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RESUMO

Para possibilitar o desenvolvimento de sistemas de percepção para direção automati-

zada, a indústria automotiva utiliza cenas pré-gravadas com dados de sensores, como

por exemplo: câmera, radar e LiDAR. Este conjunto de dados (dataset) permite a

realização de um processo iterativo no desenvolvimento de algoritmos, a fim de reduzir

quantidade de testes reais. Primeiramente, neste projeto é realizada uma revisão de

diferentes datasets disseminados pela comunidade científica e utilizados pela indústria

automotiva. Em seguida, é proposta a criação de um novo dataset chamado TWICE,

um acrônimo em inglês para "digital twin of test scenarios in a controlled environment".

Este dataset contém dados de sensores reais (câmera, radar e LiDAR) coletados de

duas formas diferentes: (1) com a execução de testes em campo em uma pista de

testes, e (2) em laboratório, com uma bancada de testes, na qual os sensores são

estimulados com ajuda de simulação. Para a criação do dataset proposto, os dados

coletados devem ser estruturados de maneira que possibilitem seu processamento

de forma automatizada. A principal característica é o fato de que os dados coletados

em laboratório se referem a um gêmeo digital (digital twin) dos testes executados em

campo. Ou seja, para cada teste real existe um teste equivalente criado na simulação.

Porém, ambos foram executados com o mesmo hardware e software para a percepção

do ambiente. A fim de estimar a diferença entre os testes realizados em campo e em

laboratório, é proposto um método para estimar a diferença (gap) entre realidade e

simulação com base no TWICE dataset. Isso contribui para que o desenvolvimento de

algoritmos de direção automatizada possa ser, em um primeiro momento, auxiliado por

testes realizados em laboratório antes da execução de extensivos testes em campo,

que demandam grande esforços e custos.

Palavras-chaves: dataset; autonomous driving; digital twin; adverse weather; radar;

LiDAR;



ABSTRACT

To enable the development of perception systems for automated driving, the automotive

industry uses pre-recorded scenes with data from sensors such as camera, radar and

LiDAR. This allows an iterative process in the development of algorithms, in order to

reduce the effort in the execution of tests. First, in this project a review of different

datasets disseminated by the scientific community and used by the automotive industry

is performed. Then, it is proposed the creation of a new dataset called TWICE, an

acronym for "digital twin of test scenarios in a controlled environment". This dataset

contains data from real sensors (camera, LiDAR and radar) collected in two different

ways: (1) by performing field tests on a test track, and (2) in the laboratory, with a test

bench, on which the sensors are stimulated with the help of simulation. To create the

proposed dataset, the collected data must be structured in such a way that it can be

processed in an automated manner. The main characteristic of the TWICE dataset

is the fact that the data collected in the laboratory refer to the digital twin of the tests

performed in the field. That is, for each real test there is an equivalent test created in the

simulation. However, both tests were executed with the same hardware and software for

environment perception. In order to estimate the difference between the tests performed

in the field and in the laboratory, a method is proposed to estimate the gap between

reality and simulation based on the TWICE dataset. This contributes to the fact that the

development of automated driving algorithms can be, in a first moment, aided by tests

performed in the laboratory before the execution of extensive field tests, which demand

great efforts and costs.

Key-words: dataset; autonomous driving; digital twin; adverse weather; radar; LiDAR;
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1 INTRODUCTION

Autonomous vehicles are among the technologies that will have the greatest

impact on our society in the future, with the potential to prevent fatal accidents (L.; G.,

2015). In 2016, there were 1.35 million deaths due to car accidents (WAYMO LLC, 2021).

It is estimated that 94% of vehicle accidents are caused by human error and could

be avoided by automated driving systems (SINGH, 2015). Driver assistance systems

are already a reality in the current automotive market and help prevent accidents. For

example, the Automatic Emergency Braking (AEB) system alerts the driver of a possible

collision. Advanced systems can even take emergency maneuvers if the driver does not

intervene after the alert. These systems represent only the first step towards a future

in which cars will be autonomous. To make this automation possible, the maturity of

environmental perception technologies with sensors such as (cameras, radars, and

Light Detection and Ranging (LiDAR) ) and artificial intelligence algorithms or other

statistical methods is necessary. These technologies must be able to detect and classify

objects and obstacles in real time during vehicle operation under different adverse

conditions.

In order to assist the development of robust perception systems, different

datasets consisting of pre-recorded scenarios are created. Currently, in the automotive

industry, these data are used for neural network training and automated system testing.

The Society of Automotive Engineers (SAE) defined five levels of driving

automation in (SAE, 2021). Level zero stands for no automation at all. Advanced

driver assistance system (ADAS) such as adaptive cruise control, anti-lock braking

systems and stability control start with level one. Level two is partial automation to

which advanced assistance systems such as emergency braking or collision avoidance,

are integrated. Level three is conditional automation; the driver could focus on tasks

other than driving during normal operation, however, the driver has to quickly respond

to an emergency alert from the vehicle and be ready to take over. In addition, level

three Automate Driving Systems (ADS) operate only in limited operational design

domains (ODDs) such as highways. Human attention is not needed in any degree at

level four and five. However, level four can only operate in limited ODDs where special

infrastructure or detailed maps exist. In the case of departure from these areas, the

vehicle must stop the trip by automatically parking itself. The fully automated system,

level five, can operate in any road network and any weather condition. No production

vehicle is capable of level four or level five driving automation yet (YURTSEVER et

al., 2020). Level four and above driving automation in urban road networks is an

open and challenging problem. The environmental variables, from weather conditions
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to surrounding human behavior, are highly non deterministic and difficult to predict.

Furthermore, system failures lead to accidents: Tesla’s Autopilot failed to recognize a

white truck and collided with it, killing the driver.(CNN, 2016)

Testing is a crucial means to assess and validate proposed algorithms, and

these tests can be conducted in real-world settings. Real-world tests can be carried out

in controlled or uncontrolled environments. Conducting tests in uncontrolled scenarios

require extensive annotation efforts due to unknown actor locations, and introduces

additional unknown variables that can increase uncertainty. Controlled environments

offer advantages such as test reproducibility and knowledge of the precise location of

all actors involved. Controlled or not tests in real-world environments are costly and

entails bureaucratic and safety protocols. The use of synthetic data is the alternative

that emerges in the face of these challenges.

There are multiple simulation software options available that can simulate entire

environments, providing the ability to control various factors and replicate situations

that would be impractical or impossible to achieve in real-world tests. These simulations

can encompass scenarios such as high speeds, traffic infractions, and car crashes.

These software platforms are capable of simulating the behavior of all the sensors

typically found in autonomous vehicles. However, it is possible to utilize the same

sensors utilized in the real-world tests within a Hardware-in-the-Loop (HiL) simulation

to generate synthetic data. Figure 1 shows an example of a HiL system. The first block

on the left is where the environment and vehicle simulation occurs. Then, it feeds

the sensor stimulators with data (center block). Finally, the sensors are stimulated,

and their outputs are received by the car Electronic Control Unit (ECU) (right block).

Figure 1 – HiL system

Source: (NETO et al., 2023).
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There are two methods to stimulate the sensors. The first method is known as Direct

Data Injection (DDI), in which the stimulation does not use the physical sensor. The

sensor model is stored within the stimulation device, which subsequently mimics the

sensor timings and data outputs based on input received from the simulation. The other

method is Over-The-Air (OTA), where the setup uses the real sensor and a stimulation

device. For the camera, a monitor is used where the simulation image is displayed to

be captured by the camera. For the radar, a stimulation device is used to manipulate

the electromagnetic waves generated by the radar to simulate an object. However, a

constraint in this method is the resolution of the stimulation device.

Simulation plays a significant role in the development of the ADS. Nevertheless,

in order for the utilization of this data to be deemed valid, it must adhere to certain

requirements outlined in European Union (EU) regulations:

The credibility can be achieved by investigating and assessing five properties

of Modelling and Simulation (M&S) :

(a) capability – what can the M&S do, and what the risks are associated with

it;

(b) accuracy – how well does M&S reproduce the target data;

(c) correctness – how sound & robust are M&S data and algorithms;

(d) usability – what training and experience is needed.

(e) fit for purpose – how suitable is the M&S for the ODD and ADS assess-

ment.

(COMMISSION IMPLEMENTING REGULATION (EU) 2022/1426)(L 221/50)

There is also the German government directive 86/22:

The fulfillment of requirements can also be checked by suitable simulation. In

this case, the simulation tools must be validated. The validation of the simula-

tion tools must be carried out by means of comparison with a representative

selection of real tests. There must not be any significant difference between

characteristic values from simulation and road test. The performance of

the sensor technology in terms of detection and classification of objects

as a function of different distances and environmental conditions shall be

determined for the simulation in real tests. Each simulation series shall be

supplemented by real tests if deemed necessary by the technical service.

(Translated from German)(2022, p.40)
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As became clear, it is fundamental to measure the simulation-to-reality gap in

order to validate the use of synthetic data in the development of ADS. The creation of

a dataset that contains scenarios recorded in real-world and then reproduced in the

laboratory environment generating synthetic data can help other researchers to develop

methods to aid in this effort.

Semantic segmentation is a computer vision technique that involves dividing

an image into meaningful and distinct regions, assigning each pixel a specific class

label. In the context of autonomous driving, semantic segmentation plays a vital role in

scene understanding and perception. By segmenting the surrounding environment into

different categories such as roads, pedestrians, vehicles, and obstacles, autonomous

vehicles can accurately perceive and interpret their surroundings. This enables them to

make informed decisions and take appropriate actions, such as path planning, object

detection, and collision avoidance.

This work aims to create a dataset for the development of autonomous driving

systems, which will be made available for use by the research community. Additionally, it

demonstrates the application of this dataset in developing a method to measure the gap

between simulation and reality. The algorithm performs semantic segmentation of the

scenario, separating the free-space area (drivable area) and the lane lines on the road.

Then it is possible to compare the performance of the algorithm between real-world and

simulation environment.

1.1 OBJECTIVES

The general objective of this project is to organize the recorded data into a

labeled dataset with a well-defined structure and a format that is agnostic:

• Based on the dataset, develop a method to estimate the simulation-to-reality gap

for testing automated driving systems.

The specific objectives of the project are:

• Make the dataset public and provide examples of its utilization.

• Develop tools to automate data structuring within the ROS framework to the Open

Simulation Interface (OSI) format.

• Perform annotations based on ground truth of the scenes and develop a tool to

standardize the annotation format (labeling).

• Develop a method to estimate the semantic segmentation gap between simulated

and real data.
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1.2 WORK STRUCTURE

This work is divided into five chapters. It begins with an introduction to the

concepts relevant to this study, followed by a literature review of available datasets

for autonomous driving and related concepts like sensors and algorithms. The subse-

quent chapter covers the methodology, including data acquisition, utilized algorithms,

conducted tests, data structuring, annotation, processing, and evaluation methods.

Following that, there is a dedicated chapter for the results. Finally, the conclusion en-

compasses qualitative comparisons of results, along with a discussion of future work.
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2 LITERATURE REVIEW

2.1 AVAILABLE DATASETS

The KITTI dataset, developed by (GEIGER et al., 2012), was one of the first

publicly available datasets that provided data for the development of object detection and

sensor fusion algorithms. First released in 2012, KITTI consists of a dataset recorded

with a car equipped with two high-resolution stereo cameras that record in color and

grayscale, a LiDAR, and the Global Positioning System (GPS) . The car captured data

in urban, rural, and highway environments while driving through the streets of Karlsruhe,

Germany. The dataset contains scenes with up to 15 cars and 30 pedestrians visible

per image.

Another widely used dataset in the academic community, which offers a large

amount of data and sensors, is the nuScenes dataset (CAESAR et al., 2020). Published

in 2019, nuScenes was recorded in Singapore and Boston using cars equipped with

GPS, Inertial Measurement Unit (IMU), six high-resolution cameras, five radars, and

one LiDAR, covering a 360°field of view. The dataset consists of 1000 scenes, each

lasting 20 seconds, and is fully annotated with 3D bounding boxes to identify objects and

their locations in the scene. Recorded in scenarios with heavy traffic, including various

environments such as vegetation, buildings, vehicles, and road signs, this dataset

contains 100 times more images than the pioneering KITTI dataset.

The Canadian Adverse Driving Conditions Dataset (PITROPOV et al., 2020) is

specifically designed to address adverse driving conditions, offering a diverse range of

challenging scenarios. These scenarios encompass various weather conditions, road

surfaces, and lighting conditions, ensuring a realistic representation of the complexities

encountered during adverse driving situations. From heavy rain and fog to snow-covered

roads and low-light environments. This dataset captures the intricacies and uncertainties

present in adverse driving conditions with eight cameras, LiDAR and GPS/IMU.

However, collecting data in a real-world environment is extremely expensive

and labor-intensive. An alternative approach is the generation of synthetic sensor data.

Published in 2020, the All-In-One Drive (AIODrive) dataset (WENG et al., 2021) is a

fully synthetic dataset created using the CARLA simulator 1(DOSOVITSKIY et al., 2017).

The AIODrive dataset includes atypical scenarios such as high-speed driving, traffic

rule violations, and accidents. The simulated sensors in the dataset include cameras,

LiDAR, Radar, IMU, GPS, and SPAD-LiDAR.
1 CARLA is an open-source software designed to generate simulations for autonomous driving system

development.
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Table 1 – ALGORITHM PERFORMANCE.

Method Training Data
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointRCNN

AIODrive 65,32 46,21 39,38 24,57 19,04 18,32 40,93 30,41 26,68
KITTI 85,02 75,16 68,14 46,53 38,76 33,96 73,40 56,73 51,87
KITTI+AIODrive (10k frames) 87,24 76,83 70,563 46,97 40,78 36,03 74,19 59,31 52,93
KITTI+AIODrive all frames 88,10 77,03 72,41 51,03 42,18 37,26 78,01 60,14 52,89

Source: (WENG et al., 2021)
Caption: 3D detection results on the KITTI dataset when training is augmented with AIODrive data

The authors demonstrated that training an algorithm with a combination of

real-world data (KITTI) and synthetic data (AIODrive) achieves better object detection

performance compared to training the same algorithm solely with real-world data. This

finding confirms the validity and importance of using synthetic data, as observed in

Table 1.

Moreover, there are other datasets available to the academic community with

different characteristics and purposes. Table 2 provides a comparison of the sensors

present in the ego vehicle of each dataset, among other features.

Table 2 – COMPARISON BETWEEN SOME AVAILABLE DATASETS
dataset Citys Hours Sequences Annotation Stereo Depth LiDAR Radar SPAD-LiDAR IMU/GPS 360°
KITTI 1 1,5 22 15k
Cityscape 27 2,5 0 5k
Mapillary Vistas 30 - - 25k
ApolloScape 4 - - 140k
SYNTHIA 1 2,2 4 200k
H3D 4 0,8 160 27k
SemanticKITTI 1 1,2 22 43k
DrivingStereo - 5 42 180k
Argoverse 2 0,6 113 22k
EuroCity 31 0,4 - 47k
CADC 1 0,6 75 7k
Audi 3 0,3 3 12k
nuScenes 2 5,5 1k 40k
A*3D 1 55 - 39k
Waymo Open 3 6,4 1150 230k
AIODrive 8 2,8 100 100k

Source: (WENG et al., 2021)
Caption: Available datasets and their atributes

2.2 SENSORS

Generally, there are two types of sensors: passive and active sensors. Passive

sensors receive the natural emission from an environment, such as natural light or

infrared rays. The camera is the most commonly used passive sensor in a car that

captures a 2D array of colored points through a lens. Active sensors send signals and

receive the reflection from surfaces and objects. LiDAR and Radar are the most used

active sensors in a car. This class of sensors is more expensive than passive sensors,
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Figure 2 – Comparison between sensors

Source: (ZHOU et al., 2020).
Caption: Comparison between sensors.

but they can measure the depth of objects by sending and receiving reflected signals.

In Figure 2 there is a comparison between sensors present in an autonomous vehicle.

Each one has advantages and disadvantages and situations in which factors from the

environment limits the operation of the sensor.

2.2.1 Camera

A digital camera is a device that captures and stores digital images. It uses a

combination of optics, electronics, and software to convert light into a digital representa-

tion of the scene. The camera lens gathers and focuses incoming light from the scene

onto the image sensor. It controls factors such as focus, depth of field, and aperture. The

image sensor, typically a Charge-Coupled Device (CCD) or a Complementary Metal-

Oxide-Semiconductor (CMOS) sensor, is composed of millions of tiny light-sensitive

pixels. Each one converts incoming light into an electrical charge. The individual pixel’s

photodiode accumulates an electrical charge proportional to the intensity of light, then it

is converted into an electrical signal. An analog-to-digital converter (ADC) assigns a

numerical value to each pixel’s charge level, representing the color and intensity of light.

The camera lens has some inherent distortions. A way to describe the internal

properties of a camera that affect the imaging process is the intrinsic matrix:

K =

⎡
⎢⎣
fx 0 cx

0 fy cy

0 0 1

⎤
⎥⎦ (2.1)

where fx and fy represent the focal lengths of the camera in the x and y

directions, respectively. The values cx and cy denote the principal point, which is the

optical center of the camera.
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To relate the 3D world coordinates to 2D image coordinates, the intrinsic matrix

is combined with the extrinsic matrix (describing the camera’s position and orientation in

the world) and the projection matrix. The projection matrix maps 3D points in the world

coordinate system to their corresponding 2D points in the camera image. The equation

for projecting 3D points to 2D image coordinates is as follows:

s ·

⎡
⎢⎣
u

v

1

⎤
⎥⎦
T

= K ·
[
R t

]
·

⎡
⎢⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎥⎦

T

(2.2)

where s represents the scaling factor, u and v are the pixel coordinates, K is

the intrinsic matrix, R (rotation) and t (translation) represents the extrinsic matrix, and

XY Z are the 3D point coordinates (ZHANG, 2000).

2.2.2 Radar

The radar system consists of a transmitter that emits radio waves, typically

in the mm wave frequency range for vehicle applications. The radar system has an

antenna that transmits the radio waves into the surrounding environment. This antenna

focuses and directs the emitted waves in a particular direction, forming a beam. When

the emitted waves encounter objects in the environment, they get reflected back toward

the radar system. The radar’s antenna receives these reflected waves. As they return to

the radar system, they undergo a frequency shift known as the Doppler effect. This shift

occurs due to the relative motion between the radar system and the detected objects

and it is given by:

Df = fr − ft (2.3)

where Df is the Doppler frequency shift, ft is the frequency transmitted and fr is the

frequency received. It allows the radar to measure the velocity of the objects using the

following equation:

v =
c ·Df

2 · fc
(2.4)

where c is the speed of the light and fc is the operating frequency of the radar. The

received waves are processed by the radar’s electronic circuitry. It analyzes the changes

in frequency, amplitude, and phase of the reflected waves to extract information about

the detected objects.

The Radar Cross Section (RCS) is a measure of the reflectivity of an object

or target to radar signals. It quantifies how much electromagnetic energy is scattered

back to the radar system from the target. A larger RCS indicates a stronger reflection,

making the target more detectable by the radar. The RCS of an object depends on
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various factors, including its size, shape, material composition, and orientation relative

to the radar system. It is typically measured in square meters (m²). Mathematically, it is

written as:

σ = lim
R→∞

4πR2
|Es|

2

|Ei|
2

(2.5)

where R is the distance between radar and target, Es is the scattered field

strength at radar and Ei is the incident field strength at target (YEN, 2005).

2.2.3 LiDAR

A LiDAR sensor is composed of two main components: a transmitter, which

consists of a laser that emits light with wavelengths between 250 to 1600 nanometers

(nm) - some wavelengths work better in specific environments and targets than others;

and a receiver, which is responsible for gathering, analyze, and compute the reflected

signal. Regarding the receiver, it generally includes: (a) a telescope to collect the

photons; (b) an optical analyzer that can filter specific wavelengths or polarization states

from the received light and convert the optical signal into an electrical quantity; and (c) a

data acquisition module, which is responsible for calculating the elapsed pulse time and

storing the information (RORIZ et al., 2022). The output of LiDAR is a set of 3D points

called Point Cloud (PCL).

The two wavelengths for automotive LiDAR currently in use are 905 nm, and

1550 nm, making possible spatial resolution on the order of 0.1 degrees, which allows

for extremely high-resolution 3D representation of objects around the vehicle. Rotor-

based mechanical LiDAR sensors are the most mature imaging technique being used

by the automotive industry. Widely used in driverless systems, they can provide a

360◦ horizontal FoV, with different vertical FoV ranges. LiDAR challenges that are

currently hampering the development are sensor calibration, mutual interference, data

compression, point cloud denoising, ground segmentation, and object segmentation

and detection methods (RORIZ et al., 2022).

2.2.4 GNSS systems

The global navigation satellite system (GNSS) is an international system of

multiple constellations of satellites, including systems such as GPS (United States),

GLONASS (Russia), BeiDou (China), Galileo (European Union), and other constellations

and positioning systems. GNSS operates in the L-Band (1 to 2 GHz) which can pass

through clouds and rain, with a minimum impact on the transmitted signal in terms

of path attenuation. GNSS sensors include one or more antennas, reconfigurable

GNSS receivers, processors and memory. GNSS is often in combination with real-time

kinematic positioning (RTK) systems using ground base-stations to transmit correction
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data. Odometry and inertial navigation systems (INS) use dead reckoning to compute

position, velocity and orientation without using external references. INS combines

motion sensors (accelerometers), rotation sensors (gyroscopes), and also magnetic

field sensors (magnetometers). For the advanced INS, fiber optic gyroscopes (FOG)

are used: with no moving parts, and two laser beams propagating in opposite directions

through very long fiber optic spools, the phase difference between the two beams is

compared and it is proportional to the rate of rotation. The combination of the above,

such as GNSS with INS (GNSS+INS) and other sensors, with algorithms such as Kalman

Filter and motion models, is a common approach to improve positioning accuracy and

reduce drift. For example, the Spatial FOG Dual GNSS/INS of Advanced Navigation

has 8 mm horizontal position accuracy and about 0.005◦ roll/pitch accuracy (ZHANG

et al., 2021).

2.3 SENSORS CALIBRATION

Camera parameters include intrinsics, extrinsics, and distortion coefficients. To

estimate the camera parameters, one must have 3-D world points and their correspond-

ing 2-D image points. These correspondences can be obtained using multiple images of

a calibration pattern, such as a checkerboard; the sizes of the squares must be known.

With these correspondences, the camera parameters can be solved for. The pinhole

calibration algorithm is based on the model proposed by (BOUGUET, 2022). The model

includes, the pinhole camera model (ZHANG, 2000) and lens distortion (HEIKKILA;

SILVEN, 1997). The pinhole camera model does not account for lens distortion because

an ideal pinhole camera does not have a lens. To accurately represent a real camera,

the full camera model used by the algorithm includes the radial and tangential lens

distortion.

To know exactly where which sensor is located in relation to the vehicle. It must

be performed an extrinsic calibration. An example of extrinsic calibration is proposed by

(DOMHOF et al., 2019). In his article he propose a multi sensor calibration, the algorithm

calculates the sensors position relative to each other using a common Styrofoam target

(Figure 3) with a corner reflector placed in the middle pattern. Note that the circles

have slopes, this was done to enforce that LiDAR detections and camera detections are

detected at the front the plate.

However it is necessary to know the position of one of the sensors in relation to

vehicle. It can be done using the camera position calculation toolkit for vehicle extrinsic

calibration, available in NVIDIA Driveworks (NVIDIA, 2023). This toolkit incorporates

a approach utilizing printed April targets 2 with varying sizes. Specifically, four targets
2 It consists of a black square with a unique pattern of white squares or lines in a grid-like arrangement,

designed to be easily detectable and identifiable by computer vision algorithms.
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Figure 3 – Styrofoam target.

Source: (DOMHOF et al., 2019).

are affixed to the vehicle wheels, one is positioned in front of the camera, and two

are placed on each side of the car. A separate camera captures images of the vehicle

with the targets, while the calibration camera captures an image of the front target.

By leveraging this data along with measurements of the printed targets and vehicle

dimensions (including wheel diameter and car length), the program can be executed.

The outcome of this extrinsic calibration is camera position and rotation relative to the

rear axle.

2.4 PERCEPTION

2.4.1 Data annotation

Data annotation is a crucial step in machine learning and artificial intelli-

gence (AI) development. It involves labeling and categorizing datasets to train algorithms

to recognize patterns and make predictions. However, the process of data annotation

can be tedious and time-consuming, and errors can lead to inaccurate results. Various

annotation techniques are employed to extract information from camera data, enabling

autonomous vehicles to understand and interpret their surroundings accurately. The

annotation process can be performed manually or automated, depending on the specific

requirements and available technology.

One widely used type of annotation is 2D bounding box, which involves labeling
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Figure 4 – Data annotation.

Caption: (a) 3D bounding box (b) Semantic segmentation.
Source: (a) (NETO et al., 2023) (b) (GEYER et al., 2020).

objects of interest, such as pedestrians, vehicles, and traffic signs, with rectangular

bounding boxes. The annotation of cuboids, or 3D bounding boxes, goes beyond the

2D plane by capturing the depth and rotation of objects in the scene. Lastly, semantic

segmentation annotation assigns pixel-level labels to different regions in an image,

enabling the system to understand the scene’s layout and identify individual elements

as shown in the Figure 4.

2.4.2 Algorithms

The You Only Look Once (YOLO) algorithm is a popular and influential object

detection algorithm in the field of computer vision. Before its release, the traditional

object detection approaches required multiple passes over an image, YOLO takes a

different approach by directly predicting bounding boxes and class probabilities in a

single pass. It divides the input image into a grid and applies a convolutional neural

network (CNN) to simultaneously predict bounding box coordinates and object class

probabilities within each grid cell. This approach makes the algorithm fast and efficient,

allowing it to process images in real-time. YOLO also introduces anchor boxes, which

are pre-defined shapes of various aspect ratios, to handle objects of different sizes

and shapes. By combining these predicted bounding boxes and class probabilities,

effectively detects and localizes multiple objects within an image. YOLO has come

a long way since its initial release in (REDMON et al., 2015) and has culminated in

multiple versions with further improvements per iteration. The algorithm has continued to

evolve ever since its initial release. Both YOLOv2 and YOLOv3 were written by Joseph

Redmon. After YOLOv3, there came new authors who anchored their own goals in every

other YOLO release. The latest version is YOLOv8.

The You Only Look Once for Panoptic Perception (YOLOP) (WU et al., 2022) is

an extension of the original YOLO algorithm. Adding the ability to jointly handle three

crucial tasks in autonomous driving: object detection, drivable area segmentation and
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Figure 5 – YOLOP output.

Source: Author (NETO et al., 2023).
Caption: YOLOP detection: drivable area, lane line and object detection.

lane detection. It was designed to save computational costs, reduce inference time as

well as improve the performance of each task. The Figure 5 shows the output of the

algorithm. The drivable area (free-space) in green is the region where the car can drive,

the red region is the lane line and the white bounding box is the detected object.

2.5 VIRTUAL TESTS

Carla is an open-source simulator for autonomous driving research that has

been developed from the ground up to support development, training, and validation of

autonomous driving systems (DOSOVITSKIY et al., 2017). It is based on the Unreal

Engine 4 and supports Python programming. The simulation platform supports camera,

LiDAR, radar and other sensors. However, Carla lacks: real-time capabilities (which are

important for simulations with HiL due to the sensors being real-world objects) and RCS

support on radar objects.

CarMaker is a simulator developed by IPG Automotive that can simulate a wide

range of sensors in real time. It is capable of simulating real-world distortions such as

noise in cameras or rain disturbances in radar and LiDAR. Written in C, CarMaker offers

extensive support for this programming language. It also features a scenario editor that

enables users to create their own custom scenarios for simulations. The simulation

visualization tools, IPGMovie and MovieNX, support multiple 3D formats and allow the

addition of driving functions to the ego vehicle.
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3 METHODOLOGY

Figure 6 – Work diagram

Source: Author.

In Figure 6, the methodology of this work is presented. Firstly, the ego-vehicle1

was equipped with the necessary sensor setup. Next, specific scenarios were defined

and recorded during real-world test runs. The same sensor calibration and positioning

of the ego-vehicle and objects were replicated to create corresponding test runs in

the simulation environment. Up to this point, the tasks were carried out by Professor

Werner’s team at CARISSMA. Afterwards, it became my responsibility to process

and organize all collected data into a structured format and to annotate the camera

frames, thereby completing the dataset creation process. To estimate the gap between

simulation and reality, the dataset was utilized in conjunction with an algorithm called

YOLOP, which performs semantic segmentation.

3.1 DATA ACQUISITION

In this section, a description will be provided for all the sensors and components

utilized in the data acquisition in the real-world environment.
1 Vehicle equipped with the sensors.
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3.1.1 Camera

Figure 7 – Sekonix SF3325-100 Camera.

Source: (SEKOLAB, 2023).

The utilized hardware was the Sekonix SF3325-100: 1920x1232 resolution

(2.3M Pixel), 30Hz capture frequency, H:60°;V:36, 6°. For transmission the camera

utilizes the Gigabit Multimedia Serial Link (GMSL) protocol, which provides gigabit

transmission speed via one single cable. (SEKOLAB, 2023)

The intrinsic camera calibration was performed using the Matlab camera cali-

brator (BOUGUET, 2022).

3.1.2 Radar

Figure 8 – Continental ARS408 radar.

Source: (CONTINENTAL, 2023).

The utilized radar was the Continental ARS408 (Figure 8), an automotive radar.

It has two operating modes: object list and cluster list. Operates in the frequency range

between 76 and 77 GHz and distance from 0 to 250 m with near range distance

resolution of 0.39 m and in far range 1.79 m. This radar measures a velocity range

from −400 km/h (coming towards the radar) to +200 km/h (going away from the radar).

Connection is made with the use of a standard connector using the protocol Controller

Area Network (CAN).

3.1.3 LiDAR

The utilized LiDAR was the Ouster OS1-128 (Figure 9). The range is 100 m in

sunlight and minimum range of 0.3 m with accuracy of 3 cm. It is configurable horizontal



31

Figure 9 – LiDAR Ouster OS1-128.

Source: (OUSTER, 2023).

resolution of 512, 1024, or 2048, and vertical resolution of 128 channels. The capture

frequency is 10Hz. Data is transmitted utilizing a User-Defined Packet (UDP) Ethernet

packet.

3.1.4 GNSS/INS

Figure 10 – ADMA G-Pro GeneSys.

Source: (GENESYS, 2023).

In order to collect the car and ego-vehicle position in the test track. It was used

the Automotive Dynamic Motion Analyzer-GNSS/Inertial System (ADMA-G) (Figure

10). The system allows for constant measurement of acceleration, speed and position

of moving vehicles in all three-dimensional axes. The FOG allows a precision of 1 cm in

position. Pitch, roll and yaw angles can be continuously and precisely measured with

0.005°resolution. Connection is made using Ethernet.

The Spectra Position 80 (SP80) (Figure 11) is a GNSS receiver that was used

to collect the position of the objects in the scene with a millimeter accuracy (SPECTRA,

2023). It has WiFi, 3.5G cellular and hot-swappable batteries.
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Figure 11 – SP80 GNSS receiver.

Source: (SPECTRA, 2023).

3.1.5 Eletronic Control Unit

Figure 12 – Nvidia Drive PX 2.

Source: (NVIDIA, 2018).

The Nvidia Drive PX 2 AutoChauffeur (P2379) is an automotive platform de-

signed to enable autonomous driving capabilities in vehicles. It is a hardware and

software system developed by Nvidia, a leading technology company specializing in

graphics processing units (GPU) and AI.

The Figure 12 shows Nvidia Drive PX 2 has gigabit Ethernet adapter, one 10

gigabit Ethernet adapter, 3 arrays of 4 GMSL cameras, 1 and 12 CAN interfaces. As

show in Figure 12 (a) it has two cores known as Tegra A and Tegra B, they come in pair

to distribute the processing load and increase security in case of failures. Also included,

is the NVIDIA Driveworks platform that provides multiple tools to help the developer

create an autonomous vehicle (NVIDIA, 2023).
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Figure 13 – Extrinsic calibration.

Source: CARISSMA (2021).

3.1.6 Extrinsic Calibration

The extrinsic calibration is performed to determine the location of the sensors

relative to the ego-vehicle. The car position is defined as zero at the center of the

back axle (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2011). The

ADMA-G sensor was mounted in the trunk of the car (Figure 14, and its location relative

to the back axle was measured using lasers. To determine the relative location of the

other sensors, the calibration proposed by (DOMHOF et al., 2019) was performed. This

enabled the determination of the location of the radar and LiDAR relative to the camera.

Finally, to obtain the positions of all sensors relative to the ego-vehicle, the calibration

available in NVIDIA Driveworks was performed. As shown in Figure 13, targets were

placed on the car wheels, on the ground beside the car, and in front of the ego-vehicle

to be detected by the ego camera. Using the image shown in Figure 13, captured by

the ego camera, and additional pictures captured by an external camera, the calibration

tool returned the camera’s position relative to the ego back axle.

3.2 HARDWARE IMPLEMENTATION

Figure 14 displays all the hardware described in the previous section, which

is installed on the ego-vehicle used in the tests. In order to collect data from all the

sensors, it is necessary to run software on the Electronic Control Unit (ECU).

The chosen software for this work was the Robot Operating System (ROS). It

provides libraries and tools to assist software developers in creating robotic applications.

Offers device drivers, libraries, visualizers, message transmission, package manage-

ment, and other tools. ROS is licensed under an open-source license (STANFORD

ARTIFICIAL INTELLIGENCE LABORATORY ET AL., 2018). Each sensor in ROS has

a corresponding node. Each node is an executable that publishes and subscribes to

certain topics. For example, Node X can publish to the topic "/topic_1" and Node Y

can subscribe to the same topic "/topic_1" and read all the data being published by
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Figure 14 – Ego-vehicle

Source: (NETO et al., 2023).

Node X. Therefore, publishing to a topic is the same as sending data to that topic, and

subscribing is the same as reading data from that topic. Publishers do not know who

reads their messages, but subscribers know who published them. ROS was also used

for the single timing frame for all frames. As shown in the diagram of the Figure 15, each

sensor node published messages on a different topic. As we can see each sensor has

a connection with the ECU, the Wi-Fi access point is to connect the sensor from the

object of the scenario. It can be another ADMA-G or the SP80.

These messages are stored in a ROSbag, which is a file that stores all the data

published on ROS topics.

Figure 15 – ROS environment

Source: (NETO et al., 2023).
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3.3 TEST ENVIRONMENTS

To compare and validate real-world scenarios with simulations, the utilization

of a controlled environment is crucial. Such an environment allows for control over

significant variables, including scenario participants and even weather conditions (by

generating artificial rain). This section will discuss both the real-world and laboratory

environments.

3.3.1 Real-World

Figure 16 – The CARISSMA outdoor proving ground.

Source: CARISSMA.

The CARISSMA Institute for Automated Driving has an outdoor testing facility,

illustrated in Figure 16, that was utilized as a proving ground for conducting our experi-

mental scenarios. This testing facility is situated in Ingolstadt, Germany, and covers an

area of 215 m in length and 15 m in width. In addition to this, there is a dynamic testing

region measuring 60 m by 70 m. This facilities also provides validated targets from

4A 2 which are important for conducting tests involving collisions. In order to conduct

experiments under rainy conditions, an artificial rain generation system was utilized,

which allowed for controlled generation of rainfall. This system involved the use of a

sprinkler system that was able to generate artificial raindrops.

3.3.2 Laboratory

The simulation software chosen was the IPG CarMaker (IPG, 2023). This

software has support for HiL, target virtualization and Vehicle-in-the-Loop (VIL). The

support to VIL is crucial once that the software receives the ego data from the real test

and replicates all in the simulation. Therefore, even the variation in camera angle due to

the acceleration and braking of the ego vehicle was replicated in the synthetic test runs.
2 4activeSystems is a company that specializes in providing advanced solutions and technologies for

the automotive industry.
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Even the extrinsic calibration performed in the sensors of the real-world ego vehicle was

replicated in the virtual tests.

The schema detailing the laboratory bench is presented in Figure 17. As it can

be seen the setup is in a Hardware-in-the-Loop environment. However the loop is not

completed because there is no driving function. The final diagram flow ends with the

ROSbag where all the data is recorded. It was employed two different methods for the

stimulation of the camera sensor. The first type involves Direct Data Injection (DDI) from

the simulation using the IPG Video Interface Box (VIB). The second type is a camera

OTA setup (REWAY et al., 2018) which uses the same camera as the real-world test

scenario to record a video of the simulation displayed on a monitor inside a dark box.

Both of them contain exactly the same frame image. The radar was mounted inside

an anechoic chamber. The radar was installed in one side, and the stimulator in the

opposite side. The stimulator used was a Vehicle Radar Test System (VRTS), developed

by Konrad GMBH. It would receive data from the simulation, and by manipulating the

EM waves from the radar, generates a virtual target with distance, velocity, acceleration

and RCS provided. Figure 18 shown all the hardware used in the laboratory bench.

To maintain real-time performance, the NI-PXIe-1085 from National Instruments

was utilized. With CarMaker’s support, this real-time computer can calculate positions in

real time and subsequently output the data to the sensor stimulators. These stimulators

(VRTS, VIB and Monitor) are responsible for stimulating the sensors, and the resulting

sensor data is recorded by the same ECU used in the real-world tests. Even the diagram

Figure 17 – Data acquisition in the Laboratory: Stimulation of environment sensors (virtual tests, but
integrated hardware of camera and radar).

Source: (NETO et al., 2023).
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Figure 18 – Laboratory bench.

Source: CARISSMA Institute of Automated Drive.

shown in Figure 15 used in the real-world tests remains largely unchanged, with the

exception of the LiDAR sensor, which was not replicated in the synthetic tests. And the

position data of the objects in the scenario is sourced from the CarMaker simulation

rather than the ADMA-G and SP80 sensors.

3.3.3 Intrinsic Camera Calibration

There are three types of cameras used in the test scenarios: the camera used

in the real world and the two cameras used in the laboratory setup (VIB and OTA).

The calibration process was performed using the Camera Calibrator app in Matlab.

Multiple images of a checkerboard with a known size were captured by the cameras

from different positions and angles. For the laboratory cameras, a 3D checkerboard with

a predetermined size was inserted into the simulation, as depicted in Figure 19 (b) and

(c).

Figure 19 – Intrinsic Camera Calibration.

Source: (NETO et al., 2023).
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3.4 TEST SCENARIOS

With the test environment established, the next step was to define the recorded

test scenarios. A total of eight different test scenarios were recorded, featuring various

scenes with cars, pedestrians, cyclists, and trucks. Some of the scenarios were inspired

in the cataloged test scenarios of EURONCAP 3. These scenarios can be divided into

static ego scenarios and dynamic ego scenarios, depending on whether the ego vehicle

is stationary or in motion.

3.4.1 Dynamic ego scenarios

3.4.1.1 CBLA

Inspired by EURONCAP scenarios, the Car to Bicycle Longitudinal (CBLA) test

is an Automatic Emergency Braking (AEB) test where the ego vehicle approaches a

bicycle with a velocity ranging from 25 km/h to 60 km/h, while the bicycle moves away

from the car at 15 km/h. In this work, the specific test conducted was the CBLA-50,

with the ego vehicle traveling at 50 km/h. The bicycle dummy utilized in the test was a

validated dummy provided by the manufacturer 4A and was pulled with the assistance

of another car equipped with a ADMA-G sensor to infer the position of the dummy.

Figure 20 – Car to Bicycle Longitudinal Adult (CBLA).

Source: (NETO et al., 2023).

3.4.1.2 CCRb

Also inspired by EURONCAP scenarios, the Car to Car Rear braking (CCRb)

is a AEB test in which both vehicles are moving. The ego vehicle travels towards the

target at a velocity of 50 km/h. The target car initially moves at the same speed but then

decelerates either at a rate of -2 m/s² or -6 m/s² until it comes to a stop. This results in a

motion where the target moves away from the ego vehicle until reaching a maximum

distance, after which the ego vehicle approaches the target as it comes to a stop. This

test allows for the evaluation of sensors under both conditions: a target moving away

and a target approaching.
3 European New Car Assessment Programme (EURONCAP) is an independent organization that con-

ducts safety tests and provides ratings for cars sold in Europe. Its evaluations cover crashworthiness,
occupant protection, pedestrian safety, and safety assist systems, aiming to promote the development
of safer vehicles and inform consumers about their safety performance.
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Figure 21 – Car to Car Rear braking (CCRb).

Source: (NETO et al., 2023).

3.4.1.3 CCRs

The last one inspired by EURONCAP scenarios, the Car to Car Rear static (CCRs)

is an AEB test scenario where a target vehicle is stationary at a predetermined distance,

while the ego vehicle approaches it at a velocity of 50 km/h. In this study, the test

was conducted using a standardized dummy provided by 4A, which includes validated

RADAR and camera targets.

Figure 22 – Car to Car Rear static (CCRs).

Source: (NETO et al., 2023).

3.4.1.4 Truck perpendicular

Figure 23 – Truck perpendicular.

Source: (NETO et al., 2023).

Inspired by the first fatal collision involving a software-controlled car (CNN,

2016), this scenario involves a stationary truck positioned perpendicular to the road,

Figure 23. The ego vehicle accelerates towards the truck and comes to a stop just

before colliding with the side of the truck.

3.4.2 Static ego scenarios

With the ego vehicle stationary, four different types of objects (Figure 24) move

away from the sensor setup. To obtain the position of these moving objects, the bicyclist,

pedestrian, and truck were equipped with SP80 sensors, while the car was equipped

with an ADMA-G sensor.
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Figure 24 – Four different scenarios with the static ego-vehicle.

Source: (NETO et al., 2023).

3.5 DATA FORMAT

The data collected during the tests was stored in ROSbags. However, accessing

this data can be impractical. Typically, RVIZ4 is used as a visualization tool, but it

requires running all the ROSbag data (one file which contains data from all the sensors).

Therefore, it was necessary to convert the data into a well-structured and agnostic format

that can be easily accessed by a broader audience. In the absence of a standardized

format for this type of data, the Open Simulation Interface (OSI) serves as a suitable

solution.

3.5.1 Google Protocol Buffers

Google Protocol Buffers (protobuf) is a language-agnostic data serialization

framework developed by Google. It provides a way to define the structure of structured

data in a language-agnostic format and enables efficient serialization and deserialization

of data for communication and storage purposes.

Protobuf enables the definition of data structures using a simple language

known as Protocol Buffer Language. This definition acts as a contract or schema for the

data. Once the structure is defined, the protobuf compiler can be utilized to generate

code in multiple programming languages. This code offers convenient APIs for encoding

and decoding data in the specified format.

Protobuf offers several advantages over other data interchange formats, such as

JSON or XML. It provides a compact binary representation, resulting in smaller message

sizes and faster serialization/deserialization. It offers strong type checking, efficient data

parsing, and support for optional and repeated fields (GOOGLE, 2023). However, there

is a limitation on the message size. By default is 64MB, it can be changed, but the

problem is that you must always parse an entire message at once before start using

any of the content. This means the entire message must fit into the Random Access

Memory (RAM)
4 RVIZ is a visualization tool in the Robot Operating System (ROS) ecosystem. It allows users to

visualize sensor data, robot models, and other relevant information in a 3D environment.



41

Figure 25 – SensorData OSI diagram.

Source: (TIMO HANKE, NILS HIRSENKORN, CARLO VAN DRIESTEN, 2017).

3.5.2 Open Simulation Interface

The Open Simulation Interface (OSI) is an industry-standard interface developed

by the Association for Standardization of Automation and Measuring Systems (ASAM). It

serves as a standardized framework and protocol for communication and data exchange

between various software components used in simulation and testing domains.

ASAM OSI started as a generic data exchange interface compliant with the

ISO 231505 (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2021) logic

interface for the environmental perception of automated driving functions in virtual

scenarios.(TIMO HANKE, NILS HIRSENKORN, CARLO VAN DRIESTEN, 2017). Based

on the Google Protocol Buffers. With OSI is possible not only store the data from the

ego sensors, but also the measured object position (ground-truth) of the scenario. The

OSI framework has a structured format for storing the data collected during testing.

This format is organized into classes and subclasses. The top-level class that contains

data from all sensors is called SensorData, Figure 25 shown part of the structure. The

hierarchy of the classes descends from right to left. The words on the dashed lines

represent the classes in the Protobuf schema. Within this class, there is a subclass called

FeatureData, which further contains subclasses for radar data (RadarDetectionData)

and LiDAR data (LidarDetectionData). These subclasses have repeating structures to

store, for example, the multiple clusters detected by the radar at a specific moment in
5 The document specifies the logical interface between in-vehicle environmental perception sensors (for

example, radar, lidar, camera, ultrasonic) and the fusion unit which generates a surround model and
interprets the scene around the vehicle based on the sensor data.
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time.

OSI also defines the units of measurement and the coordinate system used

for storing the data and provides well-defined structures, such as Spherical3d, which

represents the location of clusters relative to the ego vehicle in spherical coordinates:

elevation, azimuth, and distance. The timestamp in the OSI structure (Timestamp) is

stored in seconds and nanoseconds. It begins from 0 and does not have a reference

definition, such as the Unix epoch. The timestamp of all sensors is derived from the ROS

timestamp. At each moment in time when the sensor publishes data in the ROS node, a

timestamp is acquired. Since each sensor has a different data acquisition frequency,

the timestamps are unique to each sensor.

Figure 26 – Camera data.

In the Figure 26 is shown how the camera frames was stored in the ROSbag

and how it is stored in the OSI format. A sequence of these frames, each with its

corresponding timestamp, forms a video.

Figure 27 illustrates how the radar data was stored in the ROSbag and how it

is stored in the OSI format. A coordinate conversion was performed, transforming the

data from rectangular coordinates in the ROSbag to spherical coordinates in the OSI.

Additionally, the covariance was converted to position root mean square. In this case

the radar was operating in cluster mode.

The radar also operates in object list mode, therefore the data is slightly different.

In the Figure 28 is shown how the data was converted to the OSI format. In this case

was generated a list of objects and they were stored in the class DetectedMovingObject.

In the OSI format the location of the sensor relative to the ego-vehicle is always

stored in the field class MoutingPosition. The Figure 29 shown how the data was

converted from the ROS format to the OSI. The field Detection is a repeated structure

where all the points of the LiDAR detection are stored.
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Figure 27 – Radar cluster data.

Figure 28 – Radar object list data.

Figure 29 – LiDAR data.

The ADMA-G sensor provide not only the position data, but also acceleration,

velocity and orientation angles. In the Figure 30 is possible to see how the data was

converted from the ROSbag and how it is structured in the OSI format. The class
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Figure 30 – ADMA-G ego data.

HostVehicleData has the structure to store the data from ego IMU/GNSS system. The

OSI data follows the (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION,

2011), so the position of the car is set zero in the middle of the back axle of the

ego-vehicle.

To store the position of the objects of the test scenarios, the class MovingObject

was used. When the object of interest was the car, all the data collected by the ADMA-G

was stored as shown in the Figure 31.

Figure 31 – ADMA-G car data.

When the object of interest was the pedestrian, bicyclist or the truck. The SP80

was used and therefore was capted only the position data. Figure 32 shown how the

data is structure in OSI.

To store the position of the 4A target in the CCRs scenario, was used the

StationaryObject class that belong to the GroundTruth OSI class.

The timestamp for all the data is the ROS system timestamp. In other words,

the timestamp for all the sensors is the time when the data was collected by the vehicle

ECU.
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Figure 32 – SP80 data.

Each sensor has an individual .osi file assigned to it. In the case of the radar,

IMU, and ground-truth of objects, the SensorDataSeries is utilized. It is a time series of

the SensorData and generate a list of detections contained within the protobuf message.

However, for the Camera and LiDAR sensors, the protobuf has a default size limit of

64Mb. As a result, each detection is stored in its individual protobuf message and

subsequently parsed into a single .osi file using the Python’s struct package.

3.6 DATA ANNOTATION

Data annotation refers to the process of labeling or tagging data with meaningful

and relevant information. In the context of automated driving, data annotation plays a

crucial role in understanding and analyzing various aspects of the environment, such as

object detection, scene understanding, and behavior prediction.

3.6.1 OpenLABEL

ASAM OpenLABEL is a standardized format and framework also developed by

the ASAM. It is specifically designed for the annotation of data in the field of automated

driving and related applications.

It provides a structured and standardized way to annotate sensor data, images,

and other relevant information. It allows for consistent and interoperable annotations,

enabling efficient data sharing and collaboration among different stakeholders in the

automated driving ecosystem. ASAM OpenLABEL uses the JSON format and can

therefore be easily parsed by tools and applications. It specifies which coordinate

systems are used as reference for the label. It stores important information such as the

camera intrinsic matrix and sensors synchronization.

3.6.2 Genetic Algorithm

A Genetic Algorithm (GA) is an optimization method that can solve both

constrained and unconstrained problems. It is inspired by the process of natural selection

in biological evolution. The algorithm works by iteratively modifying a population of
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individual solutions. In each iteration, individuals are randomly selected from the current

population and serve as parents to create offspring for the next generation. With each

generation, the population evolves towards an optimal solution.

3.6.3 Annotation process

Figure 33 – Labelling schema.

One of the biggest advantages of executing the test runs in a controlled en-

vironment is known all the actors involved. Once that the position of the ego and the

objects of interest were collected, it is possible to use this information to execute the

data annotation.

At a first sight, having the intrinsic camera matrix, the location of the camera in

relation to the world, and the position of the object of interest, one could simply project

the object dimensions onto the image and get the bounding box. However, there are

many uncertainties involved in the process that must be taken into account. Manually

supervise this process is time consuming and can lead to more errors. The solution

was a semi-supervised method described in Figure 33. The script was implemented

using Matlab, which provides convenient packages for development purposes (Auto-

mated Driving Toolbox). The initial step involved importing the OSI data into Matlab.

Since Matlab currently lacks direct support for Google Protocol Buffers, the data was

effortlessly converted to JSON format for integration with Matlab. Subsequently, the

algorithm synchronized the timestamps of the sensor data, extracted the ego and object

of interest positions, and calculated the relative position of the object with respect to the

ego. Leveraging this information, a cuboid was projected onto the camera image using

the camera’s intrinsic matrix.

To supervise this process, the Matlab object detector utilizing YOLOv4 with a

pre-trained network for autonomous driving applications was employed. To enhance

efficiency, a subset of frames (1 frame selected every 75 frames) from each test run,

capturing different object distances relative to the ego, was selected. These frames

were then processed through YOLOv4, generating 2D bounding boxes. These bounding
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boxes, along with the previously described cuboid projection, were passed to the

objective function of a genetic algorithm. The fitness function allowed for slight variations

in the object’s position, with the output to be optimized being the Intersection over Union

(IoU) between the front face of the cuboid and the bounding box for each frame. Figure

34 illustrates the calculation of IoU. The average IoU across the selected frames was

computed. If the IoU was unsatisfactory, the object’s position (x, y) was adjusted by the

genetic algorithm, and the process iterated until a satisfactory IoU result was achieved.

The initial population size of the GA was set to 200, and two stopping criteria were

employed: a fitness limit (IoU of 0.9 or higher) or a maximum time of 300 seconds.

Figure 34 – IoU between projected cuboid and YOLOv4 detection.

=  
  

  

Once achieved a satisfactory result for the IoU the correction on the position is

constant over all the frames of the test run. The cuboid is stored into the OpenLABEL

format using real-world coordinates. The original positions of the objects are stored in

the IMU files of the dataset for each scenario.

3.6.4 Timestamp synchronization

The OpenLABEL format includes a structure to store sensor data synchroniza-

tion, considering that each sensor has a different capture frequency. The approach

taken was to match the sensor data indexes based on the closest timestamp and store

this synchronized data in OpenLABEL format. The synchronization was established

using the camera’s frame as a reference for the radar, ADMA-G sensor data from the

ego vehicle, and the object position. Similarly, the radar data was used as a reference

for synchronizing the camera data, ADMA-G sensor data from the ego vehicle, and the

object position. Generating two OpenLABEL files, camera and radar.

3.7 DATA PROCESSING

During the data collection, some issues were encountered. The ground-truth

position of the objects in the scene was transmitted to the ego ECU via Wi-Fi, as

depicted in Figure 15. However, there were instances where the transmission failed,
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resulting in the non-recording of the position data. This issue was more prevalent when

the SP80 sensor was used, but it also occurred with the ADMA-G sensor in scenarios

where the car was the object of interest. Figure 35 illustrates the plot of position X and

Y over time, demonstrating significant data gaps.

Figure 35 – SP80 raw data.

Source: Author (2023).

The initial task involved identifying the data gaps. The ADMA-G sensor operates

at a capture frequency of 100 Hz, and during test runs where data gaps exceeded 150

milliseconds, a warning message was included with the data. For scenarios involving the

SP80 sensor, data interpolation was performed to fill these gaps. If the script detected

a gap exceeding 500 milliseconds, a linear interpolation model was utilized to fill the

gap while maintaining the original data frequency provided by the sensor. A warning

message was included with the data, indicating the specific time instance when the data

gap occurred.

Another correction made to the objects position data, was relative to the refer-

ence point. Except for the ego-vehicle, the reference point for the position is the center

of the object. It was necessary to know where the sensors were positioned on the object

to correct the position according to the OSI model.

The CBLA test scenario was recorded using a 4A dummy riding a bicycle,

which was being pulled by a car equipped with the ADMA-G sensor. Ideally, the dummy

would be placed on a platform with a GNSS sensor to accurately determine its position.

However, in this case, the position of the dummy was estimated using the position data

acquired by the sensor inside the car. Both the car and the dummy (post generated)

position are stored in the dataset.

During the test runs conducted with the Truck as the target, its license plate

was visible in the captured frames. However, since the data would be made public, it

was necessary to blur the license plate to ensure privacy. While typically a license plate

detection algorithm trained for this purpose would be used, none of the publicly available

algorithms were able to blur the license plates in all the required frames. As a solution,

the cuboid generated during the annotation process was utilized to locate the license

plate in each image and apply the necessary blurring.
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3.8 DATA EVALUATION

To utilize the generated dataset, this study employs the YOLOP algorithm for

comparing results between simulation and reality. As illustrated in Figure 5, the algorithm

performs lane line segmentation, drivable area (free-space) segmentation, and object

detection. However, in order to assess the algorithm’s performance, it is crucial to have

ground-truth information for these parameters. The data annotation process provides

the necessary information for evaluating object detection. For the drivable area and

lane line segmentation, it was necessary to create ground-truth data to both real and

simulated data.

Figure 36 – Track ground-truth with Radar data.

Source: Author (2023).

To generate the ground-truth data for drivable area and lane line segmentation,

radar data and the ego vehicle’s ADMA-G data were utilized. Since no measurement of

the track has been carried out, sensor data alone was sufficient to determine the track’s

coordinates. In Figure 36, there is an illustration of the process, which involved projecting

radar clusters onto the ego-vehicle’s position. With this information, the boundaries

of the real-world track could be estimated and then this data was projected onto the

camera image. Lane line segmentation required estimating the lane’s position through

multiple test runs, as direct measurement wasn’t available during testing. By determining

the position of the lane line and the real-world track boundaries, ground-truth data could

be generated even while the ego-vehicle was in motion.

The YOLOP algorithm was modified to export the detections in the form of

segmentation masks. These masks are represented by boolean matrices with the same

dimensions as the image. In the segmentation masks, a pixel value of 1 indicates the

presence of the drivable area or the lane line. For each frame, two segmentation masks

are generated: one for the drivable area and another for the lane line. The bounding

boxes generated, was also exported.

A script was developed to conduct the evaluation process. First, a test run

is selected, and the YOLOP algorithm is applied to the camera frames, generating
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Figure 37 – IoU between ground-truth and YOLOP.

segmentation masks. Next, ground-truth segmentation masks are created in the same

format. The third step involves comparing the segmentation masks and object detection

results with the cuboids stored in the OpenLABEL files. Figure 38. The metric used

to compare the ground-truth with the detection is once again the Intersection over

Union (IoU). For the drivable area, it was performed the direct intersection and union

of the boolean masks to obtain the IoU. However, for the lane line segmentation, this

same calculation did not adequately represent how well the lane line segmentation

performed by the YOLOP algorithm. The solution was to use the lane line detections to

draw a polygon of the lane and then calculate the IoU of the polygon generated by the

ground-truth with the polygon of the YOLOP lane line detection, as shown in

To evaluate the Camera Over-the-Air data, it was necessary to rectify the images

to exclude the black borders (Figure 19 (c)) and then be able to project the ground truth.

Once rectified, it was necessary to re-calibrate to obtain the new intrinsic matrix. The

same images, underwent the same rectifying process, used in the original calibration

were utilized.

Smoothing. After obtaining all the data, it was observed that there was a need

Figure 38 – Lane polygon YOLOP/Ground-truth.

Source: Author (2023) (NETO et al., 2023).
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Figure 39 – Raw Data vs. Smoothed Data

Source: Author (2023).

to apply a smoothing technique to facilitate a better comparison between the real and

synthetic data. The choice was made to use LOESS (Locally Weighted Scatterplot

Smoothing), a non-parametric regression technique used to model the relationship

between two variables in a scatterplot. In Figure 39, it can be observed both the raw

data and the results of the smoothing technique.

3.8.1 Simulation-to-reality gap

Since all test runs recorded in the real proving ground have corresponding

digital twins, the evaluation method described above allows the comparison of scores

between the same test runs, making it possible to estimate the simulation-to-reality gap.

Before delving into the estimation, it is important to define what is the simulation-

to-reality gap. This measure serves to determine the degree to which a simulation

accurately represents a real-world scenario. With a near-perfect simulation, it is pos-

sible to skip testing in the real environment when evaluating the proposed algorithm.

Furthermore, a reliable simulation allows the testing of scenarios that may be physically

or ethically impossible to execute in reality.

To estimate the simulation-to-reality gap, the IoU for object detection, drivable

area, and lane line segmentation was calculated frame by frame:

IoU =
YOLOP ∩ Ground-Truth
YOLOP ∪ Ground-Truth

(3.1)

By plotting the data from the real test alongside the simulation, it is possible to

compare the performance of the simulation.

To quantify this data, a Root Mean Square Error (RMSE) analysis was con-

ducted on the real data in comparison to both synthetic data (DDI and OTA):

RMSE =

√∑n

i=1
(yi − ŷi)2

n
(3.2)

The calculation involved comparing the IoU values frame by frame for Object Detection,

Drivable Area, and Lane Line segmentation within each scenario.
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4 RESULTS

With all the data organized and annotated, this chapter will discuss the resulting

dataset and its utilization for measuring the simulation-to-reality gap.

4.1 CALIBRATION

As described in Subsection 3.1.6 the extrinsic calibration of the Camera, Radar

and LiDAR were performed using two different algorithms.

Figure 40 – Frames transformation.

Figure 40 depicts the structure of the transformation frames. Using the ADMA-G

sensor, it is possible to determine the world coordinates. The NVIDIA extrinsic calibration

tool was employed to ascertain the camera’s position relative to the midpoint of the

ego-vehicle’s back axle. Then the algorithm developed by (DOMHOF et al., 2019) was

utilized to derive the relative positions of the Radar and LiDAR with respect to the

Camera. Table 3 contains the final results of the extrinsic calibration of the sensors, all

of them taking the midpoint of back axle as reference.

Table 3 – EXTRINSIC CALIBRATION RESULTS.
X Y Z Roll Pitch Yaw

Camera 1.3199 -0.0716 1.2784 0.4669 3.4517 2.8506
Radar 2.7774 0.0407 0.5082 0.0174 0.0715 -0.0094
LiDAR 1.2144 0.0506 1.6251 -0.0021 0.0207 -0.0016

ADMA-G -0.126 0.099 0.737 – – –

Source: CARISSMA (2022)
Caption: Extrinsic calibration results. (X, Y and Z in meters. Angles in degrees.)

4.2 DATA STRUCTURE

The data is stored in a structure depicted in Figure 41. There are two types of

scenarios: dynamic_ego, where the ego is moving, and static_ego, where the ego is

stationary. Each one contains four scenarios.
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Figure 41 – Directory structure of the dataset.
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The user must first select the desired scenario, then choose between a real or

synthetic scenario, followed by the weather condition, radar operation mode, and finally

the test run. The directory structure for all scenarios is the same as depicted for the

CCRb. Inside the Camera directory, there are the .osi files containing the images and

the OpenLABEL .json files storing the annotation data. The Radar folder also contains

two files: one .osi file with the radar data and one OpenLABEL .json file storing the

radar’s synchronization with the rest of the sensors. The left sensors (ADMA-G, LiDAR

and SP-80) have their respective data stored in .osi files as well. For the synthetic data,

there are two types of camera data (DDI and OTA), each stored in separate directories.

Each camera directory contains its respective .osi and OpenLABEL .json files.

The dataset contains 221.495 camera frames of which 99.516 are collected in

the real proving ground and 121.979 generated in the laboratory. This frames make part

of 289 test-runs, that totals more than 2 hours of recording. In the Table 4 the distribution

of the test runs according to the scenarios and weather conditions is shown. 135 were

recorded in the real proving ground and 154 in the laboratory. This additional synthetic

test runs is due to the CBLA tests in laboratory. Were made with and without the car

pulling the bicyclist.

Table 4 – NUMBER OF TEST RUNS IN EACH SCENARIO.
daytime night rain snow

Type real synthetic real synthetic real synthetic real synthetic
CBLA 7 14 6 12 6 12 - -
CCRb 6 6 6 6 6 6 - -
CCRs 5 5 6 6 6 6 - -

Truck perpendicular - - 4 4 - - 4 4
Bike 6 6 5 5 6 6 4 4
Car 6 6 6 6 6 6 4 4

Pedestrian 6 6 6 6 6 6 1 1
Truck 4 4 3 3 - - 4 4

Source: Author (2022).

4.3 DATA ANNOTATION

Following the method described in section 3.6, it was possible to perform data

annotation. Figure 42 illustrates the Root Mean Square (RMS) of x and y offset applied

to the object’s position. It demonstrates that objects relying on the SP80 sensor (Bike,

Pedestrian and Truck) exhibited greater variation in the position offset across the test

runs. This can be attributed to inconsistencies in maintaining the sensor’s mounting

position throughout the tests. In the case of the bicycle, the sensor was installed on the

handlebar, but it did not remain in a fixed position during all the tests. For the pedestrian,

the sensor was held in the hands, making it impossible to maintain consistency. Another
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Figure 42 – Object position offset.

Source: Author (2023).

factor to consider was the need for data interpolation. In scenarios where the ADMA-G

captured the object position (Car, CCRb and CBLA), it was observed greater consistency

with no variation in the x and y offset across different test runs. This was due to the fixed

positioning of the sensor. Once an optimal offset was determined, it remained constant,

eliminating the need for the genetic algorithm to vary it. The same applies to the CCRs

scenario, where the target was static. There is only two different positions and can be

explained by a displacement of the target during the test runs.

Figure 43 – Projected cuboid onto objects.

Source: Author (2023).
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Figure 43 displays the final result of the annotation data process. The left

column in the first row is the CBLA scenario, and the right column is the pedestrian

scenario, both recorded in the real proving ground. In the second row are scenarios

captured in the laboratory, the left column is the truck perpendicular scenario captured

by the Camera OTA setup, and the right column is the bicyclist scenario captured using

the Camera DDI setup.

Figure 44 – OpenLABEL structure example.

{

"openlabel": {

"metadata": {

"schema_version": "1.0.0"},

"frames": [

{

"frame_properties": {

"timestamp": 0.012592077,

"Streams": {

"Camera1": {

"stream_properties": {

"sync": {

"frame_stream": 0,

"timestamp": 0.012592077

},

"intrinsics_pinhole": {

"camera_matrix_3x4": [...],

"distortion_coeffs_1xN": [...],

"height_px": 1208,

"width_px": 1920

}}},

"IMU_ego": {

"stream_properties": {

"sync": {

"frame_stream": 1,

"timestamp": 0.008427381

}}},

"IMU_obj": {...},

"Radar": {

"stream_properties": {

"sync": {

"frame_stream": 0,

"timestamp": 0.051609992

}}}}},

"objects": [

{

"name": "Car_1",

"type": "Car",

"object_data": {

"cuboid": {

"name": "cuboid",

"val": [136.0989,2.2972,0.6804,

0,0,0.7900,

2.695,1.559,1.565]

}}},(...)



57

Figure 44 displays an example of the fields used in the OpenLABEL files. There

are multiple frames, each containing properties such as timestamp, camera intrinsics,

synchronization with other sensors, and the objects present. The cuboids are stored

within the object field, and the vector includes the following parameters: X, Y, Z, width,

length, height, roll, pitch, and yaw.

The Radar sensor has an OpenLABEL file that contains only the synchronization

with the others sensors, without any information about the objects.

4.4 DATA PROCESSING RESULTS

As explained in section 3.7, the data from the SP80 sensor presents some

gaps. The first row of Figure 45 shows the raw data, while the second row displays

the interpolated data generated to fill these gaps. This interpolated data was used to

generate the cuboids presented in section 4.3. Therefore, it was tested and validated.

Figure 45 – Raw vs Interpolated position data.

Source: Author (2023).

The result of the license plate blur process can be seen in Figure 46. As

previously described, the data from the SP80 sensor was utilized to generate the blur

effect.

4.5 DATA VISUALIZATION/USABILITY

Once all the data was annotated, structured, and organized in an agnostic

format, it was necessary to develop tools to use and visualize the data. A Python

notebook was created for this purpose.

File selector. With the structured data in place, it is now possible to select

the desired scenario using a script and access all sensor data. The file_selector.py
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Figure 46 – Blurred license plate.

Source: (NETO et al., 2023).

script allows users to choose the desired scenario along with different parameters. If

the user selects a combination of parameters that were not recorded, an error will be

returned. The script also provides warnings about the scenario, such as the lack of

data in the ground-truth sensors and the interpolation performed for the SP80 sensor.

Following is the code part of the Python notebook:

weather = "snow" # daytime, rain, night, snow

scenario = "truck" #CCRb, CCRs, car, bike, pedestrian,(...)

scenario_type = "real" # real, synthetic

radar_mode = "cluster" # cluster, object_list

test_run = 1 # Usually has 3 test_runs, but it varies from 1 to 4.

camera_path,(...),lidar_path = file_selector(scenario,weather,(...),test_run)

Figure 47 – Frame exported using the Python notebook.

Source: (NETO et al., 2023).
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Camera. It is possible to export a selected frame or the entire video. The user

can choose whether to include the timestamp and the frame number in the output.

Additionally, there is an option to project cuboids onto the objects in the scenario, as

displayed in the Figure 47.

Radar. Similar to the camera, it is possible to export a single frame of the radar

data or the entire video of the scenario. Alongside the radar data, the position data of the

ego and the objects are included. In Figure 48 (a), the data from the radar operating in

object list mode is displayed, showing the position, dimensions, and existence probability

of the detected objects. By using the ground-truth position of the object of interest, it was

possible to calculate the Intersection over Union of the object with the radar detection.

This information is displayed in the bottom right of Figure 48 (a) and can be exported as

a .csv file for further analysis.

Figure 48 – Operation mode: (a) Object List (b) Cluster.

Source: (NETO et al., 2023).

In Figure 48 (b), the radar is shown operating in cluster mode. Similar to the

object list mode, it displays the cluster positions, existence probability, and ellipses

representing the covariance in the object’s position. With the ground-truth information,

it is possible to perform the segmentation of the clusters that belong to the object of

interest and count the number of the object’s clusters in each frame. This data can also

be exported to .csv.

LiDAR. For the LiDAR data, a script was developed to convert the data from

.osi to .ply, which is a widely known format for point clouds. This script generates an

individual .ply file for each timestamp. This way, users can easily visualize the LiDAR

data.

However, it is also possible to access the information of the point cloud without

converting the data. The LiDAR data is structured in OSI format, containing the position

in spherical coordinates, as well as the information of reflectivity and intensity for each
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point.

General Data. The Python notebook also demonstrates how to access the

OSI data, such as retrieving the position of an object in a selected frame and more.

Additionally, it is possible to convert all the data belonging to the SensorDataSeries

class to the .json format.

4.6 WEBSITE

To enhance user accessibility and usage of the dataset, a website has been

created, providing essential information and data samples. This website allows users to

download the dataset and the necessary scripts for data manipulation. The site can be

accessed at this address: twicedataset.github.io/site

Figure 49 – TWICE Website.

Source: Author (2023).

4.7 YOLOP

Following the methodology described in section 3.8, the measurement of the

simulation-to-reality gap was performed under various weather conditions for four

scenarios, two of them with dynamic egos: CCRb and CCRs, and two with static egos:

Car and Truck. The developed script generates an .csv file as output, containing the

Intersection over Union (IoU) values between the ground-truth and YOLOP detections for
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the detected object, drivable area, and lane line segmentation in each frame. Additionally,

the script calculates the distance between the ego-vehicle and the object of interest.

In Figure 50, it can be observed the YOLOP detections along with the ground-truth

projection. The green area represents the drivable space (free space), while the red

area depicts the lane line segmentation. The lighter colors correspond to the YOLOP

detections.

Figure 50 – YOLOP detections with ground-truth.

Source: Author (2023).

With this information, it was possible to generate plots for comparing the algo-

rithm’s performance in real-world and laboratory environments across different weather

conditions. For Object Detection, a plot was created, depicting the distance between

the ego-vehicle and the object of interest on the X-axis and the IoU on the Y-axis. For

Drivable Area and Lane Line Segmentation, plots were generated, showing the frame

numbers on the X-axis and the IoU on the Y-axis. All plots include real-world data as

well as data from the two types of cameras used in the laboratory: Direct Data Injection

(DDI) and Over-the-Air (OTA).

CCRb. As shown in Figure 51, the curves of the real data and synthetic (DDI

and OTA) data follow the same pattern, with the exception of the Drivable Area at night.

In this case, the simulation outperformed the real data. In the Lane Line segmentation,

an oscillation of the IoU in the real data is noticeable. This is due to the YOLOP having

difficulty detecting the dashed lane line.

CCRs. Similar to CCRb,Figure 52 demonstrates that the real and synthetic data

exhibit the same behavior, with the exception of the drivable area at night, where the

simulation outperformed the real data. It is also noticeable that in the initial frames of
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Figure 51 – CCRb YOLOP detections.

Source: Author (2023).

Figure 52 – CCRs YOLOP detections.

Source: Author (2023).

the simulation, the drivable area was not detected. As the ego-vehicle approaches the

area where the lane lines are located, the drivable area starts being detected by the

YOLOP algorithm.

Car. As shown in Figure 53 the Object Detection follows the same pattern in

both real and synthetic data. The same can be said for the lane line segmentation, with

the exception of the initial frames. In the Drivable Area, the real data outperformed the

simulation in the daytime and rain scenarios, but exhibited similar behavior at night time.

Truck.With slight variations, Figure 54 shows that the real and synthetic data

exhibit consistent behavior in both weather conditions. In the initial frames, when the



63

Figure 53 – Car YOLOP detections.

Source: Author (2023).

Figure 54 – Truck YOLOP detections.

Source: Author (2023).

Truck is too close to the ego-vehicle, the Object Detection algorithm struggles and the

lane line is not yet visible.

RMSE. To visualize the results, the mean RMSE values for each scenario and

weather condition were computed and presented in the form of a plot shown in Figure 55.

The first line is the RMSE calculation between the real scenario and the DDI camera.

And the second line is the RMSE (Equation 3.2) between the real scenario and the

OTA camera. This calculation was carried out frame by frame for Object Detection
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Figure 55 – RMSE plot.

Source: Author (2023).

(first column), Drivable Area (second column) and Lane Line (third column). They were

calculated for the scenarios: Car, CCRb, CCRs and Truck. In different weather conditions:

daytime (blue), rain (green), night (orange) and snow (red). Examining the results, it

becomes evident that the OTA camera displays great consistency when compared to

the DDI camera. With the exception of the CCRb, the simulation error compared to real

scenarios during the daytime was smaller as expected. This is related to the challenge

of simulating adverse weather conditions.

Overall, the simulation performed very well, proving to be valid and consistent

for automotive tests. The challenge remains in simulating adverse weather conditions,

where the algorithm performed better than the real tests.
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5 CONCLUSION

In this study, data obtained from cameras, radar, LiDAR, and IMU was gathered

both from real-world proving ground and from laboratory. This data was systematically

organized and structured to create an autonomous driving dataset. For each testing

scenario conducted on the real-world proving ground, a corresponding digital twin was

generated within the laboratory environment. The real-world data was acquired within a

controlled environment in Ingolstadt (Germany) under adverse weather conditions. The

location of all the actors participating in the test scenarios were determined. Utilizing

the ROS framework on the NVIDIA DRIVEPX platform, the data was captured and

stored in ROSbags. The same hardware setup, deployed in a Hardware-in-the-Loop

(HiL) arrangement, was employed to gather data in the laboratory environment. The

collected data underwent processing and conversion into the Open Simulation Interface

(OSI) format. The data was annotated using ground-truth information regarding the

positional attributes of the objects of interest. This annotation process was performed by

a semi-supervised algorithm. The annotated data was then stored in the OpenLABEL

format. The dataset contains more than 2 hours of recording, which totals more than

280GB of data and can be downloaded at: https://twicedataset.github.io/site/.

Using the TWICE dataset, a method was developed to assess the simulation-

to-reality gap. This approach involved employing the YOLOP algorithm, which encom-

passes Object Detection, Drivable Area, and Lane Line segmentation. Given that the

TWICE dataset includes a digital twin for each real test run conducted, it became feasi-

ble to compare algorithm performance between real and simulated data. In section 4.7,

the figures illustrate a comparison of the algorithm’s performance under three distinct

configurations: real-world camera input and two simulated inputs, namely Direct Data

Injection (DDI) and Over-the-Air (OTA) camera data. Overall, it can be inferred that the

simulation closely emulates the patterns observed in real-world scenarios. However,

during adverse weather conditions, the simulation tends to deviate more significantly.

During nighttime scenarios, the simulation occasionally outperforms the real-world per-

formance. This discrepancy indicates that the simulation did not entirely capture the

real-world scenario with complete fidelity. Finally, a Root Mean Square Error (RMSE)

analysis was conducted on the real data in comparison to both synthetic data (DDI and

OTA). The calculation involved comparing the IoU values frame by frame for Object

Detection, Drivable Area, and Lane Line segmentation.

The TWICE dataset holds the potential to serve as a valuable resource for the

academic community, aiding them in development of their own methodologies to assess

the simulation-to-reality gap. This, in turn, contributes to the validation of synthetic usage



66

within the industry, leading to resource and time savings. Up to the current date, there

exists no other public available dataset for autonomous driving that encompasses both

real and synthetic data within a controlled environment, under adverse weather condi-

tions. This dataset was the first publicly available dataset developed at the CARISSMA

institute, leaving a know-how in the areas of data structuring, processing, formatting,

and annotation. Additionally, it is the first public dataset that uses the Open Simulation

Interface Format (OSI) and OpenLABEL annotation format, both maintained by the

Association for Standardization of Automation and Measuring Systems (ASAM).

Future work can involve the development of a new dataset with a more sophisti-

cated simulation and sensors, using the same data structure developed in this work. It

can also include simulating LiDAR data, which was not feasible in this dataset due to

the high computational cost. Furthermore, it is possible to utilize the dataset with other

algorithms, such as YOLOP, to estimate the Simulation-to-Reality gap.
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