THALITA MONTEIRO OBAL

UMA ABORDAGEM MULTIOBJETIVO AO PROBLEMA DA INTENSIDADE DE DOSE EM PLANEJAMENTOS DO TRATAMENTO DE CÂNCER POR RADIOTERAPIA

CURITIBA JUNHO 2011

THALITA MONTEIRO OBAL

UMA ABORDAGEM MULTIOBJETIVO AO PROBLEMA DA INTENSIDADE DE DOSE EM PLANEJAMENTOS DO TRATAMENTO DE CÂNCER POR RADIOTERAPIA

Dissertação apresentada ao Programa de Pós-Graduação em Métodos Numéricos em Engenharia, na Área de Programação Matemática, dos Setores de Tecnologia e Ciências Exatas da Universidade Federal do Paraná, como requisito parcial à obtenção do grau de Mestre em Ciências.

Orientadora: Prof^a Dr^a Neida Maria Patias Volpi

CURITIBA JUNHO 2011

Obal, Thalita Monteiro

Uma abordagem multiobjetivo ao problema da intensidade de dose em planejamentos do tratamento de cancer por radioterapia / Thalita Monteiro Obal. – Curitiba, 2011. 94 f. : il.; tab.

Dissertação (mestrado) – Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Orientador: Neida Maria Patias Volpi

1. Radioterapia - Imagem tridimensional. 2. Otimização combinatória. I. Volpi, Neida Maria Patias. II. Título.

CDD 516.64

TERMO DE APROVAÇÃO

THALITA MONTEIRO OBAL

UMA ABORDAGEM MULTIOBJETIVO AO PROBLEMA DA INTENSIDADE DE DOSE EM PLANEJAMENTOS DO TRATAMENTO DE CÂNCER POR RADIOTERAPIA

Dissertação aprovada como requisito parcial para obtenção do grau de Mestre em Ciências, pelo Programa de Pós-Graduação de Métodos Numéricos em Engenharia, Setores de Tecnologia e Ciências Exatas da Universidade Federal do Paraná, pela seguinte banca examinadora:

And 4 Ph

Profa Dra Neida Maria Patias Volpi Universidade Federal do Paraná

Profa Dra Helenice de Oliveira Florentino Silva Universidade Estadual Paulista Júlio de Mesquita Filho

Profa Dra Maria José de Paula Castanho Universidade Estadual do Centro-Oeste

inselmo Chaves Neto Universidade Federal do Parana

Sumário

1	Intr	odução	8						
	1.1	O problema	10						
	1.2	Estrutura do trabalho	10						
2	Fun	damentos teóricos em radioterapia	12						
	2.1	Tipos de radiações	13						
		2.1.1 Radiação corpuscular	13						
		2.1 2 Radiação eletromagnética .	15						
	2.2	Aparelhos utilizados em teleterapia	14						
		2.2.1 Cobalto-60	14						
		2.2.2 Aceleradores lineares	17						
	2.3	Radioterapia conformacional tridimensional	17						
	2.4	Acessórios auxiliares em teleterapia	17						
	2.5 Atenuação da energia								
		2.5.1 Fatores que podem influenciar a perda de energia	21						
	2.6	Definições dos volumes de tratamento em radioterapia.	23						
	2.7	Fases do tratamento	27						
	28	Considerações do Capítulo	27						
3	Tra	balhos recentes	30						
	3.1	Considerações do capítulo	33						
4	Met	todologia multicritério	34						
	4.1	Programação multiobietivo	34						
		4.1 1 O que é tomada de decisão multicritério ou multiobie-							
		tivo?	34						
		4.1.2 Solução ótima e solução não-dominada	35						
		4.1 3 Definiçõe8 relevante8	35						
		4.1 4 Técnicas de solução .	36						
	4.2	Considerações do Capítulo .	38						

5	For	mulaçã	io matemática	39
	5.1	Matriz	z de absorçãô da dose	40
	5.2	Formu	ulação do modelo multiobjetivo	45
		5.2.1	Restrições do modelo	45
		5.2.2	Funções objetivo	46
		5.2.3	Matriz de dose Y	47
	5.3	Mode	lo multiobjetivo	47
6	Apl	icações	49	
	6.1	Caso	teste	49
		6.1.1	Dados	49
		6.1.2	Resultados	53
		6.1.3	Considerações do caso teste	61
	6.2	Caso	real	62
		6.2.1	Tratamento de dados .	62
		6.2.2	Resultados	65
		6.2 3	Fronteira de eficiência	81
		6.2.4	Conclusões do caso real .	83
7	Cor	isidera	ções finais e trabalhos futuros	87
R¢	eferê	ncias E	Bibliográficas	89
A	NEX	ΟA		92

Lista de Figuras

1.1	Simulação da entrega da radiação	11
2.1	Cobalto 60	17
2.2	Figura esquematica da estrutura de um acelerador linear (em	17
<u> </u>	Colimador, wultilâminas	18
$\frac{2.5}{2.4}$	Campo de radiação com abertura das lâminas	19
2.1	Filtro utilizado no acelerador linear	20
2.6	Bloco padronizado para colimação de feixe	$\frac{20}{20}$
2.7	Bloco conformacionado para contorno específico de um paciente	$\overline{21}$
2.8	Cone utilizado em tratamentos de mama	21
2.9	Representação esquemática dos volumes em tratamento	27
2.10	Corte tomográfico da região da próstata	27
2.11	Reconstrução volumétrica tridimensional	28
91	Composição de compos	91
ა.1 ვე	Composição de campos	ง 20
ე.∠ ვვ	Calipos de l'adiação	-0⊿ -22
3.4	O problema do sequencimento das lâminas	33
0.1		00
5.1	Corte tomográfico com 11319 pixels - próstata	40
5.2	Exemplificação de uma rede com 80 pixels	41
5.3	Perfil de atenuação do feixe de radiação em água com relação	
	à profundidade	42
5.4	Imagem da matriz CT	44
6.1	Distribuição de dose por pixel - teste 5 (com CT)	57
6.2	Distribuição de dose por pixel - teste 5 (sem CT)	59
6.3	Imagem em alta resolução	63
6.4	Imagem obtida após redução no tamanho e na quantidade de	
	pixels da imagem	64
6.5	Seleção da região de interesse pelo comando roipoly no MATLAB $$	64

6.6	Regiões de interesse selecionadas. Em vermelho, o tumor; em	
	azul, os tecidos nobres (bexiga, cabeça de fêmur e reto); as	
	demais regiões são consideradas tecidos saudáveis	65
6.7	Representação esquemática da configuração do uso de quatro	
	campos de radiação	66
6.8	Distribuição de dose por pixel - teste 5 (com CT)	67
6.9	Distribuição de dose por pixel - teste 8 (com CT)	69
6.10	Distribuição de dose por pixel - teste 14 (com CT)	70
6.11	Distribuição de dose por pixel - teste 31 (com CT)	70
6.12	Distribuição de dose por pixel - teste 5 (sem CT)	71
6.13	Distribuição de dose por pixel - teste 8 (sem CT)	73
6.14	Distribuição de dose por pixel - teste 14 (sem CT)	73
6.15	Distribuição de dose por pixel - teste 31 (sem CT)	74
6.16	Representação esquemática da configuração com seis campos	
	de radiação	75
6.17	Distribuição de dose por pixel - teste 5 (com CT)	75
6.18	Distribuição de dose por pixel - teste 8 (com CT)	77
6.19	Distribuição de dose por pixel - teste 14 (com CT)	78
6.20	Distribuição de dose por pixel - teste 31 (com CT)	78
6.21	Distribuição de dose por pixel - teste 5 (sem CT)	80
6.22	Distribuição de dose por pixel - teste 8 (sem CT)	81
6.23	Distribuição de dose por pixel - teste 14 (sem CT)	81
6.24	Distribuição de dose por pixel - teste 31 (sem CT)	82
6.25	Fronteira de Pareto em relação aos desvios de dos e ϵ^- e θ^+	83
6.26	Fronteira de Pareto em relação aos desvios de dos e ϵ^- e δ^+	83
6.27	Comportamento das soluções em relação aos desvios de dose	
	$\epsilon^+ \in \theta^+ \dots \dots$	84
6.28	Comportamento das soluções em relação aos desvios de dose	
	$\epsilon^+ \neq \delta^+ \dots \dots$	84
6.29	Melhor solução em relação ao ponto ideal	85
6.30	Comparação entre os valores dos desvios de dose para 4 e 6	
	campos	86
6.31	Comparação entre os valores da dose por campo de radiação	
	para 4 e 6 campos	87

Lista de Tabelas

2.1	Lados dos campos quadrados equivalentes a campos retangulares	24
6.1	Valores obtidos nas execuções com a utilização da matriz ${\cal CT}$.	56
6.2	Valores obtidos nas execuções sem a utilização da matriz ${\cal CT}$.	61
6.3	Valores obtidos nas execuções com a utilização da matriz ${\cal CT}$	
	- Quatro campos	68
6.4	Valores obtidos nas execuções sem a utilização da matriz ${\cal CT}$	
	- Quatro campos	72
6.5	Valores obtidos nas execuções com a utilização da matriz ${\cal CT}$	
	- Seis campos	76
6.6	Valores obtidos nas execuções sem a utilização da matriz ${\cal CT}$	
	- Seis campos	79
7.1	Valores obtidos do fator PDP em procedimento de dosemetria	
	em CL-600	94

Resumo

A técnica de radioterapia tem sido uma das principais alternativas para o tratamento de diversos tipos de câncer na atualidade. Com o desenvolvimento tecnológico, principalmente tratando-se da radioterapia conformacional 3D, diversos cenários antes contraindicados, hoje são aceitáveis e recomendados. Um tratamento considerado adequado é aquele que permite com que a dose prescrita pelo médico chegue ao tumor de maneira que afete o mínimo possível os tecidos nobres e saudáveis. Desta forma, na fase do planejamento da radioterapia, problemas de otimização multiobjetivo aparecem. Este trabalho apresenta um modelo de programação multiobjetivo para o problema da intensidade de dose, que foi resolvido por método exato por meio do software MATLAB R2009b, utilizando a metodologia da função ponderada. Duas situações foram desenvolvidas, uma figurativa com efeito de melhor compreensão da metodologia utilizada, e outra utilizando dados reais, contando com apoio do Hospital Erasto Gaertner, Curitiba-PR. As fronteiras de Pareto, mostraram a importância do especialista decisor, que deve escolher entre uma dose mais próxima da prescrita, mesmo prejudicando os tecidos nobres e saudáveis, ou então proteger ao máximo os tecidos nobres e saudáveis, relaxando a dose necessária para destruir o tumor. Além disso, para comparação, foram realizados testes considerando a heterogeneidade dos tecidos irradiados e sem considerá-los, mostrando que pode existir uma diferença grande entre a dose emitida dependendo do tipo de tecido da região atingida por radiação.

Palavras Chave: Programação Multiobjetivo, Radioterapia Conformacional 3D, Método da Função Ponderada.

Abstract

The technique of radiotherapy has been one of the main alternatives for the treatment of several types of cancer today. With technological development, especially in the case of 3D conformal radiotherapy, several scenarios before contraindicated, are now acceptable and recommended. A treatment is considered appropriate with one that allows the dose prescribed by the doctor reaches the tumor in a manner that affects the minimum as possible the fine fabrics and healthy. In this way, during the planning of radiotherapy, multiobjective optimization problems appear. This paper presents a multiobjective programming model for the problem of dose intensity, which was solved by exact method using the software MATLAB R2009b, using the methodology of weighted function. Two situations have been developed, the first is a figurative with the purpose of better understanding of the methodology used, and the other using real data, with support from Erastus Gaertner Hospital, Curitiba-PR. The Pareto, showed the importance of expert decision-maker who must choose a dose closer to the prescribed, even harming healthy tissue masses, or to protect the most noble and healthy tissues, relaxing the dose required to destroy the tumor. In addition, for comparison, tests were performed considering the heterogeneity of tissues irradiated and not consider them, showing that there may be a big difference between the emitted dose depending on the fabric of the region affected by radiation.

Keywords: Multiobjective Programming, 3D Conformal Radiotherapy, Method of Weighted Function.

Capítulo 1 Introdução

A técnica de radioterapia é uma das mais importantes alternativas para o tratamento de câncer na atualidade. Este tipo de tratamento se fundamenta no bloqueio ou destruição da divisão celular das moléculas de DNA que compõe o tumor e consiste em irradiar o tumor de forma a maximizar o efeito de radiação sobre os tecidos afetados, minimizando os impactos nocivos sobre os demais tecidos do organismo. Para combater este mal, muito se tem investido em tecnologia e pesquisa.

Grande parte dos centros de tratamento de radioterapia brasileiros faz uso de modernos equipamentos para emissão de radiação, como, por exemplo, os aceleradores lineares. Esses aparelhos trabalham com apoio computacional, capazes de auxiliar o plano terapêutico para um planejamento de tratamento conformacional tridimensional.

Os sistemas computacionais de apoio à decisão desempenham um papel central ao permitirem a manipulação de imagens e a simulação dos efeitos de um esquema de tratamento, pois permitem a reconstrução volumétrica tridimensional do paciente, além de tornar capaz a experimentação de conjuntos de solução diferenciada para cada caso, em relação ao ângulo de incidência de radiação e à distribuição de dose.

Tais sistemas computacionais, entretanto, podem atingir custos de implantação e manutenção bastante elevados, além de não realizarem automaticamente procedimentos de otimização, o que fica a cargo da experiência e intuição do planejador ou pela abordagem de tentativa e erro, que pode gerar uma solução longe da ótima.

Diante das diversas decisões que o planejador deve tomar, sob o ponto de vista matemático, a radioterapia conformal 3D envolve situações em que problemas de otimização multiobjetivo de grande porte aparecem. Neste contexto há de se considerar três problemas:

- (i) O problema geométrico
- (ii) O problema da intensidade de dose
- (iii) O problema da abertura das lâminas.

Os três problemas tem o objetivo central de fornecer a dose necessária para eliminar o tumor, atingindo a menor área, com a menor dose possível os órgãos sadios, chamados tecidos nobres, assim como os demais tecidos do organismo, chamados tecidos sadios. Uma simulação de entrega de radiação é apresentada na Figura 1.1.

Figura 1.1: Simulação da entrega da radiação Fonte: Curso para técnicos em radioterapia [6]

Desta forma, a utilização de ferramentas que sejam capazes de gerar conjuntos de soluções otimizadas em relação ao impacto em áreas atingidas pela radiação é de grande ajuda ao planejador.

1.1 O problema

Embora diferentes abordagens tenham sido consideradas para os três problemas citados no planejamento do tratamento em radioterapia, a maioria dos que abordam o problema da intensidade de dose em radioterapia conformal 3D ([12],[13],[7]), formula os modelos tendo como base a radioterapia com intensidade modulada (IMRT), descrita brevemente a seguir.

> Radioterapia com Intensidade Modulada, conhecida como IMRT, é um modelo avançado de radioterapia de alta precisão que utiliza aceleradores de Raio-X controlados computacionalmente para determinar precisamente a dose de radiação no tumor. O plano de tratamento é repassado individualmente ao paciente baseado num plano de tratamento 3D, contornando o tumor. O plano de tratamento é cuidadosamente feito baseado em imagens tomográficas computacionais 3D do paciente, em conjunto com a dose calculada computacionalmente, para determinar a intensidade de dose padrão que será melhor conformacionada com o desenho do tumor[7].

Tendo em vista a realidade encontrada em muitos hospitais brasileiros, que não desfrutam desta tecnologia, o presente trabalho busca modelar o problema da intensidade de dose para o planejamento de radioterapia conformacional 3D, num acelerador linear que não faz planejamento IMRT.

1.2 Estrutura do trabalho

O presente trabalho busca estudar e desenvolver um modelo de representação matemática para o problema da intensidade de dose no planejamento do tratamento de câncer por radioterapia conformacional 3D. Para isto, estruturou-se da seguinte maneira.

O capítulo 2 apresenta alguns fundamentos teóricos em radioterapia, que vão desde os tipos de radiação utilizados, às fases do tratamento, em um tratamento de radioterapia conformacional tridimensional.

O capítulo 3 trata de alguns trabalhos recentes, que tem em comum o objetivo de buscar soluções para problemas envolvidos no planejamento da radioterapia.

O capítulo 4 apresenta alguns fundamentos da programação multiobjetivo.

O capítulo 5 introduz a formulação matemática para o problema da intesidade de dose em radioterapia, assim como o modelo elaborado pela autora. O capítulo 6 descreve as aplicações da metodologia uilizada, primeiramente para uma situação figurativa e, em seguida, com informações reais obtidas nos hospitais. O método da função ponderada foi utilizado para buscar soluções para o modelo. Na sequência, os resultados são discutidos por meio das fronteiras de Pareto.

No capítulo 7 são feitas as considerações finais e sugestões de trabalhos futuros.

Capítulo 2

Fundamentos teóricos em radioterapia

Câncer é o nome dado a um conjunto de doenças que tem em comum o crescimento desordenado de células, que invadem tecidos e órgãos. Dividindose rapidamente, estas células tendem a ser muito agressivas e incontroláveis, determinando a formação de tumores malignos, que podem espalhar-se para outras regiões do corpo.

A técnica de radioterapia é uma das mais utilizadas na atualidade para combater diversos tipos de câncer. Esta técnica pode ser usada como tratamento paliativo (quando a cura não é possível e o objetivo é controle local da doença) ou como tratamento terapêutico (quando a terapia pode ser curativa). Radioterapia também tem aplicações em condições não-malignas, porém seu uso nesses casos é limitado em parte pelas preocupações sobre o risco de câncer induzido por radiação [21]. A radioterapia pode ser utilizada como única fonte de tratamento, como também se compor com outras estratégias.

O tratamento radioterápico pode ser subcategorizado em duas abordagens gerais: a braquiterapia e a teleterapia. A braquiterapia, que está fora do escopo deste trabalho, é a forma de tratamento em que pequenas sementes radioativas ou fontes de radiação são depositadas ou implantadas no corpo do paciente. A teleterapia, objeto do presente trabalho, envolve a aplicação de radiação no tumor por meio de uma fonte radioativa externa ao paciente. A radiação, neste caso, pode ser gerada por um acelerador linear ou por uma fonte radioativa (em geral Cobalto 60).

Com a evolução e aperfeiçoamento tecnológico, situações antes contraindicadas ao uso da técnica, hoje passam a ser elegíveis. A entrega de radiação tem se tornado cada vez mais precisa e, consequentemente, capaz de trabalhar com altas doses localizadas e causar poucos efeitos colaterais.

2.1 Tipos de radiações

A ação da radiação com a matéria mostrou que os efeitos eram mais agressivos nas células cancerígenas que em células sadias. Este tipo de radiação foi denominada radiação ionizante. Tal radiação possui energia suficientemente energética para deslocar elétrons de suas órbitas e fazer com que eles penetrem no tecido irradiado depositando energia.

Da interação das radiações ionizantes com a matéria, resulta a transferência da energia existente na radiação para os átomos do meio através do qual a radiação está passando. Podem-se dividir as radiações ionizantes em corpusculares e eletromagnéticas.

As radiações corpusculares, por terem carga (positiva ou negativa) e massa, cedem sua energia cinética através de colisões com os átomos do meio em que ela passa.

Já a radiação eletromagnética (fótons) sofre atenuação correspondente a uma diminuição do número de fótons emergentes do meio.

Portanto, conceitua-se a radiação ionizante como qualquer tipo de radiação capaz de remover um elétron orbital de um átomo ou transportar elétrons para níveis energéticos superiores (órbitas mais externas), chamados de ionização ou excitação.

2.1.1 Radiação corpuscular

A radiação corpuscular envolve dois tipos de partículas, a saber:

- Partícula alfa (α) é uma partícula equivalente a um núcleo Hélio (2 prótons e 2 nêutrons), com carga positiva. Devido à sua alta transferência linear de energia, a radiação α cede a sua energia rapidamente para o meio, tornando o seu poder de penetração no meio muito limitado.
- Partícula beta (β) é um átomo com excesso de prótons ou nêutrons, em seu núcleo, que tende a se estabilizar, levando à emissão de partículas carregadas negativamente ou positivamente. Dependendo da sua energia, ela pode alcançar de 1 a 2 cm no tecido biológico.

2.1.2 Radiação eletromagnética

São ondas eletromagnéticas de alta energia. Podem ser de origem nuclear, geradas por isótopos radioativos, ou de origem extranuclear, produzidas na eletrosfera. Quando é de origem nuclear, um átomo com excesso de energia no seu núcleo (excitado) decai para um estado de energia menor, emitindo

um fóton, e quando tem origem extranuclear as ondas são produzidas por equipamentos especiais, tais como: aparelhos de Raios X ou Aceleradores Lineares. Essas radiações eletromagnéticas não possuem massa nem carga elétrica e podem ser:

- Radiação gama (γ) são pacotes de energia, de origem nuclear, com grande poder de penetração. A radiação gama é liberada por meio do excesso de energia de um núcleo atômico instável.
- Radiação X é produzida quando elétrons rápidos se chocam com a eletrosfera de um átomo (alvo). A energia cinética desse elétron é transformada em energia eletromagnética [5].

2.2 Aparelhos utilizados em teleterapia

Alguns aparelhos utilizados no tratamento radioterápico estão descritos a seguir.

2.2.1 Cobalto-60

É uma fonte de radiação que emite fótons sob a forma de radiação, com a energia de 1,17 MeV e 1,33 MeV [5].

Figura 2.1: Cobalto 60 Fonte: SantAnna [19]

Como a fonte é radioativa, a emissão de fótons é contínua, ou seja, a fonte não para de emitir fótons. Quando a máquina está desligada, a fonte permanece guardada numa blindagem adequada que bloqueia a saída dos raios γ (Figura 2.1) [6].

2.2.2 Aceleradores lineares

O acelerador linear (Figura 2.2) é um aparelho que usa ondas eletromagnéticas de elevada frequência para acelerar elétrons (produzidos por um canhão eletrônico) a energias da ordem de dezenas de Mev, através de uma estrutura linear de aceleração [14].

Fonte: SantAnna [19]

Este feixe de elétrons de alta energia pode ser usado para tratamento de lesões superficiais ou ser obrigado a colidir num alvo e originar, por interação com núcleos deste, raios X de alta energia.

Aceleradores lineares geram fótons de energia muito maiores do que os de Cobalto-60. Fótons de alta energia liberam menos dose para a pele do paciente.

2.3 Radioterapia conformacional tridimensional

A radioterapia conformacional tridimensional, ou radioterapia conformal 3D, é uma modalidade técnica da radioterapia que permite que o feixe de radiação produzido por um acelerador linear, possa adquirir aproximadamente o formato do volume tumoral a ser irradiado. Ou seja: a radioterapia conformal 3D faz com que o feixe que incide retangular sobre um paciente quando tratado de forma convencional, seja modelado de acordo às particularidades geométricas de cada tumor ou órgão a ser tratado, nas mais variadas angulações.

Para que este efeito ocorra, é necessário contar com sofisticados recursos técnicos. Entre eles estão: a aquisição de cortes tomográficos do paciente no processo de simulação, o uso de objetos auxiliares, o uso de programas computadorizados para reconstrução volumétrica tridimensional e a modelação do feixe durante as aplicações da radioterapia.

Os equipamentos de radioterapia conformacional utilizados na maioria dos hospitais brasileiros atualmente, possuem colimadores multilâminas, vistos na Figura 2.3. Tais equipamentos são dotados de lâminas móveis capazes de conformar a região do tumor e bloquear certas áreas do feixe de radiação. Com essa tecnologia, a radiação toma a forma da geometria do tumor, de maneira que o feixe de radiação contorne o tumor sob o ponto de vista do irradiador, qualquer que seja sua posição no espaço.

Figura 2.3: Colimador multilâminas Fonte: Holder (2003)

Esta evolução da radioterapia aumenta a curabilidade, pois permite que o paciente seja submetido a doses mais elevadas de radiação no tumor e ao mesmo tempo minimiza danos agudos ou tardios aos tecidos vizinhos, diminuindo, assim, as complicações e proporcionando aos pacientes maiores chances de cura e menos efeitos adversos do tratamento.

Na Figura 2.3 pode-se observar a colimação de um campo de radiação ao tumor, que faz com que um menor volume de tecido sadio seja afetado. É claro que, dependendo da localização do tumor no organismo, não é possivel evitar que a radiação passe por órgãos sadios. O que se pode fazer é reduzir tais impactos com um estudo geométrico prévio.

Figura 2.4: Campo de radiação com abertura das lâminas Fonte: SantAnna [19]

2.4 Acessórios auxiliares em teleterapia

Com finalidade de produzir um feixe de radiação com as características desejadas para cada tipo de tratamento, alguns objetos podem auxiliar o profissional de radioterapia na execução de seu trabalho. Estes objetos são: filtros, blocos, bandejas e cones, descritos a seguir.

• Filtro

Os filtros compensadores de tecido (Figura 2.5) são muito usados para homogeneizar a dose num determinado local, também corrigindo a falta de tecido numa região a ser tratada.

Tais filtros são absorvedores colocados entre a saída do feixe e o paciente. Seu posicionamento deve ser tal que a distância entre o filtro e o paciente seja de no mínimo 30cm. Dessa maneira evita-se que a contaminação de elétrons ocasionada pela presença do absorvedor atinja a pele do paciente [15].

• Blocos

Em muitas técnicas de tratamento os campos de irradiação requeridos são irregulares, embora a abertura do sistema de colimação interno somente possibilite aberturas em formatos quadrados ou retangulares. Para que o campo de irradiação tome esses contornos, em geral utilizam-se blocos de chumbo padronizados (Figura 2.6), ou ainda, blocos de uma liga especial fabricados para um paciente específico (Figura 2.7).

Figura 2.5: Filtro utilizado no acelerador linear Fonte: Salomon (2006)

Recentemente tem sido progressiva a aquisição de colimadores de múltiplas folhas (Figura 2.3), ou multilâminas, pelos centros de radioterapia. Esses acessórios permitem que o feixe tome os mais diversos contornos. Para isso o sistema é dotado de 64 ou 128 lâminas, com espessura variando de 0,5 a 1cm, que ficam posicionadas na saída do feixe. Cada uma das lâminas possui um mecanismo de abertura independente.

Figura 2.6: Bloco padronizado para colimação de feixe Fonte: Muller (2005)

Figura 2.7: Bloco conformacionado para contorno específico de um paciente Fonte: Cecílio (2008)

• Bandeja

A bandeja, geralmente feita de acrílico, é um acessório utilizado para suportar os blocos de proteção, sendo que sua presença resulta em diminuição na taxa de dose.

• Cone

Usados em tratamentos de câncer de mama, os cones (Figura 2.8) possuem proteção de chumbo de forma que a área do campo seja reduzida à metade. O lado protegido tem a função de evitar que o pulmão do paciente receba doses altas por ocasião do tratamento.

Figura 2.8: Cone utilizado em tratamentos de mama Fonte: Muller (2005)

2.5 Atenuação da energia

Para que o tumor receba a quantidade de dose prescrita pelo médico, deve-se considerar que a energia emitida pelo aparelho não é a mesma que chegará ao tumor.

Devido aos acessórios utilizados, à distância percorrida pelo feixe de radiação ou aos diversos tipos de tecidos pelos quais haverá passagem de radiação, alguns fatores são gerados, os quais quantificam a atenuação da dose emitida pela fonte de radiação.

2.5.1 Fatores que podem influenciar a perda de energia

Para o cálculo da dose em radioterapia convencional ou 3D, o equipamento ao ser instalado deve passar por inúmeras medidas dosimétricas para avaliação e levantamento qualitativo e quantitativo do feixe radioativo, processo que denomina-se dosimetria de aceite. Nesta fase são geradas tabelas de fluxo do rendimento do feixe para cada tamanho de campo, valores de relação percentual de dose na profundidade para cada tamanho de campo, fatores de atenuação do feixe por blocos, filtros ou outros acessórios e a calibração em termos de dose absoluta [9].

Levando em conta os parâmetros do feixe de radiação obtidos no aceite do equipamento, diferentes tipos de fatores envolvidos nos tratamentos em aceleradores são gerados, distinguindo-se como:

- a) Tipo de tratamento em relação à distância;
- b) Tamanho de campo
- c) Acessórios utilizados

Cada um destes fatores é descrito brevemente a seguir [4] [15].

2.5.1.1) Fatores devido ao tipo de tratamento em relação à distância:

a) Distância foco-pele constante (SSD)

Para tratamento distância foco-pele constante, utiliza-se o fator de profundidade de dose profunda (PDP):

$$PDP(p, S, f, hv) = \frac{D_p(p, S, f, hv)}{D_0(p, S, f, hv)}.100$$
(2.1)

Em que:

- $-\ D_p$: dose absorvida na profundidade p
- $-\ D_0:$ dose absorvida na profundidade de dose máxima
- p: profundidade
- -S: área da abertura do campo do colimador
- -f: distância do foco ao isocentro do tumor
- -hv: energia utilizada no tratamento

Os valores tabelados do cálculo de dose na profundidade de dose máxima, também chamado de equilíbrio eletrônico, estão disponibilizados no anexo A.

b) Distância foco-isocentro constante (SAD)

Para tratamento isocêntrico, utiliza-se o fator relação tecido máximo (TMR):

$$TMR(p, S_Q, hv) = \frac{PDP(p, S, f, hv)}{100} \cdot \frac{FSP(S, hv)}{FSP(S_Q, hv)} \cdot \left(\frac{f+p}{f-p_{max}}\right)^2$$
(2.2)

Em que:

- p: profundidade
- -S: área da abertura do campo do colimador
- -hv: energia utilizada no tratamento
- $-S_Q$: área do campo quadrado na profundidade Q
- $-\ f$: distância isocêntrica, que é de 100cm para os aceleradores lineares
- p_{max} : profundidade de dose máxima $FSP = \frac{D_0}{D_0'}$
- D_0 : dose na profundidade de máximo
- -
 D_0^\prime : dose no ar (mantidas as condições de equilíbrio eletrônico) na mesma posição de
 D_0

2.5.1.2) Tamanho de campo

Muitas vezes os tamanhos de campo de radiação não são quadrados. Contudo, por convenção, faz-se a equivalência da área de um campo retangular a um campo quadrado. Pelo método de Clarkson:

A relação entre medidas dos lados do campo retangular e do campo quadrado equivalente encontra-se na Tabela 2.1 [15].

2.5.1.3) Mudanças no feixe ocasionadas por outros acessórios.

A presença de qualquer acessório entre o foco e o volume alvo resultará em mudança na taxa de dose. A seguir será apresentado cada mudança em função do acessório.

a) Fator de espalhamento do colimador (F_c) - é a grandeza que quantifica a variação de dose devido à presença do sistema de colimação interno do equipamento irradiador.

Lado Maior (cm)					Lado	Menor	r (<i>cm</i>))			
	1, 0	1, 5	2, 0	2, 5	3,0	3, 5	4, 0	4, 5	5,0	5, 5	6, 0
1,0	1, 0										
1, 5	1, 2	1,5									
2,0	1, 3	1, 7	2, 0								
2, 5	1, 4	1, 9	2, 2	2, 5							
3,0	1, 5	2, 0	2, 4	2,7	3,0						
3, 5	1, 6	2, 1	2, 5	2,9	3, 2	3, 5					
4,0	1, 6	2, 2	2,7	3, 1	3, 4	3,7	4, 0				
4,5	1, 6	2, 3	2, 8	3, 2	3, 6	3, 9	4, 2	4, 5			
5,0	1,7	2,3	2, 8	3, 3	3, 8	4, 1	4, 4	4,7	5,0		
5, 5	1,7	2, 4	2,9	3, 4	3, 9	4, 3	4, 6	5, 0	5, 2	5, 5	
6,0	1, 7	2, 4	$\overline{3,0}$	3, 5	4, 0	4, 4	4, 8	5, 1	5, 5	5, 7	6, 0

Tabela 2.1: Lados dos campos quadrados equivalentes a campos retangulares

b) Fator de espalhamento do objeto simulador (F_p) - é a grandeza que quantifica a variação na dose depositada devido à presença do objeto simulador, pertencente ao sistema dosimétrico utilizado. Este fator pode ser definido como o quociente entre a taxa de dose no objeto simulador (D_0) para um campo dado, na profundidade de dose máxima, e a taxa de dose no ar (D_{ar}) em condições idênticas.

$$F_p = \frac{D_0}{D_{ar}} \tag{2.4}$$

- c) Fator rendimento (F_r) no acelerador linear 2100C, as medidas do fator de atenuação do sistema interno de colimação (F_c) e do fator de atenuação do objeto simulador (F_p) são reunidos em uma única grandeza, o fator de rendimento (F_r) .
- d) Fator de atenuação do filtro (F_f) é o quociente entre a taxa de dose para uma determinada abertura de feixe e profundidade com a presença do filtro (D_2) , e a taxa de dose obtida nas mesmas condições sem a presença do mesmo (D_1) :

$$F_f = \frac{D_2}{D_1} \tag{2.5}$$

e) Fator de atenuação da bandeja (F_b) - é o quociente entre a taxa de dose para uma determinada abertura de feixe e profundidade com a presença da bandeja (D_2) , e a taxa de dose obtida nas mesmas

condições sem sua presença (D_1) :

$$F_b = \frac{D_2}{D_1} \tag{2.6}$$

f) Fator cone - usado em tratamento de mama.

2.6 Definições dos volumes de tratamento em radioterapia

Para descrever um tratamento com radiações ionizantes, são necessários, no mínimo, três parâmetros: volume tratado, dose de radiação e técnica utilizada. Esses parâmetros devem ser aplicados seguindo a norma ICRU-50 (Internacional Commission on Radiation Units and Measurements), publicada em 1993.

Recomendações do ICRU 50 quanto à definição dos volumes de tratamento estão descritos a seguir [6].

O processo de determinação do volume de tratamento consiste de várias etapas. Dois volumes devem ser definidos antes de se começar o planejamento. Esses volumes são:

• GTV ("gross tumor volume"/ volume tumoral)

O GTV é o volume palpável ou visível do tumor. É neste volume em que há maior concentração de células malignas.

• CTV ("clinical target volume"/ volume alvo)

O CTV corresponde ao volume de tecido que contém um GTV visível e/ou doença maligna microscópica subclínica, que pode ser considerada como a disseminação presumida da doença.

Durante o processo de planejamento, mais dois volumes são definidos:

• PTV ("planning target volume"/ volume de planejamento)

Para assegurar que todos os tecidos inclusos no CTV recebem a dose prescrita, é necessário irradiar um volume geometricamente maior que o CTV. O PTV é o CTV mais as margens de erros. Estas margens consideram, por exemplo, o movimento do paciente, a variação no formato do tecido que contém o CTV e as variações das características geométricas do feixe. • Órgãos de Risco

É necessário também demarcar os órgãos sadios circunvizinhos à região tumoral. Embora não seja possível um tratamento em que a dose não afete nenhum órgão sadio, procura-se um bom plano de tratamento que atinja o mínimo possível de áreas não afetadas por tumor.

Com os resultados do planejamento, passam a existir mais dois volumes:

• Volume tratado

Idealmente a dose deveria ser liberada somente no PTV, mas devido às limitações das técnicas de tratamento isso não é alcançado e permite a definição do volume tratado.

Volume tratado é o volume englobado por uma isodose escolhida pelo físico médico como sendo apropriada para se alcançar a proposta do tratamento.

• Volume irradiado

Volume irradiado é o volume de tecido que recebe uma dose considerada significativa em relação à tolerância dos tecidos normais. Esse volume depende da técnica de tratamento utilizada.

Desta forma, uma representação esquemática dos volumes em tratamento é exibido na Figura 2.9.

Figura 2.9: Representação esquemática dos volumes em tratamento Fonte: Curso para Técnicos em Radioterapia [6]

2.7 Fases do tratamento

Das etapas da radioterapia, a primeira é o diagnóstico da doença. Quando o tratamento selecionado pela equipe médica é a radioterapia conformal 3D, as fases seguintes consistem basicamente em: (i) obtenção das imagens do paciente; (ii) determinação do isocentro; (iii) delimitação dos órgãos de interesse; (iv) determinação da dose de radiação a ser aplicada; (v) planejamento da entrega de radiação; (vi) aprovação do planejamento; (vii) entrega da radiação no paciente.

Cada uma destas fases está descrita brevemente a seguir.

(i) Obtenção das imagens do paciente:

As imagens são adquiridas por meio de tomografia computadorizada e são disponibilizadas em formato DICOM, uma plataforma em que é possível a visualização e manipulação de imagens médicas. Um exemplo de um corte tomográfico da região da próstata é apresentado na Figura 2.10.

Figura 2.10: Corte tomográfico da região da próstata Fonte: Hospital Erasto Gaertner

(ii) Delimitação do isocentro

A partir da visualização das imagens adquiridas pelo exame de tomografia, o dosimetrista analisa em qual dos cortes está localizado o isocentro do tumor. Então faz marcações na pele do paciente que servirão de indicativos para o posicionamento do aparelho que fará a entrega da radiação em todo tratamento.

(iii) Delimitação dos órgãos de interesse

O planejamento radioterápico é realizado com auxílio de um software de planejamento em três dimensões, o qual utiliza o protocolo de comunicação DICOM para ler os dados do aparelho de tomografia computadorizada. Fazendo uso de um software especializado, o dosimetrista marca a região do tumor visível (GTV) no corte de tomografia computadorizada. Marca também a região na vizinhança do GTV que está acometida pela doença, mas não é visível no exame (CTV). Este volume normalmente se movimenta devido a sua fisiologia alterando sua posição e forma em relação à imagem obtida na tomografia. Para que este movimento seja levado em consideração, marca-se o PTV. Além desses volumes, também são marcados os órgãos de risco que estão localizados próximos ao tumor e devem ser protegidos durante a etapa do planejamento.

Portanto, nesta fase é realizada a reconstrução volumétrica tridimensional das possíveis regiões afetadas por radiação durante o tratamento de radioterapia. Na Figura 2.11 pode-se observar um exemplo de reconstrução volumétrica tridimensional de um tumor de próstata em que são demarcados a bexiga (roxo), o PTV (vermelho) e o reto (verde).

Figura 2.11: Reconstrução volumétrica tridimensional Fonte: SantAnna [19]

(iv) Determinação da dose de radiação a ser aplicada

Fase que cabe ao médico oncologista, que determinará a dose total e diária a ser aplicada, baseado em alguns princípios, tais como: avaliação da extensão tumoral por meio de exames clínicos e de imagem; condições físicas do paciente; conhecimento das características específicas de cada tumor a ser tratado, entre outros.

(v) Plano de tratamento da entrega de radiação

Tendo a informação da dose que deverá ser aplicada e da quantidade de campos que serão utilizados, o físico-médico poderá fazer o planejamento da entrega de radiação utilizando um sistema de planejamento 3D, com o objetivo de liberar a dose prescrita no tumor, poupando o máximo de tecido sadio.

É nesta fase que ele escolhe o melhor posicionamento do gantry para cada campo, ou seja, a modelação do feixe durante as aplicações da radioterapia, assim como a distribuição de dose por campo. Estas escolhas são baseadas na experiência e intuição do planejador ou pela abordagem de tentativa e erro.

Desta forma, permeando a fase do item (v), problemas que merecem abordagem matemática aparecem.

(vi) Aprovação do planejamento

O médico oncologista é quem aprova o planejamento desenvolvido pelo físico-médico.

(vii) Entrega da radiação no paciente

Após aprovação, o planejamento pode ser aplicado.

2.8 Considerações do Capítulo

Neste capítulo foram apresentados alguns fundamentos teóricos em radioterapia que servem de base para este trabalho.

Inicialmente abordou-se os tipos de radiação presentes no tratamento de radioterapia (seção 2.1) e os aparelhos usados para emissão de radiação (seção 2.2).

Como premissa do trabalho, a Radioterapia Conformacional 3D, descrita na seção 2.3.

Em seguida, na seção 2.4, mostrou-se alguns acessórios auxiliares no tratamento, assim como (seção 2.5) os parâmetros de atenuação da dose gerados por estes acessórios e demais fatores envolvidos.

Na seção 2.6 foram definidos os volumes de tratamento. Na sequência, apresentaram-se as fases de um tratamento com radioterapia conformacional 3D.

Enfim, para que seja possível a elaboração de um modelo matemático de auxílio na tomada de decisão do planejamento de radioterapia, é necessário conhecer os fundamentos da prática. Mais especificamente, como o objetivo desta pesquisa permeia o problema da intensidade de dose, as informações apresentadas são de fundamental importância para o pesquisador.

Capítulo 3

Trabalhos recentes

Tendo em vista o estágio (v) do planejamento de entrega da radiação para um processo de radioterapia conformal 3D, descritos na seção 2.7, a literatura reporta a busca pela solução dos três problemas:

- i) O problema geométrico;
- ii) O problema da intensidade da dose;
- iii) O problema da abertura das lâminas.

O primeiro problema visa determinar o conjunto ótimo de direções para os feixes de radiação, como se observa na Figura 3.1. O problema consiste em emitir alta dosagem de radiação no tumor, suficiente para sua eliminação de forma que minimize a quantidade de radiação nos tecidos vizinhos ao tumor, reduzindo assim complicações nestas áreas críticas.

Figura 3.1: Composição de campos Fonte: Caprioglio [8]

Nos últimos anos, diversas abordagens têm sido dadas a tal problema, destacando-se o trabalho de Goldbarg [12]. O autor propõe, de maneira inovadora, que o problema da seleção das direções dos feixes seja feita por uma técnica denominada de isocentros variáveis. O modelo de programação matemática multiobjetivo é solucionado, para fins comparativos, por meio do Algoritmo Transgenético, introduzido pelo autor, e também com um Algoritmo Genético Multiobjetivo. Uma solução apresentada por Goldbarg pode ser visualizada na Figura 3.2.

Figura 3.2: Campos de radiação Fonte: Goldbarg (2009)

Outra abordagem, também para o primeiro problema, é apresentada por Araújo [1]. Ele propõe um modelo genérico de otimização para o plano de tratamento radioterápico, e utiliza três metaheurísticas (MOGA, MOSA E MOTS) para buscar suas soluções.

Em [17], encontra-se um algoritmo para otimização do ângulo do feixe de radiação, baseado na minimização da interseção do volume do feixe de radiação nos órgãos de risco. O algoritmo foi aplicado para otimização coplanar dos arranjos de feixes espaçados regularmente, de modo que estes arranjos sejam comumente utilizados em tratamento de próstata. Neste trabalho os autores apresentam a forte correlação existente entre a minimização da interseção do volume do feixe de radiação nos órgãos de risco com a medida alta de dose.

Com os feixes já definidos, o problema da intensidade de dose busca determinar a melhor distribuição de dose por campo de radiação de modo que a dose que chega ao tumor seja a prescrita pelo médico e a dose que chega aos demais tecidos seja a mínima possível. Para este problema, os trabalhos de Holder [13], e Barboza [3] merecem destaque. Um modelo de programação linear é introduzido no planejamento radioterápico, incorporando variáveis elásticas e é solucionado pelo método de pontos interiores. Em Viana [20] encontra-se o problema da intensidade de dose proposto em [13], levando em consideração fatores para a correção da heterogeneidade na composição dos diferentes tipos de tecidos irradiados, baseados nas proporções entre seus diferentes coeficientes de atenuação linear.

Com as doses já planejadas, o terceiro problema procura estabelecer a melhor abertura das lâminas em colimadores multilâminas de modo a tomar a forma do tumor (Figura 3.3), atingindo assim a menor quantidade de tecidos saudáveis e nobres. Este problema é matematicamente abordado em [7]. A formulação para o problema é dada quando se encontra uma decomposição de uma matriz de inteiros em uma sequência ponderada de matrizes binárias cujas linhas satisfazem a propriedade de 1's consecutivos, buscando minimizar a cardinalidade da decomposição (Figura 3.4).

Figura 3.3: Colimador multilâminas Fonte: Cambazard (2009)

									= 2									÷									+3								
1	0	3	3	0	2	2	0	0]		[0	0	0	0	1	1	0	0	1	[0	0	0	0	0	0	0	01		[0	1	1	0	0	0	0	0
	0	0	5	5	6	4 5	4 2	1		0	0	1	1	1	0	0	0		0	0	0	0	1	1	1	1		6	1	1	1	1	1	1	0
	Ö.	4	4	6	5	5	2	0		0	0	0	1	1	1	1	0		0	1	1	1	0	0	0	0		0	1	1	1	1	1	0	0
	0	3	3	2	3	2	2	0	=2	0	0	0	1	1	1	1	0	+	0	0	0	0	1	0	0	0	+3	0	1	1	0	0	0	0	0
	0	5	5	1	1	1	0	0		0	1	1	0	0	0	0	0		0	0	0	1	1	1	0	0		0	1	1	0	0	0	0	0
																															_	_		-	- 0
	0	3	3	0	0	0	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		10	1	1	0	0	0	0	

Figura 3.4: O problema do sequencimento das lâminas Fonte: Cambazard (2009)

3.1 Considerações do capítulo

Com a revisão da literatura apresentada neste capítulo, pode-se perceber que o problema do planejamento do tratamento radioterápico está em discussão em diversos centros de pesquisa brasileiros, assim como de muitos outros países, no que se refere ao tratamento matemático dado.

Apresentando diferentes abordagens de pesquisa de otimização, a proposta dos trabalhos sempre é a busca pela solução dos problemas inseridos no âmbito do planejamento do tratamento de câncer por radioterapia.

Vale ressaltar que os problemas discutidos ((i) o problema geométrico; (ii) o problema da entrega da radiação e (iii) o problema da abertura das lâminas) podem ser tratados separadamente, embora estejam intrinsecamente interligados, ou ainda podem fazer parte de um único modelo de otimização.

Com a evolução matemática, a solução destes modelos tem muitas vezes superado as soluções obtidas pelos especialistas, principalmente pelo pouco tempo empreendido.

Com a evolução da tecnologia, hoje há possibilidade de inserir a solução destes problemas aos planejamentos desenvolvidos nos centros de tratamento em radioterapia.

Então, percebendo a necessidade de melhorar cada vez mais os resultados e pesquisas nesta área, esta pesquisa foi desenvolvida.

Capítulo 4

Metodologia multicritério

4.1 Programação multiobjetivo

4.1.1 O que é tomada de decisão multicritério ou multiobjetivo?

De acordo com Bana [2], "A tomada de decisão é, de fato, parte integrante da vida quotidiana. Mas é também uma atividade intrinsecamente complexa e potencialmente das mais controversas, em que temos de escolher naturalmente não apenas entre alternativas de ação, mas também entre pontos de vista e formas de avaliar essas ações, e por fim, de considerar toda uma multiplicidade de fatores direta e indiretamente relacionados com a decisão a tomar."

Para ressaltar a importância dos multicritérios ou multiobjetivos na tomada de decisão "...talvez baste que cada um pergunte a si próprio, qual foi a última vez em que tomou uma decisão com base num único critério" [2].

A tomada de decisão pode ser de forma simples definida como um esforço para resolver o dilema dos objetivos conflituosos, cuja presença impede a existência da solução ótima e conduz para a procura da solução de melhor compromisso. Daí, a grande importância dos métodos multicritérios (ou multiobjetivos) como instrumentos de apoio à tomada de decisões" [2].

Seja a forma geral para um problema multiobjetivo, conforme apresentado em 4.1.
$$Otimizar[f_1(x), f_2(x), ..., f_M(x)]$$

s. a

$$\begin{cases} g_j(x) \ge 0 & j = 1, ..., J \\ h_k(x) = 0 & k = 1, ..., K \\ x_i^L \le x_i \le x_i^U & i = 1, ..., n \end{cases}$$
(4.1)

Com $f_m(\cdot): \Re^n \to \Re, g_j(\cdot): \Re^n \to \Re \in h_k(\cdot): \Re^n \to \Re \in x \in \Re^n.$

Este modelo procura a otimização simultânea de múltiplos objetivos. Em problemas com mais de um objetivo conflitante, em geral, não há uma solução ótima, mas existe um número de soluções boas, chamadas de soluções de compromisso ou soluções não-dominadas. Sem mais informações, não há nenhuma solução deste conjunto de soluções que possa ser considerada melhor que outra. Esta é a fundamental diferença entre um problema de otimização com único objetivo e multiobjetivo [10], [11].

4.1.2 Solução ótima e solução não-dominada

Alguns conceitos da otimização monocritério são modificados para resolver problemas multicritérios. A solução ótima é substituída pelo conceito de solução não-dominada que é uma solução que, se quiser melhorá-la para um critério, deve necessariamente piorar para outro.

Nos modelos multicritérios o conjunto de soluções não dominadas é o que interessa. Os métodos multicritérios são utilizados ou para reduzir o conjunto de soluções não dominadas, e/ou ordenam o conjunto, e/ou agrupam em classes.

4.1.3 Definições relevantes

Seja o modelo multiobjetivo (4.1) considerado de minimização dos objetivos. Algumas definições relevantes na programação multiobjetivo são dadas a seguir, que analogamente se fazem para um problema de maximização.

- Pareto-dominância: uma solução $x^{(1)}$ é dita dominar uma solução $x^{(2)}$, se ambas as condições a seguir forem satisfeitas:
 - 1. a solução $x^{(1)}$ não é pior que a solução $x^{(2)}$ em nenhum dos objetivos, ou seja, $f_m(x^{(1)}) \leq f_m(x^{(2)})$ para todo m = 1, ..., M.
 - 2. a solução $x^{(1)}$ é estritamente melhor que a solução $x^{(2)}$ em pelo menos um objetivo, ou seja $f_m(x^{(1)}) < f_m(x^{(2)})$ para algum m = 1, ..., M

- Solução Pareto-ótima: é uma solução não-dominada.
- Conjunto Pareto-ótimo: é formado pelo conjunto de todas as soluções não-dominadas, dentre as soluções factíveis.
- Fronteira de Pareto: é formada pelos pontos no espaço das funções objetivo que corresponde ao conjunto Pareto-Ótimo.

Na presença de múltiplas soluções Pareto-ótimas, é difícil afirmar que uma solução é melhor que a outra, sem informação adicional do problema. Quando uma informação importante é satisfatóriamente avaliada, ela pode ser utilizada para fazer uma pesquisa tendenciosa. Contudo, na ausência de informações adicionais, todas as soluções Pareto-ótimas são igualmente importantes [10].

E importante ressaltar que só existem soluções Pareto-ótima num problema multiobjetivo se os objetivos são conflitantes entre si.

• Ponto ideal: O ponto ideal do \mathbb{R}^M é o ponto do espaço dos objetivos cujas coordenadas são $(z_1^*, z_2^*, ..., z_m^*)$ onde $z_i^* = \acute{o}timo \ de \ f_i(\tilde{a_i}) \in \tilde{a_i}$ representa a melhor solução para o critério *i*.

4.1.4 Técnicas de solução

Problemas de otimização multiobjetivo podem ser resolvidos por meio de técnicas exatas ou aproximadas. Técnicas exatas levam a soluções nãodominadas e nas técnicas aproximadas não se tem esta garantia podendo-se facilmente a chegar a ótimos locais e não globais.

Técnicas aproximadas baseiam-se em heurísticas e metaheurísticas. As heurísticas são boas maneiras de resolver problemas específicos de uma forma específica, em compensação metaheurísticas são técnicas poderosas que podem ser utilizadas em um grande número de problemas.

Nas últimas décadas houve um crescimento e consequente maior confiança na utilização de metaheurística em problemas reais. As aplicações se concentram na utilização de Simulated Annealing, Algoritmo Genético, Busca Tabu, Colônia de Formigas, Nuvem de Partículas, entre outras. Exploração no espaço de busca e intensificação em áreas promissoras são características destes métodos [16].

Outros métodos clássicos são: o método da função objetivo ponderada, o do critério total, o da função objetivo limitada, o de programação por objetivos e o método lexicográfico.

O método da função ponderada, que será utilizada neste trabalho, é descrito brevemente a seguir.

4.1.4.1 Método da função ponderada

Este método, como o nome sugestiona, pondera os objetivos transformando o problema multiobjetivo original em um problema mono-objetivo, por meio da utilização de pesos para cada um dos objetivos.

O modelo (4.1) fica então reescrito como em (4.2):

$$OtimizarF(x) = \sum_{m=1}^{M} w_m f_m(x)$$

s. a

$$\begin{cases} g_j(x) \ge 0 & j = 1, ..., J \\ h_k(x) = 0 & k = 1, ..., K \\ x_i^L \le x_i \le x_i^U & i = 1, ..., n \end{cases}$$
(4.2)

em que $w_m (\in [0, 1])$ são os pesos das *m*-ésimas funções objetivos.

Este método é simples e provavelmente o mais utilizado entre os métodos clássicos. Entretanto, uma ideia simples, introduz uma pergunta não tão simples: que valores de pesos utilizar?

O peso atribuído a um objetivo é escolhido de acordo com a importância do objetivo no problema. Existem maneiras de quantificar os pesos por meio da informação qualitativa, porém o método da soma ponderada requer um valor preciso de peso para cada objetivo.

Uma escolha apropriada de um vetor de pesos também depende da ordem de grandeza de cada função objetivo. Quando objetivos são ponderados para formar uma única função objetivo, muitas vezes é necessário redimensionálos adequadamente, para que as funções objetivo tenham a mesma ordem de grandeza. Este processo chama-se normalização dos objetivos.

Depois de normalizá-los, a função objetivo ponderada, F(x), pode ser formada pela soma dos objetivos com pesos normalizados, e então o modelo multiobjetivo é convertido no modelo mono-objetivo, como apresentado em (4.2). Este novo modelo pode ser resolvido por algum método de solução de modelos com apenas um objetivo.

Se a escolha dos pesos satisfizer o Teorema 1, as soluções do modelo monoobjetivo representam soluções importantes para a metodologia multiobjetivo.

Teorema 1 A solução para o problema apresentado em 4.2 é Pareto-ótima, se os pesos w_m são positivos para todas as funções objetivo [10].

4.2 Considerações do Capítulo

O modelo de otimização de problemas no planejamento do tratamento de câncer por radioterapia que será tratado nesta dissertação, apresenta mútiplos objetivos, caracterizando-se como um problema de otimização multiobjetivo.

Desta forma, neste capítulo foram apresentadas algumas definições e considerações fundamentais da teoria da programação multiobjetivo, assim como o método da função ponderada para determinar as soluções não-dominadas. Para obtenção da Fronteira de Pareto, o modelo foi resolvido iterativamente, considerando diferentes vetores de pesos.

Capítulo 5

Formulação matemática

O problema em estudo é o problema da intensidade de dose em tratamentos de câncer por radioterapia. Este problema consiste em determinar a distribuição de dose em cada campo (já previamente definidos), de forma que a dose prescrita pelo médico chegue ao tumor, porém que afete com intensidade mínima possível os tecidos nobres e saudáveis.

Tendo em vista que há múltiplos objetivos a serem considerados, o modelo será construído como um modelo de programação linear multiobjetivo.

Supondo que se tenha k(k = 1, ..., m) campos já definidos, o problema é modelado considerando uma região do corpo humano obtido de um corte de imagem tomográfica, como o apresentado na Figura 5.1.

Figura 5.1: Corte tomográfico com 11319 pixels - próstata Fonte: Hospital Erasto Gaertner

Esta região é representada por uma rede de pixels, onde cada pixel é considerado parte do tecido saudável, ou nobre, ou de tumor.

Para efeito de exemplificação, seja a imagem da Figura 5.2, uma rede com 80 pixels. Os pixels em vermelho representam o tumor, em azul os tecidos nobres e em verde, os tecidos saudáveis. Considerando para este exemplo, que sejam utilizados quatro campos de radiação, cuja influência de radiação é distribuída conforme mostra a Figura 5.2, sendo os campos de radiação em amarelo - C1 e C2, campos superior e inferior, respectivamente; em marrom - C3 e C4 campos laterais esquerdo e direito, respectivamente.

Figura 5.2: Exemplificação de uma rede com 80 pixels

Deseja-se determinar a quantidade de dose que deverá sair de cada campo de radiação (no exemplo C1, C2, C3 e C4), considerando a diferente absorção de dose em cada pixel, buscando a melhor configuração que permita com que a dose que chegue ao tumor seja suficiente para destruí-lo e que respeite os limites de dose nos tecidos nobres e saudáveis.

5.1 Matriz de absorção da dose

A dose que é emitida de cada campo de radiação não é a mesma que chegará ao tumor. Existem diversos fatores, conforme citados na seção 2.5.1, que atenuam a dose, de modo que em cada região do organismo, ou melhor, em cada pixel, há diferente absorção da dose. Sendo assim, em primeiro lugar é necessário construir uma matriz que irá quantificar a absorção de dose por pixel, a cada unidade de radiação emitida por campo.

Consideremos F^k a matriz da medida dos fatores citados no item 2.5.1, os quais influenciam a perda de energia (por campo de radiação k, a cada pixel (i, j)). Assim, os valores de f_{ij}^k representam o percentual de absorção de dose no pixel (i, j) em relação aos diversos fatores apresentados em 2.5.1. Um dos fatores incluídos em F^k , por exemplo, é o PDP (Percentual de Dose Profunda), o qual pode ser medido experimentalmente. Este fator quantifica a radiação que é recebida em função da profundidade em relação à dose emitida, cujo comportamento pode ser visualizado por meio do gráfico da Figura 5.3.

Figura 5.3: Perfil de atenuação do feixe de radiação em água com relação à profundidade

Então para efeito de exemplificação, seja a matriz dos fatores devido o campo de radiação 1, F^1 :

$$F^{1} = \begin{bmatrix} 0,686 & 0,686 & 0,686 & 0,686 & 0,686 & 0,686 & 0,686 & 0,686 & 0,686 & 0,686 \\ 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 \\ 0,831 & 0,831 & 0,831 & 0,831 & 0,831 & 0,831 & 0,831 & 0,831 & 0,831 & 0,831 \\ 0,675 & 0,675 & 0,675 & 0,675 & 0,675 & 0,675 & 0,675 & 0,675 & 0,675 & 0,675 \\ 0,516 & 0,516 & 0,516 & 0,516 & 0,516 & 0,516 & 0,516 & 0,516 & 0,516 & 0,516 \\ 0,45 & 0,45 & 0,45 & 0,45 & 0,45 & 0,45 & 0,45 & 0,45 & 0,45 & 0,45 \\ 0,371 & 0,371 & 0,371 & 0,371 & 0,371 & 0,371 & 0,371 & 0,371 & 0,371 & 0,371 \\ 0,267 & 0,267 & 0,267 & 0,267 & 0,267 & 0,267 & 0,267 & 0,267 & 0,267 & 0,267 \end{bmatrix}$$

O campo de radiação 1, como apresentado na Figura 5.2, é um campo vertical superior, desta forma os valores da matriz F^1 são iguais em cada linha, e se comportam como a Figura 5.3 da primeira linha até a última da matriz. Analogamente para F^2 as linhas são iguais, porém como é um campo vertical inferior, o comportamento como a Figura 5.3 ocorre da última linha até a primeira da matriz. Já para os fatores $F^3 \in F^4$, como se relacionam aos campos laterais esquerdo e direito $C^3 \in C^4$, respectivamente, os valores das

matrizes F^3 e F^4 são iguais a cada coluna, e o comportamento em relação à Figura 5.3, inicia na primeira coluna até a última para F^3 e da última até a primeira para F^4 .

Também seja C^k a matriz que identifica os pixels atingidos pelo campo k, de maneira que:

$$c_{ij}^{k} = \begin{cases} 1 & se \ o \ pixel \ (i,j) \ \acute{e} \ atingido \ pela \ radiacão \ emitida \ pelo \ campo \ k \\ 0 & caso \ contrário \end{cases}$$

(5.1)

Consideremos o exemplo com 80 pixels mostrado na Figura 5.2, com 4 campos de radiação. As matrizes por campo de radiação são mostradas a seguir.

Comparando a Figura 5.2 com as matrizes C^1 , C^2 , $C^3 \in C^4$, observa-se, por exemplo, que na posição (4,1), $c^1(4,1) = 0$, $c^2(4,1) = 0$, $c^3(4,1) = 1$ e $c^4(4,1) = 1$, o que implica que o pixel de posição (4,1) recebe radiação emitida pelos campos 3 e 4, mas não recebe radiação emitida pelos campos 1 e 2.

Para se obter uma única matriz de absorção por campo A^k , que considera todos os fatores que influenciam a absorção da radiação em cada pixel, é necessário ainda considerar a matriz dos fatores de absorção devido à heterogeneidade na composição dos tecidos irradiados. Uma forma de analisar esta diferente absorção é pelo tom de cinza da imagem tomográfica, analisada na matriz CT. Para efeito de exemplificação, seja a matriz CT a seguir. A Figura 5.4 mostra a relação entre os valores da matriz e os tons de cinza da imagem.

	0,25	0, 26	0, 40	0, 48	0,47	0, 54	0, 50	0, 27	0, 32	0,60
	0, 21	0, 27	0, 53	0, 48	0, 42	0, 43	0, 41	0, 27	0, 38	0,57
	0, 23	0, 34	0, 39	0, 50	0, 33	0, 34	0, 31	0, 29	0, 60	0,63
CT -	0, 39	0, 34	0, 32	0, 45	0, 45	0, 45	0, 45	0, 30	0, 30	0,59
01 -	0, 48	0, 35	0, 31	0, 45	0, 45	0, 44	0, 44	0, 29	0, 31	0,55
	0, 46	0, 48	0, 44	0, 44	0, 45	0, 44	0, 40	0, 56	0, 53	0,50
	0, 48	0, 60	0, 44	0, 44	0, 44	0, 34	0, 40	0, 37	0, 54	0,29
	0,71	0,63	0,54	0,55	0,56	0, 38	0, 39	0,35	0, 29	0,26

Os valores de ct_{ij} são valores entre zero e um, sendo que quanto mais escura a imagem, mais próximo de zero é este valor, e quanto mais clara, o valor se aproxima de um. Esta representação se justifica pois regiões do organismo onde há maior absorção de energia tem imagem mais clara no exame de tomografia, do que em regiões que absorvem menor quantidade a radiação.

Figura 5.4: Imagem da matriz CT

A matriz que considera todos os fatores de absorção de energia citadas é calculada da forma:

$$A^k = CT \odot F^k \odot C^k \tag{5.2}$$

O símbolo " \odot " representa a multiplicação ponto-a-ponto dos elementos das matrizes.

Como existem objetivos diferentes para tecidos nobres, saudáveis e de tumor, consideremos as matrizes I_n, I_s e I_t , as quais indexam cada pixel como nobre, saudável ou tumor, respectivamente.

$$I_n = \begin{cases} 1 & se \ o \ pixel \ (i,j) \ \acute{e} \ nobre \\ 0 & caso \ contrário \end{cases}$$
(5.3)

$$I_s = \begin{cases} 1 & se \ o \ pixel \ (i,j) \ \acute{e} \ saud\acute{a}vel \\ 0 & caso \ contr\acute{a}rio \end{cases}$$
(5.4)

$$I_t = \begin{cases} 1 & se \ o \ pixel \ (i,j) \ \acute{e} \ tumor \\ 0 & caso \ contrário \end{cases}$$
(5.5)

Para os dados do exemplo (Figura 5.2), as matrizes I_n, I_s e I_t são:

Então:

$$A_n^k = A^k \odot I_n \tag{5.6}$$

$$A_s^k = A^k \odot I_s \tag{5.7}$$

$$A_t^k = A^k \odot I_t \tag{5.8}$$

representam as matrizes de absorção da dose nos pixels nobres, saudáveis e de tumor, respectivamente, para cada campo k.

5.2 Formulação do modelo multiobjetivo

Deseja-se determinar a quantidade de dose a ser emitida de cada campo de radiação, isto é, os valores de x_k , restrita a limites de dose para cada tipo de tecido e considerando a atenuação sofrida pela dose emitida devido diversos fatores.

A determinação da dose emitida deve ser de tal maneira que a dose que chega aos pixels saudáveis e nobres seja a mínima possível e que a dose no tumor seja a mais próxima da prescrita pelo médico.

Para isso, utilizaram-se desvios de dose por pixel, permitindo certa flexibilidade na escolha da dose. As matrizes θ , $\delta \in \epsilon$ que representam a flexibilidade na escolha da dose absorvida para os pixel de tecidos nobres, saudáveis e de tumor, respectivamente, são variáveis livres.

$$\begin{aligned} \theta &= \theta^+ - \theta^- \\ \delta &= \delta^+ - \delta^- \\ \epsilon &= \epsilon^+ - \epsilon^- \end{aligned}$$
 (5.9)

As matrizes θ^+ , δ^+ e ϵ^+ representam matrizes de desvios de dose excedente nos pixels referentes aos tecidos nobres, saudáveis e de tumor, respectivamente. Já as matrizes θ^- e δ^- representam matrizes de desvios de dose abaixo do limite superior de dose nos pixels de tecidos nobres e saudáveis, respectivamente, e ϵ^- representa uma matriz de desvios de dose deficitária nos pixels de tumor.

5.2.1 Restrições do modelo

Seja x_k a dose emitida pelo campo k. A dose que chega aos pixels nobres e saudáveis deve respeitar os limites superiores de dose S_n e S_s , respectivamente. Então:

$$\begin{cases} \sum_{k=1}^{m} x_k A_n^k \leq S_n I_n \\ \sum_{k=1}^{m} x_k A_s^k \leq S_s I_s \end{cases}$$
(5.10)

em que m representa o número de campos de radiação a serem utilizados.

Considerando que para cada pixel pode haver certa flexibilidade na escolha da dose absorvida, as restrições em (5.10) ficam assim reescritas:

$$\begin{cases} \sum_{k=1}^{m} x_k A_n^k = S_n I_n + \theta^+ - \theta^- \\ \sum_{k=1}^{m} x_k A_s^k = S_s I_s + \delta^+ - \delta^- \end{cases}$$
(5.11)

Além disso, a dose D que chega aos pixels de tumor deve ser igual à dose prescrita pelo médico. Desta forma, a constante D representa a quantidade de dose que deverá chegar ao tumor.

$$\sum_{k=1}^{m} x_k A_t^k = D.I_t \tag{5.12}$$

Também para os pixels de tumor, considera-se uma flexibilidade de dose absorvida, representada na matriz $\epsilon.$

$$\sum_{k=1}^{m} x_k A_t^k = D I_t + \epsilon \tag{5.13}$$

As variáveis do modelo x_k , θ^+ , θ^- , δ^+ , δ^- , ϵ^+ e ϵ^- devem ser todas não-negativas.

$$x_k, (\theta_{ij}^+), (\theta_{ij}^-), (\delta_{ij}^+), (\delta_{ij}^-), (\epsilon_{ij}^+), (\epsilon_{ij}^-) \in \Re^+$$
 (5.14)

5.2.2 Funções objetivo

Como deseja-se obter a mínima dose nos pixels nobres e saudáveis, dois objetivos são minimizar as matrizes θ^+ , δ^+ . Além disso, como deseja-se que a dose que chega ao tumor seja a mais próxima da prescrita pelo médico, o terceiro e quarto objetivo são de minimizar as matrizes ϵ^+ e ϵ^- , respectivamente.

Desta forma, as funções objetivo são:

$$\begin{cases}
Min \quad f(\theta^+) = \sum_{i=1}^{l} \sum_{j=1}^{c} (\theta_{ij}^+) \\
Min \quad f(\delta^+) = \sum_{i=1}^{l} \sum_{j=1}^{c} (\delta_{ij}^+) \\
Min \quad f(\epsilon^+) = \sum_{i=1}^{l} \sum_{j=1}^{c} (\epsilon_{ij}^+) \\
Min \quad f(\epsilon^-) = \sum_{i=1}^{l} \sum_{j=1}^{c} (\epsilon_{ij}^-)
\end{cases}$$
(5.15)

em que l e c representam o número de linhas e colunas das matrizes $\theta^+, \delta^+, \epsilon^+$ e $\epsilon^-.$

5.2.3 Matriz de dose Y

Considerando que x_k representa a dose emitida por cada campo k, e que as matrizes A_n^k , A_s^k e A_t^k representam a absorção de dose por pixel, para cada tipo de tecido, por campo de radiação. Seja Y a matriz em que cada elemento y_{ij} é a dose recebida em cada pixel (i, j), de modo que:

$$Y = \sum_{k=1}^{m} x_k A_n^k + \sum_{k=1}^{m} x_k A_s^k + \sum_{k=1}^{m} x_k A_t^k$$
(5.16)

5.3 Modelo multiobjetivo

A partir das considerações apresentadas anteriormente, o modelo multiobjetivo desenvolvido é o seguinte:

$$\begin{cases} Min \quad f(\theta^+) &= \sum_{i=1}^l \sum_{j=1}^c (\theta_{ij}^+) \\ Min \quad f(\delta^+) &= \sum_{i=1}^l \sum_{j=1}^c (\delta_{ij}^+) \\ Min \quad f(\epsilon^+) &= \sum_{i=1}^l \sum_{j=1}^c (\epsilon_{ij}^+) \\ Min \quad f(\epsilon^-) &= \sum_{i=1}^l \sum_{j=1}^c (\epsilon_{ij}^-) \end{cases}$$

s a

$$\begin{cases} \sum_{k=1}^{m} x_k A_n^k = S_n I_n + \theta^+ - \theta^- \\ \sum_{k=1}^{m} x_k A_s^k = S_s I_s + \delta^+ - \delta^- \\ \sum_{k=1}^{m} x_k A_t^k = D I_t + \epsilon^+ - \epsilon^- \\ x_k \ge 0 \\ (\theta_{ij}^+), (\theta_{ij}^-), (\delta_{ij}^+), (\delta_{ij}^-), (\epsilon_{ij}^+), (\epsilon_{ij}^-) \ge 0 \end{cases}$$
(5.17)

em que $x_k, (\theta_{ij}^+), (\theta_{ij}^-), (\delta_{ij}^+), (\delta_{ij}^-), (\epsilon_{ij}^+), (\epsilon_{ij}^-) \in \Re; \ k = 1, ...m, \ i = 1, ...l$ e j = 1, ...c.

Devido todas as funções e restrições do modelo serem lineares, o modelo foi resolvido, para as diferentes situações, por meio de método exato, utilizando o Método da Função Ponderada, apresentado na seção 4.1.5.1. Desta forma, o modelo (5.17) fica reescrito como mostrado a seguir.

$$Min\left(\alpha \sum_{i=1}^{l} \sum_{j=1}^{c} (\theta_{ij}^{+}) + \beta \sum_{i=1}^{l} \sum_{j=1}^{c} (\delta_{ij}^{+}) + \gamma_1 \sum_{i=1}^{l} \sum_{j=1}^{c} (\epsilon_{ij}^{-}) + \gamma_2 \sum_{i=1}^{l} \sum_{j=1}^{c} (\epsilon_{ij}^{+})\right)$$

s a

$$\sum_{k=1}^{m} x_k A_n^k = S_n I_n + \theta^+ - \theta^-$$

$$\sum_{k=1}^{m} x_k A_s^k = S_s I_s + \delta^+ - \delta^-$$

$$\sum_{k=1}^{m} x_k A_t^k = D I_t + \epsilon^+ - \epsilon^-$$

$$x_k \ge 0$$

$$(\theta_{ij}^+), (\theta_{ij}^-), (\delta_{ij}^+), (\epsilon_{ij}^-), (\epsilon_{ij}^+) \ge 0$$

(5.18)

em que $\alpha, \beta, \gamma_1 \in \gamma_2$ representam os pesos relacionados às respectivas matrizes de desvio de dose $\theta^+, \delta^+, \epsilon^- \in \epsilon^+$.

Capítulo 6

Aplicações da metodologia

O presente trabalho contou com a colaboração da equipe de radioterapia do Hospital Erasto Gaertner, Curitiba - Paraná, tendo como número 2042 de projeto aprovado pelo Comitê de Ética na Pesquisa.

Em Curitiba, o Hospital Erasto Gaertner conta com um acelerador linear Varian 2100-C com 56 lâminas no colimador MLC, filtros dinâmicos (EDW) (10, 15, 20, 25, 30, 45, 60), trabalhando com energia de fótons de 6MV e 10MV, e energia de elétrons de 4, 6, 9, 12 e 15MeV - um dos melhores equipamentos do país nessa tecnologia.

Foram consideradas duas situações para o estudo do planejamento:

Caso teste: Aplicação da metodologia a um caso didático. Caso real: Aplicação da metodologia a um caso real.

A primeira situação foi desenvolvida para que a metodologia pudesse ser melhor compreendida, e os vários testes pudessem ser comparados de modo a permitir a tomada de decisão das melhores configurações para o planejador numa situação figurativa.

Já para a segunda situação, foram desenvolvidos os mesmos testes aplicados no caso teste, tendo expectativa de encontrar resultados semelhantes.

O modelo foi resolvido por meio do software MATLAB R2009b, utilizando a ferramenta *linprog.*

6.1 Caso teste

6.1.1 Dados

Inicialmente os testes foram realizados para uma rede de pixels pequena, mostrada na Figura 5.2. O planejamento foi desenvolvido para quatro campos de radiação.

Os valores de CT foram escolhidos aleatoriamente, e encontram-se na seção 5.1. As matrizes $I_n, I_s \in I_t$ foram apresentadas também na seção 5.1. As matrizes $F^1, F^2, F^3 \in F^4$, foram escolhidas aleatoriamente e seus

valores representam percentuais de absorção.

$$F^{4} = \begin{bmatrix} 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,68 & 0,83$$

Assim, as matrizes que indicam a absorção de energia em cada pixel, por campo de radiação, $(A^1, A^2, A^3 \in A^4)$, dada pela equação (6.1), são:

$$A^k = CT \odot F^k \odot C^k \tag{6.1}$$

$$A^{1} = \begin{bmatrix} 0 & 0 & 0,27 & 0,32 & 0,32 & 0,37 & 0,34 & 0 & 0 & 0 \\ 0 & 0 & 0,53 & 0,48 & 0,42 & 0,43 & 0,41 & 0 & 0 & 0 \\ 0 & 0 & 0,32 & 0,41 & 0,27 & 0,28 & 0,26 & 0 & 0 & 0 \\ 0 & 0 & 0,22 & 0,30 & 0,30 & 0,30 & 0,30 & 0 & 0 & 0 \\ 0 & 0 & 0,16 & 0,23 & 0,23 & 0,23 & 0,23 & 0 & 0 & 0 \\ 0 & 0 & 0,20 & 0,20 & 0,20 & 0,20 & 0,18 & 0 & 0 & 0 \\ 0 & 0 & 0,16 & 0,16 & 0,16 & 0,12 & 0,15 & 0 & 0 & 0 \\ 0 & 0 & 0,14 & 0,14 & 0,15 & 0,10 & 0,10 & 0 & 0 \end{bmatrix} \\ A^{2} = \begin{bmatrix} 0 & 0 & 0,10 & 0,12 & 0,12 & 0,14 & 0,13 & 0 & 0 & 0 \\ 0 & 0 & 0,17 & 0,22 & 0,15 & 0,15 & 0,14 & 0 & 0 & 0 \\ 0 & 0 & 0,17 & 0,23 & 0,23 & 0,23 & 0,23 & 0 & 0 & 0 \\ 0 & 0 & 0,21 & 0,30 & 0,30 & 0,30 & 0,30 & 0 & 0 & 0 \\ 0 & 0 & 0,37 & 0,37 & 0,37 & 0,37 & 0,33 & 0 & 0 & 0 \\ 0 & 0 & 0,37 & 0,38 & 0,39 & 0,26 & 0,27 & 0 & 0 & 0 \end{bmatrix}$$

	0	0	0	0	0	0	0	0	0	0]
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
A ³ _	0, 25	0, 34	0, 27	0, 33	0, 29	0, 25	0, 20	0,09	0,07	0,12
A –	0, 31	0, 35	0, 26	0, 33	0, 29	0, 25	0, 20	0,09	0,08	0,11
	0, 30	0, 48	0, 37	0, 33	0, 29	0, 25	0, 17	0, 17	0, 13	0,10
	0, 31	0, 60	0, 37	0, 33	0, 29	0, 19	0, 18	0, 11	0, 14	0,06
	0	0	0	0	0	0	0	0	0	0

Também foram realizados testes sem considerar a heterogeneidade dos tecidos irradiados, quantificado na matriz CT. Este teste foi desenvolvido pois na prática de alguns hospitais considera-se de uma forma simplificada que os diferentes órgãos absorvem a dose da mesma maneira, desconsiderando sua heterogeneidade.

Para este caso, as matrizes de absorção de dose por pixel $(A^1, A^2, A^3 e A^4)$ são dadas pela equação (6.2) e estão apresentadas a seguir.

$$A^k = F^k \odot C^k \tag{6.2}$$

	0	0	0,68	0,68	0,68	0,68	0,68	0	0	0
	0	0	1,00	1,00	1,00	1,00	1,00	0	0	0
	0	0	0,83	0,83	0,83	0,83	0,83	0	0	0
<u>11</u>	0	0	0, 67	0,67	0, 67	0,67	0,67	0	0	0
$A \equiv$	0	0	0, 51	0, 51	0, 51	0, 51	0, 51	0	0	0
	0	0	0, 45	0, 45	0, 45	0, 45	0, 45	0	0	0
	0	0	0, 37	0, 37	0, 37	0, 37	0, 37	0	0	0
	0	0	0, 26	0, 26	0, 26	0, 26	0, 26	0	0	0
	_									
	0	0	0, 26	0, 26	0, 26	0, 26	0, 26	0	0	0]
	$\begin{bmatrix} 0\\0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$0,26 \\ 0,37$	$0,26 \\ 0,37$	$\begin{array}{c} 0,26\\ 0,37 \end{array}$	$0,26 \\ 0,37$	$\begin{array}{c} 0,26\\ 0,37 \end{array}$	0 0	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
	0 0 0	0 0 0	$0, 26 \\ 0, 37 \\ 0, 45$	$0,26 \\ 0,37 \\ 0,45$	$0,26 \\ 0,37 \\ 0,45$	$0,26 \\ 0,37 \\ 0,45$	$0,26 \\ 0,37 \\ 0,45$	0 0 0	0 0 0	$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$
4 ² —	0 0 0 0	0 0 0 0	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51 \end{array}$	$0, 26 \\ 0, 37 \\ 0, 45 \\ 0, 51$	$0, 26 \\ 0, 37 \\ 0, 45 \\ 0, 51$	$0, 26 \\ 0, 37 \\ 0, 45 \\ 0, 51$	$0, 26 \\ 0, 37 \\ 0, 45 \\ 0, 51$	0 0 0 0	0 0 0 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
$A^2 =$	0 0 0 0 0	0 0 0 0 0	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67 \end{array}$	0 0 0 0	0 0 0 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$				
$A^2 =$	0 0 0 0 0 0 0	0 0 0 0 0 0	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67\\ 0,83 \end{array}$	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67\\ 0,83 \end{array}$	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67\\ 0,83 \end{array}$	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67\\ 0,83 \end{array}$	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67\\ 0,83 \end{array}$	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
$A^2 =$	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67\\ 0,83\\ 1,00 \end{array}$	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67\\ 0,83\\ 1,00 \end{array}$	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67\\ 0,83\\ 1,00 \end{array}$	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67\\ 0,83\\ 1,00 \end{array}$	$\begin{array}{c} 0,26\\ 0,37\\ 0,45\\ 0,51\\ 0,67\\ 0,83\\ 1,00 \end{array}$	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0

Os limites superiores de dose considerados para os tecidos nobres e saudáveis, respectivamente, foram Sn = 45Gy e Ss = 50Gy, e a dose que deve chegar ao tumor D = 60Gy.

O modelo multiobjetivo (5.18) para o problema é representado a seguir.

$$Min\left(\alpha\sum_{i=1}^{8}\sum_{j=1}^{10}(\theta_{ij}^{+}) + \beta\sum_{i=1}^{8}\sum_{j=1}^{10}(\delta_{ij}^{+}) + \gamma_{1}\sum_{i=1}^{8}\sum_{j=1}^{10}(\epsilon_{ij}^{-}) + \gamma_{2}\sum_{i=1}^{8}\sum_{j=1}^{10}(\epsilon_{ij}^{+})\right)$$

s a

$$\begin{cases} x_1.A_n^1 + x_2.A_n^2 + x_3.A_n^3 + x_4.A_n^4 &= 45.I_n + \theta^+ - \theta^- \\ x_1.A_n^1 + x_2.A_s^2 + x_3.A_s^3 + x_4.A_s^4 &= 50.I_s + \delta^+ - \delta^- \\ x_1.A_t^1 + x_2.A_t^2 + x_3.A_t^3 + x_4.A_t^4 &= 60.I_t + \epsilon^+ - \epsilon^- \\ x_k \ge 0 \\ (\theta_{ij}^+), (\theta_{ij}^-), (\delta_{ij}^+), (\delta_{ij}^-), (\epsilon_{ij}^+), (\epsilon_{ij}^-) \ge 0 \end{cases}$$
(6.3)

em que $x_k, (\theta_{ij}^+), (\theta_{ij}^-), (\delta_{ij}^+), (\delta_{ij}^-), (\epsilon_{ij}^+), (\epsilon_{ij}^-) \in \Re; \ k = 1, ...m, \ i = 1, ...l$ e j = 1, ...c.

6.1.2 Resultados

Para a configuração do caso teste, foram realizadas execuções considerando o fator devido à heterogeneidade dos tecidos irradiados, e sem considerá-lo, isto é, com a utilização da matriz CT e sem utilizá-la.

6.1.2.1. Utilizando a matriz CT

Para a configuração do modelo (6.3) utilizando a matriz CT, foram propostos diferentes pesos para as funções objetivo, ou seja, foram alterados os valores de $\alpha, \beta, \gamma_1 \in \gamma_2$, conforme mostrado na tabela 6.1.

Para cada um destes valores tomados, obtiveram-se diferentes resultados para a distribuição da dose por campo de radiação (isto é, para os valores de $x_1, x_2, x_3 \in x_4$) e também para os valores das funções objetivo $f(\epsilon^-)$, $f(\epsilon^+)$, $f(\theta^+) \in f(\delta^+)$. A função objetivo média, apresentada na Tabela 6.1, equivale à média dos valores obtidos das funções objetivo relativa à quantidade de pixels dos tecidos correspondentes atingidos pela radiação. Por exemplo:

$$\overline{f}(\epsilon^{-}) = \frac{f(\epsilon^{-})}{N_t}$$

em que N_t representa o número de pixels de tumor atingidos por radiação.

Para melhor compreensão dos resultados, sejam as execuções 5, 8, 14 e 31, destacadas na tabela 6.1.

A primeira execução em destaque, atribui peso para a minimização de dose somente nos pixels de desvio de dose no tumor, não considerando a minimização do desvio de dose nos pixels nobres e saudáveis. Na matriz Y_5 verifica-se a distribuição de dose por pixel, e a Figura 6.1, relaciona-se a esta distribuição por meio de um gráfico de cores.

$$Y_5 = \begin{bmatrix} 0 & 0 & 15.1 & 18.1 & 17.9 & 20.7 & 19.1 & 0 & 0 & 0 \\ 0 & 0 & 29.0 & 26.6 & 23.3 & 23.4 & 22.6 & 0 & 0 & 0 \\ 0 & 0 & 19.4 & 24.9 & 16.6 & 17.2 & 15.7 & 0 & 0 & 0 \\ 25.8 & 33.3 & 43.3 & 60.2 & 60.9 & 60.0 & 58.8 & 26.7 & 25.8 & 34.8 \\ 31.5 & 34.1 & 40.7 & 59.3 & 60.0 & 59.1 & 57.2 & 25.6 & 26.7 & 32.9 \\ 30.6 & 46.5 & 59.3 & 59.9 & 60.6 & 60.0 & 51.8 & 50.1 & 45.5 & 30.0 \\ 31.7 & 58.0 & 60.0 & 60.7 & 61.3 & 46.7 & 53.5 & 33.1 & 46.7 & 17.4 \\ 0 & 0 & 18.2 & 18.4 & 18.9 & 12.9 & 13.1 & 0 & 0 & 0 \end{bmatrix}$$

Os pixels em destaque na matriz representam o tumor, onde a dose absorvida deve ser a mais próxima da prescrita, considerada para o exemplo de 60Gy.

Observando os dados da matriz Y_5 , pode-se perceber que em muitos pixels de tumor a dose absorvida é de aproximadamente 60Gy, contudo em alguns pixels de tecido nobre e saudável o limite de dose é ultrapassado, como por exemplo o valor de $y_5(7,2) = 58, 0Gy \in y_5(7,7) = 53, 5Gy$.

			1																														-
	9	$f(\delta^+)$	26.8573	0	0	0	0.5322	0.4847	0.1088	0.1088	0.8223	0.1088	0.0403	0.0687	0.0490	0.0403	0.9224	0.0403	0.0214	0.0403	0.0346	0.0403	0.0346	2.0398	0	0	0	0	0	0	0	0	0
TAA:		$f(\theta^+)$	36.4097	0	0	0	0.4176	0.3952	0.3952	0.3952	0.2440	0.3952	0.2937	0.3239	0.3068	0.2937	0.2199	0.2937	0.2658	0.2937	0.2820	0.2937	0.2820	0.0475	0.2466	0.1519	0.2453	0.2385	0.2453	0.2385	0.2399	0.2386	0
$\operatorname{atriz} CT$	Inçoes Obj	$f(\epsilon^+)$	111.5540	0	0	0	0.2643	0.2767	0.4012	0.4012	0.2312	0.4012	0.3755	0.4335	0.4494	0.3755	0.2327	0.3755	0.2559	0.3755	0.2925	0.3755	0.2925	0.0395	0.2293	0.0595	0.2230	0.2041	0.2230	0.2041	0.2055	0.2043	0
ção da m E.	n J	$f(\epsilon^-)$	0	42.0843	46.9913	42.4651	0.4176	0.4072	0.3024	0.3024	0.5912	0.3024	0.4622	0.3431	0.3631	0.4622	0.6723	0.4622	0.6942	0.4622	0.5829	0.4622	0.5829	2.6693	0.8309	2.0549	0.8391	0.8897	0.8391	0.8897	0.8805	0.8891	52.8097
<u>a utiliza</u>	(dy)	x_4	125.7089	18.5258	12.6483	17.1494	65.0251	64.1849	55.7392	55.7392	61.0001	55.7392	47.5161	50.5616	48.0173	47.5161	60.4913	47.5161	46.3325	47.5161	47.5161	47.5161	47.5161	55.1330	43.6153	33.8761	43.7627	44.3541	43.7627	44.3541	44.3627	44.3541	7.9643
lções com	e raulação (x_3	169.4673	15.4458	11.3970	17.4161	79.5397	78.5450	68.5470	68.5470	90.6640	68.5470	70.7080	69.9077	70.5763	70.7080	92.6004	70.7080	71.0190	70.7080	70.7080	70.7080	70.7080	112.9904	71.7331	74.2924	71.6943	71.5389	71.6943	71.5389	71.5366	71.5389	6.2532
nas exect	or campo u	x_2	196.1076	13.2511	10.8257	12.0959	31.8579	32.3951	37.7949	37.7949	23.3784	37.7949	35.3729	35.8951	34.9615	35.3729	22.0864	35.3729	36.1480	35.3729	36.0772	35.3729	36.0772	11.2673	36.7622	36.8929	36.6764	36.2663	36.6764	36.2663	36.3270	36.2636	4.6389
es obtidos	nose bo	x_1	10.1864	19.0886	12.7438	18.0383	42.5238	44.0126	58.9772	58.9772	43.8615	58.9772	67.6065	65.4199	68.5859	67.6065	43.4367	67.6065	65.8226	67.6065	65.7099	67.6065	65.7099	29.1009	66.1939	67.0085	66.1484	66.0109	66.1484	66.0109	65.9633	66.0182	8.0099
Valore	,	β	0	0	0	1	0	0	0.2	0.1	0	0.4	0.1	0.3	0.2	0.25	0	0.6	0.1	0.5	0.2	0.4	0.3	0	0.8	0.1	0.7	0.2	0.6	0.3	0.5	0.4	0.5
a 6.1:	sonmar	α	0	0	1	0	0	0.2	0	0.1	0.4	0	0.3	0.1	0.2	0.25	0.6	0	0.5	0.1	0.4	0.2	0.3	0.8	0	0.7	0.1	0.6	0.2	0.5	0.3	0.4	0.5
Tabel	csos aur	γ_2	0	1	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
	Ξ,	γ_1		0	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
T	Execução			2	c,	4	IJ	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Figura 6.1: Distribuição de dose por pixel - teste 5 (com CT)

A segunda execução em destaque, atribui peso maior (0,4) para a minimização de dose nos pixels de desvio de dose no tumor e menor (0,1) para a minimização do desvio de dose de excesso nos pixels nobres e saudáveis. Na matriz Y_8 verifica-se a distribuição de dose por pixel.

	0	0	20.3	24.2	24.0	27.7	25.6	0	0	0
	0	0	39.0	35.7	31.3	31.5	30.3	0	0	0
	0	0	25.8	33.1	22.1	22.9	20.9	0	0	0
V	22.2	28.7	44.0	61.1	61.6	60.8	59.8	22.9	22.2	29.9
$I_8 =$	27.1	29.3	40.9	59.4	60.0	59.1	57.5	22.0	22.9	28.2
	26.4	40.1	59.4	59.9	60.6	60.0	52.0	43.0	39.1	25.7
	27.3	50.0	60.0	60.6	61.1	46.6	53.6	28.4	40.1	14.9
	0	0	22.9	23.1	23.7	16.2	16.4	0	0	0

Observando os dados da matriz Y_8 , pode-se perceber que a dose absorvida nos pixels de tumor é aproximadamente 60Gy. O limite de dose nos tecidos nobres e saudáveis ainda é ultrapassado em alguns pixels, porém, se comparado ao teste 5, houve uma pequena diminuição na média dos desvios de dose por pixel para estes tecidos.

A terceira execução em destaque, atribui o mesmo peso para todas as funções objetivo, ou seja, considera com a mesma importância a minimização dos desvios de dose tanto nos pixels de tumor, quanto nos pixels de tecido nobre e saudável. Na matriz Y_{14} verifica-se a distribuição de dose por pixel.

	0	0	22.4	26.8	26.5	30.6	28.3	0	0	0]
	0	0	43.1	39.5	34.7	34.8	33.5	0	0	0
	0	0	28.1	36.1	24.1	25.0	22.8	0	0	0
\mathbf{V}	22.1	28.7	45.3	62.2	62.2	61.0	59.6	20.7	19.9	27.0
$r_{14} =$	27.0	29.3	41.5	59.7	59.8	58.5	56.5	19.8	20.5	25.5
	26.2	40.1	59.9	59.8	60.0	58.9	50.7	38.9	35.0	23.2
	27.1	50.0	60.0	60.0	60.0	45.4	51.8	25.7	35.9	13.4
	0	0	23.2	23.5	24.0	16.4	16.7	0	0	0

Observando os dados da matriz Y_{14} , pode-se perceber que, em média, a dose por pixel é diminuída, o que é bom para os pixels nobres e saudáveis, porém acarreta em perda para o tumor. Como a dose nos pixels de tumor são ainda próximas a 60Gy, este é considerado um tratamento bom, mesmo que o limite de dose nos tecidos nobres e saudáveis seja ultrapassado em alguns pixels como, por exemplo, no pixel $y_{14}(7,7) = 51, 8Gy$.

A quarta execução em destaque atribui peso para a minimização do desvio de dose de excesso apenas nos pixels de tecido nobre e saudável, não considerando a minimização do desvio de dose nos pixels de tumor. Na matriz Y_{31} verifica-se a distribuição de dose por pixel.

	0	0	2.7	3.2	3.2	3.7	3.4	0	0	0
	0	0	5.2	4.7	4.1	4.2	4.0	0	0	0
	0	0	3.4	4.3	2.9	3.0	2.7	0	0	0
V	2.2	2.8	5.1	7.2	7.4	7.4	7.5	2.9	2.8	3.8
$r_{31} =$	2.7	2.9	4.6	6.9	7.1	7.2	7.1	2.8	2.9	3.6
	2.6	4.0	6.8	7.0	7.2	7.3	6.4	5.5	5.0	3.3
	2.7	5.0	6.8	7.0	7.2	5.6	6.6	3.6	5.2	1.9
	0	0	2.9	2.9	$\overline{3.0}$	2.0	2.1	0	0	0

Observando os dados da matriz Y_{31} , pode-se perceber em nenhum dos pixels de tumor a dose absorvida alcança 60Gy, o que torna o tratamento inadequado. A dose nos pixels de tecido nobre e saudável é pequena, o que é muito bom, porém é um tratamento ineficiente.

6.1.2.2. Sem utilizar a matriz CT

Da mesma forma, para a configuração do modelo (6.3) sem a utilização da matriz CT, foram propostos diferentes pesos para as funções objetivo, ou seja, foram alterados os valores de α , β , γ_1 e γ_2 , conforme mostrado na tabela 6.2. Para cada um destes valores tomados, obtiveram-se diferentes resultados para $x_1, x_2, x_3 \in x_4$ e também para as funções objetivo médias $\overline{f}(\epsilon^-), \overline{f}(\epsilon^+), \overline{f}(\theta^+) \in \overline{f}(\delta^+)$, apresentadas na tabela 6.2.

Sejam destacados, para comparação com os resultados obtidos em 6.1.2.1, as execuções 5, 8, 14 e 31, mostradas na tabela 6.2.

A primeira execução em destaque, atribui peso para a minimização de dose somente nos pixels de desvio de dose no tumor, não considerando a minimização do desvio de dose nos pixels nobres e saudáveis. Na matriz Y_5 verifica-se a distribuição de dose por pixel, e a Figura 6.2, relaciona-se a esta distribuição por meio do gráfico de cores.

	0	0	12.6	12.6	12.6	12.6	12.6	0	0	0]
	0	0	18.2	18.2	18.2	18.2	18.2	0	0	0
	0	0	16.5	16.5	16.5	16.5	16.5	0	0	0
V_{-}	33.4	49.3	59.2	60.0	60.6	60.0	57.8	45.1	44.0	30.2
$r_5 =$	33.4	49.3	58.5	59.3	60.0	59.3	57.2	45.1	44.0	30.2
	33.4	49.3	59.2	60.0	60.6	60.0	57.8	45.1	44.0	30.2
	33.4	49.3	59.8	60.5	61.2	60.5	58.4	45.1	44.0	30.2
	0	0	10.9	10.9	10.9	10.9	10.9	0	0	0

Figura 6.2: Distribuição de dose por pixel - teste 5 (sem CT)

Observando os dados da matriz Y_5 , pode-se perceber que nos pixels de tumor a dose absorvida é muito próxima a 60Gy, contudo em alguns pixels

de tecido nobre e saudável o limite de dose é ultrapassado, como por exemplo o valor de $y_5(4,3) = 59, 2Gy \in y_5(7,6) = 60, 5Gy$.

A segunda execução em destaque, atribui peso maior (0,4) para a minimização de dose nos pixels de desvio de dose no tumor e menor (0,1) para a minimização do desvio de dose de excesso nos pixels nobres e saudáveis. Na matriz Y_8 verifica-se a distribuição de dose por pixel.

	0	0	15.9	15.9	15.9	15.9	15.9	0	0	0
	0	0	23.0	23.0	23.0	23.0	23.0	0	0	0
	0	0	20.9	20.9	20.9	20.9	20.9	0	0	0
V =	30.5	45.0	59.2	60.0	60.6	60.0	58.0	41.2	40.2	27.6
$I_8 =$	30.5	45.0	58.4	59.1	59.7	59.1	57.2	41.2	40.2	27.6
	30.5	45.0	59.2	59.9	60.5	60.0	58.0	41.2	40.2	27.6
	30.5	45.0	60.0	60.7	61.3	60.7	58.8	41.2	40.2	27.6
	0	0	13.7	13.7	13.7	13.7	13.7	0	0	0

Observando os dados da matriz Y_8 , pode-se perceber que nos pixels de tumor a dose absorvida é muito próxima de 60Gy. O limite de dose nos tecidos nobres e saudáveis é ultrapassado em poucos pixels como, por exemplo, no pixel $y_8(4,3) = 59, 2Gy \in y_8(7,6) = 60, 7Gy$, sendo este resultado muito próximo ao teste 5.

A terceira execução em destaque, atribui o mesmo peso para todas as funções objetivo, ou seja, considera com a mesma importância a minimização dos desvios de dose tanto nos pixels de tumor, quanto nos pixels de tecido nobre e saudável. Na matriz Y_{14} verifica-se a distribuição de dose por pixel.

	0	0	16.2	16.2	16.2	16.2	16.2	0	0	0
	0	0	23.4	23.4	23.4	23.4	23.4	0	0	0
	0	0	21.1	21.1	21.1	21.1	21.1	0	0	0
V	30.5	45.0	59.2	60.0	60.5	60.0	58.0	41.1	40.1	27.5
$r_{14} =$	30.5	45.0	58.1	58.8	59.4	58.8	56.9	41.1	40.1	27.5
	30.5	45.0	58.7	59.4	60.0	59.4	57.5	41.1	40.1	27.5
	30.5	45.0	59.2	60.0	60.5	60.0	58.0	41.1	40.1	27.5
	0	0	13.2	13.2	13.2	13.2	13.2	0	0	0

Observando os dados da matriz Y_{14} , pode-se perceber a dose nos pixels de tumor é muito próxima a 60Gy. O limite de dose nos tecidos nobres e saudáveis é ultrapassado em poucos pixels como, por exemplo, no pixel $y_{14}(4,3) = 59, 2Gy \in y_{14}(7,6) = 60Gy$.

																-																	-
	ia	$\overline{f}(\delta^+)$	25.4471	0	0	0	0.4146	0.4362	0.4146	0.4249	0.4362	0.3218	0.4362	0.4249	0.4362	0.3975	0.4326	0.3183	0.4326	0.3287	0.3761	0.3287	0.3789	0	0	0	0	0	0	0	0	0	C
Γ	etivo Méd	$\overline{f}(\theta^+)$	34.1559	0	0	0	2.5214	2.1596	2.5214	2.2028	2.1596	2.5401	2.1596	2.2028	2.1596	2.1352	1.9978	2.5394	1.9978	2.1491	2.0801	2.1491	2.1383	0	2.3582	0	1.8346	0.3032	1.7879	0.3032	0.9219	0.3444	0
$\operatorname{natriz} C'$	ınções Obj	$\overline{f}(\epsilon^+)$	91.5833	0	0	0	0.2108	0.1749	0.2108	0.2185	0.1749	0.1899	0.1749	0.2185	0.1749	0.0855	0	0.1936	0	0.1496	0.0399	0.1496	0.0976	0	0.6865	0	0.1678	0	0.1172	0	0	0	C
ação da 1	F.	$\overline{f}(\epsilon^{-})$	0	46.6226	49.7598	36.3025	0.4787	0.5651	0.4787	0.4872	0.5651	0.6432	0.5651	0.4872	0.5651	0.7158	1.2947	0.6485	1.2947	0.7574	0.9608	0.7574	0.7248	14.2134	2.2942	14.2134	3.0573	10.8278	3.2176	10.8278	7.2193	10.5161	53 6200
ı a utiliz	(Gy)	x_4	58.3337	7.9711	4.6521	6.1885	33.3489	32.3573	33.3489	30.4839	32.3573	29.0946	32.3573	30.4839	32.3573	30.4077	35.6354	28.9180	35.6354	26.0262	30.4077	26.0262	29.2404	36.0829	14.2254	36.0829	12.6416	30.2400	13.7740	30.2400	26.9329	31.2968	9 6811
ıções sen	e radiação	x_3	67.8990	5.2121	4.4573	9.2028	40.5890	36.4969	40.5890	36.9892	36.4969	42.3543	36.4969	36.9892	36.4969	37.0092	35.6354	42.4007	35.6354	38.1606	37.0092	38.1606	37.3159	24.7866	46.2617	24.7866	41.6779	14.7934	41.3803	14.7934	26.9329	14.3946	0 7960
s nas exect	or campo d	x_2	62.5373	1.8884	3.1037	15.0507	10.2796	11.6291	10.2796	12.9388	11.6291	8.8847	11.6291	12.9388	11.6291	11.9388	10.2669	8.8213	10.2669	11.8044	11.1033	11.8044	11.8946	5.81e-014	5.1377	7.70e-015	10.3738	8.34e-013	9.5368	7.67e-009	2.92e-015	9.74e-014	9 5337
es obtidos	Dose p	x_1	56.8132	8.2640	4.8686	6.1848	14.4014	18.5135	14.4014	18.2136	18.5135	18.2972	18.5135	18.2136	18.5135	19.0064	16.3448	18.5133	16.3448	22.4107	19.6449	22.4107	19.9197	19.3804	32.1976	19.3804	29.6929	45.0000	29.6711	45.0000	39.9811	45.0000	9 1611
Valore	s	β	0	0	0		0	0	0.2	0.1	0	0.4	0.1	0.3	0.2	0.25	0	0.6	0.1	0.5	0.2	0.4	0.3	0	0.8	0.1	0.7	0.2	0.6	0.3	0.5	0.4	020
6.2:	ribuído	σ	0	0		0	0	0.2	0	0.1	0.4	0	0.3	0.1	0.2	0.25	0.6	0	0.5	0.1	0.4	0.2	0.3	0.8	0	0.7	0.1	0.6	0.2	0.5	0.3	0.4	0.5
Labela	esos at:	γ_2	0	Ч	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
- '	Ū.	γ_1	-	0	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	C
-	$\operatorname{Execução}$		1	2	ი	4	5 L	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

A quarta execução em destaque atribui peso para a minimização do desvio de dose de excesso apenas nos pixels de tecido nobre e saudável, não considerando a minimização do desvio de dose nos pixels de tumor. Na matriz Y_{31} verifica-se a distribuição de dose por pixel.

	0	0	2.3	2.3	2.3	2.3	2.3	0	0	0	1
	0	0	3.4	3.4	3.4	3.4	3.4	0	0	0	
	0	0	3.1	3.1	3.1	3.1	3.1	0	0	0	
V	2.3	3.4	6.0	6.1	6.2	6.2	6.1	3.4	3.3	2.3	
$r_{31} =$	2.3	3.4	6.0	6.1	6.2	6.2	6.1	3.4	3.3	2.3	•
	2.3	3.4	6.3	6.4	6.5	6.5	6.4	3.4	3.3	2.3	
	2.3	3.4	6.5	6.6	6.7	6.7	6.6	3.4	3.3	2.3	
	0	0	2.3	2.3	2.3	2.3	2.3	0	0	0	

Observando os dados da matriz Y_{31} , pode-se perceber em nenhum dos pixels de tumor a dose absorvida alcança 60Gy, o que torna o tratamento inadequado. A dose nos pixels de tecido nobre e saudável é pequena, o que é muito bom, porém é um tratamento ineficiente.

6.1.3 Considerações do caso teste

Com os resultados obtidos, pode-se perceber que a variabilidade da importância que se dá às funções objetivo por meio dos pesos, implica em soluções diferenciadas, em ambas as situações apresentadas (com e sem a matriz CT).

Quando se compara a dose absorvida por pixel nas situações com e sem o uso do fator de absorção da dose devido à heterogeneidade dos tecidos irradiados, considerado neste trabalho na matriz CT, verifica-se que os os resultados são muito semelhantes.

Porém, considerando que os dados de CT não foram coletados de uma situação real, mas simplesmente propostos para apresentação do exemplo, dependendo da escolha de CT as soluções podem ser variadas. Logo, a consideração da absorção de dose, com o uso ou não de CT, não é conclusiva. Tais informações requerem testes clínicos para confirmação.

O objetivo de apresentar os resultados com e sem CT foi para mostrar que pode existir uma diferença grande nas doses emitidas dependendo do tipo de tecido da região atingida por radiação. Esta diferença é observada nas matrizes de absorção A_t , $A_n \in A_s$ com o uso ou não de CT, apresentadas em 6.1.1. Nos testes realizados quando se usa CT a dose emitida por campo é bastante alta se comparada ao não uso de CT já que as matrizes de absorção neste caso tem valores mais baixos.

6.2 Caso real

6.2.1 Tratamento de dados

A região de interesse a ser estudada é a próstata, devido o fato de estar localizada numa região anatômica mais simplificada. Foi considerado um tratamento que utiliza quatro e outro seis campos de radiação, os quais foram de antemão definidos pelos profissionais da área. Os testes com 4 campos foram desenvolvidos por representar uma situação simplificada. Já os testes com 6 campos de radiação foram realizados pois representa uma configuração usual para o tratamento de câncer de próstata desenvolvida nos centros de tratamento.

Vale ressaltar que os planejamentos apresentados não obedecem nenhum protocolo clínico.

Os limites superiores de dose considerados para os tecidos nobres e saudáveis, respectivamente, foram Sn = 45Gy e Ss = 50Gy, e a dose que deve chegar ao tumor D = 60Gy.

Seja a imagem de referência, em formato DICOM, apresentada na Figura 6.3. Esta imagem foi manipulada e explorada por meio do software MATLAB R2009b.

Figura 6.3: Imagem em alta resolução Fonte: Hospital Erasto Gaertner

Inicialmente, com uma rede de pixels de tamanho 512x512, a imagem foi "recortada" pelo comando *imcrop* para que apresentasse apenas a região do corpo do paciente, passando a ter tamanho 220x420.

Em virtude da limitação computacional, não foi possível trabalhar com as matrizes geradas a partir da imagem original. Foi necessário submetê-la a um processo de redução da quantidade de pixels por meio do comando *imresize*, reduzindo-a a 20% da imagem anterior (Figura 6.4).

Figura 6.4: Imagem obtida após redução no tamanho e na quantidade de pixels da imagem

A matriz de tons de cinza (CT) foi obtida pelo comando *mat2gray*, que gera valores no intervalo [0,1].

Em seguida, por meio do comando *roipoly* foi possível gerar polígonos das regiões de interesse, como os órgãos nobres e o tumor (Figura 6.5 e 6.6).

Figura 6.5: Seleção da região de interesse pelo comando roipoly no MATLAB

Desta forma, foram geradas as matrizes: C_k referentes à incidência no pixel ij pelo campo k; I_n que indexa os pixels de tecido nobre; I_s que indexa os pixels de tecido sadio; I_t que indexa os pixels de tecido com tumor.

Os valores de F_k foram determinados por meio de dados tabelados obtidos em comissionamento realizado no Hospital Erasto Gaertner, disponibilizados no anexo A. Neste trabalho será utilizado apenas o fator devido ao tipo de tratamento em relação à distância, fator *PDP*. Considerou-se um tratamento foco-isocentro constante, realizado no acelerador linear 600-C com energia de 10Mev a uma distância de 100cm do isocentro do tumor.

Figura 6.6: Regiões de interesse selecionadas. Em vermelho, o tumor; em azul, os tecidos nobres (bexiga, cabeça de fêmur e reto); as demais regiões são consideradas tecidos saudáveis

Com estas informações, obtiveram-se as matrizes $A_n^k,\,A_s^k$ e $A_t^k,\,\mathrm{para}\;k=1,...,m.$

O modelo multiobjetivo (6.3) para cada uma das situações (4 e 6 campos) é apresentado a seguir.

6.1.2.1 Quatro campos

$$Min\Big(\alpha \sum_{i=1}^{l} \sum_{j=1}^{c} (\theta_{ij}^{+}) + \beta \sum_{i=1}^{l} \sum_{j=1}^{c} (\delta_{ij}^{+}) + \gamma_1 \sum_{i=1}^{l} \sum_{j=1}^{c} (\epsilon_{ij}^{-}) + \gamma_2 \sum_{i=1}^{l} \sum_{j=1}^{c} (\epsilon_{ij}^{+})\Big)$$

s a

$$\begin{cases} x_1.A_n^1 + x_2.A_n^2 + x_3.A_n^3 + x_4.A_n^4 &= S_n.I_n + \theta^+ - \theta^- \\ x_1.A_s^1 + x_2.A_s^2 + x_3.A_s^3 + x_4.A_s^4 &= S_s.I_s + \delta^+ - \delta^- \\ x_1.A_t^1 + x_2.A_t^2 + x_3.A_t^3 + x_4.A_t^4 &= D.I_t + \epsilon^+ - \epsilon^- \\ x_k \ge 0 \\ (\theta_{ij}^+), (\theta_{ij}^-), (\delta_{ij}^+), (\delta_{ij}^-), (\epsilon_{ij}^+), (\epsilon_{ij}^-) \ge 0 \end{cases}$$
(6.4)

em que $x_k, (\theta_{ij}^+), (\theta_{ij}^-), (\delta_{ij}^+), (\delta_{ij}^-), (\epsilon_{ij}^+), (\epsilon_{ij}^-) \in \Re; k = 1, ...m, i = 1, ...l$ e j = 1, ...c.

6.1.2.2 Seis campos

$$Min\left(\alpha\sum_{i=1}^{l}\sum_{j=1}^{c}(\theta_{ij}^{+}) + \beta\sum_{i=1}^{l}\sum_{j=1}^{c}(\delta_{ij}^{+}) + \gamma_{1}\sum_{i=1}^{l}\sum_{j=1}^{c}(\epsilon_{ij}^{-}) + \gamma_{2}\sum_{i=1}^{l}\sum_{j=1}^{c}(\epsilon_{ij}^{+})\right)$$

s a
$$\begin{cases} x_1.A_n^1 + x_2.A_n^2 + x_3.A_n^3 + x_4.A_n^4 + x_5.A_n^5 + x_6.A_n^6 &= S_n.I_n + \theta^+ - \theta^- \\ x_1.A_s^1 + x_2.A_s^2 + x_3.A_s^3 + x_4.A_s^4 + x_5.A_s^5 + x_6.A_s^6 &= S_s.I_s + \delta^+ - \delta^- \\ x_1.A_t^1 + x_2.A_t^2 + x_3.A_t^3 + x_4.A_t^4 + x_5.A_t^5 + x_6.A_t^6 &= D.I_t + \epsilon^+ - \epsilon^- \\ x_k \ge 0 \\ (\theta_{ij}^+), (\theta_{ij}^-), (\delta_{ij}^+), (\delta_{ij}^-), (\epsilon_{ij}^+), (\epsilon_{ij}^-) \ge 0 \end{cases}$$
(6.5)
em que $x_k, (\theta_{ij}^+), (\theta_{ij}^-), (\delta_{ij}^+), (\delta_{ij}^-), (\epsilon_{ij}^+), (\epsilon_{ij}^-) \in \Re; \ k = 1, \dots m, \ i = 1, \dots l \ e \ j = 1, \dots c.$

6.2.2 Resultados

6.2.2.1 Quatro campos de radiação

Para a configuração do caso real com 4 campos de radiação, cuja forma dos campos está representada na Figura 6.7, realizaram-se testes considerando o fator devido à heterogeneidade dos tecidos irradiados, e sem considerá-lo, isto é, com a utilização da matriz de CT e sem utilizá-la.

Figura 6.7: Representação esquemática da configuração do uso de quatro campos de radiação

6.2.2.1.1 Utilizando a matriz CT

Para a configuração do modelo (6.4) utilizando a matriz CT, foram propostos diferentes pesos para as funções objetivo, ou seja, foram modificados os valores de α , β , $\gamma_1 \in \gamma_2$, conforme mostrado na tabela 6.3, seguindo a proposta do caso teste.

Para cada um destes valores tomados, obtiveram-se diferentes resultados para a distribuição da dose por campo de radiação (isto é, para os valores de $x_1, x_2, x_3 \in x_4$) e também para os valores das funções objetivo médias $\overline{f}(\epsilon^-)$, $\overline{f}(\epsilon^+), \overline{f}(\theta^+) \in \overline{f}(\delta^+)$, apresentados na tabela 6.3. Para melhor compreensão dos resultados, sejam as execuções 5, 8, 14 e 31, destacados na tabela 6.3.

Na execução 5, considerou-se apenas a minimização dos desvios de dose para os pixels de tumor.

Figura 6.8: Distribuição de dose por pixel - teste 5 (com CT)

Pode-se perceber pela Figura 6.8 que em regiões em que não há tumor, há uma absorção de radiação muito maior do que o limite determinado para estes tecidos. A dose emitida pelos campos superior e inferior é bastante elevada e, em contrapartida, pelos campos laterais a dose é muito baixa, não havendo uma boa distribuição da dose.

							-			-						-																	-
Tabela 6.3: Valores obtidos nas execuções com a utilização da matriz CT - Quatro campos	Funções Objetivo Médias	$\overline{f}(\delta^+)$	24.1211	0	0	0	3.5528	0.2322	0.2063	0.2060	0.1914	0.1755	0.1794	0.1753	0.1758	0.1532	0.2008	0.0249	0.0835	0.0303	0.0495	0.0306	0.0380	0.0025	0.0131	0.0020	0.0101	0.0020	0.0129	0.0020	0.0022	0.0023	0
		$\overline{f}(\theta^+)$	50.6763	0	0	0	14.8319	0.8512	5.0160	0.9032	0.7223	4.3355	0.7056	0.7050	0.7004	0.6437	0.6318	2.8327	0.4706	0.3295	0.3806	0.3261	0.3421	0.0035	1.6471	0.0050	0.2637	0.0050	0.2242	0.0050	0.0292	0.0127	0
		$\overline{f}(\epsilon^+)$	3.4659e+003	0	0	0	0.5169	0.4125	0.3096	0.3908	0.3504	0.1470	0.2531	0.2097	0.2182	0.1124	0.1432	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		$\overline{f}(\epsilon^{-})$	1.2219e-009	54.6529	49.6062	57.6076	0.5636	3.3951	2.8514	3.3899	3.9339	3.6798	4.1554	4.2606	4.2517	5.0633	5.1078	10.1861	7.8233	10.3679	9.3459	10.3598	9.9900	16.0629	11.3233	16.0182	12.3598	16.0182	12.1363	16.0182	15.5739	15.8402	58.9652
	o (Gy)	x_4	100.0594	6.8896	12.9247	4.0828	9.9455e-017	28.1150	30.4235	30.6712	34.5697	28.9311	35.0597	30.5836	29.8690	22.9922	11.9907	1.0640	11.3779	11.9095	5.2288	12.1391	12.9537	10.1361	5.2461	12.2285	15.3094	12.2285	19.7125	12.2285	3.5040e-011	8.9232e-015	2.0936
	Dose por campo de radiação	x_3	140.1498	4.6371	11.6881	2.5477	4.8045e-016	39.3373	15.7840	35.9878	42.1343	18.3010	39.9634	42.7652	44.1715	47.8494	64.3373	22.9572	50.1242	37.0683	51.2077	37.6440	42.1033	25.6281	18.3116	18.5660	18.1007	18.5660	22.3041	18.5660	27.9829	31.6278	1.0110
		x_2	109.6280	4.8567	0.0349	1.7472	89.6930	80.4976	50.9907	60.9437	22.7708	44.7182	24.2277	25.8426	24.7733	23.3654	9.9827	46.1792	17.0942	20.5369	13.7474	18.8968	10.4020	1.8472	50.2442	9.1462	56.2469	9.1462	20.5931	9.1462	20.1927	9.1462	0.4449
		x_1	109.7039	1.3161	10.7926	0.1603	54.4269	17.3744	60.5773	37.5478	68.8747	63.9313	67.6033	66.6019	67.3268	68.4144	78.7733	59.9353	73.2687	70.8926	75.9312	72.1020	78.5208	83.6732	53.3256	79.2771	38.9925	79.2771	70.5604	79.2771	70.8703	79.2771	0.2448
	Pesos atribuídos	β	0	0	0	1	0	0	0.2	0.1	0	0.4	0.1	0.3	0.2	0.25	0	0.6	0.1	0.5	0.2	0.4	0.3	0	0.8	0.1	0.7	0.2	0.6	0.3	0.5	0.4	0.5
		σ	0	0	1	0	0	0.2	0	0.1	0.4	0	0.3	0.1	0.2	0.25	0.6	0	0.5	0.1	0.4	0.2	0.3	0.8	0	0.7	0.1	0.6	0.2	0.5	0.3	0.4	0.5
		γ_2	0	1	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
		γ_1		0	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
	Execução		1	2	ი	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Ć Ę 2 ÷ ٤

Na segunda execução em destaque, priorizou-se a minimização dos desvios de dose no tumor, atribuindo um peso pequeno para as funções de minimização de desvio de excesso de dose nos pixels nobres e saudáveis.

Figura 6.9: Distribuição de dose por pixel - teste 8 (com CT)

Pode-se perceber pela imagem da Figura 6.9, que a dose foi melhor distribuída por campo de radiação se comparado à execução 5, porém ainda há regiões de tecido nobre e saudável que recebem dose um pouco acima do limite para estes tecidos.

Na terceira execução em destaque, todas as funções objetivo tiveram o mesmo peso (0,25), isto é, a minimização dos desvios de dose no tumor, tecidos nobres e saudáveis foram consideradas com mesmo grau de importância.

Para esta configuração, o gráfico de cores apresentado na Figura 6.10 mostra que os pixels de tecido nobre e saudável praticamente não ultrapassaram o limite de dose. Sabe-se que em alguns pixels houve excesso de dose ao limite pois a função objetivo média apresenta esta quantificação. Pela relação com as cores, também pode-se concluir que a dose no tumor é bem próxima à prescrita, de 60Gy.

Na última execução em destaque, considerou-se apenas a minimização dos desvios de dose nos tecidos nobres e saudáveis. A Figura 6.11 mostra que esta é uma execução inviável ao tratamento pois a dose nos pixels de tumor é desprezível.

Figura 6.10: Distribuição de dose por pixel - teste 14 (com CT)

Figura 6.11: Distribuição de dose por pixel - teste 31 (com CT)

6.2.2.1.2 Sem utilizar a matriz CT

Do mesmo modo que em 6.2.2.1.1, os testes foram realizados variando os pesos das funções objetivo, cujas soluções encontradas estão disponibilizadas na Tabela 6.4.

Para melhor compreensão dos resultados, sejam as execuções 5, 8, 14 e 31, destacados na tabela 6.4.

Na primeira execução em destaque considerou-se apenas a minimização dos desvios de dose no tumor.

Figura 6.12: Distribuição de dose por pixel - teste 5 (sem CT)

Pode-se perceber pela Figura 6.12 que, assim como na execução com CT, em regiões em que não há tumor, há uma absorção de radiação muito maior do que o limite determinado para estes tecidos. A dose emitida pelos campos superior e inferior é bastante elevada, porém, pelos campos laterais a dose é muito baixa, não havendo uma boa distribuição da dose.

Na execução 8, a segunda em detaque, as funções objetivo assumiram peso 0,4 para os desvios no tumor e peso 0,1 para os desvios nos tecidos nobres e saudáveis, dando prioridade à minimização de desvios de dose no tumor.

Pode-se perceber pela imagem da Figura 6.13, que a dose foi melhor distribuída por campo de radiação se comparado à execução 5, porém ainda há regiões de tecido nobre e saudável que recebe uma dose um pouco acima do limite para estes tecidos.
1																																	
0	ldS	$f(\delta^+)$	23.1030	0	0	0	3.7854	0.2285	0.2317	0.2259	0.2263	0.1967	0.2194	0.2081	0.2180	0.2023	0.2176	0.0006	0.2011	0.0031	0.0040	0.0031	0.0033	0	0	0	0	0	0	0	0	0	0
o campos		$f(\theta^+)$	42.5300	0	0	0	13.7692	0.7662	3.8998	0.7670	0.7618	3.8616	0.7521	0.7439	0.7545	0.7272	0.7454	3.3961	0.7244	0.2620	0.2607	0.2620	0.2587	0	3.3931	0.0001	3.3931	0.0002	0.2445	0.0012	0.2436	0.0014	0
<u>- Quatr</u>	Inçoes Obj	$f(\epsilon^+)$	87.7730	0	0	0	0.0767	0.0641	0.0257	0.0598	0.0443	0.0365	0.0277	0.0297	0.0258	0.0023	0.0023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
atriz <i>C'I</i>	r i	$f(\epsilon^{-})$	0	53.9548	46.9118	56.7450	0.0752	2.2691	1.7655	2.2805	2.3066	2.4556	2.4051	2.6063	2.4126	2.8181	2.4952	10.5089	2.8645	10.9633	10.9350	10.9633	10.9689	15.4736	10.5590	15.4709	10.5590	15.4680	11.2136	15.4465	11.2281	15.4418	58.3912
lização da m	3a0 (Gy)	x_4	58.7810	4.7308	8.8342	3.2042	2.8542e-010	11.0850	9.2544	12.1279	11.3903	17.0446	13.6264	16.2321	14.0283	16.0438	12.8294	1.6600	15.9311	7.5237	7.8606	7.5237	7.5406	0.5080	1.1505	0.6767	5.5274	0.4752	5.4540	0.2272	5.3699	5.5945e-015	1.7443
em a uti	o de radia	x_3	83.2567	6.2425	9.8345	2.5793	1.9218	19.3224	13.5289	18.1394	18.8515	4.0898	17.4828	14.2696	16.9341	14.0219	18.0163	0.6958	14.0219	3.4529	3.3010	3.4529	3.5444	0.8008	1.0922	0.6767	5.2768	0.9504	5.0757	0.4544	5.1265	0.6943	1.2226
ecuções s	por camp	x_2	55.2045	1.7795	0.0115	0.9985	32.5449	32.3805	32.5816	32.5397	32.6589	32.5816	31.0262	30.7055	30.7055	31.0262	31.0262	32.5816	31.0262	30.7055	31.0262	30.7055	31.0262	30.0462	32.5816	29.9903	30.1533	29.8996	31.0262	31.0262	31.0262	31.0262	0.3331
os nas ex	Dose	x_1	61.4785	0.0016	6.8386	0.0293	47.0846	27.7364	32.5816	27.6306	27.4718	32.5816	28.4552	28.8497	28.8497	28.4552	28.4552	32.5816	28.4552	28.8497	28.4552	28.8497	28.4552	29.0454	32.5816	29.0790	29.2168	29.1336	28.4552	28.4552	28.4552	28.4552	0.1134
obtid	Ω.	β	0	0	0	Ч	0	0	0.2	0.1	0	0.4	0.1	0.3	0.2	0.25	0	0.6	0.1	0.5	0.2	0.4	0.3	0	0.8	0.1	0.7	0.2	0.6	0.3	0.5	0.4	0.5
alores	ribulac	α	0	0	1	0	0	0.2	0	0.1	0.4	0	0.3	0.1	0.2	0.25	0.6	0	0.5	0.1	0.4	0.2	0.3	0.8	0	0.7	0.1	0.6	0.2	0.5	0.3	0.4	0.5
i.4: V6	esos at	γ_2	0	1	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
bela 6	4	γ_1		0	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
<u> </u>	Trecução			7	n	4	IJ	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

(;

Figura 6.13: Distribuição de dose por pixel - teste 8 (sem CT)

Na terceira execução em destaque, todas as funções objetivo tiveram o mesmo peso (0,25), isto é, a minimização dos desvios de dose no tumor, tecidos nobres e saudáveis foi considerada com mesmo grau de importância.

Figura 6.14: Distribuição de dose por pixel - teste 14 (sem CT)

Para esta configuração, o gráfico de cores apresentado na Figura 6.14 é muito parecido com o gráfico da Figura 6.13, relacionado à execução 8. Houve

aqui uma pequena diminuição na média dos desvios de dose de excesso para todos os tipos de tecidos, o que pode ser percebido a Tabela 6.4.

Na última execução em destaque, considerou-se apenas a minimização dos desvios de dose nos tecidos nobres e saudáveis. A Figura 6.15 mostra que esta é uma execução inviável ao tratamento pois a dose nos pixels de tumor é desprezível.

Figura 6.15: Distribuição de dose por pixel - teste 31 (sem CT)

6.2.2.2 Seis campos de radiação

Ao encontro do que foi desenvolvido para o caso teste e para o caso real com 4 campos de radiação, com 6 campos realizaram-se testes com e sem utilizar a matriz CT. Na Figura 6.16, pode-se visualizar a configuração dos seis campos de radiação.

6.2.2.2.1 Utilizando a matriz CT

Os pesos α , β , γ_1 e γ_2 respectivos às funções objetivo foram modificados, de modo a apresentar soluções diferenciadas para x_1, x_2, x_3, x_4, x_5 e x_6 , assim como para $\overline{f}(\epsilon^-), \overline{f}(\epsilon^+), \overline{f}(\theta^+)$ e $\overline{f}(\delta^+)$, cujos valores encontram-se na tabela 6.4.

Para melhor compreensão dos resultados, sejam as execuções 5, 8, 14 e 31, destacados na tabela 6.5.

Na primeira execução em destaque, considerou-se apenas a minimização dos desvios de dose para os pixels de tumor.

Figura 6.17: Distribuição de dose por pixel - teste 5 (com CT)

Pode-se perceber pela Figura 6.17 que em regiões em que não há tumor, há uma absorção de radiação muito maior do que o limite determinado para estes tecidos.

										-																							-
	ia	$\overline{f}(\delta^+)$	23.0912	0	0	0	2.4901	0.4152	0.2749	0.3085	0.3844	0.0111	0.2351	0.0214	0.1494	0.0186	0.3109	0.0034	0.1095	0.0040	0.0104	0.0046	0.0066	0.2074	0.0013	0.0028	0.0012	0.0016	0	0.0015	0.0014	0.0014	0
	jetivo Méd	$\overline{f}(\theta^+)$	39.1663	0	0	0	9.8668	0.6392	1.1501	0.6087	0.3408	0.2729	0.2914	0.2797	0.2653	0.1864	0.2732	0.1762	0.1719	0.1848	0.1370	0.1778	0.1367	0.0917	0.2594	0.0495	0.1716	0.0476	0.1198	0.0540	0.0975	0.0537	0
	inções Obj	$\overline{f}(\epsilon^+)$	61.3630	0	0	0	0.4162	0.3689	0.1414	0.2193	0.3087	0	0.0750	0	0	0	0.1394	0	0	0	0	0	0	0.0171	0	0	0	0	0	0	0	0	0
sodu	F	$\overline{f}(\epsilon^{-})$	0	28.3039	35.8024	39.5958	1.6445	2.8192	3.3915	3.2305	3.7599	8.2161	4.6914	7.9509	5.7757	8.1884	4.7500	8.6950	6.8318	8.6268	8.6462	8.6217	8.7499	7.9917	8.7437	10.2193	8.8916	10.3241	9.3671	10.1677	9.4607	10.1874	40.3911
- Seis car		x_6	123.9388	0.0038	7.9570	0.0901	22.3781	47.7628	25.8202	39.9174	68.4624	40.2861	64.4211	45.5047	53.8731	43.6951	70.6514	30.5444	67.2444	33.2682	54.3375	34.4004	53.9016	44.2393	29.8141	72.8781	27.6650	72.8781	42.7651	72.8781	72.8781	70.9860	0.2238
ι matriz CT	(Gy)	x_5	114.1480	17.2218	13.1688	3.4155	1.3544e-009	27.0417	49.2514	30.1798	40.5292	10.5797	28.9278	6.0092	21.0446	6.5767	34.5921	19.5968	19.2703	16.3482	3.8409	15.0959	2.7940	49.3473	19.7651	1.9198e-008	21.2728	2.9181e-015	11.9467	2.7389e-015	1.0951e-012	3.2486e-012	2.1054
utilização da	o de radiação	x_4	96.8159	17.9622	2.5613	3.1937	1.9817e-009	23.8018	16.3234	36.5269	44.3557	41.6302	48.4750	41.8396	39.3628	48.3924	33.5469	41.4403	30.3025	47.1072	50.6845	48.1705	51.0047	6.0266	41.2159	16.1261	48.0112	15.6746	50.7073	17.7205	26.9723	19.5833	1.6029
es com a .	se por camp	x_3	123.2461	16.2851	0.0378	1.0470	65.3252	83.8247	32.7134	67.2445	59.4157	47.5522	55.2963	48.8216	64.4086	53.5227	63.3333	45.9144	61.0245	50.1962	44.9125	51.1752	43.6139	70.8498	45.0257	57.6822	49.7924	57.3409	41.4045	56.5618	53.0388	55.7335	0.3028
us execuçõ	Do	x_2	116.3444	18.2415	5.6459	3.0366	126.9489	67.5105	72.3874	55.5613	21.5344	43.8203	21.5344	42.9711	35.4421	36.5081	25.9931	44.8700	29.5861	39.1565	26.8234	37.9836	27.4565	38.9359	45.5092	40.9210	38.8693	41.4340	29.0784	40.6143	36.9078	39.9450	1.7042
obtidos ne		x_1	104.9420	21.3430	6.3697	2.3545	65.3252	10.5444	57.9457	29.4188	12.7858	43.3319	24.3850	43.8335	24.3815	39.4165	10.8581	42.5976	20.1890	38.9019	42.6549	38.3093	44.1308	6.4271	42.3310	18.1080	37.6882	17.5950	43.0027	18.4146	22.1212	20.4194	1.7427
alores o	S	β	0	0	0	1	0	0	0.2	0.1	0	0.4	0.1	0.3	0.2	0.25	0	0.6	0.1	0.5	0.2	0.4	0.3	0	0.8	0.1	0.7	0.2	0.6	0.3	0.5	0.4	0.5
$3.5: V_6$	sribuídc	σ	0	0	1	0	0	0.2	0	0.1	0.4	0	0.3	0.1	0.2	0.25	0.6	0	0.5	0.1	0.4	0.2	0.3	0.8	0	0.7	0.1	0.6	0.2	0.5	0.3	0.4	0.5
abela (Pesos at	γ_2	0	1	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
Ë		γ_1		0	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
	Execução			2	c,	4	IJ	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Na segunda execução em destaque, as funções objetivo assumiram peso 0,4 para os desvios no tumor e peso 0,1 para os desvios nos tecidos nobres e saudáveis, dando prioridade à minimização de desvios de dose no tumor.

Figura 6.18: Distribuição de dose por pixel - teste 8 (com CT)

Pode-se perceber pela imagem da Figura 6.18, que a dose foi melhor distribuída por campo de radição se comparado à execução 5, porém ainda há regiões de tecido nobre e saudável que recebem uma dose um pouco acima do limite para estes tecidos.

Na terceira execução em destaque, todas as funções objetivo tiveram o mesmo peso (0,25), isto é, a minimização dos desvios de dose no tumor, tecidos nobres e saudáveis foi considerada com mesmo grau de importância.

Pode-se perceber por meio do gráfico de cores da Figura 6.19 que houve aqui uma diminuição na dose absorvida tanto para pixels de tumor, quanto para pixels de tecidos nobres e saudáveis, se comparado às execuções em destaque anteriores. Desta forma, minimizando os desvios de excesso de dose em todos os tecidos.

Na última execução em destaque, considerou-se apenas a minimização dos desvios de dose nos tecidos nobres e saudáveis. A Figura 6.20 mostra que esta é uma execução inviável ao tratamento pois a dose nos pixels de tumor é desprezível.

Figura 6.19: Distribuição de dose por pixel - teste 14 (com CT)

Figura 6.20: Distribuição de dose por pixel - teste 31 (com CT)

6.2.2.2.2 Sem utilizar a matriz CT

Do mesmo modo que em 6.2.2.2.1, os pesos $\alpha, \beta, \gamma_1 \in \gamma_2$, respectivos às funções objetivo foram variados, resultando em soluções diferenciadas para $x_1, x_2, x_3, x_4, x_5 \in x_6$, assim como para $\overline{f}(\epsilon^-), \overline{f}(\epsilon^+), \overline{f}(\theta^+) \in \overline{f}(\delta^+)$, cujos valores encontram-se na tabela 6.6.

	ia	$\overline{f}(\delta^+)$	22.5281	0	0	0	4.3615	0.5707	0.3918	0.4335	0.4743	0.0049	0.4082	0.0063	0.1871	0.0069	0.5107	0.0003	0.1797	0.0004	0.0058	0.0005	0.0020	0.1975	0	0.0019	0	0.0008	0	0	0	0.0002	0
1	jetivo Méd	$\overline{f}(\theta^+)$	32.6269	0	0	0	10.3250	0.5016	0.9391	0.5530	0.3566	0.2407	0.3871	0.2156	0.2069	0.1379	0.3377	0.2093	0.1517	0.1422	0.1009	0.1256	0.1067	0.0890	0.2081	0.0318	0.1189	0.0304	0.1022	0.0298	0.1021	0.0326	0
	inções Obj	$\overline{f}(\epsilon^+)$	59.2604	0	0	0	0.2263	0.0933	0.0004	0.0354	0.0469	0	0.0231	0	0	0	0.0694	0	0	0	0	0	0	0.0114	0	0	0	0	0	0	0	0	0
campos	년 	$\overline{f}(\epsilon^{-})$	0	29.1487	35.2094	39.7413	1.5465	3.1636	3.2510	3.1897	3.7384	9.5043	3.6555	9.4683	6.6741	9.6253	3.8898	9.6781	7.0862	9.7986	9.8508	9.8653	9.8948	8.0397	9.6991	11.0581	9.9246	11.1334	10.0229	11.1988	10.0245	11.1248	40.3872
SIBC - TO	-	x_6	74.7908	0.0021	6.1189	0.0329	3.0997	21.2293	26.3747	19.0312	27.3210	17.2121	23.6693	17.3689	19.8308	19.6874	36.6671	15.1306	33.6563	14.9591	26.7452	15.5297	18.8540	18.8540	15.2744	23.7515	15.8939	19.5143	17.6906	15.3007	17.9455	25.0665	0.0688
matriz	iy)	x_5	65.5787	8.9866	9.0857	1.7760	2.7433	24.3056	22.7984	21.2554	23.8630	11.9985	25.6427	11.7116	16.1186	8.4756	32.4510	13.5912	14.2071	13.0658	4.0640	13.5641	12.7013	12.7013	13.3412	1.1334	13.5979	5.4583	15.2919	13.0904	15.3532	14.5926	1.3536
ullizaçao da	le radiação (C	x_4	53.4662	10.3720	0.8134	1.5785	4.9992e-012	16.9455	11.1475	26.3273	38.7215	21.2834	33.1121	22.5427	25.1034	26.0467	18.4559	22.3958	16.9705	25.3157	27.3528	26.4906	27.4984	9.9366	22.3414	24.7415	26.6556	24.7262	25.7074	21.5769	25.3670	10.4247	0.8572
s sem a u	or campo c	x_3	64.9351	9.6394	0.0144	0.9731	37.5054	49.6909	15.9217	37.5018	26.1620	23.0444	31.7714	23.9509	33.9342	26.2696	34.3997	23.4730	34.3875	25.2412	23.0674	24.4620	22.0455	37.4988	23.4951	23.8315	23.8525	23.3985	22.4642	24.0163	22.5987	28.4536	0.2326
execuçoe	Dose p	x_2	62.6448	9.3018	2.3149	1.4588	78.0180	33.4543	35.7473	27.3896	7.2788	25.8358	14.1707	24.5920	17.3882	21.1040	15.0611	24.9508	16.0301	22.2585	16.6368	20.2783	17.2038	18.5681	24.9694	17.8321	19.6306	18.1221	18.0917	19.7600	18.2250	24.1046	0.8784
ODUIDON IIAS		x_1	55.9759	10.3941	3.5868	1.1258	39.5840	7.1124e-013	31.6163	15.8664	20.2750	24.6591	15.4601	24.1489	21.7730	22.6179	6.3812e-011	23.9947	13.6815	22.6201	24.9165	22.7066	24.1077	11.6683	24.0519	27.8463	23.0804	27.5776	22.1439	23.6739	21.7886	11.4051	0.9820
alores	SC	β	0	0	0	1	0	0	0.2	0.1	0	0.4	0.1	0.3	0.2	0.25	0	0.6	0.1	0.5	0.2	0.4	0.3	0	0.8	0.1	0.7	0.2	0.6	0.3	0.5	0.4	0.5
.0: V	ribuídc	σ	0	0	1	0	0	0.2	0	0.1	0.4	0	0.3	0.1	0.2	0.25	0.6	0	0.5	0.1	0.4	0.2	0.3	0.8	0	0.7	0.1	0.6	0.2	0.5	0.3	0.4	0.5
udela c	esos at	γ_2	0	1	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
-1 c	Ц	γ_1	-	0	0	0	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.25	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0
	Execução			2	က	4	IJ	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

<u>0</u> E 2 +:1:-+ ž ht:dc 1/21ġ Ś Tabala Para melhor compreensão dos resultados, sejam as execuções 5, 8, 14 e 31, destacados na tabela 6.6.

Na execução 5, a primeira em destaque, considerou-se apenas a minimização dos desvios de dose para os pixels de tumor.

Figura 6.21: Distribuição de dose por pixel - teste 5 (sem CT)

Pode-se perceber pela Figura 6.21 que em regiões em que não há tumor, há uma absorção de radiação muito maior do que o limite determinado para estes tecidos.

Na segunda execução em destaque, deu-se prioridade à minimização de desvios de dose no tumor.

Pode-se perceber pela imagem da Figura 6.22, que a dose foi melhor distribuída por campo de radição se comparado à execução 5, porém ainda há regiões de tecido nobre e saudável que recebem uma dose um pouco acima do limite para estes tecidos.

Na terceira execução em destaque a minimização dos desvios de dose no tumor, tecidos nobres e saudáveis foi considerada com mesmo grau de importância.

Pode-se perceber por meio do gráfico de cores da Figura 6.23 que houve aqui uma diminuição na dose absorvida tanto para pixels de tumor, quanto para pixels de tecidos nobres e saudáveis, se comparado às execuções em destaque anteriores. Desta forma, minimizando os desvios de excesso de dose em todos os tecidos.

Figura 6.22: Distribuição de dose por pixel - teste 8 (sem CT)

Figura 6.23: Distribuição de dose por pixel - teste 14 (sem CT)

Na última execução em destaque, considerou-se apenas a minimização dos desvios de dose nos tecidos nobres e saudáveis. A Figura 6.24 mostra que esta é uma execução inviável ao tratamento pois a dose nos pixels de tumor é desprezível.

Figura 6.24: Distribuição de dose por pixel - teste 31 (sem CT)

6.2.3 Fronteira de eficiência

Nesta seção serão apresentados gráficos de soluções obtidas com pesos α, β, γ_1 e γ_2 positivos, já que o Teorema 1, apresentado em 4.1.5.1, indica que desta forma soluções não dominadas são encontradas.

Os dados utilizados na elaboração dos gráficos das Figuras 6.25 a 6.28 referem-se ao caso real com quatro campos de radiação com a utilização de CT. Esta escolha deu-se para exemplificação de um caso, já que todos os gráficos das soluções dos demais casos se comportam de maneira semelhante.

As Figuras 6.24 e 6.25 mostram as Fronteiras de Pareto no espaço dos objetivos $f(\theta^+) \times f(\epsilon^-)$ e $f(\delta^+) \times f(\epsilon^-)$, respectivamente.

Quanto aos objetivos conflitantes, observa-se por meio das Figuras 6.25 e 6.26, que quanto mais próxima a dose a ser aplicada no tumor está da dose prescrita, ou seja, $f(\epsilon^{-})$ próximo de zero, o que é uma solução desejada, maior é o desvio nos tecidos nobres e saudáveis, o que não é bom para tais tipos de tecidos.

Cabe ressaltar a importância do especialista decisor, que é responsável pela decisão final em problemas desta natureza. Ou seja, para este problema em estudo, decidir o que é melhor: uma dose mais próxima da prescrita para o tumor, mesmo que possa prejudicar os tecidos nobres e saudáveis, ou então proteger ao máximo os tecidos nobres e saudáveis, relaxando a dose necessária para destruir o tumor.

Figura 6.25: Fronteira de Pareto em relação aos desvios de dos
e ϵ^- e θ^+

Figura 6.26: Fronteira de Pareto em relação aos desvios de dos
e ϵ^- e δ^+

Para as funções relacionadas aos objetivos de minimização dos desvios de excesso de dose, o comportamento da variação das funções $f(\theta^+) \times f(\epsilon^+)$ e $f(\delta^+) \times f(\epsilon^+)$ são apresentadas nas Figuras 6.27 e 6.28.

Estes gráficos não representam Fronteiras de Pareto, pois os objetivos relacionados não são conflitantes. Ou seja, quando a dose no tumor é mais próxima da prescrita, menor será o desvio de excesso de dose nos pixels de tumor, assim como nos pixels saudáveis e nobres. Por outro lado, quanto maior o valor de $f(\epsilon^+)$, maior é a dose aplicada e maior será também $f(\delta^+)$ e $f(\theta^+)$.

Figura 6.27: Comportamento das soluções em relação aos desvios de dos
e ϵ^+ e θ^+

Figura 6.28: Comportamento das soluções em relação aos desvios de dos
e ϵ^+ e δ^+

6.2.4 Conclusões do caso real

A partir dos resultados obtidos, uma possível questão a ser levantada é: qual o melhor resultado? Ou: qual a solução ótima? Embora a metodologia multiobjetivo não apresente uma única solução ótima, mas um conjunto de soluções chamadas solução de compromisso mostradas na fronteira de Pareto, neste trabalho considerou-se que "a melhor solução" é representada por aquela que possui a menor distância euclidiana em relação ao ponto ideal.

O ponto ideal é aquele cujas coordenadas são formadas pelas melhores soluções para cada um dos objetivos. Considerando o caso com quatro campos de radiação, com a utilização da matriz CT, o ponto ideal tem coordenadas (3, 3899; 0, 0050; 0, 0020). A primeira coordenada refere-se ao objetivo de minimização dos desvios referente à falta de dose no tumor, $f(\epsilon^{-})$, já a segunda e terceira coordenadas são referentes aos desvios de excesso de dose nos pixels de tecido nobre e saudável, representadas por $f(\theta^{+}) e f(\delta^{+})$, respectivamente. A Figura 6.29 mostra a representação do ponto ideal (em verde) em relação às soluções da fronteira de Pareto.

Figura 6.29: Melhor solução em relação ao ponto ideal

Desta forma, a solução que representa a "melhor solução" encontrada foi $f(\epsilon^-) = 3,3899, f(\theta^+) = 0,9032$ e $f(\delta^+) = 0,2060$, ou seja, o ponto de coordenadas (3,3899; 0,9032; 0,2060), representado em vermelho na Figura 6.29, cujos pesos para cada uma das funções são $\gamma_1 = 0, 4, \alpha = 0, 1$ e $\beta = 0, 1$, e os valores das doses emitidas por cada um dos campos de radiação é $x_1 = 37,54780, x_2 = 60,94370, x_3 = 35,98780$ e $x_4 = 30,6712$.

Observando os resultados apresentados nas Tabelas 6.3 a 6.8, algumas comparações são propostas a fim de analisar o impacto do número de campos de radiação no tratamento. Neste trabalho, será comparado o uso de quatro e seis campos.

Em se tratando dos valores das funções médias de desvios de dose por pixel, para os 62 casos estudados (31 utilizando a matriz de CT e outros 31 sem utilizá-la), os resultados foram os seguintes: 26 casos em que 4 campos foi melhor; 10 casos em que 6 campos foi melhor; 26 casos considerados não comparáveis. Considerou-se que um caso é melhor que outro quando o valor de todas as funções médias objetivo é inferior às respectivas funções médias objetivo do outro caso em comparação. Pode-se visualizar esta comparação por meio do gráfico da Figura 6.30.

Figura 6.30: Comparação entre os valores dos desvios de dose para 4 e 6 campos

Observando apenas estes números, poder-se-ia concluir que o uso de quatro campos é melhor em termos de desvios médios. Porém, considerando que as funções objetivo utilizadas consideram somas de desvios, pode haver um comportamento compensatório, ou seja, podem haver somas baixas mas representadas por valores altos em poucos pixels.

Para a comparação da dose por campo de radiação, foi utilizado o critério do valor máximo de dose dentre todos os campos de radiação. Aquele caso em que for encontrado este valor máximo é considerado pior que o outro caso. Os resultados foram: 17 casos em que 4 campos foi melhor e 45 em casos em que 6 campos foi melhor, representados na Figura 6.31. Desta forma, pode-se afirmar que a utilização de 6 campos de radiação é melhor que a utilização de 4, pois distribui melhor a radiação entre os campos, afetando com menor intensidade os pixels nobres e saudáveis.

Ao compararmos os resultados com e sem a utilização do fator de heterogeneidade dos tecidos irradiados, quantificado na matriz de CT, apesar dos resultados sem CT ser superior à sua utilização, esta afirmação não pode ser feita pois tais informações requerem testes clínicos para confirmação. Estudos analisando o ajuste de parâmetros na matriz CT ainda precisam ser desenvolvidos para que a absorção real da dose seja representada e comparada aos testes clínicos.

Figura 6.31: Comparação entre os valores da dose por campo de radiação para 4 e 6 campos

Capítulo 7

Considerações finais e trabalhos futuros

Em sua fase de planejamento, a prática do tratamento de câncer por radioterapia, tem muito a ser melhorada, no que se refere a automatização do conjunto ótimo de soluções, complementando o planejamento feito pela equipe médica.

Dentre os diversos problemas de abordagem matemática envolvidos, o problema da intensidade de dose foi estudado neste trabalho, apresentando um modelo de programação matemática multiobjetivo para buscar soluções, apresentando-se como um modelo adequado e simples.

A partir de um caso teste apresentado, a aplicação do modelo pode ser melhor compreendida, para então sua aplicação a um caso real de câncer de próstata.

O software MATLAB R2009b foi utilizado na exploração das imagens, assim como na solução do modelo, mostrando-se muito eficiente e rápido em suas execuções.

O método da função ponderada foi utilizado para busca de soluções para o modelo, apresentando diversas configurações que permitiram comparações entre os casos.

As Fronteiras de Pareto mostraram a importância do decisor em problemas multiobjetivo, tendo em vista que situações conflitantes são encontradas e é preciso penalisar alguns fatores para ter ganho em outros.

Este trabalho propôs discussões sobre a utilização ou não do fator que quantifica a heterogeneidade dos tecidos irradiados, mostrando a necessidade de pesquisas na área médica que sejam conclusivas.

A partir deste trabalho, pretende-se tratar da abordagem tridimensional do problema, tendo em vista sua aplicabilidade.

Como perspectiva de trabalhos futuros está a abordagem dos outros dois

problemas envolvidos no planejamento, que são eles:

- O problema geométrico;
- O problema da modulação das lâminas.

Como são problemas que estão interligados entre si e com o problema da intensidade de dose, o estudo destes é de fundamental importância na tentativa de automatização parcial do planejamento de câncer por radioterapia, buscando, além disso, reduzir o tempo de planejamento.

Referências Bibliográficas

- ARAUJO, F. S. Um estudo algorítmico para otimização do plano de tratamento em radioterapia conformal. Dissertação de Mestrado, Universidade Federal do Rio Grande do Norte, Natal, 2010.
- [2] BANA e COSTA C. A. O que entender por tomada de decisão multicritério ou multiobjetivo? Introdução à abordagem multicritério. Florianópolis: Escola de Novos Empreendedores da UFSC, 1995.
- [3] BARBOZA, C. B. OLIVEIRA, A. R. Planejamento do tratamento por radioterapia através de métodos de pontos interiores. Pesquisa Operacional, v.26, n.1, p.1-24, Janeiro a Abril de 2006.
- [4] BERDAKI, M. F. Implantação de um serviço de radioterapia com acelerador linear (fótons): teste de aceitação, dosimetria e controle de qualidade. Dissertação de Mestrado, Instituto de Ciências Energéticas e Nucleares, São Paulo, 2000.
- [5] Brasil. Ministério da Saúde. Instituto Nacional do Câncer. Ações de Enfermagem para o controle do Câncer: uma proposta de integração ensino-serviço / Instituto Nacional do Câncer. 3. ed. rev. atual. ampli.
 Rio de Janeiro: INCA, 2008.
- [6] Brasil. Ministério da Saúde. Instituto Nacional do Câncer. Curso para Técnicos em Radioterapia. Rio de Janeiro: INCA, 2000.
- [7] CAMBAZARD, H. O'MAHONY, E. O'SULLIVAN, B. A Shortest Pathbased Approach to the Multileaf Collimator Sequencing Problem. Integration of AI and OR Techniques in Constraint Programming of Combinatorial. v. 5574, p. 41-55, Maio de 2009.
- [8] CAPRIOGLIO, L. Planejamento Radioterápico: técnicas, dispositivos de imobilização e simulação virtual. Disponível em http://www.abfm.org.br/c2005/palestras/palestra96.pdf

- [9] CECÍLIO, P. J. Implementação e Aceite de Sistema de Radioterapia de Feixe Modulado Dinâmico com uso de Colimador Secundário de Múltiplas Folhas. Tese de Doutorado, Programa de Pós Graduação em Tecnologia Nuclear, Autarquia Associada à Universidade de São Paulo, 2008.
- [10] DEB, K. Multi-objective optimization using evolutionary algorithms. Wiley, 2009.
- [11] GOICOECHEA, A. HANSEN, D. R. DUCKSTEIN, L. Multiobjetive decision analysis with engineering and business applications, John Wiley & Sons, 1982.
- [12] GOLDBARG, M. C. Algoritmo evolucionário para otimização do plano de tratamento em radioterapia conformal 3D, Pesquisa Operacional, v.29, n.2, p.239-267, Maio a Agosto de 2009.
- [13] HOLDER, A. Designing radiotherapy plans with elastic constraints and interior point methods, Healt Care Management Science 6, 5-16, 2003
- [14] LOPES C. M. Gazeta de Física. Serviço de Física Médica, Instituto Português de Oncologia de Coimbra.
- [15] MULLER, M. R. Cáculo Independete das Unidades Monitoras e Tempos de Tratamento em Radioterapia. Dissertação de Mestrado, Instituto de Ciências Energéticas e Nucleares, São Paulo, 2005.
- [16] OLIVA, G. M. Planejamento Conjunto e Colaborativo da Cadeia de Suprimentos: Modelo de Controle Ótimo Multiobjetivo com Custos de Transporte. Tese de Doutorado, Programa de Pós-Graduação em Engenharia de Produção, PPGEP, UFRGS, Porto Alegre, 2005.
- [17] POTREBKO, P. S. et al, A simple geometric algorithm to predict optimal starting gantry angles using equiangular-spaced beams for intensity modulated radiation therapy of prostate cancer. Medical Physics, Vol. 34, No. 10, October 2007.
- [18] SALOMON, R. Mini-curso de Radioproteção SBRT 2006 Aula 1. Disponível em http://www.inca.gov.br/pqrt/publicacoes/trabalho.asp.
- [19] SANTANNA, М. Técnicas de Radioterapia, do conven-Benefícios cional ao avancado reais. Disponível _ em http://www.cetea.com.br/Eventos/2009_11_13_VIII_Congresso/palestras. Acesso em 15 de junho de 2010.

- [20] VIANA, R. S. Programação Linear aplicada à criação de planejamentos otimizados em radioterapia. Dissertação de Mestrado, Programa de Pós-Graduação em Biometria, IB, UNESP, 2010.
- [21] Disponível em http://www.artigonal.com/medicinaartigos/braquiterapia-uma-forma-de-radioterapia-929659.html. Acesso em 10 de março de 2010.

ANEXO A

	Tabuta			T TOOPT 1		ATTATTAAA	n no non	TICOT TO CITI	
Profundidade (cm)	n	4	5 Ci	6 Tam	anho de Campo 7	(cm) 8	6	10	11
0	32.74929916	33,85888224	34.96846531	36.14085667	37.47318717	38,80551766	39,97458589	41.14365411	42.17858408
0,5	63,75650781	64,53815132	65, 31979483	66,00082372	66,80365576	67,6064878	68,13683111	68, 66717441	69, 34635484
н	94,76371646	94,81721885	94,87072124	94,72817133	95,1193341	95,51049686	95,66817929	95,82586173	95,97323336
1,5	100	100	100	100	100	100	100	100	100
2	99,19903885	99,28417254	99,36930624	99,53665568	99,45836215	99,38006861	99,28634766	99, 19262671	99,21112076
2,5	96,9463356	97, 12668667	97, 30703774	97, 2714168	97, 34585115	97,4202855	97,44993155	97, 47957761	97,46302589
n	94,40328394	94,65383939	94,90439483	94,81054366	95,05553188	95,3005201	95, 37889125	95,4572624	95,48250814
3,5	91,71005206	92, 12091851	92,53178496	92,46293245	92,82335143	93, 1837704	93, 33426416	93,48475792	93,44573064
4	89,0969163	89,6330512	90,1691861	90,19769357	90,55434974	90,9110059	91, 13193252	91,35285914	91,36927599
4,5	86,46876252	87,07626953	87,68377655	87,77800659	88,25712659	88,73624658	88,93151282	89,12677906	89,24322945
Ω	83,84060873	84,51948787	85,19836701	85,3583196	85,95990344	86,56148727	86,73109313	86,90069899	87,11718291
5,5	81,40768923	82,18813954	82,96858985	83,19604613	83,80388566	84,41172519	84,70708835	85,00245151	85, 17256142
9	78,97476972	79,85679121	80,73881269	81,03377265	81,64786788	82,26196311	82,68308357	83,10420402	83,22793993
6,5	76,56187425	77,5190991	78,47632396	78,82001647	79,48860626	80,15719605	80,55359968	80,95000332	81,16784808
7	74,14897877	75,181407	76,21383522	76,6062603	77, 32934464	78,05242899	78,4241158	78,79580261	79,10775623
7,5	71,92130557	72,98137558	74,04144559	74,59843493	75,32304289	76,04765086	76,47651189	76,90537291	77,22207115
- 00	69,69363236	70,78134416	71,86905596	72,59060956	73,31674114	74,04287273	74,52890797	75,01494322	75,33638607
8,5	67,60112135	68,71396542	69,82680949	70,53130148	71,30969528	72,08808907	72,59262864	73,09716822	73,45953959
6	65,50861033	66,64658668	67,78456302	68,47199341	69,30264941	70,13330541	70,65634932	71,17939322	71,58269311
9,5	63,50120144	64, 63414334	65, 76708524	66,51565074	67, 39958044	68,28351013	68, 81927699	69,35504385	69,7800732
10	61,49379255	62,6217	63,74960745	64,55930807	65,49651146	66,43371485	66,98220467	67,53069448	67,97745329
10.5	59,6515819	60.82476054	61,99793918	62,96123275	63,80007312	64,63891349	65,21749035	65,79606721	66,27472195
11	57.80937125	59.02782107	60.2462709	61.36315742	62.10363477	62.84411212	63.45277603	64.06143994	64.57199061
11.5	56,10732879	57,29833353	58,48933827	59,61569516	60.38249743	61.14929969	61,77045583	62,39161196	62,90666141
12	54.40528634	55,56884599	56,73240565	57.8682329	58,66136008	59,45448726	60,08813563	60.72178399	61,24133221
12,5	52,76331598	53,92195231	55,08058865	56,23156075	57,02811419	57,82466764	58,46572691	59,10678619	59,65094187
13	51,12134561	52, 27505863	53,42877165	54,5948886	55,39486831	56,19484801	56,8433182	57,49178838	58,06055152
13.5	49.59451342	50.73578909	51.87706477	53.05389883	53.85945807	54,66501732	55.32324184	55.98146636	56.54751157
14	48,06768122	49,19651956	50,32535789	51,51290905	52,32404784	53,13518663	53,80316549	54,47114435	55.03447162
14,5	46,6659992	47,77989118	48,89378316	50,03738616	50, 87136552	51,70534488	52, 37296009	53,0405753	53,61883693
15	45,26431718	46,3632628	47,46220843	48,56186327	49,4186832	50,27550312	50,94275469	51,61000626	52,20320223
15,5	43,90768923	45,00169725	46,09570528	47,19209458	48,03887576	48,88565694	49,56245445	50,23925196	50,8274799
16	42,55106127	43,6401317	44,72920212	45,82232589	46,65906832	47,49581075	48,1821542	48,86849765	49,45175758
16,5	41,25450541	42,34864624	43,44278707	44,51802409	45,3519899	46, 18595572	46,88920286	47,59245	48,16090734
17	39,95794954	41,05716077	42,15637201	43,21372229	44,04491148	44,87610068	45,59625152	46,31640235	46,87005711
17,5	38,79655587	39,86078669	40,92501752	41,95977962	42,80050849	43,64123735	44, 34578059	45,05032383	45,62421144
18	37,63516219	38,66441261	39,69366303	40,70583696	41,55610549	42,40637401	43,09530966	43,78424531	44,37836577
18,5	36,50380457	37, 53060886	38,55741315	39,55261259	40,38705887	41,22150515	41,91718929	42,61287344	43,19738219
19	35,37244694	36, 39680511	37, 42116328	38, 39938822	39,21801225	40,03663628	40,73906893	41,44150158	42,01639861
19,5	34,33119744	35, 34309396	36, 35499049	37,31163073	38, 12919381	38,9467569	39,6483198	40,34988269	40,91781278
20	33,28994794	34,28938282	35,2888177	36, 22387324	37,04037538	37,85687752	38,55757066	39,25826381	39,81922695
21	31,33760513	32,29208818	33,24657123	34,11886106	34,95298382	35,78710658	36,46097368	37, 13484077	37,72199767
22	29,52543052	30,43996023	31,35448994	32,17499814	32,99116191	33,80732569	34,47417101	35,14101632	35,7145802
23	27,78334001	28,65290737	29,52247472	30,35199716	31, 134766	31,91753484	32,61211633	33,30669783	33,81693071
24	26,14136964	27,01101919	27,88066874	28,60957082	29,40364799	30,19772517	30,84502138	31,49231759	32,00428786
25	24,67961554	25,47926117	26, 2789068	27,0182219	27,77806538	28,53790887	29,19266064	29,84741242	30,33641256
26	23,26792151	24,02759375	24,78726599	25,50744761	26,24276455	26,9780815	27,61023262	28,24238374	28,70848551
27	21,91629956	22,66602845	23,41575733	24,04703246	24,77263887	25,49824527	26,10269209	26,70713891	27,16547541
28.0	20,68482179	21,37454624	22,0642707 22,0642707	22,64704829	23,38272313	24,11839798	24,70496077	25,29152355	25,73730755 24,94003410
30	19,40330009 18,31107/37	20,14313001 18 04675703	20,8229032 10 58153060	21,33300971 2013016996	22,U003U144 20,80802654	22,70004010 91.47860013	23,307118012 23,307097446	23,94009200 22,84009200	24,349U3412 29 00073082
Postor Hogenital E	nocto Control	10,074010100	eneroron'er	0070100107	±0022000107	010000114177	01117211110	61061610.77	70001000.77
T IMAT COLL SALLO	ון מצויח ממבז ויוזי	1							

Tabela 7.1: Valores obtidos do fator PDP em procedimento de dosemetria em CL-600