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RESUMO

Saliências Visuais são regiões ou objetos dentro de uma imagem que chamam a

atenção do nosso sistema visual, sendo processados primeiro na compreensão de uma cena. Na

computação, encontrar regiões salientes em imagens pode ser usado como pré-processamento em

áreas como reconhecimento, detecção e rastreamento de objetos. Pode ser usado para recortar e

redimensionar imagens, comprimir e resumir vídeos ou imagens. Na robótica, algoritmos de

localização e mapeamento de ambientes também utilizam conceitos de Saliências Visuais. Este

trabalho se concentra na área de detecção de objetos salientes, que visa encontrar os objetos

salientes de uma imagem e segmentar toda a sua extensão. O resultado desta segmentação é uma

imagem binária, representando um Mapa de Saliência, com as regiões de saliência em branco e as

regiões de não-saliência em preto. Os primeiros métodos aplicados para resolver este problema

foram baseados em características extraídas manualmente. Com o advento da Convolutional
Neural Network (CNN), melhores resultados foram obtidos porque ela aprende as características

apropriadas para o problema. Atualmente, a Fullly Convolutional Network (FCN) é o elemento

chave das técnicas de ponta no problema da segmentação de objetos salientes. Entretanto, apesar

dos resultados promisores alcançados na literatura com redes baseadas em FCNs, a FCN mostrou

problemas em algum cenários desafiadores. Muito recentemente, estudos propuseram o uso de

uma abordagem baseada na Mask Region-based Convolutional Neural Network (Mask-RCNN)

para superar tais problemas. Entretanto, não há nenhuma comparação extensiva entre as duas

redes na literatura de Salient Object Detection (SOD) endorsando a eficácia da Mask R-CNN

sobre a FCN para segmentar objetos salientes. Com o objetivo de mostrar a superioridade da

Mask R-CNN sobre FCN no contexto de SOD, este trabalho propõe duas arquiteturas Mask

R-CNN e realiza uma ampla comparação entre a Mask R-CNN e a FCN no contexto de SOD.

Neste trabalho, variações da Mask R-CNN são comparadas com variações da FCN em oito

conjuntos de dados amplamente utilizados na literatura. Os resultados deste trabalho mostram

melhorias de até 47% no F-measure com a Mask R-CNN em comparação com a FCN. Embora

os resultados alcançados neste trabalho não superem os resultados mais recentes da literatura,

este trabalho mostra a Mask R-CNN como uma alternativa promissora para o problema de SOD.

Palavras-chave: Saliência, FCN, Mask R-CNN



ABSTRACT

Visual Saliences are regions or objects within an image that draw the attention of our

visual system, being processed first in the understanding of a scene. In computing, finding

salient regions in images can be used as pre-processing in areas such as object recognition,

detection, and tracking. It can be used to crop and resize images, compress and summarize

videos or images. In robotics, algorithms of location and mapping of environments also utilize

Visual Salience concepts. This work focuses on the area of salient object detection, that aims

to find the salient objects of an image and to segment their entire extension. The result of this

segmentation is a binary image, representing a Salience Map, with the salience regions in white

and the non-salience regions in black. The first methods applied to solve this problem were based

on hand-crafted features. With the advent of the Convolutional Neural Network (CNN), better

results were obtained because it learns appropriate characteristics for the problem. Nowadays,

the Fully Convolutional Network (FCN) is the key element of the state of the art techniques in

the problem of segmentation of salient objects. However, besides the promising results achieved

in the literature with networks based on FCNs, the FCN showed issues in some challenging

scenarios. Fairly recently, studies proposed the use of a Mask Region-based Convolutional

Neural Network (Mask R-CNN) based approach to overcome such issues. However, there is no

extensive comparison between the two networks in the Salient Object Detection (SOD) literature

endorsing the effectiveness of Mask R-CNNs over FCN when segmenting salient objects. Aiming

to show the superiority of Mask R-CNNs over FCNs in the SOD context, this work proposes two

Mask R-CNN architectures and performs a broad evaluation between the two early mentioned

segmentation approaches. In this work, variations of Mask R-CNNs are compared with variations

of FCNs in eight datasets widely used in the literature and the findings of this work show

improvement from up to 47% in the F-measure with the Mask R-CNN. Although the results

achieved in this work do not exceed the most recent results in the literature, this work shows the

Mask R-CNN as an promising alternative to the SOD problem.

Keywords: Salience, FCN, Mask R-CNN
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1 INTRODUCTION

This dissertation presents a study about Visual Salience, explores the leading solutions

proposed in the literature to extract Visual Salience regions from images, and performs a

comparison study about two methods proposed in the literature to perform segmentation of salient

objects. The present chapter introduces the Visual Salience theme and is divided into sections as

follows: Section 1.1 presents the Visual Salience concept, Section 1.2 shows how images depict

Visual Saliences and the Salient Object Detection (SOD) research field. Section 1.3 presents the

objectives and contributions of the present study, and Section 1.4 offers the subjects covered in

the following chapters.

1.1 VISUAL SALIENCE

The human brain receives vast amounts of information daily, with the visual system

being considered one of the most essential to perform daily tasks. However, the complete

understanding of a scene in the real world is a challenging task. Even the human brain suffers

limitations to simultaneously identify all interesting elements and objects in a scene [Itti (2007)].

To deal with all information received, the human visual system, as well as the visual

system of other primates, chooses elements or objects in the scene to process first through a

selection of the most important visual stimuli [Gottlieb et al. (1998)]. The human brain subdivides

the image into subsets of regions and chooses the most relevant for first processing or more

detailed analysis, repeating the process to all regions in scene accordingly to decreasing order of

salience [Itti (2007)].

Visual Salience, or Visual Saliency, is the contextualized characteristic of some objects

that makes them stand out from its surrounding regions and attract the attention of the human

brain [Itti (2007)]. Light intensity, edge or line orientation, color, motion, and stereo disparity

are examples of Visual Salience features that attract human attention.

(a) Example of salience by

the difference of intensity

(the black bar stands out from

the green bars).

(b) Example of salience by

the difference of color (the

green bar stands out from the

red ones).

(c) Example of salience by

the difference of orientation

(the bar inclined to the oppo-

site direction stands out from

the others).

Figura 1.1: Examples of saliency features. Source: Todt (2005).

According to Niebur (2007), there are two approaches to select visual stimuli in the

attentional process: bottom-up and top-down. The former considers the instantaneous sensory
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input while the latter thinks the internal state like goals, personal history, and experiences. The

present work studies bottom-up Visual Saliences.

Figure 1.1 presents examples of bottom-up saliency features by difference of intensity

(the black bar stands out from the gray bars), by difference of color (the green bar stands out

from the red bars), and by the difference of orientation (the bar inclined to the opposite direction

stands out from the others).

1.2 PROBLEM STATEMENT

Currently, there is a growing demand for computational solutions to solve common

day-to-day problems like surveillance systems, autonomous vehicles, applications in industry,

medicine, and military field. However, even modern computers have restrictions on bandwidth,

memory, and processing power, making it difficult to achieve reasonable time in real-world

applications.

Due to such limitations, it is essential to define processing priorities [Niebur (2007)].

As presented in Section 1.1, Visual Saliences are naturally utilized by the human vision system to

select essential regions in a scene for priority processing. Aiming to represent Visual Saliences

in computer systems, Koch and Ullman (1987) proposed the idea of Saliency Map.

(a) Example of a real-world scene. (b) Example of Saliency Map. The salient regions

(the surf line, the clouds, and the island) receives

higher values of white to highlight these regions.

Figura 1.2: Example of a real-world scene and the corresponding saliency map. Source: Niebur (2007).

The Saliency Map is a gray-scale image where each pixel receives a scalar value between

0 and 255 to represent the Visual Saliency level and guide the selection of attended locations

based on the spatial distribution of the saliency [Itti et al. (1998)]. Figure 1.2a presents an example

of a real-world scene, and Figure 1.2b shows an example of a Saliency Map, as proposed by Koch

and Ullman (1987). In Figure 1.2b, the surf line, the clouds, and the island are represented with

higher values of white to highlight the salient regions.

In Computer Vision, there are many research directions related to Visual Saliency. The

three most relevant are: SOD, Fixation Prediction, and Object Proposal [Borji et al. (2014)]. The

SOD aims to find the essential objects in a scene while performs the segmentation of the salient

objects. The Fixation Prediction seeks to predict where humans look. The Object Proposal

produces a set of bounding box candidates and regions proposals for each salient object in the

scene [Borji et al. (2014)]. The present work addresses the SOD problem, the Visual Saliency

related topic with the highest growth in recent years [Borji et al. (2014)].
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The SOD problem has a well defined evolutionary research line. The first attempts to

find saliency regions and generate the Saliency Map applied heuristics to find salient features

(difference of color, contrast, and orientation as shown in Figure 1.1) and standard Computer

Vision techniques to perform the segmentation of the salient regions [Borji et al. (2014)].

The second generation of studies presented in the SOD literature take advantage of the

promising results achieved by Convolutional Neural Network (CNN) [Lecun et al. (1998)] in

image classification and detection tasks [Borji et al. (2014)]. To generate a Saliency Map with

a CNN, the methods presented in the SOD literature utilized super-pixel and patches strategy

to divide the input image into regions, applying the CNN to classify the generated regions as

saliency or background regions.

The most recent approaches proposed in the SOD problem are based on Fully Con-

volutional Network (FCN) [Long et al. (2015)], an evolution of CNNs to perform Semantic

Segmentation [Thoma (2016)]. In a FCN, the fully connected layers utilized in the CNN to classify

the objects are converted into convolutional layers to perform per-pixel classification [Long et al.

(2015)], overcoming problems such as blurriness and inaccurate predictions near the boundaries

of salient objects in super-pixels and patches based approaches [Borji et al. (2014)].

1.3 OBJECTIVE AND CONTRIBUTIONS

Recent studies proposed in the SOD literature [Li et al. (2016); Tang et al. (2016); Zhang

et al. (2017); Tang and Wu (2016); Xi et al. (2017); Hou et al. (2018); Xie and Tu (2017); Zhang

et al. (2018, 2019); Li et al. (2018)] based their studies in FCNs to perform segmentation of

salient objects in images. However, besides the promising results achieved by these networks

in the SOD problem, FCNs have difficulties in distinguishing salient regions from non-salient

regions in some challenging scenarios. Figures 1.3a, 1.3b, 1.3c, and 1.3d presents examples

of changeling scenarios. In these images, the background has a high number of objects with

different colors, intensities, orientations and illumination.

(a) (b) (c) (d)

Figura 1.3: Examples of changeling scenarios. The background has a high number of objects with different colors,

intensities, orientations, and illumination. Source: ECSSD Dataset.

Figures 1.4a, 1.4b, 1.4c, and 1.4d presents examples of segmentation results generated by

FCNs in preliminary experiments performed in the present work. The FCN achieved impressive

results and was able to find the salient object, generating a segmentation involving most of the

pixels of the salient objects. However, the FCN wrongly segmented large portions of the image

not belonging to the saliency region. Trying to solve similar problems, Nguyen et al. (2019)

fairly recently proposed the use of a Mask Region-based Convolutional Neural Network (Mask

R-CNN) [He et al. (2017)] approach to SOD. However an extensive comparison between the

FCN and the Mask R-CNN was not performed.
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(a) (b) (c) (d)

Figura 1.4: Examples of segmentation results generated in preliminary experiments performed in the present

work with FCNs. The FCNs achieved impressive results and was able to find the salient objects and generate a

segmentation involving most of the salient pixels. However, the FCN wrongly segmented regions not belonging to

the saliency object. Source: Author.

Taking in mind the shallow evaluation between the FCN and the Mask R-CNN available

in the literature, this work proposes two Mask R-CNN architectures and performs a broad

evaluation between the two early mentioned segmentation approaches. The networks are

compared by training FCNs and Mask R-CNNs architectures to perform segmentation of salient

objects. Three variations of FCN are utilized, two based on Residual Networks (ResNets) and

one based on VGG-16 architecture, and two variations of Mask R-CNNs are utilized, both based

on ResNets.

Two frameworks containing the implementation of the FCNs and Mask R-CNNs were

utilized: KittiSeg [Teichmann et al. (2018)] and Google Object Detection API [Huang et al.

(2017)]. Precision, Recall, F-measure, and Mean Absolute Error (MAE) evaluation metrics

were employed to evaluate and compare the FCNs and Mask R-CNNs models, following related

research [Borji et al. (2014)].

The networks were trained in the MSRA10K [Cheng et al. (2015)] dataset (following

similar work in the literature [Nie et al. (2018); Tang and Wu (2016); Zhang et al. (2017); Li

et al. (2016); Xi et al. (2017); Tang et al. (2016); Kruthiventi et al. (2016); Zhang et al. (2018,

2019)]) and evaluated in eight datasets of salient objects widely used in the SOD literature:

DUT-OMRON [Yang et al. (2013)], ECSSD [Shi et al. (2016)], HKU-IS [Li and Yu (2015)],

ICOSEG [Batra et al. (2010)], PASCAL-S [Li et al. (2014)], SED1 [Borji et al. (2015)],

SED2 [Borji et al. (2015)] and THUR [Cheng et al. (2014)].

1.4 OUTLINE

The present dissertation proposes a broad evaluation between two segmentation appro-

aches, the FCN and the Mask R-CNN, applied in the segmentation of salient objects context.

Chapter 2 provides a general background of Machine Learning, Deep Learning, and CNNs.

Chapter 3 reviews state-of-art methods presented in the SOD literature to perform segmentation

of salient objects. Chapter 4 presents the variations of the FCN and the Mask R-CNN evaluated in

the present work, explaining implementation details. Chapter 5 presents the datasets and metrics

utilized to compare the networks. Chapter 6 presents the experiments performed and the results

of the FCN and Mask R-CNN comparison. Finally, Chapter 7 summarizes the contributions and

discusses possible future works.
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2 MAIN CONCEPTS

The present chapter explains the fundamental concepts of the methods and algorithms

approached in the following chapters. Section 2.1 explains Machine Learning algorithms and the

scene understanding problem. Section 2.2 presents the Artificial Neural Networks. Section 2.3

presents the Deep Learning, a subfield of the Machine Learning which explores Artificial Neural

Networks to solve complex learning tasks. Section 2.3 also details a Convolutional Neural

Network (CNN) architecture, presents two CNNs models, and explain the Fully Convolutional

Network (FCN) and the Mask Region-based Convolutional Neural Network (Mask R-CNN)

architectures. Finally, Section 2.4 presents a conclusion of the chapter.

2.1 MACHINE LEARNING AND SCENE UNDERSTANDING

The human beings receives large amount of data through its five senses [Tripathi (2017)]

and the human brain learns very quickly how to handle all this data, being easy to recognize

objects in a scene by its format, food by its smell and taste or other people by the voice sound.

Nowadays, with technology growth, machines have a lot of different sensors to collect data from

a variety of sources to understand the surrounding environments [Tripathi (2017)]. However,

computer systems have limited processing capacities to handle large amounts of data.

Machine Learning is a subfield of Artificial Intelligence and aims to make computers

learn from data without the need of being explicitly programmed [Vishal Maini (2017)]. The

main concern of machine learning is the study of algorithms that allow computers to learn

similarly to humans [Jeremy Watt (2017)]. The present work applies the Machine Learning in

the scene understanding problem, intending to detect and segment salient objects in images.

The scene understanding problem can be divided into classification, detection, semantic

segmentation, and instance segmentation problems. The classification is the ability to distinguish

different types of objects [Jeremy Watt (2017)]. Figure 2.1a presents a classification example. Each

object in the figure receives a label (classification) according to a category. The detection aims to

find the image regions where the objects are located, generating a set of points corresponding to

the bounding boxes of each object in the image, as presented in Figure 2.1b.

The semantic segmentation aims to cluster regions in the image that belongs to the

same object [Thoma (2016)]. In semantic segmentation, every pixel in the image receives a

classification according to the category it belongs. Figure 2.1c presents a segmentation example

with the scene segmented in four categories: cup, cube, bottle, and background. The semantic

segmentation does not identify different object instances.

The instance segmentation is a step further of semantic segmentation and aims to

identify the different instances of objects, giving a label (classification) to each segmented

object [Garcia-Garcia et al. (2017)]. Different from the semantic segmentation example presented

in Figure 2.1c, all instances of the cube are separated by a different color in Figure 2.1d.

The classification problem and its derivatives (detection, semantic segmentation, and

instance segmentation) can be divided in a pipeline of four steps: collecting training data, designing

features, model training, and model testing [Jeremy Watt (2017)]. Following paragraphs explain

each classification steps.
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(a) Classification: each object in the image receives

a label.

(b) Object Detection: each object receives sets of

points corresponding to the bounding boxes.

(c) Semantic Segmentation: each pixel in the image

receives a label.

(d) Instance Segmentation: each pixel in the image

and each object in the image receives a label.

Figura 2.1: Differences between image classification, object classification, semantic segmentation, and instance

segmentation problems. Source: Garcia-Garcia et al. (2017).

2.1.1 Collecting Training Data

Collecting examples of data to be learned is the first step in a classification system.

The type of data collected depends on the problem addressed (images, sounds, text, and others)

and is referenced as the training set. Generating a good training set is very important in

Machine Learning with more extensive and diverse training sets improving the algorithm

learning [Jeremy Watt (2017)]. The present work focuses on the scene understanding problem,

and the training data is a set of images divided into different datasets.

The classification problem can be divided into two different problems: supervised and

unsupervised learning. In unsupervised learning, the system does not know the categories in

the scope of the problem, and the learning algorithm tries to learn the categories by clustering

similar examples in the training set. Differently, the supervised learning knows the categories of

all objects in the training set and aims to establish a rule to classify a new observation into one of

the existing categories [Michie et al. (1994)]. The Salient Object Detection (SOD) problem is a

supervised learning problem, and for each image, there is a corresponding mask with the label of

each pixel.
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2.1.2 Designing Features

The second step in a Classification system is the extraction of features to differentiate the

types of objects in the training set [Jeremy Watt (2017)]. Exemplifying with a Machine Learning

system to differentiate cats from dogs, the features extracted from the objects can be the nose

size, ears shape, or weight. The features have to make a proper differentiation between the object

being classified.

However, finding useful features is not a trivial task [Jeremy Watt (2017)]. The present

work utilizes CNNs to perform the extraction of features from the images. CNNs are Deep

Learning algorithms based on artificial neural networks that learn the best features to extract

from the images to each classification problem (more details about CNNs are presented in

Section 2.3.1).

2.1.3 Model Training

The objective in the training step is to find the best parameters of a learning algorithm,

also called classifier, to solve the classification problem based on the collected data. The

parameters learned by the classifier algorithm defines a hyperplane, also called decision boundary,

to separate the objects in categories.

Figure 2.2 presents an example of a linear hyperplane separating a problem with two

classes and two features in the left. However, real-life problems have more categories and features,

and the hyperplane which separates the categories is more complex, as presented on the right

side of Figure 2.2.

Figura 2.2: Classification example with two categories (red and blue balls) in a 2D space. In the left side, a linear

hyperplane divides the two categories. In the right side, the hyperplane that divides the two categories is more

complicated. Source: de Oliveira Ceschin (2018).

2.1.4 Model Validation and Test

After training a model, it is necessary to validate the classifier efficacy in the problem [Je-

remy Watt (2017)]. The validation is performed to improve the classifier results by pointing

weakness in the classification pipeline. Increase the number of examples in each category,

rephrase the features and adjust the classifier parameters are examples of actions to improve the

classification results [Jeremy Watt (2017)].
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With the model trained and validated, the next step is to test the model to get the actual

results in the classification problem. Both validation and testing are performed in separated sets

of data not utilized in the training step.

2.2 ARTIFICIAL NEURAL NETWORKS

An Artificial Neural Networks is a computational model inspired in the human brain. It

is formed by structures called neurons and can find very complex decision boundaries to solve

classification problems.

2.2.1 Perceptron

The Perceptron, introduced by Rosenblatt (1958), is the simplest Artificial Neural

Network composed by only one neuron. A neuron is composed of inputs, weights, bias, activation

function, and output. Figure 2.3 presents the base structure of a neuron. The sets x1, ..., xn−1, xn
and w1,w2, ...,wn−1,wn represents the neuron’s input and weights respectively. The constant input

in Figure 2.3 with value 1, called bias, is utilized to perform a fine adjustment in the decision

boundary.

Figura 2.3: Example of Perceptron Structure, the simplest Artificial Neural Network with only one neuron. The

sets x1, ..., xn−1, xn and w1,w2, ...,wn−1,wn represents the neuron’s input and weights, respectively. Each input is

multiplied by the referent weight, and all values are added together to input the step function, also called activation

function. The value constant 1 is the bias. In the example, the hardlim function is utilized as the activation function.

Source: Sharma (2018).

The operation realized by the Perceptron is presented in Equation 2.1. The input set

is multiplied by the weight set and then added together with the bias "b". The sum feeds the

activation function represented by "F". The example presented in Figure 2.3 utilizes the hardlim

function, where the output is 1 if the sum is higher than 0 or 0 otherwise. There are other

functions to be utilized as the activation function like softmax, sigmoid, tanh, and relu.

y = F(
n∑

i=1

wi × xi + b) (2.1)
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The Perceptron is a supervised learning classifier. So, the output of the activation function, "y"in

Equation 2.1, is compared with the expected output of the given input. If the output differs from

the expected, an error value is calculated and utilized to update the weights. The training step

repeats this process until the error reaches a minimum value [Jeremy Watt (2017)].

The Perceptron has the limitation of being designed to solve linearly separable classifi-

cation problems [Jeremy Watt (2017)], as the example presented on the left side of Figure 2.2.

To found complex decision boundaries, as the example presented on the right side of Figure 2.2,

MultiLayer Perceptrons (MLPs), Artificial Neural Networks composed by more than one neuron,

are used [Haykin (2009)].

2.2.2 MultiLayer Perceptron (MLP)

The MLP is a Deep Artificial Neural Network composed by more than one Perceptron

and is divided into three types of layers: input, hidden, and output layers. In the MLP, the neurons

of each layer are connected only to the neurons of the next layer, with the layers structured as

follows: The first layer is the input layer and has the number of nodes equal to the number of

features extracted from the objects being classified.

Following the input layer, the MLP has a sequence of one or more hidden layers formed

by a sequence of neurons (Perceptrons). The number of neurons in each hidden layer is a

parameter adjusted depending on the scope of the problem.

The last layer, called output layer, is formed by a sequence of Perceptrons. Each neuron

represents an object category in the problem scope and outputs the probability of the input object

be of that category [Haykin (2009)]. Figure 2.4 presents an example of MLP structure with the

input layer, two hidden layers composed of four neurons, and the output layer composed by one

neuron.

Figura 2.4: Example of MLP structure with the input layer, two hidden layers composed by four neurons, and the

output layer composed of one neuron. Source: Pavlovsky (2018).

The MLP is usually trained by an algorithm called back-propagation, proposed by E. Ru-

melhart et al. (1986). In the back-propagation, a sample goes through all the layers in the MLP

and receives a classification in the output layer. The MLP is a supervised learning algorithm, and

the true labels are utilized to calculate the classification error.
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The error is utilized to update the weights of the output layer. From the new weights

of the output layer, an error value is calculated and utilized to update the weights of the back

layer. The same is performed to all layers inside the MLP. When the weights of all layers are

updated, a new sample from the training set enters the MLP and the training continues until the

error reaches a minimum value.

The MLP is a classifier algorithm, and human interaction is necessary to specify the

object features to be classified. The next paragraphs explain the CNN, a class of Neural Network

with similar concepts of the MLP to learn the best features to extract from the objects without the

need for human interaction.

2.3 DEEP LEARNING

Deep Learning is a subfield of Machine Learning based on Artificial Neural Networks

to solve complex computer learning problems. Besides the high capacity of Deep Learning in

solving classification problems, only in recent years that it was possible to deeply explore Deep

Learning algorithms. The advance of powerful and cheapest Graphics Processing Units (GPUs),

allied with the advance of the parallel programming, enabled new promising researches in deeper

Artificial Neural Networks.

2.3.1 Convolutional Neural Network (CNN)

The CNN is a deep artificial neural network developed for classification of images

and object recognition. The first CNN was proposed by Fukushima (1980) for visual pattern

recognition and Lecun et al. (1998) successfully applied a CNN in the image pattern recognition

problem, proposing an architecture called LeNet to classify handwritten numbers.

Figura 2.5: Example of generic CNN architecture composed of two convolutional layers and two polling layers. In

the end, the network has two fully connected layers. Source: Albelwi and Mahmood (2017).

However, only with AlexNet of Krizhevsky et al. (2012), winner of the ImageNet

Large-Scale Visual Recognition Challenge (ILSVRC) 2012, the CNNs started to be widely

applied in other classification problems. The most significant contribution of Krizhevsky et al.

(2012) was to perform the training step of the architecture in GPUs.

Although the impressive learning capacity of CNNs, the training step is highly time-

consuming. CNNs has millions of weights to learn in the training step, which takes a significant

amount of time to adjust all weights.
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However, performing the training step on GPUs opened the possibility of training more

complex and more extensive CNNs. Inspired by Krizhevsky et al. (2012), new approaches and

architectures [Simonyan and Zisserman (2014); Szegedy et al. (2015); He et al. (2016); Girshick

et al. (2013); Girshick (2015); Ren et al. (2017)] was proposed to classification problems and its

derivatives.

Figure 2.5 illustrates a generic CNN architecture and its three types of layers: Convo-

lutional, Pooling, and Fully Connected. The input of a CNN model is generally a sequence of

images. The images go through a sequence of convolutional and pooling layers to learn features

and generate the feature maps.

Pooling layers are applied in the middle of the convolutions to reduce the image

dimensionality by filtering irrelevant data. In the end, a sequence of fully connected layers is

linked to the network to perform the classification of the features learned in the convolutional

layers.

The output of a standard CNN is a 1D vector, where each position in the vector stores a

probability of the object being of a determined category. The following paragraphs explain each

type of layer in a CNN model.

2.3.1.1 Convolutional Layer
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Figura 2.6: Example of a convolution operation. The input image (in light blue) has a size of 5 × 5 pixels. The

kernel (in dark blue) positioned on top of the image has a size of 3 × 3 pixels and contains the weights learned in the

training step. The resulting image (in green) has a size of 3 × 3 pixels and represents the information learned from

the input image. Source: Dumoulin and Visin (2016).

The function of a convolutional layer is to learn features to represent the objects. In the

convolutional layer, a filter called kernel or neuron slides through the image. For each location in
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the image, called receptive field, an elementwise multiplication is performed between the pixels

in the image and the weights in the filter [Altenberger and Lenz (2018)].

All multiplications are added together, generating a single value. In general, a CNN

model has a sequence of convolutional layers, with the top layers learning more coarse information

from the image and the bottom layers learning more refined features [Altenberger and Lenz

(2018)].

Figure 2.6 illustrates the convolution process. The input image (in light blue) has a size

of 5 × 5 pixels. The kernel (in dark blue) positioned on top of the image has a size of 3 × 3 pixels

and contains the weights learned in the training step. The resulting image (in green) has a size of

3 × 3 pixels and represents the information learned from the input image.

Figure 2.7 presents the feature extraction process in a convolutional layer. The image

presents an example of a filter designed to extract curves. If the object in the image has a curve

similar to the curve in the filter, the output value of the convolution is high. Otherwise, if the

object does not present a curve similar to the one in the filter, the output value of the convolution

is low [Altenberger and Lenz (2018)].

The output of a convolution operation represents the filter activation, and the feature

map contains the image regions with similar curves to the filter. Each convolution layer has a set

of filters to represent different image shapes. The weights of each filter are randomly initialized

and learned in the training step to best represent the objects being classified [Altenberger and

Lenz (2018)].

Figura 2.7: Example of a filter designed to extract curves. If the object presents a curve similar to the one in the

filter, the output value of the convolution is high. Otherwise, if the object does not present a curve similar to the one

in the filter, the output value of the convolution is low. Source: Deshpande (2018).

Following the convolutional layer, the CNN usually has a Rectified Linear Units (ReLu)

layer, an activation layer linked to introducing non-linearity to the convolution operation which
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is composed only by linear operations (elementwise multiplications and summations). The

non-linearity improve the learning capacity of the CNN by generating more complex decision

boundaries, i.e., the ReLu layers help the CNN to learn more complex decision functions [Nair

and Hinton (2010)]. Usually, nonlinear functions like tahn and sigmoid were applied in CNNs.

However, ReLu layers enabled faster training of deep CNNs [Krizhevsky et al. (2012)]. The

ReLu layer applies the function f (x) = max(0, x) for each pixel, transforming all negative values

to zero [Arora et al. (2017)].

The ReLu layer also helps to reduce the vanishing gradient problem, which occurs in

learning models based on gradient-based optimization techniques (e.g., back-propagation) [Glorot

et al. (2011)]. In the back-propagation, the top layers are harder to train when compared with the

bottom layers. The calculated error tends to be smaller as long as the backpropagation moves

backward in the network, and the weights in the top layers are learned slowly. In some cases, if

the error is too small, the weights in the top layers may not be updated [Altenberger and Lenz

(2018)].

2.3.1.2 Pooling Layer

The pooling layer, or down-sampling layer, is applied to reduce the dimensionality of

the feature maps in a way to save the most relevant information from the feature maps. In a

pooling layer, the number of weights to be learned are reduced, which helps to speed up the

model and to control the overfitting.

Figura 2.8: Example of max-polling with a filter of size 2 × 2 pixels and stride 2. The original feature map, with a

size of 4 × 4 pixels, is converted in a feature map of size 2 × 2 pixels. Source: Dertat (2018).

The overfitting is a problem of learning-based algorithms and occurs when the model is

so skilled in the training data that loses the generalization capacity, not being able to classify

new examples [Srivastava et al. (2014)]. The dropout layer is another type of layer added in

the model during the training step to reduce the overfitting. In a dropout layer, a random set

of activation neurons receives zero, forcing the CNN to learn the same concept with different

neurons [Srivastava et al. (2014)].

In the pooling layer, a filter with no weights slides through the image applying the

pooling operation (maximum, minimum, mean, or sum). In most of the works proposed in

the literature, the maximum pooling, also called max-pool, is applied. Figure 2.8 presents an

example of max-polling with a filter of a size 2 × 2 pixels and stride 2. The original feature map,

with a size of 4 × 4 pixels, is converted in a feature map with a size of 2 × 2 pixels.
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2.3.1.3 Fully Connected Layer

The fully connected layer is a MLP with an activation function attached at the end to

perform the classification. The fully connected layer works as follows: the input layer takes the

feature vector generated by the convolutional layers and passes through a sequence of hidden

layers. In the output layer, the neurons usually apply the softmax activation function to convert

the output values into probabilities (values between 0 and 1).

S(yi) = eyi∑
j eyi

(2.2)

The softmax layer receives a vector "y"output of the last fully connected layer and

applies the softmax function, presented in Equation 2.2, for each element "yi"inside the vector

"y". The output of the softmax is a vector of same size of "y"with each position in the vector

containing the probability of the object being classified be of that class [Bishop (2006)].

Figura 2.9: The flattening operation converts the feature map generated by the convolutional layers in a feature vector.

The feature vector enters in the input layer (represented in yellow). Following the input layer, there is a sequence

of fully connected layers (represented in green). The output layer (represented in red) generates the classification

results. Source: Team (2019).

Figure 2.9 presents the structure of the fully connected layers in a CNN. The flattening

operation converts the feature map generated by the convolutional layers in a feature vector, and

the feature vector enters in the input layer (represented in yellow). Following the input layer,

there is a sequence of fully connected layers, also called hidden layers in the MLP (represented

in green). The output layer (represented in red) generates the classification results.

2.3.1.4 Training a Convolutional Neural Network

Although the impressive results achieved by CNNs solving various classification

problems [Altenberger and Lenz (2018)], training the network can be an obstacle. The CNN is

trained through the back-propagation algorithm in the same way as the MLP and has millions of

weights to learn during the training step. The CNNs also requires a large amount of data to be

able to adjust all the network weights. Both factors corroborate to increase the training time. A

technique called transfer learning is usually utilized to overcome the training time limitation.
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The transfer learning reuses the weights of a CNN, already trained to other problems, to

solve a more specific problem. The training step begins with the weights already learned and

performs a fine-tuning in the weights of the bottom layers of the CNN [Yosinski et al. (2014)]. In

a CNN model, the top layers extract more generic features like edges and curves while the last

layers extract more refined features related to the objects in the problem addressed [Yosinski et al.

(2014)].

Usually, the models are pre-trained in extensive datasets like the ImageNet [Deng

et al. (2009)] and COCO [Lin et al. (2014)], which counts with thousands of images divided

into several classes, which reduces the amount of data needed to train a CNN model. After a

model being trained in a large dataset, a small dataset is enough to specify the model to another

problem [Yosinski et al. (2014)].

2.3.2 CNNs architectures and backbones

In order to evaluate and compare the FCN and the Mask R-CNN architectures in this

work, three CNNs models were used as backbones of the FCNs and Mask R-CNNs (i.e., three

CNNs models were adapted as FCNs and Mask R-CNNs): the Residual Network (ResNet)-50 [He

et al. (2016)], the ResNet-101 [He et al. (2016)] and the VGG-16 [Simonyan and Zisserman

(2014)].

2.3.2.1 ResNet

The ResNet architecture, proposed by He et al. (2016), was designed with skip

connections to prevent the vanishing gradient problem, allowing the network to be composed

with a higher number of layers. The skip connections take the input of an "nth"layer and add to

the output of an "(n+m)th"layer, where "m"is the number of skipped layers.

Figure 2.10 presents an example of skipping connection. In the example, the network

has two convolutional layers (weight layers). The input of the first convolutional layer ("x") is

skipped and added to the output of the second convolutional layer ("F(x)"). The sequence of

convolutional layers connected by a skip connection is called block, with the ResNet structured

by a sequence of blocks.

Figura 2.10: Example of a ResNet block with two stacked layers and a skip connection from the input of the first

layer ("x") to the output of the last layer ("F(x)"). Source: He et al. (2016).

Figure 2.11 presents a table with all versions of the ResNet, with each version structured

with a different number of layers: 18, 34, 50, 101, and 152. In this work, it was utilized the

ResNets with 50 and 101 layers, highlighted in yellow in Figure 2.11.
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Figura 2.11: Differences between the five ResNets models, with 18,34,50,101 and 152 layers. The ResNets-50 and

101 in the yellow square were utilized in the present work as FCN and Mask R-CNN backbones. Source: He et al.

(2016).

In a ResNet, the input image of size 224 × 224 × 3 enters in a convolutional layer with a

kernel of size 7 × 7, stride 2 and 64 filters, generating a feature map of size 112 × 112 × 64. A

max-pooling layer with kernel size 3 × 3 and stride 2 is applied to reduce the dimensionality to

54 × 54 × 64.

A sequence of four building blocks is attached in the network, with each building block

composed by a sequence of blocks with skip connections. In the ResNets 50 and 101, three

stacked convolutional layers form these blocks with a kernel of size 1 × 1, 3 × 3 and 1 × 1,

respectively. The first convolutional layer of the building block has stride 2 while the other

convolutional layers have stride 1.

The first building block has three blocks inside, the second building block has four

blocks, the third building block has 6 blocks in the ResNet-50 and 23 blocks in the ResNet-101,

and the last building block has three blocks. The number of filters in each layer is presented in

Figure 2.11.

An average pooling is attached at the end of the last building block to reduce the feature

map dimension, generating a feature vector of size 1× 1× 2048, which enters in a fully connected

layer. The last ResNet layer is a softmax layer to perform classification.

2.3.2.2 VGG-16

The VGG-16 architecture, proposed by Simonyan and Zisserman (2014), was designed

with a stack of convolutional layers and small filters sizes (3 × 3) instead of one convolutional

layer with a large filter size (7 × 7 or 11 × 11), a common strategy proposed in other CNNs

models [Lecun et al. (1998); Krizhevsky et al. (2012)]. A stack of convolutional layers with

small filters sizes generates a decision function more discriminatory by increasing the number of

non-linear rectification layers (ReLus).

The VGG-16 approach also reduces the number of parameters in the architecture without

decreasing the amount of effective receptive fields (two stacked convolutional layers with kernel

of size 3 × 3 have an effective receptive field of 5 × 5, tree convolutional layers with kernel of

size 3 × 3 have an effective receptive field of 7 × 7).
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Figura 2.12: The architecture of the VGG-16 network. The black boxes are the convolutional layers and the red

blocks are the max-polling layers. In the end, the fully connected layers are presented in blue color and the softmax

layer in brown. Source: Saif Ahmed (2017).

The VGG-16 architecture receives an input image of size 224 × 224 and 3 channels.

The image goes through five blocks composed by a sequence of convolutional layers with

a max-polling layer at the end of the block. The first two blocks of the VGG-16 have two

convolutional layers in sequence, and the remaining blocks have three convolutional layers.

The last block of the VGG-16 has three fully connected layers in sequence, with the first

two fully connected layers composed by 4096 neurons and the final fully connected layer formed

by 1000 neurons. Figure 2.12 illustrates the VGG-16 architecture and presents all dimensions

and numbers of filters in each layer.

Each convolutional layer in the VGG-16 has padding 1 to maintain the dimension value

of the previews layers and a filter of a size of 3 × 3. The max-pooling layers have stride 2, and

the convolutional layers have stride 1. A non-linear rectification layer (ReLu) is attached in all

hidden layers, and the last layer of the network is a softmax to convert the output vector of the

last fully convolutional layer in probabilities.

2.3.3 Fully Convolutional Network (FCN)

The FCN was designed by Long et al. (2015) to perform Semantic Segmentation

tasks. Long et al. (2015) converted three CNNs models, AlexNet [Krizhevsky et al. (2012)],

GoogleLeNet [Szegedy et al. (2015)], and VGG-16 [Simonyan and Zisserman (2014)] in FCNs

by removing the fully connected layers and replacing them to convolutional layers.

Figure 2.13 illustrates the "convolutionalization"1 process, with a fully connected layer

being replaced by a convolutional layer, generating a heatmap with dense prediction values as

output, instead of a 1D vector of probabilities. Then, Long et al. (2015) proposed the use of the

1Expression utilized by Long et al. (2015) to name the process of replacing the fully connected layers to

convolutional layers.
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Figura 2.13: Example of the "Convolutionalization"process applied in a CNN model to convert the fully connected

layers in convolution layers, generating a heatmap with dense prediction values as output, instead of a 1 × N
dimensional vector of probabilities. Source: Long et al. (2015).

bilinear interpolation [Kirkland (2010)], applied in the heatmap, to generate a segmentation mask

based on the probabilities of the heatmap. This step is called upsampling.

Figura 2.14: Differences between FCNs versions proposed by Long et al. (2015). The FCN-32 uses the seventh

convolutional layer to generate the heatmap. The FCN-16 adds the fourth polling layer to the seventh convolutional

layer to generate the heatmap. The FCN-8 adds the fourth and third polling layers to the seventh convolutional layer

to generate the heatmap. Source: Long et al. (2015).

Long et al. (2015) proposed three versions of the FCN, as presented in Figure 2.14. In

the first version, called FCN-32, the fully connected layers are converted in convolutional layers.

In this version, the heatmap in the seventh convolutional layer (conv-7) suffers an upsampling

with a stride of 32 (the heatmap is 1/32 times smaller than the input image) to generate the

segmentation mask.
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In a second version, called FCN-16, the seventh convolutional layer (conv-7) suffers an

upsampling with a stride of 2 and is added to the fourth polling layer (pool-4). An upsampling

with a stride of 16 (the pool-4 is 1/16 times smaller than the input image) is applied to generate

the segmentation mask.

In the last version, called FCN-8, the seventh convolutional layer (conv-7) suffers an

upsampling with a stride of 4 and the fourth polling layer (pool-4) suffers an upsampling with a

stride of 2. Both conv-7 and pool-4 are added to the third pooling layer (pool-3). An upsampling

with a stride of 8 (the pool-3 is 1/8 times smaller than the input image) is applied to generate the

segmentation mask.

In order to generate a segmentation mask with the same size of the input image, a bilinear

interpolation is applied in the heatmap. Figure 2.15 presents an example of bilinear interpolation

in point "P". Assuming that the points "Q11","Q12","Q21"and "Q22"in the figure are known, the

first step interpolates the points in the x-direction "R1"(Equation 2.3) and "R2"(Equation 2.4).

The points "R1"and "R2"are used to interpolate the point P in the y-direction (Equation 2.5).

Figura 2.15: Example of bilinear interpolation. Assuming the points Q11,Q12,Q21, and Q22 are known, the first

step interpolates the points in the x-direction R1 (Equation 2.3) and R2 (Equation 2.4). The R1 and R2 are used to

interpolate the point P in the y-direction (Equation 2.5). Source: Wikipedia (2017).

f (R1) ≈ x2 − x
x2 − x1

f (Q11) + x − x1

x2 − x1

f (Q21) (2.3)

f (R2) ≈ x2 − x
x2 − x1

f (Q12) + x − x1

x2 − x1

f (Q22) (2.4)

f (P) ≈ y2 − y

y2 − y1

f (R1) + y − y1

y2 − y1

f (R2) (2.5)

In a FCN-32, the heatmap is 1/32 times smaller than the input image. In the interpolation

with stride 32, a stride of 32 positions is generated between each point in the heatmap, generating

a matrix of the same size of the input image. In this new matrix, the only known points are that

in the heatmap. So, for every four points, "Q11", "Q12", "Q21", and "Q22", in this new matrix, a
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point "P"will be interpolated for each combination of the 32 "x"and "y"between "Q11", "Q12",

"Q21", and "Q22". When all points in this new matrix are generated for each set of "Q11", "Q12",

"Q21", and "Q22", this new matrix will be the segmentation mask generated by the FCN.

Among the FCNs models proposed by Long et al. (2015), the FCN-8 achieved better

segmentation results. In the convolutional step, information from the image is lost as the image

goes deeper into the network due to the pooling layers. After the classification, the heatmap

knows the object position in the image. However, due to the loss of information, it is hard to

rebuild the image. The FCN-16 and FCN-8 try to recover information from the top layers of the

network to help in the upsampling step. The FCNs evaluated on the present work are based on

the FCN-8 strategy.

2.3.4 Mask Regional Convolutional Neural Network (Mask R-CNN)

The Mask R-CNN, developed by He et al. (2017) to Instance Segmentation tasks,

is composed by two sub-networks: the Faster Region-based Convolutional Neural Network

(Faster R-CNN) to perform object detection and classification, and a FCN to perform object

segmentation.

The Mask R-CNN is structured as follows: in the Faster R-CNN, the first block

of the network is a sequence of convolutional and pooling layers to generate a feature map.

In Ren et al. (2017), the convolutional structure of the ZF [Zeiler and Fergus (2014)] and the

VGG-16 [Simonyan and Zisserman (2014)] models are utilized as the base of the Faster R-CNN.

Following the convolutional block, a module called Region Proposal Network (RPN) is

linked in the network to generate a set of proposal regions with high probability of being objects.

A sliding window is applied in the feature map to generate a set of "k"regions.

Figura 2.16: RPN architecture. A sliding window (the red square) is applied in the feature map. For each location in

the feature map, a set of anchors is generated (the blue squares). The anchors enter in a convolutional layer, followed

by two parallel convolutional layers. The first one ("cls") outputs 2k scores, and the second one ("reg") outputs 4k

coordinates of bounding boxes of each region proposal. Source: Ren et al. (2017).
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Each location (anchor) in the feature map enters the RPN to generate a bounding box

(set of four points) and a classification (object or background). For each anchor classified as an

object, a set of anchors boxes (calculated in absolute coordinates of the image) is generated with

different sizes and aspect ratios.

In Ren et al. (2017), three different sizes (128, 256 and 512) and three different aspect

ratios (1:1, 1:2 and 2:1) are used to generate k=9 anchors. Figure 2.16 illustrates the anchor box

generation process. The sliding window is represented in the red square, and the proposed anchor

boxes are represented in blue.

The RPN has three convolutional layers. The first layer (input layer), which receives

the anchor boxes, and two output layers connected in parallel. The first output layer (called

"cls") generates a vector of scores (2k scores) with the probabilities of the anchors being an

object. The second output layer (called "reg") generates a vector of coordinates (4k coordinates)

with the bounding boxes of each proposal region in the form: Xcenter,Ycenter , width, and height.

Figure 2.16 illustrates the RPN model with the anchor boxes generation and the convolutional

layers.

The regions with higher probability of being an object enter the Region of Interest

Alignment (RoIAlign) layer. As the proposed regions have different sizes and aspect ratios ,

the RoIAlign operation is applied to generate a feature map with a fixed size through a pooling

operation. In the RoIAlign operation, the proposal region inside the feature map is divided K ×K
sub-regions, where "K"is the width and height of the output feature map.

(a) The feature map with size 8× 8 and the proposed

region with size 7× 5 (the black square) divided into

2 × 2 sub-regions with the same size.

(b) The sub-regions are divided into four regions

(dotted lines). For each region, an interpolated value

is generated (the red "x").

Figura 2.17: Example of the RoIAlign operation. Source: Sardana (2017).

The object region is divided into sub-regions with the same size, as shown in Figure 2.17a.

These sub-regions are divided again into four regions, and a bilinear interpolation is applied to

generate a value to each region, as shown in Figure 2.17b. The red "x"represents the interpolated

values. The higher value for each region is taken to generate the feature map (the normal max

pooling operation).

The proposal objects generated in the RPN enters in two fully connected layers to

generate a feature vector. The feature vector enters in a softmax and linear regression modules,
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Figura 2.18: A generic Mask R-CNN architecture. The image enters in a convolutional backbone to generate a

feature map. The RPN is utilized to generate a set of regions in the feature map with the high probability of being

objects. The RoIAlign layer receives the regions and generates a feature map with a fixed size. The feature map with

a fixed size enters in two fully connected layers. A softmax and linear regression modules are attached in parallel in

the network to perform the object classification and to generate tighter bounding boxes, respectively. The output of

the RPN also enters in a segmentation module to generate classification to each pixel in the image. Source: Vinograd

(2017).

attached in parallel, to perform object classification and to generate tighter bounding boxes,

respectively. The output of the RPN also enters in a segmentation module to generate classification

to each pixel in the image. Figure 2.18 presents the complete Mask R-CNN model.

Another modification proposed by He et al. (2017) in the Mask R-CNN is the FPN.

The FPN is utilized to include scale information in the Mask R-CNN results. As explained in

Section 2.3.3, the image loses information in the convolutional step due to the pooling layers,

which hinders the image reconstruction in the segmentation step.

Figure 2.19 presents an example of FPN structure. In the presented example, the network

has four blocks of layers: Layer1, Layer2, Layer3, and Layer4, where each layer block is a

sequence of convolutional layers. Each layer block divides the width and height of the feature

map by two and doubles the number of filters (depth of the feature map).

In the first step of the FPN, the output of each layer block suffers a convolution with

a filter of size 1 × 1 to generate feature maps with the same depth size. With all feature maps

normalized, the output of the Layer 4 suffers an upsample operation and is added to the output of

the Layer 3. The resulting feature map suffers an upsample and is added to the output of the

Layer2. Finally, the resulting feature map suffers an upsample operation and is added to the

output of the Layer 1.
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Figura 2.19: A generic Feature Pyramid Network (FPN) structure. Layer1, Layer2, Layer3, and Layer4 are layers

blocks of a generic CNN. The output of each layer block suffers an upsample operation and is added to the output

of the predecessor layer block, generating four feature maps with different scales. Each feature map suffers a

convolution with a kernel 3 × 3 generating the feature maps P2, P3, P4, and P5. The feature map P5 suffers a

max-pooling operation generating the feature map P6. Source: Vinograd (2017).

Each feature map suffers a convolution with a kernel 3 × 3 generating the final feature

map to each layer block ("P2", "P3", "P4", and "P5"in the Figure 2.19). The last feature map

("P5") suffers a max-pooling operation generating a last feature map "P6". The five feature maps

enter in the RPN to generate regions proposals of different scales, which helps the next steps

of the Mask R-CNN to improve the bounding boxes and segmentation masks results by adding

multi-scale information.
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2.4 CONCLUSION

The present chapter explained some fundamental concepts and algorithms explored in

this work. The chapter explained the CNN, a robust Deep Learning algorithm based on neurons

and widely applied in many classification problems. Before the CNNs, the methods utilized to

extract features from the images were based on hand-crafted features and were not able to learn

the best features to extract from a specific problem. These methods lacked from generalization

capacity, not performing well in challenging scenarios. The CNNs has a set of filters that learns

the best features to extract, making it easy for the classifier to distinguish the objects in the

different categories of the problem being solved. The chapter also presented the FCN and the

Mask R-CNN, that are improvements of the standard CNN to perform Semantic Segmentation

and Instance Segmentation. The next chapter reviews the main approaches proposed to find

saliency regions in images and summarizes relevant studies in the SOD literature.
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3 RELATED WORKS

The present chapter details the Salient Object Detection (SOD) problem, reviews the

main approaches proposed to find saliency regions in images and summarizes relevant studies

in the SOD literature. The subjects covered in this chapter are divided into sections as follows:

Section 3.1 presents the SOD problem and the literature approaches. Section 3.2 reviews relevant

methods based on hand-crafted features, Section 3.3 addresses methods based on Convolutional

Neural Networks (CNNs) [Lecun et al. (1998)], and Section 3.4 targets methods based on

Fully Convolutional Networks (FCNs) [Long et al. (2015)]. Finally, Section 3.5 discusses the

mentioned approaches.

3.1 SALIENT OBJECT DETECTION

The SOD problem, a subfield of Computer Vision, aims to find Visual Saliency regions

in images [Borji et al. (2014)]. It has a wide range of applications in Computer Vision and Image

Processing. Recognizing and tracking objects, image cropping and resizing, video and image

compression, and summarization are some examples [Lee et al. (2016); Xi et al. (2017)]. In

robotics, it can be applied in algorithms to locate robots in unknown environments [Todt (2005);

Todt and Torras (2007)].

Achanta et al. (2008) and Zheng et al. (2010) defined the SOD problem as a binary

segmentation problem, i.e., pixels in salient regions receive value 255 (white) and pixels in

background regions receive value 0 (black). Following the proposed definition, the approaches in

the SOD literature are divided into two steps: detection and segmentation.

The detection aims to find the salient objects, and the segmentation aims to generate a

segmentation mask containing the salient objects, a classic segmentation problem [Borji et al.

(2014)].

(a) Example of a scene containing salient objects

(the dogs) in the foreground and non-salient objects

in the background (the grass).

(b) Example of a ground-truth mask, with the pixels

corresponding to the salient objects (the dogs) in

white and the pixels corresponding to the background

(the grass) in black.

Figura 3.1: Example of a scene containing salient objects and the expected Saliency Map. Source: Cheng et al.

(2015).
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Figure 3.1 illustrates a scene containing salient objects and the expected segmentation

mask. Figure 3.1a can be divided into two main elements: the dogs in the foreground (salient

objects) and the grass in the background (non-salient objects). Figure 3.1b presents the ground-

truth mask, with the pixels corresponding to the salient objects (the dogs) in white and the pixels

corresponding to the background (the grass) in black.

The approaches proposed in the SOD literature can be divided into three waves [Borji

et al. (2014)]: hand-crafted-based, CNN-based, and FCN-based methods. The first attempts

to find saliency regions in images were based on hand-crafted features, which addressed the

problem through heuristics to find the saliency regions and standard Computer Vision techniques

to perform the segmentation of the saliency regions.

Despite the promising results achieved by the hand-crafted-based methods, they lacked

from generalization capacity, not performing well in challenging scenarios. To overcome such

limitations, CNNs [Lecun et al. (1998)], an approach already applied in other Computer Vision

problems, started to be widespread in the SOD literature.

Recent studies in the SOD literature started to explore FCNs [Long et al. (2015)], an

improvement of the standard CNNs developed for Semantic Segmentation [Thoma (2016)]

problems. The following sections present relevant studies in each wave.

3.2 HAND-CRAFTED METHODS

Figura 3.2: Example of a Saliency Map generated by Itti et al. (1998). The three feature maps, "C","I"and "O",

encode information of color contrast, intensity contrast and orientation contrast, respectively, and are combined to

generate the Saliency Map S. Source: Itti et al. (1998).
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One of the earliest studies presented in SOD literature was proposed by Itti et al.

(1998) and started a wave of works on the subject. The proposed method applies Gaussian

Pyramids [Burt and Adelson (1983)] to generate nine spatial scales. Information of color,

intensity, and orientation from the different scales are extracted through a center-surrounding

technique.

They generate a set of feature maps for each extracted feature, which are combined to

generate the Saliency Map. In the last step, they use a dynamical neural network to select attended

locations and refine the final Saliency Map. Figure 3.2 presents an example of a Saliency Map

generated by the proposed method. The three feature maps encode information of color contrast,

intensity contrast, and orientation contrast, and are combined to generate the Saliency Map.

The hand-crafted approaches can be divided into two categories based on the visual

subset explored: blocks (pixels or patches) or super-pixels [Borji et al. (2014)]. In the block-based

approaches, each pixel or patch in the image receives a saliency value. In the super-pixel-based

approaches, each super-pixels generated by an earlier segmentation step receives a saliency value.

In the block-based category, one of the earliest studies was presented by Achanta et al.

(2008). For each pixel in the CIELab color space [McLAREN (1976)], three windows, of

different sizes and centered in the pixel, are scrolled through the image, calculating the color and

luminance contrast between the pixel and its neighbors.

Three Saliency Maps are generated and combined, generating a final Saliency Map

utilized to perform a segmentation of the salient object. Figure 3.3 presents the output of each

step of the proposed method. (a) presents the input image and (b) presents the three scales

Saliency Maps. (c) presents the final Saliency Map, utilized to segment the saliency object, as

presented in (d).

Figura 3.3: Example of a Saliency Map generated by Achanta et al. (2008). The input image is presented in (a) and

the three scales Saliency Map are presented in (b). In (c), it is presented the final Saliency Map, utilized to segment

the saliency object presented in (d). Source: Achanta et al. (2008).

Another work in the block-based category was presented by Goferman et al. (2012).

The authors proposed a context-aware method to find saliency regions in images based on four

principles. The first two principles define that regions with colors and patterns differences are

more likely to be salient than homogeneous, blurred, or the ones with repeated features.
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(a) Example of a scene containing salient objects

(the leaf).

(b) The Saliency Map generated by the method

proposed by Goferman et al. (2012).

Figura 3.4: Example of a Saliency Map generated by Goferman et al. (2012). Source: Goferman et al. (2012).

Following these principles, for each pixel "i", a patch "pi"is created with "i"in the center.

The Euclidean Distance [Duda et al. (2000)] is applied to find the "K"most similar patches to

"pi". The pixel "i"is salient if the "K"patches have a high difference from "pi". The Euclidean

Distance is also utilized to calculate the distance between patches, following the third principle,

which defines that salient pixels should be grouped.

Different scales are utilized, and the patch "pi"should be different from all other patches

in all scales. The immediate context is added to the salient objects by extracting the most attended

localized areas at each scale. The Euclidean Distance to the closest attended pixel is applied to

highlight background regions around the salient regions.

The last principle includes prior knowledge about the objects and their location, being

utilized as a post-processing step to improve the Saliency Map. Figure 3.4a presents an example

of a scene containing a salient object (the leaf), and Figure 3.4b presents the Saliency Map

generated by the proposed method.

(a) Example of a scene containing salient objects

(the bottles).

(b) The Saliency Map generated by the method

proposed by Duan et al. (2011).

Figura 3.5: Example of a Saliency Map generated by Duan et al. (2011). Source: Duan et al. (2011).
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Duan et al. (2011) utilizes spatially weighted dissimilarity between patches to find

saliency regions in the image. The proposed framework has three steps: patches generation,

dimensionality reduction, and evaluation of the spatially-weighted dissimilarity. In the patch

generation step, the input image is divided into non-overlapping patches, forming a grid with

each patch represented as a vector of pixels. The Principal Component Analysis (PCA) [F.R.S.

(1901)] algorithm is applied in the second step to reduce the patches dimensionality.

Dissimilarities and spatial distance between patches are utilized to calculate the saliency

value of each patch. The distance of the patch and the center of the image is also considered to

calculate the saliency value of the patch. Figure 3.5a presents an example of a scene containing

salient objects (the bottles), and Figure 3.5b presents the Saliency Map generated by the proposed

method.

Frequencies in the image are utilized by Achanta et al. (2009) to preserve boundaries

of salient objects. Two cut-off values are defined: "wlc"to low frequencies and "whc"to high

frequencies. The Difference of Gaussians (DoG) [Gonzalez (2016)] is applied to create a blurred

version of the image, with the "wlc"and "whc"utilized to select the best parameters of the Gaussian

filters. The saliency value of a pixel is calculated as the norm of the difference between the

arithmetic mean pixel value in the original image and the pixel value in the Gaussian blurred

image.

Aiming to add information of color and luminance to the Saliency Map, the mean pixel

value is replaced with the mean image feature vector in CIELab color space. The "L2"norm is

applied over the difference between the mean image feature vector and the pixel value in the

Gaussian blurred image. Figure 3.6a presents an example of a scene containing a salient object

(the leaf), and Figure 3.6b presents the Saliency Map generated by the proposed method.

(a) Example of a scene containing a salient object

(the leaf).

(b) The Saliency Map generated by the method

proposed by Achanta et al. (2009).

Figura 3.6: Example of a Saliency Map generated by Achanta et al. (2009). Source: Achanta et al. (2009).

In the super-pixel-based category, Perazzi et al. (2012) proposed an algorithm to identify

saliences in images using two contrast measurement: element uniqueness and element distribution.

The input image is decomposed in super-pixels through a modification of the Simple Linear

Iterative Clustering (SLIC) [Achanta et al. (2010)] algorithm.

Two partial Saliency Maps are constructed based on contrast measures (uniqueness and

spatial distribution) and combined to produce the final Saliency Map. Element uniqueness is

computed by comparing the super-pixel color and position with all the other super-pixels while

element distribution is calculated as the spatial variance of the super-pixel color.
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Figure 3.7 presents the result of each step of the proposed algorithm. The input image is

presented in (a). The super-pixel representation is presented in (b). Figures (c) and (d) presents

the element uniqueness and element distribution extracted from the super-pixels, respectively.

The final Saliency Map is presented in (e). Finally, (f) presented the ground-truth mask.

Figura 3.7: Output of each step of the framework proposed by Perazzi et al. (2012). The input image is presented

in (a). The super-pixel representation is presented in (b). In (c) and (d) is presented the element uniqueness and

element distribution extracted from the super-pixels, respectively. The final Saliency Map is presented in (e). Finally,

(f) presented the ground-truth mask. Source: Perazzi et al. (2012).

Context and shape information are utilized by Huaizu Jiang and Zheng (2011) to produce

the saliency map. In the context step, the saliency of a super-pixel is calculated as a function of

its spatial neighbors. Gaussian Pyramids are applied to add multiscale information in order to

find salient objects independent of its size.

In the shape detection step, an edge detection algorithm is applied to find the contours

of the objects, selecting a subset of edge segments close to the salient object. The salient object

segmentation is defined as an energy minimization problem [LeCun et al. (2006)] which use the

context and shape Saliency Maps to segment the salient object.

Figure 3.8a presents an example of a scene containing a salient object (the squirrel),

Figure 3.8b presents the Saliency Map generated in the context step, Figure 3.8c presents the

Saliency Map generated in the shape detection step, and Figure 3.8d presents the final Saliency

Map generated by the proposed method.

(a) Example of a scene

containing salient a ob-

ject (the squirrel).

(b) The Saliency Map

generated in the context

step.

(c) The Saliency Map

generated in the shape

generation step.

(d) The final Saliency

Map generated by the

proposed method.

Figura 3.8: Examples of Saliency Map generated in each step of the method proposed by Huaizu Jiang and Zheng

(2011). Source: Huaizu Jiang and Zheng (2011).

A watershed method [Gonzalez (2016)] is applied by Yan et al. (2013) to generate a

set of super-pixels (regions). For each region, a scale value is computed based on its shape

uniformities and utilized to produce three image layers. The regions are grouped in layers by a

threshold value (one threshold for each layer). A hierarchical inference based on a tree-structure

is molded to fuse cues extracted from the three image layers.

In the proposed representation, each tree level represents a layer, and each node represents

a region inside the layer. An energy function minimization is applied to compute the optimal

saliency values of each region in the proposed tree. Figure 3.9a presents an example of a scene

containing a salient object (the dog), and Figure 3.9b presents the Saliency Map generated by the

proposed method.
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(a) Example of a scene containing a salient

object (the dog).

(b) The Saliency Map generated by the method

proposed by Yan et al. (2013).

Figura 3.9: Example of a Saliency Map generated by Yan et al. (2013). Source: Yan et al. (2013).

For many years, the studies based on hand-crafted features were considered state of

the art in SOD literature. However, these methods lacked from generalization capacity, not

performing well in challenging scenarios [Borji et al. (2014)]. The features extracted by the

methods presented above (color, luminance, contrast, contour, objectness, luminance, spatial

distribution, pattern distinctness) were predefined manually, turning it difficulty to find saliency

regions in scenarios with saliency regions not defined by those features.

In order to overcome such limitations, a new category of methods based on Deep

Learning and the recent success of CNNs solving other Computer Vision problems started of

being applied to find saliency regions. Next section presents relevant studies proposed in SOD

literature based on this approach.

3.3 CONVOLUTIONAL NEURAL NETWORKS-BASED METHODS

CNNs were initially proposed by Lecun et al. (1998) to solve image recognition and

object classification problems. Krizhevsky et al. (2012) proposed a CNN model for image

classification and achieved impressive results on ImageNet [Deng et al. (2009)] dataset, winning

the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 2012 competition.

Following the impressive results achieved by CNNs, studies in the SOD literature started

to explore this technique to find salience regions in images. However, as CNNs were not designed

for segmentation, it was necessary to attach pre and post-processing steps to overcome such

limitation.

In a common strategy presented in the literature, the input image was decomposed in

patches or super-pixels, similarly with the hand-crafted-based methods. CNNs were applied to

extract features and to classify the patches or super-pixels as saliency or background regions.

In the super-pixel-based category, one of the earliest models was presented by He et al.

(2015). The proposed method decomposes each super-pixel in two contrast sequences of color

uniqueness and color distribution. Each sequence feeds a different CNN with 1D convolutions,

" f1"and " f2", in parallel. The outputs of the CNNs are two complementary sequences with

hierarchical features utilized to calculate the saliency value of the super-pixel.

Three sequences of " f1"and " f2"are structured in parallel, forming a multiscale network

with shared weights. Each sequence receives super-pixels of different scales and outputs a

Saliency Map. A weighted sum of all Saliency Maps is performed, generating the final Saliency

Map. Figure 3.10 presents the structure of the proposed model.
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Figura 3.10: The architecture proposed by He et al. (2015). The input image is divided into multiscale super-pixels.

Contrast sequences are extracted to feed the CNNs, which outputs hierarchical features utilized to calculate the

Saliency Map of each scale. The final saliency map is generated as the weighted sum of the Saliency Maps of all

scales. Source: He et al. (2015).

In the patch-based category, Li et al. (2017b) apply the Selective Search [Uijlings et al.

(2013)] algorithm to generate a set of squared patches. A CNN model generates a first feature

vector containing high-level features extracted from the patches. Low-level information like color

contrast, texture, and spatial properties, are extracted from the patches to generate a second feature

vector. A Support Vector Machine (SVM) [Hearst et al. (1998)] receives both feature vectors and

outputs if the patch is salient or not. The proposed network is presented in Figure 3.11.

Figura 3.11: The architecture proposed by Li et al. (2017b). Selective Search is applied to segment the input image

in patches (regions proposals). Two feature vectors are generated, one with high-level features generated by the

CNN and one with low-level features (contrast, texture and spatial properties) generated by hand-crafted methods.

The feature vectors are concatenated and utilized as the input of a SVM, which outputs if a particular patch is salient

or not. Source: Li et al. (2017b).

Li and Yu (2015) generate a set of non-overlapping regions from the input image. For

each region, three windows are created. The first window contains only the region, the second

window contains the region and its immediate neighboring regions, and finally, the third window

contains the entire image. For each window, a CNN is trained to generate a vector of features.

The three feature vectors feed a MLP [Haykin (2009)] to classify the regions as being

salient or not. A complementary step, added by Li and Yu (2016b), integrate hand-craft features
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Figura 3.12: The architecture proposed by Li and Yu (2016b). The input image is decomposed into regions. For

each region, three windows of different sizes are created, with each window feeding a CNN in parallel. A MultiLayer

Perceptron (MLP) is utilized to generate a first Saliency Map based on the high-level features extracted from the

CNNs. In parallel, hand-craft features are extracted and concatenated with the high-level features extracted by the

CNNs, generating a feature vector utilized as the input of a Random Forest Regressor. Source: Li and Yu (2016b).

with the previews high-level features extracted from the CNNs, generating another feature vector

utilized as the input of a Random Forest Regressor [Liaw et al. (2002)].

The final Saliency Map is calculated through the linear combination of the Saliency

Maps generated in both steps. The proposed framework is presented in Figure 3.12, illustrating

the process with an example of a region extracted from the image.

Wang et al. (2016) apply the Fast Region-based Convolutional Neural Network (Fast

R-CNN) [Ren et al. (2017)] architecture to classify the super-pixels as being part of the saliency or

background regions, generating a first Saliency Map. In parallel, another Fast R-CNN architecture

receives a representation of the image generated by edge-preserving methods, and generates

a second Saliency Map to refine the borders of the salient regions in the first Saliency Map.
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Low-level features (contrast and backgroundness) and an edge-based propagation method are

applied to refine the Saliency Map.

Figure 3.13 presents all the steps of the proposed framework. The input image is

presented in (a). The super-pixel and edge regions representations are presented in (b). The

Saliency Map learned for each representation is presented in (c). The low-level cues extracted

from the input are presented in (d), and the refined Saliency Map is presented in (e). In (f), the

edge-based propagation method is applied to generate the final Saliency Map in (g).

Figura 3.13: The architecture proposed by Wang et al. (2016). The input image is presented in (a). The super-pixel

and edge regions representations are presented in (b). The Saliency Map learned for each representation is presented

in (c). The low-level cues extracted from the input are presented in (d), and the refined Saliency Map is presented in

(e). In (f), the edge-based propagation method is applied to generate the final Saliency Map in (g). Source: Wang

et al. (2016).

Another approach explored by CNN-based methods is to fuse local-context information

with global-context. The local-context detect high-frequency content while global context

suppress the homogeneous regions through holistic contrast and color statistics from the entire

image [Wang et al. (2015)]. Zhao et al. (2015) proposed a Neural Network with two branches, as

presented in Figure 3.14, to explore this approach.

Figura 3.14: The architecture proposed by Zhao et al. (2015). The Global-Context Modeling (upper branch) receives

the entire image centered in the super-pixel, and the Local-Context Modeling (bottom-branch) receives the same

window with a higher focus in the super-pixel. Information from both contexts is utilized to generate the final

Saliency Map. Source: Zhao et al. (2015).

In the proposed method, the first branch (Global-Context Modeling) is designed to

extract global-context saliences, while the second branch (Local-Context Modeling) is designed
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to extract local-context saliences. The SLIC algorithm is applied to extract a sequence of

super-pixels from the input image.

The global-context branch receives a window containing the entire image centered

in a super-pixel, while the local-context branch receives a window with a higher focus on the

super-pixel. The final probability of a super-pixel be salient is based on the probability of a

super-pixel be salient in both contexts.

The CNN-based methods proposed in the SOD literature also integrates low-level

features extracted from hand-crafted-based methods with high-level features extracted by CNNs.

Lee et al. (2016) proposed an encoded low-level distance map (ELD-map) to encode low-level

features (colors, color distributions, Gabor filter [Fogel and Sagi (1989)] responses, and location).

The high-level features are extracted by the VGG-16 [Simonyan and Zisserman (2014)].

The output of the VGG-16 and the ELD-map are concatenated to input two fully-connected layers,

utilized to classify the super-pixels as being salient or not. Figure 3.15 presents the proposed

two-branches framework. The upper-branch presents the encoding step of the ELD-map, and the

bottom-branch presents the VGG-16 model to encode high-level features.

Figura 3.15: The architecture proposed by Lee et al. (2016). The upper-branch presents the encoding step of the

ELD-map, and the bottom-branch presents the VGG-16 model to encode high-level features. Both feature vectors

are concatenated and utilized as the input of two fully-connected layers to classify the super-pixel as being salient or

not. Source: Lee et al. (2016).

The framework proposed by Wang et al. (2015) explores multi-context information

and integrates high-level features (extracted by CNNs) with low-level features (extracted by

hand-crafted methods). In the local estimation step, the input image feeds a neural network called

DNN-L, generating a first Saliency Map.

In parallel, a set of object segments is generated by the Geodesic Object Proposal

(GOP) [Krähenbühl and Koltun (2014)] algorithm, and utilized to refine the Saliency Map

generated by the DNN-L. From the output of the DNN-L and the object proposals, a feature vector

containing global contrast features, geometric information, and local saliency measurements is

generated for each potential object. The feature vector is utilized to perform the training of a

global context Recurrent Neural Network (RNN) [Gregor et al. (2015)] called DNN-G.

The final Saliency Map is computed through a sum of salient object regions weighted

by their saliency values. Figure 3.16 illustrates all steps of the proposed framework. The DNN-L

architecture is illustrated in (a). The output of DNN-L in (b) is refined by object proposals (the

green block) in (c). The feature vectors extracted from the potential objects and the DNN-L are

presented in (d). The DNN-G architecture is illustrated in (e). The salient object regions are

presented in (f) and the final Saliency Map in (g).
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Figura 3.16: The architecture proposed by Wang et al. (2015). The DNN-L architecture is illustrated in (a). The

output of DNN-L in (b) is refined by object proposals (the green block) in (c). The feature vectors extracted from the

potential objects and the DNN-L are presented in (d). The DNN-G architecture is illustrated in (e). The salient

object regions are presented in (f) and the final Saliency Map in (g). Source: Wang et al. (2015).

A different approach, proposed by Kim and Pavlovic (2016), turned the salient detection

problem in a multi-class classification problem. The proposed method generate a set of patches

in the input image through the Selective Search algorithm. A clustering algorithm is applied to

separate the patches into "K"shape classes.

Figura 3.17: The architecture proposed by Kim and Pavlovic (2016). Patches are extracted from the input image,

feeding a CNN to predict patches class. The final Saliency Map is calculated as the mean of the most probable

masks of each patch shape. Source: Kim and Pavlovic (2016).

To generate the labels of the patches to train the CNN, the Euclidean Distance is applied

to find the closest class of each shape. The patches feed a multi-class CNN, and the final

Saliency Map is calculated as the mean of the most probable masks of each patch shape. A shape

class-based saliency detection with hierarchical segmentation (SCSD-HS) algorithm is proposed

to add global-context information in the Saliency Map. Figure 3.17 illustrates each step of the

proposed framework.
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As presented above, there are several ways to apply CNNs to find saliency regions

in images. Fusing high-level features extracted by CNNs with low-level features extracted

by hand crafted-based methods, and fusing local-context with global-context information in a

two-branched network, are the two most common approaches proposed in the SOD literature.

However, all presented methods needed pre and post-processing steps to perform the

segmentation of salient objects, with the super-pixels being the most common strategy explored

by the literature due the fact that the block-based algorithms stands out high-contrast edges

instead of the saliency regions [Borji et al. (2014)].

Besides the promising results in the CNN-based category, the fully connected layers in

CNNs generates blurriness and inaccurate predictions near the boundaries of salient objects in

super-pixels-based methods [Borji et al. (2014)].

To overcome such problems, a new approach, already applied in Semantic Segmen-

tation [Thoma (2016)] problems, started to be explored in the SOD literature: FCNs. FCNs

performs segmentation in a per-pixel level, which is more accurate and solves the problems

generated by the fully connected layers in CNNs. Next section presents relevant methods proposed

in SOD literature based on FCNs.

3.4 FULLY CONVOLUTIONAL NEURAL NETWORKS-BASED METHODS

The FCN [Long et al. (2015)] is an improvement of the CNNs developed to perform

Semantic Segmentation [Thoma (2016)] tasks. Aiming to convert a CNN in a FCN, the fully

connected layers in CNNs models are replaced by convolutional ones, generating as output a 2D

vector called heatmap. Instead of a 1d vector generated by CNNs that contains the probabilities

of an object be of a determined class, the heatmap contains the probabilities of a region in the

image be of a determined class. A detailed explanation about the FCN structure is presented in

Chapter 4.

The FCNs also have a upsample or deconvolutional layer utilized to convert the heatmap

in a segmentation image of the same size of the input image. There are several ways of performing

a upsample or deconvolution in FCNs. The most popular are: transposed convolution [Dumoulin

and Visin (2016)], unpooling [Noh et al. (2015)], and bilinear interpolation [Kirkland (2010)].

The impressive results obtained by FCNs in Semantic Segmentation tasks led the studies

in the SOD literature to adapt the network to the salience problem. Bianco et al. (2017) explored

FCNs to perform segmentation of salient objects and showed the network efficiency in seven

state-of-art datasets. Nie et al. (2018) applied FCNs to generate two probability maps: one

with the probabilities of a pixel be salient, and one with the probabilities of a pixel be part of

the background. Both Saliency Maps are utilized to generate the final probability of a pixel be

salient.

Li and Yu (2016a) proposed an end-to-end deep contrast network with two complemen-

tary branches: a fully convolutional stream and a segment-wise spatial pooling stream. The

fully convolutional stream is a multiscale fully convolutional network (MS-FCN). The MS-FCN

receives the raw image to generate a first Saliency Map through a VGG-16 network converted in

FCN.

Three extra convolutional layers are attached to each of the first four max-pooling layers

of the VGG-16, generating four segmentation outputs. The Saliency Map of each output and the

Saliency Map generated in the last layer of the network are utilized to form the final Saliency

Map at this branch. The second stream receives a set of super-pixels generated from the input

image. For each super-pixel, spatial pooling and saliency estimation are applied to construct a

Saliency Map at the super-pixel level.
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A convolutional layer is applied to fuse the Saliency Map of both streams, generating a

final Saliency Map. A more recent version, proposed by Li and Yu (2018), applied a trained

attention module to fuse the Saliency Map of both streams. Figure 3.18 presents the structure

of the proposed framework. The upper-branch presents the fully convolutional stream, and the

upper-branch presents the segment-wise spatial pooling stream.
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Figura 3.18: The architecture proposed by Li and Yu (2018). The fully convolutional stream (upper-branch) generates

a Saliency Map through a VGG-16 network converted in FCN. A super-pixel level Saliency Map is generated in the

bottom-branch. An attention module is proposed to fuse the Saliency Map of both streams, generating the final

Saliency Map. Source: Li and Yu (2018).

(a) The proposed framework with a FCN generating

a pixel-level segmentation, and a CNN generating a

region-level segmentation. A fusion CNN is applied

to integrate both Saliency Maps.

(b) The proposed FCN. The last block of the VGG-

16 is removed. A sequence of convolutional and

deconvolutional layers are attached in the last two

blocks to generate the Saliency Map.

Figura 3.19: The architecture proposed by Tang and Wu (2016). Source: Tang and Wu (2016).

Tang and Wu (2016) constructed the Saliency Map by fusing the Saliency Map of a FCN

with the Saliency Map of a CNN, as presented in Figure 3.19a. The FCN performs a pixel-level

segmentation while the CNN performs super-pixel level segmentation. In the pixel-level FCN,

the last block of the VGG-16 is removed. A sequence of convolutional and deconvolutional layers

are attached in the last two blocks of the VGG-16 to generate the Saliency Map, as presented in
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Figure 3.19b. The Saliency Map at pixel-level and the Saliency Map at the super-pixel level are

integrated by a fusion CNN.

Zhang et al. (2017) adapted the Residual Network (ResNet)-101 network to perform

segmentation, as illustrated in Figure 3.20. The final pooling and the fully connected layers are

removed and replaced by multiple parallel dilated convolutional layers to generate a Saliency

Map. The SLIC algorithm is applied in the input image to generate super-pixels of three different

scales.

The Saliency Map produced by the FCN is utilized to assign a saliency value to each

super-pixel. An energy minimization function is applied to refine the saliency value of each

super-pixel. In the last step, the Saliency Maps at each scale are utilized to generate the final

Saliency Map. Figure 3.20 presents the proposed model.

Figura 3.20: The architecture proposed by Zhang et al. (2017). The ResNet-101 model is adapted to perform pixel

level segmentation, generating a Saliency Map. The input image is decomposed into three scales of super-pixels.

The Saliency Map produced by the FCN is utilized to assign a saliency value to each super-pixel, generating three

Saliency Maps, which are utilized to generate the final saliency map. Source: Zhang et al. (2017).

Li et al. (2016) proposed a multi-task architecture to saliency and semantic segmentation

tasks in a two-branched network. The feature extraction step is shared between the two branches

to improve the saliency detection by adding semantic information on salient objects. In the

semantic segmentation branch, a deconvolution step is utilized to produces an image with the

"K"objects segmented, where "K"is the number of classes.

Figura 3.21: The architecture proposed by Li et al. (2016). The input image feeds the feature extraction step (blue

rectangle). The network is composed of two outputs, one for Semantic Segmentation task (green rectangle) and one

for saliency segmentation task (yellow rectangle). Source: Li et al. (2016).

In the saliency detection branch, a super-pixel graph, with a Laplacian regularized

non-linear regression, is applied to refine fuzzy boundaries. Figure 3.21 presents the two branches

network. The input image feeds the feature extraction step (blue rectangle). The network is

composed of two outputs, one for Semantic Segmentation task (green rectangle) and one for

saliency segmentation task (yellow rectangle).
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Xi et al. (2017) proposed an end-to-end network with three sequential steps. The

VGG-16 network is applied to extract feature maps in the first step. Three fully convolutional

layers are added at the end of the VGG-16, making a non-linear regression in the middle step. In

the end, bicubic interpolation is applied to generate the Saliency Map. Figure 3.22 presents all

the steps of the proposed network. I presents the VGG-16 layers designed to extract features. In

II, three convolutional layers are added. In III, bicubic interpolation is performed to restore the

Saliency Map size.
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Figura 3.22: The architecture proposed by Xi et al. (2017). I presents the VGG-16 layers designed to extract features.

In II, three convolutional layers are added. In III, a bicubic interpolation is performed to restore the Saliency Map

size. Source: Xi et al. (2017).

Figura 3.23: The architecture proposed by Liu and Han (2016). The GV-CNN adapts the VGG-16 structure to

extract global features (contrast, objectness, and compactness) from the input image, outputting a Saliency Map

"SmG". The Saliency Map "SmG"is refined through a sequence of recurrent convolutional layers in the HR-CNN,

adding local information in the Saliency Map. Source: Liu and Han (2016).

Liu and Han (2016) also proposed an end-to-end model called DHSNet to find saliency

regions in images. The proposed model is divided into two sequential sub-networks: GV-CNN

and HR-CNN. The GV-CNN adapts the VGG-16 structure to extract global features (contrast,

objectness, and compactness) from the input image, outputting a Saliency Map "SmG". The

Saliency Map "SmG"is refined through a sequence of recurrent convolutional layers in the
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HR-CNN, adding local information in the Saliency Map. Upsampling layers are utilized to

recover the size of the Saliency Map. Figure 3.23 presents the proposed model.

Hou et al. (2018) proposed a top-down approach to combine low-level with high-level

features. The VGG-16 network is adapted with a modification of the Holistically-Nested Edge

Detector (HED) [Xie and Tu (2017)] network for edge and boundary detection of salient objects.

The output of each block in the network is concatenated with the output of all previews blocks

through the short connections, as presented in Figure 3.24, generating a segmentation mask for

each block of the network. All segmentation masks are concatenated with a weighted fusion

layer.

Cross 
entropy 

(CE) loss

Fusion 
loss

Short connection
Fusion weight

conv5_3

conv4_3

conv3_3

conv2_2

conv1_2

side outputs

16×16

32×32

64×64

128×128

256×256

pool5 8×8

256×256

Figura 3.24: The architecture proposed by Hou et al. (2018). The output of each block in the network (represented

by a different color) is concatenated with the output of all previews blocks using the HED model. All generated

segmentation masks are concatenated with a weighted fusion layer. Source: Hou et al. (2018).

Kruthiventi et al. (2016) proposed a unified framework for salient object detection and

eye fixation problems. The proposed architecture is composed of three blocks: one for the

saliency segmentation, one for eye fixation prediction and a VGG-16 model shared between both

problems. An inception [Szegedy et al. (2015)] module called INCP is linked in the output of

the second, fourth, fifth, and sixth max-pooling layers, generating a multiscale representation of

the salient objects. A sequence of convolutions is applied to concatenated the INCP outputs,

generating a Saliency Map. In the last block of the VGG-16, one last inception module is linked

in the network. This last INCP module, followed by a sequence of convolutional layers, is utilized

to generate the eye fixation prediction.

Figure 3.25 presents the proposed framework. The grey block in the figure presents the

VGG-16 layer shared between the salient object detection and eye fixation problems. The green

block presents the INCP modules linked in the max-pooling layers to generate a Saliency Map.

The blue block presents the INCP module linked in the last block of the VGG-16 to generate eye

fixation prediction. The red block called INCP represents the layers of the inception modules

linked in the network.

Tang et al. (2016) also proposed an alteration in the VGG-16 architecture to perform

saliency segmentation. The last block of the VGG-16 network (fully connected layers) is removed

and, in the remaining blocks, the normal convolutions are replaced by recurrent convolutional

layers [Liang and Hu (2015)] to extract contextual information from the images. Convolution

and deconvolution layers are linked in the output of each block, as illustrated in Figure 3.26,
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Figura 3.25: The architecture proposed by Kruthiventi et al. (2016). The input image enters in the shared block with

the VGG-16 model (the grey block). Then, the network has two outputs: one for saliency segmentation (the green

block) and one for eye fixation prediction (the blue block). The red block called INCP represents the layers of the

inception modules linked in the network. Source: Kruthiventi et al. (2016).

generating five Saliency Maps that are concatenated and passed by one last convolutional layer to

generate the final Saliency Map.

Figura 3.26: The architecture proposed by Tang et al. (2016). The blue blocs are the VGG-16 architecture modified

to the SOD problem. The orange blocks are utilized to produce saliency maps, and in the end, all Saliency Maps

produced are concatenated to generate the final saliency map. Source: Tang et al. (2016).

Li et al. (2017a) proposed a framework with three steps: estimation of the Saliency

Map, detection of salient object contours, and identification of salient object instances. A new

network model, called MSRANet, is proposed to produce a Saliency Map and to detect the salient

object contours. The MSRANet is composed of three VGG-16 networks with shared weights to

segment the input image in three different scales, generating three segmentation masks which are

concatenated in the attention module.
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Two MSRANets are trained, one for the saliency region detection and one for object

contour detection. The result of the saliency region detection feeds the Multiscale Combinatorial

Grouping (MCG) [Arbeláez et al. (2014)] algorithm and the MAP-based [Zhang et al. (2016)]

subset optimization method to generate a set of object proposals.

The output of the saliency instance segmentation step, generated by fusing the re-

sults of the segmentation with the object proposals, is refined with a fully connected CRF

model [Krähenbühl and Koltun (2011)]. Figure 3.27 illustrates the proposed framework.

saliency map

contour map
subset

optimization

CRF

proposals

MSRNe

Attention Module

Figura 3.27: The architecture proposed by Li et al. (2017a) with three steps: estimation of the saliency map, detection

of salient object contours, and identification of salient object instances. The first two steps are generated by the

proposed network (MSRAnet). From the output of the detection of salient object contours step, a set of object

proposals are generated. A fully connected CRF model is applied to refine the salient instance segmentation result.

Source: Li et al. (2017a).

O-Input

384x384x3

R-Input
Left Sibling Branch Right Sibling Branch

64 128 256 512 512 512 512 256 128 64

512

512

256

128

64

2

Fusing Branch

Conv <3x3,1> + AdaBN + ReLU

Concat and Merge

MaxPooling <2x2,2>

Copy 

DeConv <2x2,2> 

Structural Loss

Conv <3x3,1>

384x384x1 384x384x1

384x384x3

Figura 3.28: The architecture proposed by Zhang et al. (2018). The left sibling branch receives the original input

image while the right sibling branch receives the negatived image. A fusing branch is utilized to join the output

from the two sibling branches generating the Saliency Map. Source: Zhang et al. (2018).

In order to learn complementary saliency features under the guidance of lossless feature

reflection, Zhang et al. (2018) proposed a framework with a symmetrical fully convolutional

network. The proposed network has two sibling branches, as presented in Figure 3.28. The left

branch receives the original input image, and the right branch receives the input image negatived.

The output of the network is generated by a fusion branch, which integrates multi-level features
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taken from both branches. In Zhang et al. (2019), the authors added a weighted structural loss

function to improve the boundaries of the salient objects.

Li et al. (2018) proposed an algorithm to train fully convolutional networks for saliency

detection. In the first step of the algorithm, an unsupervised salient object detection model is

applied to generate a first Saliency Map for each image in the training dataset. The first Saliency

Map, the saliency annotation, and the class distribution are utilized for training a multi-task FCN

to generate a pixel-wise segmentation and an image class distribution.

The Saliency Map generated in the first step, the Saliency Map predicted by the network

and the class activation map are utilized as the input of a CRF model to refine the final Saliency

Map, which is utilized to update the saliency annotation for the next training iteration. The whole

framework with all steps is presented in Figure 3.29.

Training iteration

Figura 3.29: The framework proposed by Li et al. (2018). The input image and the saliency annotation enters in the

multi-task FCN. The Saliency Map and the class distribution are also utilized for training the network. The first

Saliency Map, the Saliency Map predicted by the network and the class activation map are utilized as the input of a

CRF model to refine the final Saliency Map which is utilized to update the saliency annotation for the next training

iteration. Source: Li et al. (2018).

Nguyen et al. (2019) proposed a framework with two steps to segment salient objects.

In the first step, they utilized FCNs to generate a Saliency Map, called explicit Saliency Map,

that targets the human common sense of salient objects and focus in the learning of different

objects previously defined as salient. In the second step, they utilized an approach based on

super-pixels to generate a second Saliency Map, called implicit Saliency Map, that focus in the

learning of salient objects not belonging to the list of salient objects defined in the first step.

Then, they defined a function that fuses both Saliency Maps. The entire framework is presented

in Figure 3.30.

As presented above, FCNs are widely utilized in many different works proposed in the

SOD literature and shows promising results when compared with predecessor methods. The

proposed works based on FCNs are, in general, well-diversified and has its peculiarities. While

some works tried to use different hand-crafted features to refine the Saliency Map produced by

the FCN, other works tried to expand the FCN strategy of integrating information from the top

layers with the deeper layers to add multiscale information in the Saliency Map.
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Figura 3.30: In the first step, they utilized FCNs to generate a Saliency Map, called explicit Saliency Map. In the

second step, they utilized an approach based on super-pixels to generate a second Saliency Map, called implicit

Saliency Map. A saliency function is applied to fuses both Saliency Maps. Source: Nguyen et al. (2019).

When compared with the hand-crafted-based and CNN-based methods, the FCN-based

methods are a much more robust approach. However, despite the promising results, the FCN has

problems to distinguish salient regions from non-salient regions in some challenging scenarios.

Nguyen et al. (2019) fairly recently applied a Mask Region-based Convolutional Neural Network

(Mask R-CNN) in the SOD problem to overcome the problems of FCN segmentation. In the first

step of the framework proposed by Nguyen et al. (2019), they utilized four variations of FCN and

also applied a Mask R-CNN to generate the explicit Saliency Map. However, the authors did not

performed an explicit comparison between the FCN and Mask R-CNN. They only compared

the entire framework proposed, changing the network utilized to generate the first saliency map.

This brief comparison was performed only in one dataset and the entire framework was evaluated

only in three datasets.

3.5 CONCLUSION

This chapter reviewed the state-of-art methods in the SOD problem. As presented,

the methods proposed in the literature had a significant improvement along the time. The first

attempts to find Visual Saliences in images were based on hand-crafted features and started a

wave of interest in the field. However, these methods were designed to extract a specific set of

features and lacked from generalization capacity.

A second attempt to find salience regions in images was based on CNNs, a more robust

approach which achieved promising results when compared with the predecessor methods due

to the generalization capacity of the CNNs. The weak point of the methods based on CNNs

is the fact that the CNN was not designed for segmentation tasks, and pre and post-processing

steps were needed to perform segmentation of salient objects, with the super-pixel and patches

approaches generating wrong segmentation near the salient objects boundaries.

The most recent methods proposed in the literature are based on FCNs, an evolution of

the CNNs designed for Semantic Segmentation tasks. A more detailed discussion about the FCN

problems to perform segmentation of salient objects, the Mask R-CNN, and the comparison

proposed in this work are presented in the next chapter.



59

4 PROPOSED APPROACH

This chapter details the Fully Convolutional Network (FCN) and the Mask Region-based

Convolutional Neural Network (Mask R-CNN) architectures proposed in this work to perform

the segmentation of salient objects. The chapter is divided as follows: Section 4.1.1 presents the

FCN, Section 4.1.2 presents the Mask R-CNN, and Section 4.2 ends the chapter.

As presented in Chapter 3, FCNs are widely applied in the recent literature of Salient

Object Detection (SOD) to perform segmentation of salient objects. However, besides the

promising results achieved by FCNs in the SOD problem, the FCNs have difficulties in

distinguishing salient regions from non-salient regions in some challenging scenarios. Figures

4.1a, 4.1b, 4.1c, and 4.1d presents examples of changeling scenarios. In these images, the

background has a high number of objects with different colors, intensities, orientations, and

illumination. Figures 4.1e, 4.1f, 4.1g, and 4.1h presents the ground truth mask, with the expected

salient pixels in white and the expected background pixels in black.

(a) Example of challen-

ging scenario with one

salient object.

(b) Example of challen-

ging scenario with one

salient object.

(c) Example of challen-

ging scenario with one

salient object.

(d) Example of challen-

ging scenario with one

salient object.

(e) The ground truth. (f) The ground truth. (g) The ground truth. (h) The ground truth.

Figura 4.1: Examples of changeling scenarios and the expected ground truth masks. The background has a high

number of objects with different colors, intensities, orientations, and illumination. Source: ECSSD Dataset.

In preliminary experiments performed in this work, the FCNs proposed in this work,

found the salient objects, as presented in Figures 4.2a, 4.2b, 4.2c, and 4.2d. In all images, the

FCN generated a segmentation mask with most of the salient pixels. However, the FCN wrongly

segmented regions in the image not belonging to the saliency regions.

In order to overcome the FCN limitations, Nguyen et al. (2019) fairly recently proposed

the use of a Mask R-CNN [He et al. (2017)] approach to SOD. This work proposes the use of

two different versions of the Mask R-CNN. Preliminary experiments performed with this two

versions of the Mask R-CNN are presented Figures 4.2e, 4.2f, 4.2g, and 4.2h.
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(a) Example of segmen-

tation result generated

by a FCN.

(b) Example of segmen-

tation result generated

by a FCN.

(c) Example of segmen-

tation result generated

by a FCN.

(d) Example of segmen-

tation result generated

by a FCN.

(e) Example of segmen-

tation result generated

by a Mask R-CNN.

(f) Example of segmen-

tation result generated

by a Mask R-CNN.

(g) Example of segmen-

tation result generated

by a Mask R-CNN.

(h) Example of segmen-

tation result generated

by a Mask R-CNN.

Figura 4.2: Examples of segmentation result generated by a FCN and a Mask R-CNN in preliminary experiments

performed in the present work. The FCN achieved impressive results in all presented images and was able to find all

salient objects in the images, generating a segmentation involving most of the salient pixels. However, the FCN

wrongly segmented regions in the image not belonging to the saliency regions. The Mask R-CNN improved the

segmentation of these salient objects by performing object detection before the segmentation. The segmentation is

performed inside the bounding boxes regions, decreasing the rate of false positives. Source: Author.

The Mask R-CNN showed promising segmentation results in the preliminary experiments

by generating segmentation masks with fewer background pixels classified as salient. Due to such

results, the present work proposes a broad evaluation of the Mask R-CNN in the SOD problem.

The Mask R-CNN is composed of two sub-networks: the Faster Region-based Convolu-

tional Neural Network (Faster R-CNN) [Ren et al. (2017)] and the FCN. The Faster R-CNN is

a network designed to object detection tasks and is adapted in the Mask R-CNN with a FCN

module to perform segmentation.

The advantage of the Mask R-CNN over a standard FCN is a detection step performed

before the segmentation in the Region Proposal Network (RPN), module, generating a set

of regions (bounding boxes) with the high probability of being objects. The segmentation

is performed inside of the bounding boxes, reducing the false positive error by limiting the

segmentation area. Figure 4.3 presents examples of object detection in the RPN. With this step

before the segmentation, the Mask R-CNN can outperform the FCN segmentation by limiting the

segmentation area to a region close to the salient object.

Taking in mind the shallow evaluation between the FCN and the Mask R-CNN available

in the literature, this work proposes a Mask R-CNN architecture, performs a broad evaluation

between the two early mentioned segmentation approaches, and aims to investigate the Mask

R-CNN effectiveness in the saliency problem by performing a comparison between the Mask

R-CNN and the FCN. The next sections presents details about both architectures and the

implementation utilized in this work.
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(a) (b)

Figura 4.3: Examples of Mask R-CNN object detection with the RPN. Source: ECSSD dataset.

4.1 PROPOSED NETWORKS AND IMPLEMENTATION DETAILS

Aiming to evaluate and compare the FCNs and Mask R-CNNs, two frameworks

containing the implementation of the FCNs and Mask R-CNNs are utilized in the present work:

the KittiSeg [Teichmann et al. (2018)] and the Google Object Detection API [Huang et al. (2017)].

Both frameworks are open source and implemented in TensorFlow [Abadi et al. (2015)], an open

source machine learning library to build advanced Machine and Deep Learning algorithms.

The KittiSeg framework, winner of the Kitti Road Detection Benchmark 2016 [Fritsch

et al. (2013)], was developed to perform segmentation of roads by utilizing FCNs based model.

The KittiSeg framework implements the three versions of FCN evaluated in the present work:

FCN-Residual Network (ResNet)-50, FCN-ResNet-101, and FCN-VGG-16.

In a preliminary search of FCN implementations over the development of the present

work, the KittiSeg stood out based on the following criteria: number of other works based on this

implementation [Dung and Anh (2019); Klomann et al. (2017); Severo et al. (2018); S. Bezerra

et al. (2018); S. Bezerra and Menotti (2017); S. Bezerra (2018)], ease of use, support from other

users (91 issues and 4 pull requests on GitHub [MarvinTeichmann (2019)], site accessed in

05/08/2019), and promising results in preliminary experiments.

The Object Detection API was developed by Google to make it easy to construct, train,

and deploy object detection models. The advantages of the Object Detection API over others

Mask R-CNN implementation are the number of models for detection and segmentation (roughly

20 detection models and 4 segmentation models, including implementations with the same

Convolutional Neural Networks (CNNs) backbones as the KittiSeg: ResNet-50 and ResNet-101).

The Object Detection framework is implemented in the same machine learning (Tensor-

Flow) library as the KittiSeg, and has a significant number of works based on this implemen-

tation [Liu and Zhu (2018); Bellotti et al. (2008); Mustamo (2018); Chen et al. (2018)]. Also,

there is a large community of users supporting the framework (1243 issues and 368 pull requests

on GitHub [Google (2019)], site accessed in 05/08/2019).

4.1.1 Proposed FCNs and implementation details

Figure 4.4 presents the ResNet-50 and ResNet-101 converted in FCN-8 in the KittiSeg

implementation. The ResNets are structured by a sequence of four building blocks, with each
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building block containing a sequence of residual blocks. The difference between each building

block is the number of filters in the convolutional layers.

...

x1

...

x2

...
x4 R-50

x21 R-101

...

x1

Saliency MapInput Image

Convolutional Layer

Upsample Layer Pixelwise Sum

Residual Block

Figura 4.4: The ResNet architectures converted to FCN-8 in the KittiSeg framework. Each residual block (represented

in blue) is composed of three convolutional layers in sequence with filters of size 3 × 3, 1 × 1, and 3 × 3, respectively.

The input of each residual block is added to its output through the skip connection. R-50 represent ResNet-50 and

R-101 represent ResNet-101. The output of the network is the Saliency Map. Source: Author.

The input image goes through the four building blocks of the ResNet, generating a

feature map at the end of the last building block. The feature map, which is 1/32 times smaller

than the input image, suffers a convolution and a ×2 upsample operation, generating a feature

map 1/16 times smaller than the input image.

The output of the third building block enters in a convolutional layer and is added to the

feature map. The resulting feature map suffers a ×2 upsample operation and generates a feature

map 1/8 times smaller than the input image. The output of the second building block enters in

a convolutional layer and is added to the feature map. The resulting feature map suffers a ×8

upsample operation and generates the final segmentation mask.

Figure 4.5 presents the Vgg-16 converted in FCN-8 in the KittiSeg implementation. The

blue blocks are convolutional layers, the red blocks are pooling layers, and the yellow blocks are

fully connected layers converted in convolutional layers.

Input Image

Saliency MapConvolutional Layer

Upsample

Pixelwise Sum

Max-pooling

Figura 4.5: The VGG-16 architecture converted in FCN in the KittiSeg framework. The blue blocks are convolutional

layers, the red blocks are pooling layers, and the yellow blocks are fully connected layers converted in convolutional

layers. Source: Author.

The feature map generated in the fifth pooling layer (last pooling layer), which is 1/32

times smaller than the input image, suffers a convolution and a ×2 upsample operation, generating

a feature map 1/16 times smaller than the input image. The output of the fourth pooling layer

enters in a convolutional layer and is added to the feature map. The resulting feature map suffers

a ×2 upsample operation and generates a feature map 1/8 times smaller than the input image. The

output of the third pooling layer enters in a convolutional layer and is added to the feature map.
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The resulting feature map suffers a ×8 upsample operation and generates the final segmentation

mask.

In Figures 4.4 and 4.6, the white blocks are the building blocks containing a sequence

of residual blocks. Each residual block (represented in blue) is composed of three convolutional

layers in sequence with filters of size 3 × 3, 1 × 1, and 3 × 3, respectively.

4.1.2 Proposed Mask R-CNNs and implementation details

Figure 4.6 presents the ResNet-50 and ResNet-101 converted in Mask R-CNN in the

Object Detection API. The input image goes through the three building blocks of the ResNet,

generating a feature map. The feature map enters in the RPN to create a set of proposals regions.

...

x1

...

x2

...
x4 R-50

x21 R-101

Saliency Map

Input Image

Convolutional Layer

Upsample Layer

Residual Block

...

x1
RPN

RoiAlign

Salient

(Xmin, Ymin) 
(Xmax, Ymax) 

Fully Connected Layer

Figura 4.6: The ResNet architectures converted to Mask R-CNN in the Object Detection API. Each residual block

(represented in blue) is composed of three convolutional layers in sequence with filters of size 3 × 3, 1 × 1, and 3 × 3,

respectively. The input of each residual block is added to its output through the skip connection. R-50 represent

ResNet-50 and R-101 represent ResNet-101. Between the third and fourth blocks, the Mask R-CNN has the RPN

to generate a set of region proposals and the Region of Interest Alignment (RoIAlign) to perform a max-pooling

operation to convert all proposals to a same size feature map. The output of the network is the object classification

(Salient), the bounding boxes coordinates, and the Saliency Map. Source: Author.

In the RPN, the feature map inputs a convolutional layer to generate a set of anchors.

Each anchor in the feature map enters in two convolutional layers attached in parallel to create a

set of bounding boxes and scores to each anchor. A collection of proposals are generated based

on the bounding boxes and scores of each anchor.

The proposals are cropped from the feature map (output of the third building block),

generating a set of proposal objects. The proposal regions enter in the RoIAlign and a max-pooling

layer, generating feature maps of the same size. The feature maps go through a last building

block of the ResNet.

The output of the last building block enters in two sequential fully connected layers,

attached in parallel, to generate the classifications and the bounding boxes prediction. In parallel,

the output of the last building block enters in a upsample layer followed by five convolutional

layers to generate the final segmentation.

4.1.3 Transfer Learning

Training a CNN model from scratch is a complicated process, takes a lot of time, and

requires thousands of training images. The transfer learning technique enables a CNN being

trained in small datasets with a small amount of time. The idea behind the transfer learning

is to use a CNN model, already trained in large datasets and reuse the pre-trained weights to

fine-tuning the network to specific problems by training the CNN models in small datasets.

Aiming to evaluate the FCNs and Mask R-CNNs models, pre-trained weights from other

datasets are utilized in the training step to initialize the network weights. The KittiSeg framework

provided the FCNs models with weights initialized in the ImageNet dataset [Deng et al. (2009)].
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The ImageNet dataset, designed for visual object recognition software research, contains

more than 14 million images divided into more than 20,000 different categories of objects. The

Object Detection API provided the Mask R-CNNs models with weights initialized in the COCO

dataset [Lin et al. (2014)]. The COCO dataset contains 330 thousand images divided into 80

different categories on objects.

4.2 CONCLUSION

The present chapter explained the proposal of this work of perform a comparison

between the Mask R-CNN and the FCN in the Salient Object Detection problem and how the

Mask R-CNN can outperform the FCN in the SOD context. This chapter also details the proposed

FCN and Mask R-CNN, presenting implementation details, frameworks, and the variations of

backbones utilized to compare the FCN and Mask R-CNN. Next chapter presents the datasets

and metrics used to evaluate the networks.
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5 DATASETS AND EVALUATION METRICS

The present chapter details the datasets, metrics, and the statistical tests utilized in

the present work to compare the Fully Convolutional Network (FCN) and Mask Region-based

Convolutional Neural Network (Mask R-CNN). Section 5.1 presents the datasets, Section 5.2

presents the evaluation metrics, Section 5.3 presents the statistical tests, and Section 5.4 ends the

chapter.

5.1 DATASETS

(a) Example of an image con-

taining a salient object.

(b) Example of ground truth

mask extracted.

(c) Example of bounding box

generated from the ground

truth mask.

(d) Example of an image con-

taining a salient object.

(e) Example of ground truth

mask extracted.

(f) Example of bounding box

generated from the ground

truth mask.

(g) Example of an image con-

taining a salient object.

(h) Example of ground truth

mask.

(i) Example of bounding box

generated from the ground

truth mask.

Figura 5.1: Examples of salient objects extracted from the MSRA10K dataset. Figures 5.1a, 5.1d, and 5.1g presents

examples of images containing salient objects, Figures 5.1b, 5.1e, and 5.1h presents examples of the ground truth

mask, and Figures 5.1c, 5.1f and 5.1i presents an example of bounding boxes generated from the ground truth

masks. Source: Cheng et al. (2015).
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In order to evaluate the network models, the present work utilized nine datasets of salient

objects widely used in the Salient Object Detection (SOD) literature: DUT-OMRON [Yang et al.

(2013)], ECSSD [Shi et al. (2016)], HKU-IS [Li and Yu (2015)], ICOSEG [Batra et al. (2010)],

MSRA10K [Cheng et al. (2015)], PASCAL-S [Li et al. (2014)], SED1 [Borji et al. (2015)],

SED2 [Borji et al. (2015)], and THUR [Cheng et al. (2014)].

The datasets are composed by images containing salient objects with different biases

(e.g., number of salient objects, image clutter, center-bias) and the referent ground truth mask

with the expected segmentation of the salient objects. The ground truth masks are binary images

with the salient regions in white (value 255) and the background with no salient regions in black

(value 0).

In order to train the Mask R-CNN, it was necessary to generate the bounding boxes of

each salient object in the images. The bounding boxes were generated on top of the ground truth

masks utilizing the OpenCV library [Bradski (2000)]. Figures 5.1a, 5.1d, and 5.1g present

examples of images containing salient objects, Figures 5.1b, 5.1e, and 5.1h present examples of

ground truth mask, and Figures 5.1c, 5.1f and 5.1i present example of bounding boxes generated

from the ground truth masks.

Table 5.1 presents details about the number of images, number of salient objects, images

sizes, the average number of pixels salient, the average number of background pixels, the average

of the total number of pixels, width and height variation, and the proportion of background pixels

over salient pixels.

Compared with state-of-art datasets (ImageNet [Deng et al. (2009)] and COCO [Lin

et al. (2014)]) utilized in other object classification and detection problems, the saliency datasets

are small datasets. The largest saliency dataset found in the present study is the MSRA10K with

10 thousand images.

The images have small dimensions, with the smallest width and height among 100 and

300 pixels, and the highest width and height between 400 and 500 pixels, with the THUR dataset

being the dataset with the largest images. Also, in the majority, the datasets utilized have 1 or 2

salient objects in each image.

The last four columns in Table 5.1 present the average number of salient, background,

total pixel, and the proportion of background pixels over salient pixels, respectively. In all datasets,

the number of pixels labeled as background is significantly high than the number of pixels

labeled as salient, i.e., the salient objects represent a small portion of the image, categorizing an

unbalanced problem (the categories being classified have a different number of examples).

5.2 EVALUATION METRICS

The architecture models trained in the SOD problem are evaluated and compared through

four metrics widely used in the SOD literature: Precision (Equation 5.1), Recall (Equation 5.2),

F-measure (Equation 5.3), and Mean Absolute Error (MAE) (Equation 5.4).

The Precision and Recall are metrics applied to evaluate binary classification problems,

usually applied in imbalanced problems [Pedregosa et al. (2011)](the number of samples of one

category is higher than another category). The SOD problem is a binary segmentation problem

with the salient pixels being the positive class and the non-salient pixels being the negative class.

The Precision evaluates the proportion of pixels classified as positive (salient) that are

truly positive, and the Recall evaluates the proportion of salient pixels classified as salient [Powers

(2008)]. The F-measure is the harmonic average between the Precision and Recall. Equations 5.1

and 5.2 presents the formulas to calculate the Precision and Recall, respectively.



68

The True Positive is the number of salient pixels classified as salient (correct classification

of salient pixels), the False Positive is the amount of non-salient pixels classified as salient (wrong

classification of background pixels) and the False Negative is the number of salient pixels in an

image classified as background (wrong classification of salient pixels).

Precision =
TruePositive

TruePositive + FalsePositive
(5.1)

Recall =
TruePositive

TruePositive + FalseNegative
(5.2)

F − measure =
(1 + β2)Precision ∗ Recall
β2Precision + Recall

(5.3)

The "β"in the F-measure formula changes the importance of the Precision and Recall. In

general, the value 1 is utilized to preserve the equality importance of both. In the SOD literature,

"β2"receives value 0.3 [Borji et al. (2015); Achanta et al. (2009); Cheng et al. (2015); Perazzi

et al. (2012)] to increase the Precision importance (i.e. the proportion of pixels classified as

positive (salient) that are truly positive).

Attention detection methods aim to locate the position of salients object as accurately as

possible, i.e. with high Precision [Zheng et al. (2010)]. As explained in Zheng et al. (2010), the

Recall is not much useful for attention detection because high Recall rates are achieved by just

selecting a large portion of the image, scarifying the Precision rate.

The MAE verifies how far the predicted result is from the true value and is calculated as

the average of the difference between the predicted Saliency Map and the ground truth Saliency

Map (both normalized between 0 and 1) [Borji et al. (2015)]. The MAE formula is presented

in Equation 5.4. The "W"and "H"are the image width and height, respectively. The "S"is the

predicted Saliency Map, and "G"is the ground truth Saliency Map.

M AE =
1

W ∗ H

W∑
x=1

H∑
y=1

|S(x, y) − G(x, y)| (5.4)

5.3 STATISTICAL TESTS

The statistical test aims to provide statistical confidence about the results achieved in

the training step. In order to measure the differences in performances of the neural networks

evaluated in this work, two statistical tests were performed: Shapiro–Wilk test [SHAPIRO and

WILK (1965)] and Wilcoxon signed-rank test [Wilcoxon (1992)].

5.3.1 Shapiro–Wilk Test

The Shapiro–Wilk test is a statistical test to verify if a random distribution, x0, x1, ..., xn
comes from a Gaussian distributed population. The Shapiro-Wilk test is calculated as follows:

• Let x = [x0, x1, ..., xn] be a random distribution;

• Let x coming from a normally distributed population be the null hypothesis;

• Let x not coming from a normally distributed population be the alternative hypothesis;
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The test statistic W is calculated as follows:

W =
(∑n

i=0 ai x(i))2∑n
i=0(xi − x̄)2 (5.5)

Where:

• xi is a sample at position i;

• x(i) is a sample at position i in the ordered sample values vector (ascending order);

• x̄ = x0+x1+...+xn
n ;

• (a0, a1, ..., an) are constants calculated with the covariance, variance, and means of a

normal distribution sample with size n [Pearson and Hartley (1972)].

5.3.2 Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test with the

aim to compare two distributions and can be applied to rank the performance difference of two

classifiers [Demšar (2006)]. The Wilcoxon signed-rank test was chosen in the present work

because it does not require that the distributions compared to be Gaussian distributions. The

Wilcoxon test is calculated as follows:

• Let x = [x0, x1, ..., xn] and y = [y0, y1, ..., yn] be two random distribution that will be

compared;

• The null hypothesis of the Wilcoxon signed-rank says that the median of the differences

between x and y is equal to zero;

• The alternative hypothesis of the Wilcoxon signed-rank says that the median of the

differences between x and y is different of zero;

• Compute the absolute difference d between x and y, d = [|x0− y0 |, |x1− y1 |, ..., |xn− yn |];
• Compute the sign s of the difference between x and y, s = [sgn(x0 − y0), sgn(x1 −
y1), ..., sgn(xn − yn)];

• Discard from d and s the differences equal to zero;

• Order d in ascending order;

• For each value of d, assign a rank r = 1, 2, 3, ..., n. Repeated absolute values receive the

average of the ranks they cover;

• Each rank ri of di receives a sign si;

• Calculate R+ as the sum of the positive ranks and R− as the sum of the negative ranks,

both in absolute values;

R+ = |
n∑

i=0

ri |, ri > 0 (5.6)

R− = |
n∑

i=0

ri |, ri < 0 (5.7)
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• Take the smaller value between R+ and R−, T = min(R+, R−);
• Calculates a z-score as follows:

z =
T − 1

4
N(N + 1)√

1
24

N(N + 1)(2N + 1)
(5.8)

5.3.3 P-value

In both tests, the statistical significance is measured through the P-value, that contains

the probability of achieving the measured statistical value, "W"in the Shapiro-Wilk test and "z"in

the Wilcoxon signed-rank test, when the null hypothesis is true. In order to decide to accept or

reject the null hypothesis, a significance level α = 0.05 is defined [Demšar (2006)]. Then, if the

p-value is higher than "α", accept the null hypothesis, or if the P-value is smaller than "α", reject

the null hypothesis.

5.3.4 Implementation

This work utilized the implementation of the Scipy [Jones et al. (01 )] library in both

statistical tests performed. The Scipy is a Python open source library for mathematics, science,

and engineering. The Shapiro-Wilk function implemented in the Scipy receives an array "x"and

outputs the "W"and the P-value. The Wilcoxon signed-rank test implemented in the Scipy

receives two arrays of F-measures "x"and "y", and outputs the T = min(R+, R−) and the P-value.

The Scipy implementation of the Wilcoxon signed-rank also support other alternative

hypothesis to evaluate if the values in "y"are higher than the values in "x"(x < y), or the values

of "y"are smaller than the values in "x"(x > y). As presented in Section 5.3.2, the Wilcoxon

Signed-rank test performs the operation x − y, generating an array of differences "d". Each

difference in "d"receives a rank, and each rank receives the signal of the difference. So, if x < y,

there will be more negative than positive ranks, generating a small "R+". Meanwhile, if x > y,

there will be more positive than negative ranks, generating a large "R+".
When utilizing the alternative hypothesis, the Scipy implementation of the Wilcoxon

signed-rank utilizes the "R+"to calculate the z-score. So, if the values in "x"are smaller than the

values in "y", the P-value generated by the Wilcoxon signed-rank function implemented in the

Scipy will be small. In the other hand, if the values in "x"are higher than the values in "y", the

P-value generated by the Wilcoxon signed-rank function implemented in the Scipy will be high.

As the objective of this work is to show that the Mask R-CNN outperforms the FCN in the SOD

context, the alternative hypothesis of x < y is utilized.

5.4 CONCLUSION

The present chapter detailed the datasets, metrics, and statistical methods utilized in

the present work to compare the FCN and Mask R-CNN. Next chapter presents the experiments

realized, the methodology of experiments and the results achieved.
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6 EVALUATION AND EXPERIMENTS

Defining the training and test protocol is an essential step to evaluate Machine Learning

algorithms. In artificial neural networks evaluation, presented in Chapter 2, this protocol defines

the training datasets, the number of images in the training, validation, and test sets. This protocol

also defines which images sets are used to training and test the models, and validation protocols

to better define networks parameters. The evaluation protocol is essential for a fair comparison

between the methods proposed to solve a particular problem.

However, the studies proposed in the SOD literature do not have a standard evaluation

protocol defined. Several works follow different protocols, turning it challenging to perform a

fair comparison with all studies proposed in the field. After an extensive literature review, this

present work follows the protocol most recurrent in the literature.

The evaluation of the FCNs and Mask R-CNNs architectures described in Chapter 4

followed the steps: training, validation, and test. In the training step, the present work follows

the protocol proposed by Nie et al. (2018); Tang and Wu (2016); Zhang et al. (2017); Li et al.

(2016); Xi et al. (2017); Tang et al. (2016); Kruthiventi et al. (2016); Zhang et al. (2018, 2019).

This protocol uses the MSRA10K [Cheng et al. (2015)] dataset to perform the models

training, with the test being performed in the DUT-OMRON [Yang et al. (2013)], ECSSD [Shi

et al. (2016)], HKU-IS [Li and Yu (2015)], ICOSEG [Batra et al. (2010)], PASCAL-S [Li et al.

(2014)], SED1 [Borji et al. (2015)], SED2 [Borji et al. (2015)], and THUR [Cheng et al. (2014)]

datasets, depicting a cross-dataset problem.

Five models were evaluated in the present work: a Residual Network (ResNet)-50

converted in FCN, called FCN-ResNet-50, a ResNet-101 converted in FCN, called FCN-ResNet-

101, a ResNet-50 converted in Mask R-CNN, called Mask R-CNN-ResNet-50, ResNet-101

converted in Mask R-CNN, called Mask R-CNN-ResNet-101, and VGG-16 converted in FCN,

called FCN-VGG-16.

A validation step is performed before the network’s training to find the best number

of iterations to train each model and the best learning rate for each model. In the validation,

this present work utilizes a K-fold strategy, with "K"equal to five. In the K-fold validation, the

training dataset is divided into "K"different sets for training and validation.

Section 6.1 explains in details the validation strategy performed and presents the results

obtained. Section 6.2 presents the results achieved in each evaluation dataset in the test step.

Section 6.3 presents a statistical analysis performed to compare the FCN and the Mask R-CNN.

Finally, Section 6.4 presents a discussion about the results.

6.1 VALIDATION

The first experiment performed in the present study was the models’ validation. The

validation is an important step in Machine Learning algorithms and is used to adjust the network’s

parameters (number of training iterations and learning rate) to improve the generalization and

preventing the overfitting.

The networks evaluated in this present study were validated through a K-fold strategy

with K equal to five. In a K-fold validation with "K"equal to five, the training dataset (MSRA10K)

is divided into five sets (folds) of images and trained five times. In the first network training, the

training set is composed of four folds (80% of the dataset), with the validation being performed

in the fifth fold (20% of the dataset).
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In the second network training, the validation fold used in the first training is added to

the training set, and one of the folds in the training set (still not used in the validation) is removed

from the training set and used to perform the validation in this second network training. The

process repeats until all folds being used in training and validation.

Each model evaluated in this present work was validated following the K-fold strategy.

For each fold, the networks were trained for 100,000 iterations. For each model evaluated, an

initial learning rate was defined through preliminary experiments.

The ResNets 50 and 101 converted in FCN received an initial learning rate of 10−6 and

the ResNets 50 and 101 converted in Mask R-CNN received an initial learning rate of 10−4. The

FCN-VGG-16 received an initial learning rate of 10−5 An exponential learning rate decay, similar

to the proposed in the literature [Alom et al. (2018)], was utilized to reduce the variance of the

learning curves in the last training iterations.

For all networks, the initial learning rate is divided to 10 at the iteration 50,000,

generating a learning rate that is divided to 10 again at the iteration 75,000. The higher learning

rate in the first iterations force a higher convergence in the firsts training iterations, while the

lower learning rate generates in the last iterations generate a fine adjustment in the results.

These learning rates were chosen through preliminary experiments. Initially, the standard

learning rates of the KittiSeg and the Object Detection API were utilized to generate preliminary

learning curves of the network. Then, different values of learning rates (10−3,10−4,10−5,10−6,10−7,

and 10−8), higher and lower values , were utilized to generate a stable learning curve to all

networks. With the learning rate values utilized, the networks were able to learn very quickly in

the first training iterations and converge to an F-measure value with a small standard deviation in

the last training iterations. Higher learning rate values generated F-measure values with high

standard deviation in each evaluated training iteration, and the networks were not able to converge.

With smaller learning rate values, the learning of the networks was too slow, and it would be

necessary much more training iterations to the networks being able to converge.

Figura 6.1: The learning curves with the F-measures of each fold generated by the FCN-ResNet-50, which started

with an F-measure between 76% and 79% at iteration 10,000 and achieved an F-measure between 82% and 84% in

the last iterations. Source: Author.
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Figura 6.2: The learning curves with the F-measures of each fold generated by the FCN-ResNet-101, which started

with an F-measure between 74% and 78% at iteration 10,000 and achieved an F-measure between 82% and 86% in

the last iterations. Source: Author.

Figura 6.3: The learning curves generated with the F-measures of the folds of the FCN-VGG-16, which started with

an F-measure between 89% and 91% at iteration 10,000 and achieved an F-measure between 93% and 94% in the

last iterations. Source: Author.

Figure 6.1 presents the learning curves with the F-measures of each fold generated by

the FCN-ResNet-50. At iteration 10,000, the fold3 was the worst fold, with an F-measure of

76%, and the fold2 was the best fold, with an F-measure of 79%. At iteration 100,000, the fold1
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was the worst fold, with an F-measure of 82%, and the fold2 was the best fold, with an F-measure

of 84%.

Figure 6.2 presents the learning curves with the F-measures of each fold generated by

the FCN-ResNet-101. At iteration 10,000, the fold0 was the worst fold, with an F-measure of

74%, and the fold3 was the best fold, with an F-measure of 78%. At iteration 100,000, the fold0

was the worst fold, with an F-measure of 82%, and the fold4 was the best fold, with an F-measure

of 86%.

Figure 6.3 presents the learning curves with the F-measures of each fold generated by

the FCN-VGG-16. At iteration 10,000, the fold3 was the worst fold, with an F-measure of 89%,

and the fold4 was the best fold, with an F-measure of 91%. At iteration 100,000, the fold3 was

the worst fold, with an F-measure of 93%, and the fold4 was the best fold, with an F-measure o

94%.

In Figure 6.2, it is harder to define the better convergence iteration due to a high variance

in the F-measure in the learning curves, mainly in the learning curve of the fold0. In order

to define the best iteration to train the models, for each network it was generated the average

F-measure curve, and from the average F-measure curve, it was generated an error measurement

(1 - F-measure).

Figure 6.4 presents the learning curve with the error of the average F-measure of five

folds generated in the validation step of the FCN-ResNet-50, Figure 6.5 presents the learning

curve with the error of the average F-measure of five folds generated in the validation step of

the FCN-ResNet-101, and Figure 6.6 presents the learning curve with the error of the average

F-measure of five folds generated in the validation step of the FCN-VGG-16. As presented in

the figures, the FCN-ResNet-50 achieved the lowest error measurement in the iteration 40,000,

the FCN-ResNet-101 achieved the lowest error measurement in the iteration 60,000, and the

FCN-VGG-16 achieved the lowest error measurement in the iteration 100,000.

Figura 6.4: The learning curve with the F-measure error generated by the FCN-ResNet-50. As presented in the

figure, the iteration 40,000 achieved the lowest error measurement. Source: Author.
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Figura 6.5: The learning curve with the F-measure error generated by the FCN-ResNet-101. As presented in the

figure, the iteration 60,000 achieved the lowest error measurement. Source: Author.

Figura 6.6: The learning curve with the F-measure error generated by the FCN-VGG-16. As presented in the figure,

the iteration 100,000 achieved the lowest error measurement. Source: Author.

Figure 6.7 presents the learning curves with the F-measures of each fold generated by the

Mask R-CNN-ResNet-50. At iteration 10,000, the fold4 was the worst fold, with an F-measure of

87%, and the fold3 was the best fold, with an F-measure of 88%. At iteration 100,000, all folds

generated an F-measure of 89%.



76

Figura 6.7: The learning curves with the F-measures of each fold generated by the Mask R-CNN-ResNet-50, which

started with an F-measure between 87% and 88% at iteration 10,000 and achieved an F-measure of 89% in the last

iterations. Source: Author.

Figura 6.8: The learning curves with the F-measures of each fold generated by the Mask R-CNN-ResNet-101, which

started with an F-measure between 86% and 89% at iteration 10,000 and achieved an F-measure of 90% in the last

iterations. Source: Author.

Figure 6.8 presents the learning curves with the F-measures of each fold generated

by the Mask R-CNN-ResNet-101. At iteration 10,000, the fold2 was the worst fold, with an
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F-measure of 86%, and the fold3 was the best fold, with an F-measure of 89%. At iteration

100,000, all folds generated an F-measure of 90%.

Figura 6.9: The learning curve with the F-measure error generated by the ResNet-50 converted in Mask R-CNN. As

presented in the figure, the iteration 60,000 achieved the lowest error measurement. Source: Author.

Figura 6.10: The learning curve with the F-measure error generated by the Mask R-CNN-ResNet-101. As presented

in the figure, the iteration 70,000 achieved the lowest error measurement. Source: Author.

Figure 6.9 presents the learning curve with the error of the average F-measure of five

folds generated in the validation step of the Mask R-CNN-ResNet-50 and figure 6.10 presents the
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learning curve with the error of the average F-measure of five folds generated in the validation

step of the Mask R-CNN-ResNet-101. As presented in the figure, the Mask R-CNN-ResNet-50

achieved the lowest error measurement in the iteration 60,000, and the Mask R-CNN-ResNet-101

achieved the lowest error measurement in the iteration 70,000.

In the validation step, the Mask R-CNNs already showed great improvement when

compared with the FCNs. With the ResNet-50 backbone, the Mask R-CNN showed an

improvement between 5% and 7% of F-measure over the FCN, and with the ResNet-101, the

Mask R-CNN showed an improvement between 4% and 8% of F-measure over the FCN. The FCN

with VGG-16 backbone achieved the best results in the validation step. However, the FCN with

VGG-16 backbone was the network that needed a higher number of training iterations to converge.

The next section presents the tests performed, measuring the Mask R-CNN improvement over the

FCN and which network achieved better results in each dataset.

6.2 EVALUATION TESTS

Aiming to evaluate the models in the test datasets, DUT-OMRON, ECSSD, HKU-IS,

ICOSEG, PASCAL-S, SED1, SED2, and THUR (datasets presented in Chapter 5.1), each model

was trained five times. The entire MSRA10K was utilized as a training set, and each model was

training with the number of iterations defined in the validation step. So, the FCN-ResNet-50

was trained for 40,000 iterations, the FCN-ResNet-101 was trained for 60,000 iterations, the

FCN-VGG-16 was trained for 100,000 iterations, the Mask R-CNN-ResNet-50 was trained for

60,000 iterations, the Mask R-CNN-ResNet-101 was trained for 70,000 iterations.

Each model was trained five times to generate a fair comparison between the evaluated

methods. Besides the initial weights being fixed due to the transfer learning technique, the final

weights can be different. It happens because the images are randomly chosen in batches during

the training step, and the dropout layers attached in the training step. So, there are training results

that can achieve better results than others. The average of multiple training is capable of leveling

those training differences, allowing a fairer comparison of the results.

After performing the five training of a specific model, each training was evaluated in the

eight test datasets, generating five F-measures, Precisions, Recalls, and MAEs per dataset. The

final F-measure, Precision, Recall, and MAE of a test dataset are calculated as the average of the

five training.

As presented in Section 6.1, the FCN-VGG-16 achieved the best results in the validation

step, showing the VGG-16 as a promising backbone in the SOD problem. However, the Object

Detection API did not implement a Mask R-CNN with a VGG-16 backbone. So, in order

to simulate the Mask R-CNN with a VGG-16 backbone, it were utilized the bounding boxes

generated by the ResNets converted in Mask R-CNNs to evaluate the possibility of improving the

FCN with VGG-16 backbone, generating two new solutions named as FCN-VGG-16-R50 and

FCN-VGG-16-R101, to represent the FCN-VGG-16 improved by the Mask R-CNN-ResNet-50

bounding boxes and the FCN-VGG-16 improved by the Mask R-CNN-ResNet-101 bounding

boxes, respectively. Table 6.1 presents the average F-measure, Precision, Recall, and MAE

achieved per dataset and the standard deviation of each model.
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With the ResNet-50 backbone, the Mask R-CNN overcame the FCN F-measure in 37.9%

in the SED2, 24.51% in the SED1, and 19.65% in the DUT-OMRON datasets. In the worst

case, the Mask R-CNN overcame the FCN F-measure in 0.07% in the ICOSEG dataset. With

exception of the ICOSEG dataset, the Mask R-CNN achieved lower MAEs when compared with

the FCN. Figure 6.11 presents the F-measure difference between the FCN-ResNet-50 and the

Mask R-CNN-ResNet-50, with the Mask R-CNN achieving the best F-measure results in all

datasets.

Figura 6.11: F-measure comparison between the FCN and Mask R-CNN utilizing the ResNet-50 backbone, with the

Mask R-CNN overcoming the FCN F-measure in all datasets. Source: Author.

The Mask R-CNN with ResNet-50 backbone has not improved the F-measure and

MAE results in the ICOSEG dataset due to the high complexity of the ground truth annotations.

Figure 6.12 presents examples of ground truth masks from the MSRA10K dataset utilized to

train the evaluated models, and Figure 6.13 presents examples of ground truth masks from the

ICOSEG dataset. As presented in the images, the annotation in the ICOSEG dataset is more

complex, and detailed than the annotation in the MSRA10K dataset, and even the state of art

methods have difficulties to generate segmentation masks with this precision level. As presented

in Table 6.1, the Mask R-CNN achieved a promising F-measure value, that is, the Mask R-CNN

can find the salient objects and generate a segmentation masks that covers most of the salient

pixels. However, due to the high detailed annotations, that highlight tiny details from the objects,

it is harder to improve the F-measure and MAE metrics.



81

(a) (b) (c) (d)

Figura 6.12: Examples of ground truth masks from the MSRA10K dataset. Source MSRA10K dataset.

(a) (b) (c) (d)

Figura 6.13: Examples of ground truth masks from the ICOSEG dataset. Source ICOSEG dataset.

With the ResNet-101 backbone, the Mask R-CNN results were even better when

compared with the FCN. The FCN-ResNet-101 achieved worst results when compared with the

FCN-ResNet-50. However, when converted in Mask R-CNN, the ResNet-101 achieved better

results when compared with the Mask R-CNN-ResNet-50.

Figura 6.14: F-measure comparison between the FCN and Mask R-CNN utilizing the ResNet-101 backbone, with

the Mask R-CNN overcoming the FCN F-measure in all datasets. Source: Author.

In the worst case, the Mask R-CNN overcame the FCN F-measure in 7.13% in the

HKU-IS dataset and in the best cases, the Mask R-CNN overcame the FCN F-measure in 47.61%
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in the SED2, 36.20% in the SED1, and 26.48% in the DUT-OMRON datasets. Also, the Mask

R-CNN achieved lower MAEs in all datasets when compared with the FCN. Figure 6.14 presents

the F-measure difference between the FCN-ResNet-101 and the Mask R-CNNResNet-101, with

the Mask R-CNN achieving the best F-measure results in all datasets.

Figura 6.15: F-measure comparison between the FCN with VGG-16 backbone and the FCN with VGG-16 backbone

improved by ResNet-50 converted in Mask R-CNN bounding boxes, with the bounding box strategy improving the

results in the SED1 dataset. Source: Author.

Figura 6.16: F-measure comparison between the FCN with VGG-16 backbone and the FCN with VGG-16 backbone

improved by ResNet-101 converted in Mask R-CNN bounding boxes, with the bounding box strategy improving the

results in the SED1 and THUR datasets. Source: Author.

The original FCN-VGG-16 results remained as the best results in the majority of the

datasets. Applying the bounding boxes generated by the Mask R-CNNs improved the F-measures
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only of the SED1 and THUR datasets, and improved the MAE of the DUT-OMRON, SED1, and

THUR datasets. Figure 6.15 and Figure 6.16 presents the F-measure difference between the FCN-

VGG-16 and the FCN-VGG-16-R50, and the F-measure difference between the FCN-VGG-16

and the FCN-VGG-16-R101, respectively.

As presented above, the FCN-VGG-16 achieved the best F-measures among the FCNs

and the Mask R-CNN-ResNet-101 achieved the best F-measures among the Mask R-CNNs.

Because of that, the two architectures were compared and Figure 6.17 presents the F-measure

difference between the FCN-VGG-16 and the Mask R-CNN-ResNet-101. The Mask R-CNN-

ResNet-101 outperformed the FCN-VGG-16 F-measures in 1.2% in the DUT-OMRON, in 4.19%

in the SED1, and 19.97% in the SED2 datasets. In the other datasets, the Mask R-CNN achieved

very close F-measures to the FCN-VGG-16. The Mask R-CNN-ResNet-101 also generated better

MAEs in the ECSSD, ICOSEG, PASCAL-S, SED1, and SED2 datasets.

Figura 6.17: F-measure comparison between the FCN with VGG-16 backbone and the Mask R-CNN with ResNet-101

backbone. The Mask R-CNN-ResNet-101 achieved F-measures higher than the FCN-VGG-16 in the DUT-OMRON,

SED1, and SED2 datasets. Source: Author.

As presented in Chapter 4, the expected result of the Mask R-CNN in the SOD problem

was an improvement in the segmentation Precision. The Mask R-CNN performs the segmentation

inside the region proposals, reducing the possibility of performing the segmentation in regions

far from the object and decreasing the false positive error. However, as presented in Table 6.1,

the higher contribution of the Mask R-CNN was in the Recall, meaning that the Mask R-CNN

drastically reduced the false negative error.

Figure 6.19 shows examples of segmentation generated by the FCN-ResNet-50, and

examples of segmentation generated by the Mask R-CNN-ResNet-50 and Figure 6.18 shows

examples of segmentation generated by the FCN-ResNet-101 and examples of segmentation

generated by the Mask R-CNN-ResNet-101. As presented, with both backbones, the Mask

R-CNN significantly decreased the false negative error when compared with the FCN, and also,

as presented in 6.18, the Mask R-CNN also decreased the false positive error when compared

with the FCN.
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(a) Example of an

image containing one

salient object. Source:

DUT-OMRON dataset.

(b) The respective Sali-

ency Map (the ground

truth). Source: DUT-

OMRON dataset.

(c) The Saliency Map

generated by the FCN

with ResNet-101 back-

bone (in teal). Source:

Author.

(d) The Saliency Map

generated by the Mask

R-CNN with ResNet-

101 backbone (in teal).

Source: Author.

Figura 6.18: Comparison between FCN-ResNet-101 and Mask R-CNN-ResNet-101 segmentation.

(a) Example of an

image containing one

salient object. Source:

DUT-OMRON dataset.

(b) The respective Sali-

ency Map (the ground

truth). Source: DUT-

OMRON dataset.

(c) The Saliency Map

generated by the FCN

with ResNet-50 back-

bone (in teal). Source:

Author.

(d) The Saliency Map

generated by the Mask

R-CNN with ResNet-

50 backbone (in teal).

Source: Author.

Figura 6.19: Comparison between FCN-ResNet-50 and Mask R-CNN-ResNet-50 segmentation.

6.3 STATISTICAL ANALYSIS

In order to perform the statistical analysis, the average F-measure is utilized as input of

the statistical tests performed. The F-measure is the harmonic average between the Precision

and Recall and encodes information from false positive and false negative errors. Both

implementations in the Scipy library receive arrays of F-measures calculated with the mean

F-measure per image. As explained in Section 6.2, each model was trained five times and tested

five times, generating a total of five F-measures for each test image. So, for each test dataset, it

was generated an array with the size equal to the number of images in that dataset. Each position

of that array represents an image in the dataset and contains the mean F-measure of five training

for that image.

The first statistical test performed in this work was the Shapiro-Wilk test to verify if

the F-measure results achieved in each evaluated method follows a normal distribution or not.

The input of the Shapiro-Wilk test implemented in the Scipy is an array x with the F-measure
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distributions generated by the evaluated methods. The W and the P-value are outputs generated

by the Shapiro-Wilk test implemented in the Scipy library and are presented in Table 6.2.
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The null hypothesis of the Shapiro-Wilk test says that the input distribution follows a

normal distribution. A significance level α = 0.05 is defined [Demšar (2006)]. Then, if the

P-value is higher than α, accept the null hypothesis, or if the P-value is smaller than α, reject the

null hypothesis. As shown in Table 6.2, all P-values achieved results smaller than the significance

level, and the null hypothesis can be rejected for all evaluated methods in all datasets, i.e., the

distributions are not normally distributed.

After performing the Shapiro-Wilk test and proof that the distributions do not follow a

normal distribution, the Wilcoxon signed-rank test is performed to compare the methods. The

Wilcoxon signed-rank test implemented in the Scipy library receives two arrays of F-measures x
and y. The F-measures generated by the FCN are represented as x and the F-measures generated

by the Mask R-CNN are represented as y.

The Wilcoxon signed-rank test is applied in this work to evaluate if x < y. The null

hypothesis of the Wilcoxon signed-rank says that the median of the differences between x and y is

equal to zero, which means that the Mask R-CNN did not outperforms the FCN. In the alternative

hypothesis, the values in x are smaller than the values in y, generating small P-values and the

null hypothesis can be rejected, which means that the Mask R-CNN outperformed the FCN.

Table 6.3 presents the P-values generated by the Wilcoxon signed-rank test. A signifi-

cance level α = 0.05 is also defined. If the P-value is higher than α means that the values in x
are similar or higher than the values in y, and the null hypothesis is accepted. Otherwise, if the

P-value is smaller than α means that the values in x are smaller than the values in y and the null

hypothesis is rejected.

The FCN-ResNet-50, when compared with the Mask R-CNN-ResNet-50, achieved

P-values smaller than the significance level (α = 0.05) in all datasets, except in the ICOSED. So,

with the exception of the ICOSEG dataset, the null hypothesis can be rejected in all datasets, and

the Mask R-CNN-ResNet-50 can be considered statistically better for the SOD problem than the

FCN-ResNet-50.

Figura 6.20: Box-plot comparison between the FCN-ResNet-50 (FR50) and the Mask R-CNN-ResNet-50 (MR50).

Source: Author.



88

Figure 6.20 presents the box-plot comparison between the FCN-ResNet-50 and the

Mask R-CNN-ResNet-50. The box-plot shows that both networks, FCN and Mask R-CNN,

achieved F-measures very close to zero, and also achieved F-measures very close to one. However,

the medians of the F-measures in the Mask R-CNN results are superior to the medians of the

F-measures in the FCN results.

With the exception of the ICOSEG dataset, the Mask R-CNN achieved superior F-

measure medians in all datasets. Also, the Mask R-CNN generated smaller box-plots, indicating

that the Mask R-CNN is more robust to the different difficulties of each image of the dataset and

generates F-measure closer to the median, while the F-measures generated by the FCN are more

scattered. The Mask R-CNN also generated more outliers than the FCN.

The FCN-ResNet-101, when compared with the Mask R-CNN-ResNet-101, achieved

P-values smaller than the significance level (α = 0.05) in all datasets. So, the null hypothesis

can be rejected in all datasets, and the Mask R-CNN-ResNet-101 can be considered statistically

better for the SOD problem than the FCN-ResNet-101.

Figure 6.21 presents the box-plot comparison between the FCN-ResNet-101 and the

Mask R-CNN-ResNet-101. Similar to the ResNet-50 backbone, the medians of the F-measures

in the Mask R-CNN results are superior to the medians of the F-measures in the FCN results.

The Mask R-CNN achieved superior F-measure medians and generated smaller box-plots in all

datasets. The Mask R-CNN also generated more outliers than the FCN.

Figura 6.21: Box-plot comparison between the FCN-ResNet-101 (FR101) and the Mask R-CNN-ResNet-101

(MR101). Source: Author.

The FCN-VGG-16, when compared with the FCN-VGG-16-R50 and the FCN-VGG-16-

R101, achieved P-values higher than the significance level (α = 0.05) in all datasets, and the null

hypothesis cannot be rejected. That is, using the bounding boxes generated by the Mask R-CNN

has not improved the FCN-VGG-16 results.

Figure 6.22 and Figure 6.23 present the box-plots comparison between the FCN-VGG-16

and the FCN-VGG-16-R50 and the FCN-VGG-16-R101. As expected, applying the bounding
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Figura 6.22: Box-plot comparison between the FCN-VGG-16 (FV16) and the FCN-VGG-16-R50 (FV50). Source:

Author.

Figura 6.23: Box-plot comparison between the FCN-VGG-16 (FV16) and the FCN-VGG-16-R101 (FV101). Source:

Author.

boxes generated by the Mask R-CNN has not generated muny variations in the F-measure

distributions of the FCN-VGG-16, and the box-plot generated by the FCN-VGG-16 improved

with the bounding boxes are very similar with the original. The higher differences are in the size

of the box-plots. The bounding box strategy worsened some results of the original FCN-VGG-16,



90

making the first quartile and the minimum F-measures of the bounding box strategy a little bit

lower when compared with the original.

As the FCN-VGG-16 achieved the best results among the FCNs and the Mask R-CNN-

ResNet-101 achieved the best results among the Mask R-CNNs, they were also compared with

the Wilcoxon signed-rank test. The Mask R-CNN-ResNet-101 generated F-measures statistically

higher than the FCN-VGG-16 only in the SED1 and SED2 datasets, with P-values smaller than

the significance level (α = 0.05). So, the null hypothesis can be rejected only in these two

datasets.

Figure 6.24 presents the box-plot comparison between the FCN-VGG-16 and the Mask

R-CNN-ResNet-101. The Mask R-CNN achieved higher medians in the SED1 and SED2 datasets.

However, the FCN achieved higher F-measures in the other datasets. In the DUT-OMRON,

PASCAL-S, SED1, and SED2 datasets, the Mask R-CNN generated smaller box-plots than the

FCN, and as a consequence of this distribution with F-measures closer to the median, the Mask

R-CNN also generated more outliers than the FCN. In the ECSSD, HKU-IS, ICOSEG, and

THUR datasets, the FCN generated smaller box-plots and more outliers than the Mask R-CNN.

Figura 6.24: Box-plot comparison between the FCN-VGG-16 (FV16) and the Mask R-CNN-ResNet-101 (MR101).

Source: Author.

6.4 CONCLUSION

As presented in this chapter, the Mask R-CNN impressively outperformed the FCN with

the ResNet-50 and the ResNet-101 backbones, and as showed by the Wilcoxon signed-rank test,

the results generated by the Mask R-CNNs are statistically higher than the results generated by

the FCN.

The most impressive result was in the SED2 dataset, with an improvement of 47.61%

with the ResNet-101 backbone. The VGG-16 also showed to be a promising backbone, with the

FCN-VGG-16 achieving the highest F-measures in many datasets. However, the Mask R-CNN-

ResNet-101 outperformed all evaluated FCNs in the DUT-OMRON, SED1, and SED2. Also, the
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strategy of applying the Mask R-CNNs bounding boxes in the FCN-VGG-16 segmentation masks

has not improved the results, and the VGG-16 will be explored as a Mask R-CNN backbone in

future works.

Among the evaluated FCNs, the ResNets achieved very poor segmentation results. The

Mask R-CNN strategy of detecting regions of the image with a high probability of being objects,

and performing the segmentation inside the detected regions, was able to improve the results of

the ResNets, generating results close to the FCN with VGG-16 backbone.

Also, as explained in the Chapter 4, when compared with the FCN, it was expected

a reduction of the false positive error with the object detection module of the Mask R-CNN.

However, the Mask R-CNN highly improved the Recall, reducing the false negative error. Next

chapter presents the final thoughts and discusses possible future works.
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7 CONCLUSION

Fully Convolutional Networks (FCNs) have been achieving promising results in the

Salient Object Detection (SOD) literature. However, preliminary experiments with standard

FCNs showed that the FCNs have limitations to perform the segmentation of salient objects

in some changeling scenarios. Fairly recently, the Mask Region-based Convolutional Neural

Network (Mask R-CNN) was used in the SOD literature aiming to overcome such limitations.

However, no extensive comparison between the FCN and the Mask R-CNN was presented in

the literature. Taking in mind the shallow evaluation between the FCN and the Mask R-CNN

available in the literature, this work proposed a Mask R-CNN architecture and performed a broad

evaluation between the the two early mentioned segmentation approaches.

The present work compared three versions, FCN-Residual Network (ResNet)-50, FCN-

ResNet-101, and FCN-VGG-16, with two versions of the Mask R-CNN, Mask R-CNN-ResNet-50

and Mask R-CNN-ResNet-101, through extensive experiments on eight public datasets using

four metrics (F-measure, Precision, Recall, and Mean Absolute Error (MAE)).

In the experiments performed in this work, the Mask R-CNN impressively outperformed

the FCN. With the ResNet-50 as the backbone, the Mask R-CNN achieved superior F-measure in

seven of eight datasets when compared with the FCN with the same backbone, and achieved

superior MAE in seven of eight datasets. With the ResNet-101 as the backbone, the Mask R-CNN

achieved superior F-measure and MAE in all datasets when compared with the FCN with the

same backbone.

The FCN-VGG-16 achieved the highest F-measures among all evaluated FCNs and

was compared with the Mask R-CNN with ResNet-101 backbone, that achieved the best results

among the evaluated Mask R-CNNs. The Mask R-CNN-ResNet-101 achieved higher F-measure

in three of eight datasets, with improvements from up to 20%. The Mask R-CNN-ResNet-101

also improved the MAE in five of eight datasets when compared with the FCN-VGG-16.

The experiments performed in this work showed that the Mask R-CNN is a promising

architecture to be explored in the SOD problem. The Region Proposal Network (RPN) attached

before the segmentation module in the Mask R-CNN improved the segmentation results by

significantly decreasing the false negative error, which highly increased the Recall metric.

Although the Mask R-CNNs evaluated in this work are outperformed by state-of-art

results [Liu et al. (2019)] based on enhanced FCNs, further research enhancing the Mask R-CNNs

in a similar way could provide competitive results, with the findings of this work endorsing that

the Mask R-CNN is a promising alternative to solve the SOD problem.

7.1 FUTURE WORKS

Besides the promising results achieved by the Mask R-CNNs, there are new improvements

and alternatives to be explored in future works.

• As presented in Chapter 4, the implementation utilized in this work has not implemented

the Feature Pyramid Network (FPN), a robust module attached at the beginning of the

Mask R-CNN that provides multiscale information to the RPN and the segmentation

module. Versions of the Mask R-CNN with the FPN could be evaluated in the SOD

problem in future works.
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• As presented, the VGG-16 achieved the most promising results among all backbones

evaluated. Future works could utilize implementations of the Mask R-CNN with the

VGG-16 backbone and evaluate if the VGG-16 when converted in Mask R-CNN can

outperform the results achieved in this work with the ResNets converted in Mask R-CNN.

• This work compared standard versions of the FCN with standard versions of the Mask

R-CNN. However, the works proposed in the SOD literature developed new versions of

the FCN, and evaluated a bunch of modifications on top of the FCN. Aiming to achieve

results even better, future works could explore these new versions and modifications on

top of Mask R-CNNs.

• Aiming to explore the SOD problem on embedded platforms for mobile robotic

applications, Mask R-CNNs implemented with small networks models, such as Mobile-

Net [Howard et al. (2017)], could be explored in future works.
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