoente 3/4, e a várias outras geometrias que representavam perturbações da geometria base. Uma função multidimensional foi empregada para ajustar o arrasto produzido por cada perfil. A partir desta função o mínimo foi determinado. Fink¹⁵ discretizou a forma geométrica em 25 pontos e determinou as ordenadas do perfil otimizado modelando o escoamento através da aproximação de pequenas perturbações ao método do choque-expansão para o regime hipersônico. Nenhum desses autores tabulou o perfil das geometrias otimizadas. A Figura 1.3, devido a Fink¹⁵, ajuda a contextualizar melhor estes resultados. Nesta figura, $C_{\rm Df}^p$ representa o coeficiente de arrasto de pressão frontal, isto é, a componente do arrasto devido à pressão do fluido sobre a superfície, e H o parâmetro de similaridade supersônico-hipersônico, introduzido por van Dyke¹⁶. Embora a Fig. 1.3 ajude o leitor a se situar melhor, ela não pode ser rigorosamente utilizada para qualificar as formas otimizadas, uma vez que os coeficientes de arrasto foram obtidos com base em teorias diferentes.

Na Fig. 1.3 também são mostrados os resultados mais recentes (1994) de Manson e Lee¹⁷. Estes autores consideraram que o perfil geométrico otimizado deveria ser do tipo lei de potência e determinaram numericamente, com base nas equações de Euler, que o expoente de menor arrasto de pressão frontal, para um corpo com razão de aspecto $f_r = 3$, deveria ser 0,69.

Em 2002, Horstmann *et al.*¹⁸ investigaram o efeito da fricção sobre as formas otimizadas com base na fórmula de pressão de Newton, em uma expressão *ad hoc* para as tensões viscosas e no Cálculo Variacional. A formulação empregada é idêntica à de Bryson Jr.⁷, exceto pela expressão para as tensões viscosas. Tanto no trabalho de Bryson Jr.⁷, como no de Horstmann *et al.*¹⁸, as formas otimizadas mudam significativamente com a presença dos efeitos viscosos. Entretanto, os perfis otimizados destes trabalhos são qualitativamente diferentes. De acordo com Bryson Jr.⁷, as formas tendem a se tornar mais pontiagudas com o aumento da fricção, ao passo que para Horstmann *et al.*¹⁸ elas

tendem a se tornar mais rombudas.

Figura 1.3 – Comparação de $C^p_{\rm Df}$ obtido por diversos autores para corpos delgados otimizados.

Por fim, a contribuição mais significativa para o problema de Newton foi dada pelos russos Kraiko *et al.*² em 2003. Estes autores resolveram o problema de Newton utilizando o Método das Características e o Cálculo Variacional (com algumas aproximações, dependendo de f_r). Os resultados foram obtidos em um amplo intervalo do número de Mach $(1,5 \le M_{\infty} \le 10)$ e da razão de aspecto $(0,125 \le f_r \le 10)$. As formas otimizadas de Kraiko *et al.*² são semelhantes às de Newton, isto é, são formadas por uma face plana seguida por um arco suave. Infelizmente estes autores tabularam apenas algumas características geométricas das formas otimizadas.

Como se pode perceber, mesmo passados três séculos da formulação do problema da otimização aerodinâmica de Newton, a pesquisa na área continua ativa. A redução do arrasto é um assunto de interesse constante, principalmente nos campos da Aeronáutica e da Astronáutica, o que é evidenciado com a grande quantidade de publicações sobre o tema nos séculos XX e XXI. De fato, segundo Mahapatra *et al.*¹⁹, a redução de 1% do arrasto leva, aproximadamente, a um aumento de 10% na capacidade de carga ou na distância percorrida por uma aeronave. A despeito de suas aplicações tecnológicas, a otimização aerodinâmica de Newton, constitui-se, por si só, em um problema de interesse acadêmico.

1.2 DEFINIÇÃO DO PROBLEMA

O objetivo central deste trabalho é resolver o problema da otimização aerodinâmica de Newton com base nas equações de Navier-Stokes³ com a finalidade de avaliar a influência dos efeitos viscosos sobre as formas otimizadas, uma vez que, segundo Bryson Jr.⁷ e

Horstmann *et al.*¹⁸, as tensões viscosas podem alterar significativamente a geometria das formas otimizadas. Comparado aos modelos já empregados na resolução do problema de Newton, -a teoria do escoamento supersônico linearizado, a fórmula de pressão de Newton e suas variações, a teoria do choque-expansão e as equações de Euler-, as equações de Navier-Stokes representam um avanço na qualidade da descrição física do escoamento.

A descrição mais realista do escoamento leva a um aumento na complexidade das equações governantes do escoamento, cuja resolução requer a aplicação de métodos numéricos. Neste caso, o tratamento clássico da otimização com o Cálculo Variacional deixa de ser válido, de modo que outras abordagens devem ser utilizadas. Dois métodos de otimização são tipicamente utilizados nestas situações^{20,21}: o método da modelagem inversa ("inverse design") e o método da otimização de forma ("shape optimization"). O primeiro método depende do conhecimento (experiência) do usuário para prescrever um campo de pressão, ou outro, desejável e a partir daí determinar a forma geométrica que produza o campo prescrito. O segundo método, expressa o perfil geométrico através de uma combinação de funções de base e coeficientes ajustáveis. Este método formalmente conduz aos mesmos resultados que o Cálculo Variacional quando as funções de base formam um conjunto completo²². Normalmente o conjunto completo de funções contém infinitas funções e para proceder com o cálculo numérico, apenas um número finito é utilizado, causando erros de truncamento. Esses erros, contudo, podem ser feitos tão pequenos quanto se queira, tomando-se mais funções de base na combinação que gera o perfil. Em contrapartida, o aumento do número de funções de base aumenta o esforço computacional para resolver o problema. Devido à subjetividade do método de modelagem inversa, o segundo método é empregado neste trabalho.

Há diversas metodologias $^{23-31}$ que podem ser empregadas para se obter os coeficientes do método de otimização de forma. Dentre as metodologias já empregadas em otimização aerodinâmica estão: (i) a programação quadrática sequencial³², (ii) o método do gradiente reduzido²⁰, (iii) o método da superfície de resposta³³ e (iv) os algoritmos evolutivos³⁴. Os dois primeiros métodos são uma generalização do método de Newton unidimensional para tratar problemas de otimização com restrições. Em geral estes métodos (iterativos) tem uma convergência rápida quando a estimativa inicial estiver próxima da solução. Entretanto, têm o inconveniente de exigir derivadas da função objetivo, *i.e.*, a função a ser minimizada. Ainda que seja possível calcular numericamente as derivadas, estes métodos podem se tornar inviáveis caso a função objetivo seja onerosa, de baixa precisão, ou descontínua. O método da superfície de resposta³⁵ consiste em aproximar a função objetivo por uma função conhecida cujo mínimo possa ser facilmente determinado. A aproximação é feita utilizando o método dos mínimos quadrados. Lee *et al.*³³ relatam que este método reduz significativamente o número de determinações da função objetivo, o que é muito favorável na otimização aerodinâmica. Por fim, os algoritmos evolutivos, dentre os quais estão os algoritmos genéticos 30 , pertencem à classe dos métodos heurísticos. Este tipo de método é baseado nas ideias da seleção natural de Darwin e é reconhecido por sua robustez, uma vez que a função objetivo não precisa ser suave, os vínculos podem ser implementados de maneira mais fácil e é menos provável que o método fique retido em um mínimo local. No trabalho de Cai *et al.*³⁶, relativo à otimização de motores-foguete, por exemplo, o algoritmo genético produziu melhores resultados que o método da programação quadrática sequencial.

Neste trabalho, as equações de Navier-Stokes são resolvidas numericamente através do Método dos Volumes Finitos^{37–39} e a otimização é feita com base no método de otimização de forma. O perfil geométrico é aproximado por três modelos que utilizam um ou dois coeficientes ajustáveis. Os coeficientes são determinados através de um algoritmo híbrido que combina as vantagens dos Algoritmos Evolutivos, mais precisamente do Algoritmo de Evolução Diferencial^{26,27}, com as vantagens do Método da Superfície de Resposta.^{31,40}

Para avaliar a influência dos efeitos viscosos sobre as formas otimizadas, as otimizações são realizadas para seis valores do número de Reynolds ou, equivalentemente, de Reynolds inverso $\operatorname{Re}_{\infty}^{-1}$:

$$\operatorname{Re}_{\infty}^{-1} \in \{0; 10^{-7}; 10^{-6}; 10^{-5}; 10^{-4}; 10^{-3}\}.$$

O número de Reynolds $\operatorname{Re}_{\infty}$ representa a razão entre as forças inerciais e as forças viscosas. Se $\operatorname{Re}_{\infty}^{-1} = 0$, então os efeitos viscosos são nulos e as equações de Navier-Stokes se reduzem às equações de Euler. À medida que $\operatorname{Re}_{\infty}^{-1}$ aumenta, os efeitos viscosos tornam-se mais importantes.

Os valores de Reynolds foram escolhidos de modo a garantir a validade da hipótese do contínuo. Além disso, estes valores são observáveis em escoamentos na atmosfera terrestre. A Fig. 1.4, por exemplo, ilustra o gráfico de uma estimativa do número de Reynolds Re_{∞} por comprimento característico L_c como função da altitude z para a trajetória ascendente do veículo espacial Ariane 4. A estimativa foi feita a partir da relação velocidade vs. altitude⁴¹ do referido veículo e da Atmosfera Padrão dos Estados Unidos de 1976⁴².

Além do número de Reynolds, são considerados dois valores da razão de aspecto f_r (comprimento/diâmetro da base)

$$f_r \in \{2; 4\}$$

e três valores do número de Mach M_∞ da corrente livre

$$M_{\infty} \in \{1,5; 3; 6\}.$$

Desta forma é possível investigar a influência dos efeitos viscosos sobre corpos mais curtos $(f_r = 2)$ e mais longos $(f_r = 4)$ em três regimes de escoamento: alto transônico $(M_{\infty} = 1,5)$,

supersônico $(M_{\infty} = 3)$ e limiar do hipersônico $(M_{\infty} = 6)$. A combinação dos parâmetros Re_{∞}, f_r e M_{∞} resulta em 36 otimizações para cada modelo geométrico testado.

Figura 1.4 – Estimativa de Re_{∞}/L_c como função da altitude z para o veículo espacial Ariane 4.

1.3 ORGANIZAÇÃO DO TEXTO

A estrutura da tese é ilustrada no diagrama da Fig. 1.5. No Cap. 2 a revisão bibliográfica é apresentada em detalhes. A metodologia é apresentada nos Caps. 3 e 4. O Cap. 3 trata especificamente da metodologia de otimização e o Cap. 4 da metodologia de simulação do escoamento. Os resultados são apresentados nos Caps. 5-9. O Cap. 5 apresenta algumas verificações e validações realizadas com os programas desenvolvidos, enquanto os Caps. 6-8 apresentam as formas geométricas otimizadas dos modelos estudados. Os coeficientes de arrasto das formas otimizadas neste trabalho e de outros trabalhos são comparados no Cap. 9. Por fim, o Cap. 10 apresenta as conclusões deste trabalho e as perspectivas para trabalhos futuros.

Figura 1.5 – Estrutura da tese.

2 REVISÃO BIBLIOGRÁFICA

Esta revisão apresenta os principais resultados acerca da otimização aerodinâmica de corpos de simetria axial com comprimento l_r e raio de base r_b prescritos. Por conveniência, os trabalhos foram separados de acordo com o tipo de resultado apresentado: analítico, numérico ou experimental.

2.1 RESULTADOS ANALÍTICOS

2.1.1 Escoamento supersônico linearizado

2.1.1.1 Von Kármán

Considerando um corpo de simetria axial, com comprimento l_r e raio de base r_b prescritos, em um escoamento invíscido, von Kármán⁶ apud Miele⁷ utilizou a teoria do escoamento supersônico linearizado em conjunção com a aproximação de corpo delgado

$$\frac{2r_b}{l_r}\sqrt{M_{\infty}^2 - 1} \ll 1$$
 (2.1)

para determinar o perfil g(x), onde x representa a coordenada axial e g a coordenada radial do perfil geométrico que minimiza o coeficiente de arrasto de pressão frontal C_{Df}^p , isto é, o coeficiente de arrasto devido à pressão sobre a superfície frontal (a definição de C_{Df}^p é dada na Seç. 4.2.5). O termo no lado esquerdo da relação (2.1) é chamado de parâmetro de similaridade supersônico-hipersônico e denotado por

$$H = \frac{1}{f_r} \sqrt{M_{\infty}^2 - 1},$$
 (2.2)

onde

$$f_r = \frac{l_r}{2r_b} \tag{2.3}$$

é a razão de aspecto. O parâmetro H é importante, pois, para corpos delgados, a seguinte regra de similaridade

$$C_{\rm Df}^p f_r^2 = C_{\rm Df}^p f_r^2(H)$$

pode ser deduzida⁴³ a partir das equações de Euler.

A forma otimizada obtida por von Kármán
7 (Fig. 2.1), ou ogiva de von Kármán, é dada por

$$\left(\frac{g}{2r_b}\right)^2 = \frac{1}{2\pi} \left[\arcsin\left(\sqrt{\frac{x}{l_r}}\right) - \left(1 - 2\frac{x}{l_r}\right)\sqrt{\frac{x}{l_r}\left(1 - \frac{x}{l_r}\right)} \right], \quad 0 \le x \le l_r.$$
(2.4)

O coeficiente de arrasto de pressão frontal $C_{\rm Df}^p$ para esta forma, baseado na área da base, na pressão dinâmica da corrente-livre e obtido através da mesma teoria utilizada para obter a forma otimizada, é dado por

$$C_{\rm Df}^p = \frac{1}{f_r^{\ 2}}.$$
 (2.5)

De acordo com von Kármán⁷, o perfil g(x) e o coeficiente de arrasto C_{Df}^p independem do número de Mach M_{∞} da corrente livre.

2.1.1.2 Parker

Fazendo as mesmas considerações que von Kármán⁷, exceto pela aproximação de corpo delgado Eq. (2.1), Parker⁸ determinou que o perfil de menor coeficiente de arrasto de pressão frontal C_{Df}^p deveria obedecer à seguinte relação

$$g(x) = r_b \ \nu(\varrho), \qquad \varrho = \frac{x}{l_r},$$
(2.6)

onde

$$\nu^{2} = \frac{8}{\pi \left(1 - \frac{1}{2}H\right) \left(1 + \frac{3}{2}H\right)} \int_{0}^{\varrho - H\nu} \left(\varrho - \varrho'\right) \sqrt{\frac{\varrho' \left(1 + \frac{1}{2}H - \varrho'\right)}{\left(\varrho - \varrho'\right)^{2} - \left(H\nu\right)^{2}}} \mathrm{d}\varrho'.$$
 (2.7)

O coeficiente de arrasto de pressão frontal para a forma otimizada (2.6), calculado com base na mesma teoria utilizada para obtê-la, é dado por

$$C_{\rm Df}^{p} = \frac{1}{f_r^2 \left(1 - \frac{1}{2}H\right) \left(1 + \frac{3}{2}H\right)}.$$
(2.8)

Como a aproximação de Parker⁸ é mais geral que a de von Kármán⁷, a forma deste e o correspondente coeficiente C_{Df}^p são obtidos das Eqs. (2.6) e (2.8), respectivamente, no limite de $H \to 0$. A Fig. 2.1 ilustra as formas otimizadas de Parker⁸ para alguns valores de H. O caso H = 0 corresponde à forma de von Kármán⁷.

Figura 2.1 – Perfis das formas otimizadas de Parker⁸ e von Kármán⁷.

2.1.2 Escoamento hipersônico

2.1.2.1 Newton, Eggers et al., Miele

Eggers *et al.*⁹ aplicaram a lei de pressão de Newton⁴³

$$p = p_{\infty} + 2q_{\infty}\sin^2\theta, \tag{2.9}$$

a fim de determinar o perfil g(x) com o menor coeficiente de arrasto de pressão frontal C_{Df}^p para um corpo axissimétrico de comprimento l_r e raio de base r_b . Na Eq. (2.9), $p_{\infty} \in q_{\infty}$ são, respectivamente, a pressão estática e dinâmica da corrente livre, p é a pressão e θ é a inclinação local de g(x) relativamente à direção da corrente livre. Os autores mostraram que não é possível encontrar uma curva g(x) que passe simultaneamente pelos pontos $g(0) = 0 \in g(l_r) = r_b$ para qualquer razão de aspecto f_r . Deste modo, a forma otimizada deveria obedecer às condições de contorno

$$g(0) = r_f, \qquad g(l_r) = r_b,$$
 (2.10)

onde r_f deveria ser determinado pelo método variacional. Isto significa que, de modo geral, o perfil otimizado deveria ter uma face frontal plana (Fig. 2.2).

Figura 2.2 – Ilustração do perfil de Newton.

As coordenadas $x \in g$ da forma otimizada, também chamada de perfil de Newton, são dadas parametricamente pelas equações

$$\frac{g}{2r_b} = \frac{h_N}{8} \frac{(1+\zeta^2)^2}{\zeta^3}, \qquad \zeta_b \le \zeta \le 1,$$
(2.11)

$$\frac{x}{l_r} = \frac{h_N}{8f_r} \left(\frac{3}{4\zeta^4} + \frac{1}{\zeta^2} - \frac{7}{4} + \ln \zeta \right), \qquad \zeta_b \le \zeta \le 1,$$
(2.12)

onde ζ_b , que representa a tangente da inclinação de g(x) na base do corpo, é a raiz da seguinte equação transcendental

$$\frac{3}{4} + \zeta_b^2 + \zeta_b^4 \left(\ln \zeta_b - \frac{7}{4} \right) - 2f_r \zeta_b \left(1 + \zeta_b^2 \right)^2 = 0$$
(2.13)

e $h_{\rm N}$, que representa a razão entre o raio frontal r_f e o raio de base r_b , é dada por

$$h_{\rm N} = \frac{r_f}{r_b} = \frac{4\zeta_b^3}{\left(1 + \zeta_b^2\right)^2}.$$
(2.14)

Conforme apontado por Eggers *et al.*⁹, as relações (2.11) e (2.12) são equivalentes às obtidas por Newton¹.

O coeficiente C_{Df}^p associado ao perfil de Newton é dado por

$$C_{\rm Df}^{p} = \frac{h_{\rm N}^{2}}{16} \left(-4\ln\zeta_{b} + 2\zeta_{b}^{2} + \frac{10}{\zeta_{b}^{2}} + \frac{3}{\zeta_{b}^{4}} - 15 \right).$$
(2.15)

Eggers *et al.*⁹, entretanto, observaram que se $f_r \to \infty$, então $r_f \to 0$ e a forma otimizada se aproximaria da lei de potência

$$\frac{g}{r_b} = \left(\frac{x}{l_r}\right)^{3/4}.$$
(2.16)

Mais tarde, Miele⁷ mostrou que, se a aproximação de corpo delgado fosse utilizada, isto é,

$$\left(\frac{\mathrm{d}g}{\mathrm{d}x}\right)^2 \ll 1,\tag{2.17}$$

então a Eq. (2.16) seria obtida exatamente. A Fig. 2.3 ilustra as formas otimizadas de Newton, obtidas para $f_r = 1$ e $f_r = 2$, bem como o perfil do corpo tipo lei de potência com expoente 3/4. É possível observar que, mesmo para uma razão de aspecto pequena, como $f_r = 2$, a forma otimizada de Newton é muito semelhante à lei de potência.

Figura 2.3 – Perfis das formas otimizadas de Newton e da lei de potência (3/4).

O coeficiente C_{Df}^p , associado à forma definida na Eq. (2.16), de acordo com a lei de pressão de Newton, é dado por

$$C_{\rm Df}^p = \frac{27}{64} \frac{1}{f_r^2}.$$
 (2.18)

Observe que tanto o perfil g(x) quanto o coeficiente C_{Df}^p independem do número de Mach M_{∞} . Este é um comportamento característico de escoamentos com $M_{\infty} \to \infty$, conhecido como princípio da independência do número de Mach⁴³.

2.1.2.2 Bryson Jr., Miele e Hull

Bryson Jr.⁷ determinou a forma geométrica g(x) de um corpo de simetria axial, com f_r prescrito, que minimiza o coeficiente de arrasto frontal C_{Df} com base na fórmula de Newton para a distribuição de pressão e supondo um coeficiente de fricção C_f constante para modelar o arrasto viscoso.

De acordo com Bryson Jr.⁷, a forma otimizada muda qualitativamente dependendo de um valor crítico para o coeficiente de fricção, definido por

$$C_{f_*} = \frac{8f_r^{-3}}{\left(4 + f_r^{-2}\right)^2}.$$
(2.19)

1. Se $0 \leq C_f < C_{f_*},$ então as coordenadas da forma otimizada são dadas parametricamente por

$$x = r_f \mathscr{A}(\zeta, C_f), \qquad \zeta_b \le \zeta \le 1, \tag{2.20}$$

$$g = r_f \mathscr{B}(\zeta, C_f), \qquad \zeta_b \le \zeta \le 1,$$
 (2.21)

onde

$$\mathscr{A}(\zeta, C_f) = 4(1 - C_f) \int_{\zeta}^{1} \frac{\zeta' \left(1 + \zeta'^2\right) \left(3 - \zeta'^2\right)}{\left[4\zeta'^3 - C_f \left(1 + \zeta'^2\right)^2\right]^2} \mathrm{d}\zeta'$$
(2.22)

е

$$\mathscr{B}(\zeta, C_f) = \frac{(1 - C_f) \left(1 + \zeta^2\right)^2}{4\zeta^3 - C_f \left(1 + \zeta^2\right)^2}.$$
(2.23)

O raio da face frontal r_f , presente na Eq. (2.20), é obtido através da solução das seguintes equações

$$\frac{1}{2f_r} = \frac{\mathscr{B}(\zeta_b, C_f)}{\mathscr{A}(\zeta_b, C_f)}, \qquad \frac{r_f}{r_b} = \frac{1}{\mathscr{B}(\zeta_b, C_f)}.$$
(2.24)

O coeficiente de arrasto frontal C_{Df} , que inclui o arrasto de pressão e o arrasto viscoso, associado à forma otimizada (2.20)-(2.21), é dado por

$$C_{\rm Df} = \frac{\mathscr{E}(\zeta_b, C_f)}{\mathscr{B}^2(\zeta_b, C_f)},\tag{2.25}$$

onde

$$\mathscr{E}(\zeta, C_f) = 2 + 8 \left(1 - C_f\right)^2 \int_{\zeta}^{1} \frac{\zeta' \left(3 - \zeta'^2\right) \left(1 + \zeta'^2\right)^2 \left[2\zeta'^3 + C_f \left(1 + \zeta'^2\right)\right]}{\left[4\zeta'^3 - C_f \left(1 + \zeta'^2\right)^2\right]^3} d\zeta'.$$
(2.26)

2. Se $C_{f_*} < C_f < 1$, então a forma otimizada é formada por uma ponta tipo agulha (spike) seguida por um cone:

$$\frac{g}{2r_b} = \begin{cases} 0, & \text{se} \quad 0 \le x \le l_r - l_r^{*}, \\ \frac{1}{2} + \frac{x - l_r}{2l_r^{*}}, & \text{se} \quad l_r - l_r^{*} < x \le l_r, \end{cases}$$
(2.27)

onde

$$l_r^{\ *} = \frac{r_b}{\zeta^*} \tag{2.28}$$

e ζ^* é a raiz de

$$\frac{4\zeta^{*3}}{(1+\zeta^{*2})^2} = C_f.$$
 (2.29)

O coeficiente de arrasto frontal $C_{\rm Df}$ associado à forma otimizada (2.27) é dado por

$$C_{\rm Df} = \frac{2\zeta^{*2} \left(3 + \zeta^{*2}\right)}{\left(1 + \zeta^{*2}\right)^2}.$$
(2.30)

3. Por fim, se $1 < C_f$, então a forma otimizada é um disco circular.

Miele e Hull⁷ fizeram as mesmas aproximações de Bryson Jr.⁷ em conjunção com a hipótese de corpo delgado Eq. (2.17). Justificaram a necessidade de se levar em conta os efeitos viscosos na otimização devido ao fato de existirem casos práticos em que o efeito viscoso sobre arrasto tem a mesma ordem de magnitude que o arrasto causado pela pressão. Estes autores também concluíram que existe um valor crítico para o coeficiente de fricção que muda qualitativamente o perfil da forma otimizada. Parte dos resultados apresentados a seguir (caso (a)) foram obtidos originalmente por Kennet⁴⁴.

Introduzindo as variáveis paramétricas

$$\varrho = \frac{x}{l_r}, \qquad \nu = \frac{g}{r_b}, \qquad K_f = f_r \sqrt[3]{2C_f}, \qquad (2.31)$$

a solução é dada por:

1. Se $0 \leq K_f \leq 1$, então

$$\varrho = \frac{\mathscr{F}(\nu, K)}{\mathscr{F}(1, K)},\tag{2.32}$$

onde

$$\mathscr{F}(\nu,K) = \sqrt[3]{\nu (\nu + K)^2} + \frac{K}{2} \log\left(\frac{\sqrt[3]{\nu + K} - \sqrt[3]{\nu}}{\sqrt[3]{K}}\right) - \frac{K}{\sqrt{3}} \arctan\left(\frac{\sqrt{3}\sqrt[3]{\nu}}{\sqrt[3]{\nu + 2}\sqrt[3]{\nu + K}}\right)$$
(2.33)

e K é a raiz da seguinte equação

$$K_f = \mathscr{F}(1, K). \tag{2.34}$$

O coeficiente de arrasto frontal C_{Df} para a forma otimizada (2.32) é dado por

$$C_{\rm Df} f_r^{\ 2} = \left[\frac{3}{2} \left(1+K\right)^{2/3} - KK_f\right] K_f^2.$$
 (2.35)

2. Se $1 < K_f < \infty$, então a forma otimizada é formada por uma ponta tipo agulha seguida por um cone:

$$\nu = \begin{cases} 0, & \text{se} \quad 0 \le \varrho \le \varrho_b, \\ \frac{\varrho - \varrho_b}{1 - \varrho_b}, & \text{se} \quad \varrho_b < \varrho \le 1, \end{cases}$$
(2.36)

onde ϱ_b é dado por

$$K_f = \frac{1}{1 - \varrho_b}.$$
 (2.37)

O coeficiente C_{Df} para a forma otimizada (2.36) é dado por

$$C_{\rm Df} f_r^{\ 2} = \frac{3}{2} \left(1 - \varrho_b\right)^2.$$
 (2.38)

2.1.2.3 Horstman et al.

Para levar em conta os efeitos viscosos nas otimizações, Horstmann *et al.*¹⁸ utilizaram a seguinte fórmula *ad hoc* para calcular a força de arrasto F_x sobre o corpo

$$F_x = \int_S p \sin \theta \, \mathrm{d}A + \mu_0 \int_S p \cos \theta \, \mathrm{d}A, \qquad (2.39)$$

onde p é a pressão calculada a partir da lei de pressão de Newton (Eq. (2.9)), θ é a inclinação local do perfil relativamente à direção do escoamento livre (Fig. 2.2), dA é um elemento diferencial de área da superfície, S é a superfície frontal e μ_0 é um parâmetro livre entre zero e um que representa a intensidade dos efeitos viscosos. A primeira integral na Eq. (2.39) representa a componente axial da força sobre a superfície causada pela pressão, enquanto a segunda representa a componente axial da força devido às tensões viscosas. Deste modo, a forma otimizada de Horstmann *et al.*¹⁸ inclui a forma de Newton como um caso particular para $\mu_0 = 0$.

A partir da análise do funcional a ser minimizado, Horstmann *et al.*¹⁸ afirmam que a forma otimizada deve possuir uma face frontal plana de raio r_f , seguida por um arco suave, assim como no caso da forma de Newton. As coordenadas $x \in g(x)$ da forma otimizada são escritas em termos da variável paramétrica ς como

$$\frac{g(\varsigma)}{r_b} = \frac{C(1+\varsigma^2)^2}{\mu_0\varsigma^2 + 2\varsigma - \mu_0}, \qquad \varsigma_f \le \varsigma \le \varsigma_b$$
(2.40)

е

$$\frac{x(\varsigma)}{l_r} = 1 - \frac{CQ(\varsigma) + \tilde{K}}{2f_r}, \qquad \varsigma_f \le \varsigma \le \varsigma_b.$$
(2.41)

Nas Eqs. (2.40) e (2.41), C, \hat{K}, ς_f e ς_b são constantes e a função $Q(\varsigma)$ é dada por

$$Q(\varsigma) = -\varsigma \frac{(1+\varsigma^2)^2}{(\varsigma^2-1)\mu_0 + 2\varsigma} + \frac{\varsigma^3}{3\mu_0} - \frac{\varsigma^2}{\mu_0^2} + \frac{\varsigma}{\mu_0} \left[\left(\frac{1+\sqrt{1+\mu_0^2}}{\mu_0} \right)^2 + \left(\frac{1-\sqrt{1+\mu_0^2}}{\mu_0} \right)^2 + 1 \right] + \frac{1}{\mu_0} \left[\frac{\sqrt{1+\mu_0^2}-1}{\mu_0} - \left(\frac{1-\sqrt{1+\mu_0^2}}{\mu_0} \right)^3 \right] \ln \left(\varsigma + \frac{1-\sqrt{1+\mu_0^2}}{\mu_0} \right) - \frac{1}{\mu_0} \left[\frac{\sqrt{1+\mu_0^2}+1}{\mu_0} + \left(\frac{1+\sqrt{1+\mu_0^2}}{\mu_0} \right)^3 \right] \ln \left(\varsigma + \frac{1+\sqrt{1+\mu_0^2}}{\mu_0} \right).$$
(2.42)

As constantes ς_f , ς_b , $C \in \hat{K}$ dependem de $\mu_0 \in f_r$ e são calculadas na seguinte sequência. Primeiramente, ς_f é dado por

$$\varsigma_f = \mu_0 + \sqrt{1 + \mu_0^2}.$$
 (2.43)

Conhecendo-se $\varsigma_f,\,\varsigma_b$ é a solução da equação transcendental

$$1 = \frac{\mu_0 \varsigma_b^2 + 2\varsigma_b - \mu_0}{(1 + \varsigma_b^2)^2} \frac{Q(\varsigma_f) - Q(\varsigma_b)}{2f_r}.$$
(2.44)

Uma vez conhecido ς_b , C é obtido da seguinte equação

$$C = \frac{\mu_0 \varsigma_b^2 + 2\varsigma_b - \mu_0}{(1 + \varsigma_b^2)^2}.$$
(2.45)

Finalmente, \hat{K} é dado por

$$\hat{K} = 2f_r - CQ(\varsigma_f). \tag{2.46}$$

A razão h entre o raio frontal r_f e o raio da base r_b é dada por

$$h = \frac{C(1+\varsigma_f^2)^2}{\mu_0\varsigma_f^2 + 2\varsigma_f - \mu_0}.$$
(2.47)

Horstmann *et al.*¹⁸ calcularam os perfis geométricos e o coeficiente de arrasto frontal para $f_r = 0,5$ e dez valores de μ_0 entre zero e um. Estes autores mostraram que a forma otimizada tende a ficar mais rombuda, isto é, *h* aumenta, à medida que μ_0 é aumentado, o que contrasta com os resultados de Bryson Jr⁷. Além disso, mostraram que o coeficiente de arrasto aumenta significativamente com μ_0 .

2.1.2.4 Chernyi e Gonor, Hayes e Probstein, Miele

Chernyi e Gonor¹⁰, em 1957, e Hayes e Probstein¹¹, dois anos mais tarde, aplicaram a fórmula de Newton com correção de Busemann⁴³ para determinar o perfil g(x) que minimiza o arrasto de pressão frontal de um corpo de simetria axial com razão de aspecto prescrita. Para evitar uma inconsistência física no resultado (pressão negativa), os autores conjecturaram a existência de uma camada livre, isto é,

"... a Newtonian shock layer which has separated from the body that formed it and which is characterized by the condition that the pressure behind it is zero."⁷

Com esta hipótese, a forma otimizada Fig. 2.4 deveria ser formada por dois arcos: uma arco regular, sobre o qual a pressão do fluido seria positiva, e um arco ao longo da camada livre, ao longo do qual a pressão do fluido seria nula. Em termos das variáveis

$$\varrho = \frac{x}{l_r} \qquad \mathbf{e} \qquad \nu = \frac{g}{r_b},\tag{2.48}$$

as coordenadas do arco regular são dadas parametricamente através das seguintes fórmulas

$$\varrho(\varsigma) = \frac{\nu_i}{2f_r} \mathfrak{A}(\varsigma) \qquad \mathbf{e} \qquad \nu = \nu_i \mathfrak{B}(\varsigma), \qquad \varsigma_c \le \varsigma < \infty, \tag{2.49}$$

onde as funções $\mathfrak{A}(\varsigma) \in \mathfrak{B}(\varsigma)$ são

$$\mathfrak{A}(\varsigma) = \frac{3\sqrt{1+\varsigma^2}}{4\varsigma^4} + \frac{3\sqrt{1+\varsigma^2}}{8\varsigma^2} - \frac{3}{8}\log\left[\frac{1+\sqrt{1+\varsigma^2}}{\varsigma}\right]$$
(2.50)

е

$$\mathfrak{B}(\varsigma) = \frac{(1+\varsigma^2)^{3/2}}{\varsigma^3}.$$
(2.51)

As variáveis ν_i e ς_c que aparecem em (2.49) são incógnitas. O valor de ς_c é obtido resolvendo-se o seguinte sistema de equações, que também envolve a incógnita α_c ,

$$\left[\alpha^{3} + 3\alpha^{2} + 6\mathfrak{E}(\varsigma)\left(\frac{1}{\varsigma} - 2f_{r}\right)\alpha + 6\mathfrak{E}(\varsigma)\left(\frac{\mathfrak{A}(\varsigma)}{\mathfrak{B}(\varsigma)} - 2f_{r}\right)\right]_{c} = 0 \qquad (2.52)$$

е

$$\left[\alpha^3 + 3\alpha^2 + \Re(\varsigma)\alpha + \mathfrak{S}(\varsigma)\right]_c = 0.$$
(2.53)
A incógnita α_c está relacionada com a ordenada ν_c do ponto em que ocorre a transição da forma regular para a da camada livre:

$$\alpha_c = \frac{1}{\nu_c} - 1. \tag{2.54}$$

Figura 2.4 – Ilustração do perfil da forma otimizada de Chernyi e Gonor¹⁰ e Hayes e Probstein¹¹.

Conhecidos os valores de ν_c e ς_c , o valor de ν_i é obtido de qualquer equação de (2.49). As funções $\mathfrak{E}(\varsigma)$, $\mathfrak{R}(\varsigma) \in \mathfrak{S}(\varsigma)$ são definidas pelas fórmulas

$$\mathfrak{E}(\varsigma) = \frac{\varsigma^3 \mathfrak{A}(\varsigma) + \mathfrak{B}(\varsigma)}{2\varsigma^3 \mathfrak{B}^{7/3}(\varsigma)},\tag{2.55}$$

$$\Re(\varsigma) = 6 \frac{\mathfrak{E}(\varsigma)/\varsigma^2 - \mathfrak{N}(\varsigma)/\mathfrak{M}(\varsigma)}{\overline{\mathfrak{E}}(\varsigma) - 2\mathfrak{N}(\varsigma)/\mathfrak{M}(\varsigma)}, \qquad (2.56)$$

е

$$\mathfrak{S}(\varsigma) = 6\mathfrak{E}(\varsigma) \frac{\mathfrak{N}(\varsigma)/\mathfrak{M}(\varsigma)\left[\mathfrak{A}(\varsigma)/\mathfrak{B}(\varsigma) - 1/\varsigma\right] + \left[\mathfrak{A}(\varsigma)/\mathfrak{B}(\varsigma)\right]\left[\overline{\mathfrak{B}}(\varsigma) - \overline{\mathfrak{A}}(\varsigma)\right]}{\overline{\mathfrak{E}}(\varsigma) - 2\mathfrak{N}(\varsigma)/\mathfrak{M}(\varsigma)}, \qquad (2.57)$$

onde

$$\mathfrak{M}(\varsigma) = 2 + \varsigma^2 - \varsigma \frac{\mathfrak{A}(\varsigma)}{\mathfrak{B}(\varsigma)}$$
(2.58)

е

$$\mathfrak{N}(\varsigma) = \left(\frac{1}{\varsigma^2} + 1\right) \mathfrak{E}(\varsigma) + \varsigma \frac{\mathfrak{A}(\varsigma)}{\mathfrak{B}(\varsigma)} \left[\overline{\mathfrak{B}}(\varsigma) - \overline{\mathfrak{A}}(\varsigma)\right].$$
(2.59)

A barra sobre as funções $\mathfrak{A},\,\mathfrak{B}$ e
 \mathfrak{E} tem o seguinte significado

$$\overline{(\cdots)} = \frac{\mathrm{d}\log\left(\cdots\right)}{\mathrm{d}\varsigma}.$$
(2.60)

O perfil $\nu(\varrho)$ da camada livre no intervalo $\nu_c < \nu \leq 1$ é obtido pela expressão:

$$1 - \nu^{3} + 6\nu_{c}^{2} \left[\frac{\mathfrak{E}(\varsigma_{c})}{\varsigma_{c}} - \frac{1}{2} \right] (1 - \nu) - 12f_{r}\nu_{c}^{2}\mathfrak{E}(\varsigma_{c}) (1 - \varrho) = 0.$$
 (2.61)

Por fim, o coeficiente C_{Df}^p para o perfil otimizado é dado por

$$C_{\rm Df}^p = \frac{2}{\varsigma_c} \frac{\varsigma_c - 2\mathfrak{E}(\varsigma_c)}{\left(1 + \alpha_c\right)^2}.$$
(2.62)

A conjectura da camada livre foi mais tarde provada por Miele⁷ utilizando a aproximação de corpo delgado Eq. (2.17). Para corpos delgados, o perfil g(x) obtido por Miele⁷ é dado por

$$\frac{g}{2r_b} = \begin{cases} \frac{\nu_c}{2} \left(\frac{\varrho}{\varrho_c}\right)^{3/4}, & \text{se} \quad 0 \le \varrho \le \varrho_c, \\ \frac{1}{2} \sqrt[3]{(\nu_c^3 - 1)\frac{\varrho - 1}{\varrho_c - 1} + 1}, & \text{se} \quad \varrho_c < \varrho \le 1 \end{cases}$$
(2.63)

e o coeficiente $C_{\rm Df}^p$

$$C_{\rm Df}^p = \frac{25}{64} \sqrt[3]{\frac{2}{5}} \frac{1}{f_r^2}.$$
 (2.64)

Na Eq. (2.63), ρ , $\rho_c \in \nu_c$ são dados por

$$\varrho = \frac{x}{l_r}, \quad \varrho_c = \frac{3}{5}, \quad \nu_c = \sqrt[3]{\frac{2}{5}}.$$
(2.65)

2.2 RESULTADOS NUMÉRICOS

2.2.1 Zandbergen

Zandbergen¹³ considerou um corpo axissimétrico, com comprimento l_r e raio de base r_b prescritos, formado por uma ponta cônica seguida por um arco suave. O arco deveria ser determinado de modo a minimizar o coeficiente de arrasto de pressão frontal $C_{\rm Df}^p$, sujeito à restrição de que o ponto de intersecção com o cone deveria ser contínuo. Para isso, Zandbergen¹³ aplicou o Método das Características conjugado ao Cálculo Variacional.

As formas otimizadas foram apresentadas graficamente. Os resultados referentes ao coeficiente C_{Df}^p são apresentados na Tab. 2.1 em função do número de Mach da correntelivre M_{∞} e da razão de aspecto f_r . Esta tabela também apresenta o coeficiente de arrasto de um cone com a mesma razão f_r e M_{∞} obtido pelo mesmo método.

2.2.2 Powers

Powers¹⁴ considerou um corpo de comprimento l_r e raio de base r_b com razão de aspecto $f_r = 4$. O corpo deveria ser formado por uma ponta esférica seguida por um arco

suave. Também impôs que a intersecção x_t entre a ponta esférica e o arco deveria ser contínua e diferenciável. Tanto a forma do arco quanto x_t deveriam ser determinados de modo a minimizar o coeficiente de arrasto de pressão frontal C_{Df}^p .

M_{∞}	f_r	C_{Df}^p	$C^p_{\mathrm{Df}}{}^*$
2,0	5,11474	0,0297761	
	$3,\!35183$	0,0632777	0,0793583
	$2,\!59644$	0,0987581	—
3,0	8,41868	0,0110458	
	$5,\!58319$	0,0231136	
	4,38757	$0,\!0354121$	0,0432138
4,0	11,54721	0,0058789	
	7,67734	$0,\!0122657$	
	6,05063	$0,\!0187304$	
	4,56138	0,0308413	$0,\!0361989$

Tabela 2.1 – $C_{\rm Df}^p$ das formas otimizadas de Zandbergen¹³

* $C^p_{\rm Df}$ para um cone com a mesma razão f_r e $M_\infty.$

Para obter a forma otimizada, o coeficiente $C_{\rm Df}^p$ foi calculado para vários perfis geométricos e os resultados foram usados para ajustar $C_{\rm Df}^p$ a uma função multidimensional, a partir da qual o mínimo foi determinado. Para determinar o arrasto sobre os perfis, Powers¹⁴ utilizou o Método das Características e um método numérico para corpos rombudos. Considerou, ainda, o escoamento invíscido, em equilíbrio químico e ao nível do mar com $M_{\infty} = 7,0$.

Embora Powers¹⁴ não tenha tabulado o perfil geométrico otimizado g(x), os resultados apresentados graficamente indicam que

$$g(x) \propto x^{3/4}$$
, (aproximadamente). (2.66)

O ponto de intersecção otimizado entre a ponta esférica e o arco ocorreu em $x_t = 0,00275l_r$, o que indica que a ponta esférica é pequena relativamente ao comprimento do corpo. Para a forma otimizada, Powers¹⁴ obteve

$$C_{\rm Df}^p = 0.03163.$$
 (2.67)

2.2.3 Fink

Fink¹⁵ discretizou o perfil g(x) de um corpo axissimétrico de comprimento l_r e raio de base r_b em 25 pontos g_k , $1 \le k \le 25$, em intervalos uniformemente espaçados ao longo do eixo x. Os valores de g_k deveriam ser determinados de modo a minimizar o coeficiente de arrasto de pressão frontal C_{Df}^p . Em seguida, utilizou a aproximação de pequenas perturbações para o método de choque-expansão para expressar o coeficiente C_{Df}^p em termos de g_k . Uma vez conhecida a relação funcional entre C_{Df}^p e g_k , Fink¹⁵ obteve o mínimo com a solução do seguinte sistema de equações

$$\frac{\partial C_{\mathrm{Df}}^p}{\partial g_k} = 0, \quad 1 \le k \le 25.$$
(2.68)

As formas otimizadas foram apresentadas graficamente. Fink¹⁵ observou que estas formas não mudam significativamente com o número de Mach M_{∞} nem com a razão de calores específicos γ^*_{∞} no regime hipersônico, como mostra a Tab. 2.2. O símbolo H nesta tabela é o parâmetro de similaridade do número de Mach, definido pela Eq. (2.2).

Os valores da Tab. 2.2 foram retirados da Fig. 1 do artigo de Fink¹⁵, tendo em vista que o autor não tabulou seus resultados. Estima-se que a incerteza sobre os valores de $C_{\text{Df}}^p f_r^2$ na leitura da figura seja de ±0,003.

Tabela 2.2 – $C_{\text{Df}}^{p} f_{r}^{2}$ das formas otimizadas de Fink¹⁵

γ^* :	= 7/5	γ^* :	$\gamma^* = 5/3$		
Η	$C_{\rm Df}^p {f_r}^2$	Η	$C_{\rm Df}^p {f_r}^2$		
1,02	0,508	1,02	0,506		
$1,\!38$	$0,\!492$	$1,\!38$	0,502		
$1,\!87$	$0,\!473$	$1,\!90$	$0,\!495$		
$2,\!50$	$0,\!449$	$2,\!52$	$0,\!480$		
$_{3,25}$	$0,\!424$	$_{3,23}$	$0,\!463$		
$4,\!15$	$0,\!401$	$4,\!22$	$0,\!446$		
$6,\!09$	$0,\!381$	$6,\!07$	$0,\!433$		
$8,\!93$	$0,\!372$	8,83	$0,\!426$		
12,9	0,367	$12,\!6$	$0,\!424$		
$17,\!9$	0,365				
$24,\!3$	0,363				

2.2.4 Manson e Lee

Manson e Lee¹⁷ consideraram perfis geométricos do tipo lei de potência

$$\frac{g(x)}{r_b} = \left(\frac{x}{l_r}\right)^n,\tag{2.69}$$

onde o expoente n deveria ser determinado de modo a minimizar o arrasto de pressão frontal. Para determinar a forma de menor arrasto de pressão frontal, os autores resolveram as equações de Euler numericamente para vários valores de n, com $0.65 \le n \le 1$. Na resolução numérica foi aplicado o método de volumes finitos de célula centrada e a técnica de marcha espacial.

Para a razão $f_r = 3$, o expoente de menor arrasto foi n = 0.69. Este resultado, segundo os autores, não varia muito no intervalo $4 \le M_{\infty} \le 8$. Ao aumentar-se a razão f_r para 5 o expoente de menor arrasto passou a ser 0.7.

Os autores também testaram o efeito da viscosidade e do modelo termodinâmico de gás (perfeito ou gás em equilíbrio) nas simulações e concluíram que estes modelos têm pouca influência sobre o arrasto, entretanto, observaram que o modelo termodinâmico de gás pode alterar substancialmente o campo de temperatura. Diferenças de até 600 K foram obtidas nas proximidades do nariz para $M_{\infty} = 12$ para os modelos termodinâmicos testados. A contribuição da viscosidade e modelo termodinâmico de gás no arrasto frontal foi calculada com base nas equações de Navier-Stokes parabolizadas (PNS - *Parabolized Navier-Stokes*)⁴, considerando-se um escoamento laminar, com parede adiabática e número de Reynolds não especificado. A Tab. 2.3 sintetiza estes resultados. Nesta tabela, $C_{\rm Df}$ representa o coeficiente de arrasto frontal que leva em conta os efeitos da pressão e viscosidade. Observe que não é possível avaliar o efeito da viscosidade, pois os valores de n são diferentes.

	C_{Df}^p - Eule	r(n=3/4)	$C_{\rm Df}$ - (PNS) $(n = 0.69)$		
M_{∞}	perf.	equi.	perf.	equi.	
6,28	$0,\!053070$	0,053063			
8,00	0,049987	0,049981	$0,\!057683$	$0,\!057867$	
$12,\! 0$	0,046350	$0,\!046349$			

Tabela 2.3 – $C_{\rm Df}$ de formas do tipo lei de potência¹⁷ ($f_r = 3$). Modelos de Euler e PNS.

Outros resultados para o coeficiente $C_{\rm Df}^p$, obtidos com a equação de Euler, foram extraídos da Fig. 9 do artigo de Manson e Lee¹⁷. Os resultados são apresentados na Tab. 2.4. Estima-se que a incerteza na leitura da figura seja de ±0,06 para M_{∞} e ±0,0004 para $C_{\rm Df}^p$.

Tabela 2.4 – C_{Df}^p de formas do tipo lei de potência¹⁷ ($f_r = 3$). Modelo de Euler.

	_	C_{Df}^{p} (Euler))
M_{∞}	n = 0,69	n = 0,75	n = 1,00
3,00	0,0670	0,0684	0,0823
$4,\!00$	0,0602	0,0612	0,0735
5,05	$0,\!0557$	$0,\!0565$	0,0684
$6,\!28$	$0,\!0523$	$0,\!0531$	0,0648
8,00	$0,\!0492$	$0,\!0500$	0,0618

2.2.5 Kraiko et al.

Kraiko *et al.*² aplicaram as equações de Euler em conjunção com o Cálculo Variacional para determinar as formas de corpos de simetria axial com razão de aspecto f_r prescrita que minimizam C_{Df}^p . As formas otimizadas foram obtidas exatamente para valores pequenos da razão de aspecto (dependendo do número de Mach) e de modo aproximado para os demais casos. As formas obtidas de modo exato têm uma face frontal plana seguida por um arco suave (Fig. 2.5). Por outro lado, as demais formas, se obtidas de maneira exata, deveriam apresentar, além da quina frontal (principal), pequenas quinas secundárias. Entretanto, segundo os autores, mesmo a maior das quinas secundárias teria pequeno efeito sobre o arrasto. Deste modo, estas quinas foram desprezadas e o perfil tratado como suave, seguindo o mesmo esquema da Fig. 2.5. Os autores afirmam que formas pontiagudas, do tipo lei de potência, só podem ser obtidas para valores muito grandes da razão de aspecto.

Figura 2.5 – Ilustração do perfil do corpo otimizado obtido por Kraiko $et \ al.^2$.

As formas otimizadas não foram completamente tabuladas. Os autores apresentaram apenas a razão r_f/r_b entre o raio frontal r_f e o raio da base r_b e as inclinações frontal θ_f e da base θ_b . Estes parâmetros geométricos e os respectivos coeficientes C_{Df}^p para cada forma otimizada são apresentados nas Tabs. 2.5, 2.6 e 2.7 para diversos valores do número de Mach no regime supersônico e diversos valores da razão de aspecto. As linhas marcadas com E indicam que os resultados são exatos, ao passo que as linhas marcadas com A indicam que os resultados são aproximados. Além disso, os dados nas Tabs. 2.5, 2.6 e 2.7 foram adaptados para a notação utilizada neste trabalho. Os resultados modificados, contudo, têm o mesmo número de algarismos significativos dos originais.

Tabela 2.5 – C_{Df}^p e parâmetros geométricos das formas otimizadas de Kraiko *et al.*² Parte I.

M_{∞}	f_r		r_f/r_b	$\theta_f(^\circ)$	$ heta_b(^\circ)$	C^p_{Df}
1,5	$0,\!125$	Е	0,810	57	28	0,8632
	$0,\!25$	Е	0,724	55	20	$0,\!6938$
	$0,\!5$	Е	$0,\!595$	54	15	0,5096

M_{∞}	f_r		r_f/r_b	$ heta_f(^\circ)$	$ heta_b(^\circ)$	$C_{\rm Df}^p$
1,5	1	Е	0,399	55	11	0,3156
	2	А	0,175	55	7	0,144
	4	А	0,042	55	3	0,0482
	6	А	0,015	55	1,8	0,0234
	10	А	0,004	55	$0,\!9$	0,0090
2,0	1	А	0,297	55	14	0,3300
	2	А	0,109	55	8	$0,\!136$
	4	А	0,024	55	4	0,0446
	6	А	$0,\!010$	55	2,2	0,02188
	10	А	0,0025	55	$1,\!1$	0,00858
3,0	0,125	Е	0,784	61	34	1,121
	$0,\!25$	Е	$0,\!654$	59	29	$0,\!9050$
	$0,\!5$	Е	$0,\!452$	58	24	$0,\!6118$
	1	А	0,238	57	17	0,3132
	2	А	$0,\!079$	57	10	$0,\!121$
	4	А	0,018	57	5	0,0396
	6	А	0,0065	57	$2,\!8$	0,0198
	10	А	0,0023	57	1,4	0,00798
4,0	$0,\!125$	Е	0,776	61	35	1,160
	$0,\!25$	Е	$0,\!633$	60	31	0,9280
	$0,\!5$	Е	$0,\!430$	56	27	$0,\!6098$
	1	А	0,220	56	19	$0,\!2998$
	2	А	$0,\!071$	56	11	0,112
	4	А	0,016	56	5	0,0364
	6	А	0,006	56	3	0,0183
	10	А	0,002	56	1,8	0,00750
6,0	0,125	Е	0,770	62	36	1,188
	$0,\!25$	Е	$0,\!615$	60	33	$0,\!9404$
	$0,\!5$	Е	$0,\!420$	54	28	$0,\!6014$
	1	А	0,209	54	20	$0,\!2856$
	2	А	0,065	54	12	0,101
	4	А	$0,\!015$	54	6	0,0322
	6	А	0,0078	54	4	0,0163
	10	А	0,0022	54	2,2	0,00678

Tabela 2.6 – C_{Df}^p e parâmetros geométricos das formas otimizadas de Kraiko *et al.*² Parte II.

M_{∞}	f_r		r_f/r_b	$\theta_f(^\circ)$	$ heta_b(^\circ)$	C^p_{Df}
10,0	0,125	Е	0,765	62	37	1,203
	$0,\!25$	Е	$0,\!608$	60	34	0,9450
	$0,\!5$	Е	$0,\!419$	52	29	$0,\!5964$
	1	А	$0,\!205$	52	22	$0,\!2764$
	2	А	0,063	52	13	0,0932
	4	А	$0,\!014$	52	7	0,0280
	6	А	0,0055	52	$4,\!9$	0,0140
	10	А	0,0024	52	$2,\!8$	0,00586

Tabela 2.7 – $C_{\rm Df}^p$ e parâmetros geométricos das formas otimizadas de Kraiko *et al.*² Parte III.

2.3 RESULTADOS EXPERIMENTAIS

2.3.1 Eggers et al.

Nas Tabelas 2.8 e 2.9 são apresentados os resultados experimentais de Eggers *et al.*⁹ para o coeficiente de arrasto frontal C_{Df} sobre perfis do tipo lei de potência Eq. (2.69). Este coeficiente leva em conta a pressão e a tensão viscosa. Os dados foram obtidos em túnel de vento operado com ar e expressos em termos do número de Mach M_{∞} e número de Reynolds Re_{∞} (baseado em l_r) da corrente-livre. Os autores apontam que a máxima incerteza sobre C_{Df} é ±0,005. A incerteza apontada para o número de Mach é devido à leitura dos dados na Fig. 6 do relatório⁹. Os autores não explicitam a incerteza sobre o número de Mach nem sobre o número de Reynolds.

			C_{Df} ($f_r = 3)$	
$\operatorname{Re}_{\infty}$	M_{∞}	n = 1/4	n = 1/2	n = 3/4	n = 1
$2,1 \times 10^{6}$	2,76	$0,\!247$	0,096	0,079	0,088
$2,85 \times 10^{6}$	$3,\!51$	0,247	0,088	0,072	0,081
$2{,}16{\times}10^6$	$4,\!01$	0,249	$0,\!083$	0,066	0,078
$1,\!05\! imes\! 10^{6}$	$5,\!03$	0,263	$0,\!083$	0,067	0,076
$4,\!5{\times}10^5$	$6,\!14$	$0,\!294$	0,096	0,077	0,089

Tabela 2.8 – $C_{\rm Df}$ para formas do tipo lei de potência⁹ ($f_r = 3$)

Incerteza: M_{∞} : ±0,05; C_{Df} : ±0,005; Re_{∞}: não informada

		$C_{\rm Df}$ $(f_r = 5)$				
$\operatorname{Re}_{\infty}$	M_{∞}	n = 1/2	n = 3/4	n = 1		
$3,\!5\!\times\!10^{6}$	2,75	0,054	0,045	0,050		
$4{,}75{\times}10^6$	$3,\!50$	$0,\!051$	0,040	$0,\!047$		
$3,\!6\! imes\!10^6$	$4,\!01$	0,045	0,037	$0,\!042$		
$1,\!75\!\times\!10^6$	$5,\!03$	0,049	0,036	$0,\!045$		
$7,\!5\!\times\!10^5$	$6,\!13$	0,064	$0,\!056$	0,060		

Tabela 2.9 – $C_{\rm Df}$ para formas do tipo lei de potência⁹ ($f_r = 5$)

Incerteza: M_∞ : ±0,04; $C_{\rm Df}$: ±0,005; Re $_\infty$: não informada

2.3.2 Perkins et al.

Os dados experimentais de Perkins *et al.*¹² referentes ao coeficiente de arrasto frontal $C_{\rm Df}$ para corpos tipo lei de potência e para a ogiva de von Kármán são mostrados na Tab. 2.10. Comparando-se a última linha desta tabela com a segunda linha da Tab. 2.8, observa-se que os resultados experimentais de Perkins *et al.*¹² são consistentes com os de Eggers *et al.*⁹, muito embora exista uma diferença no número de Mach e de Reynolds.

Tabela 2.10 – $C_{\rm Df}$ para formas do tipo lei de potência e ogiva de von Kármán 12

		$C_{\rm Df}$ $(f_r = 3)$					
$\operatorname{Re}_{\infty}$	M_{∞}	n = 1/4	n = 1/2	n = 3/4	n = 1	Kármán	
$2,42 \times 10^{6}$	1,24	$0,\!145$	0,075	0,100	0,134	0,084	
$3{,}14{\times}10^6$	$1,\!44$	$0,\!173$	0,093	0,096	$0,\!125$	0,096	
$4{,}14{\times}10^6$	$1,\!96$	0,211	0,092	0,080	0,099	0,085	
$4,\!00\!\times\!10^{6}$	$3,\!06$	$0,\!244$	0,090	$0,\!071$	$0,\!084$	0,076	
$3,\!45{\times}10^6$	3,67	$0,\!248$	0,085	0,069		0,077	

Incertezas: M_{∞} : $\pm 0,03$; C_{Df} : $\pm 0,003$; Re_{∞} : $\pm 0,2 \times 10^6$

2.4 VISÃO GERAL

A Fig. 2.6 sintetiza a revisão bibliográfica deste trabalho. No balão central da figura está o problema em questão. Os balões ligados ao balão central indicam a metodologia aplicada para o cálculo do coeficiente de arrasto e para a determinação das formas otimizadas. Os balões subsequentes indicam os trabalhos que aplicaram as referidas metodologias. O balão em preto contextualiza a contribuição deste estudo.

Figura 2.6 – Síntese ilustrativa da revisão bibliográfica e contextualização deste estudo.

3 MÉTODO DE OTIMIZAÇÃO

Este capítulo descreve o método que será utilizado para determinar as formas otimizadas do problema de otimização aerodinâmica de Newton, bem com os modelos geométricos que serão otimizados.

3.1 MÉTODO DE OTIMIZAÇÃO DE FORMA

O problema de otimização aerodinâmica de Newton abordado neste trabalho consiste em determinar o perfil geométrico g(x) de um corpo de simetria axial com razão de aspecto f_r (comprimento/diâmetro) prescrita de modo a minimizar o coeficiente de arrasto frontal $C_{\rm Df}$ em um escoamento axissimétrico.

Pelo Método de Otimização de Forma²⁰, a função g(x) deve ser expressa em termos de funções conhecidas e coeficientes ajustáveis, de modo que o problema de determinar uma função se transforma em um problema de determinar coeficientes. Formalmente, a função g(x) pode ser representada por uma série com infinitos termos. Entretanto, para proceder com o cálculo numérico, apenas um número finito de termos é considerado, o que provoca um erro de truncamento na otimização. Este erro pode ser feito tão pequeno quanto se queira à medida que mais termos são considerados na série.

Deste modo, o problema de otimização é posto como

$$\min_{\boldsymbol{X}} I(\boldsymbol{X}), \tag{3.1}$$

sujeito aos vínculos

$$\boldsymbol{L} \le \boldsymbol{X} \le \boldsymbol{U},\tag{3.2}$$

onde I é a função objetivo, que neste caso é o coeficiente de arrasto frontal C_{Df} , $\mathbf{X} = [X_1, \dots, X_{N_u}]^t$ é o vetor dos N_u coeficientes ajustáveis, $\mathbf{L} = [L_1, \dots, L_{N_u}]^t$ e $\mathbf{U} = [U_1, \dots, U_{N_u}]^t$ são os vetores que definem, respectivamente, os limites inferior e superior de \mathbf{X} .

O problema de otimização definido por (3.1) e (3.2) pode ser abordado com diversas ferramentas^{25–28,45}. Entretanto, como a relação entre os coeficientes ajustáveis e o coeficiente de arrasto não é linear, não há, atualmente, um método geral para determinar o mínimo global de $I(\mathbf{X})$. Os métodos heurísticos^{26–28}, como o Algoritmo de Evolução Diferencial²⁷, têm maior chance de encontrar o mínimo global, porém são computacio-nalmente onerosos. Os métodos baseados nas derivadas da função objetivo^{25,45}, como os métodos quase Newton, são mais rápidos, mas mais propensos a ficarem retidos em um

mínimo local. Neste estudo, optou-se por um algoritmo de otimização híbrido, que combina a robustez dos métodos heurísticos^{26–28} com a celeridade do Método das Superfícies de Resposta⁴⁰. Os detalhes deste algoritmo são apresentados nas próximas seções.

3.2 ALGORITMO DE EVOLUÇÃO DIFERENCIAL

O Algoritmo de Evolução Diferencial (ED) é um método estocástico de otimização baseado em algumas ideias da evolução natural. Neste algoritmo, um conjunto de possíveis soluções (população) é testado e modificado ao longo de algumas iterações (gerações). A cada geração, elementos da população (indivíduos) são criados, mantidos ou excluídos de modo a manter fixo o número de indivíduos e a otimizar a função objetivo. O processo é repetido até que o critério de parada seja satisfeito. A solução é dada pelo melhor indivíduo da última geração.

Dentre os métodos heurísticos, o Algoritmo de Evolução Diferencial²⁷ se destaca por sua simplicidade, robustez e eficiência. Comparado ao método de Newton²⁵ ou às suas varições, o ED é vantajoso pois não impõe restrições sobre a função objetivo, como continuidade e diferenciabilidade. Além disso, como não há o cálculo numérico de derivadas, o algoritmo é particularmente apropriado para problemas em que a função objetivo não é calculada com precisão, como é o caso em CFD. Por outro lado, não há uma prova de sua convergência e o seu custo computacional pode ser elevado.

Existem diversas abordagens ou estratégias para o Algoritmo de Evolução Diferencial²⁷. Na abordagem clássica, a resolução do problema de otimização definido por (3.1) e (3.2) inicia-se com a geração de uma população com N_p indivíduos. Mais precisamente, cada indivíduo \mathbf{X}^i da população inicial é gerado aleatoriamente no domínio $[\mathbf{L}, \mathbf{U}]$ através da fórmula

$$X_j^i = L_j + (U_j - L_j) \cdot \mathcal{R}_j, \quad 1 \le j \le N_u, \tag{3.3}$$

onde \mathcal{R} é uma variável aleatória real entre zero e um. A função objetivo é, então, calculada para cada indivíduo e o índice i_b do indivíduo que produziu o melhor resultado é registrado.

A população recém formada serve de base para a criação de novos indivíduos e, por conseguinte, para a formação da próxima geração. Este processo ocorre da seguinte forma. Para cada indivíduo \mathbf{X}^i da população, são escolhidos, aleatoriamente, três outros indivíduos, *e.g.*, \mathbf{X}^{i_1} , \mathbf{X}^{i_2} e \mathbf{X}^{i_3} , mutuamente diferentes e diferentes de \mathbf{X}^i . Em seguida, um indivíduo \mathbf{X}' é criado a partir de \mathbf{X}^{i_1} , \mathbf{X}^{i_2} e \mathbf{X}^{i_3} :

$$\mathbf{X}' = \mathbf{X}^{i_3} + F \cdot \left(\mathbf{X}^{i_1} - \mathbf{X}^{i_2} \right), \qquad (3.4)$$

onde F é a constante de diferenciação, um parâmetro de controle que deve ser prescrito. Segundo Feoktistov²⁷, esta forma de gerar os novos indivíduos imita as diferenças finitas dos métodos quase Newton, o que torna o algoritmo tão eficiente quando comparado a outros métodos heurísticos. O indivíduo X' é cruzado com o indivíduo X^i , dando origem a outro indivíduo X'', cujas componentes são dadas por

$$X_{j}'' = \begin{cases} X_{j}' & : \text{se } (\mathcal{R}_{j} < C_{r} \quad \text{ou} \quad j' = j), \\ X_{j}^{i} & : \text{caso contrário,} \end{cases}$$
(3.5)

onde C_r é a constante de cruzamento $(0 \le C_r \le 1)$, \mathcal{R} é uma variável aleatória real entre zero e um e j' é uma variável aleatória inteira entre 1 e N_u . Caso o indivíduo teste \mathbf{X}'' viole a restrição $\mathbf{L} \le \mathbf{X}'' \le \mathbf{U}$, um novo indivíduo \mathbf{X}'' é gerado aleatoriamente de acordo com a Eq. (3.3).

Neste ponto, a função objetivo do indivíduo teste X'' é comparada à do indivíduo original X^i . Se $I(X'') < I(X^i)$, então X'' substitui X^i na população. Além disso, caso o resultado de X'' seja melhor que o do melhor indivíduo X^{i_b} até então, o índice i_b é atualizado para i.

Após este procedimento ter se repetido para todos os indivíduos da população inicial, tem-se a formação da segunda geração. A partir daí, novas gerações são criadas seguindo a mesma ideia até que o critério de parada seja satisfeito.

Neste trabalho, as gerações são interrompidas caso a "medida P" seja menor que um valor prescrito ε_{ED} ou caso o número máximo de gerações N_g seja atingido. A "medida P", ou P_m , é uma medida da convergência da população em torno da média dos indivíduos, isto é,

$$P_m = \max_i \|\boldsymbol{X}^i - \boldsymbol{X}^m\|, \qquad (3.6)$$

onde

$$\boldsymbol{X}^{m} = \frac{1}{N_{p}} \sum_{i=1}^{N_{p}} \boldsymbol{X}^{i}$$
(3.7)

e $\|\cdot\|$ é a norma euclidiana.

3.3 MÉTODO DAS SUPERFÍCIES DE RESPOSTA

O Método das Superfícies de Resposta⁴⁰ é uma ferramenta tipicamente usada por experimentalistas para, entre outras coisas, estabelecer uma relação entre um conjunto de variáveis independentes e uma variável dependente (a função resposta). A partir da construção desta relação, novos experimentos são planejados, normalmente com o intuito de encontrar os valores das variáveis independentes que otimizam a função resposta. Neste trabalho, algumas técnicas do Método das Superfícies de Resposta⁴⁰ serão utilizadas para acelerar a convergência do Algoritmo de Evolução Diferencial²⁷. A ideia básica é utilizar a população de cada geração para construir uma função resposta aproximada e, a partir desta, determinar analiticamente o ponto de mínimo.

A função resposta, neste contexto, é o coeficiente de arrasto frontal C_{Df} ou, equivalentemente, a função objetivo $I(\mathbf{X})$ definida na Seç. 3.1. A relação entre $I \in \mathbf{X}$ será aproximada por um polinômio quadrático N_u -dimensional $P(\mathbf{X})$, *i.e.*,

$$I(\mathbf{X}) \simeq P(\mathbf{X}) = \beta_0 + \sum_{i=1}^{N_u} \beta_i X_i + \sum_{i=1}^{N_u} \beta_{ii} X_i^2 + \sum_{i=1}^{N_u-1} \sum_{j=i+1}^{N_u} \beta_{ij} X_i X_j,$$
(3.8)

onde β_i e β_{ij} são parâmetros que devem ser determinados para melhor ajustar P a I. Esta representação em geral não será boa quando os indivíduos do Algoritmo de Evolução Diferencial²⁷ estiverem dispersos, mas deve melhorar à medida que a população convergir para um mínimo local, que é justamente o caso em que se deseja acelerar a convergência.

Na Eq. (3.8), existem N_b parâmetros a serem ajustados, onde

$$N_b = \frac{(N_u + 1)(N_u + 2)}{2}.$$
(3.9)

Por isso, é necessário conhecer $I(\mathbf{X})$ em N_m pontos, *e.g.*, $\mathbf{X}^1, \dots, \mathbf{X}^{N_m}$, com $N_b \leq N_m$. Supondo que $I(\mathbf{X})$ seja conhecida em N_m pontos, os coeficientes $\beta_i \in \beta_{ij}$, são ajustados de modo a minimizar

$$\sum_{i=1}^{N_m} \left(I(\boldsymbol{X}^i) - P(\boldsymbol{X}^i) \right)^2 = (\boldsymbol{I} - \boldsymbol{P}) \left(\boldsymbol{I} - \boldsymbol{P} \right)^t, \qquad (3.10)$$

onde

$$\boldsymbol{P} = \left[P(\boldsymbol{X}^1), \cdots, P(\boldsymbol{X}^{N_m}) \right]^t$$
(3.11)

е

$$\boldsymbol{I} = \left[I(\boldsymbol{X}^1), \cdots, I(\boldsymbol{X}^{N_m}) \right]^t.$$
(3.12)

Uma vez que a relação entre P e os parâmetros β_i e β_{ij} é linear e que P é calculado para os N_m pontos $\mathbf{X}^1, \dots, \mathbf{X}^{N_m}$, é conveniente agrupar estas informações na forma de um sistema linear:

$$\boldsymbol{P} = \boldsymbol{W}\boldsymbol{B},\tag{3.13}$$

onde \boldsymbol{B} é um vetor $N_b \times 1$ contendo os parâmetros β_i e β_{ij} e \boldsymbol{W} é uma matriz $N_m \times N_b$ contendo os coeficientes que multiplicam os parâmetros β_i e β_{ij} na Eq. (3.8). Cada linha ida matriz \boldsymbol{W} contém os coeficientes associados a $P(\boldsymbol{X}^i)$.

Para determinar os parâmetros \boldsymbol{B} que minimizam (3.10), as seguintes condições são impostas

$$\frac{\partial}{\partial B_i} \left(\boldsymbol{I} - \boldsymbol{P} \right) \left(\boldsymbol{I} - \boldsymbol{P} \right)^t = 0, \quad 1 \le i \le N_b, \tag{3.14}$$

o que conduz a

$$\boldsymbol{B} = \left[\boldsymbol{W}^{t}\boldsymbol{W}\right]^{-1}\boldsymbol{W}^{t}\boldsymbol{I}.$$
(3.15)

Conhecidos os parâmetros $\beta_i \in \beta_{ij}$, o interesse é determinar o ponto X^* em que P(X) é mínimo. Para isso, as seguintes condições são impostas:

$$\frac{\partial P(\boldsymbol{X})}{\partial X_i} = 0, \quad 1 \le i \le N_u. \tag{3.16}$$

Após algumas manipulações algébricas, é possível mostrar que X^* é dado por

$$\boldsymbol{X}^* = -\boldsymbol{Z}^{-1}\boldsymbol{b},\tag{3.17}$$

onde

$$Z_{ij} = \beta_{ij}(1+\delta_{ij}), \quad 1 \le i, j \le N_u \tag{3.18}$$

е

$$\boldsymbol{b} = [\beta_1, \cdots, \beta_{N_u}]^t \,. \tag{3.19}$$

Na Eq. (3.18), δ_{ij} é o delta de Kronecker, dado por

$$\delta_{ij} = \begin{cases} 1 & : \text{se} \quad i = j, \\ 0 & : \text{caso contrário.} \end{cases}$$
(3.20)

3.4 ALGORITMO DE EVOLUÇÃO DIFERENCIAL HIBRIDIZADO

O Algoritmo de Evolução Diferencial Hibridizado é muito semelhante ao original, exceto pelo fato de que a cada geração G, a partir da segunda, um indivíduo teste X^* é criado com base no Método das Superfícies de Resposta⁴⁰. A função objetivo de X^* é calculada e comparada à função objetivo do pior indivíduo da população X^{iw} . Caso o resultado do indivíduo X^* seja melhor que o de X^{iw} , X^* substitui X^{iw} . O Algoritmo 1 descreve como a hibridização é realizada.

3.5 APROXIMAÇÕES PARA g(x)

A representação de g(x) em termos de funções conhecidas não é única. Deste modo, o número de coeficientes necessários para realizar a otimização com uma dada tolerância varia com a representação escolhida.

Do ponto de vista da redução do esforço computacional, é desejável escolher representações com o menor número de coeficientes. Neste sentido, a construção de modelos representativos de g(x) deve considerar características de formas otimizadas já conhecidas.

Algoritmo 1: Algoritmo de Evolução Diferencial Hibridizado Entrada: N_q , N_p , N_u , $\varepsilon_{\rm ED}$, L, USaída: X^{i_b} 1 Gerar a população inicial com a Eq. (3.3); 2 Calcular a função objetivo para cada indivíduo da população; **3** Encontrar o índice do melhor indivíduo i_b ; 4 Calcular P_m com a Eq. (3.6); 5 $G \leftarrow 1;$ enquanto ($P_m > \varepsilon_{ED} \ e \ G \le N_q$) faça 6 $G \leftarrow G + 1;$ 7 Gerar o indivíduo teste X^* com o Método das Superfícies de Resposta; 8 se (houver falha ao gerar X^*) então 9 $X^* \leftarrow X^m$: 10 fim 11 se (X^* violar os vínculos $L \leq X^* \leq U$) então $\mathbf{12}$ Gerar outro X^* com a Eq. (3.3); 13 fim $\mathbf{14}$ para i = 1 até N_p faça $\mathbf{15}$ Gerar um indivíduo teste X'' com a Eq. (3.5); 16 se (X'' violar os vínculos $L \leq X'' \leq U$) então $\mathbf{17}$ Gerar outro X'' com a Eq. (3.3); 18 \mathbf{fim} 19 se ($I(\boldsymbol{X}'') \leq I(\boldsymbol{X}^i)$) então 20 $oldsymbol{X}^i \leftarrow oldsymbol{X}''$ $\mathbf{21}$ fim 22 se ($I(\mathbf{X}^i) \leq I(\mathbf{X}^{i_b})$) então 23 $i_b \leftarrow i$ $\mathbf{24}$ fim $\mathbf{25}$ fim $\mathbf{26}$ Substituir o pior indivíduo \mathbf{X}^{i_w} por \mathbf{X}^* se $I(\mathbf{X}^*) < I(\mathbf{X}^{i_w})$; $\mathbf{27}$ se ($I(\boldsymbol{X}^*) \leq I(\boldsymbol{X}^{i_b})$) então 28 29 $i_b \leftarrow i_w;$ 30 fim Calcular P_m com a Eq. (3.6); $\mathbf{31}$ 32 fim

Algumas características desejáveis para g(x) são:

1. A função g(x) deve ser côncava e crescente;

Esta é uma característica presente em todas as formas otimizadas no problema aerodinâmico de Newton e enfatizada por Horstmann *et al.*¹⁸.

2. g(0) > 0;

Todas as formas otimizadas de Kraiko $et al.^2$, obtidas com base nas equações de Euler, bem como as formas obtidas com base na lei de pressão de Newton (ver

Cap. 2), apresentam uma face plana, isto é, g(0) > 0.

3. $g(x) \to \operatorname{cte} x^n$ para $1 \ll f_r;$

Kraiko *et al.*² apontam que para $1 \ll f_r$ a diferença relativa entre o coeficiente de arrasto das suas formas otimizadas e o da forma de Newton diminui. Por outro lado, Miele⁷ demonstrou que nesta situação a forma de Newton tende a uma lei de potência.

4. $g(x) \rightarrow \text{cte } x$ à medida que os efeitos viscosos aumentem;

Esta possibilidade deve ser considerada, porque, segundo Bryson Jr.⁷, à medida que o coeficiente de fricção médio sobre a superfície aumenta, o corpo tende a se tornar pontiagudo.

Levando-se em conta essas características, os seguintes modelos foram propostos:

1. Modelo 1C.

A forma otimizada é aproximada por uma lei de potência

$$g(x) = r_b \left(\frac{x}{l_r}\right)^n, \quad 0 \le x \le l_r, \tag{3.21}$$

onde o expoente $n \ (0,5 \le n \le 1)$ é o coeficiente a ser determinado. Um exemplo desta geometria é apresentado na Fig. 3.1 para n = 0,69. Embora esta forma não apresente a segunda das características supracitadas, ela foi escolhida por atender às outras características e ao mesmo tempo ser simples (apenas um coeficiente ajustável). Além disso, ela servirá para avaliar o efeito da ausência da face plana sobre o coeficiente de arrasto.

Figura 3.1 – Ilustração do Modelo 1C.

2. Modelo 2C-S. A forma otimizada é aproximada por uma face plana de raio $r_f = hr_b$ seguida por um arco suave. O perfil geométrico é definido por

$$g(x) = r_b \left[h + (1-h) \left(\frac{x}{l_r}\right)^n \right], \quad 0 \le x \le l_r,$$
(3.22)

onde $h \in n$ são os coeficientes ajustáveis. A ligação entre a face plana e o arco subsequente é suave (exceto para n = 1). A Fig. 3.2 exemplifica este modelo com $n = 0,69 \in h = 0,1$.

Figura 3.2 – Ilustração do Modelo 2C-S.

3. Modelo 2C-NS.

A forma otimizada é aproximada por uma face plana de raio $r_f = hr_b$ seguida por um arco suave. O perfil geométrico é definido por

$$g(x) = r_b \left[h^{1/n} + \left(1 - h^{1/n} \right) \left(\frac{x}{l_r} \right) \right]^n, \quad 0 \le x \le l_r,$$
(3.23)

onde $h \in n$ são os coeficientes ajustáveis. Ao contrário do modelo anterior, a ligação entre a face plana e o arco subsequente não é suave. A Fig. 3.3 exemplifica este modelo com n = 0.69 e h = 0.1.

Figura 3.3 – Ilustração do Modelo 2C-NS.

Além das características listadas anteriormente, a escolha dos modelos geométricos foi pautada em alguns testes preliminares em que o coeficiente de arrasto frontal foi calculado com base na lei de pressão de Newton e os coeficientes otimizados com base na metodologia apresentada neste capítulo. Os testes foram realizados para $f_r = 1, 2 \in 3$ e o

54

coeficiente de arrasto dos modelos otimizados foi comparado com o da forma de Newton (solução exata). Desta comparação, verificou-se que a diferença relativa entre o coeficiente de arrasto da forma de Newton e os dos Modelos 1C, 2C-S e 2C-NS para $f_r = 1$ não excede 3%, 0,12% e 0,05%, respectivamente. Esta diferença diminui para 0,13%, 0,005% e 0,022% no caso de $f_r = 3$. Estes resultados reforçaram a escolha dos modelos.

4 MÉTODO DE SIMULAÇÃO DO ESCOA-MENTO

A determinação das formas otimizadas com o método descrito no capítulo anterior exige que o coeficiente de arrasto seja conhecido para cada geometria testada. Este capítulo descreve os modelos físico, matemático e numérico utilizados para simular o escoamento e, por conseguinte, calcular o coeficiente de arrasto.

4.1 MODELO FÍSICO

Considere o escoamento supersônico e axissimétrico de ar sobre um corpo cujo perfil geométrico é conhecido e que o coeficiente de arrasto do corpo, decorrente deste escoamento, seja a grandeza que se deseja determinar teoricamente. A intensidade do coeficiente de arrasto depende de diversos fatores. Nesta seção, alguns destes fatores são abstraídos e constituem o modelo físico do fenômeno que se deseja descrever. Basicamente, são feitas considerações sobre o comportamento do gás, do escoamento e da interação entre o gás e o corpo.

Quanto às características do gás, supõe-se que este se comporte como um meio contínuo. Esta hipótese é normalmente válida se o número de Knudsen Kn for da ordem de 10^{-2} ou menor⁴⁶. O número de Knudsen é definido⁴⁶ pela razão entre o caminho livre médio molecular e um comprimento característico do escoamento. Este número está relacionado com os números de Mach M e Reynolds Re através da expressão⁴⁷

$$\operatorname{Kn} \sim \frac{M}{\operatorname{Re}}.$$
 (4.1)

Para os valores de Mach $(1,5 \leq M_{\infty} \leq 6)$ e Reynolds $(10^3 \leq \text{Re}_{\infty})$ considerados neste estudo, obtém-se Kn $\leq 10^{-2}$, o que indica que a hipótese do contínuo é válida. Também será considerado que o gás obedece à lei dos gases ideais, que seja compressível e termicamente perfeito, isto é, a sua energia interna e a sua entalpia são funções apenas da temperatura. As propriedades termofísicas do gás (calor específico a pressão constante, viscosidade e condutividade térmica) serão consideradas uniformes em todo o domínio do escoamento e dadas como função da temperatura da corrente livre. Não serão consideradas reações químicas e forças de campo.

O escoamento será considerado estacionário e, para avaliar as implicações dos efeitos dissipativos, também poderá ser considerado invíscido ou viscoso. O caso de escoamento viscoso não inclui turbulência, *i.e.*, o escoamento será considerado laminar (a inclusão de

modelos de turbulência aumentaria o tempo computacional das simulações de modo a tornar inviável as otimizações propostas neste trabalho). Devido à simetria e à velocidade (supersônica), o escoamento comporta-se⁴ de forma similar ao indicado na Fig. 4.1. Nesta figura, uma onda de choque se forma à montante do corpo. À esquerda da onda de choque, as propriedades do gás são uniformes e não perturbadas pelo escoamento à jusante. Entre o choque e o corpo, o gás é desacelerado e acelerado novamente, atingindo uma velocidade supersônica na saída, exceto na camada limite, para o caso de escoamentos viscosos.

Figura 4.1 – Ilustração do escoamento supersônico sobre corpos de simetria axial.

Em relação à interação do gás com a superfície do corpo, a parede será considerada adiabática e impermeável. A condição de deslizamento será aplicada para o campo de velocidade no caso de escoamento invíscido e de não deslizamento no caso de escoamento viscoso.

4.2 MODELO MATEMÁTICO

4.2.1 Equações de transporte em coordenadas cilíndricas

Com base nas hipóteses feitas sobre o gás e o escoamento, as equações de transporte que descrevem a dinâmica do escoamento, expressas em termos das coordenadas cilíndricas⁴⁸, podem ser escritas de modo compacto⁴⁹ como

$$C^{\phi} \left[\frac{\partial(\rho\phi)}{\partial t} + \frac{\partial(\rho u\phi)}{\partial x} + \frac{1}{y} \frac{\partial(\rho y v\phi)}{\partial y} \right] = \frac{\partial}{\partial x} \left(\Gamma^{\phi} \frac{\partial\phi}{\partial x} \right) + \frac{1}{y} \frac{\partial}{\partial y} \left(y \Gamma^{\phi} \frac{\partial\phi}{\partial y} \right) + P^{\phi} + S^{\phi}, \quad \phi \in \{1, u, v, T\}, \quad (4.2)$$

onde t é o tempo, x e y são as coordenadas axial e radial, respectivamente, e u e v são as respectivas componentes do vetor velocidade, ρ é a massa específica e T é a temperatura. Dependendo de ϕ , a Eq. (4.2) representa a conservação da massa ($\phi = 1$), conservação da quantidade de movimento linear na direção axial ($\phi = u$), conservação da quantidade de movimento linear na direção radial ($\phi = v$) e conservação da energia térmica ($\phi = T$). Os termos associados a ϕ , isto é, C^{ϕ} , Γ^{ϕ} , P^{ϕ} e S^{ϕ} são dados por

• Conservação da massa ($\phi = 1$)

$$C^{\phi} = 1, \qquad \Gamma^{\phi} = 0, \qquad P^{\phi} = 0, \qquad S^{\phi} = 0,$$
(4.3)

• Conservação da quantidade de movimento (componente axial, $\phi = u$)

$$C^{\phi} = 1, \qquad \Gamma^{\phi} = \mu, \qquad P^{\phi} = -\frac{\partial p}{\partial x},$$
(4.4)

$$S^{\phi} = \frac{1}{y} \frac{\partial}{\partial y} \left(\mu y \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial x} \left(\mu \frac{\partial u}{\partial x} \right) - \frac{2}{3} \frac{\partial}{\partial x} \left[\mu \left(\frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial (yv)}{\partial y} \right) \right]$$
(4.5)

• Conservação da quantidade de movimento (componente radial, $\phi = v$)

$$C^{\phi} = 1, \qquad \Gamma^{\phi} = \mu, \qquad P^{\phi} = -\frac{\partial p}{\partial y},$$
(4.6)

$$S^{\phi} = \frac{1}{y} \frac{\partial}{\partial y} \left(\mu y \frac{\partial v}{\partial y} \right) - \frac{2\mu v}{y^2} + \frac{\partial}{\partial x} \left(\mu \frac{\partial u}{\partial y} \right) - \frac{2}{3} \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial (yv)}{\partial y} \right) \right], \qquad (4.7)$$

• Conservação da energia térmica $(\phi=T)$

$$C^{\phi} = c_p, \qquad \Gamma^{\phi} = \kappa, \qquad P^{\phi} = \frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + v \frac{\partial p}{\partial y},$$
 (4.8)

$$S^{\phi} = -\frac{2}{3}\mu \left(\frac{\partial u}{\partial x} + \frac{1}{y}\frac{\partial(yv)}{\partial y}\right)^{2} + \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^{2} + 2\mu \left[\left(\frac{\partial v}{\partial y}\right)^{2} + \left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{v}{y}\right)^{2}\right], \qquad (4.9)$$

onde p é a pressão, c_p é o calor específico a pressão constante e μ e κ são a viscosidade e a condutividade térmica, respectivamente.

O sistema de equações (4.2) incorpora a lei de viscosidade de Newton e a lei de Fourier para o fluxo de calor. Fazendo-se $\mu \to 0$ e $\kappa \to 0$, as equações de Navier-Stokes se reduzem às equações de Euler. O fechamento deste sistema de equações é feito com a equação de estado dos gases ideais

$$p = \rho R_q T, \tag{4.10}$$

onde R_g é a constante do gás.

4.2.2 Propriedades termofísicas

Neste estudo, o gás é considerado uma mistura de argônio, oxigênio e nitrogênio, cujas frações molares \mathscr{X}_i são apresentadas na Tab. 4.1. Esta tabela também apresenta as massas molares \mathscr{M}_i e as constantes do gás $(R_g)_i$ de cada espécie química⁵⁰.

Tabela 4.1 – Componentes da mistura gasosa, incluindo suas frações molares \mathscr{X}_i , massas molares \mathscr{M}_i e constantes de gás $(R_g)_i^{50}$.

Espécie	i	\mathscr{X}_i	$\mathscr{M}_i \; (\mathrm{kg} \mathrm{mol}^{-1})$	$\left(R_g\right)_i \left(\mathrm{Jkg^{-1}K^{-1}}\right)$
Ar	1	0,01	0,0399480000	$208,\!1333233203$
O_2	2	0,21	$0,\!0319988000$	$259,\!8381814318$
N_2	3	0,78	$0,\!0280134800$	$296,\!8038958387$

As propriedades termofísicas da mistura, isto é, o calor específico a pressão constante c_p , a viscosidade μ e a condutividade térmica κ , são calculadas a partir das propriedades termofísicas de cada espécie química i, $((c_p)_i, \mu_i \in \kappa_i, \text{ respectivamente})$, com base nas seguintes equações^{48,51}

$$c_p = \sum_{i=1}^{3} \mathscr{X}_i \left(c_p \right)_i \tag{4.11}$$

е

$$\psi = \sum_{i=1}^{3} \frac{\mathscr{X}_{i} \psi_{i}}{\sum_{j=1}^{3} \mathscr{X}_{j} \Phi_{ij}^{\psi}}, \quad \psi \in \{\mu, \kappa\},$$
(4.12)

onde

$$\Phi_{ij}^{\psi} = \frac{1}{\sqrt{8}} \left(1 + \frac{\mathscr{M}_i}{\mathscr{M}_j} \right)^{-1/2} \left[1 + \left(\frac{\psi_i}{\psi_j} \right)^{1/2} \left(\frac{\mathscr{M}_j}{\mathscr{M}_i} \right)^{1/4} \right]^2, \quad \psi_i \in \{\mu_i, \kappa_i\}.$$
(4.13)

Além disso, a constante de gás para a mistura R_g e sua massa molar \mathcal{M} são dados, respectivamente, por

$$R_g = \sum_{i=1}^3 \frac{(R_g)_i \,\mathscr{X}_i \mathscr{M}_i}{\mathscr{M}} \tag{4.14}$$

е

$$\mathscr{M} = \sum_{i=1}^{3} \mathscr{X}_i \mathscr{M}_i. \tag{4.15}$$

Uma vez conhecidos o calor específico a pressão constante c_p , a viscosidade μ e a condutividade térmica κ , o número de Prandtl Pr e a razão de calores específicos γ^* são dados, respectivamente, por

$$\Pr = \frac{c_p \mu}{\kappa} \tag{4.16}$$

e

$$\gamma^* = \frac{c_p}{c_p - R_g}.\tag{4.17}$$

As propriedades termofísicas para cada espécie química i são funções da temperatura T e calculadas com as fórmulas de McBride et al.⁵⁰:

• Calor específico a pressão constante

$$(c_p)_i = (R_g)_i \left[A_i + B_i T + C_i T^2 + D_i T^3 + E_i T^4 \right];$$
 (4.18)

• Viscosidade

$$\mu_{i} = \exp\left(A_{i}'\ln\left(\frac{T}{K}\right) + \frac{B_{i}'}{T} + \frac{C_{i}'}{T^{2}} + D_{i}'\right) \cdot 10^{-7} \text{ Pas;}$$
(4.19)

• Condutividade térmica

$$\kappa_i = \exp\left(A_i'' \ln\left(\frac{T}{K}\right) + \frac{B_i''}{T} + \frac{C_i''}{T^2} + D_i''\right) \cdot 10^{-4} \text{ W m}^{-1} \text{ K}^{-1}.$$
 (4.20)

Os coeficientes das Eqs. (4.18)-(4.20) foram ajustados por McBride *et al.*⁵⁰ em dois intervalos de temperatura. Os coeficientes e os intervalos de temperatura $[T_b, T_e]$ correspondentes são apresentados nas Tabs. 4.2-4.4 para cada espécie química.

Tabela 4.2 – Coeficientes para o cálculo do calor específico a pressão constante (Eq. (4.18)).

Gás	$\begin{array}{c} T_b \\ (\mathrm{kK}) \end{array}$	$\begin{array}{c} T_e \\ (\mathrm{kK}) \end{array}$	A_i	$\begin{array}{c} B_i \times 10^4 \\ (\mathrm{K}^{-1}) \end{array}$	$\begin{array}{c} C_i \times 10^7 \\ (\mathrm{K}^{-2}) \end{array}$	$\begin{array}{c} D_i \times 10^{11} \\ (\mathrm{K}^{-3}) \end{array}$	$E_i \times 10^{15} \ (\mathrm{K}^{-4})$
Ar	$\substack{0,2\\1}$	1 6	2,5000000 2,5000000	$0,000\ 000\ 0$ $0,000\ 000\ 0$	$0,000\ 000\ 0$ $0,000\ 000\ 0$	$0,000\ 000\ 0$ $0,000\ 000\ 0$	$0,000\ 000\ 0$ $0,000\ 000\ 0$
O_2	$\substack{0,2\\1}$	1 6	$3,7824564\ 3,6609608$	$\begin{array}{c}-29,\!967342\\6,\!5636552\end{array}$	$98,\!473020\\-1,\!4114949$	$-968,\!12951\\2,\!0579766$	$3243,7284 \\ -1,2991325$
N ₂	$_{1}^{0,2}$	1 6	$\begin{array}{c} 3,5310053\\ 2,9525763\end{array}$	-1,2366099 13,969006	$-5,0299944\\-4,9263169$	243,53061 7,8601037	$-1408,8124 \\ -4,6075532$

Gás	T_b (K)	T_e (K)	A_i'	B_i' (K)	C_i' (K ²)	D'_i
Ar	$\begin{array}{c} 300 \\ 1000 \end{array}$	$\begin{array}{c} 1000 \\ 5000 \end{array}$	$\begin{array}{c} 0,57067551 \\ 0,65601183 \end{array}$	$\begin{array}{c} -95,\!117331 \\ 51,\!780497 \end{array}$	$\begin{array}{c} 2089,\!6403 \\ -33046,\!713 \end{array}$	2,4718808 1,7711406
O ₂	$\begin{array}{c} 300 \\ 1000 \end{array}$	$\begin{array}{c} 1000 \\ 5000 \end{array}$	$\begin{array}{c} 0,61936357\\ 0,63839563\end{array}$	$-44,\!608607\\-1,\!2344438$	$-1346,0714\\-22885,810$	$\begin{array}{c} 1,9597562\\ 1,8056937\end{array}$
N_2	$\begin{array}{c} 300 \\ 1000 \end{array}$	$\begin{array}{c} 1000 \\ 5000 \end{array}$	$\begin{array}{c} 0,60443938\\ 0,65060585\end{array}$	$-43,\!632704\\28,\!517449$	$-884,41949 \\ -16690,236$	$\begin{array}{c} 1,8972150\\ 1,5223271 \end{array}$

Tabela 4.3 – Coeficientes para o cálculo da viscosidade (Eq. (4.19)).

Tabela 4.4 – Coeficientes para o cálculo da condutividade térmica (Eq. (4.20)).

Gás	T_b (K)	T_e (K)	A_i''	B_i'' (K)	C_i'' (K ²)	D_i''
Ar	$\begin{array}{c} 300 \\ 1000 \end{array}$	$\begin{array}{c} 1000 \\ 5000 \end{array}$	$\begin{array}{c} 0,56758528 \\ 0,64275516 \end{array}$	-100,15251 14,112 909	$2573,\!6598 \\ -20639,\!082$	2,2537407 1,6440096
O_2	$\begin{array}{c} 300 \\ 1000 \end{array}$	$\begin{array}{c} 1000 \\ 5000 \end{array}$	$\begin{array}{c} 0,81595343 \\ 0,80805788 \end{array}$	-34,366856 119,821 81	$2278,5080 \\ -47335,931$	$1,0050999 \\ 0,95189193$
N_2	$\begin{array}{c} 300 \\ 1000 \end{array}$	$\begin{array}{c} 1000 \\ 5000 \end{array}$	$\begin{array}{c} 0,94306384 \\ 0,65147781 \end{array}$	$\begin{array}{c} 122,\!79898 \\ -150,\!59801 \end{array}$	$-11839,\!435\\-13746,\!760$	$-0,\!10668773\\2,\!1801632$

Aplicando-se a metodologia supracitada, as propriedades termofísicas da mistura gasosa foram calculadas, Tab. 4.5, para três temperaturas empregadas neste trabalho: 200 K, 250 K e 300 K.

$\begin{array}{c} T \\ (\mathrm{K}) \end{array}$	c_p (J/kg.K)	$ \mu $ (10 ⁻⁶ Pa.s)	$\frac{\kappa}{(10^{-3}\mathrm{W/m.K})}$	Pr	γ^*
200	1002,7	$13,\!3$	18,2	0,732	$1,\!40$
250	1002,5	16,1	22,1	0,727	$1,\!40$
300	$1004,\!4$	$18,\! 6$	25,7	0,724	$1,\!40$

Tabela 4.5 – Propriedades termofísicas calculadas.

4.2.3 Condições de contorno

O domínio de cálculo é ilustrado esquematicamente na Fig. 4.2 levando-se em conta a simetria axial do problema. Por conveniência, o contorno do domínio foi separado em quatro partes. A parte mais externa define o contorno norte N, o perfil do corpo define o contorno sul S, o eixo de simetria define o contorno oeste W e a linha vertical acima da base do corpo define o contorno leste E. O contorno sul é formado pelo perfil geométrico g(x) de comprimento l_r e raio de base r_b , que se deseja otimizar, seguido por um cilindro de comprimento l_c . O cilindro foi adicionado para que as condições de contorno a jusante não interfiram no cálculo do coeficiente de arrasto sobre o perfil g(x).

Figura 4.2 – Domínio de cálculo.

A seguir, as condições de contorno são especificadas em cada contorno.

• Contorno norte

As propriedades do gás são as mesmas da corrente-livre, de modo que

$$u = u_{\infty}, \quad v = 0, \quad p = p_{\infty}, \quad T = T_{\infty}, \quad \rho = \frac{p_{\infty}}{R_q T_{\infty}}.$$
 (4.21)

• Contorno oeste

As condições de simetria implicam em

$$(\hat{n} \cdot \nabla) u = 0, \qquad v = 0, \qquad (\hat{n} \cdot \nabla) T = 0, \qquad (\hat{n} \cdot \nabla) p = 0, \qquad (4.22)$$

onde \hat{n} é o vetor unitário normal ao contorno.

• Contorno leste

As propriedades do escoamento não variam ao longo da linha de corrente (escoamento localmente parabólico)

$$(\vec{u} \cdot \nabla) \phi = \text{cte}, \qquad \phi \in \{u, v, T, p\}.$$

$$(4.23)$$

• Contorno sul

Caso o escoamento seja invíscido, deve haver deslizamento do fluido sobre a superfície e não deve haver fluxo de calor, de modo que

$$\hat{n} \cdot \vec{u} = 0, \qquad (\hat{n} \cdot \nabla) T = 0, \qquad (\hat{n} \cdot \nabla) p = 0.$$
 (4.24)

No caso de escoamento viscoso com parede adiabática, as condições de contorno ficam

$$u = 0, \quad v = 0, \quad (\hat{n} \cdot \nabla) T = 0, \quad (\hat{n} \cdot \nabla) p = 0.$$
 (4.25)

4.2.4 Análise dimensional

Introduzindo a parametrização

$$t^{+} = t \frac{u_{\infty}}{l_{r}}, \quad x^{+} = \frac{x}{l_{r}}, \quad y^{+} = \frac{y}{l_{r}}, \quad p^{+} = \frac{p}{p_{\infty}}, \quad T^{+} = \frac{T}{T_{\infty}}, \quad \rho^{+} = \rho \frac{R_{g} T_{\infty}}{p_{\infty}},$$
$$\kappa^{+} = \frac{\kappa}{\kappa_{\infty}}, \quad \mu^{+} = \frac{\mu}{\mu_{\infty}}, \quad c_{p}^{+} = \frac{c_{p}}{c_{p_{\infty}}},$$

onde o índice + indica que a variável é adimensional, é possível mostrar que o sistema de equações diferenciais (4.2) e as condições de contorno dependem de no máximo cinco parâmetros adimensionais:

• A razão de calores específicos

$$\gamma^*_{\infty} = \frac{\frac{c_{p_{\infty}}}{R_g}}{\frac{c_{p_{\infty}}}{R_g} - 1},\tag{4.26}$$

• O número de Mach

$$M_{\infty} = \frac{u_{\infty}}{\sqrt{\gamma^*_{\infty} R_g T_{\infty}}},\tag{4.27}$$

• O número de Reynolds

$$\operatorname{Re}_{\infty} = \frac{u_{\infty}\rho_{\infty}l_r}{\mu_{\infty}},\tag{4.28}$$

• O número de Prandtl

$$\Pr_{\infty} = \frac{c_{p_{\infty}}\mu_{\infty}}{\kappa_{\infty}},\tag{4.29}$$

• A razão de aspecto

$$f_r = \frac{l_r}{2r_b}.\tag{4.30}$$

Considerando-se que γ^*_{∞} e \Pr_{∞} são funções de T_{∞} , o número de parâmetros é reduzido a quatro.

Este tipo de análise é importante para se estabelecer quais são, essencialmente, as grandezas que definem o problema.

4.2.5 Coeficiente de arrasto frontal

A principal variável de interesse neste trabalho é o coeficiente de arrasto frontal $C_{\rm Df}$, definido como

$$C_{\rm Df} = \frac{F_x}{A_b q_\infty},\tag{4.31}$$

onde F_x é a componente da força do fluido sobre a superfície frontal do corpo na direção do escoamento (neste caso axial), A_b é a área da base do corpo e q_{∞} é a pressão dinâmica, isto é,

$$q_{\infty} = \frac{\rho_{\infty} u_{\infty}^2}{2}.\tag{4.32}$$

Nas coordenadas cartesianas, a componente F_i da força do fluido sobre o corpo³ é dada por

$$F_i = \int_S \left(p \delta_{ij} - \sigma_{ij} \right) \mathrm{d}A_j, \tag{4.33}$$

onde σ_{ij} é a componente ij do tensor tensão viscoso. Como a força é causada pela pressão e pelas tensões viscosas, é conveniente que o coeficiente de arrasto seja escrito como

$$C_{\rm Df} = C_{\rm Df}^p + C_{\rm Df}^\mu, \tag{4.34}$$

onde

- C_{Df}^p é a componente do arrasto causado pela pressão;
- $C_{\rm Df}^{\mu}$ é a componente do arrasto causado pela viscosidade;

Levando-se em conta as simplificações da simetria axial, estas componentes são escritas como

$$C_{\rm Df}^{p} = \frac{2\pi}{q_{\infty}A_{b}} \int_{0}^{l_{r}} (p - p_{\infty}) y \frac{\mathrm{d}y}{\mathrm{d}x} \,\mathrm{d}x, \qquad y = g(x), \tag{4.35}$$

$$C_{\rm Df}^{\mu} = \frac{2\pi}{q_{\infty}A_b} \int_0^{l_r} \left(\sigma_{xy} - \sigma_{xx}\frac{\mathrm{d}y}{\mathrm{d}x}\right) y \,\mathrm{d}x, \qquad y = g(x), \tag{4.36}$$

onde

$$\sigma_{xx} = 2\mu \frac{\partial u}{\partial x} - \frac{2}{3}\mu \left(\frac{\partial u}{\partial x} + \frac{1}{y}\frac{\partial (yv)}{\partial y}\right)$$
(4.37)

е

$$\sigma_{xy} = \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right). \tag{4.38}$$

4.2.6 Equações de transporte em coordenadas curvilíneas

Para efetuar o cálculo numérico é desejável que as equações de transporte e as condições de contorno sejam escritas em termos de um sistema de coordenadas curvilíneas que se adapte aos contornos. Sejam $\xi \in \eta$ tais coordenadas e

$$x = x(\xi, \eta), \qquad y = y(\xi, \eta),$$
 (4.39)

uma relação bijetora entre o sistema $\xi\eta$ e o sistema cilíndrico xy. Com base no procedimento descrito por Maliska⁵² e após uma manipulação matemática, as equações de transporte (4.2) em termos das coordenadas $\xi\eta$ tornam-se

$$C^{\phi} \left[\frac{1}{J} \frac{\partial(\rho\phi)}{\partial t} + \frac{1}{y} \frac{\partial(\rho y U \phi)}{\partial \xi} + \frac{1}{y} \frac{\partial(\rho y V \phi)}{\partial \eta} \right] = P^{\phi} + S^{\phi} + \frac{1}{y} \frac{\partial}{\partial \xi} \left[\Gamma^{\phi} y J \left(\alpha \frac{\partial \phi}{\partial \xi} - \beta \frac{\partial \phi}{\partial \eta} \right) \right] + \frac{1}{y} \frac{\partial}{\partial \eta} \left[\Gamma^{\phi} y J \left(\gamma \frac{\partial \phi}{\partial \eta} - \beta \frac{\partial \phi}{\partial \xi} \right) \right], (4.40)$$

onde U e V são as componentes contravariantes do vetor velocidade

$$U = uy_{\eta} - vx_{\eta}, \qquad V = vx_{\xi} - uy_{\xi}, \tag{4.41}$$

Jé o jacobiano da transformação

$$J = [x_{\xi}y_{\eta} - x_{\eta}y_{\xi}]^{-1}$$
(4.42)

e α , β e γ são as componentes do tensor métrico

$$\alpha = x_{\eta}^2 + y_{\eta}^2, \qquad \beta = x_{\xi} x_{\eta} + y_{\xi} y_{\eta}, \qquad \gamma = x_{\xi}^2 + y_{\xi}^2.$$
(4.43)

Os índices ξ e η denotam derivadas parciais, e.g.,

$$x_{\xi} = \frac{\partial x}{\partial \xi}, \quad x_{\eta} = \frac{\partial x}{\partial \eta}, \quad y_{\xi} = \frac{\partial y}{\partial \xi}, \quad y_{\eta} = \frac{\partial y}{\partial \eta}.$$
 (4.44)

Os termos C^{ϕ} e Γ^{ϕ} são invariantes à transformação de coordenadas. Os termos P^{ϕ} e S^{ϕ} são dados por

• Conservação da massa ($\phi = 1$)

$$P^{\phi} = 0, \qquad S^{\phi} = 0, \tag{4.45}$$

• Conservação da quantidade de movimento (componente axial $\phi = u$)

$$P^{\phi} = \frac{\partial(py_{\xi})}{\partial\eta} - \frac{\partial(py_{\eta})}{\partial\xi}, \qquad (4.46)$$

$$S^{\phi} = \frac{1}{3} \frac{\partial}{\partial \xi} \left[J\mu \left(y_{\eta}^{2} \frac{\partial u}{\partial \xi} - y_{\xi} y_{\eta} \frac{\partial u}{\partial \eta} \right) \right] \\ + \frac{1}{3} \frac{\partial}{\partial \eta} \left[J\mu \left(y_{\xi}^{2} \frac{\partial u}{\partial \eta} - y_{\xi} y_{\eta} \frac{\partial u}{\partial \xi} \right) \right]$$

$$+ \frac{1}{y} \frac{\partial}{\partial \xi} \left[Jy \mu x_{\eta} \left(y_{\xi} \frac{\partial v}{\partial \eta} - y_{\eta} \frac{\partial v}{\partial \xi} \right) \right] + \frac{1}{y} \frac{\partial}{\partial \eta} \left[Jy \mu x_{\xi} \left(y_{\eta} \frac{\partial v}{\partial \xi} - y_{\xi} \frac{\partial v}{\partial \eta} \right) \right] - \frac{2}{3} \frac{\partial}{\partial \xi} \left[J \frac{\mu}{y} y_{\eta} \left(x_{\xi} \frac{\partial (yv)}{\partial \eta} - x_{\eta} \frac{\partial (yv)}{\partial \xi} \right) \right] - \frac{2}{3} \frac{\partial}{\partial \eta} \left[J \frac{\mu}{y} y_{\xi} \left(x_{\eta} \frac{\partial (yv)}{\partial \xi} - x_{\xi} \frac{\partial (yv)}{\partial \eta} \right) \right], \qquad (4.47)$$

• Conservação da quantidade de movimento (componente radial $\phi=v)$

$$P^{\phi} = \frac{\partial(px_{\eta})}{\partial\xi} - \frac{\partial(px_{\xi})}{\partial\eta}, \qquad (4.48)$$

$$S^{\phi} = \frac{1}{3y} \frac{\partial}{\partial \xi} \left[J\mu y \left(x_{\eta}^{2} \frac{\partial v}{\partial \xi} - x_{\xi} x_{\eta} \frac{\partial v}{\partial \eta} \right) \right] + \frac{1}{3y} \frac{\partial}{\partial \eta} \left[J\mu y \left(x_{\xi}^{2} \frac{\partial v}{\partial \eta} - x_{\xi} x_{\eta} \frac{\partial v}{\partial \xi} \right) \right] + \frac{\partial}{\partial \xi} \left[J\mu y_{\eta} \left(x_{\xi} \frac{\partial u}{\partial \eta} - x_{\eta} \frac{\partial u}{\partial \xi} \right) \right] + \frac{\partial}{\partial \eta} \left[J\mu y_{\xi} \left(x_{\eta} \frac{\partial u}{\partial \xi} - x_{\xi} \frac{\partial u}{\partial \eta} \right) \right] - \frac{2}{3} \frac{\partial}{\partial \xi} \left[J\mu x_{\eta} \left(y_{\xi} \frac{\partial u}{\partial \eta} - y_{\eta} \frac{\partial u}{\partial \xi} \right) \right] - \frac{2}{3} \frac{\partial}{\partial \eta} \left[J\mu x_{\xi} \left(y_{\eta} \frac{\partial u}{\partial \xi} - y_{\xi} \frac{\partial u}{\partial \eta} \right) \right] - \frac{4}{3} \frac{\mu v}{y^{2} J} - \frac{2v}{3y} \left[\frac{\partial}{\partial \eta} \left(x_{\xi} \mu \right) - \frac{\partial}{\partial \xi} \left(x_{\eta} \mu \right) \right],$$
(4.49)

• Conservação da energia térmica $(\phi=T)$

$$P^{\phi} = \frac{1}{J}\frac{\partial p}{\partial t} - uP^{u} - vP^{v}, \qquad (4.50)$$

$$S^{\phi} = 2\mu J \left(\frac{\partial(y_{\eta}u)}{\partial\xi} - \frac{\partial(y_{\xi}u)}{\partial\eta} \right)^{2} + 2\mu J \left(\frac{\partial(x_{\xi}v)}{\partial\eta} - \frac{\partial(x_{\eta}v)}{\partial\xi} \right)^{2} + \mu J \left(\frac{\partial}{\partial\xi} \left(vy_{\eta} - ux_{\eta} \right) + \frac{\partial}{\partial\eta} \left(ux_{\xi} - vy_{\xi} \right) \right)^{2} - \frac{2}{3}\mu J \left(\frac{\partial U}{\partial\xi} + \frac{\partial V}{\partial\eta} + \frac{v}{yJ} \right)^{2} + \frac{2\mu}{J} \left(\frac{v}{y} \right)^{2}.$$
(4.51)

4.3 MODELO NUMÉRICO

O modelo numérico para a resolução das equações de transporte é baseado no Método dos Volumes Finitos^{37,38,52}. Neste método, o domínio de cálculo é discretizado em volumes elementares, as equações de transporte são integradas em cada volume e discretizadas de modo que ao final do processo se obtém um sistema acoplado de sistemas lineares. Os sistemas lineares são resolvidos iterativamente até que algum critério de convergência seja satisfeito. Por fim, as grandezas de interesse são calculadas. Os detalhes do modelo são apresentados a seguir.

4.3.1 Geração e indexação da malha

Dois métodos foram aplicados para a geração da malha: o método algébrico^{53–55} e um método inspirado nos geradores hiperbólicos⁵⁵, denominado de semialgébrico.

A geração da malha com base no método algébrico é feita da seguinte forma. Primeiramente os contornos sul e norte são discretizados. Os pontos do contorno sul são, então, ligados aos respectivos pontos do contorno norte através de segmentos de reta (linhas de ξ constante no sistema coordenado curvilíneo), como ilustra a Fig. 4.3a. Os segmentos de reta são, então, discretizados e ligados com novos segmentos de reta (linhas de η constante), como mostra a Fig. 4.3b. A distribuição dos pontos ao longo das linhas ξ é feita de modo que a distância entre pontos sucessivos varie de acordo com uma progressão geométrica. Os pontos são concentrados nas proximidades do contorno sul, pois nesta região espera-se variações mais significativas nos campos de pressão, velocidade e temperatura.

Figura 4.3 – Esquema para a geração da malha algébrica.

No método semialgébrico, assume-se que a distribuição de pontos sobre o contorno sul (x_s, y_s) e que as variáveis \hat{h}_0 , $\chi_w \in \chi_e$, mostradas na Fig. 4.4, sejam prescritas. Com base nestas informações, os pontos (x_n, y_n) da próxima linha são determinados. A nova linha obtida é tratada como o contorno sul e o procedimento é repetido até que o número de linhas η desejado seja obtido. Neste método não há um controle preciso da posição do contorno norte, o que não representa um problema para escoamentos externos.

Figura 4.4 – Esquema para a geração da malha semialgébrica.

As coordenadas (x_n, y_n) são calculadas de acordo com as seguintes fórmulas

$$x_n = x_s + \hat{h}\cos\left(\chi\right),\tag{4.52}$$

$$y_n = y_s + h\sin\left(\chi\right),\tag{4.53}$$

onde $\hat{h} \in \chi$ são a distância e o ângulo ilustrados na Fig. 4.4.

O ângulo χ é determinado a partir da solução da seguinte equação

$$\chi + a_v \frac{\partial^2 \chi}{\partial \xi^2} = \frac{\pi}{2} + \vartheta, \qquad (4.54)$$

sujeita às condições de contorno

$$\chi(\xi_i) = \chi_w, \qquad \chi(\xi_f) = \chi_e, \tag{4.55}$$

onde ξ_i e ξ_f são os valores iniciais e finais de ξ , respectivamente, ao longo da linha η . Na Eq. (4.54), a_v é um parâmetro ajustável que simula uma viscosidade artificial e ϑ é a inclinação local do contorno sul.

O comprimento \hat{h} é dado por

$$\hat{h}(\xi,\eta) = \hat{h}_0(\eta)s(\xi)$$
(4.56)

onde $s(\xi)$ é a solução da equação

$$s + a_{wf} \frac{\partial^2 s}{\partial \xi^2} = s_0 \tag{4.57}$$

sujeita às condições de contorno

$$s(\xi_i) = s(\xi_f) = 1.$$
 (4.58)

Na Eq. (4.57), a_{wf} é um parâmetro que simula uma viscosidade artificial e

$$s_0 = \frac{1}{|\sin\left(\chi - \vartheta\right)|}.\tag{4.59}$$

Para concentrar os volumes nas proximidades do contorno sul, o valor de \hat{h}_0 varia de acordo com uma progressão geométrica, de modo análogo ao que é feito para a malha algébrica. Além disso, para melhorar a qualidade da malha, o valor de a_v varia linearmente com η . O valor inicial a_{vi} e final a_{vf} são ajustados para cada geometria.

Os valores de χ são obtidos resolvendo-se numericamente a Eq. (4.54) com base na seguinte discretização

$$\chi_k + a_v \frac{\chi_{k-1} - 2\chi_k + \chi_{k+1}}{\Delta \xi^2} = \frac{\pi}{2} + \vartheta_k, \tag{4.60}$$

onde k é o índice de um ponto ao longo da linha η discretizada e

$$\vartheta_k = \arctan\left(\frac{(y_s)_{k+1} - (y_s)_{k-1}}{(x_s)_{k+1} - (x_s)_{k-1}}\right).$$
(4.61)

A Eq. (4.60) é resolvida com o Algoritmo de Thomas⁵².

O mesmo procedimento para a determinação de χ é aplicado para o cálculo de s.

Uma vez criada a malha, é preciso indexá-la, para que cada volume de controle possa ser identificado. A Fig. 4.5 exemplifica a forma de indexação empregada.

(b) Indexação no sistema transformado

Figura 4.5 – Indexação da malha.

A Fig. 4.5a mostra uma malha no sistema coordenado cartesiano com $n_x = 4$ partições sobre as linhas $\eta \in n_y = 4$ partições sobre as linhas ξ , gerando 16 volumes de controle. A Fig. 4.5b mostra a malha correspondente no sistema coordenado curvilíneo. Neste sistema a malha é uniforme, ortogonal e apresenta mais volumes que no sistema cartesiano. Os volumes adicionais (externos ao quadrado com bordas espessas) são chamados de volumes fictícios e são utilizados na aplicação das condições de contorno. Cada volume de controle é identificado com um par de índices (i,j) ou através de um único índice P, que pode ser escrito em termos de $i \in j$ como

$$P = (n_x + 2)(j - 1) + i.$$
(4.62)

4.3.2 Integração das equações de transporte

As equações de transporte devem ser integradas em cada volume elementar do domínio de cálculo e em um intervalo de tempo $[t - \Delta t, t]$. A Fig. 4.6 ilustra um volume elementar P e os seus volumes vizinhos no sistema coordenado transformado $\xi\eta$. A notação utilizada para localizar os volumes é a normalmente empregada no método dos volumes finitos.

A integração e discretização das equações de transporte é feita de modo que as variáveis principais, *i.e.*, ρ , p, T, $u \in v$, sejam determinadas sobre o mesmo ponto em cada volume elementar, que neste caso é o centro de cada volume elementar no sistema transformado. Esta forma de organizar o cálculo das variáveis principais é chamada de arranjo colocalizado⁵². Caso seja necessário calcular as variáveis sobre outros pontos, então algum esquema de interpolação é aplicado.

Figura 4.6 – Volume de controle genérico P no sistema coordenado curvilíneo.

No sistema coordenado transformado, a integração sobre o volume elementar e sobre o intervalo de tempo é dada pela expressão

$$\int_{t-\Delta t}^{t} \int_{\eta_{\rm s}}^{\eta_{\rm n}} \int_{\xi_{\rm W}}^{\xi_{\rm e}} 2\pi y \left[\cdots\right] \mathrm{d}\xi \, \mathrm{d}\eta \, \mathrm{d}t',\tag{4.63}$$

onde $[\cdots]$ representa o termo a ser integrado.

Com o auxílio da aproximação totalmente implícita⁵² para a integração temporal,

$$\frac{1}{\Delta t} \int_{t-\Delta t}^{t} \psi(t') \mathrm{d}t' = \psi(t) + \mathcal{O}(\Delta t), \qquad (4.64)$$

e da regra do retângulo⁵⁶ para a integração espacial, as equações de transporte (4.40)

ficam discretizadas como

$$C_{\rm P}^{\phi} \left[\frac{(\mathcal{M}_{\rm P}\phi_{\rm P}) - (\mathcal{M}_{\rm P}\phi_{\rm P})^{\circ}}{\Delta t} + \frac{\dot{\mathcal{M}}_{\rm e}\phi_{\rm e} - \dot{\mathcal{M}}_{\rm w}\phi_{\rm w}}{\Delta \xi} + \frac{\dot{\mathcal{M}}_{\rm n}\phi_{\rm n} - \dot{\mathcal{M}}_{\rm s}\phi_{\rm s}}{\Delta \eta} \right] = y_{\rm P}P_{\rm P}^{\phi} + y_{\rm P}S_{\rm P}^{\phi} + \frac{1}{\Delta\xi} \left[D_{11}\frac{\partial\phi}{\partial\xi} + D_{12}\frac{\partial\phi}{\partial\eta} \right]_{\rm e} - \frac{1}{\Delta\xi} \left[D_{11}\frac{\partial\phi}{\partial\xi} + D_{12}\frac{\partial\phi}{\partial\eta} \right]_{\rm w} + \frac{1}{\Delta\eta} \left[D_{12}\frac{\partial\phi}{\partial\xi} + D_{22}\frac{\partial\phi}{\partial\eta} \right]_{\rm n} - \frac{1}{\Delta\eta} \left[D_{12}\frac{\partial\phi}{\partial\xi} + D_{22}\frac{\partial\phi}{\partial\eta} \right]_{\rm s} + \mathcal{O}(\Delta t) + \mathcal{O}(\Delta\xi^2) + \mathcal{O}(\Delta\eta^2)$$

$$(4.65)$$

onde

$$\Delta \xi = \xi_{\rm e} - \xi_{\rm w}, \qquad \Delta \eta = \eta_{\rm n} - \eta_{\rm s}, \tag{4.66}$$

$$\mathcal{M}_{\mathrm{P}} = \left(\frac{\rho y}{J}\right)_{\mathrm{P}}, \quad \dot{\mathcal{M}}_{\mathrm{e}} = \left(\rho y U\right)_{\mathrm{e}},$$

$$\dot{\mathcal{M}}_{\mathrm{w}} = \left(\rho y U\right)_{\mathrm{w}}, \quad \dot{\mathcal{M}}_{\mathrm{n}} = \left(\rho y V\right)_{\mathrm{n}}, \quad \dot{\mathcal{M}}_{\mathrm{s}} = \left(\rho y V\right)_{\mathrm{s}}$$

$$(4.67)$$

е

$$D_{11} = \Gamma^{\phi} y J \alpha, \quad D_{12} = -\Gamma^{\phi} y J \beta, \quad D_{22} = \Gamma^{\phi} y J \gamma.$$
(4.68)

As expressões para $P^{\phi}_{\rm P},$ presente na Eq. (4.65), são

$$P_{\rm P}^1 = 0, (4.69)$$

$$P_{\rm P}^{u} = \frac{(py_{\xi})_{\rm n} - (py_{\xi})_{\rm s}}{\Delta \eta} - \frac{(py_{\eta})_{\rm e} - (py_{\eta})_{\rm w}}{\Delta \xi}, \qquad (4.70)$$

$$P_{\rm P}^{v} = \frac{(px_{\eta})_{\rm e} - (px_{\eta})_{\rm w}}{\Delta\xi} - \frac{(px_{\xi})_{\rm n} - (px_{\xi})_{\rm s}}{\Delta\eta}, \qquad (4.71)$$

$$P_{\rm P}^{\rm T} = \frac{1}{J_{\rm P}} \frac{p_{\rm P} - p_{\rm P}^{\circ}}{\Delta t} - u_{\rm P} P_{\rm P}^{u} - v_{\rm P} P_{\rm P}^{v}.$$
(4.72)

As expressões para $S^{\phi}_{\rm P},$ também presente na Eq. (4.65), são

$$S_{\rm P}^1 = 0,$$
 (4.73)
$$S_{\rm P}^{u} = \left[\frac{J\mu}{3\Delta\xi} \left(y_{\eta}^{2}\frac{\partial u}{\partial\xi} - y_{\xi}y_{\eta}\frac{\partial u}{\partial\eta}\right)\right]_{\rm e} - \left[\frac{J\mu}{3\Delta\xi} \left(y_{\eta}^{2}\frac{\partial u}{\partial\xi} - y_{\xi}y_{\eta}\frac{\partial u}{\partial\eta}\right)\right]_{\rm w} + \left[\frac{J\mu}{3\Delta\eta} \left(y_{\xi}^{2}\frac{\partial u}{\partial\eta} - y_{\xi}y_{\eta}\frac{\partial u}{\partial\xi}\right)\right]_{\rm n} - \left[\frac{J\mu}{3\Delta\eta} \left(y_{\xi}^{2}\frac{\partial u}{\partial\eta} - y_{\xi}y_{\eta}\frac{\partial u}{\partial\xi}\right)\right]_{\rm s} + \left[\frac{Jy\mu x_{\eta}}{y_{\rm P}\Delta\xi} \left(y_{\xi}\frac{\partial v}{\partial\eta} - y_{\eta}\frac{\partial v}{\partial\xi}\right)\right]_{\rm e} - \left[\frac{Jy\mu x_{\eta}}{y_{\rm P}\Delta\xi} \left(y_{\xi}\frac{\partial v}{\partial\eta} - y_{\eta}\frac{\partial v}{\partial\xi}\right)\right]_{\rm w} + \left[\frac{Jy\mu x_{\xi}}{y_{\rm P}\Delta\eta} \left(y_{\eta}\frac{\partial v}{\partial\xi} - y_{\xi}\frac{\partial v}{\partial\eta}\right)\right]_{\rm n} - \left[\frac{Jy\mu x_{\xi}}{y_{\rm P}\Delta\eta} \left(y_{\eta}\frac{\partial v}{\partial\xi} - y_{\xi}\frac{\partial v}{\partial\eta}\right)\right]_{\rm s} - \left[\frac{2J\mu}{3y\Delta\xi}y_{\eta} \left(x_{\xi}\frac{\partial (yv)}{\partial\eta} - x_{\eta}\frac{\partial (yv)}{\partial\xi}\right)\right]_{\rm e} + \left[\frac{2J\mu}{3y\Delta\xi}y_{\eta} \left(x_{\xi}\frac{\partial (yv)}{\partial\eta} - x_{\eta}\frac{\partial (yv)}{\partial\xi}\right)\right]_{\rm w} - \left[\frac{2J\mu}{3y\Delta\eta}y_{\xi} \left(x_{\eta}\frac{\partial (yv)}{\partial\xi} - x_{\xi}\frac{\partial (yv)}{\partial\eta}\right)\right]_{\rm s} + \left[\frac{2J\mu}{3y\Delta\eta}y_{\xi} \left(x_{\eta}\frac{\partial (yv)}{\partial\xi} - x_{\xi}\frac{\partial (yv)}{\partial\eta}\right)\right]_{\rm s},$$

$$S_{P}^{v} = \left[\frac{J\mu y}{3y_{P}\Delta\xi} \left(x_{\eta}^{2}\frac{\partial v}{\partial\xi} - x_{\xi}x_{\eta}\frac{\partial v}{\partial\eta}\right)\right]_{e} - \left[\frac{J\mu y}{3y_{P}\Delta\xi} \left(x_{\eta}^{2}\frac{\partial v}{\partial\xi} - x_{\xi}x_{\eta}\frac{\partial v}{\partial\eta}\right)\right]_{w} + \left[\frac{J\mu y}{3y_{P}\Delta\eta} \left(x_{\xi}^{2}\frac{\partial v}{\partial\eta} - x_{\xi}x_{\eta}\frac{\partial v}{\partial\xi}\right)\right]_{n} - \left[\frac{J\mu y}{3y_{P}\Delta\eta} \left(x_{\xi}^{2}\frac{\partial v}{\partial\eta} - x_{\xi}x_{\eta}\frac{\partial v}{\partial\xi}\right)\right]_{s} + \left[\frac{J\mu y_{\eta}}{\Delta\xi} \left(x_{\xi}\frac{\partial u}{\partial\eta} - x_{\eta}\frac{\partial u}{\partial\xi}\right)\right]_{e} - \left[\frac{J\mu y_{\eta}}{\Delta\xi} \left(x_{\xi}\frac{\partial u}{\partial\eta} - x_{\eta}\frac{\partial u}{\partial\xi}\right)\right]_{w} + \left[\frac{J\mu y_{\xi}}{\Delta\eta} \left(x_{\eta}\frac{\partial u}{\partial\xi} - x_{\xi}\frac{\partial u}{\partial\eta}\right)\right]_{n} - \left[\frac{J\mu y_{\xi}}{\Delta\eta} \left(x_{\eta}\frac{\partial u}{\partial\xi} - x_{\xi}\frac{\partial u}{\partial\eta}\right)\right]_{s}$$

$$- \left[\frac{2J\mu x_{\eta}}{3\Delta\xi} \left(y_{\xi}\frac{\partial u}{\partial\eta} - y_{\eta}\frac{\partial u}{\partial\xi}\right)\right]_{e} + \left[\frac{2J\mu x_{\eta}}{3\Delta\xi} \left(y_{\xi}\frac{\partial u}{\partial\eta} - y_{\eta}\frac{\partial u}{\partial\xi}\right)\right]_{w} - \left[\frac{2J\mu x_{\xi}}{3\Delta\eta} \left(y_{\eta}\frac{\partial u}{\partial\xi} - y_{\xi}\frac{\partial u}{\partial\eta}\right)\right]_{n} + \left[\frac{2J\mu x_{\xi}}{3\Delta\eta} \left(y_{\eta}\frac{\partial u}{\partial\xi} - y_{\xi}\frac{\partial u}{\partial\eta}\right)\right]_{s}$$

$$- \frac{4}{3} \left[\frac{\mu v}{Jy^{2}}\right]_{P} - \frac{2}{3}\frac{v_{P}}{y_{P}\Delta\eta} \left\{\left[\mu x_{\xi}\right]_{n} - \left[\mu x_{\xi}\right]_{s}\right\} + \frac{2}{3}\frac{v_{P}}{y_{P}\Delta\xi} \left\{\left[\mu x_{\eta}\right]_{e} - \left[\mu x_{\eta}\right]_{w}\right\},$$
(4.75)

$$S_{\rm P}^{\rm T} = 2\mu_{\rm P}J_{\rm P} \left[\frac{(y_{\eta}u)_{\rm e} - (y_{\eta}u)_{\rm w}}{\Delta\xi} - \frac{(y_{\xi}u)_{\rm n} - (y_{\xi}u)_{\rm s}}{\Delta\eta} \right]^{2} + 2\mu_{\rm P}J_{\rm P} \left[\frac{(x_{\xi}v)_{\rm n} - (x_{\xi}v)_{\rm s}}{\Delta\eta} - \frac{(x_{\eta}v)_{\rm e} - (x_{\eta}v)_{\rm w}}{\Delta\xi} \right]^{2} + \mu_{\rm P}J_{\rm P} \left[\frac{(vy_{\eta} - ux_{\eta})_{\rm e} - (vy_{\eta} - ux_{\eta})_{\rm w}}{\Delta\xi} + \frac{(ux_{\xi} - vy_{\xi})_{\rm n} - (ux_{\xi} - vy_{\xi})_{\rm s}}{\Delta\eta} \right]^{2} - \frac{2}{3} [\mu J]_{\rm P} \left(\frac{U_{\rm e} - U_{\rm w}}{\Delta\xi} + \frac{V_{\rm n} - V_{\rm s}}{\Delta\eta} + \left(\frac{v}{Jy}\right)_{\rm P} \right)^{2} + \left[\frac{2\mu}{J} \left(\frac{v}{y}\right)^{2} \right]_{\rm P}.$$
(4.76)

Algumas aproximações ainda precisam ser feitas para completar a discretização

da Eq. (4.65). As aproximações relacionadas às variáveis geométricas, como as métricas da transformação α , $\beta \in \gamma$, por exemplo, são apresentadas da Seç. A.1 do Apêndice A. As aproximações relacionadas às variáveis principais, representadas genericamente por $\phi \in \{\rho, p, u, v, T\}$, e suas derivadas nas faces do volume elementar são dadas a seguir. Neste caso, as aproximações dependem se ϕ ocorre em termos advectivos ou difusivos.

Para garantir a estabilidade do esquema numérico, a aproximação para a função ϕ nos termos advectivos (os termos do lado esquerdo da Eq. (4.65), exceto os da derivada temporal) sobre as faces é feita utilizando o esquema UDS³⁷ (*Upstream Differencing Scheme*) com correção adiada para o CDS³⁷ (*Central Differencing Scheme*), isto é,

$$\phi_{\rm e} = \left(\frac{1}{2} + \hat{\alpha}_{\rm e}\right)\phi_{\rm P} + \left(\frac{1}{2} - \hat{\alpha}_{\rm e}\right)\phi_{\rm E} + \hat{\beta}\hat{\alpha}_{\rm e}\left(\phi_{\rm E}^{m} - \phi_{\rm P}^{m}\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\xi) + \hat{\beta}\mathcal{O}(\Delta\xi^{2}), \qquad (4.77)$$

$$\phi_{\rm w} = \left(\frac{1}{2} + \hat{\alpha}_{\rm w}\right)\phi_{\rm W} + \left(\frac{1}{2} - \hat{\alpha}_{\rm w}\right)\phi_{\rm P} + \hat{\beta}\hat{\alpha}_{\rm w}\left(\phi_{\rm P}^m - \phi_{\rm W}^m\right) \\ + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\xi) + \hat{\beta}\mathcal{O}(\Delta\xi^2), \tag{4.78}$$

$$\phi_{n} = \left(\frac{1}{2} + \hat{\alpha}_{n}\right)\phi_{P} + \left(\frac{1}{2} - \hat{\alpha}_{n}\right)\phi_{N} + \hat{\beta}\hat{\alpha}_{n}\left(\phi_{N}^{m} - \phi_{P}^{m}\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^{2}), \qquad (4.79)$$

$$\phi_{\rm s} = \left(\frac{1}{2} + \hat{\alpha}_{\rm s}\right)\phi_{\rm S} + \left(\frac{1}{2} - \hat{\alpha}_{\rm s}\right)\phi_{\rm P} + \hat{\beta}\hat{\alpha}_{\rm s}\left(\phi_{\rm P}^{m} - \phi_{\rm S}^{m}\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^{2}), \qquad (4.80)$$

onde

$$\hat{\alpha}_{\rm e} = \frac{\operatorname{sgn} U_{\rm e}}{2}, \quad \hat{\alpha}_{\rm w} = \frac{\operatorname{sgn} U_{\rm w}}{2}, \quad \hat{\alpha}_{\rm n} = \frac{\operatorname{sgn} V_{\rm n}}{2}, \quad \hat{\alpha}_{\rm s} = \frac{\operatorname{sgn} V_{\rm s}}{2}, \quad (4.81)$$

 $0\leq\hat{\beta}\leq 1$ é a constante de acoplamento entre os esquemas UDS e CDS e o índicemindica que a variável é obtida do último nível iterativo.

Para os termos difusivos, utiliza-se o esquema CDS puro, isto é, as funções nas faces ficam

$$\phi_{\rm e} = \frac{\phi_{\rm E} + \phi_{\rm P}}{2} + \mathcal{O}(\Delta \xi^2), \qquad (4.82)$$

$$\phi_{\rm w} = \frac{\phi_{\rm W} + \phi_{\rm P}}{2} + \mathcal{O}(\Delta \xi^2), \qquad (4.83)$$

$$\phi_{\rm n} = \frac{\phi_{\rm N} + \phi_{\rm P}}{2} + \mathcal{O}(\Delta \eta^2), \qquad (4.84)$$

$$\phi_{\rm s} = \frac{\phi_{\rm S} + \phi_{\rm P}}{2} + \mathcal{O}(\Delta \eta^2) \tag{4.85}$$

e as suas derivadas

$$\left. \frac{\partial \phi}{\partial \xi} \right|_{\rm e} = \frac{\phi_{\rm E} - \phi_{\rm P}}{\Delta \xi} + \mathcal{O}(\Delta \xi^2), \tag{4.86}$$

$$\left. \frac{\partial \phi}{\partial \xi} \right|_{\rm w} = \frac{\phi_{\rm P} - \phi_{\rm W}}{\Delta \xi} + \mathcal{O}(\Delta \xi^2), \tag{4.87}$$

$$\left. \frac{\partial \phi}{\partial \xi} \right|_{n} = \frac{\phi_{\rm NE} + \phi_{\rm E} - \phi_{\rm NW} - \phi_{\rm W}}{4\Delta \xi} + \mathcal{O}(\Delta \xi^{2}), \tag{4.88}$$

$$\left. \frac{\partial \phi}{\partial \xi} \right|_{s} = \frac{\phi_{SE} + \phi_{E} - \phi_{SW} - \phi_{W}}{4\Delta \xi} + \mathcal{O}(\Delta \xi^{2}), \tag{4.89}$$

$$\left. \frac{\partial \phi}{\partial \eta} \right|_{\mathbf{n}} = \frac{\phi_{\mathbf{N}} - \phi_{\mathbf{P}}}{\Delta \eta} + \mathcal{O}(\Delta \eta^2), \tag{4.90}$$

$$\left. \frac{\partial \phi}{\partial \eta} \right|_{s} = \frac{\phi_{\rm P} - \phi_{\rm S}}{\Delta \eta} + \mathcal{O}(\Delta \eta^2), \tag{4.91}$$

$$\left. \frac{\partial \phi}{\partial \eta} \right|_{\rm e} = \frac{\phi_{\rm NE} + \phi_{\rm N} - \phi_{\rm SE} - \phi_{\rm S}}{4\Delta \eta} + \mathcal{O}(\Delta \eta^2), \tag{4.92}$$

$$\left. \frac{\partial \phi}{\partial \eta} \right|_{\rm w} = \frac{\phi_{\rm NW} + \phi_{\rm N} - \phi_{\rm SW} - \phi_{\rm S}}{4\Delta \eta} + \mathcal{O}(\Delta \eta^2). \tag{4.93}$$

O cálculo das propriedades termofísicas sobre as faces dos volumes segue um procedimento diferente. De acordo com Patankar³⁹, o procedimento mais adequado para calcular $\Gamma \in {\mu,\kappa}$ na interface entre dois volumes de controle reais com base no valor de Γ no centroide destes volumes, *e.g.*, calcular $\Gamma_{\rm e}$ com base em $\Gamma_{\rm P}$ e $\Gamma_{\rm E}$, é

$$\Gamma_{\rm e} = 2 \frac{\Gamma_{\rm P} \Gamma_{\rm E}}{\Gamma_{\rm P} + \Gamma_{\rm E}} + \mathcal{O}(\Delta \xi^2). \tag{4.94}$$

O procedimento é análogo para as demais faces. No caso das faces dos contornos, Γ é calculado a partir da temperatura da face. No caso do contorno leste, por exemplo,

$$\Gamma_{\rm e} = \Gamma(T_{\rm e}),\tag{4.95}$$

onde

$$T_{\rm e} = \frac{T_{\rm P} + T_{\rm E}}{2} + \mathcal{O}(\Delta \xi^2).$$
 (4.96)

Deve-se destacar que, embora as propriedades termofísicas sejam consideradas constantes nas otimizações, o código computacional foi preparado para tratar escoamentos com propriedades termofísicas variáveis utilizando a metodologia da Seç. 4.2.2 e a aproximação supramencionada.

Inserindo-se as aproximações (4.77)-(4.93) nas equações (4.65) e (4.69)-(4.76), obtém-se o seguinte conjunto de equações

$$A_{\rm sw}^{\phi}\phi_{\rm SW} + A_{\rm s}^{\phi}\phi_{\rm S} + A_{\rm se}^{\phi}\phi_{\rm SE} + A_{\rm w}^{\phi}\phi_{\rm W} + A_{\rm P}^{\phi}\phi_{\rm P} + A_{\rm e}^{\phi}\phi_{\rm E} + A_{\rm nw}^{\phi}\phi_{\rm NW} + A_{\rm n}^{\phi}\phi_{\rm N} + A_{\rm ne}^{\phi}\phi_{\rm NE} = b_{\rm P}^{\phi} \quad (4.97)$$

para $\phi \in \{1, u, v, T\}$, onde os coeficientes A^{ϕ} e termo fonte b^{ϕ} são dados no Apêndice A para $\phi \in \{u, v, T\}$.

O conjunto de equações representado por (4.97) e pela equação de estado (4.10) é não linear e acoplado. Por este motivo, estas equações precisam ser resolvidas iterativamente. Além disso, as equações derivadas da conservação da quantidade do movimento nas direções x e y e a equação da conservação da energia térmica servem como equações evolutivas para u, v e T, respectivamente, ao passo que a equação da conservação da massa não pode, em geral, ser usada como uma equação evolutiva para ρ , pois este procedimento leva a instabilidades numéricas em escoamentos com baixa compressibilidade. Ao invés disso, a equação da conservação da massa pode ser pensada como um vínculo que deve ser satisfeito ao se resolver as demais equações. Neste caso, se o campo de pressão for mantido livre, é possível ajustá-lo em cada iteração de modo que a conservação da massa seja satisfeita, ou melhor, é possível transformar a equação da conservação da massa em uma equação para a correção do campo de pressão. A próxima seção descreve esta transformação.

4.3.3 Equação para a correção da pressão

Considere os sistemas lineares (4.97) obtidos das equações do movimento para u e $v, \ e.g.,$

$$A^{\phi}_{\mathrm{P}}\phi_{\mathrm{P}} + \sum_{\mathrm{nb}} A^{\phi}_{\mathrm{nb}} \phi_{\mathrm{NB}} = \frac{\mathcal{M}^{\circ}_{\mathrm{P}}\phi^{\circ}_{\mathrm{P}}}{\Delta t} + \omega^{\phi}_{\mathrm{P}} + y_{\mathrm{P}}P^{\phi}_{\mathrm{P}} + y_{\mathrm{P}}\tilde{S}^{\phi}_{\mathrm{P}}, \qquad \phi \in \{u, v\},$$
(4.98)

onde os significados de $\omega_{\rm P}^{\phi}$ e $\tilde{S}_{\rm P}^{\phi}$ são dados no Apêndice A. Dados os coeficientes A^{ϕ} e termos fontes b^{ϕ} dos sistemas lineares, caso um campo de pressão p correto seja prescrito, então os campos de velocidades u e v, obtidos da Eq. (4.98), bem como o campo de densidade ρ , obtido da equação de estado

$$\rho = \frac{p}{R_g T},\tag{4.99}$$

devem satisfazer a equação da continuidade

$$\frac{y_{\rm P}}{J_{\rm P}} \frac{\rho_{\rm P} - \rho_{\rm P}^{\circ}}{\Delta t} + \frac{\left(\rho y U\right)_{\rm e} - \left(\rho y U\right)_{\rm w}}{\Delta \xi} + \frac{\left(\rho y V\right)_{\rm n} - \left(\rho y V\right)_{\rm s}}{\Delta \eta} = 0.$$
(4.100)

Ocorre que o campo de pressão não é conhecido *a priori*. Deste modo, se um campo de pressão estimado p^* for prescrito, também serão obtidos das equações (4.98) e (4.99) campos de velocidade u^* e v^* e densidade ρ^* estimados, isto é,

$$A_{\mathrm{P}}^{\phi}\phi_{\mathrm{P}}^{*} + \sum_{\mathrm{nb}} A_{\mathrm{nb}}^{\phi} \phi_{\mathrm{NB}}^{*} = \frac{\mathcal{M}_{\mathrm{P}}^{\circ}\phi_{\mathrm{P}}^{\circ}}{\Delta t} + \omega_{\mathrm{P}}^{\phi} + y_{\mathrm{P}} \left(P_{\mathrm{P}}^{\phi}\right)^{*} + y_{\mathrm{P}}\tilde{S}_{\mathrm{P}}^{\phi}, \qquad \phi \in \{u, v\}$$
(4.101)

е

$$\rho^* = \frac{p^*}{R_g T},\tag{4.102}$$

que não necessariamente satisfarão a equação da continuidade. Como a equação da continuidade deve ser sempre satisfeita, ela pode ser utilizada para determinar o desvio da pressão p', isto é,

$$p' = p - p^*. (4.103)$$

Mas para isto, é necessário primeiramente encontrar uma relação entre os campos de densidade e de velocidade com o desvio da pressão, ou seja,

$$\rho = \rho(p'), \quad u = u(p'), \quad v = v(p').$$
(4.104)

Estas relações são conhecidas⁵² como acoplamento pressão-densidade e pressão-velocidade.

O acoplamento pressão-densidade é obtido diretamente da equação de estado (4.99)

$$\rho = \frac{p}{R_g T} = \frac{p^* + p'}{R_g T} = \rho^* + \rho', \qquad (4.105)$$

onde

$$\rho^* = \frac{p^*}{R_g T}, \qquad \rho' = \frac{p'}{R_g T}.$$
(4.106)

Como a pressão será calculada no centroide dos volumes de controle, então

$$\rho_{\rm P} = \rho_{\rm P}^* + \hat{g}_{\rm P} p_{\rm P}', \qquad (4.107)$$

onde

$$\hat{g}_{\rm P} = \frac{1}{R_g T_{\rm P}}.$$
 (4.108)

Por outro lado, na equação da continuidade são necessárias as densidades nas faces do volume de controle. Estas podem ser obtidas das densidades nos nós (4.107) por interpolação. Neste trabalho será empregado o esquema UDS com correção adiada para o CDS para realizar a interpolação (Eqs. (4.77)-(4.80)). Com base neste esquema e levando-se em conta a Eq. (4.107), obtém-se

$$\rho_{\rm e} = \rho_{\rm e}^* + \rho_{\rm e}^\prime, \tag{4.109}$$

$$\rho_{\rm w} = \rho_{\rm w}^* + \rho_{\rm w}^\prime, \tag{4.110}$$

$$\rho_{\rm n} = \rho_{\rm n}^* + \rho_{\rm n}^\prime, \tag{4.111}$$

$$\rho_{\rm s} = \rho_{\rm s}^* + \rho_{\rm s}^\prime,\tag{4.112}$$

onde

$$\rho_{\rm e}^* = \left(\frac{1}{2} + \hat{\alpha}_{\rm e}\right)\rho_{\rm P}^* + \left(\frac{1}{2} - \hat{\alpha}_{\rm e}\right)\rho_{\rm E}^* + \hat{\beta}\hat{\alpha}_{\rm e}\left(\rho_{\rm E}^m - \rho_{\rm P}^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\xi) + \hat{\beta}\mathcal{O}(\Delta\xi^2), \qquad (4.113)$$
$$\rho_{\rm w}^* = \left(\frac{1}{2} + \hat{\alpha}_{\rm w}\right)\rho_{\rm W}^* + \left(\frac{1}{2} - \hat{\alpha}_{\rm w}\right)\rho_{\rm P}^* + \hat{\beta}\hat{\alpha}_{\rm w}\left(\rho_{\rm P}^m - \rho_{\rm W}^m\right)$$

$$+ \left(1 - \hat{\beta}\right) \mathcal{O}(\Delta\xi) + \hat{\beta} \mathcal{O}(\Delta\xi^2), \qquad (4.114)$$

$$\rho_{n}^{*} = \left(\frac{1}{2} + \hat{\alpha}_{n}\right)\rho_{P}^{*} + \left(\frac{1}{2} - \hat{\alpha}_{n}\right)\rho_{N}^{*} + \hat{\beta}\hat{\alpha}_{n}\left(\rho_{N}^{m} - \rho_{P}^{m}\right) \\ + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^{2}), \qquad (4.115)$$

$$\rho_{\rm s}^* = \left(\frac{1}{2} + \hat{\alpha}_{\rm s}\right)\rho_{\rm S}^* + \left(\frac{1}{2} - \hat{\alpha}_{\rm s}\right)\rho_{\rm P}^* + \hat{\beta}\hat{\alpha}_{\rm s}\left(\rho_{\rm P}^m - \rho_{\rm S}^m\right) + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^2)$$
(4.116)

е

$$\rho_{\rm e}' = \left(\frac{1}{2} + \hat{\alpha}_{\rm e}\right) \hat{g}_{\rm P} p_{\rm P}' + \left(\frac{1}{2} - \hat{\alpha}_{\rm e}\right) \hat{g}_{\rm E} p_{\rm E}' + \left(1 - \hat{\beta}\right) \mathcal{O}(\Delta\xi) + \hat{\beta} \mathcal{O}(\Delta\xi^2), \tag{4.117}$$

$$\rho'_{\rm w} = \left(\frac{1}{2} + \hat{\alpha}_{\rm w}\right) \hat{g}_{\rm W} p'_{\rm W} + \left(\frac{1}{2} - \hat{\alpha}_{\rm w}\right) \hat{g}_{\rm P} p'_{\rm P} + \left(1 - \hat{\beta}\right) \mathcal{O}(\Delta\xi) + \hat{\beta} \mathcal{O}(\Delta\xi^2), \qquad (4.118)$$

$$\rho_{n}^{\prime} = \left(\frac{1}{2} + \hat{\alpha}_{n}\right)\hat{g}_{P}p_{P}^{\prime} + \left(\frac{1}{2} - \hat{\alpha}_{n}\right)\hat{g}_{N}p_{N}^{\prime} + \left(1 - \hat{\beta}\right)\mathcal{O}(\Delta\eta) + \hat{\beta}\mathcal{O}(\Delta\eta^{2}), \qquad (4.119)$$

$$\rho_{\rm s}' = \left(\frac{1}{2} + \hat{\alpha}_{\rm s}\right) \hat{g}_{\rm S} p_{\rm S}' + \left(\frac{1}{2} - \hat{\alpha}_{\rm s}\right) \hat{g}_{\rm P} p_{\rm P}' + \left(1 - \hat{\beta}\right) \mathcal{O}(\Delta\eta) + \hat{\beta} \mathcal{O}(\Delta\eta^2). \tag{4.120}$$

O acoplamento pressão-velocidade é obtido subtraindo-se a Eq. (4.101) da (4.98), o que produz

$$A_{\rm P}^{\phi}\phi_{\rm P}' + \sum_{\rm nb} A_{\rm nb}^{\phi} \ \phi_{\rm NB}' = y_{\rm P} \left(P_{\rm P}^{\phi}\right)', \qquad \phi \in \{u, v\}, \tag{4.121}$$

onde

$$\phi' = \phi - \phi^*, \qquad \phi \in \{u, v\}$$
 (4.122)

е

$$\left(P_{\rm P}^{\phi}\right)' = \left(P_{\rm P}^{\phi}\right) - \left(P_{\rm P}^{\phi}\right)^*,\tag{4.123}$$

onde $(P_{\rm P}^{\phi})^*$ é obtido de $(P_{\rm P}^{\phi})$ substituindo-se p por p^* . $(P_{\rm P}^{\phi})'$ é obtido de forma análoga. Na aproximação SIMPLEC^{37, 52, 57}, considera-se

$$\phi'_{\rm NB} = \phi'_{\rm P}, \qquad \phi \in \{u, v\}, \tag{4.124}$$

de modo que a Eq. (4.121) fica

$$u_{\rm P} = u_{\rm P}^* + \frac{y_{\rm P} \left(P_{\rm P}^u\right)'}{A_{\rm P}^u + \sum_{\rm nb} A_{\rm nb}^u}$$
(4.125)

е

$$v_{\rm P} = v_{\rm P}^* + \frac{y_{\rm P} \left(P_{\rm P}^v\right)'}{A_{\rm P}^v + \sum_{\rm nb} A_{\rm nb}^v}.$$
(4.126)

As Eqs. (4.125) e (4.126) representam o acoplamento pressão-velocidade para as velocidades nodais. Na equação da continuidade, contudo, são necessárias as velocidades sobre as faces do volume elementar. Poder-se-ia obter a velocidade nas faces através da

interpolação das velocidades nodais (4.125) e (4.126), a exemplo do que foi feito para a densidade. Entretanto, é recomendado⁵² utilizar o seguinte procedimento. Suponha que se deseja determinar a fórmula para o acoplamento pressão-velocidade para a velocidade na face leste $\phi_{\rm e}$. Ao invés de se fazer a interpolação sobre as velocidades de volumes vizinhos $\phi_{\rm P}$ e $\phi_{\rm E}$, faz-se a interpolação entre os sistemas lineares das equações do movimento para os volumes vizinhos, *e.g.*,

$$\left(A_{\rm P}^{\phi}\right)_{\rm P}\phi_{\rm P} + \left(\sum_{\rm nb} A_{\rm nb}^{\phi} \phi_{\rm NB}\right)_{\rm P} = \frac{\mathcal{M}_{\rm P}^{\circ}\phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + y_{\rm P}P_{\rm P}^{\phi} + y_{\rm P}\tilde{S}_{\rm P}^{\phi}, \qquad \phi \in \{u, v\} \quad (4.127)$$

е

$$\left(A_{\rm P}^{\phi}\right)_{\rm E}\phi_{\rm E} + \left(\sum_{\rm nb} A_{\rm nb}^{\phi} \phi_{\rm NB}\right)_{\rm E} = \frac{\mathcal{M}_{\rm E}^{\circ}\phi_{\rm E}^{\circ}}{\Delta t} + \omega_{\rm E}^{\phi} + y_{\rm E}P_{\rm E}^{\phi} + y_{\rm E}\tilde{S}_{\rm E}^{\phi}, \qquad \phi \in \{u, v\}.$$
(4.128)

Somando as Eqs. (4.127) e (4.128) e aplicando as seguintes aproximações

$$\left(A_{\mathrm{P}}^{\phi}\right)_{\mathrm{P}} \phi_{\mathrm{P}} + \left(A_{\mathrm{P}}^{\phi}\right)_{\mathrm{E}} \phi_{\mathrm{E}} = \left[\left(A_{\mathrm{P}}^{\phi}\right)_{\mathrm{P}} + \left(A_{\mathrm{P}}^{\phi}\right)_{\mathrm{E}}\right] \phi_{\mathrm{e}} + \mathcal{O}(\Delta\xi^{2}), \qquad (4.129)$$

$$\mathcal{M}_{\mathrm{P}}^{\circ} \phi_{\mathrm{P}}^{\circ} + \mathcal{M}_{\mathrm{E}}^{\circ} \phi_{\mathrm{E}}^{\circ} = \left[\mathcal{M}_{\mathrm{P}}^{\circ} + \mathcal{M}_{\mathrm{E}}^{\circ}\right] \phi_{\mathrm{e}}^{\circ} + \mathcal{O}(\Delta\xi^{2}), \qquad (4.130)$$

$$\mathcal{I}_{\mathrm{P}}^{\circ}\phi_{\mathrm{P}}^{\circ} + \mathcal{M}_{\mathrm{E}}^{\circ}\phi_{\mathrm{E}}^{\circ} = \left[\mathcal{M}_{\mathrm{P}}^{\circ} + \mathcal{M}_{\mathrm{E}}^{\circ}\right]\phi_{\mathrm{e}}^{\circ} + \mathcal{O}(\Delta\xi^{2}), \qquad (4.130)$$

$$y_{\rm P}P_{\rm P}^{\phi} + y_{\rm E}P_{\rm E}^{\phi} = 2y_{\rm e}P_{\rm e}^{\phi} + \mathcal{O}(\Delta\xi^2),$$
 (4.131)

obtém-se

$$\left[\left(A_{\rm P}^{\phi} \right)_{\rm P} + \left(A_{\rm P}^{\phi} \right)_{\rm E} \right] \phi_{\rm e} + \left(\sum_{\rm nb} A_{\rm nb}^{\phi} \ \phi_{\rm NB} \right)_{\rm P} + \left(\sum_{\rm nb} A_{\rm nb}^{\phi} \ \phi_{\rm NB} \right)_{\rm E} = \frac{\mathcal{M}_{\rm P}^{\circ} + \mathcal{M}_{\rm E}^{\circ}}{\Delta t} \phi_{\rm e}^{\circ} + \omega_{\rm P}^{\phi} + \omega_{\rm E}^{\phi} + y_{\rm P} \tilde{S}_{\rm P}^{\phi} + y_{\rm E} \tilde{S}_{\rm E}^{\phi} + 2y_{\rm e} P_{\rm e}^{\phi}, \quad \phi \in \{u, v\}, \qquad (4.132)$$

onde $P_{\rm e}^{\phi}$ representa a aproximação de P^{ϕ} na face leste. Para se obter o acoplamento pressão-velocidade, assume-se que um campo de pressão p^* tenha sido aplicado na equação do movimento (4.132), o que conduz a

$$\left[\left(A_{\rm P}^{\phi}\right)_{\rm P} + \left(A_{\rm P}^{\phi}\right)_{\rm E}\right]\phi_{\rm e}^{*} + \left(\sum_{\rm nb}A_{\rm nb}^{\phi}\phi_{\rm NB}^{*}\right)_{\rm P} + \left(\sum_{\rm nb}A_{\rm nb}^{\phi}\phi_{\rm NB}^{*}\right)_{\rm E} = \frac{\mathcal{M}_{\rm P}^{\circ} + \mathcal{M}_{\rm E}^{\circ}}{\Delta t}\phi_{\rm e}^{\circ} + \omega_{\rm P}^{\phi} + \omega_{\rm E}^{\phi} + y_{\rm P}\tilde{S}_{\rm P}^{\phi} + y_{\rm E}\tilde{S}_{\rm E}^{\phi} + 2y_{\rm e}\left(P_{\rm e}^{\phi}\right)^{*}, \quad \phi \in \{u,v\}.$$

$$(4.133)$$

Subtraindo a Eq. (4.133) da Eq. (4.132) e utilizando a aproximação SIMPLEC

$$\phi_{\rm NB}' = \phi_{\rm e}',\tag{4.134}$$

obtém-se

$$\left[\left(A_{\rm P}^{\phi} + \sum_{\rm nb} A_{\rm nb}^{\phi} \right)_{\rm P} + \left(A_{\rm P}^{\phi} + \sum_{\rm nb} A_{\rm nb}^{\phi} \right)_{\rm E} \right] \phi_{\rm e}' = 2y_{\rm e} \left(P_{\rm e}^{\phi} \right)', \qquad \phi \in \{u, v\}.$$
(4.135)

Ou, de maneira mais explícita,

$$\phi_{\rm e} = \phi_{\rm e}^* + \frac{2y_{\rm e} \left(P_{\rm e}^{\phi}\right)'}{\left[\left(A_{\rm P}^{\phi} + \sum_{\rm nb} A_{\rm nb}^{\phi}\right)_{\rm P} + \left(A_{\rm P}^{\phi} + \sum_{\rm nb} A_{\rm nb}^{\phi}\right)_{\rm E}\right]}, \qquad \phi \in \{u, v\}, \tag{4.136}$$

onde $\phi_{\rm e}^*$ é obtido da Eq. (4.133)

$$\phi_{\rm e}^{*} = \frac{\frac{\mathcal{M}_{\rm P}^{\circ} + \mathcal{M}_{\rm E}^{\circ}}{\Delta t} \phi_{\rm e}^{\circ} - \left(\sum_{\rm nb} A_{\rm nb}^{\phi} \ \phi_{\rm NB}^{*}\right)_{\rm P} - \left(\sum_{\rm nb} A_{\rm nb}^{\phi} \ \phi_{\rm NB}^{*}\right)_{\rm E}}{\left(A_{\rm P}^{\phi}\right)_{\rm P} + \left(A_{\rm P}^{\phi}\right)_{\rm E}} + \frac{\omega_{\rm P}^{\phi} + \omega_{\rm E}^{\phi} + y_{\rm P} \tilde{S}_{\rm P}^{\phi} + y_{\rm E} \tilde{S}_{\rm E}^{\phi} + 2y_{\rm e} \left(P_{\rm e}^{\phi}\right)^{*}}{\left(A_{\rm P}^{\phi}\right)_{\rm P} + \left(A_{\rm P}^{\phi}\right)_{\rm E}}, \qquad (4.137)$$

Equações análogas às Eqs.(4.136) e (4.137) são obtidas para as demais faces substituindo os índices e e e pelos índices das faces correspondentes. Por conveniência, são repetidas as aproximações para a face norte

$$\phi_{\rm n} = \phi_{\rm n}^* + \frac{2y_{\rm n} \left(P_{\rm n}^{\phi}\right)'}{\left[\left(A_{\rm P}^{\phi} + \sum_{\rm nb} A_{\rm nb}^{\phi}\right)_{\rm P} + \left(A_{\rm P}^{\phi} + \sum_{\rm nb} A_{\rm nb}^{\phi}\right)_{\rm N}\right]}, \qquad \phi \in \{u, v\}, \tag{4.138}$$

onde $\phi_{\rm n}^*$ é obtido de

$$\phi_{n}^{*} = \frac{\frac{\mathcal{M}_{P}^{\diamond} + \mathcal{M}_{N}^{\diamond}}{\Delta t} \phi_{n}^{\diamond} - \left(\sum_{nb} A_{nb}^{\phi} \ \phi_{NB}^{*}\right)_{P} - \left(\sum_{nb} A_{nb}^{\phi} \ \phi_{NB}^{*}\right)_{N}}{\left(A_{P}^{\phi}\right)_{P} + \left(A_{P}^{\phi}\right)_{N}} + \frac{\omega_{P}^{\phi} + \omega_{N}^{\phi} + y_{P} \tilde{S}_{P}^{\phi} + y_{N} \tilde{S}_{N}^{\phi} + 2y_{n} \left(P_{n}^{\phi}\right)^{*}}{\left(A_{P}^{\phi}\right)_{P} + \left(A_{P}^{\phi}\right)_{N}}, \quad \phi \in \{u, v\}.$$

$$(4.139)$$

As aproximações para $(P_e^{\phi})^* e (P_n^{\phi})^*$, presentes nas Eqs. (4.137) e (4.139), respectivamente, são dadas por

$$(P_{e}^{u})^{*} = \left[y_{\xi} \frac{\partial p^{*}}{\partial \eta} - y_{\eta} \frac{\partial p^{*}}{\partial \xi} \right]_{e} = (y_{\xi})_{e} \frac{p_{NE}^{*} + p_{N}^{*} - p_{SE}^{*} - p_{S}^{*}}{4\Delta \eta} - (y_{\eta})_{e} \frac{p_{E}^{*} - p_{P}^{*}}{\Delta \xi} + \mathcal{O}(\Delta \xi^{2}) + \mathcal{O}(\Delta \eta^{2}),$$
(4.140)
$$(P_{e}^{v})^{*} = \left[x_{\eta} \frac{\partial p^{*}}{\partial \xi} - x_{\xi} \frac{\partial p^{*}}{\partial \eta} \right]_{e} = (x_{\eta})_{e} \frac{p_{E}^{*} - p_{P}^{*}}{\Delta \xi} - (x_{\xi})_{e} \frac{p_{NE}^{*} + p_{N}^{*} - p_{SE}^{*} - p_{S}^{*}}{4\Delta \eta}$$

$$(P_{n}^{u})^{*} = \left[y_{\xi}\frac{\partial p^{*}}{\partial \eta} - y_{\eta}\frac{\partial p^{*}}{\partial \xi}\right]_{n} = (y_{\xi})_{n}\frac{p_{N}^{*} - p_{P}^{*}}{\Delta \eta} - (y_{\eta})_{n}\frac{p_{NE}^{*} + p_{E}^{*} - p_{NW}^{*} - p_{W}^{*}}{\Delta \xi} + \mathcal{O}(\Delta\xi^{2}) + \mathcal{O}(\Delta\eta^{2}),$$

$$(4.142)$$

$$(P_{n}^{v})^{*} = \left[x_{\eta}\frac{\partial p^{*}}{\partial \xi} - x_{\xi}\frac{\partial p^{*}}{\partial \eta}\right]_{n} = (x_{\eta})_{n}\frac{p_{NE}^{*} + p_{E}^{*} - p_{NW}^{*} - p_{W}^{*}}{\Delta \xi} - (x_{\xi})_{n}\frac{p_{N}^{*} - p_{P}^{*}}{\Delta \eta} + \mathcal{O}(\Delta \xi^{2}) + \mathcal{O}(\Delta \eta^{2}).$$

$$(4.143)$$

Expressões equivalentes são obtidas para $P_{\rm e}^{\phi'}$
e $P_{\rm n}^{\phi'}$ substituindo-se p^* por p'. Nestas expressões, as derivadas

$$\left. \frac{\partial p'}{\partial \eta} \right|_{\rm e} = \left. {\rm e} - \left. \frac{\partial p'}{\partial \xi} \right|_{\rm n}$$

$$\tag{4.144}$$

são desprezadas, sem prejuízo à solução final⁵², de modo que as desejadas equações para o acoplamento pressão-velocidade para as velocidades nas faces ficam

$$u_{\rm e} = u_{\rm e}^* + u_{\rm e}^\prime, \tag{4.145}$$

$$v_{\rm e} = v_{\rm e}^* + v_{\rm e}', \tag{4.146}$$

$$u_{\rm n} = u_{\rm n}^* + u_{\rm n}^{\prime}, \tag{4.147}$$

$$v_{\rm n} = v_{\rm n}^* + v_{\rm s}^{\prime},$$
 (4.148)

onde

$$u'_{\rm e} = d^u_{\rm e} \left(p'_{\rm P} - p'_{\rm E} \right), \tag{4.149}$$

$$v'_{\rm e} = d^v_{\rm e} \left(p'_{\rm E} - p'_{\rm P} \right),$$
 (4.150)

$$u'_{\rm n} = d^u_{\rm n} \left(p'_{\rm N} - p'_{\rm P} \right), \qquad (4.151)$$

$$v'_{\rm n} = d^v_{\rm n} \left(p'_{\rm P} - p'_{\rm N} \right) \tag{4.152}$$

е

$$d_{\rm e}^{u} = \frac{2y_{\rm e}(y_{\eta})_{\rm e}/\Delta\xi}{\left(A_{\rm P}^{u} + \sum_{\rm nb} A_{\rm nb}^{u}\right)_{\rm P} + \left(A_{\rm P}^{u} + \sum_{\rm nb} A_{\rm nb}^{u}\right)_{\rm E}},\tag{4.153}$$

$$d_{\rm e}^{v} = \frac{2y_{\rm e} (x_{\eta})_{\rm e} /\Delta\xi}{\left(A_{\rm P}^{v} + \sum_{\rm nb} A_{\rm nb}^{v}\right)_{\rm P} + \left(A_{\rm P}^{v} + \sum_{\rm nb} A_{\rm nb}^{v}\right)_{\rm E}},\tag{4.154}$$

$$d_{n}^{u} = \frac{2y_{n} \left(y_{\xi}\right)_{n} / \Delta \eta}{\left(A_{P}^{u} + \sum_{nb} A_{nb}^{u}\right)_{P} + \left(A_{P}^{u} + \sum_{nb} A_{nb}^{u}\right)_{N}}, \qquad (4.155)$$

$$d_{\rm n}^v = \frac{2y_{\rm n} \left(x_{\xi}\right)_{\rm n} /\Delta\eta}{\left(A_{\rm P}^v + \sum_{\rm nb} A_{\rm nb}^v\right)_{\rm P} + \left(A_{\rm P}^v + \sum_{\rm nb} A_{\rm nb}^v\right)_{\rm N}}.$$
(4.156)

Com base nas Eqs. (4.145)-(4.148), as velocidades contravariantes nas faces ficam

$$U_{\rm e} = U_{\rm e}^* + U_{\rm e}', \tag{4.157}$$

$$U_{\rm w} = U_{\rm w}^* + U_{\rm w}^{\prime}, \tag{4.158}$$

$$V_{\rm n} = V_{\rm n}^* + V_{\rm n}^{\prime}, \tag{4.159}$$

$$V_{\rm s} = V_{\rm s}^* + V_{\rm s}', \tag{4.160}$$

onde

$$d_{\rm e}^{U} = d_{\rm e}^{u} (y_{\eta})_{\rm e} + d_{\rm e}^{v} (x_{\eta})_{\rm e}, \qquad (4.161)$$

$$d_{w}^{U} = d_{w}^{u} (y_{\eta})_{w} + d_{w}^{v} (x_{\eta})_{w}, \qquad (4.162)$$

$$d_{n}^{V} = d_{n}^{v} (x_{\xi})_{n} + d_{n}^{u} (y_{\xi})_{n}, \qquad (4.163)$$

$$d_{\rm s}^V = d_{\rm s}^v (x_{\xi})_{\rm s} + d_{\rm s}^u (y_{\xi})_{\rm s}, \qquad (4.164)$$

$$U_{\rm e}^* = u_{\rm e}^* (y_{\eta})_{\rm e} - v_{\rm e}^* (x_{\eta})_{\rm e}, \qquad (4.165)$$

$$U_{\rm w}^* = u_{\rm w}^* (y_{\eta})_{\rm w} - v_{\rm w}^* (x_{\eta})_{\rm w}, \qquad (4.166)$$

$$V_{\rm n}^* = v_{\rm n}^* (x_{\xi})_{\rm n} - u_{\rm n}^* (y_{\xi})_{\rm n} , \qquad (4.167)$$

$$V_{\rm s}^* = v_{\rm s}^* (x_{\xi})_{\rm s} - u_{\rm s}^* (y_{\xi})_{\rm s}$$
(4.168)

е

$$U'_{\rm e} = d^U_{\rm e} \left(p'_{\rm P} - p'_{\rm E} \right), \qquad (4.169)$$

$$U'_{\rm w} = d^U_{\rm w} \left(p'_{\rm W} - p'_{\rm P} \right), \qquad (4.170)$$

$$V'_{\rm n} = d_{\rm n}^V \left(p'_{\rm P} - p'_{\rm N} \right), \qquad (4.171)$$

$$V'_{\rm s} = d^V_{\rm s} (p'_{\rm S} - p'_{\rm P}). \qquad (4.172)$$

Os termos d^{ϕ} , $\phi \in \{u, v, U, V\}$, são os coeficientes do acoplamento pressão-velocidade do método SIMPLEC.

Para completar a transformação da equação da continuidade em uma equação para a correção da pressão, é necessário linearizar os termos que envolvam produtos do desvio da densidade e da velocidade para que se possa obter um sistema linear. Na linearização de Ferziger e Peric³⁸, o produto ρyU para a face leste, por exemplo, fica

$$(\rho y U)_{\rm e} = [(\rho^* + \rho') y (U^* + U')]_{\rm e}$$

= $(\rho^* y U')_{\rm e} + (\rho' y U^*)_{\rm e} + (\rho^* y U^*)_{\rm e} + (\rho' y U')_{\rm e},$ (4.173)

onde os dois últimos termos da Eq. (4.173) são transferidos para o termo fonte do sistema linear, uma vez que $(\rho^* y U^*)_e$ é dado e $(\rho' y U')_e$ envolve termos quadráticos em p'. Expressões análogas a da Eq. (4.173) podem ser obtidas para as demais faces.

Levando-se em conta a linearização supracitada, o acoplamento pressão-densidade, bem como o acoplamento pressão-velocidade, a equação da continuidade (4.100) é transformada na seguinte equação para a correção da pressão

$$A_{\rm P}^{p'}p'_{\rm P} + A_{\rm w}^{p'}p'_{\rm W} + A_{\rm e}^{p'}p'_{\rm E} + A_{\rm s}^{p'}p'_{\rm S} + A_{\rm n}^{p'}p'_{\rm N} = b_{\rm P}^{p'}, \qquad (4.174)$$

onde os coeficientes $A^{p'}$ e termo fonte $b^{p'}$ são listados no Apêndice A. Como os coeficientes $A^{p'}$ e termo fonte $b^{p'}$ dependem de p', a Eq. (4.174) deve ser resolvida iterativamente.

4.3.4 Aproximações para as condições de contorno

As condições de contorno para as variáveis ρ , p, p', T, $u \in v$ são aplicadas através da técnica dos volumes fictícios⁵². As condições de contorno para p' são impostas de modo a garantir a conservação da massa. Como ρ , $p \in T$ estão relacionados através da equação de estado, as condições de contorno são aplicadas a $\rho \in T$, enquanto p é apenas extrapolado linearmente para os volumes fictícios.

No contorno norte, as variáveis primitivas ρ , T, $u \in v$ são prescritas. Como o escoamento é advectivo nesta região, o esquema UDS é aplicado:

$$\phi_{\mathbf{P}} = \phi_{\infty}, \quad \phi \in \{\rho, T, u, v\}. \tag{4.175}$$

Além disso, como não deve haver correção na densidade, na velocidade e na pressão, faz-se

$$p'_{\rm P} = 0, \qquad d^u_{\rm s} = d^v_{\rm s} = d^V_{\rm s} = 0.$$
 (4.176)

No contorno oeste, tem-se

$$v = 0 \tag{4.177}$$

е

$$\left(\hat{\boldsymbol{n}} \cdot \nabla \phi\right)_{\mathrm{e}} = 0, \qquad \phi \in \{\rho, u, T\}.$$
(4.178)

A primeira condição de contorno (4.177) é discretizada como

$$\frac{v_{\rm P} + v_{\rm E}}{2} = 0. \tag{4.179}$$

Em termos das variáveis $\xi \in \eta$, a segunda condição de contorno (4.178) pode ser reescrita como

$$\left[\alpha \frac{\partial \phi}{\partial \xi} - \beta \frac{\partial \phi}{\partial \eta}\right]_{\rm e} = 0. \tag{4.180}$$

As derivadas da Eq. (4.180) são aproximadas por

$$\left(\frac{\partial\phi}{\partial\xi}\right)_{\rm e} = \frac{\phi_{\rm E} - \phi_{\rm P}}{\Delta\xi} + \mathcal{O}(\Delta\xi^2) \tag{4.181}$$

е

$$\left(\frac{\partial\phi}{\partial\eta}\right)_{e} = \begin{cases} \frac{(\phi_{\rm N} + \phi_{\rm NE}) - (\phi_{\rm P} + \phi_{\rm E})}{2\Delta\eta} + \mathcal{O}(\Delta\eta), & j = 2;\\ \frac{(\phi_{\rm N} + \phi_{\rm NE}) - (\phi_{\rm S} + \phi_{\rm SE})}{4\Delta\eta} + \mathcal{O}(\Delta\eta^{2}), & 3 \le j \le n_{y} - 2;\\ \frac{(\phi_{\rm P} + \phi_{\rm E}) - (\phi_{\rm S} + \phi_{\rm SE})}{2\Delta\eta} + \mathcal{O}(\Delta\eta), & j = n_{y} - 1. \end{cases}$$
(4.182)

A condição de contorno para o desvio da pressão fica:

$$p'_{\rm P} = p'_{\rm E}.$$
 (4.183)

No contorno sul, as condições de contorno para $\rho \in T$

$$(\hat{\boldsymbol{n}} \cdot \nabla \phi)_{\mathbf{n}} = 0, \qquad \phi \in \{\rho, T\}$$
(4.184)

são reescritas como

$$\left[-\beta \frac{\partial \phi}{\partial \xi} + \gamma \frac{\partial \phi}{\partial \eta}\right]_{n} = 0 \tag{4.185}$$

e as derivadas aproximadas por

$$\left(\frac{\partial\phi}{\partial\eta}\right)_{n} = \frac{\phi_{N} - \phi_{P}}{\Delta\eta} + \mathcal{O}(\Delta\eta^{2})$$
(4.186)

е

$$\left(\frac{\partial\phi}{\partial\xi}\right)_{n} = \begin{cases} \frac{(\phi_{\rm NE} + \phi_{\rm E}) - (\phi_{\rm N} + \phi_{\rm P})}{2\Delta\xi} + \mathcal{O}(\Delta\xi), & i = 2;\\ \frac{(\phi_{\rm E} + \phi_{\rm NE}) - (\phi_{\rm W} + \phi_{\rm NW})}{4\Delta\xi} + \mathcal{O}(\Delta\xi^{2}), & 3 \le i \le n_{x} - 2;\\ \frac{(\phi_{\rm N} + \phi_{\rm P}) - (\phi_{\rm NW} + \phi_{\rm W})}{2\Delta\xi} + \mathcal{O}(\Delta\xi), & i = n_{x} - 1. \end{cases}$$
(4.187)

Ainda para o contorno sul, as condições de contorno para $u \in v$ dependem do modelo utilizado. No caso do modelo de Euler, a condição de parede impermeável implica em

$$\boldsymbol{u} = \lambda \frac{(\boldsymbol{E}_{\xi})_{n}}{\| (\boldsymbol{E}_{\xi})_{n} \|}, \qquad (4.188)$$

onde $(\boldsymbol{E}_{\xi})_{n}$ é o vetor localmente tangencial à parede e λ é o módulo da velocidade sobre a parede. Considerando que a velocidade do fluido sobre a parede tem módulo aproximadamente igual ao da velocidade no centroide do volume contíguo à parede \boldsymbol{u}_{N} , tem-se

$$\lambda = \operatorname{sgn}\left(\left(\boldsymbol{E}_{\xi}\right)_{n} \cdot \boldsymbol{u}_{N}\right) \|\boldsymbol{u}_{N}\|.$$
(4.189)

No caso do modelo de Navier-Stokes, a condição de contorno

$$\boldsymbol{u} = \boldsymbol{0} \tag{4.190}$$

é aproximada por

$$\frac{\boldsymbol{u}_{\mathrm{N}} + \boldsymbol{u}_{\mathrm{P}}}{2} = \boldsymbol{0}.$$
(4.191)

Em ambos os modelos, tem-se

$$p'_{\rm P} = p'_{\rm N}.\tag{4.192}$$

Finalmente, no contorno leste, a condição de escoamento localmente parabólico é aproximada por

$$\phi_{\rm P} = \phi_{\rm W}, \qquad \phi \in \{u, v, \rho, T, p'\}.$$
 (4.193)

Deve-se observar que a aproximação da Eq. (4.193) despreza o termo envolvendo a derivada de ϕ em relação à η presente na Eq. (4.23). Esta aproximação é aceitável quando $|V| \ll |U|$ no contorno de saída, o que ocorre nos escoamentos deste estudo.

Para completar a definição dos coeficientes e fontes dos sistema lineares, é preciso ainda aplicar alguma condição de contorno para os volumes fictícios dos cantos. No canto sudoeste, por exemplo, a condição imposta é

$$\phi_{\mathrm{P}} = \frac{\phi_{\mathrm{N}} + \phi_{\mathrm{E}} + \phi_{\mathrm{NE}}}{3} + \mathcal{O}(\Delta\xi) + \mathcal{O}(\Delta\eta), \quad \phi \in \{u, v, T, \rho\}$$
(4.194)

е

$$p'_{\rm P} = 0. \tag{4.195}$$

Condições análogas são obtidas para os volumes fictícios dos outros cantos.

4.3.5 Resolução dos sistemas lineares

Há quatro sistemas lineares a serem resolvidos. Três deles, associados a $\phi \in \{u,v,T\},$ são da forma

$$A_{\rm sw}^{\phi}\phi_{\rm SW} + A_{\rm s}^{\phi}\phi_{\rm S} + A_{\rm se}^{\phi}\phi_{\rm SE} + A_{\rm w}^{\phi}\phi_{\rm W} + A_{\rm P}^{\phi}\phi_{\rm P} + A_{\rm e}^{\phi}\phi_{\rm E} + A_{\rm nw}^{\phi}\phi_{\rm NW} + A_{\rm n}^{\phi}\phi_{\rm N} + A_{\rm ne}^{\phi}\phi_{\rm NE} = b_{\rm P}^{\phi}, \quad (4.97)$$

e o quarto, associado a p', da forma

$$A_{\rm s}^{p'}p'_{\rm S} + A_{\rm w}^{p'}p'_{\rm W} + A_{\rm P}^{p'}p'_{\rm P} + A_{\rm e}^{p'}p'_{\rm E} + A_{\rm n}^{p'}p'_{\rm N} = b_{\rm P}^{p'}.$$
(4.174)

A resolução destes sistemas é feita através do método *Modified Strongly Implicit Procedure* $(MSI)^{58}$.

O resíduo dos sistemas lineares R_{L_1} é dado por

$$R_{L_1} = R_{L_1}^u + R_{L_1}^v + R_{L_1}^{\mathrm{T}} + R_{L_1}^{p'}, \qquad (4.196)$$

onde

$$R_{L_{1}}^{\phi} = \frac{\sum_{P} \left| A_{P}^{\phi} \phi_{P} + \sum_{nb} A_{nb}^{\phi} \phi_{nb} - b_{P}^{\phi} \right|}{\sum_{P} \left| b_{P}^{\phi} \right|}, \quad \phi \in \{T, u, v\},$$
(4.197)

exceto para a equação da correção da pressão

$$R_{L_{1}}^{p'} = \sum_{P} \left| A_{P}^{p'} p'_{P} + \sum_{nb} A_{nb}^{p'} p'_{nb} - b_{P}^{p'} \right|.$$
(4.198)

As somas nas Eqs. (4.197) e (4.198) devem ser feitas sobre todos os volumes reais.

Como os sistemas lineares são acoplados, é possível obter a solução exata para um sistema linear sem que a solução do conjunto de equações seja obtida. Por isso, um critério adicional foi utilizado para avaliar a convergência dos sistemas lineares. Este critério leva em conta o desvio da pressão p' que deve tender a zero:

$$R_{p'} = \max_{P} |p'_{P}| / p_{m}, \tag{4.199}$$

onde p_m é dado por

$$p_m = \frac{1}{n_x n_y} \sum_{\mathbf{P}} p_{\mathbf{P}},\tag{4.200}$$

e $n_x n_y$ é o número de volumes reais. A soma na Eq. (4.200) deve ser feita sobre todos os volumes reais.

O objetivo principal da resolução das Eqs. (4.97) e (4.174) é a determinação da solução do escoamento no estado estacionário. Embora as equações de transporte sejam dependentes do tempo, este é utilizado apenas como um parâmetro de relaxação. A escolha do passo de tempo Δt , no entanto, é determinante para a obtenção das soluções. Se Δt for muito pequeno, então o número de iterações para se atingir o estado estacionário é demasiadamente grande. Por outro lado, se Δt for muito grande, o programa normalmente diverge. A solução empregada foi iniciar o ciclo temporal com um passo de tempo Δt_0 pequeno e incrementá-lo ao longo das iterações.

Em uma dada iteração i, o passo de tempo Δt_i é dado por

$$\Delta t_i = \Delta t_{i-1} \left[1 + \tilde{h}(c) \right], \qquad (4.201)$$

onde $\tilde{h}(c)$ é uma função que depende do coeficiente de convergência c. Tomando por base o critério de Scarborough⁵², o coeficiente de convergência é definido como

$$c = \max(c_u, c_v, c_T, c_{p'}), \tag{4.202}$$

onde

$$c_{\phi} = \frac{1}{n_x n_y} \sum_{\mathbf{P}} \frac{\sum_{\mathbf{nb}} |A_{\mathbf{nb}}^{\phi}|}{|A_{\mathbf{P}}^{\phi}|}, \quad \phi \in \{u, v, T, p'\}.$$
(4.203)

Na Eq. (4.203), a soma em P deve ser feita sobre todos os volumes reais e a soma em nb deve ser feita sobre todos os volumes vizinhos ao volume P.

A fim de controlar Δt_i de modo a acelerar a convergência e ao mesmo tempo manter a estabilidade do processo iterativo, a função $\tilde{h}(c)$ é dada por

$$\tilde{h}(c) = \begin{cases} \tilde{h}_0 \sqrt{1 - \frac{c}{c_{min}}}, & c < c_{min}, \\ \tilde{h}_0 \sqrt{\frac{c}{c_{max}} - 1}, & c_{max} < c, \\ 0, & c_{min} \le c \le c_{max}, \end{cases}$$
(4.204)

onde \tilde{h}_0 , c_{min} e c_{max} são parâmetros definidos pelo usuário. Os valores tipicamente usados nas simulações são $\tilde{h}_0 = 0.01$, $c_{min} = 0.5$ e $c_{max} = 0.8$.

O valor inicial Δt_0 é obtido a partir de

$$\Delta t_0 = \frac{1}{4} \min_{\mathbf{P}} \left(\frac{1}{\sqrt{J \left(u^2 + v^2 \right)}} \right)_{\mathbf{P}},\tag{4.205}$$

que representa 25% da menor escala de tempo estimada para que uma partícula de fluido atravesse um volume de controle da malha.

4.3.6 Aproximações para as grandezas de interesse

A principal grandeza de interesse neste trabalho é o coeficiente de arrasto frontal C_{Df} , decomposto em uma parte devido à pressão C_{Df}^p e outra devido às tensões viscosas C_{Df}^{μ} .

Em termos das variáveis $\xi\eta,$ o coeficiente $C^p_{\rm Df},$ dado pela Eq. (4.35), é reescrito como

$$C_{\rm Df}^{p} = \frac{2}{q_{\infty} r_{b}^{2}} \int_{\xi_{i}}^{\xi_{f}} (p - p_{\infty}) yy_{\xi} \, \mathrm{d}\xi, \qquad (4.206)$$

e aproximado por

$$C_{\rm Df}^{p} = \frac{2}{q_{\infty}r_{b}^{2}}\sum \left(p_{\rm n} - p_{\infty}\right)y_{\rm n}\left(y_{\xi}\right)_{\rm n}\Delta\xi + \mathcal{O}(\Delta\xi^{2}), \qquad (4.207)$$

onde

$$p_{\rm n} = \frac{p_{\rm P} + p_{\rm N}}{2} + \mathcal{O}(\Delta \eta^2) \tag{4.208}$$

e a soma deve ser feita sobre a face norte de todos os volumes fictícios do contorno sul.

De modo análogo, o coeficiente $C_{\rm Df}^{\mu}$ (Eq. (4.36)), é reescrito como

$$C_{\rm Df}^{\mu} = \frac{2}{q_{\infty} r_b^2} \int_{\xi_i}^{\xi_f} \left(\sigma_{xy} x_{\xi} - \sigma_{xx} y_{\xi} \right) y \, \mathrm{d}\xi, \tag{4.209}$$

onde

$$\sigma_{xx} = 2\mu \left(\frac{\partial u}{\partial \xi} y_{\eta} - \frac{\partial u}{\partial \eta} y_{\xi} \right) - \frac{2}{3} \mu \frac{J}{y} \left(\frac{\partial (Uy)}{\partial \xi} + \frac{\partial (Vy)}{\partial \eta} \right),$$

$$\sigma_{xy} = \mu J \left[\frac{\partial}{\partial \xi} \left(v y_{\eta} - u x_{\eta} \right) + \frac{\partial}{\partial \eta} \left(u x_{\xi} - v y_{\xi} \right) \right].$$

e aproximado por

$$C_{\rm Df}^{\mu} = \frac{2}{q_{\infty}r_b^2} \sum \left[\left(\sigma_{xy}\right)_{\rm n} \left(x_{\xi}\right)_{\rm n} - \left(\sigma_{xx}\right)_{\rm n} \left(y_{\xi}\right)_{\rm n} \right] y_{\rm n} \Delta \xi + \mathcal{O}(\Delta \xi^2), \qquad (4.210)$$

onde a soma deve ser feita sobre todas as faces norte dos volumes fictícios do contorno sul.

As expressões para $(\sigma_{xx})_{\rm n}$
e $(\sigma_{xy})_{\rm n}$ podem ser simplificadas observando-se que sobre o contorno sul

$$u = v = 0,$$
 e $U = V = 0,$ (4.211)

o que leva a

$$(\sigma_{xx})_{n} = -2\mu_{n} (y_{\xi})_{n} \left(\frac{\partial u}{\partial \eta}\right)_{n} - \frac{2}{3}\mu_{n} J_{n} \left[(x_{\xi})_{n} \left(\frac{\partial v}{\partial \eta}\right)_{n} - (y_{\xi})_{n} \left(\frac{\partial u}{\partial \eta}\right)_{n} \right], \quad (4.212)$$

$$(\sigma_{xy})_{\mathbf{n}} = \mu_{\mathbf{n}} J_{\mathbf{n}} \left[(x_{\xi})_{\mathbf{n}} \left(\frac{\partial u}{\partial \eta} \right)_{\mathbf{n}} - (y_{\xi})_{\mathbf{n}} \left(\frac{\partial v}{\partial \eta} \right)_{\mathbf{n}} \right].$$
(4.213)

Utilizando as aproximações

$$\left(\frac{\partial\phi}{\partial\eta}\right)_{n} = \frac{\phi_{N} - \phi_{P}}{\Delta\eta} + \mathcal{O}(\Delta\eta^{2}), \qquad (4.214)$$

$$\phi_{\rm n} = \frac{\phi_{\rm N} + \phi_{\rm P}}{2} + \mathcal{O}(\Delta \eta^2), \qquad (4.215)$$

as tensões viscosas Eqs. (4.212) e (4.213) ficam

$$(\sigma_{xx})_{n} = -4\mu_{n} (y_{\xi})_{n} \frac{u_{N}}{\Delta \eta} - \frac{4}{3}\mu_{n} \frac{J_{n}}{\Delta \eta} \left[(x_{\xi})_{n} v_{N} - (y_{\xi})_{n} u_{N} \right] + \mathcal{O}(\Delta \eta^{2}), \quad (4.216)$$

$$\left(\sigma_{xy}\right)_{n} = \frac{2\mu_{n}J_{n}}{\Delta\eta} \left[\left(x_{\xi}\right)_{n}u_{N} - \left(y_{\xi}\right)_{n}v_{N}\right] + \mathcal{O}(\Delta\eta^{2}).$$

$$(4.217)$$

4.3.7 Algoritmo

O Algoritmo 2 descreve brevemente o procedimento de resolução do escoamento apresentado neste capítulo.

Algorithio 2. Algorithio de resolução do escoamen	Algoritmo	2 :	Algoritmo	de resoluçã	o do	escoamento
---	-----------	------------	-----------	-------------	------	------------

11	igoritino 2. Mgoritino de resolução do escolamento							
1	Ler os parâmetros de entrada;							
2	Gerar a malha;							
3	Calcular as métricas da transformação e demais variáveis geométricas;							
4	Aplicar a condição inicial;							
5	para (cada passo de tempo) faça							
6	Incrementar o tempo em Δt ;							
7	Atualizar os campos;							
8	Calcular as propriedades termofísicas (no caso de serem variáveis);							
9	Calcular os coeficientes A^{ϕ} e fontes b^{ϕ} dos sistemas lineares para $u \in v$;							
10	Calcular os coeficientes do SIMPLEC;							
11	Resolver os sistemas lineares para $u \in v$;							
12	Calcular os resíduos dos sistemas lineares;							
13	Calcular as velocidades nas faces;							
14	enquanto ($R_{p'}$ for maior que o tolerável) faça							
15	Calcular os coeficientes A^{p} e fontes $b^{p'}$;							
16	Resolver a equação da correção da pressão para se obter p' ;							
17	Corrigir as velocidades nas faces com p' ;							
18	Corrigir a densidade nos nós e calcular as densidades nas faces;							
19	Se o número de iterações permitido for excedido, sair do ciclo;							
20	fim							
21	Calcular o resíduo do sistema linear para p' ;							
22	Calcular $R_{p'}$;							
23	Corrigir $p^* \operatorname{com} p';$							
24	Corrigir as velocidades nos nós com p' ;							
25	Verificar a conservação da massa;							
26	Calcular os coeficientes A^{1} e fontes b^{1} da equação da energia térmica;							
27	Resolver a equação da energia térmica para se obter T ;							
28	Calcular o resíduo R_{L1}^1 do sistema linear para T ;							
29	Calcular p nos nós utilizando os últimos valores de $\rho \in T$;							
30	Calcular o resíduo total R_{L_1} dos sistemas lineares para $u, v, T \in p';$							
31	Calcular as variáveis de interesse;							
32	Se $R_{p'}$, pela primeira vez, for menor que uma tolerância prescrita, continuar o							
	ciclo até que o número de iterações seja o dobro do atual;							
33	fim							
34	Pós-processamento;							

5 VERIFICAÇÕES E VALIDAÇÕES

5.1 INTRODUÇÃO

Um aplicativo pode ser considerado uma ferramenta mais confiável para predições após seus resultados terem sido verificados e validados. De acordo com Roache⁵⁹, a verificação estima o erro cometido ao se resolver aproximadamente um modelo matemático, ao passo que a validação estima o erro cometido ao se modelar a realidade.

Neste trabalho, dois aplicativos são amplamente utilizados: o otimizador, denominado DEPP (*Differential Evolution Parallel Program*), desenvolvido com base na teoria do Cap. 3 e aplicado para se determinar as formas de menor coeficiente de arrasto, e o simulador, denominado Mach2D, desenvolvido com base na teoria do Cap. 4 e aplicado para se determinar o coeficiente de arrasto das formas avaliadas. Por este motivo, é importante que estas duas ferramentas sejam testadas no intuito de avaliar se suas soluções são coerentes com o esperado, bem como para quantificar ou estimar o erro cometido.

O objetivo deste capítulo é testar o otimizador e o simulador através da solução de alguns problemas específicos. No caso do otimizador, são resolvidos os problemas de otimização para as funções elipsoide rotacionado, de Rosenbrock e de Rastrigin. O erro das soluções numéricas é obtido por comparação destas com as soluções analíticas. No caso do simulador, o coeficiente de arrasto sobre cones, devido ao escoamento axissimétrico de ar, é determinado para um amplo intervalo do número de Mach com base nos modelos de Euler e Navier-Stokes. O erro numérico das soluções obtidas é estimado com base no estimador convergente e em uma variante do estimador GCI. As soluções numéricas obtidas são comparadas com as de outros autores e com dados experimentais.

Nas seções seguintes, são descritos os testes realizados, a metodologia empregada e os resultados obtidos.

5.2 TESTES COM O OTIMIZADOR

5.2.1 Descrição dos testes

Três funções, cujos mínimos são conhecidos analiticamente, foram selecionadas para realizar o teste do otimizador: a função elipsoide rotacionado, a função de Rosenbrock e a função de Rastrigin. Cada uma destas funções tem particularidades que dificultam a determinação do mínimo e por este motivo são frequentemente utilizadas na literatura para testar métodos de otimização²⁷. A função elipsoide rotacionado gera um acoplamento

maior entre as variáveis de otimização que o não rotacionado, o que aumenta a dificuldade da otimização. A função de Rosenbrock tem um vale muito estreito e curvo em torno do mínimo, gerando problemas para métodos pouco eficientes na determinação das direções de busca. A função de Rastrigin apresenta muitos mínimos locais, o que pode causar a interrupção prematura da otimização. Outra característica importante destas funções é a dimensão N_u do domínio, que pode ser variada. Em geral, a dificuldade de otimização cresce com o aumento de N_u . Por isso, nos testes que seguem, N_u varia de um a cinco. A seguir, a fórmula destas funções, o domínio de otimização, o ponto de mínimo global e os gráficos para uma e duas variáveis de otimização são apresentados.

• Função elipsoide rotacionado

1. Fórmula:

$$I(\mathbf{X}) = \sum_{i=1}^{N_u} \left(\sum_{j=1}^i X_j\right)^2, \qquad 1 \le N_u.$$
(5.1)

2. Região de busca:

$$-60 \le X_i \le 60, \qquad 1 \le i \le N_u.$$
 (5.2)

3. Ponto de mínimo global:

$$\boldsymbol{X}^a = [0, \cdots, 0]. \tag{5.3}$$

Figura 5.1 – (a) Gráfico e (b) curvas de nível da função elipsoide rotacionado.

• Função de Rosenbrock

1. Fórmula:

$$I(\mathbf{X}) = \sum_{i=1}^{N_u - 1} 100 \left(X_i^2 - X_{i+1} \right)^2 + \left(1 - X_i \right)^2, \qquad 2 \le N_u. \tag{5.4}$$

2. Região de busca:

$$-2 \le X_i \le 2, \qquad 1 \le i \le N_u. \tag{5.5}$$

3. Ponto de mínimo global:

$$\boldsymbol{X}^a = [1, \cdots, 1]. \tag{5.6}$$

4. Gráfico: Fig. 5.2.

Figura 5.2 – Curvas de nível da função de Rosenbrock $(N_u = 2)$.

• Função de Rastrigin

1. Fórmula:

$$I(\mathbf{X}) = \sum_{i=1}^{N_u} \left[X_i^2 - 10\cos\left(2\pi X_i\right) + 10 \right], \qquad 1 \le N_u.$$
 (5.7)

2. Região de busca:

$$-10 \le X_i \le 10, \qquad 1 \le i \le N_u.$$
 (5.8)

3. Ponto de mínimo global:

$$\boldsymbol{X}^a = [0, \cdots, 0]. \tag{5.9}$$

4. *Gráficos:* Fig. 5.3.

5.2.2 Resultados

A otimização das funções descritas na seção anterior foi realizada com base na metodologia descrita no Cap. 3 e nos parâmetros de entrada da Tab. 5.1. Os parâmetros N_p , $F \in C_r$ seguem as recomendações de Feoktistov²⁷.

As Tabelas 5.2-5.4 comparam, respectivamente, a solução numérica X e a analítica X^a das otimizações das funções elipsoide rotacionado, de Rosenbrock e de Rastrigin. As soluções numéricas foram obtidas com o algoritmo de evolução diferencial tradicional (ED)

e com o algoritmo hibridizado (ED-MSR). Dentro da tolerância prescrita, todas as soluções numéricas convergiram para as respectivas soluções analíticas. Como se pode observar, o algoritmo hibridizado produziu soluções muito melhores que o tradicional no caso das funções elipsoide rotacionado e de Rastrigin. No caso da função de Rosenbrock, o erro dos dois métodos é semelhante.

Figura 5.3 – (a) Gráfico e (b) curvas de nível da função de Rastrigin.

Descrição	Símbolo	Valor
População (número de indivíduos)	N_p	$10N_u$
Constante de diferenciação	F	$0,\!85$
Probabilidade de cruzamento	C_r	$0,\!5$
Tolerância do critério de convergência	$\varepsilon_{\mathrm{ED}}$	0,0001

Tabela 5.1 – Parâmetros de entrada do otimizador.

Outro aspecto importante é o número de gerações G necessárias para que o critério de convergência fosse satisfeito com tolerância $\varepsilon_{\rm ED}$. A Tabela 5.5 compara os valores de G das otimizações realizadas com o algoritmo tradicional e o hibridizado para as três funções em estudo. Como o tempo de processamento por geração do algoritmo hibridizado é da mesma ordem de grandeza que o do não hibridizado, conclui-se que a eficiência do algoritmo hibridizado foi notoriamente superior ao do algoritmo tradicional para todos os valores de N_u testados.

5.2.3 Conclusão

Os testes realizados indicam que o aplicativo DEPP está funcionando corretamente. Além disso, verificou-se que o algoritmo de evolução diferencial hibridizado com o método das superfícies de resposta produziu resultados melhores ou semelhantes aos do algoritmo tradicional.

		Elips	soide rotacion	ado	
			ED		
N_u	$X_1 - X_1^a$	$X_2 - X_2^a$	$X_3 - X_3^a$	$X_4 - X_4^a$	$X_5 - X_5^a$
1	$-6 imes 10^{-6}$				
2	$6 imes 10^{-4}$	$-7 imes 10^{-4}$			
3	2×10^{-4}	-8×10^{-4}	6×10^{-4}		
4	1×10^{-3}	6×10^{-4}	-1×10^{-3}	$-9 imes 10^{-4}$	
5	-5×10^{-4}	-4×10^{-4}	-1×10^{-3}	3×10^{-3}	-9×10^{-4}
			ED-MSR		
1	1×10^{-17}				
2	-9×10^{-16}	4×10^{-16}			
3	7×10^{-15}	-2×10^{-14}	7×10^{-15}		
4	2×10^{-14}	$-3 imes 10^{-14}$	$-3 imes 10^{-14}$	6×10^{-15}	
5	8×10^{-14}	-1×10^{-13}	-4×10^{-15}	-3×10^{-14}	9×10^{-14}

Tabela 5.2 – Comparação entre a solução numérica X e a analítica X^a da otimização da função elipsoide rotacionado.

Tabela 5.3 – Comparação entre a solução numérica X e a analítica X^a da otimização da função de Rosenbrock.

			Rosenbrock		
			ED		
			ED		
N_u	$X_1 - X_1^a$	$X_2 - X_2^a$	$X_3 - X_3^a$	$X_4 - X_4^a$	$X_5 - X_5^a$
2	-1×10^{-5}	-3×10^{-5}			
3	$-2 imes 10^{-5}$	$-3 imes 10^{-5}$	$-7 imes 10^{-5}$		
4	-4×10^{-7}	4×10^{-6}	1×10^{-5}	2×10^{-5}	
5	2×10^{-7}	-2×10^{-6}	1×10^{-6}	6×10^{-6}	1×10^{-5}
			ED-MSR		
2	-4×10^{-6}	-5×10^{-6}			
3	-2×10^{-5}	-4×10^{-5}	-7×10^{-5}		
4	$-2 imes 10^{-6}$	2×10^{-6}	5×10^{-6}	2×10^{-5}	
5	-4×10^{-6}	$-3 imes 10^{-6}$	$-9 imes 10^{-6}$	-2×10^{-5}	$-4 imes 10^{-5}$

			Rastrigin ED		
N_u	$X_1 - X_1^a$	$X_2 - X_2^a$	$X_3 - X_3^a$	$X_4 - X_4^a$	$X_5 - X_5^a$
1	-8×10^{-5}				
2	7×10^{-5}	-8×10^{-5}			
3	$5 imes 10^{-5}$	2×10^{-4}	1×10^{-4}		
4	$3 imes 10^{-4}$	$-7 imes 10^{-5}$	$-3 imes 10^{-4}$	$-4 imes 10^{-6}$	
5	4×10^{-4}	$-5 imes 10^{-5}$	2×10^{-4}	-3×10^{-5}	3×10^{-5}
			ED-MSR		
1	-2×10^{-8}				
2	-1×10^{-11}	-5×10^{-11}			
3	3×10^{-11}	-4×10^{-11}	8×10^{-13}		
4	-1×10^{-11}	3×10^{-11}	2×10^{-12}	-1×10^{-10}	
5	9×10^{-11}	2×10^{-11}	1×10^{-10}	$-3 imes 10^{-12}$	$-7 imes 10^{-11}$

Tabela 5.4 – Comparação entre a solução numérica X e a analítica X^a da otimização da função de Rastrigin.

Tabela 5.5 –	- Número	de ger	ações (G n	ecessárias	para	a	minimiza	ção	da	função	objet	ivo	Ι
	com tole	erância	$\varepsilon_{\mathrm{ED}}.$											

	G								
	Elipsoide		Rosenbrock		Rastrigin				
N_u	ED	ED-MSR	ED	ED-MSR	ED	ED-MSR			
1	28	8			23	11			
2	71	18	145	75	51	27			
3	136	24	398	167	91	38			
4	237	30	828	287	123	50			
5	393	39	1598	510	149	61			

5.3 TESTES COM O SIMULADOR

5.3.1 Descrição dos testes

O teste do simulador consiste em calcular o coeficiente de arrasto frontal devido ao escoamento axissimétrico de ar sobre cones para alguns valores do número de Mach M_{∞} nos regimes supersônico e hipersônico. Mais precisamente, as simulações são separadas em

dois conjuntos. No primeiro, o coeficiente de arrasto é calculado com base nas equações de Euler para um cone de semiângulo de 10° e sob os números de Mach de 2, 3, 4, 5, 6 e 8. No segundo conjunto, o coeficiente de arrasto é calculado com base nas equações de Navier-Stokes (laminar) para um cone de razão de aspecto $f_r = 3$ (comprimento/diâmetro de base) e sob os números de Mach de 2,73, 3,50, 4,00, 5,05 e 6,28. Estas geometrias e números de Mach foram escolhidos devido à existência de dados numéricos e experimentais de outros autores que são utilizados nas comparações.

5.3.2 Metodologia

5.3.2.1 Simulação do escoamento

A metodologia usada para simular o escoamento é descrita em detalhes no Cap. 4. Esta seção apresenta apenas informações particulares ao problema abordado neste capítulo, mais precisamente, concernentes à aplicação das condições de contorno e à discretização do domínio de cálculo.

O domínio de cálculo é mostrado esquematicamente na Fig 5.4a. Sobre o contorno norte N (um quarto de elipse), o escoamento é considerado não perturbado e igual ao da corrente livre, onde os números de Mach M_{∞} , Reynolds Re_{∞} (baseado no comprimento do cone l_r) e a temperatura T_{∞} são prescritos. Sobre o contorno oeste W, as condições de simetria são aplicadas. Sobre o contorno sul S, o gradiente normal de pressão e temperatura são nulos, enquanto as condições de não deslizamento são aplicadas para a velocidade, no caso do modelo de Navier-Stokes, e de não permeabilidade, no caso do modelo de Euler. Finalmente, a saída do gás no contorno leste E é modelada com as condições de escoamento localmente parabólico.

O domínio físico é discretizado algebricamente com nós concentrados próximo à superfície do cone e da sua ponta (Fig. 5.4b). A coordenada x dos contornos norte e sul (linhas de η constante) é discretizada de acordo com uma lei de potência com expoente α_{ξ_s} . As linhas conectando os contornos norte e sul (linhas de ξ constante) são discretizadas de modo que a distância entre os nós sucessivos formem uma progressão geométrica. A distância entre os dois primeiros nós (a partir do contorno sul) é um múltiplo c_{bl} da espessura estimada da camada limite δ , que é dada por

$$\delta = \sqrt{\frac{\mu_{\infty} l_r}{\rho_{\infty} u_{\infty}}},\tag{5.10}$$

onde μ_{∞} , ρ_{∞} e u_{∞} são, respectivamente, a viscosidade, a densidade e a velocidade da corrente livre.

Figura 5.4 – Ilustração esquemática do (a) domínio de cálculo e (b) sua discretização.

5.3.2.2 Verificação

Em CFD (*Computational Fluid Dynamics*), existem basicamente quatro fontes de erro numérico⁶⁰: (i) erros de programação, (ii) erros de arredondamento (iii) erros de iteração e (iv) erros de truncamento. A combinação destes erros gera o erro numérico.

Os erros de programação são geralmente difíceis de identificar e são causados por erros de dedução, de implementação, de uso do aplicativo, entre outros. No intuito de evitar estes erros, algumas estratégias foram utilizadas. Primeiramente, o código Mach2D foi completamente reescrito a partir de uma versão mais antiga. O desenvolvimento do novo código foi rastreado através do aplicativo $Subversion^{61}$, que é um sistema de controle de versões. Durante esta tarefa, e depois de digitar cada sub-rotina, a solução numérica foi comparada com a produzida pelo código original. Em segundo lugar, o código foi compilado com dois compiladores (GNU Fortran Compiler-v.4.8.2 e Intel Fortran Compiler-v.13.1.1) usando suas diretivas de *debug*. Finalmente, um teste de memória foi realizado com o aplicativo *Valgrind*⁶². Com base neste procedimento, espera-se que o código Mach2D, mais precisamente a versão Mach2D-5.8.2.2-r528, esteja livre de erros de programação.

Os erros de arredondamento são causados pela representação limitada dos números reais nos computadores digitais. A sua influência na solução pode ser estimada, por exemplo, comparando-se a solução obtida com precisão dupla (16 algarismos significativos) com a solução obtida com precisão quádrupla (32 algarismos significativos). Nesta comparação, assume-se que o erro de arredondamento na solução com precisão quádrupla seja desprezível quando comparada com a solução obtida com precisão dupla. A mudança de precisão pode ser feita facilmente no compilador GNU Fortran através da diretiva de compilação -*freal-8-real-16*, que converte variáveis de precisão dupla em variáveis de precisão quádrupla.

O erro de iteração é, por definição, a diferença entre a solução numérica em uma dada iteração e a solução numérica exata do modelo discretizado. Neste trabalho, as iterações são realizadas até que o erro de máquina seja atingido, de modo que os erros de iteração possam ser considerados desprezíveis. Finalmente, o erro de truncamento resulta de aproximações relacionadas à discretização do modelo matemático. Desconsiderando-se o erro de programação, esse é tipicamente a maior fonte do erro numérico. Quando o erro numérico é dominado pelo erro de truncamento, o primeiro é chamado de erro de discretização⁶⁰.

Neste estudo, dois estimadores foram aplicados para determinar uma estimativa do erro de discretização: o estimador convergente⁶⁰ e uma variante do estimador GCI (Grid Convergence Index⁶³).

Para o caso do estimador convergente, considere que três soluções numéricas, *e.g.*, ϕ_1 , $\phi_2 \in \phi_3$, foram obtidas em malhas com partições uniformes h_1 , $h_2 \in h_3$, respectivamente, e que a razão de refino da malha r seja constante, *i.e.*,

$$r = \frac{h_2}{h_1} = \frac{h_3}{h_2} > 1. \tag{5.11}$$

De acordo com o estimador convergente, a solução exata Φ do modelo matemático é expressa em termos da solução extrapolada ϕ_C e sua estimativa de erro U_C como

$$\Phi = \phi_C \pm U_C, \tag{5.12}$$

onde

$$\phi_C = \frac{\phi_{\mathrm{Ri}}(p_L) + \phi_{\mathrm{Ri}}(p_U)}{2} \tag{5.13}$$

е

$$U_C = \frac{|\phi_{\rm Ri}(p_L) - \phi_{\rm Ri}(p_U)|}{2}.$$
 (5.14)

Nas Equações (5.13) e (5.14), ϕ_{Ri} é a extrapolação de Richardson da solução numérica baseada na ordem assimptótica p_L ou baseada na ordem aparente p_U . A ordem assimptótica p_L é a ordem de acurácia dominante obtida do erro de truncamento para uma malha suficiente refinada (primeira ordem, neste estudo, *i.e.*, $p_L = 1$) e a ordem aparente p_U é calculada de

$$p_U = \frac{\log\left(\frac{\phi_2 - \phi_3}{\phi_1 - \phi_2}\right)}{\log r}.$$
(5.15)

A extrapolação de Richardson para uma ordem de acurácia arbitrária p_A , e baseada na malha mais fina h_1 , é dada por

$$\phi_{\rm Ri}(p_A) = \phi_1 + \frac{\phi_1 - \phi_2}{r^{p_A} - 1}.$$
(5.16)

Teoricamente, a solução exata Φ do modelo matemático é limitada pela solução extrapolada e sua estimativa de erro, ou seja, $\phi_C - U_C < \Phi < \phi_C + U_C$.

A aplicação do estimador convergente requer que a ordem observada p_U esteja no intervalo convergente, *i.e.*, que p_U decresça ou cresça assimptoticamente para p_L à medida que a malha é refinada. Isto, entretanto, nem sempre é possível em aplicações envolvendo CFD, como pode ser observado no trabalho de Verificação e Validação de Roy *et al.*⁶⁴ É por este motivo que uma variante do estimador GCI será considerada.

De acordo com o estimador GCI, a solução para a variável de interesse é aproximada por

$$\phi_1 \pm U_{\rm GCI},\tag{5.17}$$

onde

$$U_{\rm GCI} = F_s \frac{|\phi_1 - \phi_2|}{r^{p_L} - 1} \tag{5.18}$$

e $F_s = 3$ é o fator de segurança.

A variante do GCI utilizada neste trabalho expressa a solução para a variável de interesse como

$$\phi_{\rm Ri}(p_L) \pm U_{\rm GCI}.\tag{5.19}$$

Ou seja, mantém-se a estimativa do erro, porém utiliza-se uma extrapolação para a solução numérica.

5.3.2.3 Validação

De acordo com a norma ASME V&V 20-2009⁶⁵, espera-se que o erro em uma simulação numérica ϕ^{num} devido à modelagem δ^{model} esteja no intervalo

$$E - U^{\text{val}} \le \delta^{\text{model}} \le E + U^{\text{val}},\tag{5.20}$$

onde E e $U^{\rm val}$ são as métricas de validação. E é dado por

$$E = \phi^{\text{num}} - \phi^{\text{exp}} \tag{5.21}$$

e $U^{\rm val}$ depende de como o resultado experimental $\phi^{\rm exp}$ foi obtido. Para o caso em que $\phi^{\rm exp}$ é medido diretamente, $U^{\rm val}$ fica

$$U^{\text{val}} = \sqrt{(U^{\text{num}})^2 + (U^{\text{input}})^2 + (U^{\text{exp}})^2},$$
(5.22)

onde U^{num} é a estimativa de erro numérico, cujo método de cálculo foi apresentado na última seção, U^{input} é a estimativa de incerteza na solução numérica causada pela variabilidade dos parâmetros de entrada e U^{exp} é a estimativa de incerteza na medida experimental. Considerando a existência de N_i parâmetros de entrada \mathcal{X}_i $(1 \le i \le N_i)$, U^{input} é calculado como

$$\left(U^{\text{input}}\right)^2 = \sum_{1}^{N_i} \left(\frac{\partial \phi^{\text{num}}}{\partial \mathcal{X}_i} U_{\mathcal{X}_i}\right)^2, \qquad (5.23)$$

onde $U_{\mathcal{X}_i}$ é a incerteza padrão em \mathcal{X}_i .

Neste trabalho, ϕ^{exp} representa o coeficiente de arrasto frontal C_{Df} do experimento de Eggers *et al.*⁹ Este coeficiente não foi medido diretamente, mas obtido a partir de uma

combinação de dados envolvendo alguns parâmetros de entrada do modelo matemático. Por causa disto, a Eq. (5.22) não é a expressão apropriada para U^{val} . A expressão apropriada, entretanto, envolve dados experimentais que não são conhecidos. Desta forma, a Eq. (5.22) será utilizada como uma aproximação para U^{val} .

5.3.3 Resultados e Discussão

5.3.3.1 Modelo de Euler

Esta seção trata da verificação do coeficiente de arrasto frontal invíscido C_{Df}^p do modelo de Euler, determinado para seis valores do número de Mach: 2, 3, 4, 5, 6 e 8. Os parâmetros de entrada das simulações são mostrados na Tab. 5.6. Para cada número de Mach, as simulações foram realizadas em cinco malhas m_5, m_4, m_3, m_2 e m_1 com, respectivamente, 60, 120, 240, 480 e 960 volumes em cada direção coordenada. As malhas mais grossas foram obtidas da mais fina removendo-se linhas alternadas em cada direção coordenada.

Para investigar o efeito do erro de arredondamento, $C_{\rm Df}^p$ foi calculado usando precisão dupla e quádrupla. Este teste foi limitado a uma simulação específica (malha de 960 × 960 volumes e $M_{\infty} = 2$) devido ao custo computacional dos cálculos com precisão quádrupla. A Figura 5.5 mostra o comportamento do erro de arredondamento relativo de $C_{\rm Df}^p$ como função do número de iterações. Como pode ser visto, este erro atinge um valor expressivo (maior que 10⁻⁸) durante o transiente falso, mas torna-se menor que 10⁻¹⁴ para a solução convergida.

A Figura 5.5 também mostra o resíduo dos sistemas lineares e o resíduo da equação de conservação da massa como funções do número de iterações para a mesma simulação. O resíduo dos sistemas lineares atinge o erro de máquina em aproximadamente 9000 iterações, mas o processo iterativo continua até cerca de 17000 iterações para garantir que o erro de iteração se tornou suficientemente pequeno para ser desprezado. Este comportamento foi observado em todas as simulações.

Com base nestes resultados, acredita-se que tanto o erro de iteração quanto o erro de arredondamento são desprezíveis comparados com o erro de truncamento, o que permite que o erro numérico seja calculado seguindo a metodologia descrita na Seç. 5.3.2.2.

No sentido de determinar o erro de discretização com o estimador convergente, a ordem de acurácia aparente p_U foi obtida com as cinco malhas supracitadas. Os resultados são mostrados na Tab. 5.7 para os seis números de Mach em consideração. Pode-se observar que a ordem aparente converge para a ordem assimptótica com o refino da malha, isto é, $p_U \rightarrow p_L = 1$. Este fato tem dois aspectos positivos: (i) é possível aplicar o estimador convergente e (ii) de acordo com Roy⁶⁶, a convergência da ordem aparente p_U para a ordem assimptótica p_L deve ser verificada quando o código está livre de erro de programação.

Quantidade	Símbolo	Valor
Pressão da corrente livre	p_{∞}	300 Pa
Temperatura da corrente livre	T_{∞}	$300 \mathrm{K}$
Comprimento do semieixo x da elipse	l_a	$3,1 \mathrm{~m}$
Comprimento do semieixo y da elipse $(M_{\infty} = 2)$	l_b	$2{,}5~\mathrm{m}$
Comprimento do semieixo y da elipse $(M_{\infty} > 2)$	l_b	$1{,}5~\mathrm{m}$
Raio da base	r_b	$0{,}5~\mathrm{m}$
Semiângulo do cone	heta	10°
Expoente para a distribuição de nós nos contornos S e N	α_{ξ_s}	2
Múltiplo da espessura da camada limite estimada	c_{bl}	$0,\!05$

Tabela 5.6 – Dados de entrada para o modelo de Euler.

Figura 5.5 – Resíduo dos sistemas lineares, resíduo da equação de conservação da massa e erro de arredondamento relativo de $C_{\rm Df}^p$. Modelo de Euler. Malha: 960 × 960. $M_{\infty} = 2$.

Tabela 5.7 – Ordem aparente p_U para o coeficiente de arrasto frontal invíscido C_{Df}^p calculada para alguns valores do número de Mach. Modelo de Euler.

			p_U			
Malhas	$M_{\infty} = 2$	3	4	5	6	8
(m_3, m_4, m_5)	0,46	$0,\!64$	$0,\!65$	0,70	0,76	$0,\!85$
(m_2,m_3,m_4)	$0,\!67$	0,72	0,75	$0,\!81$	$0,\!86$	$0,\!92$
(m_1, m_2, m_3)	0,75	0,76	$0,\!82$	$0,\!88$	$0,\!92$	$0,\!96$

O coeficiente de arrasto invíscido frontal obtido com o estimador convergente é apresentado na primeira linha da Tab. 5.8. Os valores entre parênteses representam o

erro estimado. Por exemplo, 0,10447(3) representa $0,10447 \pm 0,00003$. O erro numérico estimado não excede 0,06% da solução numérica estimada para o intervalo completo do número de Mach considerado.

Tabela 5.8 – Coeficiente de arrasto invíscido frontal extrapolado C_{Df}^p e sua estimativa de erro para várias concentrações de pontos e números de Mach. Modelo de Euler e estimador convergente.

			C^p_{Df}	
α_{ξ_s}	c_{bl}	$M_{\infty} = 2$	3	4
2	$0,\!05$	0,10447(3)	0,08747(5)	0,07936(4)
1,5	$0,\!05$	0,10447(3)	0,08747(5)	0,07936(4)
2,5	$0,\!05$	0,10447(3)	0,08747(5)	$0,\!07936(5)$
2	$0,\!1$	0,10447(2)	0,08747(5)	0,07936(4)
2	$0,\!025$	0,10447(3)	0,08747(5)	0,07936(5)
α_{ξ_s}	c_{bl}	$M_{\infty} = 5$	6	8
2	$0,\!05$	0,07468(3)	0,07171(2)	0,068249(8)
$1,\!5$	$0,\!05$	0,07468(2)	$0,\!07171(1)$	0,068252(7)
2,5	$0,\!05$	0,07468(3)	0,07170(2)	0,068247(9)
2	$0,\!1$	0,07468(2)	0,07170(2)	0,068248(7)
2	$0,\!025$	0,07468(3)	0,07171(2)	0,068251(10)

A Tabela 5.8 também mostra as soluções extrapoladas obtidas com diferentes concentrações de pontos na malha. Como mencionado anteriormente, α_{ξ_s} controla a concentração próximo à ponta, enquanto c_{bl} controla a concentração nas vizinhanças da superfície do cone. Para investigar a influência da concentração de pontos na malha sobre a solução final, considerou-se uma malha com menor concentração de pontos próximo à ponta ($\alpha_{\xi_s} = 1,5$) e com maior concentração ($\alpha_{\xi_s} = 2,5$). O mesmo foi feito com a concentração próximo à superfície do cone ($c_{bl} = 0,1$ e $c_{bl} = 0,025$). Como pode ser visto, dentro do erro numérico estimado, a solução não depende de α_{ξ_s} e c_{bl} , *i.e.*, a solução é independente da malha.

A Tab. 5.9 compara as soluções extrapoladas para $C_{\rm Df}^p$ obtidas com os estimadores convergente e a variante do GCI. Como se pode observar, a diferença relativa entre as soluções extrapoladas não excede 0,02%, entretanto a estimativa do erro do GCI chega a ser da ordem de 100 vezes a estimativa do erro do estimador convergente.

	$M_{\infty} = 2$	3	4
Conv. GCI	0,104466(8) 0,104458(109)	0,08747(2) 0,08745(22)	0,07936(1) 0,07935(28)
	$M_{\infty} = 5$	6	8
Conv. GCI	$0,074684(9) \\ 0,074675(300)$	0,071705(6) 0,071699(298)	$\begin{array}{c} 0,068249(3) \\ 0,068246(278) \end{array}$

Tabela 5.9 – Comparação entre $C^p_{\rm Df}$ extrapolado com o estimador convergente e com a variante do GCI.

Finalmente, o coeficiente de arrasto invíscido frontal, calculado com base nas equações de Euler (estimador convergente), é apresentado na Tab. 5.10 juntamente com a solução da equação de Taylor-Maccoll obtida numericamente por Sims⁶⁷. A discordância entre as soluções de Euler e de Taylor-Maccoll é menor que 0,01% para $M_{\infty} = 2$ e cresce com o número de Mach, atingindo 0,33% para $M_{\infty} = 8$. O propósito principal desta comparação não é quantificar a diferença entre os dois modelos, mas mostrar que a solução obtida neste trabalho está em concordância com a solução obtida por outro método.

5.3.3.2 Modelo de Navier-Stokes

5.3.3.2.1 Verificação

Esta seção trata da verificação do coeficiente de arrasto frontal $C_{\rm Df}$ do modelo de Navier-Stokes. Diferentemente do modelo de Euler, $C_{\rm Df}$ tem duas componentes, o coeficiente de arrasto frontal devido à pressão $C_{\rm Df}^p$ e o coeficiente de arrasto frontal devido às tensões viscosas $C_{\rm Df}^{\mu}$, *i.e.*,

$$C_{\rm Df} = C_{\rm Df}^p + C_{\rm Df}^\mu.$$
(5.24)

Tabela 5.10 – Coeficiente de arrasto invíscido frontal C_{Df}^p de acordo com os modelos de Taylor-Maccoll⁶⁷ (TM) e Euler (estimador convergente).

		C^p_{Df}	
Modelo	$M_{\infty} = 2$	3	4
TM ⁶⁷ Euler	0,10445829 0,10447(3)	$\begin{array}{c} 0,087475175\\ 0,08747(5) \end{array}$	0,079393438 0,07936(4)
Modelo	$M_{\infty} = 5$	6	8
TM ⁶⁷ Euler	$\begin{array}{c} 0,074756914\\ 0,07468(3)\end{array}$	0,071 828 508 0,071 71(2)	0,068 471 989 0,068 249(8)

Os dados de entrada das simulações são mostrados nas Tabs. 5.11 e 5.12. Com base nestes dados, as simulações foram realizadas usando malhas com 60, 120, 240, 480 e 960 volumes em cada direção coordenada (malhas m_5, m_4, m_3, m_2 e m_1 , respectivamente), onde as malhas mais grossas foram obtidas da mais fina removendo-se linhas alternadas em cada direção coordenada.

Quantidade	Símbolo	Valor
Temperatura da corrente livre	T_{∞}	300 K
Comprimento do semieixo x da elipse	l_a	$0{,}08382~{\rm m}$
Comprimento do semieixo y da elipse	l_b	$0{,}0508~\mathrm{m}$
Raio da base	r_b	$0{,}0127~\mathrm{m}$
Razão de aspecto (comprimento/diâmetro da base)	f_r	3
Expoente para a distribuição de nós nos contornos S e N	α_{ξ_s}	2
Múltiplo da espessura estimada da camada limite	c_{bl}	$0,\!04$

Tabela 5.11 – Dados de entrada para o modelo de Navier-Stokes.

Tabela 5.12 – Números de Mach e Reynolds da corrente livre para o modelo de Navier-Stokes.

M_{∞}	2,73	3,50	4,00	5,05	6,28
Re_∞	$2,10 \times 10^6$	$2,\!85 imes 10^6$	$2,\!16 imes10^6$	$1,\!05 imes 10^6$	$4,50 imes 10^5$

Como realizado para o modelo de Euler, o erro de arredondamento foi avaliado apenas para uma simulação particular (malha 960 × 960 e $M_{\infty} = 2,73$), enquanto o número de iterações foi mantido alto suficiente para reduzir o erro de iteração ao nível de máquina. Foi observado que o comportamento do erro de arredondamento é similar ao encontrado no modelo de Euler. Considerando-se que os erros de arredondamento e iteração são muito menores que o erro de truncamento, resta apenas determinar o erro de discretização.

A ordem de acurácia observada p_U calculada para $C_{\text{Df}}^p \in C_{\text{Df}}^{\mu}$, baseada nos dados das Tabelas 5.11 e 5.12, é mostrada na Tab. 5.13. Como pode ser visto, p_U converge para $p_L = 1$ à medida que a malha é refinada.

Tabela 5.13 – Ordem de acurácia observada p_U de $C_{\rm Df}^p$ e $C_{\rm Df}^\mu$ para o modelo de Navier-Stokes.

	$p_U (C^p_{\mathrm{Df}})$				$p_U \left(C^\mu_{ m Df} ight)$					
Malhas $\setminus M_{\infty}$	2,73	$3,\!50$	4,00	$5,\!05$	6,28	2,73	$3,\!50$	4,00	$5,\!05$	$6,\!28$
(m_3,m_4,m_5)	0,44	$0,\!51$	$0,\!56$	0,66	$0,\!74$	$1,\!57$	1,70	1,81	$2,\!15$	$2,\!33$
$\left(m_2,m_3,m_4 ight)$	$0,\!62$	$0,\!64$	$0,\!68$	0,76	$0,\!83$	$1,\!27$	$1,\!33$	$1,\!38$	$1,\!54$	$1,\!84$
(m_1,m_2,m_3)	0,70	0,72	0,77	$0,\!85$	$0,\!89$	$1,\!13$	$1,\!18$	$1,\!22$	$1,\!30$	$1,\!35$

Uma vez que a solução numérica está no intervalo convergente, o estimador convergente pode ser aplicado. A Tabela 5.14 mostra a solução extrapolada e sua estimativa de erro. A estimativa do erro de $C_{\rm Df}$ é a soma do erro estimado em $C_{\rm Df}^p$ e $C_{\rm Df}^{\mu}$ e não excede 0,08% da solução extrapolada. Esta tabela também mostra o efeito da concentração da malha sobre $C_{\rm Df}^p$, $C_{\rm Df}^{\mu}$ e $C_{\rm Df}$ ao se modificar os parâmetros de concentração α_{ξ_s} e c_{bl} . Dentro do erro numérico estimado, a solução extrapolada independe da malha.

Na Tab. 5.15 são comparadas as soluções extrapoladas para C_{Df}^p , C_{Df}^μ e C_{Df} obtidas com os estimadores convergente e a variante do GCI. A diferença relativa entre as soluções extrapoladas não excede 0,03%, mas a estimativa de erro da variante do estimador GCI chega a ser dez vezes a do estimador convergente.

5.3.3.2.2 Validação

A validação do coeficiente de arrasto frontal $C_{\rm Df}$ foi realizada comparando-se os resultados obtidos do modelo de Navier-Stokes e os dados experimentais de Eggers *et al.*⁹ O experimento foi conduzido em túnel de vento supersônico com seção reta de 10 × 14 in². Os cones utilizados tinham diâmetro de base de 1 in e comprimento de 3 in. A força de arrasto frontal foi obtida subtraindo-se o arrasto na base do arrasto total, que foi medido com uma balança tensométrica. As forças na base foram determinadas de medidas de pressão na base dos modelos e da pressão estática da corrente livre.

De acordo com Eggers *et al.*⁹, a acurácia do coeficiente de arrasto foi afetada por incertezas nas medidas das seguintes quantidades: pressão de estagnação, pressão estática da corrente livre, pressão na base dos cones e pelas forças nos modelos medidas pela balança tensométrica. Os autores afirmam que o efeito combinado de todas as fontes de erro resultam em uma provável incerteza na medida dos coeficientes de arrasto frontal que varia de $\pm 0,001$ para os valores mais baixos do número de Mach (2,73) a $\pm 0,005$ para os valores mais altos (6,28). Uma vez que o experimento não foi planejado para ser um experimento de validação, algumas informações não foram disponibilizadas. Como exemplo, a incerteza da pressão de estagnação p_0 , da pressão estática da corrente livre p_{∞} e da pressão dinâmica q_{∞} são, respectivamente, 0,5%, 1,5% e 1,5%, mas o valor destas quantidades não foi dado. Por outro lado, os números de Mach e Reynolds são dados (Tab. 5.12), mas suas incertezas não. Além disso, nem a temperatura da corrente livre nem a pressão da base (e suas incertezas) foram dadas.

		$C^p_{ m Df}$					
α_{ξ_s}	c_{bl}	$M_{\infty} = 2,73$	$3,\!50$	4,00	$5,\!05$	6,28	
2	0,04	0,08347(5)	0,07602(6)	0,07290(6)	0,06867(4)	0,06605(3)	
2	$0,\!08$	0,08347(4)	0,07602(6)	0,07290(5)	0,06867(4)	0,06605(3)	
2	$0,\!02$	0,08347(6)	0,07602(7)	0,07290(6)	0,06867(4)	0,06604(2)	
1,5	$0,\!04$	0,08347(5)	0,07602(6)	0,07290(5)	0,06867(3)	0,06605(2)	
2,5	0,04	0,08347(5)	0,07602(6)	0,07290(6)	0,06867(4)	0,06605(3)	
				$C^{\mu}_{ m Df}$			
α_{ξ_s}	c_{bl}	$M_{\infty} = 2,73$	3,50	4,00	5,05	6,28	
2	0,04	0,005227(2)	0,004283(2)	0,004798(2)	0,006604(3)	0,009793(4)	
2	$0,\!08$	0,005228(12)	0,004284(9)	0,004798(9)	0,006601(48)	0,009788(65)	
2	$0,\!02$	0,005227(1)	0,004283(1)	0,004797(1)	0,006604(1)	0,009791(1)	
1,5	$0,\!04$	0,005227(2)	0,004283(2)	0,004797(2)	0,006604(3)	0,009793(4)	
2,5	$0,\!04$	0,005227(2)	0,004283(2)	0,004798(2)	0,006604(3)	0,009793(4)	
				C_{Df}			
α_{ξ_s}	c_{bl}	$M_{\infty} = 2,73$	3,50	4,00	$5,\!05$	6,28	
2	0,04	0,08870(5)	0,08030(6)	0,07770(6)	0,07528(4)	0,07584(3)	
2	$0,\!08$	0,08870(5)	0,08030(6)	0,07770(6)	0,07527(8)	0,07584(10)	
2	0,02	0,08870(6)	$0,\!08030(7)$	0,07770(6)	0,07528(4)	0,07583(2)	
1,5	0,04	0,08870(5)	0,08030(6)	0,07770(6)	0,07528(4)	0,07584(3)	
2,5	$0,\!04$	0,08870(5)	$0,\!08030(7)$	0,07770(6)	0,07528(4)	0,07584(3)	

Tabela 5.14 – Efeito da concentração da malha sobre C_{Df}^p , C_{Df}^μ e C_{Df} para alguns valores do número de Mach. Modelo de Navier-Stokes e estimador convergente.

A Tabela 5.16 apresenta o coeficiente de arrasto frontal $C_{\rm Df}^{\rm exp}$ do experimento de Eggers *et al.*⁹ e sua incerteza experimental esperada $U^{\rm exp}$. Uma vez que os dados foram obtidos de um gráfico, os valores de $C_{\rm Df}^{\rm exp}$ apresentados são uma média de muitas leituras. A incerteza devido à leitura dos dados $U^{\rm read}$ foi calculada como um desvio padrão do valor médio e é apresentada na Tab. 5.16. Deve-se apontar que todos os valores de M_{∞} lidos do gráfico estão de acordo com seus valores nominais tabulados por Eggers *et al.*⁹, exceto 6,28 que foi lido como 6,13(2). Para levar em consideração a incerteza na leitura de dados na validação, esta foi adicionada à incerteza experimental. Esta incerteza adicional, isto é, a incerteza de leitura, é um problema frequentemente encontrado ao se comparar resultados numéricos e experimentais.

	$C^p_{ m Df}$						
	$M_{\infty} = 2,73$	$3,\!5$	4	5,05	6,28		
Conv.	0,08347(5)	0,07602(6)	0,07290(6)	0,06867(4)	0,06605(3)		
GCI	0,08345(16)	0,07600(23)	0,07288(26)	0,06866(29)	0,06604(30)		
	$C^{\mu}_{ m Df}$						
Conv.	0,005227(2)	0,004283(2)	0,004798(2)	0,006604(3)	0,009793(4)		
GCI	0,005226(30)	0,004282(21)	0,004797(20)	0,006603(17)	0,009792(21)		
	$C_{ m Df}$						
Conv.	0,08870(5)	0,08030(6)	0,07770(6)	0,07528(4)	0,07584(3)		
GCI	0,08868(19)	0,08028(25)	0,07768(28)	0,07526(31)	0,07583(32)		

Tabela 5.15 – Comparação entre as soluções extrapoladas para C_{Df}^p , C_{Df}^μ e C_{Df} obtidas com os estimadores convergente e a variante do GCI.

Tabela 5.16 – Coeficiente de arrasto frontal experimental $C_{\text{Df}}^{\text{exp}}$ de Eggers *et al.*⁹, sua incerteza experimental U^{exp} e a incerteza na leitura dos dados U^{read} .

M_{∞}	2,73	$3,\!50$	4,00	$5,\!05$	6,28
$C_{\rm Df}^{\rm exp}$	0,0884	0,0807	0,0784	0,0757	0,0892
U^{\exp}	0,0010	0,0020	0,0030	0,0040	0,0050
U^{read}	0,0014	0,0014	0,0014	0,0014	0,0014

Uma vez que o erro numérico estimado e a incerteza experimental esperada são conhecidos, resta apenas calcular a incerteza em $C_{\rm Df}$ devido à incerteza dos parâmetros de entrada para se estimar as métricas de validação. Os principais parâmetros de entrada do código Mach2D são a razão de aspecto f_r , a temperatura T_{∞} , o número de Mach M_{∞} e o número de Reynolds Re_{∞} da corrente livre. Dentre estes, apenas a incerteza sobre f_r é considerada desprezível. Nem o valor de T_{∞} , nem sua incerteza são conhecidos. Desta forma, para avaliar a influência da incerteza de T_{∞} sobre o coeficiente de arrasto frontal, M_{∞} e Re_{∞} foram fixos e três valores de T_{∞} foram assumidos: 200 K, 250 K e 300 K. A Tabela 5.17 mostra o coeficiente de arrasto frontal extrapolado e sua estimativa de erro calculada com o estimador convergente como função de T_{∞} . Como se pode ver, dentro da estimativa do erro numérico, T_{∞} não afeta o coeficiente de arrasto invíscido frontal $C_{\rm Df}^{p}$ e o coeficiente de arrasto frontal $C_{\rm Df}$, mas afeta o coeficiente de arrasto viscoso frontal $C_{\rm Df}^{\mu}$ por no máximo 0,2%. Com base neste resultado, T_{∞} foi fixado em 300 K e o efeito de sua incerteza sobre $C_{\rm Df}$ foi considerado desprezível. As incertezas de M_{∞} e Re_{∞} foram estimadas com base na seguinte ideia. Usando a equação de estado dos gases ideais, é possível expressar os números de Mach e Reynolds em função da pressão estática p_{∞} e da pressão dinâmica q_{∞} . Uma vez que existe uma incerteza de 1,5% sobre p_{∞} e q_{∞} , é assumido que a mesma incerteza afeta M_{∞} e Re_{∞}.

O efeito da incerteza de M_{∞} e Re_{∞} sobre $C_{\rm Df}$, *i.e.* $U^{\rm input}$, foi calculado com base na Eq. (5.23). As derivadas foram aproximadas numericamente com um esquema de diferença central e calculadas usando dois valores para ΔM_{∞} e Δ Re_{∞} de modo a garantir que o resultado não depende do passo utilizado na diferença finita. A solução numérica $C_{\rm Df}^{\rm num}$, sua estimativa de erro $U^{\rm num}$ e o efeito da incerteza nos parâmetros de entrada sobre a solução numérica $U^{\rm input}$ são apresentados na Tab. 5.18.

Tabela 5.17 – Efeito da temperatura da corrente livre sobre C_{Df}^{p} , C_{Df}^{μ} e C_{Df} para alguns números de Mach. Modelo de Navier-Stokes e estimador convergente.

	$C^p_{ m Df}$						
T_{∞} (K)	$M_{\infty} = 2,73$	$3,\!50$	4,00	5,05	6,28		
300	0,08347(5)	0,07602(6)	0,07290(6)	0,06867(4)	0,06605(3)		
250	0,08347(5)	0,07602(6)	0,07291(6)	0,06868(4)	0,06605(3)		
200	0,08347(5)	0,07602(6)	0,07291(6)	0,06868(4)	0,06605(3)		
			$C^{\mu}_{ m Df}$				
T_{∞} (K)	$M_{\infty} = 2,73$	3,50	4,00	5,05	6,28		
300	0,005227(2)	0,004283(2)	0,004798(2)	0,006604(3)	0,009793(4)		
250	0,005223(2)	0,004279(2)	0,004793(2)	$0,\!006597(3)$	0,009781(4)		
200	0,005221(2)	0,004277(2)	0,004790(2)	0,006593(3)	0,009774(4)		
			C_{Df}				
T_{∞} (K)	$M_{\infty} = 2,73$	3,50	4,00	5,05	6,28		
300	0,08870(5)	0,08030(6)	0,07770(6)	0,07528(4)	0,07584(3)		
250	0,08870(5)	0,08030(6)	0,07770(6)	0,07527(4)	$0,\!07583(3)$		
200	0,08869(5)	0,08030(6)	0,07770(6)	0,07527(4)	$0,\!07583(3)$		

Finalmente, a Tab. 5.19 mostra as métricas de validação $E \in U^{\text{val}}$ de C_{Df} . Como se pode observar, há uma boa concordância entre os resultados numéricos e experimentais para $M_{\infty} < 6,28$. Tomando-se $C_{\text{Df}}^{\text{exp}}$ como referência, a diferença relativa entre $C_{\text{Df}}^{\text{num}}$ e $C_{\text{Df}}^{\text{exp}}$ é menor que 0,88%. Entretanto, a incerteza desta diferença relativa chega a ser 7,1%. As principais fontes desta incerteza são U^{exp} e U^{read} . Para $M_{\infty} = 6,28$, existe uma clara discordância entre o modelo e o experimento. O motivo desta discordância não foi investigado, mas pode ser causada pela turbulência que não foi considerada no modelo, por
exemplo, ou até mesmo por um erro no gráfico dos dados experimentais (como mencionado anteriormente, no gráfico do experimento encontrou-se $M_{\infty} = 6,13$ ao invés de 6,28 durante a leitura dos dados).

Tabela 5.18 – Coeficiente de arrasto frontal extrapolado $C_{\text{Df}}^{\text{num}}$, sua estimativa de erro numérico U^{num} e incerteza de entrada U^{input} para alguns valores do número de Mach. Modelo de Navier-Stokes e estimador convergente.

M_{∞}	2,73	$3,\!50$	4,00	$5,\!05$	6,28
$C_{\rm Df}^{\rm num}$	$0,\!08870$	0,08030	0,07770	$0,\!07528$	$0,\!07584$
U^{num}	$0,\!00005$	0,00006	0,00006	0,00004	0,00003
U^{input}	$0,\!00052$	0,00040	0,00035	$0,\!00028$	$0,\!00023$

Tabela 5.19 – Métricas de validação do coeficiente de arrasto frontal. Comparação do modelo de Navier-Stokes com os dados experimentais de Eggers $et \ al.^9$

M_{∞}	2,73	$3,\!50$	4,00	$5,\!05$	6,28
E	0,0003	-0,0004	-0,0007	-0,0004	-0,0134
U^{val}	0,0025	0,0035	0,0044	0,0054	0,0064
$E/C_{\rm Df}^{\rm exp}$	$0,\!32\%$	-0,53%	-0,88%	-0,53%	-15%
$U^{\rm val}/C_{\rm Df}^{\rm exp}$	2,8%	4,3%	$5,\!6\%$	7,1%	7,2%

5.3.4 Conclusão

A verificação do coeficiente de arrasto para os modelos de Euler e Navier-Stokes mostrou que o erro numérico foi dominado pelo erro de truncamento, *i.e.*, os erros de arredondamento e iteração foram relativamente pequenos. Para todos os números de Mach considerados, a ordem aparente, calculada usando cinco malhas, convergiu para a ordem assimptótica, permitindo a aplicação do estimador convergente para se determinar o erro de discretização. O erro de discretização obtido com este estimador não excede 0,06% da solução extrapolada para o modelo de Euler e 0,08% para o modelo de Navier-Stokes. As métricas de validação do coeficiente de arrasto frontal do modelo de Navier-Stokes mostraram uma discordância de no máximo 0,88% entre os resultados numéricos e experimentais para $2,73 \leq M_{\infty} < 6,28$ e 15% para $M_{\infty} = 6,28$. A razão desta discordância não foi investigada. A incerteza de validação estimada foi, no máximo, 7,2% para todos os números de Mach considerados. As principais fontes de incerteza foram a incerteza experimental e a incerteza gerada pela leitura do gráfico contendo os dados experimentais. Embora esta incerteza seja alta, não foram encontrados dados experimentais mais precisos para realizar a comparação. De modo geral, os resultados obtidos com o código Mach2D foram satisfatórios, o que o torna mais confiável para a determinação das formas otimizadas.

6 FORMAS OTIMIZADAS: MODELO 1C

Este capítulo apresenta os coeficientes otimizados (n) do Modelo 1C (Seç. 3.5) obtidos com base na teoria descrita nos Caps. 3 e 4. São considerados seis valores do número de Reynolds Re_{∞} (Re⁻¹_{∞} = 0; 10⁻⁷; 10⁻⁶; 10⁻⁵; 10⁻⁴; 10⁻³), três valores do número de Mach M_{∞} (1,5; 3; 6) e dois valores da razão de aspecto f_r (2; 4), que, combinados, resultaram em 36 otimizações.

Nas próximas seções são apresentados os parâmetros de entrada das otimizações, detalhes do processo de otimização, os coeficientes otimizados, os perfis geométricos das formas otimizadas e o gráfico da função objetivo parametrizada para cada otimização. Os coeficientes de arrasto das formas otimizadas deste capítulo são apresentados no Cap. 9 e comparados com os de outras formas otimizadas.

6.1 PARÂMETROS DE ENTRADA E MÉTODO DE GERAÇÃO DA MALHA

Cada otimização foi realizada em malhas com 90×60 , 180×120 e 360×240 volumes. O número de volumes das malhas empregadas nas otimizações foi limitado pelo tempo de cálculo e pelos recursos computacionais disponíveis. As malhas foram geradas com base no método semialgébrico, descrito na Seç. 4.3.1. A Fig. 6.1 ilustra alguns parâmetros de entrada necessários para a discretização do domínio de cálculo.

Figura 6.1 – Ilustração da malha para o Modelo 1C.

Como se pode observar da Fig. 6.1, o contorno sul (S), e consequentemente o restante da malha, foi dividido em três partes. Esta divisão foi realizada para concentrar

os pontos nas proximidades da ponta do cone nasal e nas proximidades da junção cone cilindro. Na primeira parte do contorno sul, a coordenada x é discretizada de acordo com uma lei de potência, enquanto na segunda e na terceira, x é discretizado de acordo com uma progressão geométrica (a origem do sistema coordenado foi definida na Fig. 4.2). A concentração dos pontos na ponta do cone nasal é ajustada através do expoente α_{ξ_s} da lei de potência e da fração de volumes na primeira f_{p_1} e na segunda parte f_{p_2} do contorno sul. O cone nasal tem um comprimento l_r e raio de base r_b . O cilindro acoplado ao cone tem comprimento l_c . A largura da malha é definida pelo parâmetro w. A distribuição de pontos na direção radial é feita de modo que a distância entre pontos consecutivos siga uma progressão geométrica. A distância entre os dois primeiros pontos (a partir contorno sul) é um múltiplo c_{bl} da espessura da camada limite estimada (ver a Seç. 5.3.2.1).

Os parâmetros relativos ao domínio de cálculo e à malha são apresentados nas Tabs. 6.1-6.3. A Tab. 6.1 também apresenta os valores de a_{vi} , a_{vf} e a_{wf} , cujos significados foram dados na Seç. 4.3.1. Neste capítulo, como nos demais, os parâmetros geométricos para a geração da malha foram escolhidos de modo a produzir malhas que, de acordo com a experiência do autor, fossem mais apropriadas para as simulações, bem como garantir que a onda de choque ficasse dentro do domínio de cálculo (ver a Seç. 4.1).

		Va	lor
Descrição	Símbolo	$f_r = 2$	$f_r = 4$
Comprimento do cone nasal (m)	l_r	2	4
Comprimento do cilindro (m)	l_c	1	2
Raio do cilindro (m)	r_b	$0,\!5$	$0,\!5$
Comprimento da primeira parte da malha (m)	l_{p_1}	$1,\!65$	3,2
Coeficiente para concentração na malha no nariz	α_{ξ_s}	2	2
Fração de volumes na primeira parte da malha	f_{p_1}	65%	70%
Fração de volumes na segunda parte da malha	f_{p_2}	10%	13%
Viscosidade artificial inicial para a ger. da malha	a_{vi}	1	1
Viscosidade artificial final para a ger. da malha	a_{vf}	1000	1000
Viscosidade artificial para a ger. da malha	a_{wf}	$0,\!3$	$0,\!3$

Tabela 6.1 – Parâmetros para a geração da malha.

Ainda com relação aos parâmetros de entrada do simulador, a pressão da corrente livre p_{∞} foi ajustada de acordo com os números de Mach para se obter os números de Reynolds desejados (Tabs. 6.4 e 6.5). Em todas as simulações, a temperatura da corrente livre foi definida arbitrariamente como $T_{\infty} = 200$ K e o gás foi considerado uma mistura de argônio, oxigênio e nitrogênio, nas frações molares de 1%, 21% e 78%, respectivamente. As propriedades termofísicas da mistura foram consideradas constantes e iguais às da corrente livre.

	<i>w</i> (m)				
M_{∞}	$f_r = 2$	$f_r = 4$			
$1,\!5$	5,5	$11,\!5$			
3	$1,\!9$	11,5			
6	$1,\!1$	2,5			

Tabela 6.2 – Parâmetro geométrico w para a geração da malha.

Tabela 6.3 – Múltiplo da espessura da camada limite em função de Reynolds.

$\mathrm{Re}_{\infty}^{-1}$	c_{bl}
0	$0,\!5$
10^{-7}	0,1
10^{-6}	0,0775
10^{-5}	0,055
10^{-4}	0,0325
10^{-3}	0,01

Tabela 6.4 – Pressão da corrente livre em função de Reynolds e Mach. Razão de aspecto $f_r = 2.$

	p_{∞} (Pa)					
M_{∞}	$\mathrm{Re}_\infty^{-1}=0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
$1,\!5$	8971	8971	897,1	89,71	8,971	0,8971
3	4486	4486	$448,\! 6$	$44,\!86$	$4,\!486$	$0,\!4486$
6	2243	2243	$224,\!3$	$22,\!43$	$2,\!243$	$0,\!2243$

Tabela 6.5 – Pressão da corrente livre em função de Reynolds e Mach. Razão de aspecto $f_r = 4.$

	p_{∞} (Pa)					
M_{∞}	$\mathrm{Re}_\infty^{-1}=0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
$1,\!5$	4486	4486	448,6	44,86	4,486	0,4486
3	2243	2243	224,3	$22,\!43$	$2,\!243$	0,2243
6	1121	1121	112,1	$11,\!21$	$1,\!121$	0,1121

Os parâmetros de entrada relativos ao otimizador são apresentados na Tab. 6.6. Os valores de N_p , $F \in C_r$ são os indicados por Feoktistov²⁷. Para as otimizações realizadas nas malhas mais grossas, isto é, $90 \times 60 e 180 \times 120$, o intervalo de busca de n foi [0,5; 1]. Para se reduzir o esforço computacional na malha mais fina, o intervalo de busca $[n_{\min}, n_{\max}]$ foi reduzido com base nas soluções obtidas nas malhas mais grossas. Os novos intervalos são mostrados nas Tabs. 6.7 e 6.8, correspondentes a $f_r = 2 e f_r = 4$, respectivamente.

6.2 TESTES PRELIMINARES DO SIMULADOR

Antes de iniciar as otimizações, dois testes preliminares foram realizados com uma geometria base (lei de potência com expoente n = 0,7) e com base nos parâmetros de entrada da seção anterior. Os testes foram realizados para seis valores do número de Reynolds ($\operatorname{Re}_{\infty}^{-1} = 0$; 10^{-7} ; 10^{-6} ; 10^{-5} ; 10^{-4} ; 10^{-3}), três valores do número de Mach ($M_{\infty} = 1,5$; 3; 6) e dois valores da razão de aspecto ($f_r = 2$; 4) em malhas com 180×120 volumes.

Descrição	Símbolo	Valor
População (número de indivíduos)	N_p	10
Número máximo de gerações	N_g	40
Constante de diferenciação	F	$0,\!85$
Probabilidade de cruzamento	C_r	0,5
Tolerância do critério de convergência	$\varepsilon_{\mathrm{ED}}$	0,0005
Menor valor da variável de otimização $\left(n\right)$	n_{\min}	$0,\!5$
Maior valor da variável de otimização $\left(n\right)$	$n_{\rm max}$	1

Tabela 6.6 – Parâmetros de entrada do otimizador.

No primeiro teste, o comprimento do cilindro na base do cone nasal foi aumentado para avaliar a influência das condições de contorno na saída sobre o coeficiente de arrasto frontal. Verificou-se que, ao se aumentar o comprimento do cilindro em 50%, o coeficiente de arrasto frontal $C_{\rm Df}$ variou menos que 0,02%.

No segundo teste, a malha foi concentrada nas proximidades da parede com o intuito de avaliar se a camada limite é captada nas simulações. Verificou-se que, ao se reduzir pela metade a largura do primeiro volume contíguo à parede, o coeficiente de arrasto frontal $C_{\rm Df}$ variou menos que 0,15%.

Estes resultados indicam que os parâmetros escolhidos são adequados para se realizar as otimizações.

	$M_{\infty} = 1.5$		$M_{\infty} = 3$		$M_{\infty} = 6$	
Re_∞^{-1}	n_{\min}	n_{\max}	n_{\min}	$n_{\rm max}$	n_{\min}	n_{\max}
0	0,50565	$0,\!60565$	$0,\!60925$	0,70925	$0,\!61787$	0,71787
10^{-7}	$0,\!50843$	$0,\!60843$	$0,\!60940$	0,70940	$0,\!61765$	$0,\!71765$
10^{-6}	$0,\!51415$	$0,\!61415$	$0,\!61073$	$0,\!71073$	$0,\!61706$	0,71706
10^{-5}	$0,\!53111$	$0,\!63111$	$0,\!61860$	$0,\!71860$	$0,\!62117$	0,72117
10^{-4}	$0,\!58304$	$0,\!68304$	$0,\!66174$	0,76174	$0,\!65911$	$0,\!75911$
10^{-3}	$0,\!80441$	$0,\!90441$	$0,\!89406$	$0,\!99406$	$0,\!90078$	$1,\!00000$

Tabela 6.7 – Limites da variável de otimização n para a malha mais fina (360 × 240). Razão de aspecto $f_r = 2$.

Tabela 6.8 – Limites da variável de otimização n para a malha mais fina (360 × 240). Razão de aspecto $f_r = 4$.

	$M_{\infty} = 1,5$		$M_{\infty} = 3$		$M_{\infty} = 6$	
$\mathrm{Re}_{\infty}^{-1}$	n_{\min}	$n_{\rm max}$	n_{\min}	$n_{\rm max}$	n_{\min}	$n_{\rm max}$
0	$0,\!56648$	$0,\!66648$	$0,\!62336$	0,72336	$0,\!64244$	0,74244
10^{-7}	$0,\!57050$	$0,\!67050$	$0,\!62450$	$0,\!72450$	$0,\!64366$	0,74366
10^{-6}	$0,\!58041$	$0,\!68041$	$0,\!63588$	0,73588	$0,\!65620$	0,75620
10^{-5}	$0,\!62034$	$0,\!72034$	$0,\!68875$	0,78875	$0,\!72106$	0,82106
10^{-4}	$0,\!82741$	$0,\!92741$	$0,\!95000$	$1,\!00000$	$0,\!94999$	$1,\!00000$
10^{-3}	$0,\!95000$	$1,\!00000$	$0,\!94999$	$1,\!00000$	$0,\!94996$	1,000 00

6.3 EVOLUÇÃO DAS OTIMIZAÇÕES

Todas as otimizações foram realizadas iterativamente até que a convergência da população, definida pela medida-P (ver Seç. 3.2), fosse menor que uma tolerância prescrita $\varepsilon_{\rm ED}$. Em nenhuma das otimizações o número de gerações excedeu o valor máximo N_g . Como exemplo, a Fig. 6.2 apresenta a evolução da medida-P, P_m , como função do número de gerações para o caso da otimização com os parâmetros $f_r = 4$, $M_{\infty} = 6$ e Re $_{\infty}^{-1} = 10^{-7}$. Considerando os mesmos parâmetros, a Fig. 6.3 mostra o comportamento da média da função objetivo ($C_{\rm Df}$) e do seu melhor valor para cada geração. Tanto o comportamento mostrado na Fig. 6.2 quanto o da Fig. 6.3 foram tipicamente observados nas demais otimizações.

Além da convergência, também se avaliou como as simulações se distribuíram em torno do mínimo e se houve falhas no simulador durante a otimização. A Fig. 6.4 exemplifica a distribuição obtida para a otimização utilizando-se os parâmetros $f_r = 4$, $M_{\infty} = 6$ e $\text{Re}_{\infty}^{-1} = 10^{-7}$.

Figura 6.2 – Evolução da medida-P (P_m) em função do número de gerações. Parâmetros da otimização: $f_r = 4, M_{\infty} = 6$ e $\text{Re}_{\infty}^{-1} = 10^{-7}$.

Figura 6.3 – Evolução da função objetivo ($C_{\rm Df}$) em função do número de gerações: melhor solução e média das soluções. Parâmetros da otimização: $f_r = 4, M_{\infty} = 6$ e ${\rm Re}_{\infty}^{-1} = 10^{-7}$.

Figura 6.4 – Distribuição do número de simulações N_s nas vizinhanças do mínimo. Parâmetros da otimização: $f_r = 4$, $M_{\infty} = 6$ e $\text{Re}_{\infty}^{-1} = 10^{-7}$.

Na Fig. 6.4, a distância euclidiana entre um indivíduo qualquer e o indivíduo que minimiza a função objetivo foi normalizada em termos da maior distância encontrada. Como se pode observar, as simulações se concentraram nas imediações no mínimo, o que tipicamente ocorreu nas demais otimizações. Além disso, foi detectada falha em uma simulação (nesta otimização foram realizadas 121 simulações). Nas poucas situações em que se observou falhas, uma análise foi realizada para verificar se as falhas comprometiam o resultado da otimização. Nos casos afirmativos, toda a otimização foi refeita.

Embora não seja possível especificar o tempo de processamento de todas as simulações realizadas, os seguintes valores dão uma estimativa da ordem de grandeza deste tempo. O tempo médio das simulações foi de 5,3 min, 30 min e 211 min para as malhas com 90×60 , 180×120 e 360×240 volumes, respectivamente. O tempo médio das otimizações, utilizando-se processamento paralelo com 11 núcleos de processamento de frequência 2,3 GHz, foi de 1 h, 6 h e 40 h para as malhas com 90×60 , 180×120 e 360×240 volumes, respectivamente. Destes resultados, é possível perceber que o tempo computacional é aproximadamente multiplicado por um fator entre cinco e sete ao se refinar a malha.

6.4 FORMAS OTIMIZADAS

Os expoentes n otimizados nas malhas 90×60 , 180×120 e 360×240 , considerandose os números de Reynolds e Mach mencionados no início deste capítulo, são apresentados na Tab. 6.9, para $f_r = 2$, e na Tab. 6.10, para $f_r = 4$. Estas tabelas também apresentam a diferença relativa ε entre as soluções da malha mais fina e da intermediária. Como se pode observar, as soluções convergem com o refino da malha.

			n		
M_{∞}	$\mathrm{Re}_{\infty}^{-1}$	90×60	180×120	360×240	ε (%)
1,5	0	0,562	$0,\!556$	$0,\!552$	0,7
	10^{-7}	0,564	0,558	$0,\!555$	$0,\!6$
	10^{-6}	0,569	0,564	$0,\!561$	$0,\!6$
	10^{-5}	$0,\!585$	$0,\!581$	$0,\!579$	$0,\!4$
	10^{-4}	$0,\!633$	$0,\!633$	$0,\!633$	$0,\!0$
	10^{-3}	$0,\!851$	$0,\!854$	$0,\!857$	$0,\!3$
3	0	$0,\!659$	$0,\!659$	$0,\!659$	0,0
	10^{-7}	$0,\!658$	$0,\!659$	$0,\!660$	$0,\!1$
	10^{-6}	0,660	0,661	$0,\!661$	0,1
	10^{-5}	$0,\!667$	$0,\!669$	$0,\!669$	$0,\!1$
	10^{-4}	0,711	0,712	0,712	$0,\!1$
	10^{-3}	$0,\!935$	$0,\!944$	$0,\!947$	$0,\!4$
6	0	0,669	0,668	$0,\!667$	0,1
	10^{-7}	$0,\!668$	$0,\!668$	$0,\!667$	$0,\!0$
	10^{-6}	$0,\!667$	$0,\!667$	$0,\!667$	$0,\!0$
	10^{-5}	$0,\!671$	$0,\!671$	$0,\!671$	$0,\!0$
	10^{-4}	0,712	0,709	0,709	0,1
	10^{-3}	$0,\!968$	$0,\!951$	0,941	$1,\!0$

Tabela 6.9 – Expoente *n* otimizado obtido em diversas malhas, números de Reynolds Re_{∞} e Mach M_{∞} e seu desvio relativo ε para a malha mais fina. Razão de aspecto $f_r = 2$.

Das Tabelas 6.9 e 6.10 é possível observar que, à medida que o número de Mach aumenta, mantendo-se f_r e Re_{∞} fixos, as formas otimizadas tendem em geral a se tornar mais pontiagudas (*n* aumenta ou permanece constante). Além disso, as formas são particularmente rombudas para valores mais elevados do número de Mach e Reynolds. Este comportamento está de acordo com os dados experimentais de Perkins *et al.*¹² (ver a Seç. 2.3). Estes autores mediram o coeficiente de arrasto frontal para formas do tipo lei de potência com expoentes n = 0,25, 0,5, 0,75 e 1 e razão de aspecto $f_r = 3$. No experimento, o número de Reynolds oscilou em torno de 4×10^6 e o número de Mach variou de 1,24 a 3,67. Perkins *et al.*¹² mostraram que, das quatro formas, a de n = 0,5 é mais eficiente para M_{∞} menor que 1,5, enquanto a de expoente n = 0,75 é a mais eficiente para M_{∞}

			n		
M_{∞}	Re_∞^{-1}	90×60	180×120	360×240	ε (%)
1,5	0	0,619	0,616	0,616	0,1
	10^{-7}	$0,\!622$	$0,\!621$	$0,\!620$	$0,\!0$
	10^{-6}	$0,\!631$	$0,\!630$	$0,\!631$	0,1
	10^{-5}	$0,\!669$	$0,\!670$	$0,\!673$	$0,\!3$
	10^{-4}	$0,\!873$	0,877	$0,\!880$	$0,\!3$
	10^{-3}	1,000	$1,\!000$	$1,\!000$	$0,\!0$
3	0	0,672	$0,\!673$	$0,\!675$	0,2
	10^{-7}	$0,\!672$	$0,\!674$	$0,\!676$	$0,\!3$
	10^{-6}	$0,\!683$	$0,\!686$	$0,\!688$	$0,\!3$
	10^{-5}	0,736	0,739	0,741	$0,\!3$
	10^{-4}	$0,\!991$	1,000	$1,\!000$	$0,\!0$
	10^{-3}	1,000	$1,\!000$	$1,\!000$	$0,\!0$
6	0	0,692	0,692	$0,\!693$	0,0
	10^{-7}	0,692	$0,\!694$	$0,\!694$	$0,\!1$
	10^{-6}	0,706	0,706	0,706	$0,\!0$
	10^{-5}	0,776	0,771	0,769	$0,\!3$
	10^{-4}	1,000	$1,\!000$	$1,\!000$	$0,\!0$
	10^{-3}	1,000	$1,\!000$	$1,\!000$	$0,\!0$

Tabela 6.10 – Expoente n otimizado obtido em diversas malhas, números de Reynolds $\operatorname{Re}_{\infty}$ e Mach M_{∞} e seu desvio relativo ε para a malha mais fina. Razão de aspecto $f_r = 4$.

Outro aspecto interessante é a variação relativa do expoente n entre um valor de Mach e outro. Esta variação é maior no limiar do regime supersônico, isto é, n varia muito mais significativamente de $M_{\infty} = 1,5$ para $M_{\infty} = 3$ do que de $M_{\infty} = 3$ para $M_{\infty} = 6$, tanto para $f_r = 2$, quanto para $f_r = 4$. Este fenômeno pode ser explicado com base no princípio da independência do número de Mach⁴³, de acordo com o qual, as variações de algumas propriedades físicas tendem a diminuir à medida que o número de Mach aumenta. Manson e Lee¹⁷ realizaram a otimização aerodinâmica com base nas equações de Euler para formas do tipo lei de potência e observaram que o expoente da forma otimizada (0,69) não varia significativamente no intervalo $4 \le M_{\infty} \le 8$ para $f_r = 3$. O expoente obtido por estes autores é muito próximo aos obtidos neste trabalho em condições semelhantes (0,67 no caso de $f_r = 2$ e $M_{\infty} = 6$ e 0,69 no caso de $f_r = 4$ e $M_{\infty} = 6$).

Para todos os valores de M_{∞} e Re_{∞} testados, as formas otimizadas se tornaram

mais pontiagudas (n aumentou) com o aumento da razão de aspecto f_r . De modo geral, a variação de n foi maior para $M_{\infty} = 1.5$.

A Figura 6.5 ajuda a entender o comportamento das formas otimizadas como função do número de Reynolds. O número de Reynolds representa a razão entre as forças inerciais e as forças viscos
as em um escoamento. Deste modo, quando Re_∞^{-1} aumenta, as forças viscosas ganham maior importância. Para $M_{\infty} \in f_r$ fixos, à medida que $\operatorname{Re}_{\infty}^{-1}$ diminui, os valores de n obtidos através das equações de Navier-Stokes tendem assimptoticamente ao valor obtido com base nas equações de Euler ($\operatorname{Re}_{\infty}^{-1} = 0$), como esperado. Existe um intervalo do número de Reynolds, dependente de M_{∞} e f_r , em que os efeitos viscosos não alteram significativamente a forma otimizada. É possível observar que este intervalo é maior para corpos com menor razão de aspecto f_r e para valores mais elevados do número de Mach. Por outro lado, à medida que os efeitos viscosos se tornam mais importantes, isto é, quando $\operatorname{Re}_{\infty}^{-1}$ aumenta, as formas otimizadas variam significativamente. Comparando-se as formas otimizadas com base no modelo de Euler ($\operatorname{Re}_{\infty}^{-1} = 0$) com as formas otimizadas com base nas equações de Navier-Stokes para $\mathrm{Re}_\infty^{-1}=10^{-3},$ a diferença relativa de nchega a ultrapassar 60%. Observou-se, para todos os valores de $f_r \in M_{\infty}$ testados, que as formas otimizadas tendem a se tornar mais pontiagudas com o aumento de $\operatorname{Re}_{\infty}^{-1}$, tendendo a um cone (n = 1) para $\operatorname{Re}_{\infty}^{-1}$ suficientemente alto. Em especial, para $f_r = 4$, observa-se que n poderia aumentar ainda mais, mas foi limitado na otimização a n = 1. É como se para se tornar mais eficiente, o corpo precisasse ficar mais pontiagudo. Como o arrasto devido à fricção é diretamente proporcional à área superficial do objeto em contato com o fluido, as formas otimizadas tendem a se tornar mais pontiagudas para reduzir esta área e, consequentemente, o arrasto. De fato, isto pode ser observado nas Figs. 6.6 e 6.7, que apresentam, respectivamente, a área superficial relativa A_r e o volume relativo V_r das formas otimizadas como função de $\operatorname{Re}_{\infty}^{-1}$. $A_r \in V_r$ foram parametrizados, respectivamente, em termos da área $(\pi [r_b^2 + 2r_b l_r])$ e do volume $(\pi r_b^2 l_r)$ de um cilindro com a mesma razão de aspecto f_r que o das formas otimizadas. Como pode ser visto, tanto A_r , quanto V_r , diminuem com o aumento de $\operatorname{Re}_{\infty}^{-1}$. Comparando-se as formas otimizadas com base no modelo de Euler com aquelas otimizadas com base no modelo de Navier-Stokes para $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$, observa-se que a redução da área A_r e do volume V_r podem chegar a 19% e 25%, respectivamente.

Figura 6.5 – Coeficiente otimizado n como função de Re_{∞}^{-1} para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 360×240 .

Figura 6.6 – Área superficial relativa A_r em função de $\operatorname{Re}_{\infty}^{-1}$ para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 360×240 .

Os resultados acerca da influência dos efeitos viscosos sobre as formas otimizadas estão qualitativamente de acordo com os de Bryson Jr.⁷ Segundo este autor, as formas otimizadas tendem a se tornar mais pontiagudas com o aumento do coeficiente de fricção médio. Além disso, existe um valor crítico do coeficiente de fricção em que o corpo otimizado é um cone e acima do qual, passa a ser uma agulha (*spike*) seguida por um cone. Apesar

desta concordância qualitativa, ainda é prematuro afirmar que este seja o comportamento típico das formas otimizadas com o aumento dos efeitos viscosos. É preciso que outras formas com mais coeficientes ajustáveis sejam estudadas.

Figura 6.7 – Volume relativo V_r em função de $\operatorname{Re}_{\infty}^{-1}$ para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 360×240.

Os perfis geométricos das formas otimizadas são ilustrados graficamente nas Figs. 6.8, 6.9 e 6.10 para auxiliar na compreensão dos resultados. As Fig. 6.8 e 6.9

apresentam a influência do número de Mach sobre as formas otimizadas para Reynolds e f_r fixos, ao passo que a Fig. 6.10 mostra o efeito do número de Reynolds sobre as formas otimizadas quando Mach e f_r são mantidos fixos.

6.5 FUNÇÃO OBJETIVO

Para cada otimização, é conveniente parametrizar a função objetivo $(C_{\rm Df})$ da seguinte forma

$$\epsilon = \frac{C_{\rm Df} - \min\left(C_{\rm Df}\right)}{\min\left(C_{\rm Df}\right)},\tag{6.1}$$

onde min (C_{Df}) é o menor coeficiente de arrasto obtido na otimização.

As Figuras 6.11 e 6.12 mostram os gráficos da função objetivo parametrizada ϵ em termos da variável de otimização n para cada um dos parâmetros f_r , M_{∞} e Re_{∞} considerados neste estudo. Os gráficos foram construídos a partir do histórico de simulações do otimizador. Em todas as otimizações, a função objetivo teve um comportamento contínuo e suave. Além disso, apenas um mínimo foi encontrado na região de busca, que ocorreu em alguns casos na fronteira do domínio (os casos de n = 1).

No contexto da otimização aerodinâmica, a função objetivo parametrizada ϵ pode ser interpretada como uma medida da eficiência de uma geometria arbitrária comparada à geometria otimizada, quando a primeira é submetida ao mesmo escoamento que produziu a segunda. Neste sentido, se $\epsilon = 0$, então as geometrias são igualmente eficientes na redução do arrasto. Por outro lado, se $\epsilon > 0$, então, evidentemente, a geometria comparada é menos eficiente que a geometria otimizada.

Os resultados das Figs. 6.11 e 6.12 são particularmente importantes para analisar a eficiência das formas geométricas em condições diferentes daquela na qual ela foi otimizada (análise off-design, ou fora de projeto). Das numerosas análises que se pode realizar, considerou-se apenas a avaliação dos casos em que as formas otimizadas com o modelo de Euler são submetidas a escoamentos viscosos. Os resultados são apresentados na Fig. 6.13. Como se pode observar, a forma otimizada de acordo com o modelo de Euler mantém-se eficiente em um intervalo significativo de Re_{∞}^{-1} . A diferença relativa em C_{Df} somente se torna maior que 2% para $10^{-4} < \text{Re}_{\infty}^{-1}$, no caso de $f_r = 2$, e para $10^{-5} < \text{Re}_{\infty}^{-1}$, no caso de $f_r = 4$. Estes resultados explicam o motivo pelo qual os expoentes n das formas otimizadas não variam significativamente para valores mais elevados de Re_{∞} (Seç. 6.4).

Figura 6.8 – Perfil tipo lei de potência otimizado como função de M_{∞} para Re_{∞} e f_r fixos. Malha: 360×240. Parte I.

Figura 6.9 – Perfil tipo lei de potência otimizado como função de M_{∞} para Re_{∞} e f_r fixos. Malha: 360×240. Parte II.

Figura 6.10 – Perfil tipo lei de potência otimizado como função de Re_{∞} para M_{∞} e f_r fixos. Malha: 360×240 .

Figura 6.11 – Função objetivo parametrizada $\epsilon(n)$ para diversos valores de f_r , $M_{\infty} \in \operatorname{Re}_{\infty}^{-1}$ (malha 180 × 120). Parte I.

Figura 6.12 – Função objetivo parametrizada $\epsilon(n)$ para diversos valores de f_r , M_{∞} e $\operatorname{Re}_{\infty}^{-1}$ (malha 180 × 120). Parte II.

Figura 6.13 – Diferença relativa (ε) do coeficiente de arrasto da forma otimizada com base no modelo de Euler comparado ao das formas otimizadas com o modelo de Navier-Stokes. Análise *off-design*. Malha 180 × 120.

7 FORMAS OTIMIZADAS: MODELO 2C-S

Neste capítulo, os coeficientes $n \in h$ do Modelo 2C-S (Seç. 3.5) foram determinados considerando-se as mesmas condições aplicadas ao Modelo 1C, isto é, seis valores do número de Reynolds ($\operatorname{Re}_{\infty}^{-1} = 0$; 10^{-7} ; 10^{-6} ; 10^{-5} ; 10^{-4} ; 10^{-3}), três valores do número de Mach (1,5; 3; 6) e dois valores da razão de aspecto (2; 4). As próximas seções apresentam os parâmetros de entrada, os coeficientes das formas otimizadas, os gráficos dos perfis destas formas e as curvas de nível da função objetivo. Os coeficientes de arrasto das formas otimizadas deste capítulo são apresentados no Cap. 9 e comparados com os de outras formas otimizadas.

7.1 PARÂMETROS DE ENTRADA, MÉTODO DE GERAÇÃO DA MALHA E TEMPO DE PROCESSAMENTO

As otimizações foram realizadas em malhas com 220×90 e 440×180 volumes. Nas simulações para $f_r = 2$, a malha foi gerada com o método semialgébrico, ao passo que nas simulações para $f_r = 4$, o método algébrico foi empregado. Esta distinção existe, pois os resultados obtidos com o método algébrico já estavam prontos quando o método semialgébrico foi desenvolvido. A Fig. 7.1a ilustra uma malha gerada com o método algébrico e os parâmetros geométricos envolvidos. A Fig. 7.1b ilustra a situação análoga para a malha semialgébrica. Em ambas as malhas, o contorno sul (S) foi dividido em três partes. Na primeira parte, a distribuição de pontos é feita por uma exponencial dupla⁵⁵, com os pontos concentrados na junção da face frontal com o arco suave. A distância *a* entre os pontos à esquerda e à direita do ponto de junção é a mesma e definida através da seguinte equação

$$a = \frac{L_{p_1}}{(n_{x_1})^{\alpha_{\xi_s}}},\tag{7.1}$$

onde L_{p_1} é comprimento de arco da primeira parte do contorno sul (incluindo a face frontal), n_{x_1} é o número de pontos na primeira parte da malha e α_{ξ_s} é um parâmetro de controle de concentração. A primeira parte da malha é definida através do parâmetro geométrico $l_{p_1} = f_{l_o}l_r$. Na segunda parte da malha, os pontos do contorno sul são distribuídos de modo que a distância entre eles forme uma progressão geométrica. A largura dos volumes vizinhos entre a primeira e a segunda parte é a mesma. O mesmo é feito para a terceira parte, que também segue uma distribuição do tipo progressão geométrica. No caso da malha algébrica, além da distribuição de pontos sobre o contorno sul, também é preciso especificar a distribuição de pontos sobre o contorno norte, o que foi feito da seguinte maneira. Para cada ponto $(x_s, y_s)_i$ do contorno sul, determinou-se o versor $(\hat{n}_s)_i$ localmente normal ao contorno. Em seguida, as direções dos versores foram suavizadas utilizando-se a média entre os versores vizinhos, i.e.,

$$(\hat{\boldsymbol{n}}_s)'_i = \frac{(\hat{\boldsymbol{n}}_s)_{i-1} + (\hat{\boldsymbol{n}}_s)_{i+1}}{|(\hat{\boldsymbol{n}}_s)_{i-1} + (\hat{\boldsymbol{n}}_s)_{i+1}|}, \qquad 2 \le i \le n_x - 1.$$

$$(7.2)$$

Esta operação foi realizada $f_s(n_x + 2)$ vezes, onde f_s é um parâmetro de entrada. Após o cálculo das novas direções $(\hat{\boldsymbol{n}}_s)'_i$, as coordenadas do contorno norte foram obtidas de

$$(x_n, y_n)_i = (x_s, y_s)_i + w \ (\hat{\boldsymbol{n}}_s)'_i, \qquad 1 \le i \le n_x,$$
(7.3)

onde w é a largura da malha. Os pontos interiores do domínio (ao longo das linhas ξ , Seç. 4.3.1) foram distribuídos de modo que a distância entre eles formasse uma progressão geométrica. A distância entre os dois primeiros pontos a partir do contorno sul foi definida como um múltiplo c_{bl} da espessura da camada limite estimada δ (ver a Seç. 5.3.2.1). O mesmo foi feito no caso da malha semialgébrica, exceto pela definição dos pontos do contorno norte, que neste caso não é necessária.

Figura 7.1 – Ilustrações das malhas obtidas com o método (a) algébrico e (b) semialgébrico.

Os parâmetros geométricos utilizados na geração das malhas são apresentados nas Tabs. 7.1-7.3. A escolha destes parâmetros foi feita de modo a produzir malhas mais apropriadas para as simulações, de acordo com a experiência do autor, e de modo a garantir que onda de choque (ver a Seç. 4.1) ficasse no interior do domínio de cálculo. Deve-se observar que o nível de refino das malhas utilizadas nas otimizações foi limitado pelo tempo computacional para simular o escoamento e pelos recursos computacionais disponíveis. Além disso, a razão entre o número de volumes em cada direção coordenada usada neste capítulo (220/90) difere do utilizado no capítulo anterior (90/60). Isto ocorre, porque para as geometrias do Modelos 2C-S é preciso utilizar mais pontos ao longo das linhas de η constante devido à junção entre a face plana frontal e o arco subsequente, o que não ocorre para o Modelo 1C.

		Va	lor
Descrição	Símbolo	$f_r = 2$	$f_r = 4$
Comprimento do cone nasal (m)	l_r	2	4
Comprimento do cilindro (m)	l_c	1	2
Raio do cilindro (m)	r_b	0,5	0,5
Coeficiente para concentração na malha no nariz	$lpha_{\xi_s}$	$1,\!5$	$1,\!5$
Fração da primeira parte da malha	f_{lo}	$0,\!55$	$0,\!65$
Fração dos vol. na primeira parte da malha	f_{p_1}	$0,\!65$	$0,\!6$
Fração dos vol. na segunda parte da malha	f_{p_2}	$0,\!15$	0,2
Viscosidade artificial inicial para a geração da malha	a_{vi}	1	
Viscosidade artificial final para a geração da malha	a_{vf}	1000	
Viscosidade artificial para a geração da malha	a_{wf}	$0,\!3$	
Fator de suavização da malha	f_s		$0,\!4$

Tabela 7.1 – Parâmetros para a geração da malha.

Tabela 7.2 – Parâmetro geométrico w para a geração da malha.

	<i>w</i> (m)					
M_{∞}	$f_r = 2$	$f_r = 4$				
1,5	4,5	9				
3	1,7	3				
6	1,1	2				

Assim como feito para o Modelo 1C, a pressão da corrente livre p_{∞} foi ajustada de acordo com os números Mach para se obter os números de Reynolds desejados (Tabs. 6.4 e 6.5). A temperatura da corrente livre foi definida arbitrariamente como $T_{\infty} = 200$ K para

			C_{bl}						
f_r	M_{∞}	Malha	$\mathrm{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}	
2	1,5	$\begin{array}{c} 220\times90\\ 440\times180 \end{array}$	$^{0,5}_{0,5}$	$^{0,1}_{0,2}$	$0,0775 \\ 0,155$	$0,055 \\ 0,055$	$0,0325 \\ 0,0325$	$\substack{0,01\\0,01}$	
	3	$\begin{array}{c} 220\times90\\ 440\times180 \end{array}$	$0,5 \\ 0,5$	$0,1 \\ 0,1$	$0,0775 \\ 0,0775$	$0,055 \\ 0,055$	$0,0325 \\ 0,0325$	$0,01 \\ 0,01$	
	6	$\begin{array}{c} 220\times90\\ 440\times180 \end{array}$	$0,5 \\ 0,5$	$_{0,1}^{0,1}$	$0,0775 \\ 0,0775$	$0,055 \\ 0,055$	$0,0325 \\ 0,0325$	$0,01 \\ 0,01$	
4	1,5	$\begin{array}{c} 220\times90\\ 440\times180 \end{array}$	$\begin{array}{c} 0,1\\ 0,1 \end{array}$	$_{0,1}^{0,1}$	$0,0775 \\ 0,0775$	$0,055 \\ 0,055$	$0,0325 \\ 0,0325$	$0,01 \\ 0,01$	
	3	$\begin{array}{c} 220\times90\\ 440\times180 \end{array}$	$0,1 \\ 0,1$	$0,1 \\ 0,1$	$0,0775 \\ 0,0775$	$0,055 \\ 0,055$	$0,0325 \\ 0,0325$	$0,01 \\ 0,01$	
	6	$\begin{array}{c} 220\times90\\ 440\times180 \end{array}$	$\begin{array}{c} 0,1 \\ 0,1 \end{array}$	$0,1 \\ 0,1$	$0,0775 \\ 0,0775$	$0,055 \\ 0,055$	$0,0325 \\ 0,0325$	$0,01 \\ 0,01$	

Tabela 7.3 – Múltiplo c_{bl} da espessura da camada limite estimada.

todas as simulações e o gás foi considerado uma mistura de argônio, oxigênio e nitrogênio, nas frações molares de 1%, 21% e 78%, respectivamente. As propriedades termofísicas da mistura foram consideradas constantes e iguais às da corrente livre.

Os parâmetros de entrada do otimizador são apresentados nas Tabs. 7.4-7.6. Os valores de N_p , $F \in C_r$ são os indicados por Feoktistov²⁷. Embora tenha se definido um número máximo de gerações N_g , o critério de convergência baseado na tolerância $\varepsilon_{\rm ED}$ foi satisfeito para todas as otimizações antes que este número fosse atingido. O intervalo da variável n foi o mesmo para todas as otimizações: [0,5; 1]. Por outro lado, o intervalo h foi alterado para evitar problemas de convergência do simulador. Os limites inferiores h_{min} e superiores h_{max} de h, definidos a partir de testes realizados em malhas mais grossas, são dados, respectivamente, nas Tabs. 7.5 e 7.6.

Tabela 7.4 – Parâmetros de entrada do otimizador.

Descrição	Símbolo	Valor
População (número de indivíduos)	N_p	20
Número de gerações	N_g	80
Constante de diferenciação	F	$0,\!85$
Probabilidade de cruzamento	C_r	$0,\!5$
Tolerância do critério de convergência	$\varepsilon_{\mathrm{ED}}$	0,0005
Mínimo de n	n_{\min}	$0,\!5$
Máximo de n	$n_{\rm max}$	1

O tempo computacional médio para realizar a simulação do escoamento foi de 21 min e 130 min para as malhas 220×90 e 440×180 , respectivamente. O tempo computacional médio para realizar as otimizações, utilizando-se processamento paralelo com 21 núcleos de processamento de frequência 2,3 GHz e 2,66 GHz, foi de 13 h e 71 h para as malhas 220×90 e 440×180 , respectivamente. Assim como para o Modelo 1C, observa-se que o tempo computacional é aproximadamente multiplicado por um fator entre cinco e sete ao se refinar a malha.

			h_{min}						
f_r	M_{∞}	Malha	$\mathrm{Re}_\infty^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}	
2	$1,\!5$	220×90	0,002	0,002	0,002	0,002	0,002	0,002	
		440×180	0,001	0,001	0,001	0,001	0,001	0,001	
	3	220×90	0,002	0,002	0,002	0,002	0,002	0,002	
		440×180	0,001	0,001	0,001	0,001	0,001	$0,\!001$	
	6	220×90	0,002	0,002	0,002	0,002	0,002	0,002	
		440×180	0,001	0,001	0,001	0,001	0,001	$0,\!001$	
4	$1,\!5$	220×90	0,005	0,005	0,005	0,005	0,005	$0,\!005$	
		440×180	0,0015	$0,\!0015$	$0,\!0015$	$0,\!0015$	0,0015	0,0015	
	3	220×90	0,005	0,005	0,005	0,005	0,005	0,005	
		440×180	0,0015	$0,\!0015$	$0,\!0015$	$0,\!0015$	$0,\!0015$	0,0015	
	6	220×90	0,005	0,005	0,005	0,005	0,005	0,005	
		440×180	0,0015	$0,\!0015$	$0,\!0015$	$0,\!0015$	$0,\!0015$	$0,\!0015$	

Tabela 7.5 – Valor mínimo h_{min} de h nas otimizações.

Tabela 7.6 – Valor máximo h_{max} de h nas otimizações.

			h_{max}					
f_r	M_{∞}	Malha	$\mathrm{Re}_\infty^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	$1,\!5$	220×90	$0,\!2$	0,2	0,2	0,2	0,2	0,2
		440×180	0,2	$0,\!2$	$0,\!2$	0,2	0,2	0,2
	3	220×90	0,2	0,2	0,2	0,2	0,2	0,2
		440×180	0,2	$0,\!2$	$0,\!2$	0,2	0,2	$0,\!2$
	6	220×90	0,2	$0,\!2$	0,2	0,2	0,2	0,2
		440×180	$0,\!2$	0,2	0,2	0,2	0,2	$0,\!2$
4	$1,\!5$	220×90	0,1	0,1	0,1	0,1	0,1	0,1
		440×180	$0,\!1$	0,1	0,1	0,1	0,1	0,1
	3	220×90	0,1	0,1	0,1	0,1	0,1	0,1
		440×180	$0,\!05$	$0,\!05$	$0,\!05$	0,1	0,1	0,1
	6	220×90	0,05	0,05	$0,\!05$	0,1	0,1	0,1
		440×180	$0,\!05$	$0,\!05$	$0,\!05$	0,1	0,1	$0,\!1$

7.2 FORMAS OTIMIZADAS

Os coeficientes n e h otimizados são apresentados nas Tabs. 7.7 e 7.8 para $f_r = 2 e f_r = 4$, respectivamente. Estas tabelas apresentam as soluções obtidas nas malhas 220×90 e 440×180 , bem como a diferença relativa ε entre as soluções obtidas nas duas malhas. Não foi possível obter as soluções no caso de $\text{Re}_{\infty} = 10^6$ e $\text{Re}_{\infty} = 10^7$ para $M_{\infty} = 1,5$ e $f_r = 2$, na malha 440×180 , devido a problemas com a convergência do simulador. Como se sabe⁵², a dificuldade de convergência dos métodos iterativos cresce com o refino da malha.

		220 >	< 90	440×180			
M_{∞}	Re_∞^{-1}	h	n	h	n	$\varepsilon(h)$ (%)	$\varepsilon(n)$ (%)
$1,\!5$	0	0,149	0,681	0,168	0,693	11,5	1,7
	10^{-7}	$0,\!149$	$0,\!688$				
	10^{-6}	$0,\!156$	$0,\!699$				
	10^{-5}	$0,\!156$	0,721	$0,\!164$	0,723	5,0	$0,\!3$
	10^{-4}	$0,\!155$	0,790	$0,\!159$	0,790	2,5	$0,\!05$
	10^{-3}	$0,\!146$	$1,\!000$	$0,\!147$	$1,\!000$	$0,\!6$	$0,\!0$
3	0	0,062	0,721	0,065	0,725	$5,\!4$	0,6
	10^{-7}	0,064	0,726	0,066	0,729	$_{3,0}$	$0,\!4$
	10^{-6}	0,068	0,735	$0,\!071$	0,738	$_{3,0}$	$0,\!4$
	10^{-5}	0,083	0,763	$0,\!085$	0,766	1,7	$0,\!3$
	10^{-4}	$0,\!111$	$0,\!852$	$0,\!112$	$0,\!856$	$1,\!1$	$0,\!6$
	10^{-3}	$0,\!128$	1,000	$0,\!130$	$1,\!000$	$1,\!2$	$0,\!0$
6	0	0,0463	0,715	0,0489	0,717	$5,\!3$	$0,\!3$
	10^{-7}	0,0493	0,722	$0,\!0497$	0,722	$0,\!9$	$0,\!01$
	10^{-6}	$0,\!0583$	0,735	$0,\!0589$	0,735	$1,\!1$	$_{0,1}$
	10^{-5}	0,0788	0,766	$0,\!0805$	0,768	2,2	0,4
	10^{-4}	$0,\!1208$	$0,\!879$	$0,\!1239$	$0,\!894$	2,5	$1,\!8$
	10^{-3}	$0,\!1439$	1,000	$0,\!1466$	$1,\!000$	$1,\!8$	$0,\!0$

Tabela 7.7 – Coeficiente das formas geométricas otimizadas. Razão de aspecto $f_r = 2$.

Como se pode observar das Tabs. 7.7 e 7.8, as variações relativas de n, com o refino da malha, são menores que as de h, pois o valor absoluto de h é menor que o de n. Além disso, há quatro casos na Tab. 7.8 em que o valor de h tende a zero, mas foi limitado pelo intervalo de otimização $[h_{min}, h_{max}]$. Estes casos correspondem aos pares de parâmetros $(M_{\infty}; \operatorname{Re}_{\infty}^{-1}) = (1,5; 0), (1,5; 10^{-3}), (3; 10^{-3}) \in (6; 10^{-3})$. Para estes parâmetros, as formas otimizadas são do tipo lei de potência, com h = 0 e os valores de n definidos

na Tab. 6.10. De fato, isto será demonstrado no Cap. 9, onde o coeficiente de arrasto das formas otimizadas é apresentado. Deve-se enfatizar que as formas do tipo lei de potência são um caso especial do Modelo 2C-S e que só não foram obtidas pela limitação no intervalo de otimização h.

		$\phantom{00000000000000000000000000000000000$		440×180			
M_{∞}	Re_∞^{-1}	h	n	h	n	$\varepsilon(h)$ (%)	$\varepsilon(n)$ (%)
$1,\!5$	0	0,0050	0,621	0,0019	0,617	169,7	$0,\!6$
	10^{-7}	0,0090	0,630	0,0098	0,630	8,3	$0,\!04$
	10^{-6}	0,0208	$0,\!653$	0,0219	$0,\!654$	4,9	$_{0,1}$
	10^{-5}	0,0364	0,712	0,0380	0,714	4,2	$0,\!4$
	10^{-4}	0,0434	$0,\!931$	$0,\!0425$	$0,\!930$	2,1	$_{0,1}$
	10^{-3}	0,0050	$1,\!000$	0,0015	$1,\!000$	232,4	0,0
3	0	0,0053	0,680	0,0058	0,682	8,9	$0,\!3$
	10^{-7}	0,0161	$0,\!695$	$0,\!0172$	$0,\!698$	6,4	$0,\!4$
	10^{-6}	0,0244	0,716	$0,\!0257$	0,719	5,0	$0,\!4$
	10^{-5}	0,0355	0,777	0,0368	0,780	3,5	$0,\!4$
	10^{-4}	0,0434	1,000	0,0444	$1,\!000$	2,4	$0,\!0$
	10^{-3}	0,0050	1,000	0,0015	1,000	232,7	0,0
6	0	0,0066	0,702	0,0074	0,703	11,8	$0,\!2$
	10^{-7}	0,0189	0,719	0,0197	0,721	3,8	$0,\!22$
	10^{-6}	0,0289	0,743	0,0294	0,744	$1,\!5$	0,1
	10^{-5}	$0,\!0443$	0,824	$0,\!0454$	$0,\!825$	2,3	0,1
	10^{-4}	0,0612	1,000	0,0636	1,000	$_{3,9}$	$0,\!0$
	10^{-3}	$0,\!0050$	1,000	$0,\!0015$	1,000	$232,\!3$	$0,\!0$

Tabela 7.8 – Coeficiente das formas geométricas otimizadas. Razão de aspecto $f_r = 4$.

As Figuras 7.2 e 7.3 ajudam a entender a variação de h e n com os parâmetros f_r , M_{∞} e Re_{∞}. Como se pode observar, n nunca diminui com o aumento de Re_{∞}⁻¹, ao passo que h pode aumentar ou diminuir, dependendo de M_{∞} e f_r . No caso de $f_r = 2$, h aumenta com Re_{∞}⁻¹ para $M_{\infty} = 3$ e 6, mas diminui para $M_{\infty} = 1,5$. No caso de $f_r = 4$, para todos os valores de M_{∞} considerados, h aumenta com Re_{∞}⁻¹ até Re_{∞}⁻¹ = 10⁻⁴. De Re_{∞}⁻¹ = 10⁻⁴ para 10⁻³, h diminui abruptamente. O motivo provável desta variação será explicado a seguir.

Figura 7.2 – Coeficiente otimizado h como função de Re_{∞}^{-1} para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 440×180.

Figura 7.3 – Coeficiente otimizado n como função de $\operatorname{Re}_{\infty}^{-1}$ para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 440×180.

O efeito do aumento de h e n sobre a área e o volume das formas do Modelo 2C-S é oposto, isto é, se h aumenta, então a área e o volume aumentam, por outro lado, se n aumenta, então a área e o volume diminuem. Então, o que ocorre com as formas deste modelo, quando h e n aumentam simultaneamente? As Figs. 7.4 e 7.5 mostram, respectivamente, a área superficial relativa A_r e o volume relativo V_r das formas otimizadas como função de $\operatorname{Re}_{\infty}^{-1}$. A área A_r e o volume V_r foram parametrizados em termos da área superficial ($\pi [r_b^2 + 2r_b l_r]$) e do volume ($\pi r_b^2 l_r$) de um cilindro com a mesma razão de aspecto f_r das formas otimizadas. Como se pode observar, para todos os valores de $f_r \in M_{\infty}$ testados, a área e o volume das formas otimizadas diminuem com o aumento de $\operatorname{Re}_{\infty}^{-1}$. Curiosamente, a redução da área não implica em tornar as formas otimizadas mais pontiagudas, uma vez que h aumenta com o aumento de $\operatorname{Re}_{\infty}^{-1}$ para alguns valores de $f_r \in M_{\infty}$. O comportamento das formas otimizadas em função de $\operatorname{Re}_{\infty}^{-1}$ pode ser melhor compreendido com os gráficos dos perfis geométricos mostrados na Fig. 7.6.

Das Figs. 7.4 e 7.5, é possível perceber que existe um intervalo de Re_{∞}^{-1} no qual a área e o volume das formas otimizadas não variam significativamente, dentro de uma tolerância prescrita. Este intervalo é maior para $f_r = 2$ e para valores mais elevados de M_{∞} . Apesar disso, com o aumento de Re_{∞}^{-1} , a redução da área e do volume se tornam expressivos. Comparando-se a área e o volume das formas otimizadas com base no modelo de Euler ($\text{Re}_{\infty}^{-1} = 0$) com as respectivas quantidades das formas otimizadas com base no modelo de Navier-Stokes para $\text{Re}_{\infty}^{-1} = 10^{-3}$, a redução relativa pode chegar a 19% para a área superficial e 25% para o volume. Estes valores são semelhantes aos obtidos no caso do Modelo 1C.

Como já explicado no Cap. 6, a redução da área superficial dos perfis otimizados com o aumento de $\operatorname{Re}_{\infty}^{-1}$ ocorre para reduzir o coeficiente de arrasto, uma vez que as tensões viscosas são proporcionais à área superficial e aumentam com o aumento de $\operatorname{Re}_{\infty}^{-1}$. Isso também ajuda entender o porquê o valor de h das formas otimizadas com $f_r = 4$ varia tão significativamente entre $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$ e 10^{-3} . Nesta situação específica, as formas otimizadas são praticamente troncos de cone para $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$ (ver a Fig. 7.8d), de modo que, ao se aumentar o valor de $\operatorname{Re}_{\infty}^{-1}$ para 10^{-3} , a redução de h é praticamente a única forma de se reduzir a área superficial. Esta redução em h é tão apreciável porque, conforme demonstrado no Cap. 9, a componente viscosa do coeficiente de arrasto aumenta significativamente de $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$ a 10^{-3} , especialmente para $f_r = 4$.

Quanto ao efeito de M_{∞} sobre as formas otimizadas, mantendo-se f_r e Re_{∞} fixos, observa-se um comportamento semelhante ao encontrado para o Modelo 1C, isto é, a diferença entre as formas otimizadas para $M_{\infty} = 3$ e 6 é menor do que as otimizadas para $M_{\infty} = 1,5$ e 3. Este efeito é maior para $f_r = 2$ do que para $f_r = 4$ e tende a desaparecer com o aumento de Re⁻¹_{∞}, pois neste caso as formas convergem para um cone ou tronco de cone. Isto pode ser observado através das Figs. 7.7 e 7.8. Além disso, para valores mais elevados de Reynolds, pode-se perceber que as formas otimizadas para $M_{\infty} = 1,5$ são mais volumosas e rombudas que as otimizadas para $M_{\infty} = 3$ e 6.

Figura 7.4 – Área superficial relativa A_r em função de $\operatorname{Re}_{\infty}^{-1}$ para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 440×180.

Figura 7.5 – Volume relativo V_r em função de $\operatorname{Re}_{\infty}^{-1}$ para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 440×180.

Figura 7.6 – Perfis geométricos otimizados como função de Re_{∞}^{-1} para M_{∞} e f_r fixos. Malha: 440 × 180.

Figura 7.7 – Perfis geométricos otimizados como função de M_{∞} para Re_{∞}^{-1} e f_r fixos. Malha: 440 × 180. Parte I.

Figura 7.8 – Perfis geométricos otimizados como função de M_{∞} para Re_{∞}^{-1} e f_r fixos. Malha: 440 × 180. Parte II.
Comparando-se as formas otimizadas do Modelo 2C-S com as de Bryson Jr.⁷ (Fig. 7.9a) e as de Horstmann *et al.*¹⁸ (Fig. 7.9b), observa-se que a influência dos efeitos viscosos é diferente para cada modelo, embora existam alguns pontos em comum entre o Modelo 2C-S e as formas de Bryson Jr.⁷ As formas de Bryson Jr.⁷ se tornam mais pontiagudas com o aumento do coeficiente de fricção C_f (Fig. 7.9a). A área A_r e o volume V_r diminuem com o aumento deste coeficiente (Fig. 7.10a). Na Fig. 7.10a, C_{f_*} representa o valor crítico de C_f a partir do qual o perfil otimizado passa a ser cônico. Por outro lado, as formas de Horstmann *et al.*¹⁸ ficam mais rombudas com o aumento de μ_0 , que representa a intensidade das forças viscosas (Fig. 7.9b). Em decorrência disso, $A_r \in V_r$ também aumentam (Fig. 7.10b). No caso do Modelo 2C-S, o comportamento de $A_r \in V_r$ é qualitativamente semelhante ao observado para as formas otimizadas de Bryson Jr.⁷ (ver as Figs. 7.4 e 7.5), embora o comportamento dos perfis otimizados sejam diferentes. Como já apontado, as formas do Modelo 2C-S não se tornam, necessariamente, mais pontiagudas com o aumento de Re⁻¹.

Figura 7.9 – Perfis otimizados das formas de (a) Bryson Jr.⁷ e (b) Horstmann *et al.*¹⁸ Razão de aspecto $f_r = 2$.

7.3 FUNÇÃO OBJETIVO

Por conveniência, a função objetivo para as formas do Modelo 2C-S foi parametrizada do mesmo modo que na Seç. 6.5. As curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ são apresentadas nas Figs. 7.11-7.16. Estas figuras foram construídas a partir do histórico de simulações do otimizador.

Das curvas de nível, pode-se perceber que a função objetivo tem apenas um mínimo, dentro do domínio de otimização considerado, sendo que este ocorreu em algumas vezes na fronteira do domínio. Além disso, a função objetivo aparenta ter um comportamento suave. As distorções nas curvas de nível, que ocorrem, por exemplo, na Fig. 7.14a, são causadas pela distribuição não uniforme de pontos no domínio de otimização.

Figura 7.10 – Variação da área A_r e volume V_r relativos em função dos parâmetros que determinam a intensidade dos efeitos viscosos para os perfis otimizados das formas de (a) Bryson Jr.⁷ e (b) Horstmann *et al.*¹⁸ Razão de aspecto $f_r = 2$.

Como apontado no Cap. 6, as Figs. 7.11-7.16 também são importantes para a análise fora de projeto, ou off-design, das formas otimizadas. Esta análise foi feita para as formas otimizadas com base no modelo de Euler ($\operatorname{Re}_{\infty}^{-1} = 0$) quando submetidas a escoamentos viscosos. A diferença relativa no coeficiente de arrasto destas formas, quando comparado ao das formas otimizadas com base nas equações de Navier-Stokes, é apresentada na Fig. 7.17, para $f_r = 2$ e $f_r = 4$. Os gráficos desta figura foram obtidos através do procedimento de interpolação aplicado para gerar as curvas de nível das Figs. 7.11-7.16. Infelizmente, a interpolação não pôde ser feita para todos os valores de Reynolds. Pode-se observar, que, assim como para o Modelo 1C, há um intervalo do número de Reynolds ao longo do qual as formas obtidas com o modelo de Euler são praticamente tão eficientes quanto as formas otimizadas com o modelo de Navier-Stokes. Este intervalo é maior para valores mais elevados de M_{∞} e para valores mais baixos de f_r . O intervalo de $\operatorname{Re}_{\infty}^{-1}$ para o qual a diferença não excede 2% varia de zero a 10^{-5} ou de zero a 10^{-4} , dependendo de M_{∞} e f_r . No entanto, à medida que $\operatorname{Re}_{\infty}^{-1}$ aumenta, a diferença relativa cresce substancialmente, atingindo cerca de 7 a 9% para $f_r = 2$ e de 11 a 14% para $f_r = 4$.

Figura 7.11 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 1,5$, $f_r = 2$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 7.12 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 3$, $f_r = 2$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 7.13 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 6$, $f_r = 2$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 7.14 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 1,5$, $f_r = 4$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 7.15 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 3$, $f_r = 4$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 7.16 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 6$, $f_r = 4$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 7.17 – Diferença relativa (ε) do coeficiente de arrasto da forma otimizada com base no modelo de Euler comparado ao das formas otimizadas com o modelo de Navier-Stokes. Análise *off-design*. Malha 440 × 180.

8 FORMAS OTIMIZADAS: MODELO 2C-NS

Os coeficientes n e h do Modelo 2C-NS (Seç. 3.5) foram determinados neste capítulo considerando-se as mesmas condições aplicadas ao Modelo 1C e 2C-S, isto é, seis valores do número de Reynolds ($\operatorname{Re}_{\infty}^{-1} = 0$; 10^{-7} ; 10^{-6} ; 10^{-5} ; 10^{-4} ; 10^{-3}), três valores do número de Mach (1,5; 3; 6) e dois valores da razão de aspecto (2; 4), que, combinados, resultaram em 36 otimizações. As próximas seções apresentam os parâmetros de entrada, os coeficientes das formas otimizadas, os gráficos dos perfis destas formas e as curvas de nível da função objetivo. Os coeficientes de arrasto das formas otimizadas deste capítulo são apresentados no Cap. 9 e comparados com os de outras formas otimizadas.

8.1 PARÂMETROS DE ENTRADA, MÉTODO DE GERAÇÃO DA MALHA E TEMPO DE PROCESSAMENTO

Cada otimização foi realizada em duas malhas, com 220×90 e 440×180 volumes, respectivamente. O domínio de cálculo foi discretizado de modo a concentrar os volumes de controle nas vizinhanças da superfície, na junção entre a face plana e o arco subsequente e na junção deste com o cilindro (Fig. 8.1).

Figura 8.1 – Ilustração da malha obtida com o método semialgébrico.

O método de geração da malha é o mesmo descrito na Seç. 7.1 (método semialgébrico). Os parâmetros relativos ao domínio de cálculo e à malha são apresentados nas Tabs. 8.1-8.3. A escolha dos parâmetros geométricos foi feita de modo a garantir que a onda de choque (ver a Seç. 4.1) ficasse no interior do domínio de cálculo e de modo a produzir malhas mais apropriadas para as simulações, de acordo com a experiência do autor. Como apontado no capítulo anterior, o nível de refino das malhas utilizadas nas otimizações foi limitado pelo tempo computacional para simular o escoamento e pelos recursos computacionais disponíveis. Além disso, a razão entre o número de volumes em cada direção coordenada usada neste capítulo (220/90) é a mesma do capítulo anterior, mas difere da utilizada no Cap. 6 (90/60). Mais uma vez, isto decorre das particularidades de cada geometria. Para as geometrias dos Modelos 2C-S e 2C-NS é preciso utilizar mais pontos ao longo das linhas de η constante devido à junção entre a face plana frontal e o arco subsequente, o que não ocorre para o Modelo 1C.

Assim como feito para o Modelo 1C e para o Modelo 2C-S, a pressão da corrente livre p_{∞} foi ajustada de acordo com os números Mach para se obter os números de Reynolds desejados (Tabs. 6.4 e 6.5). A temperatura da corrente livre foi definida arbitrariamente como $T_{\infty} = 200$ K para todas as simulações e o gás foi considerado uma mistura de argônio, oxigênio e nitrogênio, nas frações molares de 1%, 21% e 78%, respectivamente. As propriedades termofísicas da mistura foram consideradas constantes e iguais às da corrente livre.

		Va	lor
Descrição	Símbolo	$f_r = 2$	$f_r = 4$
Comprimento do cone nasal (m)	l_r	2	4
Comprimento do cilindro (m)	l_c	1	2
Raio do cilindro (m)	r_b	0,5	0,5
Fração da primeira parte da malha	f_{lo}	$0,\!55$	$0,\!55$
Fração dos vol. na primeira parte da malha	f_{p_1}	$0,\!65$	$0,\!65$
Fração dos vol. na segunda parte da malha	f_{p_2}	$0,\!15$	$0,\!15$
Viscosidade artificial inicial para a geração da malha	a_{vi}	1	1
Viscosidade artificial final para a geração da malha	a_{vf}	1000	1000
Viscosidade artificial para a geração da malha	a_{wf}	0,3	$0,\!3$

Tabela 8.1 – Parâmetros para a geração da malha.

Tabela 8.2 – Múltiplo da espessura da camada limite em função de Reynolds.

$\mathrm{Re}_{\infty}^{-1}$	c_{bl}
0	$0,\!25$
10^{-7}	$0,\!1$
10^{-6}	0,0775
10^{-5}	$0,\!055$
10^{-4}	0,0325
10^{-3}	$0,\!01$

					α_{ξ_s}			
f_r	M_{∞}	Malha	$\operatorname{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	$1,\!5$	220×90	2	2	2	$1,\!5$	$1,\!5$	1,5
		440×180	2	$2,\!5$	2,5	$1,\!5$	$1,\!5$	1,5
	3	220×90	$1,\!5$	2	$1,\!5$	$1,\!5$	$1,\!5$	1,5
		440×180	$1,\!5$	2	$1,\!5$	$1,\!5$	$1,\!5$	$1,\!5$
	6	220×90	$1,\!5$	$1,\!5$	$1,\!5$	1,5	$1,\!5$	1,5
		440×180	1,5	$1,\!5$	$1,\!5$	$1,\!5$	$1,\!5$	$1,\!5$
4	$1,\!5$	220×90	2	2	2	$1,\!5$	1,5	1,5
		440×180	2	2	2	$1,\!5$	$1,\!5$	$1,\!5$
	3	220×90	1,5	2	$1,\!5$	1,5	1,5	1,5
		440×180	$1,\!5$	2	$1,\!5$	$1,\!5$	$1,\!5$	$1,\!5$
	6	220×90	1,5	$1,\!5$	$1,\!5$	$1,\!5$	$1,\!5$	1,5
		440×180	1,5	$1,\!5$	$1,\!5$	$1,\!5$	$1,\!5$	$1,\!5$

Tabela 8.3 – Coeficiente para a concentração da malha na quina da face frontal e do arco subsequente do perfil do corpo.

Os parâmetros de entrada do otimizador são dados na Tab. 8.5. Os valores de N_p , F e C_r são os indicados por Feoktistov²⁷. De modo geral, a região de otimização foi limitada por $0.5 \le n \le 1$ e $0.002 \le h \le 0.2$. As exceções foram as otimizações para $M_{\infty} = 1.5$, $f_r = 2$, $\text{Re}_{\infty} = 10^6$ e 10^7 e malha 440 × 180, cujo domínio de otimização é mostrado na Tab. 8.6. Nestas otimizações o simulador apresentou problemas de convergência. Para amenizar este problema a região de busca foi reduzida com base nos resultados obtidos na malha mais grossa.

Tabela 8.4 – Parâmetro geométrico w para a geração da malha.

	<i>w</i> (m)				
M_{∞}	$f_r = 2$	$f_r = 4$			
1,5	5,5	9			
3	$1,\!9$	4			
6	$1,\!2$	2,2			

A convergência das otimizações foi monitorada com base na medida-P com tolerância $\varepsilon_{\rm ED}$. Todas as otimizações feitas na malha mais fina (440 × 180) convergiram antes que o número máximo de gerações N_g fosse atingido. Para a malha mais grossa (220×90) , apenas três otimizações foram interrompidas por exceder N_g . Estas otimizações correspondem aos parâmetros $f_r = 4$, $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$ e $M_{\infty} \in \{1,5; 3; 6\}$. Nestes casos, o mínimo ocorreu na fronteira do domínio de otimização e a interrupção da otimização não compromete os resultados.

Descrição	Símbolo	Valor
População (número de indivíduos)	N_p	20
Número máximo de gerações	N_g	80
Constante de diferenciação	F	$0,\!85$
Probabilidade de cruzamento	C_r	0,5
Tolerância do critério de convergência	$\varepsilon_{\mathrm{ED}}$	0,0005
Mínimo de h	h_{\min}	0,002
Máximo de h	h_{\max}	0,2
Mínimo de n	n_{\min}	$0,\!5$
Máximo de n	n_{\max}	1

Tabela 8.5 – Parâmetros de entrada do otimizador.

Tabela 8.6 – Parâmetros de entrada do otimizador para $M_{\infty} = 1,5, f_r = 2, \text{Re}_{\infty} = 10^6 \text{ e}$ 10⁷. Malha 440 × 180.

		Valor		
Descrição	Símbolo	${\rm Re}_{\infty} = 10^7$	10^{6}	
Mínimo de h	h_{\min}	$0,\!133$	0,135	
Máximo de h	h_{\max}	$0,\!173$	$0,\!175$	
Mínimo de n	n_{\min}	$0,\!543$	$0,\!550$	
Máximo de \boldsymbol{n}	$n_{\rm max}$	$0,\!603$	0,610	

O tempo computacional médio das simulações foi de 15 min e 102 min para as malhas com 220×90 e 440×180 volumes, respectivamente. O tempo computacional médio das otimizações, utilizando-se processamento paralelo com 21 núcleos de processamento de 2,66 GHz, foi de 8 h e 56 h para as malhas com 220×90 e 440×180 volumes, respectivamente. Assim como para as geometrias dos Modelos 1C e 2C-S, o tempo computacional foi aproximadamente multiplicado por um fator entre cinco e sete ao se refinar a malha.

8.2 FORMAS OTIMIZADAS

As Tabelas 8.7 e 8.8 apresentam os coeficientes otimizados do Modelo 2C-NS como função dos números de Mach e Reynolds para $f_r = 2$ e $f_r = 4$, respectivamente. Como já mencionado, as otimizações foram realizadas em malhas com 220×90 e 440×180 volumes. Infelizmente não foi possível obter a forma otimizada para $f_r = 2$, $M_{\infty} = 1,5$ e Re_{∞} = 10^7 na malha mais fina (Tab. 8.7) devido a problemas de convergência do simulador. Esta mesma dificuldade foi encontrada no Cap. 7.

As Tabelas. 8.7 e 8.8 também apresentam o desvio relativo de h, $\varepsilon(h)$, e de n, $\varepsilon(n)$, devido ao refino da malha. Como se pode observar, a variação relativa de h com o refino da malha foi, em geral, maior que a de n. Isto pode ser explicado pelo fato de o valor absoluto de h ser menor que o de n. Além disso, assim como ocorreu para o Modelo 2C-S, os valores de h tendem a zero para as otimizações com $(M_{\infty}; \operatorname{Re}_{\infty}^{-1}) = (1,5; 10^{-3}), (3; 10^{-3})$ e $(6; 10^{-3})$ na Tab. 8.8, mas foram limitadas pelo intervalo de otimização $[h_{min}, h_{max}]$. Por este motivo, as formas otimizadas neste caso são, na verdade, do tipo lei de potência com h = 0 e n = 1, ou mais precisamente, cones.

		220	$\times 90$	440 >	440×180		
M_{∞}	Re_∞^{-1}	h	n	h	n	$\varepsilon(h)$ (%)	$\varepsilon(n)$ (%)
1,5	0	$0,\!150$	0,570	$0,\!155$	0,563	3,2	1,2
	10^{-7}	$0,\!153$	$0,\!573$	—	—		
	10^{-6}	$0,\!155$	$0,\!580$	$0,\!159$	0,573	$2,\!3$	1,2
	10^{-5}	$0,\!158$	$0,\!605$	0,163	0,599	$3,\!3$	$1,\!1$
	10^{-4}	$0,\!158$	$0,\!691$	0,160	$0,\!686$	1,7	$0,\!8$
	10^{-3}	$0,\!146$	$1,\!000$	$0,\!147$	$1,\!000$	$0,\!6$	$0,\!0$
3	0	0,066	0,667	0,068	0,668	3,6	0,02
	10^{-7}	0,068	$0,\!670$	0,069	$0,\!670$	$1,\!8$	0,03
	10^{-6}	0,073	$0,\!678$	0,074	$0,\!678$	$0,\!8$	0,01
	10^{-5}	0,088	$0,\!699$	0,088	0,700	$0,\!5$	0,08
	10^{-4}	0,114	0,799	$0,\!115$	0,803	$0,\!5$	$0,\!6$
	10^{-3}	$0,\!128$	$1,\!000$	$0,\!130$	$1,\!000$	$1,\!2$	$0,\!0$
6	0	0,050	0,675	0,052	0,674	3,5	0,09
	10^{-7}	$0,\!053$	$0,\!678$	$0,\!054$	$0,\!678$	2,1	$_{0,1}$
	10^{-6}	0,062	$0,\!685$	0,062	$0,\!684$	0,04	$_{0,1}$
	10^{-5}	0,083	0,708	0,084	0,708	$0,\!5$	$0,\!04$
	10^{-4}	$0,\!125$	$0,\!847$	$0,\!128$	0,872	2,1	2,8
	10^{-3}	$0,\!144$	1,000	$0,\!147$	$1,\!000$	$1,\!8$	$0,\!0$

Tabela 8.7 – Coeficiente das formas geométricas otimizadas. Razão de aspecto $f_r = 2$.

Para facilitar o entendimento dos resultados, as Figs. 8.2 e 8.3 apresentam os coeficientes $h \in n$, otimizados na malha 440 × 180, como função de $\operatorname{Re}_{\infty}^{-1}$. Destas figuras, é possível observar que n nunca diminui com o aumento de $\operatorname{Re}_{\infty}^{-1}$, ao passo que h pode

aumentar e/ou diminuir, dependendo de f_r e M_{∞} . Além disso, para $f_r = 4$, é possível constatar a mesma variação apreciável de h em função de $\operatorname{Re}_{\infty}^{-1}$ (para o intervalo $[10^{-4}; 10^{-3}]$) observada para o Modelo 2C-S (ver a Seç. 7.2).

		220 >	< 90	$440 \times$	180		
M_{∞}	Re_∞^{-1}	h	n	h	n	$\varepsilon(h)$ (%)	$\varepsilon(n)$ (%)
1,5	0	0,035	0,619	0,040	0,616	10,4	$0,\!5$
	10^{-7}	0,042	0,623	0,043	0,621	2,7	$0,\!4$
	10^{-6}	0,046	$0,\!635$	$0,\!046$	$0,\!633$	$1,\!3$	$0,\!4$
	10^{-5}	$0,\!047$	$0,\!682$	$0,\!048$	0,680	0,7	0,2
	10^{-4}	$0,\!044$	0,926	0,043	$0,\!925$	2,1	$_{0,1}$
	10^{-3}	0,0027	$1,\!000$	0,0020	$1,\!000$	$31,\!3$	$0,\!0$
3	0	0,012	0,675	0,014	0,675	14,4	0,07
	10^{-7}	0,025	$0,\!678$	0,024	$0,\!679$	$0,\!3$	0,1
	10^{-6}	0,031	0,692	0,032	$0,\!693$	3,1	$0,\!2$
	10^{-5}	0,040	0,751	$0,\!041$	0,753	$1,\!9$	$0,\!3$
	10^{-4}	$0,\!044$	1,000	0,044	$1,\!000$	$1,\!8$	$0,\!0$
	10^{-3}	0,0026	$1,\!000$	0,0020	$1,\!000$	31,2	0,0
6	0	0,0096	0,694	0,0095	0,694	$0,\!5$	0,0
	10^{-7}	0,023	$0,\!699$	0,023	0,700	2,5	$_{0,1}$
	10^{-6}	0,032	0,717	0,033	0,718	$1,\!6$	$_{0,1}$
	10^{-5}	0,046	$0,\!802$	0,048	$0,\!803$	$_{4,0}$	$_{0,1}$
	10^{-4}	0,061	$1,\!000$	0,064	$1,\!000$	4,5	$0,\!0$
	10^{-3}	0,0026	$1,\!000$	0,0020	$1,\!000$	$_{30,5}$	$0,\!0$

Tabela 8.8 – Coeficiente das formas geométricas otimizadas. Razão de aspecto $f_r = 4$.

Assim como para o Modelo 2C-S, no Modelo 2C-NS, os coeficientes $h \in n$ têm efeitos opostos sobre a área e o volume da forma otimizada, isto é, se h aumenta a área e o volume também aumentam, por outro lado, se n aumenta, a área e o volume diminuem. O efeito resultante das variações de $h \in n$ sobre a área e volume das formas otimizadas, como função de $\operatorname{Re}_{\infty}^{-1}$, é apresentado nas Figs. 8.4 e 8.5, respectivamente. Nestas figuras, A_r representa a área superficial relativa e V_r o volume relativo das formas otimizadas, parametrizados, respectivamente, em termos da área ($\pi [r_b^2 + 2r_b l_r]$) e do volume ($\pi r_b^2 l_r$) de um cilindro com a mesma razão de aspecto f_r . Como se pode observar, a área A_r e o volume V_r sempre decrescem com o aumento dos efeitos viscosos, ou seja, com o aumento de $\operatorname{Re}_{\infty}^{-1}$. Este decréscimo é pequeno para um intervalo significativo do número de Reynolds, mas se torna importante à medida que $\operatorname{Re}_{\infty}^{-1}$ cresce, atingindo cerca de 19% para A_r e 25% para V_r em $\text{Re}_{\infty}^{-1} = 10^{-3}$, $M_{\infty} = 1,5$ e $f_r = 4$. Embora haja uma redução da área e do volume com o aumento dos efeitos viscosos, isto não significa, necessariamente, que as formas se tornam mais pontiagudas. Este efeito pode ser observado nos gráficos dos perfis otimizados, dados na Fig. 8.6.

Figura 8.2 – Coeficiente otimizado h como função de $\operatorname{Re}_{\infty}^{-1}$ para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 440×180.

Quanto ao efeito do número de Mach sobre as formas otimizadas, fixando-se f_r e

 Re_{∞} , observa-se que para a maior parte dos valores de Re_{∞} considerados, as formas se tornam menos rombudas com o aumento de M_{∞} . Além disso, a variação das formas se torna menos significativa à medida que M_{∞} cresce, o que está associado ao princípio da independência do número de Mach, como explicado no Cap. 6. Os perfis otimizados como função de M_{∞} são dados nas Figs. 8.7 e 8.8.

Figura 8.3 – Coeficiente otimizado n como função de $\operatorname{Re}_{\infty}^{-1}$ para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 440×180.

Os campos de pressão e do número de Mach para os perfis otimizados do Modelo 2C-NS são apresentados no Apêndice C.

De modo geral, as formas otimizadas do Modelo 2C-NS se comportam de modo muito semelhante às do Modelo 2C-S.

Figura 8.4 – Área superficial relativa A_r em função de $\operatorname{Re}_{\infty}^{-1}$ para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 440×180.

Figura 8.5 – Volume relativo V_r em função $\operatorname{Re}_{\infty}^{-1}$ para (a) $f_r = 2$ e (b) $f_r = 4$. Malha: 440×180.

Figura 8.6 – Perfis geométricos otimizados como função de Re_{∞}^{-1} para M_{∞} e f_r fixos. Malha: 440 × 180.

Figura 8.7 – Perfis geométricos otimizados como função de M_{∞} para Re_{∞}^{-1} e f_r fixos. Malha: 440 × 180. Parte I.

Figura 8.8 – Perfis geométricos otimizados como função de M_{∞} para Re_{∞}^{-1} e f_r fixos. Malha: 440 × 180. Parte II.

8.3 FUNÇÃO OBJETIVO

Assim como feito para o Modelo 2C-S, a função objetivo para o Modelo 2C-NS foi parametrizada do mesmo modo que na Seç. 6.5. As curvas de nível da função objetivo parametrizada $\epsilon(n,h)$, geradas a partir do histórico de simulações do otimizador, são apresentadas nas Figs. 8.9-8.14.

A partir dos gráficos das curvas de nível, observa-se que a função objetivo tem um comportamento contínuo e suave. Algumas distorções nas curvas de nível, como, por exemplo, na Fig. 8.13b, são causadas pela distribuição não uniforme de simulações no domínio de otimização. Para todas as condições testadas, apenas um mínimo por otimização foi observado, sendo que, em alguns casos, estes ocorreram na fronteira do domínio de otimização.

As funções objetivo determinadas nas otimizações foram empregadas na análise off-design das formas otimizadas com base no modelo de Euler quando submetidas a escoamentos viscosos. A Figura 8.15 mostra a diferença relativa no coeficiente de arrasto como função de Re_{∞}^{-1} para $f_r = 2$ e $f_r = 4$. Os resultados são muito semelhantes aos obtidos para o Modelo 2C-S. Pode-se observar que as formas otimizadas com o modelo de Euler permanecem eficientes, dentro de uma tolerância prescrita, para um amplo intervalo de Re_{∞} . Este intervalo de Re_{∞}^{-1} pode variar de zero a 10^{-5} ou de zero a 10^{-4} , dependendo de M_{∞} e f_r , no caso de uma tolerância de 2%, por exemplo. Por outro lado, para $10^{-4} < \text{Re}_{\infty}^{-1}$, a diferença relativa cresce significativamente, podendo atingir de 8 a 14% para 10^{-3} .

Figura 8.9 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 1,5$, $f_r = 2$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 8.10 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 3$, $f_r = 2$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 8.11 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 6$, $f_r = 2$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 8.12 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 1,5$, $f_r = 4$ e (a) $\operatorname{Re}_{\infty} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 8.13 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 3$, $f_r = 4$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 8.14 – Curvas de nível da função objetivo parametrizada $\epsilon(n,h)$ para $M_{\infty} = 6$, $f_r = 4$ e (a) $\operatorname{Re}_{\infty}^{-1} = 0$, (b) $\operatorname{Re}_{\infty}^{-1} = 10^{-7}$, (c) $\operatorname{Re}_{\infty}^{-1} = 10^{-6}$, (d) $\operatorname{Re}_{\infty}^{-1} = 10^{-5}$, (e) $\operatorname{Re}_{\infty}^{-1} = 10^{-4}$, (f) $\operatorname{Re}_{\infty}^{-1} = 10^{-3}$. Malha: 440 × 180.

Figura 8.15 – Diferença relativa (ε) do coeficiente de arrasto da forma otimizada com base no modelo de Euler comparado ao das formas otimizadas com o modelo de Navier-Stokes. Análise *off-design*. Malha 440 × 180.

9 COEFICIENTE DE ARRASTO DAS FOR-MAS OTIMIZADAS

9.1 INTRODUÇÃO

Nos Caps. 6, 7 e 8, os perfis geométricos definidos pelos Modelos 1C, 2C-S e 2C-NS foram otimizados numericamente de modo a minimizar o coeficiente de arrasto frontal C_{Df} . Neste capítulo, os coeficientes de arrasto C_{Df} destes modelos são comparados entre si e com o de outros perfis otimizados da literatura: as formas de von Kármán^{6,7}, de Newton^{1,7,9} e de Kraiko *et al.*² As comparações são feitas para os mesmos parâmetros considerados nas otimizações dos Modelos 1C, 2C-S e 2C-NS, isto é, $\text{Re}_{\infty}^{-1} \in \{0; 10^{-7}; 10^{-6}; 10^{-5}; 10^{-4}; 10^{-3}\}, M_{\infty} \in \{1,5; 3; 6\}$ e $f_r \in \{2; 4\}$.

Das diversas formas otimizadas na literatura (Cap. 2), as formas de von Kármán, de Newton e de Kraiko *et al.*² foram escolhidas para as comparações, pois são representativas de três dos quatro modelos matemáticos empregados até o momento para a resolução do problema de Newton: a teoria do escoamento supersônico linearizado, a lei de pressão de Newton e as equações de Euler, respectivamente. A geometria otimizada de Fink¹⁵, obtida com base na teoria do choque/expansão (o quarto modelo matemático), não foi considerada nas comparações pois o seu perfil não foi tabulado pelo autor, de modo que o seu coeficiente de arrasto não pôde ser determinado.

Para tornar as comparações consistentes, são comparados neste capítulo apenas coeficientes de arrasto calculados com base na mesma teoria para o escoamento. Deste modo, embora as formas de von Kármán e Newton tenham sido otimizadas com base na teoria do escoamento supersônico linearizado e na lei de pressão de Newton, respectivamente, neste capítulo, o coeficiente de arrasto sobre estas formas foi determinado com base nas equações de Euler e de Navier-Stokes. No caso das formas de Kraiko *et al.*², as comparações foram feitas apenas para o modelo de Euler ($\text{Re}_{\infty}^{-1} = 0$), pois os autores tabularam os coeficientes de arrasto, mas não tabularam os perfis otimizados, de modo que não foi possível determinar o coeficiente de arrasto para outros valores de Reynolds.

Ainda para tornar as comparações consistentes, os coeficientes de arrasto sobre as formas otimizadas dos Modelos 1C, 2C-S e 2C-NS foram recalculados com maior precisão. Tanto para estas formas, quanto para as formas de von Kármán e de Newton, empregou-se a metodologia do Cap. 5 para se determinar a extrapolação da solução numérica e uma estimativa do erro numérico.

Na próxima seção, são apresentados os coeficientes de arrasto para as formas

otimizadas consideradas neste capítulo e alguns detalhes sobre o procedimento de cálculo (nos casos pertinentes). Para facilitar a discussão, na seção subsequente, o coeficiente de arrasto das formas otimizadas é comparado uma a uma, tomando-se por base as formas otimizadas do Modelo 2C-NS.

9.2 COEFICIENTE DE ARRASTO

A Tab. 9.1 lista as formas otimizadas consideradas neste capítulo, bem como seções, equações e/ou tabelas a partir das quais estas formas podem ser reproduzidas ou consultadas. Deve-se observar que a menção aos Modelos 1C, 2C-S e 2C-NS na Tab. 9.1 não se refere apenas a três geometrias, mas a um conjunto de geometrias, uma vez que estas formas dependem dos parâmetros Re_{∞}^{-1} , M_{∞} e f_r . Além disso, como as otimizações foram feitas em mais de uma malha, deve-se destacar que os coeficientes de arrasto apresentados nesta seção referem-se às formas otimizadas nas malhas mais finas em que foi possível realizar as otimizações. De modo mais preciso, as formas otimizadas consideradas aqui, são as obtidas na malha 360×240 para o Modelo 1C e na malha 440×180 para os Modelos 2C-S e 2C-NS. No caso destes dois últimos modelos, considerou-se a solução obtida na malha 220×90 nos casos em que não foi possível obter a solução na malha 440×180 .

Tabela 9.1 – Formas otimizadas e respectivas referências.

Forma	Referência
1C	Eq. (3.21), Tabs. 6.9 e 6.10 (malha 360×240)
2C-S	Eq. (3.22), Tabs. 7.7 e 7.8 (malha 440×180)
2C-NS	Eq. (3.23), Tabs. 8.7 e 8.8 (malha 440×180)
von Kármán	Eq. (2.4)
Newton	Eqs. (2.11) e (2.12)
Kraiko <i>et al.</i> ²	Seç. 2.2.5

Para cada geometria otimizada listada na Tab. 9.1 (exceto as de Kraiko *et al.*²), o coeficiente de arrasto foi calculado numericamente em malhas com 120 × 120, 240 × 240, $480 \times 480 = 960 \times 960$ volumes. As malhas mais grossas foram obtidas das malhas mais finas através da remoção de linhas alternadas (detalhes sobre a forma de geração da malha, parâmetros numéricos empregados nas simulações e resultados parciais são apresentados no Apêndice B). Com base nos resultados obtidos, não foi possível aplicar o estimador convergente para todas as condições testadas devido à impossibilidade de cálculo da ordem de acurácia aparente (p_U). Por este motivo, a variante do estimador GCI, introduzida no Cap. 5, foi aplicada com ordem assimptótica ($p_L = 1$) e fator de segurança $F_s = 3$ para se obter uma solução extrapolada e uma estimativa do erro numérico. A Tab. 9.2 apresenta a o coeficiente de arrasto frontal $C_{\rm Df}$ das formas otimizadas de Kraiko *et al.*², Newton, von Kármán e dos Modelos 1C, 2C-S, 2C-NS como função de M_{∞} e Re_{∞} para a razão de aspecto $f_r = 2$. Os valores entre parênteses indicam o erro numérico estimado, *e.g.*, 0,165(4) = 0,165 ± 0,004. Como já apontando, o coeficiente de arrasto para a forma de Kraiko *et al.*² não pôde ser calculado. O valor apresentado na tabela é o fornecido por esses autores (não há indicação da estimativa do erro numérico sobre $C_{\rm Df}$ no trabalho de Kraiko *et al.*², mas em comunicação pessoal com os autores, estes afirmam que todos os algarismos apresentados são exatos). Na Tab. 9.3 são apresentados resultados similares, porém, para $f_r = 4$.

Tabela 9.2 – Coeficiente de arrasto frontal das formas otimizadas. Razão de aspecto $f_r = 2$.

		$C_{ m Df}$					
M_{∞}	Forma	$\mathrm{Re}_\infty^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
1,5	Kraiko ²	0,144					
	Newton	0,165(4)	0,167(4)	0,171(4)	0,186(4)	0,240(5)	0,440(7)
	Kármán	0,1685(16)	0,1716(17)	0,1784(17)	0,2001(16)	0,2706(17)	0,509(3)
	$1\mathrm{C}$	0,1533(10)	0,1557(11)	0,1611(12)	0,1791(12)	0,2396(9)	$0,\!4393(12)$
	2C-S	0,1467(4)	0,1495(3)	0,1543(4)	0,1713(10)	0,2294(14)	0,423(5)
	2C-NS	$0,\!14697(7)$	0,1488(9)	0,1539(11)	0,1710(7)	0,2297(13)	0,423(5)
3	Kraiko ²	0,121					
	Newton	0,1248(19)	0,1266(20)	0,1313(21)	0,1472(25)	0,2015(31)	0,397(5)
	Kármán	0,1417(17)	0,1445(18)	0,1508(18)	0,1712(21)	0,2378(28)	0,466(4)
	$1\mathrm{C}$	0,1239(8)	0,1260(10)	0,1309(11)	0,1476(11)	0,2037(12)	0,3915(12)
	2C-S	0,1217(11)	0,1236(12)	0,1278(14)	0,1426(15)	0,1937(17)	0,373(4)
	2C-NS	0,1218(12)	0,1233(24)	0,1279(13)	0,1428(14)	0,1941(17)	0,373(4)
6	Kraiko ²	0,101					
	Newton	0,1033(11)	0,1051(12)	0,1098(14)	0,1258(20)	0,180(4)	0,377(6)
	Kármán	0,1211(10)	0,1238(11)	0,1301(14)	0,1504(23)	0,217(5)	0,444(6)
	$1\mathrm{C}$	0,1027(6)	0,1047(7)	0,1096(8)	0,1261(12)	0,1824(24)	0,3733(15)
	2C-S	0,1014(8)	0,1031(8)	0,1071(9)	0,1215(12)	0,1701(17)	0,347(4)
	2C-NS	0,1014(7)	0,1031(8)	0,1072(9)	0,1218(12)	0,1705(19)	0,347(4)

Antes de tecer alguns comentários sobre o comportamento de $C_{\rm Df}$ como função de M_{∞} e Re_{∞}, é importante fazer a seguinte observação quanto à estimativa do erro numérico. Como já mencionado, o erro numérico foi estimado com o estimador GCI com fator de segurança $F_s = 3$. O uso do fator de segurança $F_s = 3$ torna a estimativa de erro mais confiável, isto é, aumenta a probabilidade de a solução numérica estar no intervalo de erro estimado. Contudo, o aumento da confiabilidade tem um efeito colateral: reduz a precisão da estimativa do erro. Este efeito pode ser observado na Tab. 9.4, que compara o coeficiente de arrasto $C_{\rm Df}$ sobre a forma otimizada de Newton calculado neste trabalho e por Kraiko *et al.*² para Re_{∞}⁻¹ = 0. Como se pode perceber, a diferença relativa (ε) entre as soluções (obtidas com métodos diferentes) é de até 0,33%, ao passo que a estimativa do

		$C_{ m Df}$					
M_{∞}	Forma	$\mathrm{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
1,5	Kraiko ²	0,0482					
	Newton	0,0541(21)	0,0578(23)	0,066(3)	0,0957(31)	0,200(4)	$0,\!609(9)$
	Kármán	$0,\!0517(3)$	0,0568(4)	0,0679(4)	0,1042(5)	0,2270(9)	$0,\!692(3)$
	$1\mathrm{C}$	0,0504(6)	0,0545(7)	0,0639(9)	0,0952(11)	$0,\!1983(25)$	0,567(4)
	2C-S	0,0504(9)	0,0545(10)	0,0638(11)	0,0947(15)	0,197(4)	$0,\!5714(14)$
	2C-NS	0,0501(6)	0,05403(14)	0,0634(9)	0,0945(14)	0,197(4)	0,566(9)
3	Kraiko ²	0,0396					
	Newton	0,0408(8)	0,0442(10)	0,0521(12)	0,0785(18)	$0,\!1725(31)$	$0,\!557(8)$
	Kármán	0,0444(5)	0,0488(6)	0,0585(8)	0,0901(12)	0,2000(22)	$0,\!634(4)$
	$1\mathrm{C}$	0,0400(4)	0,0436(5)	0,0518(6)	0,0788(8)	0,1678(19)	0,5145(31)
	2C-S	0,0400(5)	0,0434(6)	0,0514(8)	0,0780(11)	0,1664(28)	0,5176(15)
	2C-NS	0,0399(5)	0,0433(6)	0,0514(8)	0,0780(11)	0,1664(28)	0,5177(15)
6	Kraiko ²	0,0322					
	Newton	0,0326(6)	0,0355(7)	0,0422(10)	0,0652(18)	0,150(4)	0,521(9)
	Kármán	0,0375(5)	0,0413(7)	0,0496(11)	0,0774(21)	0,177(4)	$0,\!595(6)$
	$1\mathrm{C}$	0,0322(3)	0,0352(4)	0,0422(7)	0,0654(11)	0,1447(14)	$0,\!4785(32)$
	2C-S	0,0322(4)	0,0350(5)	0,0417(9)	0,0643(11)	0,1418(26)	$0,\!4811(18)$
	2C-NS	0,0321(4)	0,0350(5)	0,0418(7)	0,0644(11)	0,1418(26)	0,478(6)

erro numérico chega a 3,8% da solução numérica estimada.

1 011110	$10^{\circ}\infty = 0$	10	10	10	10	10
Kraiko ²	0,0482					
Newton	0,0541(21)	0,0578(23)	0,066(3)	0,0957(31)	0,200(4)	$0,\!609(9)$
Kármán	0,0517(3)	0,0568(4)	0,0679(4)	0,1042(5)	0,2270(9)	$0,\!692(3)$
$1\mathrm{C}$	0,0504(6)	0,0545(7)	0,0639(9)	0,0952(11)	0,1983(25)	0,567(4)
2C-S	0,0504(9)	0,0545(10)	0,0638(11)	0,0947(15)	0,197(4)	0,5714(14)
2C-NS	0,0501(6)	0,05403(14)	0,0634(9)	0,0945(14)	0,197(4)	0,566(9)
Kraiko ²	0,0396					
Newton	0,0408(8)	0,0442(10)	0,0521(12)	0,0785(18)	0,1725(31)	0,557(8)
Kármán	0,0444(5)	0,0488(6)	0,0585(8)	0,0901(12)	0,2000(22)	0,634(4)
$1\mathrm{C}$	0,0400(4)	0,0436(5)	0,0518(6)	0,0788(8)	0,1678(19)	0,5145(31)
2C-S	0,0400(5)	0,0434(6)	0,0514(8)	0,0780(11)	0,1664(28)	0,5176(15)
2C-NS	0,0399(5)	0,0433(6)	0,0514(8)	0,0780(11)	0,1664(28)	0,5177(15)
Kraiko ²	0,0322					
Newton	0,0326(6)	0,0355(7)	0,0422(10)	0,0652(18)	0,150(4)	0,521(9)
Kármán	0,0375(5)	0,0413(7)	0,0496(11)	0,0774(21)	0,177(4)	0,595(6)
$1\mathrm{C}$	0,0322(3)	0,0352(4)	0,0422(7)	0,0654(11)	0,1447(14)	0,4785(32)
2C-S	0,0322(4)	0,0350(5)	0,0417(9)	0,0643(11)	0,1418(26)	0,4811(18)
2C-NS	0,0321(4)	0,0350(5)	0,0418(7)	0,0644(11)	0,1418(26)	0,478(6)
	Kraiko ² Newton Kármán 1C 2C-S 2C-NS Kraiko ² Newton 1C 2C-S 2C-NS Kraiko ² Newton Kármán 1C 2C-S 2C-S	Kraiko ² 0,0482 Newton 0,0541(21) Kármán 0,0517(3) 1C 0,0504(6) 2C-S 0,0504(9) 2C-NS 0,0501(6) Kraiko ² 0,0396 Newton 0,0448(8) Kármán 0,0400(4) 2C-NS 0,0400(5) 2C-NS 0,0399(5) Kraiko ² 0,0322(3) Kraiko ² 0,0322(3) LC 0,0322(3) 2C-S 0,0322(4) 2C-S 0,0321(4)	Kraiko²0,0482Newton0,0541(21)0,0578(23)Kármán0,0517(3)0,0568(4)1C0,0504(6)0,0545(7)2C-S0,0504(9)0,0545(10)2C-NS0,0501(6)0,05403(14)Kraiko²0,0396Newton0,0408(8)0,0442(10)Kármán0,0400(4)0,0436(5)2C-S0,0400(5)0,0434(6)2C-NS0,0399(5)0,0434(6)2C-NS0,0322(3)0,0355(7)Kaiko²0,0375(5)0,0413(7)1C0,0322(3)0,0350(5)2C-NS0,0321(4)0,0350(5)	Kraiko²0,0482Newton0,0541(21)0,0578(23)0,066(3)Kármán0,0517(3)0,0568(4)0,0679(4)1C0,0504(6)0,0545(7)0,0639(9)2C-S0,0504(9)0,0545(10)0,0638(11)2C-NS0,0501(6)0,05403(14)0,0634(9)Kraiko²0,0396	Kraiko²0,0482Newton0,0541(21)0,0578(23)0,066(3)0,0957(31)Kármán0,0517(3)0,0568(4)0,0679(4)0,1042(5)1C0,0504(6)0,0545(7)0,0639(9)0,0952(11)2C-S0,0504(9)0,0545(10)0,0638(11)0,0947(15)2C-NS0,0501(6)0,054 03(14)0,0634(9)0,0945(14)Kraiko²0,0396Newton0,0408(8)0,0442(10)0,0521(12)0,0785(18)Kármán0,0400(4)0,0436(5)0,0518(6)0,0788(8)2C-S0,0400(4)0,0436(5)0,0518(6)0,0780(11)2C-NS0,0399(5)0,0433(6)0,0514(8)0,0780(11)2C-NS0,0326(6)0,0355(7)0,0422(10)0,0652(18)Kármán0,0375(5)0,0413(7)0,0496(11)0,0774(21)1C0,0322(3)0,0352(4)0,0422(7)0,0654(11)2C-NS0,0321(4)0,0350(5)0,0418(7)0,0643(11)	Kraiko ² 0,0482 Newton 0,0541(21) 0,0578(23) 0,066(3) 0,0957(31) 0,200(4) Kármán 0,0517(3) 0,0568(4) 0,0679(4) 0,1042(5) 0,2270(9) 1C 0,0504(6) 0,0545(7) 0,0639(9) 0,0952(11) 0,1983(25) 2C-S 0,0504(9) 0,0545(10) 0,0638(11) 0,0947(15) 0,197(4) 2C-NS 0,0501(6) 0,054 03(14) 0,0634(9) 0,0945(14) 0,197(4) Kraiko ² 0,0396 0,0945(14) 0,197(4) Kariko ² 0,0396 0,0945(14) 0,197(4) Kraiko ² 0,0396 0,197(4) Kármán 0,0408(8) 0,0442(10) 0,0521(12) 0,0785(18) 0,1725(31) Kármán 0,0400(4) 0,0436(5) 0,0518(6) 0,0780(11) 0,1664(28) 2C-S 0,0399(5) 0,0433(6) 0,0514(8) 0,0780(11)

Tabela 9.3 – Coeficiente de arrasto frontal das formas otimizadas. Razão de aspecto $f_r = 4$.

Tabela 9.4 – Comparação entre os coeficientes de arrasto frontal $C_{\rm Df}$ da forma otimizada de Newton calculados neste trabalho e calculados por Kraiko $et\ al.^2$ para $\operatorname{Re}_{\infty}^{-1} = 0.$

	$C_{ m Df}$			
f_r	M_{∞}	Presente	Ref. 2	ε (%)
2	$1,\!5$	0,1651(39)	$0,\!1656$	$0,\!33$
	3	0,1248(19)	0,1245	0,21
	6	0,1033(11)	0,1034	0,10
4	1,5	0,0541(21)	$0,\!0540$	$0,\!17$
	3	0,0408(8)	0,0407	0,32
	6	0,0326(6)	0,0325	$0,\!21$

Quanto ao efeito de M_{∞} e Re $_{\infty}$ sobre $C_{\rm Df}$, observa-se das Tabs. 9.2 e 9.3 que o coeficiente de arrasto frontal $C_{\rm Df}$ diminui com o aumento do número de Mach (para f_r e $\operatorname{Re}_{\infty}$ fixos) e aumenta com o aumento de $\operatorname{Re}_{\infty}^{-1}$ (para f_r e M_{∞} fixos). Neste último caso, o aumento é causado principalmente pelas tensões viscosas. Isto pode ser visto nas Tabs. 9.5 e 9.6, que apresentam a fração percentual da componente viscosa C_{Df}^{μ} em relação a C_{Df} .

			$C^{\mu}_{ m Df}/C_{ m Df}~(\%)$					
Ĵ	$f_r M_c$	$_{\infty}$ Forma	$\operatorname{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
4	2 1, 3	5 Newton	$0,\!0$	1,2	$_{3,8}$	11	30	57
		Kármán	$0,\!0$	1,5	4,7	13	32	58
		$1\mathrm{C}$	$0,\!0$	$1,\!4$	4,5	13	32	54
		2C-S	$0,\!0$	$1,\!4$	4,3	13	31	54
		2C-NS	$0,\!0$	$1,\!2$	4,1	12	30	54
4	2 3	Newton	0,0	1,3	4,2	13	32	58
		Kármán	$0,\!0$	1,5	4,6	13	32	57
		$1\mathrm{C}$	$0,\!0$	$1,\!4$	4,4	13	32	55
		2C-S	$0,\!0$	$1,\!2$	$3,\!9$	12	29	55
		2C-NS	0,0	$1,\!2$	$3,\!9$	12	29	55
4	2 6	Newton	0,0	1,3	4,4	13	33	59
		Kármán	$0,\!0$	$1,\!4$	4,5	13	31	57
		$1\mathrm{C}$	$0,\!0$	$1,\!4$	4,5	13	33	57
		2C-S	$0,\!0$	$1,\!2$	3,8	11	27	55
		2C-NS	0,0	$1,\!2$	$_{3,8}$	11	27	55
4	4 1, 3	5 Newton	0,0	6,8	19	43	71	87
		Kármán	$0,\!0$	8,4	22	47	72	87
		$1\mathrm{C}$	$0,\!0$	$7,\!6$	21	45	68	85
		2C-S	$0,\!0$	7,5	21	45	67	85
		2C-NS	0,0	7,5	21	45	67	85
4	4 3	Newton	0,0	7,4	20	45	71	87
		Kármán	$0,\!0$	$7,\!9$	21	45	70	86
		$1\mathrm{C}$	$0,\!0$	7,7	21	45	66	85
		2C-S	$0,\!0$	7,3	20	43	66	85
		2C-NS	$0,\!0$	7,1	20	43	66	85

Tabela 9.5 – Contribuição da componente viscos
a $C^{\mu}_{\rm Df}$ sobre o coeficiente de arrasto frontal
 $C_{\rm Df}$ das formas otimizadas. Parte I.

			$C^{\mu}_{ m Df}/C_{ m Df}~(\%)$					
f_r	M_{∞}	Forma	$\mathrm{Re}_\infty^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
4	6	Newton	0,0	7,2	20	43	69	86
		Kármán	$0,\!0$	7,2	19	42	67	85
		$1\mathrm{C}$	$0,\!0$	7,3	20	43	66	85
		2C-S	$0,\!0$	6,6	19	40	65	85
		2C-NS	0,0	6,5	18	40	65	85

Tabela 9.6 – Contribuição da componente viscos
a $C^{\mu}_{\rm Df}$ sobre o coeficiente de arrasto frontal
 $C_{\rm Df}$ das formas otimizadas. Parte II.

O efeito da pressão e das tensões viscosas sobre o coeficiente de arrasto frontal pode ser melhor ilustrado através de um caso específico. As Figs. 9.1 e 9.2 apresentam o coeficiente de arrasto frontal, decomposto em termos de C_{Df}^p e C_{Df}^{μ} , como função de Re_{∞}^{-1} . Estas figuras correspondem aos escoamentos para $M_{\infty} = 1,5$ sobre as geometrias com razão de aspecto $f_r = 2$ e $f_r = 4$, respectivamente, para as formas otimizadas do Modelo 2C-NS. Destas figuras pode-se observar que C_{Df}^{μ} cresce substancialmente com o aumento de Re_{∞}^{-1} e que este efeito é mais pronunciado para $f_r = 4$. Para os demais valores de M_{∞} , o comportamento é qualitativamente semelhante.

Figura 9.1 – Contribuição de $C_{\rm Df}^p$
e $C_{\rm Df}^\mu$ para $C_{\rm Df}$. Modelo 2C-NS.
 $M_\infty=1,5.$ Razão de aspecto $f_r=2.$

Figura 9.2 – Contribuição de $C_{\rm Df}^p$ e $C_{\rm Df}^{\mu}$ para $C_{\rm Df}$. Modelo 2C-NS. $M_{\infty} = 1,5$. Razão de aspecto $f_r = 4$.

9.3 COMPARAÇÕES

Nesta seção, o coeficiente de arrasto das formas otimizadas do Modelo 2C-NS é comparado ao coeficiente de arrasto das formas otimizadas dos Modelos 1C (Figs. 9.3 e 9.4) e 2C-S (Figs. 9.5 e 9.6), bem como ao das formas de von Kármán (Figs. 9.7 e 9.8), Newton (Figs. 9.9 e 9.10) e Kraiko *et al.*² (Tab. 9.7). Nas figuras e tabelas desta seção são apresentadas as diferenças relativas (ε) entre os coeficientes de arrasto da forma comparada ($C_{\rm Df}$) e da forma otimizada do Modelo 2C-NS ($C_{\rm Df}$)_{ref}, *i.e.*,

$$\varepsilon = \frac{C_{\rm Df} - (C_{\rm Df})_{\rm ref}}{(C_{\rm Df})_{\rm ref}}.$$
(9.1)

O erro estimado na diferença relativa foi obtido da soma dos erros estimados de $C_{\rm Df}$ das formas comparadas.

A partir das comparações dos coeficientes de arrasto, são feitos os seguintes apontamentos:

1. O coeficiente de arrasto do Modelo 2C-NS foi menor ou igual ao do 1C. Como o primeiro inclui o segundo como um caso particular, isto demonstra que a face plana frontal do Modelo 2C-NS contribui para a redução do arrasto, mesmo em escoamentos viscosos. A diferença relativa entre os coeficientes de arrasto foi maior para $f_r = 2$ do que para $f_r = 4$, chegando a 7,7%.

- 2. Como comentado nos Caps. 7 e 8, em algumas otimizações o valor de h nos Modelos 2C-S e 2C-NS poderia ser zero, fazendo com que estas formas se reduzissem ao Modelo 1C, mas foi limitado devido ao intervalo de otimização $[h_{min}, h_{max}]$. Nestes casos, considerou-se h = 0 e os valores de n os obtidos com o Modelo 1C. Isto, de fato, é coerente, pois como mostra a Tab. 9.3, para estes casos o Modelo 1C apresentou coeficiente de arrasto menor ou similar ao obtido pelos Modelos 2C-S e 2C-NS, dentro da estimativa de erro.
- 3. Dentro da estimativa de erro, observou-se que não há diferença significativa entre os Modelos 2C-S e 2C-NS.
- 4. Há uma diferença expressiva entre os coeficientes de arrasto da forma de von Kármán e do Modelo 2C-NS. A diferença relativa em $C_{\rm Df}$ chegou a ser 28% a favor do segundo. De modo geral, observou-se que a diferença relativa em $C_{\rm Df}$ se torna maior com o aumento de M_{∞} e Re_{∞} e com a redução de f_r . Isto é compreensível, uma vez que a forma de von Kármán foi obtida com a condição de $\sqrt{M_{\infty}^2 1}/f_r \ll 1$ (ver a Seç. 2.1.1.1).
- 5. O coeficiente de arrasto do Modelo 2C-NS foi menor ou semelhante ao da forma de Newton, dentro do erro numérico estimado. As diferenças relativas variaram de 0,6% a 12%, sendo menores para os valores mais altos de Mach e Reynolds.
- 6. O coeficiente de arrasto do Modelo 2C-NS ficou próximo ao de Kraiko *et al.*², obtido com o Cálculo Variacional, para $\text{Re}_{\infty}^{-1} = 0$. A maior diferença relativa dos coeficientes de arrasto foi de 3,7% para $M_{\infty} = 1,5$ e $f_r = 4$, mas não excedeu 0,8% para $3 \leq M_{\infty}$. Estes resultados podem ser considerados bons, uma vez que apenas dois coeficientes ajustáveis foram empregados na representação da forma otimizada do Modelo 2C-NS.

_				
			C_{Df}	
f_r	M_{∞}	2C-NS	Kraiko $et \ al.^2$	$\varepsilon~(\%)$
2	$^{1,5}_{3}_{6}$	$\begin{array}{c} 0,14697(7)\\ 0,1218(12)\\ 0,1014(7) \end{array}$	$0,144 \\ 0,121 \\ 0,101$	$\begin{array}{r} -2,00(4) \\ -0,6(9) \\ -0,4(7) \end{array}$
4	$\begin{array}{c} 1,5\\ 3\\ 6\end{array}$	$\begin{array}{c} 0,0501(6) \\ 0,0399(5) \\ 0,0321(4) \end{array}$	$0,0482 \\ 0,0396 \\ 0,0322$	$-3,7(12) \\ -0,8(13) \\ 0,3(14)$

Tabela 9.7 – Comparação de $C_{\rm Df}$ das formas otimizadas de Kraiko *et al.*² e do Modelo 2C-NS para ${\rm Re}_{\infty}^{-1} = 0$.

Figura 9.3 – Comparação de $C_{\rm Df}$ das formas otimizadas do Modelo 1C e do 2C-NS. Razão de aspecto $f_r=2.$

Figura 9.4 – Comparação de $C_{\rm Df}$ das formas otimizadas do Modelo 1C e do 2C-NS. Razão de aspecto $f_r=4.$

Figura 9.5 – Comparação de $C_{\rm Df}$ das formas otimizadas do Modelo 2C-S e do 2C-NS. Razão de aspecto $f_r = 2$.

Figura 9.6 – Comparação de $C_{\rm Df}$ das formas otimizadas do Modelo 2C-S e do 2C-NS. Razão de aspecto $f_r=4.$

Figura 9.7 – Comparação de $C_{\rm Df}$ das formas otimizadas de von Kármán e do Modelo 2C-NS. Razão de aspecto $f_r=2.$

Figura 9.8 – Comparação de $C_{\rm Df}$ das formas otimizadas de von Kármán e do Modelo 2C-NS. Razão de aspecto $f_r=4.$

Figura 9.9 – Comparação de $C_{\rm Df}$ das formas otimizadas de Newton e do Modelo 2C-NS. Razão de aspecto $f_r=2.$

Figura 9.10 – Comparação de $C_{\rm Df}$ das formas otimizadas de Newton e do Modelo 2C-NS. Razão de aspecto $f_r = 4$.

10 CONSIDERAÇÕES FINAIS

10.1 CONCLUSÃO

Pautado nos resultados de Bryson Jr.⁷ e Horstmann *et al.*¹⁸ de que as formas otimizadas podem ser significativamente alteradas em decorrência dos efeitos viscosos, o objetivo central deste trabalho foi resolver o problema da otimização aerodinâmica de Newton com base em um modelo mais realista para o cálculo da força de arrasto: as equações de Navier-Stokes.

O coeficiente de arrasto foi calculado numericamente através do Método dos Volumes Finitos e minimizado com base no Método de Otimização de Forma conjugado a um algoritmo híbrido que combina as vantagens do algoritmo de Evolução Diferencial e do Método das Superfícies de Resposta. Os aplicativos desenvolvidos para a otimização (DEPP) e para a simulação do escoamento (Mach2D) foram testados em problemas particulares. Os resultados foram avaliados com base em técnicas de Verificação e Validação.

Três modelos aproximativos para as formas otimizadas foram considerados: formas do tipo lei de potência (Modelo 1C), formas do tipo lei de potência com face plana (Modelo 2C-S) e formas do tipo lei de potência deslocada com face plana (Modelo 2C-NS). Cada modelo foi otimizado para seis valores do número de Reynolds ou, equivalentemente, de Reynolds inverso $\operatorname{Re}_{\infty}^{-1} \in \{0; 10^{-7}; 10^{-6}; 10^{-5}; 10^{-4}; 10^{-3}\}$, dois valores da razão de aspecto $f_r \in \{2; 4\}$ e três valores do número de Mach M_{∞} da corrente livre $M_{\infty} \in \{1,5; 3; 6\}$. As otimizações foram feitas em pelo menos duas malhas para se avaliar a influência do refino da malha sobre as formas otimizadas. Os coeficientes das formas otimizadas foram tabulados, para que possam ser reproduzidos e comparados em trabalhos futuros.

Contabilizando-se todas as otimizações, estima-se que mais de 100 000 simulações foram realizadas. Este número de simulações só foi possível com o uso de processamento paralelo e com a implementação do controle dinâmico de Δt como parâmetro de relaxação no algoritmo do código Mach2D.

Com relação aos resultados obtidos para as formas otimizadas dos três modelos testados, alguns aspectos gerais podem ser destacados. Primeiramente, observou-se que ao se variar f_r ou M_{∞} , mantendo-se as demais variáveis do trio $(f_r, M_{\infty}, \operatorname{Re}_{\infty}^{-1} = 0)$ fixas, os comportamentos dos perfis otimizados estão qualitativamente de acordo com o que se sabe da literatura. De modo mais específico, (i) as formas otimizadas se tornam mais rombudas com a redução do número de Mach M_{∞} e (ii) variam menos significativamente à medida que o número de Mach aumenta (princípio da independência do número de Mach)

e (iii) se tornam mais pontiagudas com o aumento de f_r . Ao se incluir os efeitos viscosos, verificou-se que a influência do número de Mach sobre os perfis otimizados diminui à medida que $\operatorname{Re}_{\infty}^{-1}$ aumenta, mas que os dois primeiros comportamentos ainda podem ser observados para um amplo intervalo de Reynolds. O terceiro comportamento foi observado em todos os casos considerados.

Quanto à influência dos efeitos viscosos sobre os perfis das formas otimizadas, observou-se que, à medida que as forças viscosas se tornam importantes, isto é, quando $\operatorname{Re}_{\infty}^{-1}$ aumenta, mantendo-se $f_r \in M_{\infty}$ fixos, a área superficial e o volume das formas otimizadas diminuem. Para o Modelo 1C, que tem apenas um grau de liberdade, a redução da área e do volume leva, necessariamente, a formas mais pontiagudas. Isto, curiosamente, não acontece necessariamente para os Modelos 2C-S e 2C-NS. Ou seja, para estes dois modelos, o aumento de $\operatorname{Re}_{\infty}^{-1}$ causa uma redução da área superficial e do volume, mas não necessariamente os torna mais pontiagudos.

O comportamento dos Modelos 2C-S e 2C-NS otimizados com o aumento de Re_{∞}^{-1} é qualitativamente diferente do das formas de Horstmann *et al.*¹⁸ e das de Bryson Jr.⁷ Para as formas de Horstmann *et al.*¹⁸ a área superficial e o volume sempre aumentam à medida que os efeitos viscosos se tornam importantes. Por outro lado, para as formas de Bryson Jr.⁷, os perfis devem ficar mais pontiagudos com o aumento do coeficiente de fricção.

Outro aspecto importante é o de que existe um intervalo de Reynolds em que a influência dos efeitos viscosos sobre as formas otimizadas é desprezível, dentro de uma tolerância prescrita, o que faz com que as formas otimizadas com base nas equações de Euler sejam praticamente tão eficientes quanto àquelas otimizadas com base nas equações de Navier-Stokes. De fato, isto foi avaliado a partir da reconstrução e interpolação da função objetivo determinada durante as otimizações (análise *off-design*).

Embora exista um intervalo em que os efeitos viscosos não afetem significativamente os perfis das formas otimizadas, com o aumento de Re_{∞}^{-1} estes efeitos se tornam expressivos. Comparando-se as formas otimizadas com base nas equações de Euler com as otimizadas com base no modelo de Navier-Stokes para $\text{Re}_{\infty}^{-1} = 10^{-3}$, observou-se que as diferenças relativas da área superficial e do volume destas formas podem chegar a 19% e 25%, respectivamente.

A reconstrução da função objetivo, a partir do histórico das simulações, também ajudou a entender como esta função se comporta em termos das variáveis de otimização. Para todas as otimizações, a função objetivo foi contínua, suave e apresentou apenas um mínimo por otimização, o qual ocorreu na fronteira do domínio para alguns casos.

O coeficiente de arrasto das formas otimizadas dos modelos 1C, 2C-S e 2C-NS foi comparado. Dentro do erro numérico estimado, não se observou diferença significativa em $C_{\rm Df}$ entre as formas otimizadas dos Modelos 2C-S e 2C-NS. Entretanto, a diferença relativa entre C_{Df} do Modelo 1C e do 2C-NS chegou a 7,7%. Este resultado mostra que a influência da face plana dos perfis otimizados sobre C_{Df} não pode ser desprezada.

O coeficiente de arrasto do Modelo 2C-NS também foi comparado ao das formas de von Kármán, Newton e Kraiko *et al.*² Em todos os testes, o coeficiente de arrasto das formas do Modelo 2C-NS foi menor que o das formas otimizadas de von Kármán e Newton. As diferenças relativas chegaram a 28% e 12%, respectivamente. Como esperado, o coeficiente de arrasto do Modelo 2C-NS foi maior que o das formas otimizadas de Kraiko *et al.*² A maior diferença relativa foi de 3,7%, mas, em geral não ultrapassou 0,8%. Este resultado é muito bom face ao fato de que apenas dois coeficientes ajustáveis foram utilizados para a determinação das formas otimizadas, em contraste com os resultados de Kraiko *et al.*², que foram obtidos com o Cálculo Variacional.

10.2 CONTRIBUIÇÕES DESTE TRABALHO

As principais contribuições deste trabalho são listadas a seguir:

- 1. Considerando os modelos matemáticos empregados na literatura para a descrição do escoamento no problema de Newton, isto é, a teoria do escoamento supersônico linearizado, a fórmula de pressão de Newton e suas variações, a teoria do choqueexpansão e as equações de Euler, a abordagem deste trabalho com base nas equações de Navier-Stokes representa um avanço na descrição mais realista do escoamento.
- 2. A solução do problema de Newton foi determinada aproximadamente a partir de três modelos geométricos, otimizados nos regimes supersônico e limiar do hipersônico para um amplo intervalo do número de Reynolds e para dois valores da razão de aspecto (comprimento/diâmetro de base). As soluções obtidas (perfis otimizados e respectivos coeficientes de arrasto) foram tabuladas para futuras referências.
- 3. Os resultados obtidos ajudaram a esclarecer como os efeitos viscosos afetam os perfis dos modelos otimizados. Observou-se que:
 - a) Para os três modelos geométricos estudados, o aumento dos efeitos viscosos faz com que a área superficial e o volume das formas otimizadas diminuam.
 - b) No caso dos modelos com face plana frontal, a redução da área superficial e do volume com o aumento dos efeitos viscosos não implicam, necessariamente, em formas mais pontiagudas.
 - c) Há um intervalo do número de Reynolds em que os perfis otimizados não variam significativamente, dentro de uma tolerância prescrita. Neste intervalo, as formas otimizadas com base no modelo de Euler podem ser aplicadas sem um aumento significativo no coeficiente de arrasto.

- d) Mesmo em escoamentos viscosos, a presença da face plana frontal contribui para a redução do coeficiente de arrasto. Nos casos estudados, esta redução chegou a ser de 7,7%.
- e) A influência dos efeitos viscosos sobre os perfis
 dos modelos otimizados difere qualitativamente do previsto por Bryson Jr.⁷ e Horstmann *et al.*¹⁸
- 4. Por fim, demonstrou-se que o procedimento de otimização empregado neste trabalho é válido, pois este produziu formas otimizadas cujos coeficientes de arrasto foram menores que o das formas de von Kármán e de Newton, e que se aproximam dos das formas de Kraiko *et al.*², obtidos com o Cálculo Variacional para o caso de escoamentos invíscidos ($\text{Re}_{\infty}^{-1} = 0$).

10.3 PERSPECTIVAS PARA TRABALHOS FUTUROS

A partir da experiência obtida ao longo do desenvolvimento desta tese, é pertinente algumas observações do que pode ser feito para melhorar ou ampliar os resultados obtidos.

É possível melhorar a representação de g(x) e reduzir ainda mais o coeficiente de arrasto das formas otimizadas. Para isso, é preciso considerar mais funções de base nesta representação e melhorar o desempenho do otimizador e do simulador.

Embora o método de otimização empregado neste trabalho seja robusto e válido para a otimização aerodinâmica, é possível reduzir o número de vezes em que a função objetivo é calculada explorando o fato desta função ser contínua e suave. Neste sentido, a aplicação de um método quase Newton⁶⁸ poderia ser uma alternativa para a realização de otimizações com mais variáveis e menor custo computacional.

O desempenho do simulador poderia ser melhorado com a implementação de um método com ordem de acurácia mais alta (segunda ordem, por exemplo), o que permitiria a redução do número de volumes para se atingir a mesma precisão numérica do método de primeira ordem utilizado neste trabalho. Além disso, a implementação do método Multigrid⁶⁹ também poderia contribuir para reduzir o número de iterações necessárias para se atingir a convergência da solução numérica.

No intuito de estender os resultados obtidos, seria interessante a determinação das formas otimizadas nos regimes subsônico e transônico, bem como a inclusão de turbulência no modelo matemático. Além disso, seria interessante determinar as formas otimizadas no intervalo completo de rarefação do gás, isto é, desde o regime de moléculas livres, descrito pela Teoria Cinética dos Gases⁷⁰, até o regime hidrodinâmico, descrito pelas equações de Navier-Stokes.

REFERÊNCIAS

1 NEWTON, I. *Principia - Mottes Translation Revised*. [S.l.]: University of California Press, 1946. 333, 657-661 p. Citado 3 vezes nas páginas 19, 30 e 174.

2 KRAIKO, A. et al. Axisymmetric nose shapes of specified aspect ratio, optimum or close to optimum with respect to wave drag. *PMM Journal of Applied Mathematics and Mechanics*, 67, n. 5, p. 703–730, 2003. ISSN 0021-8928. Citado 15 vezes nas páginas 19, 22, 41, 42, 43, 51, 52, 174, 175, 176, 177, 180, 181, 188 e 189.

3 LANDAU, L. D.; LIFSHITZ, E. M. *Fluid mechanics.* 2. ed. Oxford: Pergamon Press, 1987. Citado 3 vezes nas páginas 19, 22 e 63.

4 ANDERSON JR., J. D. *Modern compressible flow: with historical perspective.* 3. ed. New York: McGraw-Hill, 2003. Citado 4 vezes nas páginas 19, 20, 40 e 56.

5 ANDERSON JR, J. D. *Hypersonic and high temperature gas dynamics*. Reston, Va: AIAA, 2000. Citado na página 19.

6 KÁRMÁN, T. von. The problem of resistance in compressible fluids. In: *Convegno di* Scienze Fisiche, Matematiche e Naturali sul tema: Le Alte Velocità in Aviazione. Roma: Reale Accademia d'Italia, 1935. Citado 3 vezes nas páginas 19, 27 e 174.

7 MIELE, A. (Ed.). Theory of optimum aerodynamic shapes. New York: Academic Press, 1965. Citado 19 vezes nas páginas 19, 20, 21, 22, 27, 28, 30, 31, 32, 35, 37, 52, 120, 144, 145, 174, 186, 187 e 189.

8 PARKER, H. M. Minimum-drag ducted and pointed bodies of revolution based on linearized supersonic theory. NACA 1213, 1954. Citado 2 vezes nas páginas 20 e 28.

9 EGGERS JR., A. J.; RESNIKOFF, M. M.; DENNIS, D. H. Bodies of revolution having minimum drag at hypersonic airspeeds. NACA 1306, 1956. Citado 11 vezes nas páginas 20, 29, 30, 43, 44, 98, 104, 105, 106, 108 e 174.

10 GONOR, A. L.; CHERNYI, G. G. On bodies of minimum drag at hypersonic speed. *Izvestiya Akademii Nauk SSSR*, n. 7, 1957. (In Russian). Citado 3 vezes nas páginas 20, 35 e 36.

11 HAYES, W. D.; PROBSTEIN, R. F. *Hypersonic flow theory*. New York; London: Academic Press, 1959. Citado 3 vezes nas páginas 20, 35 e 36.

12 PERKINS, E. W.; JORGENSEN, L. H.; SOMMER, S. C. Investigation of the drag of various axially symmetric nose shapes of fineness ratio 3 for Mach numbers from 1.24 to 7.4. NACA 1386, 1952. Citado 3 vezes nas páginas 20, 44 e 116.

13 ZANDBERGEN, P. J. On the Determination of Optimum Shapes with Finite Nose Angles. Amsterdam, The Netherlands, NLR-TR G.30, 1964. Citado 3 vezes nas páginas 21, 37 e 38.

14 POWERS, S. A. Drag minimization using exact methods. *AIAA*, v. 2, n. 5, p. 941–943, 1964. Citado 3 vezes nas páginas 21, 37 e 38.

15 FINK, M. R. Hypersonic minimum-drag slender bodies of revolution. *AIAA*, v. 4, n. 10, p. 1717–1724, 1966. Citado 4 vezes nas páginas 21, 38, 39 e 174.

16 DYKE, M. D. van. The combined supersonic-hypersonic similarity rule. *Journal of the Aeronautical Sciences*, v. 18, n. 7, p. 499–500, 1951. Citado na página 21.

17 MANSON, W. H.; LEE, J. Minimum-drag axisymmetric bodies in the supersonic/hypersonic flow regimes. *Journal of Spacecrafts and Rockets*, v. 31, n. 3, p. 406–413, 1994. Citado 4 vezes nas páginas 21, 39, 40 e 117.

18 HORSTMANN, D.; KAWOHL, B.; VILLAGGIO, P. Newton's aerodynamic problem in the presence of friction. *NODEA-Nonlinear Differential Equations And Applications*, 9, n. 3, p. 295–307, 2002. ISSN 1021-9722. Citado 11 vezes nas páginas 21, 23, 33, 34, 35, 51, 144, 145, 186, 187 e 189.

19 MAHAPATRA, D.; SRIRAM, R.; JAGADEESH, G. Effect of counterflow argon plasma jet on aerodynamic drag of a blunt body at hypersonic Mach numbers. *Aeronautical Journal*, 112, n. 1137, p. 683–687, NOV 2008. ISSN 0001-9240. Citado na página 22.

20 LEE, J. et al. Design of space launch vehicle using numerical optimization and inverse method. *Journal of Spacecraft and Rockets*, 38, n. 2, p. 212–218, Mar-Apr 2001. ISSN 0022-4650. Citado 2 vezes nas páginas 23 e 46.

 FERLAUTO, M.; MARSILIO, R. A viscous inverse method for aerodynamic design. Computers & Fluids, 35, n. 3, p. 304–325, Mar 2006. ISSN 0045-7930. Citado na página
 23.

22 ARFKEN, G. B.; WEBER, H. J. *Mathematical methods for physicists*. 6. ed. Boston: Elsevier, 2005. Citado na página 23.

23 LUENBERGER, D. G. *Linear and Nonlinear programming.* 2. ed. [S.l.]: Addison-Wesley, 1984. Citado na página 23.

24 BAZARAA, M. S.; SHERALI, H. D.; SHETTY, C. M. Nonlinear programming. Theory and algorithms. 3. ed. [S.l.]: John Wiley & Sons, 2006. Citado na página 23.

25 NASH, S. G.; SOFER, A. *Linear and Nonlinear Programming*. New York: McGraw-Hill, c1996. Citado 3 vezes nas páginas 23, 46 e 47.

26 PRICE, K. V.; STORN, R. M.; LAMPINEN, J. A. *Differential evolution: a practical approach to global optimization*. Germany: Springer, 2005. Citado 4 vezes nas páginas 23, 24, 46 e 47.

27 FEOKTISTOV, V. *Differential evolution: in search of solutions*. New York: Springer Science+Business Media, c2006. Citado 11 vezes nas páginas 23, 24, 46, 47, 48, 49, 89, 91, 112, 132 e 155.

28 COLEY, D. A. An Introduction to Genetic Algorithms for Scientists and Engineers. Singapore: World Scientific, 1999. Citado 3 vezes nas páginas 23, 46 e 47.

29 MITCHELL, M. An introduction to genetic algorithms. Cambridge, Mass.: MIT Press, c1996. Citado na página 23.

30 HAUPT, R. L.; HAUPT, S. E. *Practical genetic algorithms*. 2. ed. Hoboken, N.J.: John Wiley, c2004. Citado na página 23.

31 MYERS, R. H.; MONTGOMERY, D. C.; ANDERSON-COOK, C. M. Response surface methodology: process and product optimization using designed experiments. 3. ed. Hoboken, N.J.: Wiley, c2009. Citado 2 vezes nas páginas 23 e 24.

32 CHEUNG, S.; AARONSON, P.; EDWARDS, T. CFD optimization of a theoretical minimum-drag body. *Journal of Aircraft*, 32, n. 1, p. 193–198, Jan-Feb 1995. ISSN 0021-8669. Citado na página 23.

33 LEE, J. et al. Multipoint nose shape optimization of space launcher using response surface method. *Journal of Spacecraft and Rockets*, 43, n. 1, p. 137–146, Jan-Feb 2006. ISSN 0022-4650. Citado na página 23.

34 DEEPAK, N. R.; RAY, T.; BOYCE, R. R. Evolutionary algorithm shape optimization of a hypersonic flight experiment nose cone. *Journal of Spacecraft and Rockets*, 45, n. 3, p. 428–437, May-Jun 2008. ISSN 0022-4650. Citado na página 23.

35 MYERS, R. H.; MONTGOMERY, D. C. Response surface methodology: process and product optimization using designed experiments. New York: Wiley, c1995. Citado na página 23.

36 CAI, G. et al. Performance prediction and optimization for liquid rocket engine nozzle. *Aerospace Science and Technology*, p. 155–162, 2006. Citado na página 24.

37 VERSTEEG, H. K.; MALALASEKERA, W. An introduction to computational fluid dynamics: the finite volume method. Harlow, Essex, England: Longman Scientific & Technical, 1995. Citado 4 vezes nas páginas 24, 66, 73 e 77.

38 FERZIGER, J. H.; PERIC, M. *Computational methods for fluid dynamics.* 3. ed. [S.l.]: Springer, 2002. Citado 3 vezes nas páginas 24, 66 e 81.

39 PATANKAR, S. V. Numerical heat transfer and fluid flow. [S.l.]: Taylor & Francis, 1980. Citado 2 vezes nas páginas 24 e 74.

40 KHURI, A. I. (Ed.). *Response surface methodology and related topics*. Singapore: World Scientific Publishing, 2006. Citado 4 vezes nas páginas 24, 47, 48 e 50.

41 TURNER, M. J. L. Rocket and spacecraft propulsion: principle, practice and new developments. 3. ed. New York: Springer, 2008. Citado na página 24.

42 LIDE, D. R. (Ed.). CRC Handbook of Chemistry and Physics, 89th Edition (Internet Version 2009). 89. ed. Boca Raton, FL: CRC Press/Taylor and Francis, 2009. Citado na página 24.

43 ANDERSON JR, J. D. *Hypersonic and high temperature gas dynamics*. New York: McGraw-Hill, 1989. Citado 5 vezes nas páginas 27, 29, 31, 35 e 117.

44 KENNET, H. The effect of friction on optimum minimum-drag shapes in hypersonic flow. *Journal of Aerospace Sciences*, v. 29, n. 12, p. 1486–1487, 1962. Citado na página 32.

45 LUENBERGER, D. G.; YE, Y. *Linear and non-linear programming.* 3. ed. [S.l.]: Springer, 2008. Citado na página 46.

46 SHEN, C. Rarefied gas dynamics: fundamentals, simulations and micro flows. Berlin; New York, NY: Springer, 2005. Citado na página 55.

47 HOERNER, S. Fluid-dynamic drag; practical information on aerodynamic drag and hydrodynamic resistance. Midland Park, N.J.: [s.n.], 1965. Citado na página 55.

48 BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. *Transport phenomena*. 2. ed. [S.l.]: John Wiley & Sons, 2002. Citado 2 vezes nas páginas 56 e 58.

49 MARCHI, C. H.; ARAKI, L. K. *Relatório técnico do projeto CFD-10/UFPR: códigos Mach2D 6.1 e RHG2D 1.0.* Curitiba, 2009. Citado na página 56.

50 MCBRIDE, B. J.; GORDON, S.; RENO, M. A. Coefficients for calculating thermodynamic and transport properties of individual species. [S.l.], 1993. Citado 2 vezes nas páginas 58 e 59.

51 SUTTON, G. P.; BIBLARZ, O. Rocket propulsion elements: an introduction to the engineering of rockets. 7. ed. United States: John Wiley & Sons, 2001. Citado na página 58.

52 MALISKA, C. R. Transferência de calor e mecânica dos fluidos computacional. 2. ed. Rio de Janeiro: LTC, 2004. Citado 11 vezes nas páginas 64, 66, 68, 70, 76, 77, 78, 80, 82, 85 e 134.

53 FARRASHKHALVAT, M.; MILES, J. P. *Basic structured grid generation*. [S.l.]: Butterworth-Heinemann, 2003. Citado na página 66.

54 THOMPSON, J. F.; WARSI, Z. U. A.; MASTIN, C. W. Numerical grid generation. [S.l.]: North-Holland, 1985. Citado na página 66.

55 THOMPSON, J. F.; SONI, B. K.; WEATHERILL, N. P. (Ed.). *Handbook of grid* generation. Boca Raton and London and New York and Washington, DC: CRC Press, 1999. Citado 2 vezes nas páginas 66 e 129.

56 FAIRES, J. D.; BURDEN, R. *Numerical methods.* 3. ed. Pacific Grove, CA: [s.n.], c2003. Citado na página 70.

57 DOORMAAL, J. P. V.; RAITHBY, G. D. Enhancements of the SIMPLE method for predicting incompressible fluid flows. *Numerical Heat Transfer*, v. 7, p. 147–163, 1984. Citado na página 77.

58 TANNEHILL, J. C.; ANDERSON, D. A.; PLETCHER, R. H. Computational fluid mechanics and heat transfer. 2. ed. [S.l.]: Taylor & Francis, 1997. Citado na página 84.

59 ROACHE, P. Quantification of uncertainty in computational fluid dynamics. *Annual Review of Fluid Mechanics*, 29, p. 123–160, 1997. ISSN 0066-4189. Citado na página 89.

60 MARCHI, C. H.; SILVA, A. F. C. Unidimensional numerical solution error estimation for convergent apparent order. *Numerical Heat Transfer Part B-Fundamentals*, 42, n. 2, p. 167–188, Aug 2002. ISSN 1040-7790. Citado 2 vezes nas páginas 96 e 97. 61 PILATO, C. M.; COLLINS-SUSSMAN, B.; FITZPATRICK, B. W. Version Control with Subversion. 2. ed. Sebastopol, CA: O'Reilly Media, 2008. Citado na página 96.

62 SEWARD, J.; NETHERCOTE, N.; WEIDENDORFER, J. Valgrind 3.3 - Advanced Debugging and Profiling for GNU/Linux applications. United Kingdom: Network Theory Ltd, 2008. Citado na página 96.

63 MARCHI, C. H. Verificação de soluções numéricas unidimensionais em dinâmica dos fluidos. Tese (Doutorado) — Universidade Federal de Santa Catarina, Florianópolis, 2001. Citado na página 97.

64 ROY, C.; MCWHERTER-PAYNE, M.; OBERKAMPF, W. Verification and validation for laminar hypersonic flowfields, part 1: Verification. *AIAA Journal*, 41, n. 10, p. 1934–1943, Oct 2003. ISSN 0001-1452. Citado na página 98.

65 ASME. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer. 2009. Citado na página 98.

66 ROY, C. Review of code and solution verification procedures for computational simulation. *Journal of Computational Physics*, 205, n. 1, p. 131–156, May 1 2005. ISSN 0021-9991. International Symposium on Advances in Computational Heat Transfer, New York, NY, Apr, 2004. Citado na página 99.

67 SIMS, J. L. Tables for Supersonic Flow Around Right Circular Cones at Zero Angle of Attack. USA, NASA SP-3004, 1964. Citado na página 102.

68 GRIVA, I.; NASH, S. G.; SOFER, A. *Linear and Nonlinear Optimization*. 2. ed. USA: SIAM, 2009. Citado na página 189.

69 BRIGGS, W. L.; HENSON, V. E.; MCCORMICK, S. F. *A Multigrid Tutorial.* 2. ed. USA: Society for Industrial and Applied Mathematics, 2000. Citado na página 189.

70 FERZIGER, J. H.; KAPER, H. G. *Mathematical Theory of Transport Processes in Gases*. Amsterdam: North-Holland Publishing Company, 1972. Citado na página 189.

Apêndices

APÊNDICE A – MODELAGEM NUMÉRICA: INFORMAÇÕES COMPLEMENTARES.

A.1 APROXIMAÇÕES PARA AS VARIÁVEIS GEOMÉTRICAS

Após integração das equações de transporte, é necessário conhecer as coordenadas dos centroides $(x_{\rm P}, y_{\rm P})$, as métricas da transformação sobre as faces $\alpha_{\rm w}$, $\alpha_{\rm e}$, $\beta_{\rm w}$, $\beta_{\rm e}$, $\gamma_{\rm s}$, $\gamma_{\rm n}$, o jacobiano nos centroides $J_{\rm P}$ e sobre as faces $J_{\rm w}$, $J_{\rm e}$, $J_{\rm s}$, $J_{\rm n}$, a coordenada y sobre as faces $y_{\rm w}$, $y_{\rm e}$, $y_{\rm s}$, $y_{\rm n}$ e as derivadas de $x \, e \, y$ em relação a $\xi \, e \, \eta$ sobre as faces e centroides dos volumes de controle. Estas informações podem ser obtidas a partir das coordenadas (x,y) dos vértices dos volumes de controle, determinadas na geração da malha. O método empregado é apresentado a seguir com base na Fig. A.1.

Figura A.1 – Volume elementar no sistema coordenado curvilíneo.

As coordenadas dos centroides em todos os volumes de controle reais são aproximadas por

$$\psi_{\mathrm{P}} = \frac{\psi_{\mathrm{ne}} + \psi_{\mathrm{nw}} + \psi_{\mathrm{se}} + \psi_{\mathrm{sw}}}{4} + \mathcal{O}(\Delta\xi^2) + \mathcal{O}(\Delta\eta^2), \qquad \psi \in \{x, y\}.$$
(A.1)

A coordenada y nas faces leste de todos os volumes reais e dos volumes fictícios do contorno o
este são dados por

$$y_{\rm e} = \frac{y_{\rm ne} + y_{\rm se}}{2} + \mathcal{O}(\Delta \xi^2). \tag{A.2}$$

No caso das faces norte de todos os volumes reais e dos volumes fictícios do contorno sul, tem-se

$$y_{\rm n} = \frac{y_{\rm ne} + y_{\rm nw}}{2} + \mathcal{O}(\Delta \eta^2). \tag{A.3}$$

A aproximação para y nas faces oeste e sul de todos os volumes reais é dada por

$$(y_{\rm w})_{\rm P} = (y_{\rm e})_{\rm W}, \qquad (y_{\rm s})_{\rm P} = (y_{\rm n})_{\rm S}.$$
 (A.4)

No caso dos volumes fictícios, $y_{\rm P}$ é obtido por extrapolação linear. Nos volumes fictícios do contorno norte, por exemplo,

$$y_{\rm P} = 2y_{\rm s} - y_{\rm S} + \mathcal{O}(\Delta \eta^2). \tag{A.5}$$

Para os demais contornos, expressões análogas são aplicadas. Para o volume fictício do canto sudoeste, a extrapolação é dada por

$$y_{\rm P} = 4y_{\rm ne} - y_{\rm N} - y_{\rm E} - y_{\rm NE} + \mathcal{O}(\Delta\xi^2) + \mathcal{O}(\Delta\eta^2). \tag{A.6}$$

Extrapolações análogas são aplicadas para os volumes fictícios dos demais cantos.

Como as métricas α , $\beta \in \gamma$, bem como o jacobiano J, são escritos em termos das derivadas de $x \in y$ em relação a $\xi \in \eta$, apenas as aproximações para estas derivadas são apresentadas a seguir.

Com relação às derivadas de x e y em relação a ξ , tem-se:

1. Para as faces norte de todos os volumes reais e dos volumes fictícios do contorno sul:

$$\left. \frac{\partial \psi}{\partial \xi} \right|_{\mathbf{n}} = \frac{\psi_{\mathbf{ne}} - \psi_{\mathbf{nw}}}{\Delta \xi} + \mathcal{O}(\Delta \xi^2), \qquad \psi \in \{x, y\}.$$
(A.7)

2. Para as faces sul de todos os volumes reais:

$$\left(\frac{\partial\psi}{\partial\xi}\Big|_{s}\right)_{P} = \left(\frac{\partial\psi}{\partial\xi}\Big|_{n}\right)_{S}, \qquad \psi \in \{x,y\}.$$
(A.8)

3. Para as faces leste dos volumes reais, exceto as do contorno leste:

$$\left. \frac{\partial \psi}{\partial \xi} \right|_{\mathbf{e}} = \frac{\psi_{\mathbf{E}} - \psi_{\mathbf{P}}}{\Delta \xi} + \mathcal{O}(\Delta \xi^2), \qquad \psi \in \{x, y\}.$$
(A.9)

4. Para as faces leste dos volumes reais do contorno leste:

$$\left. \frac{\partial \psi}{\partial \xi} \right|_{\mathbf{e}} = \frac{\psi_{\mathbf{w}} - 4\psi_{\mathbf{P}} + 3\psi_{\mathbf{e}}}{\Delta \xi} + \mathcal{O}(\Delta \xi^2), \qquad \psi \in \{x, y\}, \tag{A.10}$$

onde

$$\psi_{\rm w} = \frac{\psi_{\rm nw} + \psi_{\rm sw}}{2} + \mathcal{O}(\Delta \eta^2), \qquad (A.11)$$

$$\psi_{\rm e} = \frac{\psi_{\rm ne} + \psi_{\rm se}}{2} + \mathcal{O}(\Delta \eta^2). \tag{A.12}$$

5. Para as faces oeste dos volumes reais do contorno oeste:

$$\frac{\partial \psi}{\partial \xi}\Big|_{\mathbf{w}} = \left(\frac{\partial \psi}{\partial \xi}\Big|_{\mathbf{e}}\right)_{\mathbf{W}} = \frac{-3\psi_{\mathbf{w}} + 4\psi_{\mathbf{P}} - \psi_{\mathbf{e}}}{\Delta \xi} + \mathcal{O}(\Delta \xi^2), \qquad \psi \in \{x, y\}.$$
(A.13)

6. Para as faces oeste de todos os volumes reais:

$$\left(\frac{\partial\psi}{\partial\xi}\Big|_{\mathbf{w}}\right)_{\mathbf{P}} = \left(\frac{\partial\psi}{\partial\xi}\Big|_{\mathbf{e}}\right)_{\mathbf{W}}, \qquad \psi \in \{x,y\}.$$
(A.14)

7. Para os centroides de todos os volumes reais:

$$\left. \frac{\partial \psi}{\partial \xi} \right|_{\mathbf{P}} = \frac{\psi_{\mathbf{e}} - \psi_{\mathbf{w}}}{\Delta \xi} + \mathcal{O}(\Delta \xi^2), \qquad \psi \in \{x, y\}.$$
(A.15)

Com relação às derivadas de x e y em relação a η , tem-se

1. Para as faces leste de todos os volumes reais e dos fictícios do contorno oeste:

$$\left. \frac{\partial \psi}{\partial \eta} \right|_{\mathbf{e}} = \frac{\psi_{\mathrm{ne}} - \psi_{\mathrm{se}}}{\Delta \eta} + \mathcal{O}(\Delta \eta^2), \qquad \psi \in \{x, y\}.$$
(A.16)

2. Para as faces norte de todos os volumes reais, exceto as do contorno norte:

$$\left. \frac{\partial \psi}{\partial \eta} \right|_{\mathbf{n}} = \frac{\psi_{\mathbf{N}} - \psi_{\mathbf{P}}}{\Delta \eta} + \mathcal{O}(\Delta \eta^2), \qquad \psi \in \{x, y\}.$$
(A.17)

3. Para as faces norte dos volumes reais do contorno norte:

$$\left. \frac{\partial \psi}{\partial \eta} \right|_{\mathbf{n}} = \frac{\psi_{\mathbf{s}} - 4\psi_{\mathbf{P}} + 3\psi_{\mathbf{n}}}{\Delta \eta} + \mathcal{O}(\Delta \eta^2), \qquad \psi \in \{x, y\}, \tag{A.18}$$

onde

$$\psi_{\rm s} = \frac{\psi_{\rm se} + \psi_{\rm sw}}{2} + \mathcal{O}(\Delta \xi^2), \qquad (A.19)$$

$$\psi_{\rm n} = \frac{\psi_{\rm ne} + \psi_{\rm nw}}{2} + \mathcal{O}(\Delta \xi^2). \tag{A.20}$$

4. Para as faces sul dos volumes fictícios do contorno sul:

$$\frac{\partial \psi}{\partial \eta}\Big|_{s} = \left(\frac{\partial \psi}{\partial \eta}\Big|_{n}\right)_{S} = \frac{-3\psi_{s} + 4\psi_{P} - \psi_{n}}{\Delta \eta} + \mathcal{O}(\Delta \eta^{2}), \qquad \psi \in \{x, y\}.$$
(A.21)

5. Para as faces sul de todos os volumes reais:

$$\left(\frac{\partial\psi}{\partial\eta}\Big|_{s}\right)_{P} = \left(\frac{\partial\psi}{\partial\eta}\Big|_{n}\right)_{S}, \qquad \psi \in \{x,y\}.$$
(A.22)

6. Para os centroides de todos os volumes reais:

$$\left. \frac{\partial \psi}{\partial \eta} \right|_{\mathbf{P}} = \frac{\psi_{\mathbf{n}} - \psi_{\mathbf{s}}}{\Delta \eta} + \mathcal{O}(\Delta \eta^2), \qquad \psi \in \{x, y\}.$$
(A.23)

A.2 COEFICIENTES E TERMO FONTE DAS EQUAÇÕES DE TRANSPORTE DISCRETIZADAS

A discretização das equações de transporte na Seç
.4.3.2resultou em um conjunto de sistemas lineares representados s
inteticamente por

$$A_{\rm sw}^{\phi}\phi_{\rm SW} + A_{\rm s}^{\phi}\phi_{\rm S} + A_{\rm se}^{\phi}\phi_{\rm SE} + A_{\rm w}^{\phi}\phi_{\rm W} + A_{\rm P}^{\phi}\phi_{\rm P} + A_{\rm e}^{\phi}\phi_{\rm E} + A_{\rm nw}^{\phi}\phi_{\rm NW} + A_{\rm n}^{\phi}\phi_{\rm N} + A_{\rm ne}^{\phi}\phi_{\rm NE} = b_{\rm P}^{\phi} \quad (4.97)$$

para $\phi \in \{u, v, T\}$. Os coeficientes A^{ϕ} e termo fonte b^{ϕ} da Eq. (4.97) são dados por

$$A_{\rm sw}^{\phi} = -\frac{D_{12\rm s}}{4\Delta\xi\Delta\eta} - \frac{D_{12\rm w}}{4\Delta\xi\Delta\eta},\tag{A.24}$$

$$A_{\rm s}^{\phi} = -\frac{C_{\rm P}^{\phi}\mathcal{M}_s}{\Delta\eta} \left(\frac{1}{2} + \hat{\alpha}_{\rm s}\right) + \frac{D_{12\rm e}}{4\Delta\xi\Delta\eta} - \frac{D_{12\rm w}}{4\Delta\xi\Delta\eta} - \frac{D_{22\rm s}}{\Delta\eta^2},\tag{A.25}$$

$$A_{\rm se}^{\phi} = \frac{D_{12\rm s}}{4\Delta\xi\Delta\eta} + \frac{D_{12\rm e}}{4\Delta\xi\Delta\eta},\tag{A.26}$$

$$A_{\rm w}^{\phi} = -\frac{C_{\rm P}^{\phi}\dot{\mathcal{M}}_{\rm w}}{\Delta\xi} \left(\frac{1}{2} + \hat{\alpha}_{\rm w}\right) + \frac{D_{12\rm n}}{4\Delta\xi\Delta\eta} - \frac{D_{12\rm s}}{4\Delta\xi\Delta\eta} - \frac{D_{11\rm w}}{\Delta\xi^2},\tag{A.27}$$

$$A_{\rm e}^{\phi} = \frac{C_{\rm P}^{\phi} \dot{\mathcal{M}}_{\rm e}}{\Delta \xi} \left(\frac{1}{2} - \hat{\alpha}_{\rm e}\right) - \frac{D_{12\rm n}}{4\Delta \xi \Delta \eta} + \frac{D_{12\rm s}}{4\Delta \xi \Delta \eta} - \frac{D_{11\rm e}}{\Delta \xi^2}, \tag{A.28}$$

$$A_{\rm nw}^{\phi} = \frac{D_{12\rm n}}{4\Delta\xi\Delta\eta} + \frac{D_{12\rm w}}{4\Delta\xi\Delta\eta},\tag{A.29}$$

$$A_{\rm n}^{\phi} = \frac{C_{\rm P}^{\phi} \dot{\mathcal{M}}_n}{\Delta \eta} \left(\frac{1}{2} - \hat{\alpha}_{\rm s}\right) - \frac{D_{12\rm e}}{4\Delta\xi\Delta\eta} + \frac{D_{12\rm w}}{4\Delta\xi\Delta\eta} - \frac{D_{22\rm n}}{\Delta\eta^2},\tag{A.30}$$

$$A_{\rm ne}^{\phi} = -\frac{D_{12\rm n}}{4\Delta\xi\Delta\eta} - \frac{D_{12\rm e}}{4\Delta\xi\Delta\eta},\tag{A.31}$$

$$A_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} \mathcal{M}_{\rm P}^{\circ}}{\Delta t} - \sum_{\rm nb} A_{\rm nb}^{\phi} - y_{\rm P} \hat{S}_{\rm P}^{\phi}, \qquad (A.32)$$

$$b_{\rm P}^{\phi} = \frac{C_{\rm P}^{\phi} \mathcal{M}_{\rm P}^{\circ} \phi_{\rm P}^{\circ}}{\Delta t} + \omega_{\rm P}^{\phi} + y_{\rm P} P_{\rm P}^{\phi} + y_{\rm P} \tilde{S}_{\rm P}^{\phi} + \mathcal{O}(\Delta t) + (1 - \hat{\beta}) \left[\mathcal{O}(\Delta \xi) + \mathcal{O}(\Delta \eta) \right] + \hat{\beta} \left[\mathcal{O}(\Delta \xi^2) + \mathcal{O}(\Delta \eta^2) \right]. \quad (A.33)$$

Na Eq. (A.33), $\omega^{\phi}_{\rm P}$ é a contribuição da correção adiada:

$$\begin{aligned}
\omega_{\rm P}^{\phi} &= C_{\rm P}^{\phi} \hat{\beta} \left[\frac{\dot{\mathcal{M}}_{\rm e}}{\Delta \xi} \hat{\alpha}_{\rm e} \left(\phi_{\rm P}^{m} - \phi_{\rm E}^{m} \right) + \frac{\dot{\mathcal{M}}_{\rm w}}{\Delta \xi} \hat{\alpha}_{\rm w} \left(\phi_{\rm P}^{m} - \phi_{\rm W}^{m} \right) \\
&+ \frac{\dot{\mathcal{M}}_{\rm n}}{\Delta \eta} \hat{\alpha}_{\rm n} \left(\phi_{\rm P}^{m} - \phi_{\rm N}^{m} \right) + \frac{\dot{\mathcal{M}}_{\rm s}}{\Delta \eta} \hat{\alpha}_{\rm s} \left(\phi_{\rm P}^{m} - \phi_{\rm S}^{m} \right) \right].
\end{aligned} \tag{A.34}$$

As expressões para $P^{\phi}_{\rm P},$ presente na Eq. (A.33), são

$$P_{\rm P}^{u} = \frac{(y_{\xi})_{\rm n} (p_{\rm N} + p_{\rm P}) - (y_{\xi})_{\rm s} (p_{\rm P} + p_{\rm S})}{2\Delta\eta} - \frac{(y_{\eta})_{\rm e} (p_{\rm E} + p_{\rm P}) - (y_{\eta})_{\rm w} (p_{\rm P} + p_{\rm W})}{2\Delta\xi}, \qquad (A.35)$$

$$P_{\rm P}^{v} = \frac{(x_{\eta})_{\rm e} (p_{\rm E} + p_{\rm P}) - (x_{\eta})_{\rm w} (p_{\rm P} + p_{\rm W})}{2\Delta\xi} - \frac{(x_{\xi})_{\rm n} (p_{\rm N} + p_{\rm P}) - (x_{\xi})_{\rm s} (p_{\rm P} + p_{\rm S})}{2\Delta\eta}, \qquad (A.36)$$

$$P_{\rm P}^{\rm T} = \frac{1}{J_{\rm P}} \frac{p_{\rm P} - p_{\rm P}^{\circ}}{\Delta t} - u_{\rm P} P_{\rm P}^{u} - v_{\rm P} P_{\rm P}^{v}.$$
 (A.37)

Nas Eqs. (A.32) e (A.33), os termos $\hat{S}^{\phi}_{\rm P}$
e $\tilde{S}^{\phi}_{\rm P}$ surgiram da decomposição de $S^{\phi}_{\rm P}$ como

$$S_{\rm P}^{\phi} = \tilde{S}_{\rm P}^{\phi} + \hat{S}_{\rm P}^{\phi} \phi_{\rm P}. \tag{A.38}$$

As expressões para $\tilde{S}^{\phi}_{\rm P}$ são

$$\begin{split} \tilde{S}_{\mathrm{P}}^{u} &= \frac{J_{\mathrm{e}}\mu_{\mathrm{e}}}{3\Delta\xi} \left((y_{\eta})_{\mathrm{e}}^{2} \frac{u_{\mathrm{E}}}{\Delta\xi} - (y_{\xi})_{\mathrm{e}}(y_{\eta})_{\mathrm{e}} \frac{u_{\mathrm{NE}} + u_{\mathrm{N}} - u_{\mathrm{SE}} - u_{\mathrm{S}}}{4\Delta\eta} \right) \\ &- \frac{J_{\mathrm{w}}\mu_{\mathrm{w}}}{3\Delta\xi} \left(-(y_{\eta})_{\mathrm{w}}^{2} \frac{u_{\mathrm{W}}}{\Delta\xi} - (y_{\xi})_{\mathrm{w}}(y_{\eta})_{\mathrm{w}} \frac{u_{\mathrm{NW}} + u_{\mathrm{N}} - u_{\mathrm{SW}} - u_{\mathrm{S}}}{4\Delta\eta} \right) \\ &+ \frac{J_{\mathrm{n}}\mu_{\mathrm{n}}}{3\Delta\eta} \left((y_{\xi})_{\mathrm{n}}^{2} \frac{u_{\mathrm{N}}}{\Delta\eta} - (y_{\xi})_{\mathrm{n}}(y_{\eta})_{\mathrm{n}} \frac{u_{\mathrm{NE}} + u_{\mathrm{E}} - u_{\mathrm{NW}} - u_{\mathrm{W}}}{4\Delta\xi} \right) \\ &- \frac{J_{\mathrm{s}}\mu_{\mathrm{s}}}{3\Delta\eta} \left(-(y_{\xi})_{\mathrm{s}}^{2} \frac{u_{\mathrm{S}}}{\Delta\eta} - (y_{\xi})_{\mathrm{s}}(y_{\eta})_{\mathrm{s}} \frac{u_{\mathrm{SE}} + u_{\mathrm{E}} - u_{\mathrm{SW}} - u_{\mathrm{W}}}{4\Delta\xi} \right) \\ &+ \frac{J_{\mathrm{e}}y_{\mathrm{e}}\mu_{\mathrm{e}}(x_{\eta})_{\mathrm{e}}}{y_{\mathrm{P}}\Delta\xi} \left((y_{\xi})_{\mathrm{e}} \frac{v_{\mathrm{NE}} + v_{\mathrm{N}} - v_{\mathrm{SE}} - v_{\mathrm{S}}}{4\Delta\eta} - (y_{\eta})_{\mathrm{e}} \frac{v_{\mathrm{E}} - v_{\mathrm{P}}}{\Delta\xi} \right) \\ &- \frac{J_{\mathrm{w}}y_{\mathrm{w}}\mu_{\mathrm{w}}(x_{\eta})_{\mathrm{w}}}{y_{\mathrm{P}}\Delta\xi} \left((y_{\xi})_{\mathrm{w}} \frac{v_{\mathrm{NW}} + v_{\mathrm{N}} - v_{\mathrm{SW}} - v_{\mathrm{S}}}{4\Delta\eta} - (y_{\eta})_{\mathrm{w}} \frac{v_{\mathrm{P}} - v_{\mathrm{W}}}{\Delta\xi} \right) \\ &+ \frac{J_{\mathrm{n}}y_{\mathrm{n}}\mu_{\mathrm{n}}(x_{\xi})_{\mathrm{n}}}{y_{\mathrm{P}}\Delta\eta} \left((y_{\eta})_{\mathrm{n}} \frac{v_{\mathrm{NE}} + v_{\mathrm{E}} - v_{\mathrm{NW}} - v_{\mathrm{W}}}{4\Delta\xi} - (y_{\xi})_{\mathrm{n}} \frac{v_{\mathrm{N}} - v_{\mathrm{P}}}{\Delta\eta} \right) \\ &- \frac{J_{\mathrm{s}}y_{\mathrm{s}}\mu_{\mathrm{s}}(x_{\xi})_{\mathrm{s}}}{y_{\mathrm{P}}\Delta\eta} \left((y_{\eta})_{\mathrm{s}} \frac{v_{\mathrm{SE}} + v_{\mathrm{E}} - v_{\mathrm{SW}} - v_{\mathrm{W}}}{4\Delta\xi} - (y_{\xi})_{\mathrm{s}} \frac{v_{\mathrm{P}} - v_{\mathrm{S}}}{\Delta\eta} \right) \\ &- \frac{J_{\mathrm{s}}y_{\mathrm{s}}\mu_{\mathrm{s}}(x_{\xi})_{\mathrm{s}}}{y_{\mathrm{P}}\Delta\eta} \left((y_{\eta})_{\mathrm{s}} \frac{v_{\mathrm{SE}} + v_{\mathrm{E}} - v_{\mathrm{SW}} - v_{\mathrm{W}}}{4\Delta\xi} - (y_{\xi})_{\mathrm{s}} \frac{v_{\mathrm{P}} - v_{\mathrm{S}}}{\Delta\eta} \right) \\ &- \frac{2}{3} \frac{J_{\mathrm{e}}\mu_{\mathrm{e}}(y_{\eta})_{\mathrm{e}}}{y_{\mathrm{e}}\Delta\xi} \left((x_{\xi})_{\mathrm{e}} \frac{(yv)_{\mathrm{NE}} + (yv)_{\mathrm{N}} - (yv)_{\mathrm{SE}} - (yv)_{\mathrm{S}}}{4\Delta\eta} \right) \end{aligned}$$

$$-(x_{\eta})_{e} \frac{(yv)_{E} - (yv)_{P}}{\Delta \xi} \right)$$

$$+ \frac{2}{3} \frac{J_{w}\mu_{w}(y_{\eta})_{w}}{y_{w}\Delta \xi} \left((x_{\xi})_{w} \frac{(yv)_{NW} + (yv)_{N} - (yv)_{SW} - (yv)_{S}}{4\Delta \eta} - (x_{\eta})_{w} \frac{(yv)_{P} - (yv)_{W}}{\Delta \xi} \right)$$

$$- \frac{2}{3} \frac{J_{n}\mu_{n}(y_{\xi})_{n}}{y_{n}\Delta \eta} \left((x_{\eta})_{n} \frac{(yv)_{NE} + (yv)_{E} - (yv)_{NW} - (yv)_{W}}{4\Delta \xi} - (x_{\xi})_{n} \frac{(yv)_{N} - (yv)_{P}}{\Delta \eta} \right)$$

$$+ \frac{2}{3} \frac{J_{s}\mu_{s}(y_{\xi})_{s}}{y_{s}\Delta \eta} \left((x_{\eta})_{s} \frac{(yv)_{SE} + (yv)_{E} - (yv)_{SW} - (yv)_{W}}{4\Delta \xi} - (x_{\xi})_{s} \frac{(yv)_{P} - (yv)_{S}}{\Delta \eta} \right), \qquad (A.39)$$

$$\begin{split} \tilde{S}_{\mathrm{P}}^{v} &= \frac{J_{\mathrm{e}}\mu_{\mathrm{e}}y_{\mathrm{e}}}{3y_{\mathrm{P}}\Delta\xi} \left((x_{\eta})_{\mathrm{e}}^{2} \frac{v_{\mathrm{E}}}{\Delta\xi} - (x_{\xi})_{\mathrm{e}}(x_{\eta})_{\mathrm{e}} \frac{v_{\mathrm{NE}} + v_{\mathrm{N}} - v_{\mathrm{SE}} - v_{\mathrm{S}}}{4\Delta\eta} \right) \\ &\quad - \frac{J_{\mathrm{w}}\mu_{\mathrm{w}}y_{\mathrm{w}}}{3y_{\mathrm{P}}\Delta\xi} \left(- (x_{\eta})_{\mathrm{w}}^{2} \frac{v_{\mathrm{W}}}{\Delta\xi} - (x_{\xi})_{\mathrm{w}}(x_{\eta})_{\mathrm{w}} \frac{v_{\mathrm{NW}} + v_{\mathrm{N}} - v_{\mathrm{SW}} - v_{\mathrm{S}}}{4\Delta\eta} \right) \\ &\quad + \frac{J_{\mathrm{n}}\mu_{\mathrm{n}}y_{\mathrm{n}}}{3y_{\mathrm{P}}\Delta\eta} \left((x_{\xi})_{\mathrm{n}}^{2} \frac{v_{\mathrm{N}}}{\Delta\eta} - (x_{\xi})_{\mathrm{n}}(x_{\eta})_{\mathrm{n}} \frac{v_{\mathrm{NE}} + v_{\mathrm{E}} - v_{\mathrm{NW}} - v_{\mathrm{W}}}{4\Delta\xi} \right) \\ &\quad - \frac{J_{\mathrm{s}}\mu_{\mathrm{s}}y_{\mathrm{s}}}{3y_{\mathrm{P}}\Delta\eta} \left(- (x_{\xi})_{\mathrm{s}}^{2} \frac{v_{\mathrm{S}}}{\Delta\eta} - (x_{\xi})_{\mathrm{s}}(x_{\eta})_{\mathrm{s}} \frac{v_{\mathrm{SE}} + v_{\mathrm{E}} - v_{\mathrm{SW}} - v_{\mathrm{W}}}{4\Delta\xi} \right) \\ &\quad + \frac{J_{\mathrm{e}}\mu_{\mathrm{e}}(y_{\eta})_{\mathrm{e}}}{\Delta\xi} \left((x_{\xi})_{\mathrm{e}} \frac{u_{\mathrm{NE}} + u_{\mathrm{N}} - u_{\mathrm{SE}} - u_{\mathrm{S}}}{4\Delta\eta} - (x_{\eta})_{\mathrm{e}} \frac{u_{\mathrm{E}} - u_{\mathrm{P}}}{\Delta\xi} \right) \\ &\quad - \frac{J_{\mathrm{w}}\mu_{\mathrm{w}}(y_{\eta})_{\mathrm{w}}}{\Delta\xi} \left((x_{\xi})_{\mathrm{w}} \frac{u_{\mathrm{NW}} + u_{\mathrm{N}} - u_{\mathrm{SW}} - u_{\mathrm{S}}}{4\Delta\eta} - (x_{\eta})_{\mathrm{w}} \frac{u_{\mathrm{P}} - u_{\mathrm{W}}}{\Delta\xi} \right) \\ &\quad + \frac{J_{\mathrm{n}}\mu_{\mathrm{n}}(y_{\xi})_{\mathrm{n}}}{\Delta\eta} \left((x_{\eta})_{\mathrm{n}} \frac{u_{\mathrm{NE}} + u_{\mathrm{E}} - u_{\mathrm{NW}} - u_{\mathrm{W}}}{4\Delta\xi} - (x_{\xi})_{\mathrm{n}} \frac{u_{\mathrm{N}} - u_{\mathrm{P}}}{\Delta\eta} \right) \\ &\quad - \frac{J_{\mathrm{s}}\mu_{\mathrm{s}}(y_{\xi})_{\mathrm{s}}}{\Delta\eta} \left((x_{\eta})_{\mathrm{s}} \frac{u_{\mathrm{NE}} + u_{\mathrm{E}} - u_{\mathrm{NW}} - u_{\mathrm{W}}}{4\Delta\xi} - (x_{\xi})_{\mathrm{s}} \frac{u_{\mathrm{P}} - u_{\mathrm{S}}}{\Delta\eta} \right) \\ &\quad - \frac{J_{\mathrm{s}}\mu_{\mathrm{s}}(y_{\xi})_{\mathrm{s}}}{\Delta\xi} \left((y_{\xi})_{\mathrm{e}} \frac{u_{\mathrm{NE}} + u_{\mathrm{N}} - u_{\mathrm{SE}} - u_{\mathrm{S}}}{4\Delta\xi} - (x_{\xi})_{\mathrm{s}} \frac{u_{\mathrm{P}} - u_{\mathrm{S}}}{\Delta\eta} \right) \\ &\quad - \frac{2}{3} \frac{J_{\mathrm{e}}\mu_{\mathrm{e}}(x_{\eta})_{\mathrm{w}}}{\Delta\xi} \left((y_{\xi})_{\mathrm{w}} \frac{u_{\mathrm{NW}} + u_{\mathrm{N}} - u_{\mathrm{SW}} - u_{\mathrm{S}}}{4\Delta\eta} - (y_{\eta})_{\mathrm{e}} \frac{u_{\mathrm{E}} - u_{\mathrm{P}}}{\Delta\xi} \right) \\ &\quad + \frac{2}{3} \frac{J_{\mathrm{s}}\mu_{\mathrm{s}}(x_{\xi})_{\mathrm{n}}}{\Delta\eta} \left((y_{\xi})_{\mathrm{w}} \frac{u_{\mathrm{NW}} + u_{\mathrm{N}} - u_{\mathrm{SW}} - u_{\mathrm{S}}}{4\Delta\eta} - (y_{\xi})_{\mathrm{n}} \frac{u_{\mathrm{N}} - u_{\mathrm{P}}}{\Delta\eta} \right) \\ &\quad + \frac{2}{3} \frac{J_{\mathrm{s}}\mu_{\mathrm{s}}(x_{\xi})_{\mathrm{n}}}{\Delta\eta} \left((y_{\eta})_{\mathrm{s}} \frac{u_{\mathrm{NW}} + u_{\mathrm{N}} - u_{\mathrm{SW}} - u_{\mathrm{W}}}{4\Delta\xi} - (y_{\xi})_{\mathrm{s}} \frac{u_{\mathrm{N}} - u_{\mathrm{P}}}{\Delta\eta} \right) \\ &\quad - \frac{2}{3} \frac{y$$

$$+\frac{2}{3}\frac{v_{\rm P}}{y_{\rm P}\Delta\xi}\left[\left(\mu x_{\eta}\right)_{\rm e}-\left(\mu x_{\eta}\right)_{\rm w}\right],\tag{A.40}$$

$$\tilde{S}_{P}^{T} = \frac{\mu_{P}J_{P}}{2} \left[\frac{(y_{\eta})_{e} (u_{E} + u_{P}) - (y_{\eta})_{w} (u_{P} + u_{W})}{\Delta \xi} - \frac{(y_{\xi})_{n} (u_{N} + u_{P}) - (y_{\xi})_{s} (u_{P} + u_{S})}{\Delta \eta} \right]^{2} \\
+ \frac{\mu_{P}J_{P}}{2} \left[\frac{(x_{\xi})_{n} (v_{N} + v_{P}) - (x_{\xi})_{s} (v_{P} + v_{S})}{\Delta \eta} - \frac{(x_{\eta})_{e} (v_{E} + v_{P}) - (x_{\eta})_{w} (v_{P} + v_{W})}{\Delta \xi} \right]^{2} \\
+ \frac{\mu_{P}J_{P}}{4} \left[\frac{(y_{\eta})_{e} (v_{E} + v_{P}) - (x_{\eta})_{e} (u_{E} + u_{P}) - (y_{\eta})_{w} (v_{P} + v_{W}) + (x_{\eta})_{w} (u_{P} + u_{W})}{\Delta \xi} \\
+ \frac{(x_{\xi})_{n} (u_{N} + u_{P}) - (y_{\xi})_{n} (v_{N} + v_{P}) - (x_{\xi})_{s} (u_{P} + u_{S}) + (y_{\xi})_{s} (v_{P} + v_{S})}{\Delta \eta} \right]^{2} \\
- \frac{2\mu_{P}J_{P}}{3} \left(\frac{U_{e} - U_{w}}{\Delta \xi} + \frac{V_{n} - V_{s}}{\Delta \eta} + \left(\frac{v}{Jy} \right)_{P} \right)^{2} \\
+ \left[\frac{2\mu}{J} \left(\frac{v}{y} \right)^{2} \right]_{P}.$$
(A.41)

As expressões para $\hat{S}^{\phi}_{\rm P}$ são

$$\hat{S}_{P}^{u} = -\frac{J_{e}\mu_{e}}{3\Delta\xi^{2}}(y_{\eta})_{e}^{2} - \frac{J_{w}\mu_{w}}{3\Delta\xi^{2}}(y_{\eta})_{w}^{2}
- \frac{J_{n}\mu_{n}}{3\Delta\eta^{2}}(y_{\xi})_{n}^{2} - \frac{J_{s}\mu_{s}}{3\Delta\eta^{2}}(y_{\xi})_{s}^{2},$$
(A.42)
$$\hat{S}_{P}^{v} = -\frac{J_{e}\mu_{e}y_{e}}{3y_{P}\Delta\xi^{2}}(x_{\eta})_{e}^{2} - \frac{J_{w}\mu_{w}y_{w}}{3y_{P}\Delta\xi^{2}}(x_{\eta})_{w}^{2}
- \frac{J_{n}\mu_{n}y_{n}}{3y_{P}\Delta\eta^{2}}(x_{\xi})_{n}^{2} - \frac{J_{s}\mu_{s}y_{s}}{3y_{P}\Delta\eta^{2}}(x_{\xi})_{s}^{2}
- \frac{4}{3}\left[\frac{\mu}{Jy^{2}}\right]_{P},$$
(A.43)
$$\hat{S}_{P}^{T} = 0.$$
(A.44)

A.3 COEFICIENTES E TERMO FONTE DA EQUAÇÃO DA COR-REÇÃO DA PRESSÃO

Os coeficientes $A^{p'}$ e o termo fonte $b^{p'}$ da equação da correção da pressão, *i.e.*,

$$A_{\rm s}^{p'} p'_{\rm S} + A_{\rm w}^{p'} p'_{\rm W} + A_{\rm P}^{p'} p'_{\rm P} + A_{\rm e}^{p'} p'_{\rm E} + A_{\rm n}^{p'} p'_{\rm N} = b_{\rm P}^{p'}, \qquad (4.174)$$

deduzida na Seç. 4.3.3, são

$$A_{\rm P}^{p'} = \frac{\hat{g}_{\rm P} y_{\rm P}}{J_{\rm P} \Delta t}$$

$$+ \hat{g}_{\mathrm{P}} \frac{\left(\frac{1}{2} + \hat{\alpha}_{\mathrm{e}}\right) y_{\mathrm{e}} U_{\mathrm{e}}^{*} - \left(\frac{1}{2} - \hat{\alpha}_{\mathrm{w}}\right) y_{\mathrm{w}} U_{\mathrm{w}}^{*}}{\Delta \xi} + \hat{g}_{\mathrm{P}} \frac{\left(\frac{1}{2} + \hat{\alpha}_{\mathrm{n}}\right) y_{\mathrm{n}} V_{\mathrm{n}}^{*} - \left(\frac{1}{2} - \hat{\alpha}_{\mathrm{s}}\right) y_{\mathrm{s}} V_{\mathrm{s}}^{*}}{\Delta \eta} + \frac{\rho_{\mathrm{e}}^{*} y_{\mathrm{e}} d_{\mathrm{e}}^{U} + \rho_{\mathrm{w}}^{*} y_{\mathrm{w}} d_{\mathrm{w}}^{U}}{\Delta \xi} + \frac{\rho_{\mathrm{n}}^{*} y_{\mathrm{n}} d_{\mathrm{n}}^{V} + \rho_{\mathrm{s}}^{*} y_{\mathrm{s}} d_{\mathrm{s}}^{V}}{\Delta \eta}, \qquad (A.45)$$

$$+\frac{p_{e}gea_{e}^{U}+p_{w}gwa_{w}}{\Delta\xi}+\frac{p_{n}g_{n}a_{n}^{U}+p_{s}gsa_{s}}{\Delta\eta},$$

$$A_{w}^{p'}=\frac{-\rho_{w}^{*}y_{w}d_{w}^{U}-\left(\frac{1}{2}+\hat{\alpha}_{w}\right)y_{w}U_{w}^{*}\hat{g}_{W}}{\Delta\xi},$$
(A.45)

$$A_{\rm e}^{p'} = \frac{-\rho_{\rm e}^* y_{\rm e} d_{\rm e}^U + \left(\frac{1}{2} - \hat{\alpha}_{\rm e}\right) y_{\rm e} U_{\rm e}^* \hat{g}_{\rm E}}{\Delta \xi},\tag{A.47}$$

$$A_{\rm s}^{p'} = \frac{-\rho_{\rm s}^* y_{\rm s} d_{\rm s}^V - \left(\frac{1}{2} + \hat{\alpha}_{\rm s}\right) y_{\rm s} V_{\rm s}^* \hat{g}_{\rm S}}{\Delta \eta},\tag{A.48}$$

$$A_{n}^{p'} = \frac{-\rho_{n}^{*} y_{n} d_{n}^{V} + \left(\frac{1}{2} - \hat{\alpha}_{n}\right) y_{n} V_{n}^{*} \hat{g}_{N}}{\Delta \eta}, \qquad (A.49)$$

$$b_{\rm P}^{p'} = -\left[\frac{\mathcal{M}_{\rm P}^* - \mathcal{M}_{\rm P}^\circ}{\Delta t} + \frac{\dot{\mathcal{M}}_{\rm e}^* - \dot{\mathcal{M}}_{\rm w}^*}{\Delta \xi} + \frac{\dot{\mathcal{M}}_{\rm n}^* - \dot{\mathcal{M}}_{\rm s}^*}{\Delta \eta}\right] - \left[\frac{\dot{\mathcal{M}}_{\rm e}' - \dot{\mathcal{M}}_{\rm w}'}{\Delta \xi} + \frac{\dot{\mathcal{M}}_{\rm n}' - \dot{\mathcal{M}}_{\rm s}'}{\Delta \eta}\right].$$
(A.50)

onde $\mathcal{M}_{\mathrm{P}}^*$, $\dot{\mathcal{M}}^*$ e $\dot{\mathcal{M}}'$ são calculados com ρ , U e V com os respectivos índices.

APÊNDICE B – PARÂMETROS NUMÉRICOS E RESULTADOS PARCIAIS DO COEFICIENTE DE ARRASTO SOBRE ALGUNS PERFIS OTIMIZADOS

No Cap. 9 foram apresentados os coeficientes de arrasto $C_{\rm Df}$ das geometrias otimizadas de Newton, de von Kármán e dos Modelos 1C, 2C-S e 2C-NS, calculados numericamente neste trabalho com base nas equações de Euler e Navier-Stokes. Neste capítulo são apresentados os principais parâmetros de entrada utilizados nas simulações que deram origem àqueles resultados, bem como os resultados principais destas simulações, as componentes $C_{\rm Df}^p$ e $C_{\rm Df}^{\mu}$ do coeficiente de arrasto obtidas em diversas malhas.

B.1 PARÂMETROS DE ENTRADA

As simulações foram conduzidas para os mesmos parâmetros adimensionais considerados nas otimizações: seis valores do número de Reynolds ($\operatorname{Re}_{\infty}^{-1} = 0$; 10^{-7} ; 10^{-6} ; 10^{-5} ; 10^{-4} ; 10^{-3}), três valores do número de Mach ($M_{\infty} = 1,5$; 3; 6) e dois valores da razão de aspecto ($f_r = 2; 4$).

Em todas as simulações, a temperatura da corrente livre foi de $T_{\infty} = 200$ K e o gás foi considerado uma mistura de argônio, oxigênio e nitrogênio nas frações molares de 1%, 21% e 78%, respectivamente. A partir de T_{∞} , as propriedades termofísicas da mistura (c_p, μ, κ) foram calculadas, como explicado na Seç. 4.2.2, e mantidas uniformes em todo o domínio de cálculo.

O método de geração da malha para as geometrias do Modelo 1C é o mesmo descrito na Seç. 6.1. A geração da malha para a geometria de von Kármán é idêntica à do Modelo 1C, exceto pelo fato de que na primeira parte do contorno sul utiliza-se uma distribuição de pontos do tipo progressão geométrica, ao invés de uma lei de potência. Para os Modelos 2C-S e 2C-NS e para a geometria de Newton, aplicou-se o método semialgébrico descrito na Seç. 7.1. Em todos os casos, as malhas mais grossas foram obtidas das mais finas através da remoção de linhas alternadas. Foram usadas malhas com $m_4 = 120 \times 120$, $m_3 = 240 \times 240$, $m_2 = 480 \times 480$ e $m_1 = 960 \times 960$ volumes.

O comprimento do cone nasal e do cilindro subsequente foram definidos, respectivamente, como $l_r = 2r_b f_r$ e $l_c = l_r/2$. APÊNDICE B. Parâmetros numéricos e resultados parciais do coeficiente de arrasto sobre alguns perfis otimizados 205

Os parâmetros numéricos independentes de f_r , M_{∞} e Re_{∞} são apresentados na Tab. B.1 para cada geometria. Nesta tabela, o sinal (-) indica que o parâmetro foi definido em outra tabela e (X) indica que o parâmetro não se aplica àquela geometria.

A Tab. B.2 apresenta os valores de c_{bl} usados em todas as geometrias. A Tab. B.3 apresenta os valores de w utilizados nas geometrias de Newton e von Kármán. As Tabs. B.4, B.5 e B.6, mostram os parâmetros numéricos exclusivos às geometrias dos Modelos 1C, 2C-S e 2C-NS, respectivamente.

Os significados dos símbolos apresentados nesta seção foram definidos nas Seçs. 6.1 e 7.1, exceto o de n_{m_f} , na Tab. B.6. Como já apontado, as simulações foram feitas em quatro malhas, m_1 , m_2 , m_3 e m_4 , exceto para alguns casos com relação à geometria do Modelo 2C-NS. Neste caso, devido à dificuldades de convergência, utilizou-se três malhas apenas (m_2 , m_3 e m_4). O parâmetro n_{m_f} , na Tab. B.6, indica o número de malhas empregadas.

	Newton	Kármán	$1\mathrm{C}$	2C-S	2C-NS
r_b	$0,5 \mathrm{m}$				
α_{ξ_s}	$1,\!6$	2	2	1,5	-
f_{l_o}	$0,\!35$	$0,\!4$	Х	$0,\!55$	$0,\!55$
f_{p_1}	$0,\!6$	$0,\!65$	-	$0,\!65$	$0,\!65$
f_{p_2}	0,2	0,2	-	$0,\!15$	$0,\!15$
a_{v_i}	100	100	100	-	-
a_{v_f}	100000	100000	100000	-	-
a_{w_f}	0,1	0,1	-	-	-

Tabela B.1 – Parâmetros numéricos independentes de f_r , M_{∞} e Re_{∞}.

Tabela B.2 – Parâmetro numérico comum às geometrias de Newton, von Kármán, 1C, 2C-S e 2C-NS.

${\rm Re}_\infty^{-1}$	c_{b_l}
0	0,25
10^{-7}	0,1
10^{-6}	0,0775
10^{-5}	$0,\!055$
10^{-4}	0,0325
10^{-3}	$0,\!01$

		<i>w</i> (m)						
f_r	M_{∞}	$\operatorname{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}	
2	$1,\!5$	5,5	5,5	5,5	5,5	5,5	5,5	
	3	1,9	$1,\!9$	$1,\!9$	$1,\!9$	$1,\!9$	$1,\!9$	
	6	1,1	1,1	1,1	1,1	1,1	1,1	
4	1,5	11,5	$11,\!5$	$11,\!5$	$11,\!5$	$11,\!5$	$11,\!5$	
	3	3,5	3,5	3,5	3,5	3,5	3,5	
	6	2,5	2,5	2,5	2,5	2,5	2,5	

Tabela B.3 – Parâmetros numéricos comuns às geometrias de Newton e de von Kármán.

Tabela B.4 – Parâmetros numéricos exclusivos às geometrias do Modelo 1C.

				<i>w</i> (m	l)		
f_r	M_{∞}	$\operatorname{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	$1,\!5$	5,5	5,5	5,5	5,5	5,5	5,5
	3	$1,\!9$	$1,\!9$	$1,\!9$	$1,\!9$	$1,\!9$	$1,\!9$
	6	$1,\!1$	1,1	1,1	1,1	1,1	1,1
4	$1,\!5$	$11,\!5$	11,5	11,5	11,5	$11,\!5$	11,5
	3	3,5	3,5	3,5	3,5	3,5	3,5
	6	2	2	2	2	2	2
				l_{p_1} (n	ı)		
2	(1,5; 3; 6)	$1,\!65$	$1,\!65$	$1,\!65$	$1,\!65$	$1,\!65$	$1,\!65$
4	(1,5; 3; 6)	3,2	$_{3,2}$	$_{3,2}$	3,2	$_{3,2}$	$_{3,2}$
				f_{p_1}			
2	(1,5; 3; 6)	$0,\!65$	$0,\!65$	$0,\!65$	$0,\!65$	$0,\!65$	$0,\!65$
4	(1,5; 3; 6)	0,7	0,7	0,7	0,7	0,7	0,7
				f_{p_2}			
2	(1,5; 3; 6)	0,1	0,1	0,1	0,1	0,1	0,1
4	(1,5; 3; 6)	$0,\!13$	$0,\!13$	$0,\!13$	$0,\!13$	$0,\!13$	$0,\!13$
				a_{w_f}			
2	$1,\!5$	0,3	0,3	0,3	0,3	0,3	0,1
	(3; 6)	$0,\!3$	$0,\!3$	$0,\!3$	$0,\!3$	$0,\!3$	0,005
4	(1,5; 3; 6)	$0,\!3$	$0,\!3$	$0,\!3$	$0,\!3$	$0,\!01$	$0,\!01$

				<i>w</i> (1	m)			
f_r	M_{∞}	$\mathrm{Re}_\infty^{-1}=0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}	
2	$1,\!5$	$5,\!5$	5,5	5,5	5,5	5,5	5,5	
	3	$1,\!6$	$1,\!6$	$1,\!6$	$1,\!6$	$1,\!6$	$1,\!6$	
	6	0,7	0,75	0,75	0,75	0,9	1,1	
4	$1,\!5$	9	9	9	9	9	9	
	3	3	3	3	3	3	3,1	
	6	2,2	2,2	2,2	2,2	2,2	2,2	
		a_{v_i}						
2	(1,5; 3; 6)	100	100	100	100	1000	1000	
4	(1,5; 3; 6)	100	100	100	100	1000	1	
				a_v	f			
2	(1,5; 3)	100 000	100000	100000	100000	100000	100 000	
	6	10000	10000	10000	10000	100000	100000	
4	(1,5; 3; 6)	100000	100000	100000	100000	100000	100000	
		a_{w_f}						
2	(1,5; 3; 6)	0,3	0,3	0,3	0,3	0,1	0,1	
4	(1,5; 3; 6)	$0,\!3$	$0,\!3$	$0,\!3$	$0,\!3$	$0,\!1$	$0,\!3$	

Tabela B.5 – Parâmetros numéricos exclusivos às geometrias do Modelo 2C-S.

			w (m)								
f_r	M_{∞}	$\mathrm{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}				
2	$1,\!5$	$5,\!5$	$5,\!5$	5,5	5,5	5,5	$5,\!5$				
	3	$1,\!6$	$1,\!6$	$1,\!6$	$1,\!6$	$1,\!6$	1,9				
	6	0,7	0,75	0,75	0,75	0,9	$1,\!1$				
4	$1,\!5$	9	9	9	9	9	9				
	3	3	3	3	3	3	3,1				
	6	2,2	$1,\!3$	2,2	$1,\!3$	$1,\!5$	2,2				
				α_{ξ}	s						
2	$1,\!5$	$1,\!5$	2	2	$1,\!5$	$1,\!5$	1,5				
	3	1,5	2	$1,\!5$	1,5	1,5	$1,\!5$				
	6	$1,\!5$	1,5	1,5	1,5	1,5	$1,\!5$				
4	$1,\!5$	$1,\!5$	2	$1,\!5$	$1,\!5$	$1,\!5$	1,5				
	3	$1,\!5$	1,5	1,5	1,5	1,5	$1,\!5$				
	6	2	$1,\!5$	2	$1,\!5$	$1,\!5$	1,5				
				n_m	f						
2	$1,\!5$	4	3	3	4	4	4				
	3	4	3	4	4	4	4				
	6	4	4	4	4	4	4				
4	(1,5; 3; 6)	4	4	4	4	4	4				
				a_v	i						
2	(1,5; 3; 6)	100	100	100	100	1000	1000				
4	(1,5; 3; 6)	100	100	100	100	1000	1				
				a_v	f						
2	(1,5; 3)	100 000	100 000	100 000	100 000	100 000	100 000				
	6	10000	10000	10000	10000	100000	100000				
4	(1,5; 3; 6)	100000	100000	100000	100000	100000	100 000				
				a_w	f						
2	(1,5; 3; 6)	0,3	0,3	0,3	0,3	0,1	0,1				
4	$1,\!5$	$0,\!3$	0,1	$0,\!3$	$0,\!3$	$_{0,1}$	$0,\!3$				
4	(3; 6)	$0,\!3$	0,3	$0,\!3$	$0,\!3$	0,1	0,3				

Tabela B.6 – Parâmetros numéricos exclusivos às geometrias do Modelo 2C-NS.

APÊNDICE B. Parâmetros numéricos e resultados parciais do coeficiente de arrasto sobre alguns perfis otimizados 209

B.2 RESULTADOS NUMÉRICOS

Os resultados numéricos para $C_{\mathrm{Df}}^p \in C_{\mathrm{Df}}^{\mu}$ são apresentados nas Tabs. B.7-B.16. O símbolo (-) em algumas tabelas indica que a malha não foi empregada na simulação, enquanto um espaço em branco indica que não foi possível obter a solução para aquela malha. Felizmente este último caso ocorreu poucas vezes.

					С	p Df		
f_r	M_{∞}	m.	$\operatorname{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	$1,\!5$	m_4	$0,\!157372$	$0,\!157408$	$0,\!157592$	$0,\!158720$	$0,\!164261$	$0,\!186386$
		m_3	$0,\!160514$	$0,\!160487$	$0,\!160608$	$0,\!161477$	$0,\!166310$	$0,\!188131$
		m_2	$0,\!162428$	$0,\!162364$	$0,\!162404$	$0,\!163058$	$0,\!167530$	$0,\!189186$
		m_1	0,163740	$0,\!163617$	$0,\!163550$	0,164034	0,168271	0,189842
2	3	m_4	$0,\!121172$	$0,\!121432$	$0,\!122149$	$0,\!124825$	$0,\!133960$	$0,\!162163$
		m_3	$0,\!122564$	$0,\!122827$	$0,\!123598$	$0,\!126314$	$0,\!135552$	$0,\!163798$
		m_2	$0,\!123468$	$0,\!123734$	$0,\!124508$	$0,\!127234$	$0,\!136418$	$0,\!164809$
		m_1	0,124 117	0,124353	0,125100	0,127 806	0,136 957	0,165 433
2	6	m_4	$0,\!101058$	$0,\!101477$	$0,\!102642$	$0,\!106560$	$0,\!118038$	$0,\!149400$
		m_3	$0,\!101997$	$0,\!102439$	$0,\!103640$	$0,\!107548$	$0,\!119627$	$0,\!151316$
		m_2	$0,\!102563$	$0,\!103014$	$0,\!104220$	$0,\!108161$	$0,\!120273$	$0,\!152356$
		m_1	0,102 940	0,103 371	0,104565	0,108 538	0,120779	0,152997
4	1,5	m_4	$0,\!050570$	$0,\!050657$	$0,\!050928$	$0,\!052152$	$0,\!057191$	$0,\!076341$
		m_3	$0,\!051830$	$0,\!051869$	$0,\!052062$	$0,\!053031$	$0,\!057663$	$0,\!076689$
		m_2	$0,\!052708$	$0,\!052697$	$0,\!052791$	$0,\!053567$	$0,\!057956$	$0,\!076933$
		m_1	0,053 392	0,053309	0,053295	0,053913	0,058 157	0,077 116
4	3	m_4	$0,\!039524$	$0,\!039774$	$0,\!040348$	$0,\!042428$	$0,\!049557$	$0,\!072149$
		m_3	$0,\!039944$	$0,\!040195$	$0,\!040781$	$0,\!042857$	$0,\!049917$	$0,\!072666$
		m_2	$0,\!040251$	$0,\!040486$	$0,\!041069$	$0,\!043129$	$0,\!050170$	$0,\!072998$
		m_1	$0,\!040525$	0,040723	0,041 283	0,043 324	$0,\!050347$	0,073212
4	6	m_4	$0,\!031549$	$0,\!032010$	$0,\!032978$	$0,\!036114$	$0,\!045587$	$0,\!071042$
		m_3	$0,\!031911$	$0,\!032364$	$0,\!033334$	$0,\!036456$	$0,\!046004$	$0,\!071809$
		m_2	$0,\!032165$	$0,\!032601$	$0,\!033575$	$0,\!036695$	$0,\!046302$	0,072279
		m_1	$0,\!032362$	$0,\!032761$	$0,\!033730$	$0,\!036854$	$0,\!046489$	$0,\!072560$

Tabela B.7 – Coeficiente de arrasto frontal C_{Df}^p devido à pressão para a forma de Newton. Soluções numéricas obtidas em diversas malhas (m.)

					$C^{\mu}_{ m Df}$			
f_r	M_{∞}	m.	$\operatorname{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	$1,\!5$	m_4	0	0,0023468	0,0074194	$0,\!023421$	$0,\!07444$	$0,\!25233$
		m_3	0	$0,\!0022176$	$0,\!0070632$	$0,\!022538$	$0,\!07336$	$0,\!25229$
		m_2	0	$0,\!0021468$	$0,\!0068696$	$0,\!022153$	$0,\!07301$	$0,\!25240$
		m_1	0	$0,\!0020626$	$0,\!0066490$	$0,\!021692$	$0,\!07219$	$0,\!25086$
2	3	m_4	0	$0,\!0019630$	$0,\!0063774$	$0,\!020311$	$0,\!06602$	0,23304
		m_3	0	$0,\!0017861$	$0,\!0059456$	$0,\!019536$	$0,\!06516$	$0,\!23326$
		m_2	0	$0,\!0017305$	$0,\!0058141$	$0,\!019296$	$0,\!06501$	$0,\!23340$
		m_1	0	$0,\!0016776$	$0,\!0056924$	$0,\!019048$	$0,\!06451$	$0,\!23232$
2	6	m_4	0	$0,\!0016991$	$0,\!0058198$	$0,\!019014$	$0,\!06329$	0,228 03
		m_3	0	$0,\!0015033$	$0,\!0052490$	$0,\!017828$	$0,\!06111$	$0,\!22690$
		m_2	0	$0,\!0014489$	$0,\!0050892$	$0,\!017404$	$0,\!06050$	$0,\!22638$
		m_1	0	$0,\!0014044$	$0,\!0049742$	$0,\!017125$	$0,\!05980$	$0,\!22512$
4	$1,\!5$	m_4	0	$0,\!0046741$	$0,\!0144451$	$0,\!044898$	$0,\!14594$	0,53671
		m_3	0	$0,\!0043393$	$0,\!0136332$	$0,\!043375$	$0,\!14440$	$0,\!53708$
		m_2	0	$0,\!0041886$	$0,\!0132869$	$0,\!042797$	$0,\!14392$	$0,\!53740$
		m_1	0	$0,\!0040501$	$0,\!0129508$	$0,\!042121$	$0,\!14266$	$0,\!53450$
4	3	m_4	0	$0,\!0039319$	$0,\!0119660$	$0,\!037289$	$0,\!12543$	$0,\!48912$
		m_3	0	$0,\!0035446$	$0,\!0112032$	$0,\!036130$	$0,\!12412$	$0,\!48866$
		m_2	0	$0,\!0034400$	$0,\!0109882$	$0,\!035792$	$0,\!12374$	$0,\!48852$
		m_1	0	0,0033594	0,0108007	0,035403	$0,\!12287$	0,486 07
4	6	m_4	0	$0,\!0031675$	$0,\!0097489$	$0,\!031216$	$0,\!11001$	$0,\!45636$
		m_3	0	0,0028086	$0,\!0089680$	$0,\!029610$	$0,\!10708$	$0,\!45406$
		m_2	0	$0,\!0026933$	$0,\!0086985$	$0,\!029014$	$0,\!10589$	$0,\!45292$
		m_1	0	$0,\!0026184$	$0,\!0085172$	0,028587	0,10481	0,45036

Tabela B.8 – Coeficiente de arrasto frontal C_{Df}^{μ} devido às tensões viscosas para a forma de Newton. Soluções numéricas obtidas em diversas malhas (m.)

					C	p Df		
f_r	M_{∞}	m.	$\mathrm{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	$1,\!5$	m_4	$0,\!164903$	$0,\!165357$	$0,\!166473$	$0,\!170030$	$0,\!180806$	$0,\!212448$
		m_3	$0,\!166480$	$0,\!166926$	$0,\!168015$	$0,\!171423$	$0,\!182017$	$0,\!214124$
		m_2	$0,\!167399$	$0,\!167851$	$0,\!168913$	$0,\!172262$	$0,\!182805$	$0,\!215115$
		m_1	$0,\!167925$	0,168 386	0,169436	$0,\!172758$	$0,\!183271$	$0,\!215683$
2	3	m_4	$0,\!137956$	$0,\!138632$	$0,\!140150$	$0,\!144723$	$0,\!158174$	$0,\!194099$
		m_3	$0,\!139595$	$0,\!140271$	$0,\!141780$	$0,\!146387$	$0,\!159990$	$0,\!196570$
		m_2	$0,\!140577$	$0,\!141256$	$0,\!142757$	$0,\!147382$	0,161149	$0,\!198080$
		m_1	0,141 137	0,141 820	$0,\!143315$	0,147 968	0,161 845	0,198 985
2	6	m_4	$0,\!118589$	$0,\!119601$	$0,\!121631$	$0,\!127532$	$0,\!143740$	$0,\!181997$
		m_3	$0,\!119772$	$0,\!120749$	$0,\!122788$	$0,\!128868$	$0,\!145653$	$0,\!185148$
		m_2	$0,\!120417$	$0,\!121384$	$0,\!123442$	$0,\!129654$	$0,\!146953$	$0,\!187056$
		m_1	0,120758	0,121721	0,123 799	0,130 162	0,147 878	0,188 171
4	1,5	m_4	$0,\!051070$	$0,\!051403$	$0,\!052251$	$0,\!054953$	$0,\!063335$	$0,\!089201$
		m_3	$0,\!051325$	$0,\!051661$	$0,\!052484$	$0,\!055092$	$0,\!063332$	$0,\!089505$
		m_2	$0,\!051476$	$0,\!051821$	$0,\!052620$	$0,\!055172$	$0,\!063362$	$0,\!089710$
		m_1	$0,\!051568$	0,051 916	$0,\!052702$	$0,\!055231$	0,063 412	0,089839
4	3	m_4	$0,\!043408$	$0,\!043918$	$0,\!045012$	$0,\!048414$	$0,\!058603$	$0,\!087229$
		m_3	$0,\!043824$	$0,\!044334$	$0,\!045432$	$0,\!048836$	$0,\!059060$	$0,\!088152$
		m_2	$0,\!044097$	$0,\!044608$	$0,\!045706$	$0,\!049114$	$0,\!059403$	$0,\!088719$
		m_1	$0,\!044271$	$0,\!044780$	$0,\!045880$	$0,\!049298$	$0,\!059633$	0,089 042
4	6	m_4	$0,\!036416$	$0,\!037233$	$0,\!038810$	$0,\!043484$	$0,\!056131$	$0,\!086499$
		m_3	0,036903	$0,\!037695$	$0,\!039281$	$0,\!043988$	$0,\!056916$	$0,\!087920$
		m_2	$0,\!037201$	$0,\!037980$	$0,\!039581$	$0,\!044338$	$0,\!057478$	$0,\!088802$
		m_1	0,037372	$0,\!038145$	$0,\!039757$	$0,\!044565$	$0,\!057833$	$0,\!089303$

Tabela B.9 – Coeficiente de arrasto frontal $C_{\rm Df}^p$ devido à pressão para a forma de von Kármán. Soluções numéricas obtidas em diversas malhas (m.)

					C^{μ}_{Df}			
f_r	M_{∞}	m.	$\mathrm{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	$1,\!5$	m_4	0	0,0027724	0,0086321	$0,\!027110$	$0,\!086762$	$0,\!29190$
		m_3	0	$0,\!0026923$	0,0084949	$0,\!026959$	$0,\!086922$	$0,\!29278$
		m_2	0	$0,\!0026677$	0,0084579	$0,\!026954$	$0,\!087063$	$0,\!29326$
		m_1	0	0,0026519	0,0084274	0,026 903	0,086965	0,29299
2	3	m_4	0	0,0023883	0,0075053	$0,\!023716$	$0,\!076683$	$0,\!26613$
		m_3	0	$0,\!0022173$	0,0071379	$0,\!023060$	$0,\!075950$	$0,\!26642$
		m_2	0	$0,\!0021716$	$0,\!0070328$	$0,\!022853$	$0,\!075764$	$0,\!26655$
		m_1	0	$0,\!0021508$	0,0069816	0,022749	$0,\!075533$	0,266 19
2	6	m_4	0	$0,\!0022145$	$0,\!0070656$	$0,\!022426$	$0,\!073305$	$0,\!25911$
		m_3	0	$0,\!0019587$	$0,\!0063733$	$0,\!020871$	$0,\!070579$	$0,\!25734$
		m_2	0	$0,\!0018669$	0,0061261	$0,\!020274$	$0,\!069539$	$0,\!25637$
		m_1	0	$0,\!0018285$	$0,\!0060178$	0,020021	0,068 906	$0,\!25550$
4	$1,\!5$	m_4	0	$0,\!0051160$	$0,\!0157654$	$0,\!049747$	$0,\!164410$	$0,\!60249$
		m_3	0	$0,\!0048624$	$0,\!0153729$	$0,\!049259$	$0,\!164097$	$0,\!60352$
		m_2	0	$0,\!0048036$	$0,\!0152759$	$0,\!049138$	$0,\!164099$	$0,\!60401$
		m_1	0	0,0047742	0,0152128	0,049019	0,163835	0,60322
4	3	m_4	0	$0,\!0043665$	$0,\!0134719$	$0,\!042676$	$0,\!143523$	$0,\!54842$
		m_3	0	$0,\!0040235$	$0,\!0128096$	$0,\!041486$	$0,\!141697$	$0,\!54756$
		m_2	0	$0,\!0039359$	$0,\!0126170$	$0,\!041085$	$0,\!141076$	$0,\!54716$
		m_1	0	0,003 897 0	0,0125214	0,040 877	0,140 583	0,546 11
4	6	m_4	0	$0,\!0037041$	$0,\!0115295$	$0,\!036950$	$0,\!128026$	$0,\!51349$
		m_3	0	$0,\!0032591$	$0,\!0104485$	$0,\!034466$	$0,\!123385$	0,50995
		m_2	0	0,0030982	$0{,}0100355$	$0,\!033485$	$0,\!121423$	0,50812
		m_1	0	$0,\!0030261$	$0,\!0098462$	0,033024	0,120308	0,50647

Tabela B.10 – Coeficiente de arrasto frontal C^{μ}_{Df} devido às tensões viscosas para a forma de von Kármán. Soluções numéricas obtidas em diversas malhas (m.)

					C	p Df		
f_r	M_{∞}	m.	$\mathrm{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	$1,\!5$	m_4	$0,\!151073$	$0,\!151200$	$0,\!151615$	$0,\!153542$	$0,\!161907$	0,201 114
		m_3	$0,\!152035$	$0,\!152142$	$0,\!152567$	$0,\!154492$	$0,\!162681$	$0,\!202382$
		m_2	$0,\!152619$	$0,\!152720$	$0,\!153157$	$0,\!155071$	$0,\!163196$	$0,\!203062$
		m_1	$0,\!152956$	$0,\!153069$	$0,\!153512$	$0,\!155406$	$0,\!163500$	0,203 427
2	3	m_4	$0,\!122027$	$0,\!122308$	$0,\!123083$	$0,\!126008$	$0,\!136292$	$0,\!174878$
		m_3	$0,\!122861$	$0,\!123151$	$0,\!123987$	$0,\!127074$	$0,\!137318$	$0,\!176178$
		m_2	$0,\!123357$	$0,\!123674$	$0,\!124555$	$0,\!127646$	$0,\!137910$	$0,\!176901$
		m_1	$0,\!123634$	$0,\!123975$	$0,\!124870$	$0,\!127966$	0,138234	$0,\!177289$
2	6	m_4	$0,\!101387$	$0,\!101908$	$0,\!103137$	$0,\!107395$	$0,\!120127$	$0,\!158186$
		m_3	$0,\!101992$	$0,\!102512$	$0,\!103817$	$0,\!108199$	$0,\!121010$	$0,\!159463$
		m_2	$0,\!102303$	$0,\!102859$	$0,\!104186$	$0,\!108580$	$0,\!121631$	$0,\!160272$
		m_1	0,102486	0,103062	0,104 399	0,108 843	0,122031	0,160 703
4	1,5	m_4	$0,\!049177$	$0,\!049219$	$0,\!049487$	$0,\!051176$	$0,\!063525$	$0,\!085363$
		m_3	$0,\!049705$	$0,\!049711$	$0,\!049959$	$0,\!051618$	$0,\!063899$	$0,\!085760$
		m_2	$0,\!049975$	$0,\!049994$	$0,\!050245$	$0,\!051828$	$0,\!064092$	$0,\!085954$
		m_1	0,050173	0,050175	0,050 399	0,051935	0,064 200	0,086 073
4	3	m_4	$0,\!039273$	$0,\!039533$	$0,\!040152$	$0,\!042791$	$0,\!056167$	$0,\!074620$
		m_3	$0,\!039586$	$0,\!039821$	$0,\!040474$	$0,\!043110$	$0,\!056535$	$0,\!075056$
		m_2	$0,\!039750$	$0,\!040009$	$0,\!040687$	$0,\!043292$	$0,\!056736$	$0,\!075282$
		m_1	$0,\!039874$	0,040 129	$0,\!040805$	$0,\!043397$	$0,\!056849$	$0,\!075412$
4	6	m_4	$0,\!031582$	$0,\!032070$	$0,\!033110$	$0,\!036678$	$0,\!048723$	$0,\!070148$
		m_3	$0,\!031867$	$0,\!032325$	$0,\!033382$	$0,\!036899$	$0,\!049089$	$0,\!070652$
		m_2	$0,\!032013$	$0,\!032484$	$0,\!033542$	$0,\!037048$	$0,\!049306$	$0,\!070918$
		m_1	$0,\!032108$	$0,\!032571$	$0,\!033628$	$0,\!037137$	$0,\!049431$	$0,\!071064$

Tabela B.11 – Coeficiente de arrasto frontal C_{Df}^p devido à pressão para as formas do Modelo 1C. Soluções numéricas obtidas em diversas malhas (m.)

			$C^{\mu}_{ m Df}$					
f_r	M_{∞}	m.	$\mathrm{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	1,5	m_4	0	$0,\!0024875$	$0,\!0077068$	$0,\!024185$	$0,\!076345$	$0,\!236030$
		m_3	0	$0,\!0023498$	0,0074408	$0,\!023665$	$0,\!075840$	$0,\!235657$
		m_2	0	$0,\!0023013$	$0{,}0073271$	$0,\!023482$	$0,\!075768$	$0,\!235562$
		m_1	0	0,0022766	$0,\!0072752$	0,023432	0,075775	$0,\!235541$
2	3	m_4	0	$0,\!0019812$	0,0063431	$0,\!020392$	$0,\!066311$	$0,\!214145$
		m_3	0	$0,\!0018216$	$0,\!0059744$	$0,\!019658$	$0,\!065463$	$0,\!213919$
		m_2	0	$0,\!0017687$	$0,\!0058454$	$0,\!019437$	$0,\!065282$	$0,\!213852$
		m_1	0	$0,\!0017477$	$0,\!0058001$	$0,\!019377$	0,065206	$0,\!213828$
2	6	m_4	0	$0,\!0017588$	$0,\!0057583$	$0,\!018885$	$0,\!063652$	$0,\!212806$
		m_3	0	$0{,}0015754$	$0,\!0052533$	$0,\!017722$	$0,\!061527$	$0,\!212493$
		m_2	0	$0,\!0015075$	$0,\!0050795$	$0,\!017304$	$0,\!060750$	$0,\!212325$
		m_1	0	$0,\!0014808$	$0,\!0050099$	$0,\!017157$	0,060359	$0,\!212243$
4	1,5	m_4	0	$0,\!0046756$	$0,\!0145546$	$0,\!045507$	$0,\!138622$	$0,\!486795$
		m_3	0	$0,\!0043882$	$0,\!0139547$	$0,\!044336$	$0,\!136967$	$0,\!486410$
		m_2	0	$0,\!0042507$	$0,\!0136125$	$0,\!043650$	$0,\!135468$	$0,\!483859$
		m_1	0	0,004 192 4	0,013 482 8	0,043391	0,134746	$0,\!482515$
4	3	m_4	0	0,0038893	$0,\!0120107$	$0,\!037144$	$0,\!114037$	$0,\!442329$
		m_3	0	$0,\!0035563$	$0,\!0113404$	$0,\!036121$	$0,\!112886$	$0,\!442495$
		m_2	0	$0,\!0034233$	$0,\!0110585$	$0,\!035634$	$0,\!111832$	$0,\!440776$
		m_1	0	0,003 379 3	0,010 961 8	0,035459	0,111 328	$0,\!439859$
4	6	m_4	0	$0,\!0031508$	$0,\!0098026$	$0,\!030731$	$0,\!097574$	$0,\!411371$
		m_3	0	0,0028066	$0,\!0090319$	$0,\!029298$	$0,\!096613$	$0,\!410921$
		m_2	0	$0,\!0026659$	0,0087034	$0,\!028663$	$0,\!095857$	$0,\!409183$
		m_1	0	0,0026118	0,0085703	0,028 400	$0,\!095501$	0,408 261

Tabela B.12 – Coeficiente de arrasto frontal $C_{\rm Df}^{\mu}$ devido às tensões viscosas para as formas do Modelo 1C. Soluções numéricas obtidas em diversas malhas (m.)

			$C^p_{ m Df}$					
f_r	M_{∞}	m.	$\mathrm{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	1,5	m_4	$0,\!147674$	$0,\!147282$	$0,\!147803$	$0,\!150129$	$0,\!159263$	$0,\!193412$
		m_3	$0,\!147272$	$0,\!147292$	$0,\!147755$	$0,\!150159$	$0,\!159435$	$0,\!194720$
		m_2	$0,\!146966$	$0,\!147319$	$0,\!147729$	$0,\!150040$	$0,\!159386$	$0,\!195395$
		m_1	0,146 828	$0,\!147378$	$0,\!147698$	0,149 901	$0,\!159291$	$0,\!195784$
2	3	m_4	$0,\!119568$	$0,\!119826$	$0,\!120507$	$0,\!123468$	$0,\!135435$	$0,\!166286$
		m_3	$0,\!120424$	$0,\!120698$	$0,\!121453$	$0,\!124563$	$0,\!136608$	$0,\!167457$
		m_2	$0,\!120981$	$0,\!121279$	$0,\!122070$	$0,\!125200$	$0,\!137147$	$0,\!168011$
		m_1	0,121 363	0,121664	0,122456	$0,\!125551$	0,137 333	0,168 286
2	6	m_4	$0,\!099732$	$0,\!100160$	$0,\!101222$	$0,\!105558$	$0,\!122242$	$0,\!155040$
		m_3	$0,\!100458$	$0,\!100920$	$0,\!102057$	$0,\!106515$	$0,\!123191$	$0,\!155826$
		m_2	$0,\!100879$	$0,\!101369$	$0,\!102530$	$0,\!107028$	$0,\!123531$	$0,\!156011$
		m_1	0,101 131	0,101 628	0,102 790	$0,\!107303$	$0,\!123477$	$0,\!156020$
4	1,5	m_4	$0,\!048830$	$0,\!048955$	$0,\!049452$	$0,\!051608$	$0,\!063245$	$0,\!084624$
		m_3	$0,\!049414$	$0,\!049516$	$0,\!049944$	$0,\!051933$	$0,\!064141$	$0,\!085238$
		m_2	$0,\!049810$	$0,\!049887$	$0,\!050246$	$0,\!052120$	$0,\!064439$	$0,\!085588$
		m_1	0,050119	0,050143	0,050427	0,052217	0,064 628	
4	3	m_4	$0,\!039106$	$0,\!039490$	$0,\!040357$	$0,\!043155$	$0,\!053463$	$0,\!074034$
		m_3	$0,\!039435$	$0,\!039771$	$0,\!040608$	$0,\!043683$	$0,\!055230$	$0,\!074641$
		m_2	$0,\!039645$	$0,\!039972$	$0,\!040812$	$0,\!043840$	$0,\!055503$	$0,\!074990$
		m_1	0,039 823	0,040 123	0,040 951	0,043970	0,055651	
4	6	m_4	$0,\!031337$	$0,\!031996$	$0,\!033393$	$0,\!037346$	$0,\!047219$	$0,\!069481$
		m_3	$0,\!031698$	$0,\!032259$	$0,\!033588$	$0,\!038144$	$0,\!050138$	$0,\!070209$
		m_2	$0,\!031907$	$0,\!032440$	$0,\!033766$	$0,\!038212$	$0,\!050050$	$0,\!070623$
		m_1	$0,\!032033$	$0,\!032558$		$0,\!038327$	$0,\!050116$	

Tabela B.13 – Coeficiente de arrasto frontal $C_{\rm Df}^p$ devido à pressão para as formas do Modelo 2C-S. Soluções numéricas obtidas em diversas malhas (m.)
			$C^{\mu}_{ m Df}$					
f_r	M_{∞}	m.	$\mathrm{Re}_\infty^{-1}=0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	$1,\!5$	m_4	0	$0,\!0022887$	$0,\!0071795$	0,022656	$0,\!071973$	$0,\!23057$
		m_3	0	$0,\!0021962$	$0,\!0069643$	$0,\!022138$	$0,\!071233$	$0,\!22951$
		m_2	0	$0,\!0021593$	$0,\!0068510$	$0,\!021935$	$0,\!070983$	$0,\!22901$
		m_1	0	0,0021143	$0,\!0067479$	0,021753	$0,\!070598$	0,22784
2	3	m_4	0	$0,\!0017029$	$0,\!0054576$	$0,\!017682$	$0,\!057934$	$0,\!20802$
		m_3	0	$0,\!0016036$	$0,\!0051977$	$0,\!017184$	$0,\!057240$	$0,\!20702$
		m_2	0	$0,\!0015767$	$0,\!0051186$	$0,\!017033$	$0,\!056988$	$0,\!20643$
		m_1	0	$0,\!0015513$	$0,\!0050507$	$0,\!016886$	$0,\!056603$	0,20542
2	6	m_4	0	$0,\!0013691$	$0,\!0044587$	$0,\!014650$	$0,\!048847$	$0,\!19616$
		m_3	0	$0,\!0012778$	$0,\!0042248$	$0,\!014263$	$0,\!048127$	$0,\!19423$
		m_2	0	$0,\!0012503$	$0,\!0041563$	$0,\!014143$	$0,\!047714$	$0,\!19302$
		m_1	0	0,001 229 0	0,004 102 7	0,014026	0,047216	0,191 79
4	$1,\!5$	m_4	0	0,0047371	$0,\!0145662$	$0,\!044845$	$0,\!137499$	$0,\!48615$
		m_3	0	$0,\!0044085$	$0{,}0138532$	$0,\!043603$	$0,\!135294$	$0,\!48568$
		m_2	0	$0,\!0042878$	$0,\!0135927$	$0,\!043192$	$0,\!134591$	$0,\!48556$
		m_1	0	0,004 197 1	$0,\!0133945$	$0,\!042805$	$0,\!133549$	
4	3	m_4	0	$0,\!0036538$	$0,\!0113008$	$0,\!035630$	$0,\!115101$	$0,\!44181$
		m_3	0	$0,\!0033469$	$0,\!0107420$	$0,\!034598$	$0,\!112667$	$0,\!44196$
		m_2	0	$0,\!0032642$	$0{,}0105874$	$0,\!034421$	$0,\!112170$	$0,\!44211$
		m_1	0	0,0032107	0,0104732	0,034 168	0,111 391	
4	6	m_4	0	$0,\!0026563$	$0,\!0084824$	$0,\!027768$	$0,\!096946$	$0,\!41092$
		m_3	0	0,0024449	0,0080392	$0,\!026460$	$0,\!093619$	$0,\!41048$
		m_2	0	0,0023859	0,0079067	$0,\!026318$	$0,\!093257$	$0,\!41028$
		m_1	0	0,0023461		$0,\!026070$	$0,\!092450$	

Tabela B.14 – Coeficiente de arrasto frontal $C_{\rm Df}^{\mu}$ devido às tensões viscosas para as formas do Modelo 2C-S. Soluções numéricas obtidas em diversas malhas (m.)

 C_{Df}^p $\mathrm{Re}_\infty^{-1}=0$ 10^{-4} 10^{-3} 10^{-6} 10^{-5} 10^{-7} M_{∞} f_r m. 21,5 $0,147\,651$ 0,159716 0,193411 $0,147\,840$ 0,148382 $0,150\,481$ m_4 $0,147\,269$ $0,147\,520$ 0,148055 0,150436 0,159885 0,194719 m_3 0,147018 $0,147\,279$ 0,159862 0,195394 m_2 $0,147\,795$ 0,1502910,146996 $0,150\,164$ $0,159\,831$ 0,195783 m_1 _ -23 0,119538 0,119017 $0,120\,522$ 0,123635 $0,136\,007$ 0,166277 m_4 0,120412 0,120221 0,121 487 0,124738 0,137171 0,167454 m_3 0,121012 0,122 121 0,125376 0,137708 0,168011 m_2 0,120982 0,121366 0,122514 $0,125\,730$ 0,137898 0,168 286 m_1 26 0,099774 $0,100\,205$ 0,101 345 0,105960 0,123642 $0,155\,038$ m_4 0,100 499 0,100971 0,102169 0,106898 0,124558 0,155825 m_3 0,100919 0,101 421 $0,102\,632$ 0,107396 0,124859 0,156010 m_2 0,101680 0,102889 0,107661 0,124754 0,156019 0,101 166 m_1 4 1,50.049851 0.0635840.0845650,049021 $0.049\,551$ $0.051\,577$ m_4 0,049424 0,049902 0,049897 0,051860 0,064519 0,085178 m_3 0,049681 0,049932 0,050110 0,052023 0,064831 0,085 528 m_2 0,049874 0,049962 0,050233 0,052111 0,065031 0,085763 m_1 43 0,039096 0,039496 0,040415 0,043287 $0,053\,465$ 0,073988 m_4 0,039411 0,039763 0,040657 0,043835 0,055233 $0,074\,595$ m_3 $0,039\,601$ 0,039952 0,040855 0,043998 $0,055\,504$ 0,074943 m_2 0,039770 0,040 093 0,040 991 0,044 125 $0,055\,653$ m_1 64 0,031 138 0,032048 $0,033\,064$ $0,037\,601$ $0,047\,328$ 0,069442 m_4 0,031573 0,032309 0,033451 0,038474 0,050228 0,070170 m_3 0,033745 0,070581 0,031819 0,032488 $0,038\,542$ $0,050\,129$ m_2 0,031965 0,032606 0,033913 0,038657 0,050187 0,070818 m_1

Tabela B.15 – Coeficiente de arrasto frontal C_{Df}^{p} devido à pressão para as formas do Modelo 2C-NS. Soluções numéricas obtidas em diversas malhas (m.)

			$C^{\mu}_{ m Df}$					
f_r	M_{∞}	m.	$\operatorname{Re}_{\infty}^{-1} = 0$	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}
2	$1,\!5$	m_4	0	$0,\!0016954$	$0,\!0061042$	$0,\!021865$	$0,\!071589$	$0,\!23057$
		m_3	0	$0,\!0017044$	$0,\!0061384$	$0,\!021317$	$0,\!070873$	$0,\!22951$
		m_2	0	$0,\!0017581$	$0,\!0062541$	$0,\!021158$	$0,\!070664$	$0,\!22901$
		m_1	0	-	-	0,021060	$0,\!070273$	0,22784
2	3	m_4	0	$0,\!0015021$	$0,\!0053489$	$0,\!017557$	$0,\!057714$	$0,\!20807$
		m_3	0	$0,\!0014929$	0,0051013	$0,\!017070$	$0,\!057028$	$0,\!20704$
		m_2	0	$0,\!0015006$	$0,\!0050341$	$0,\!016948$	$0,\!056784$	$0,\!20645$
		m_1	0	-	$0,\!0049890$	$0,\!016835$	$0,\!056399$	$0,\!20543$
2	6	m_4	0	$0,\!0013395$	$0,\!0045132$	$0,\!014848$	$0,\!048211$	$0,\!19616$
		m_3	0	$0,\!0012473$	$0,\!0042305$	$0,\!014355$	$0,\!047380$	$0,\!19423$
		m_2	0	$0,\!0012237$	$0,\!0041447$	$0,\!014176$	$0,\!046903$	$0,\!19302$
		m_1	0	0,001 206 3	$0,\!0040895$	$0,\!014047$	0,046363	$0,\!19179$
4	1,5	m_4	0	0,0044038	$0{,}0142377$	$0,\!044669$	$0,\!137194$	$0,\!48629$
		m_3	0	$0,\!0041332$	$0,\!0135695$	$0,\!043423$	$0,\!134957$	$0,\!48581$
		m_2	0	$0,\!0040751$	$0,\!0133306$	$0,\!043024$	$0,\!134245$	$0,\!48569$
		m_1	0	0,0040585	$0,\!0131666$	$0,\!042660$	0,133193	0,48306
4	3	m_4	0	$0,\!0035523$	$0,\!0111709$	$0,\!035535$	$0,\!115099$	$0,\!44194$
		m_3	0	$0,\!0032636$	$0{,}0106217$	$0,\!034491$	$0,\!112665$	$0,\!44207$
		m_2	0	$0,\!0031826$	$0{,}0104598$	$0,\!034299$	$0,\!112169$	$0,\!44222$
		m_1	0	$0,\!0031301$	$0,\!0103428$	$0,\!034045$	0,111389	
4	6	m_4	0	0,0026493	0,0084977	$0,\!027552$	$0,\!096813$	$0,\!41104$
		m_3	0	$0,\!0024250$	0,0080043	$0,\!026341$	$0,\!093515$	$0,\!41058$
		m_2	0	0,0023598	$0,\!0078355$	$0,\!026190$	$0,\!093174$	$0,\!41037$
		m_1	0	$0,\!0023147$	0,0077580	$0,\!025934$	$0,\!092371$	$0,\!40863$

Tabela B.16 – Coeficiente de arrasto frontal $C_{\rm Df}^{\mu}$ devido às tensões viscosas para as formas do Modelo 2C-NS. Soluções numéricas obtidas em diversas malhas (m.)

APÊNDICE C – CAMPOS DE PRESSÃO E DO NÚMERO DE MACH PARA OS PERFIS OTIMIZADOS DO MODELO 2C-NS

Este apêndice apresenta os resultados numéricos para os campos de pressão p e do número de Mach M referentes aos escoamentos de ar sobre os perfis otimizados do Modelo 2C-NS (Tab. 9.1). A solução numérica foi obtida com a malha mais fina e com os demais parâmetros de entrada apresentados no Apêndice B.

C.1 CAMPOS DE PRESSÃO

Figura C.1 – Campos de l
n (p/p_∞) para as formas otimizadas do Modelo 2C-NS.
 $M_\infty=1,5$ e $f_r=2.$ Parte I.

Figura C.2 – Campos de l
n (p/p_{∞}) para as formas otimizadas do Modelo 2C-NS.
 $M_{\infty}=1,5$ e $f_r=2.$ Parte II.

Figura C.3 – Campos de l
n (p/p_∞) para as formas otimizadas do Modelo 2C-NS.
 $M_\infty=3$ e $f_r=2.$ Parte I.

Figura C.4 – Campos de l
n (p/p_∞) para as formas otimizadas do Modelo 2C-NS.
 $M_\infty=3$ e $f_r=2.$ Parte II.

Figura C.5 – Campos de l
n (p/p_{∞}) para as formas otimizadas do Modelo 2C-NS.
 $M_{\infty}=6$ e $f_r=2.$

Figura C.6 – Campos de l
n (p/p_∞) para as formas otimizadas do Modelo 2C-NS.
 $M_\infty=1,5$ e $f_r=4.$

Figura C.7 – Campos de l
n (p/p_{∞}) para as formas otimizadas do Modelo 2C-NS.
 $M_{\infty}=3$ e $f_r=4.$

Figura C.8 – Campos de l
n (p/p_{∞}) para as formas otimizadas do Modelo 2C-NS.
 $M_{\infty}=6$ e $f_r=4.$ Parte I.

Figura C.9 – Campos de l
n (p/p_∞) para as formas otimizadas do Modelo 2C-NS.
 $M_\infty=6$ e $f_r=4.$ Parte II.

C.2 CAMPOS DO NÚMERO DE MACH

Figura C.10 – Campos de M para as formas otimizadas do Modelo 2C-NS. $M_\infty = 1,5$ e $f_r = 2.$ Parte I.

Figura C.11 – Campos de M para as formas otimizadas do Modelo 2C-NS. $M_\infty = 1,5$ e $f_r = 2.$ Parte II.

Figura C.12 – Campos de M para as formas otimizadas do Modelo 2C-NS. M_∞ = 3 e f_r = 2. Parte I.

Figura C.13 – Campos de M para as formas otimizadas do Modelo 2C-NS. $M_\infty=3$ e $f_r=2.$ Parte II.

Figura C.14 – Campos de M para as formas otimizadas do Modelo 2C-NS. $M_\infty=6$ e $f_r=2.$ Parte I.

Figura C.15 – Campos de M para as formas otimizadas do Modelo 2C-NS. $M_\infty=6$ e $f_r=2.$ Parte II.

Figura C.16 – Campos de M para as formas otimizadas do Modelo 2C-NS. $M_\infty = 1,5$ e $f_r = 4.$ Parte I.

Figura C.17 – Campos de M para as formas otimizadas do Modelo 2C-NS. $M_\infty = 1,5$ e $f_r = 4.$ Parte II.

Figura C.18 – Campos de M para as formas otimizadas do Modelo 2C-NS. M_∞ = 3 e $f_r = 4.$ Parte I.

Figura C.19 – Campos de M para as formas otimizadas do Modelo 2C-NS. $M_\infty=3$ e $f_r=4.$ Parte II.

Figura C.20 – Campos de M para as formas otimizadas do Modelo 2C-NS. $M_\infty=6$ e $f_r=4.$