
Universidade Federal do Paraná

Matheus Agio Nerone

Cracking KD-Tree: O Primeiro Índice Adaptativo

Multidimensional

Cracking KD-Tree: The First Multidimensional Adaptive

Indexing

Curitiba PR

2018

Matheus Agio Nerone

Cracking KD-Tree: O Primeiro Índice Adaptativo

Multidimensional

Cracking KD-Tree: The First Multidimensional Adaptive

Indexing

Dissertação apresentada como requisito parcial à ob-

tenção do grau de Mestre em Informática, no Programa

de Pós-Graduação em Informática, setor de Ciências

Exatas, da Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: Prof. Dr. Eduardo Cunha de Almeida.

Curitiba PR

2018

“We don’t need bigger cars or fan-
cier clothes. We need self-respect,
identity, community, love, variety,
beauty, challenge and a purpose in
living that is greater than material
accumulation.” - Donella Meadows

Agradecimentos

Firstly, I would like to thank my family for giving me support throughout my whole life,

without them nothing that I made would be possible. I also would like to thank my friends for

helping me with questions relevant to my work, and for all the laughs that make for a better life.

Special thanks to my advisor, Prof. Dr. Eduardo Cunha de Almeida, for accepting me

as a student and for guiding me with patience and motivation. My Master’s Degree would not be

possible without his valuable help.

I also would like to thank my dissertation committee, Prof. Dr. André Ricardo Abed

Grégio, Prof. Dr. Stefan Manegold and Prof. Dr. Marcos Didonet Del Fabro, for the words of

encouragement and insightful comments, and also for the valuable questions that can help me

improve on my research.

Finally, I would like to thank anyone that somehow had contact with me, in a way or

another they helped me be who I am today.

Resumo

A criação de índices é um das decisões mais difíceis no processo de criação de esquemas

em bancos de dados. Dada uma carga de trabalho, o administrador do banco de dados precisa

decidir quais índices criar levando em consideração os custos para construção e manutenção

deles. Esse problema se torna ainda mais difícil quando é necessário lidar buscas em múltiplas

dimensões em sistemas exploratórios, onde não se tem uma carga de trabalho disponível e o

número de possíveis índices é ainda maior. Técnicas de indexação adaptativas, como Sideways
Cracking e Quasii, são capazes de responder buscas de intervalo em múltiplas dimensões. Nessa

dissertação nós propomos uma alternativa, a Cracking KD-Tree, que é uma estrutura de dados

adaptativa usada para buscas em múltiplas dimensões. Comparando-a com outras técnicas

adaptativas de indexação, nossa estrutura de dados teve eficiência melhor ou comparável, com

respeito a tempo total de resposta para executar a carga de trabalho. Com 2 atributos nós fomos

6.7x mais rápidos que o Sideways Cracking e 1.4x que o Quasii. Com 16 atributos, a Cracking
KD-Tree foi 19x mais rápida que o Sideways Cracking e 1.7x mais rápida que o Quasii.

Palavras-chave: Particionamento de Banco de Dados. Índice Multidimensional. Banco de

Dados.

Abstract

Index creation is one of the main difficult decisions in database schema design. Given a workload,

the database administrator has to decide which indexes to create taking into consideration the

costs to build and maintain them. This problem becomes even more difficult when dealing with

multidimensional queries in exploratory systems, where there is no workload available and the

number of possible indexes is bigger. State of the art adaptive indexing techniques, such as

Sideways Cracking and Quasii, are capable of answering multidimensional range queries. In this

dissertation we propose an alternative, the Cracking KD-Tree, which is an adaptive data structure

used for multidimensional queries. Comparing it with other adaptive indexing techniques, our

data structure had more or comparable efficiency with respect to total workload response time.

With 2 attributes we were 6.7x faster than Sideways Cracking and 1.4x than Quasii. With 16

attributes, the Cracking KD-Tree was 19x faster than Sideways Cracking and 1.7x faster than

Quasii.

Keywords: Database Cracking. Multidimensional Index. Database Systems.

Lista de Figuras

1.1 Example of how a MDRQ would be executed by multiple one-dimensional indexes.14

1.2 Example of how the Standard Cracking deals with multiple columns. 14

1.3 Comparison between a Full Scan, a KD-Tree and Database Cracking to answer a

workload with only 2 columns. 15

2.1 Differences in data storage between NSM and DSM. 16

2.2 Example of the cracking process. 17

2.3 Left side: Table with Bitmap indexes on all attributes. Right side: Bitmaps used

to answer a MDRQ. 19

2.4 Example of Grid File in a 2d space. 20

2.5 Example of R-Tree in a 2d space. 20

2.6 Example of Ball Tree in a 2d space. 21

2.7 Example of QuadTree in a 2d space. 22

2.8 Example of Multidimensional Range Tree using 8 tuples with 2 attributes. 23

2.9 Example of false positives when answering a query using Space-filling Curves in

a 2d space.. 24

2.10 Example of how hash-like methods could work using database cracking. 25

2.11 Process of cracking in the Grid File. 25

2.12 Example of cracker map on attributes A and B. 27

2.13 Example of query on sideways cracking. 27

2.14 Example of multidimensional query on sideways cracking, adapted from [21]. . . 28

2.15 On the left side: points on a 2d space. On the right side: objects with area on a

2d space. 29

2.16 Abstract image of Quasii index structure. The white triangles represent the same

structure the other nodes have, but were used because the lack of space. 29

2.17 Quasii cracking process. In the last picture, the min-max slices were simplified

for lack of space. 31

2.18 Quasii search process.. 31

3.1 Example of KD-Tree. 33

3.2 Example of KD-Tree construction using medians. 34

3.3 Possible different outcomes of comparing a value to a range. 35

3.4 Two examples of the KD-Tree searching process demonstrating the difference

between having to search one and multiple partitions. 36

3.5 Example of query transformation process on disjunctive searches. Note that the

partitions in green still need to be scanned for the correct tuples. 37

3.6 Process of cracking the data using the query 4 ≤ X < 7 AND 1 ≤ Y 38

4.1 Full Scan example. 41

4.2 Workload response time when changing the number of attributes.. 42

4.3 Time per query. 42

4.4 Total response time breakdown. 43

4.5 Response time per query. 44

4.6 Accumulated response time. 45

Lista de Tabelas

2.1 Brief explanations of why each multidimensional data structure was discarded as

an adaptive index. 26

2.2 Advantages and disadvantages of each state of the art technique. 32

Lista de Acrônimos

DINF Departamento de Informática

PPGINF Programa de Pós-Graduação em Informática

UFPR Universidade Federal do Paraná

MDRQ Multidimensional Range Query

BST Binary Search Tree

NSM N-ary Storage Model

DSM Decomposed Storage Model

Lista de Símbolos

τ Quasii maximum number of objects in a slice in the last dimension.

Sumário

1 Introduction . 13
2 Related Work. 16
2.1 Adaptive Indexing. 17

2.2 Multidimensional Index Structures . 18

2.3 Sideways Cracking . 26

2.3.1 Basic Concepts . 26

2.3.2 Multidimensional Range Queries . 27

2.4 Quasii . 28

2.4.1 Basic Concepts . 29

2.4.2 Cracking and Searching Process . 30

2.5 Conclusion . 31

3 Proposed Work. 33
3.1 Cracking KD-Tree. 33

3.1.1 Construction. 34

3.1.2 Search . 34

3.1.3 Disjunctive Searches . 36

3.1.4 Adaptive Indexing. 37

3.2 Search Complexity . 38

3.3 Drawbacks . 39

4 Experiments . 40
4.1 Setup and Algorithms . 40

4.2 Experiment Discussion . 41

5 Conclusion and Future Work . 46
Referências . 48

13

1 Introduction

An index is an access method used to retrieve data efficiently. Index creation is one of

the main difficult decisions in database schema design. Based on a given workload, the database

administrator must decide which indexes should be created, taking into consideration the costs of

fully building and maintaining the index.

Indexes are useful to point out data qualified by a filter, for example, using a B+-Tree to

find every person with 25 years instead of scanning the data, optimizes the number of comparisons

from O(N) to O(log N + K) operations, where N is the data size and K is the number of tuples

that correctly answer the filter. Indexes can also be used for searches with inequalities preserving

the same optimization, for example, finding every company with more than 50 employees would

take O(log N + K) operations using a B+-Tree.

Filters can have one or two inequalities per attribute, e.g., find every person with height

between 170 cm and 200 cm. This kind of search is called range query. A range query is an

operation which retrieves every record that lies between two values. It has four possible operators:

<, <=, >=, >.

A range query has filters on only one attribute, however, another class of searches, called

multidimensional range queries (MDRQ), has range filters on multiple attributes, for example,

find every person with age between 25 and 30 years and salary between $15.000 and $20.000.

Listing 1.1 shows the difference between a regular range query and a multidimensional one. The

problem is that indexes regularly used inside database systems (e.g., B+-Tree) have low efficiency

when answering multidimensional range queries.

1 SELECT COUNT(R.C1) FROM R WHERE
2 10 ≤ R.C1 < 70 \% Range query
3

4 SELECT COUNT(R.C1) FROM R WHERE
5 10 ≤ R.C1 < 70 AND
6 40 ≤ R.C2 < 500 AND ... \% Multidimensional Range query
7 50 ≤ R.CN < 80

Listing 1.1: Range query vs Multidimensional Range query.

Figure 1.1 depicts an example of multiple one-dimensional indexes answering a MDRQ.

Figure 1.1(a) represents an index on each attribute, and the corresponding portions of the columns

that answer a generic multidimensional range query. Each index finds a different set of IDs, as

represented in figure 1.1(b), where XID and YID are sets for columns X and Y, respectively. Then,

a costly intersection between all sets is necessary to find the IDs that answer the query, as shown

in Figure 1.1(c). This intersection would not be a problem if each set of IDs was small, however,

multidimensional range queries have a tendency to have high selectivity per column, creating

huge intermediate results, and a small query selectivity, which renders one-dimensional indexes

worse than simply scanning the data.

14

X Y

(a) B+-Tree on attributes X and

Y.

X_id = {35, 21, 44, 62, 95, 1}

Y_id = {35, 7, 25, 33, 8, 15, 62, 95, 1}

(b) Partial results from each B+-

Tree.

X_id = {35, 21, 44, 62, 95, 1}

Y_id = {35, 7, 25, 33, 8, 15, 62, 95, 1}

(c) Intersection between partial

results.

Figura 1.1: Example of how a MDRQ would be executed by multiple one-dimensional indexes.

In order to alleviate the problem of searching on multiple attributes without losing

efficiency, multidimensional data structures, like the KD-Tree, R-Tree, QuadTree, Gridfile and

others, have been proposed. These structures can search on more than one key without having to

intersect the points.

When used as an index in a database system, they differ from one-dimensional data

structures, in that they allow searches on any of the indexed columns without an intersection

phase, while the AVL-Tree, B+Tree and Encoded Bitmap, for example, only allows searches on

the indexed columns using a costly intersection.

The problem of index creation becomes even harder on exploratory systems, where there

is no time to create the indexes beforehand and there is no workload information whatsoever.

Adaptive indexing techniques, such as Database Cracking [20], attempt to solve the

problem of up-front index creation by reorganizing relational databases as a byproduct of query

execution. They work by physically ordering each column using query predicates as hints,

resulting in a binary search tree (BST) to keep track of the cracked pieces. However, database

cracking is not suited to manage MDRQs because each column is cracked separately from the

others, creating different BSTs, and to obtain the final result, it is necessary to intersect the partial

result from each index. Figure 1.2 depicts an example of a range query in a cracked database,

that selects attributes of two different columns. As we can see, both columns are copied and

cracked separately, resulting in two different BST. After the cracking step, it is still necessary to

intersect the results of each index, i.e., the intersection between sets XID=(10, 9, 8) and YID=(8,

9, 10, 1, 2).

ID X Y
1 4 5
2 3 6
3 2 7
4 1 8
5 0 9
6 9 0
7 8 1
8 7 2

9 6 3

10 5 4

Index on XID X
1 4
2 3
3 2
4 1
5 0
10 5
9 6
8 7

7 8

6 9

4

7

ID Y
6 0
7 1
8 2
9 3
10 4
1 5
2 6
3 7

4 8

5 9

1

6

4 <= X < 7 AND
1 <= Y < 6

Index on Y

Figura 1.2: Example of how the Standard Cracking deals with multiple columns.

15

Figure 1.3 demonstrates the issue, using a workload with only 2 attributes and 1000

queries with 20% selectivity per column. Database Cracking was twice less efficient than a Full

Scan, however, using a regular KD-Tree, instead of multiple AVL Trees, is more than twice as

fast as the Full Scan.

In order to deal with MDRQs, a cracking variation called Sideways Cracking [21] was

proposed. However, sideways cracking seems to be a lot more useful when dealing with tuple

reconstruction problems than when dealing with MDRQ. We discuss their data structures in

Section 2.

The problem of dealing with filters on multiple columns becomes more costly as the

number of columns involved gets higher.

Figura 1.3: Comparison between a Full Scan, a KD-Tree and Database Cracking to answer a

workload with only 2 columns.

To address this issue we propose the Cracking KD-Tree, a data structure to index multiple

columns using database cracking. The Cracking KD-Tree is a binary search tree, where each

node contains a column, a key, a position and two children. Our data structure works in the same

way as a regular KD-Tree when searching and the major difference lies in the approach to create

the index. The Cracking KD-Tree is built as a byproduct of query processing, i.e. given a query

with ranges on multiple columns on the same table, we insert into the structure every search key

of every range, instead of creating a separated index for each column.

The main contributions of this dissertation are:

• We introduce a novel adaptive indexing technique that is able to handle MDRQs.

• We investigate its performance by evaluating our work against other existing indexing

techniques.

The remainder of this dissertation is organized as follow. In Chapter 2 the related work

is presented. Chapter 3 introduces our proposed solution. In Chapter 4 the results obtained are

discussed and analyzed. Lastly, in Chapter 5, we make our final conclusions and present future

work.

16

2 Related Work

In this chapter, we discuss different automatic physical tuning methods proposed in the

literature, analyzing how they behave in a multidimensional level in a exploratory system. We

also study multidimensional index structures found in the literature, such as, R-Tree, Quad Tree,

Octree and others. Finally, we analyze two state of the art methods that are very similar to ours.

In this dissertation we assume the Data Warehouse environment, where there is almost

zero modifications on the data, and lots of data analysis. A database on such environment usually

have a start schema, where there is one big fact table, with roughly 100 attributes, and dimension

tables with lot more attributes, but less tuples, that are linked to the fact table through the usage

of foreign keys. Queries on Data Warehouses are usually big read operations on four or five

attributes.

We make use of range queries to implement the adaptive indexing techniques, these

queries are common in Data Warehouse environments and read-intensive workloads alike, and

reproduced in many benchmarks: TPC-H [38], TPC-DS [38], SetQuery Benchmark [35] and

YCSB [11]. For instance, of the 22 queries in the TPC-H benchmark 12 have at least one part

that is a range query. Going even further, of the 12 queries, 3 are range queries on more than one

attribute.

Name Age Salary

Jonas 22 15.000

Maria 25 10.000

John 52 32.000

Juan 33 25.000

Carla 44 40.000

Jessica 24 15.000

Relation Person

(a) Relation Person with its at-

tributes.

Person

Name Age Salary

Jonas 22 15.000

Maria 25 10.000

John 52 32.000

Juan 33 25.000

Carla 44 40.000

Jessica 24 15.000

(b) How a NSM DBMS stores

the table Person.

Name

Jonas

Maria

John

Juan

Carla

Jessi

Age

22

25

52

33

44

24

Salary

15.000

10.000

32.000

25.000

40.000

15.000

Person

(c) How a DSM DBMS stores

the table Person.

Figura 2.1: Differences in data storage between NSM and DSM.

Since we are in a Data Warehouse environment, we also assume columnar databases,

or DSM (Decomposition Storage Model) [12], which are the ones used in this case. Also, row

databases, or NSM (N-ary Storage Model), which are the traditional storage layout in database

systems, cannot have more than one physical index, so it is hard to implement adaptive indexing

techniques discussed here on them.

17

Figure 2.1 shows the difference between NSM and DSM. Figure 2.1(a) depicts relation

Person with three attributes: Name, Age and Salary. In a NSM database (Figure 2.1(b)) each

tuple is stored continuously, when one attribute is accessed the entire tuple comes to memory. On

the other hand, (Figure 2.1(c)) DSM databases are vertically partitioned, having each attribute

stored separately, differently from NSM, only the necessary attributes comes to memory when

requested. Since attributes in columnar databases are stored separately, each one of them can

have a different physical organization, enabling multiple physical indexes. On contrary, row

databases can only have one physical index because all attributes need to be contiguous.

2.1 Adaptive Indexing

Traditional database indexes are build under two base assumptions: the workload is

known, and there is sufficient idle time to create and update the indexes. Nowadays, these

assumptions are not valid anymore, environments have continuous and sudden workload shifts

and updates, and the data is queried as soon as it arrives [28]. In order to mitigate these problems,

Database Cracking [20] implements the idea of index maintenance as a byproduct of query

processing.

In Database Cracking, the first time an attribute is touched by a query, a copy of its

column is created, called cracker column. Then this cracker column is refined by every subsequent

query that touches it, by a process called cracking, hence the name Database Cracking. To keep

track of every partition created by the cracking process, a cracker index is created.

Since the column is refined throughout the query workload, and only on relevant tuples,

the cost of creating the index is spread in the stream of queries, and the overhead on each query

is minimal.

Figure 2.2 depicts an example of the cracking process, when the query first touches

attribute X , the column is copied and cracked based on the predicates on the query, i.e., predicate

4 ≤ X < 7. When the next query arrives, 1 ≤ X , the cracker column is cracked again based on

predicate 1 ≤ X . As one may notice, the whole process of Database Cracking can be seen as a

lazy Quicksort [18], where predicates act as pivots, and in the sense that ordering steps are only

executed when needed.

4 <= X < 7

ID X
5 0
2 3
3 2
4 1
1 4
10 5
9 6
8 7

7 8

6 9

4

7

ID X Y
1 4 5
2 3 6
3 2 7
4 1 8
5 0 9
6 9 0
7 8 1
8 7 2

9 6 3

10 5 4

1 <= X

ID X
5 0
4 1
3 2
2 3
1 4
10 5
9 6
8 7

7 8

6 9

4

7

1

Colum copy

Initial State After first query After second query

Figura 2.2: Example of the cracking process.

18

As explored in [40] Database Cracking method has three serious drawbacks: its time

to converge to a full index may be high (convergence), variance of response time (robustness)

and projections or selections on other columns (tuple-reconstruction). Three different advanced

cracking algorithms were proposed with these problems in mind, namely: Hybrid Cracking [22],

Stochastic Cracking [17] and Sideways Cracking [21].

While aiming to improve the convergence time concern, Hybrid Cracking [22] combines

adaptive merging [15], which has a high initialization cost but converge rapidly to a full index,

with database cracking, which has a low initialization cost but has a low convergence rate, in a

way that the advantages of both algorithms complement themselves.

Cracking by its own nature depends on boundaries of the queries, for example on Figure

1.2, boundaries are the values 4, 7, 1 and 6. In case of a skewed workload only parts of the cracker

column will go through the process of cracking. Stochastic Cracking [17] introduces additional

arbitrary crack operations besides the ones given by the query, hence the name stochastic, in a

way that cracking operations will be more distributed, and so making the algorithm more robust

by diminishing variance of response time.

Standard Cracking [20], Hybrid Cracking [22] and Stochastic Cracking [17] suffer

negative performance hits when dealing with MDRQ. Since all three methods make use of one

dimensional indexes, when answering a range query on more than one attribute, they can end up

creating huge intermediate results that have a high cost to intersect.

Imagine the following scenario, a relation with 1 billion tuples, and 8 attributes. Also a

query that selects on all attributes and has selectivity per column equals 20%, which results in a

query selectivity roughly of 0.28. The size of all 8 intermediate results would be 200.000.000

tuples, and the size of the final result would be 2560 tuples.

Sideways Cracking [21] comes in hand when dealing with multiple projections and/or

selections on the same relation. It will be discussed further in section 2.3.

2.2 Multidimensional Index Structures

As stated in [39], multidimensional data is used in a variety of fields, e.g. computer

graphics, geometric information systems, robotics, spatial databases and multimedia databases,

to name a few. A wide range of data structures were proposed for dealing with the problem of

records identified by one single key, most of them fall into one of these categories: tree like, hash

like, sequentially allocated arrays. The same happens with multidimensional data structures,

where more than one attribute can be used for search.

Bitmap indexes [34, 32, 33, 8, 9, 45, 2] are useful when processing complex queries,

providing fast read operations for range and equality queries in one or more dimensions [42].

Bitmaps have 1 on positions that have the attribute equal to its key, and 0 otherwise. In Figure

2.3, on the left side, the age’s bitmap with key equal to 20 has only the first two positions set to 1,

because only the first and second tuples have age attribute equal to 20.

Figure 2.3 shows an example of how bitmaps can be used to answer MDRQs. On the

left side, we have a table with bitmaps on every attribute (Age and Salary). Given a MDRQ that

selects every tuple with 17 ≤ age < 27 and 2000 ≤ Salary < 3500. The method first finds

which age’s bitmaps are between 17 ≤ age < 27 (i.e., bitmaps 20 and 25). Since any position

with 1 correctly answers the filter, the found bitmaps are intersected using an OR operation,

creating the partial result R1, as depicted in the top box on the right side of the figure. Now, the

method selects which salary’s bitmaps are between 2000 ≤ Salary < 3500 (i.e., only bitmap

19

3000) and proceeds to intersect them with an OR operation creating the partial result R21, as

depicted in the middle box. Finally, all partial results, R1 and R2, are intersected using an AND

operation (an AND operation is used because a tuple’s position has to answer correctly every

filter), creating the final result with 1’s on the positions that answer the query, as depicted in the

bottom box of the figure.

ID Age Salary

1 20 3000

2 20 5000

3 25 3000

4 25 5000

5 30 3000

20 25 30

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

Age

3000 5000

1 0

0 1

1 0

0 1

1 0

Salary

17 <= Age < 27 AND
2000 <= Salary < 3500

R1: 11110
R2: 10101

Final: 10100

AND

20: 11000
25: 00110
R1: 11110

17 <= Age < 27

OR

3000: 10101

R2:¬ ¬ 10101

2000 <= Salary < 3500

OR

Figura 2.3: Left side: Table with Bitmap indexes on all attributes. Right side: Bitmaps used to

answer a MDRQ.

The problem with bitmaps comes from the fact that they are specialized into some

situations, i.e., attributes with high cardinality would create a large quantity of bitmaps. Another

problem arises with workloads that demand management of the index, which are costly to do.

Finally, bitmaps are full indexes, and need to be created upfront, before starting answering

queries.

Hash like structures, like Grid File [30], partition the space in grid cells, where each of

these cells contains the data points. EXCELL method [43] works in the same way as the Grid

File, the major difference is how the partitions are created. In EXCELL, all cells have the same

size, while in the Grid File this is not a necessity. Figure 2.4 presents a view of a Grid File.

1Since there is only one bitmap, the result of the intersection is the bitmap itself.

20

X

Y

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

Figura 2.4: Example of Grid File in a 2d space.

Into tree like structures, R-Tree [16] was proposed for dealing with the problem

of searching and updating an index with data objects with size greater than zero within a

multidimensional space, e.g. the representation of a country in a map has an area. Figure 2.5

depicts an example of the R-Tree. There are other variations of the R-Tree, namely, R+-Tree [41],

R*-Tree [3] and Priority R-Tree [1]. The X-Tree [6] works in pretty much the same fashion as the

R-Tree, but it emphasizes prevention of overlapping bounding boxes.

X

Y

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

Figura 2.5: Example of R-Tree in a 2d space.

21

Vantage-point Tree [44, 46], Ball Tree [31, 25] and M-Tree [10] are all examples of

trees that use hyperspheres to partition space instead of using hyperplanes or bounding boxes.

Figure 2.6 shows an example.

X

Y

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

Figura 2.6: Example of Ball Tree in a 2d space.

QuadTree [14] is a data structure specialized for two dimensions, but can be generalized

for any number. In a Quadtree each node represents a data point and has four children, that divide

the space in four quadrants, i.e. NE, NW, SW and SE (using a geographic analogy), as we can

see in Figure 2.7. The Octree [27] works in the same way as the Quadtree but is specialized for 3

dimensional spaces.

22

X

Y

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

NW NE

SESW

Figura 2.7: Example of QuadTree in a 2d space.

The Multidimensional Range Tree [26, 4] is a data structure asymptotically faster than

the Quadtree and the KD-Tree for searching, although it has a significant higher space demand.

Figure 2.8 depicts an example, the tree is formed by first ordering all points along one of the

attributes, and then storing them in the leafs like a balanced binary search tree, but every node

also contains another tree ordering points based on other attribute. Also, for every tree, the leafs

are connected like in a B-Tree.

23

35

15 75

5 25 55 85

0, 90 10,80 20,70 30,60 40,50 70,20 80,10 90, 0

55

15 75

5 35 65 85

0, 90 10,80 20,70 50,40 60,30 70,20 80,10 90, 0

75

65 85

60,30 70,20 80,10 90, 0

85

80,10 90, 0

65

60,30 70,20

15

5 35

0, 90 10,80 20,70 50,40

35

20,70 50,40

5

0, 90 10,80

X Y

40 50

30 60

20 70

10 80

0 90

90 0

80 10

70 20

X

Y

Y
Y

Y Y
Y

Y

Figura 2.8: Example of Multidimensional Range Tree using 8 tuples with 2 attributes.

It is also possible to use space-filling curves to order points. The ordering is basically

a mapping from a D dimensional space to a one dimensional value. It is important to choose

a transformation that preserves the proximity of the points, such as the Z-order [36] and the

Hilbert curve [23], so that points that are close in the multidimensional level, are close in the one

dimensional space [13, 29].

The biggest concern about space-filling curves is that, depending on which transformation

was chosen, there can be a high number of false positives that need to be checked on every query.

As we can see in Figure 2.9, the black line represents the transformation from the 2d space to a

1d space, the red box is the query, and the yellow lines are the false positives that need to be

checked. Besides, there is also an overhead of having to do the transformation, which can be

costly and goes against the idea of lightweight indexes.

24

Q

Figura 2.9: Example of false positives when answering a query using Space-filling Curves in a

2d space.

The R-Trees variants and X-Tree are not suitable for our problem because they are

specialized in dealing with non-zero size objects, whereas our research is specifically dealing

with points (which have zero size).

The Quadtree, Octree, Vantage-point Tree, Ball Tree and M-Tree all use data points to

partition the space, which means it is not possible to use parts of the query to crack the space,

hence it is not possible to use them as a structure for cracking.

The Multidimensional Range Tree has a high space demand, as we can see in Figure

2.8, for only 8 tuples with 2 attributes, the tree has 56 nodes, which makes it infeasible for large

quantities of tuples and/or for relations with lots of attributes.

Hash-like methods also could be expanded to an adaptive index, Figure 2.10 depicts

an example, instead of creating cells during insertion of new points, they simply would be

constructed based on the predicates of the incoming queries.

25

X

Y

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

Select * from R
where 4 <= X < 7 AND
2 <= Y < 5

Figura 2.10: Example of how hash-like methods could work using database cracking.

Still, the EXCELL method would not be able to be used because it needs all cells to be

the same size, which cannot happen only by using the predicates of queries.

The Grid File on the other hand, could be used, but it still has problems. Firstly, the

more cracking operations are done more cells are created, and so, the next cracking operation

will have a higher cost, instead of lower as expected in other structures. Figure 2.11 depicts an

example, on the last step to create another division, red line, it would need to split 6 cells, which

also leads to another problem. Which data structure to use? It is not an easy task to define a data

structure for the grid. If a simple k-dimensional matrix is used, the split operations would have

extremely high costs. Otherwise, if linked lists were used, maybe split operations would have

low costs, but scan and read operations would not be efficient.

Figura 2.11: Process of cracking in the Grid File.

26

Notice that all multidimensional data structures cited above probably can be expanded to

adaptive indexes, we only gave the reasons why they were not the first choice. Table 2.1 contains

a brief explanation of each reason.

Algorithms Reasons

Bitmaps
Specialized into some situations.

Needs to be created upfront.

Space-filling Curves
High number of false positives.

Mapping costs can be high.

R-Tree/X-Tree

Created for objects with

size greater than zero, instead

of points.

QuadTree/Octree

Ball Tree

Vantage Point Tree

M-Tree

All make use of data points to

partition the space, which means

it is not possible to use parts of

the query to crack the space.

Multidimensional Range Tree
Has an extremely high memory

cost.

Hash-like Methods
The grid structure is not easy to

implement in an efficient way.

Tabela 2.1: Brief explanations of why each multidimensional data structure was discarded as an

adaptive index.

2.3 Sideways Cracking

In this section we are going to study the Sideways Cracking method, which is one of

closest methods to what our proposal tries to solve, i.e., how to perform adaptive indexing on

multidimensional data.

2.3.1 Basic Concepts

Sideways Cracking [21] is a cracking technique capable of efficiently dealing with

multiple projections and/or selections on the same relation. It introduces a new data structure

called cracker map, where each cracker map, MAB, consists of a fully materialized two-column

table over two attributes, A and B, of the relation R. The left attribute, A, is called the head, and

the right attribute, B, is called tail, Figure 2.12 depicts an example. All maps created using the

same header belong to the same map set, for example, all maps using the header A belong to the

set SA. For each map there is a cracker index (AVL-Tree) that maintains information about the

ordering of the map.

27

A B C
10 b1 c1
3 b2 c2
2 b3 c3
1 b4 c4
4 b5 c5

20 b6 c6
15 b7 c7
30 b8 c8
8 b9 c9
9 b10 c10

Original Table

A B
10 b1
3 b2
2 b3
1 b4
4 b5

20 b6
15 b7
30 b8
8 b9
9 b10

Map_AB

Head Tail

Figura 2.12: Example of cracker map on attributes A and B.

The maps are created only when requested, i.e., when a query needs to access attribute

B based on a restriction on A, it first checks if the map MAB exists, if not then it is created. It

then cracks that map, based on the query predicates, Figure 2.13 shows an example, first the

cracker map does not exist, so a copy of the two attributes is made. Then, the map proceeds to be

cracked based on predicates of the query. And then the answer, {b9, b10}, is returned.

A B C
10 b1 c1
3 b2 c2
2 b3 c3
1 b4 c4
4 b5 c5

20 b6 c6
15 b7 c7
30 b8 c8
8 b9 c9
9 b10 c10

Original Table

A B
1 b4
3 b2
2 b3
4 b5
8 b9
9 b10

15 b7
30 b8
10 b1
20 b6

Map_AB

Select B where 5 <= A < 10

Cracker Index

Value < 5

Value >= 5

Value >= 10

Figura 2.13: Example of query on sideways cracking.

All the maps of a set are aligned, which means they all share the same ordering. This is

achieved by keeping a cracker tape on the set structure. Before doing the cracking step, there is

an alignment step which applies all the physical reorganizations that happened to maps of that

same set. This step is necessary since only the cracker maps accessed in the query are cracked,

and so, the others will stay “behind” in the tape.

2.3.2 Multidimensional Range Queries

To answer MDRQs the method needs to find the best, usually the most selective, set and

its cracker maps so that their alignment can be exploited. Figure 2.14 depicts an example. Given

a table R with four attributes, A, B, C and D, and a query, select D from R where 3 < A < 10

28

and 4 < B < 8 and 1 < C < 7, that access all of them, as depicted in Figure 2.14 (a). First, the

algorithm finds the most selective attribute, for simplicity we defined it as attribute A. Then, it

selects the set SA and maps MAB,MAC,MAD. Next, it aligns the maps to the latest crack operation,

including the predicate 3 < A < 10 in the query (notice the difference in order between the initial

state and the maps in Figure 2.14 (b), (c) and (d)). After, the query is executed on each map,

resulting in bit-vectors with same size, Figure 2.14 (b) for query on attributes A and B, and

Figure 2.14 (c) for the query on attributes A and C. Finally, an AND operation is done between

all bit-vectors and the resulting bit-vector is checked against the cracker map which contains the

projection attribute, map MAD, as depicted Figure 2.14 (d).

A B C D
12 9 3 9
3 2 6 4
5 6 2 2
9 10 1 10
8 7 6 12

22 11 9 19
7 16 12 3

26 2 2 6
4 5 11 5
2 8 17 8
7 3 3 1

Initial State

select D from R
where 3<A<10 and
4<B<8 and 1<C<7

A B
2 8
3 2
5 6
9 10
8 7
7 3
7 16
4 5

26 2
12 9
22 11

M_AB

v <= 3

v > 3

v >= 10

A C
2 17
3 6
5 2
9 1
8 6
7 3
7 12
4 11

26 2
12 3
22 9

v <= 3

v > 3

v >= 10

M_AC
A D
2 8
3 4
5 2
9 10
8 12
7 1
7 3
4 5

26 6
12 9
22 19

v <= 3

v > 3

v >= 10

M_AD

1

0

1

0

0

1

Bit Vector

1

0

1

0

0

0

Bit Vector
1

0

1

0

0

0

2

12

Result

(b) (c) (d)(a)

Figura 2.14: Example of multidimensional query on sideways cracking, adapted from [21].

Sideways Cracking improves a lot on Database Cracking by having good performance

when projecting on attributes that are not the same as the cracked one.

However, when dealing with MDRQ, the maps may need to go through lots of cracking

steps, which can result in a performance hit. Imagine that a map is far behind compared to the

others in the set (i.e., it still has to go through lots of cracking steps until it is aligned with the

others in the set), then it would need go through all cracking steps until it can be used.

Also, Sideways Cracking still suffers the same problem of huge intermediate results

that Database Cracking suffers, however they mitigate some of it by using bit-vectors to do the

intersection.

2.4 Quasii

Quasii [37] is another method that deals with multidimensional queries and data, but

they differ from our proposal on which type of data they specialize. Figure 2.15 provides an

example, Quasii deals specifically with objects in a space, for example, countries in a map. While

our work deals only with points in a space. Still, with very few modifications Quasii can work

with point data.

29

X

Y

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

X

Y

1 2 3 4 5 6 7 8 9

1
2

3
4

5
6

7
8

9

Figura 2.15: On the left side: points on a 2d space. On the right side: objects with area on a 2d
space.

2.4.1 Basic Concepts

Although Quasii can be seen as an extension of the R-Tree to behave in an adaptive

manner, it is not a tree. Quasii has a d-level hierarchical structure, where each level corresponds

to one dimension. Each level has an array of slices, each slice contains: its level, a bounding

box, pointers to first and last elements corresponding to the slice in the data array, pointers to

sub-slices that refine the slice in the next dimension.

Figure 2.16 depicts an example using 3d data. Every slice segments the space on an

attribute, for example, the first yellow slice is a segment that captures every tuple who has an X
value between 20 and 50. It also contains an array of slices on the next attribute, for example, the

first red slice is a segment on attribute Y that captures all the points that have Y value between 15

and 20 and X value between 51 and 60. It is important to notice that the arrays of segments in

each slice is independent from the others in other slices.

20 - 50 51 - 60 61 - 100 900 - 1000

15-20

X

21-30 60-99
Y

Z

Figura 2.16: Abstract image of Quasii index structure. The white triangles represent the same

structure the other nodes have, but were used because the lack of space.

30

2.4.2 Cracking and Searching Process

As Quasii is an adaptive index, it also has a cracking process that builds the index as

a byproduct of query processing, utilizing the predicates. Quasii has only one configuration

parameter, a size threshold τ, that determines the maximum number of objects in a slice on

the last dimension, i.e., if a slice has more objects than τ it can still be refined. The maximum

number of slices in the last dimension is defined by �n/τ�, where n is the size of the dataset. The

number of times Quasii has to slice each dimension to produce �n/τ� partitions at the bottom

level is:

r =
⌈

d
√

n/τ
⌉

(2.1)

To calculate the maximum number of objects per slice on each level the following

recursive expression can be used, note that τd = τ (the slice threshold at the bottom level):

τd−1 = r ∗ τd (2.2)

Quasii has three refinement methods. The first, called Slice two way happens when or

the lower or the higher range of a query intersects a slice, then the slice is simply cracked into

two pieces. Slice three way happens when both lower and higher ranges of a query are inside a

slice, then the slice is cracked into three pieces. Finally, Slice Artificial happens when a slice

intersects with a query but neither the lower nor the higher parts are inside the slice.

Slice Artificial is different from the other techniques because the predicates are unable

to help. In order to crack, the method uses as pivot the middle value of the bounding box in its

dimension, e.g., if it has values from 30 to 50, it uses 40 as pivot.

Notice that, when a slice has been refined in the next dimensions,i.e. it has children, it

cannot be split again in its original dimension, since it would destroy all of its children. Because

of that, during the cracking process every new slice created that intersects with the query has to

be re-refined, using one of the techniques described above.

Figure 2.17 depicts an example using 2 dimensions. The initial state of the index has

one slice that covers the entire data. When the first query arrives, SELECT * FROM R WHERE

25 ≤ X < 50 AND 60 ≤ Y < 80, it first creates three new segments, one covering from the

minimum value until 25, one that from 25 until 50 and one from 50 until the maximum value.

Then it proceeds to refine the middle segment, as it is the one that intersects with the query,

creating three new segments on the Y attribute.

When a second query arrives, SELECT * FROM R WHERE 70 ≤ X < 90 AND

20 ≤ Y < 30, first it finds segments that intersect with the query on attribute X , only 50 - max,

and then refines them. creating three new slices, 50 - 70, 70 - 90 and 90 - max, and again, it

proceeds to refine the children of the ones that intersect with the query.

31

min - max
X

select * from R where
25 <= X < 50 AND
60 <= Y < 80

min - 25
X

25 - 50 50 - max

min-max min-max min-max

min - 25
X

25 - 50 50 - max

min-max min-max60-80min-60 80-max

Y

Y

select * from R where
70 <= X < 90¬AND
20 <= Y < 30

min - 25
X

25 - 50 50 - max

min-max min-max60-80min-60 80-max

Y

min - 25
X

25 - 50 50 - 70

60-80min-60 80-max

Y

70 - 90 90 - max

20-30min-20 30-max

Figura 2.17: Quasii cracking process. In the last picture, the min-max slices were simplified for

lack of space.

One great disadvantage of this cracking method is that if a query has 100% selectivity

on every attribute it would create a full index, because of the refinement step that every new slice,

that still intersects with the query, goes through.

The process of searching is straight forward, starting on the first dimension, it first needs

to find the first slice that intersects with the query on that attribute, in our example (Figure 2.18)

the slices 50 - 70 and 70 - 90 intersects with the query. Then for each slice the process is repeated

on its children, in our example, for 50 - 70, there is only one child available, and for 70 - 90, the

last two children intersect the query. When a leaf is found, then the data can be searched.

min - 25
X

25 - 50 50 - 70

60-80min-60 80-max

Y

70 - 90 90 - max

20-30min-20 30-max

select * from R where
65 <= X < 90¬AND
20 <= Y < 100

Figura 2.18: Quasii search process.

2.5 Conclusion

After analyzing the literature, we can see that there were efforts on creating data

structures that do not discriminate between which attribute is being accessed, but they do not work

on exploratory environments, where there is not time and reason to create an index ahead of time.

On the other hand, there has been recent efforts to create adaptive indexes capable of dealing

with exploratory environments, but the majority of them only deals with one dimensional range

queries. There has been efforts to create adaptive indexes capable of dealing with MDRQ, Table

2.2 presents a brief explanation of each state of the art algorithm advantages and disadvantages.

With that in mind, in the next chapter we present our proposal, an adaptive indexing technique

that uses a multidimensional data structure capable of dealing with exploratory environments.

32

Algorithms Advantages Disadvantages

Sideways Cracking

Efficient tuple reconstruction.

Capable of using already

established research on

one-dimensional adaptive

indexes

Still need to use intersection techniques

to answer MDRQs, which makes the

technique less efficient

Quasii

Good efficiency on MDRQs

Can be used with object data

with size greater than zero

Cracking method can end up creating

almost a full index, if the query

has high selectivity per column.

Tabela 2.2: Advantages and disadvantages of each state of the art technique.

33

3 Proposed Work

In this Section we study how to perform adaptive indexing on multidimensional data.

We start by analyzing the KD-Tree [5], demonstrating its construction and search algorithms.

Afterwards, we expand the KD-Tree to be able to perform adaptive indexing, which we call

Cracking KD-Tree.

3.1 Cracking KD-Tree

We start by analyzing the traditional KD-Tree [5]. The KD-Tree is a multidimensional

binary search tree used for searches on one or more attributes. Each of its nodes contains: a key,

a discriminator column, two pointers for its children and a integer that represents the starting

position on the data. By our own definition, every left path leads to data strictly less than the key,

and every right path leads to data greater or equal than the key.

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 3 9 0

7 6 6 0

8 9 8 1

9 1 7 2

10 5 5 4

< >=

(X, 5)
Pos: 6

(Y, 6)
Pos: 4

(Y, 1)
Pos: 8

Figura 3.1: Example of KD-Tree.

Figure 3.1 depicts an example, the root of the tree has: key equals 5, discriminator
column equals X , position equals 6, which means that every tuple after the sixth position has an

X values greater or equal to 5, and two pointers for its children.

One should also notice that the node (Y,6) does not split the entirety of the dataset, but

only the partition it is inserted. In fact, what the node (Y, 6) shows is: from position 3 to 1, we

34

have all tuples with X < 5 and Y < 6, and from position 4 to 5, we have all tuples with X < 5

and Y ≥ 6.

3.1.1 Construction

There are different ways to construct a KD-Tree, the traditional method is using the

median of each column to split the data horizontally. The algorithm splits each partition by

finding the its median on a determined attribute, chosen in a round robin fashion.

Figure 3.2 shows an example. Firstly, the median, on attribute X , of the entire dataset is

found, which is 5. Then, the data is split into two different partitions, with X strictly less than the

median and greater or equal to it, as shown in Figure 3.2 (B). On part (C), the algorithm finds the

median of attribute Y , but only considering data from positions 1 to 5, and then proceeds to split

that same data. Finally on part (D), the algorithm finds the median on attribute Y but now on the

partition that goes from positions 6 until 10, and splits it creating two new partitions, then the

algorithm stops because every partition has a size less or equal to a predefined threshold, in this

case 3.

Pos ID X Y

1 1 7 2

2 8 1 8

3 9 8 1

4 4 3 6

5 7 4 5

6 6 6 0

7 5 5 4

8 2 0 0

9 10 2 0

10 3 9 0

Pos ID X Y

1 2 0 0

2 8 1 8

3 10 2 0

4 4 3 6

5 7 4 5

6 5 5 4

7 6 6 0

8 1 7 2

9 9 8 1

10 3 9 0

(X, 5)
Pos: 5

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 5 5 4

7 6 6 0

8 1 7 2

9 9 8 1

10 3 9 0

<

(X, 5)
Pos: 5

(Y, 6)
Pos: 4

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 3 9 0

7 6 6 0

8 9 8 1

9 1 7 2

10 5 5 4

< >=

(X, 5)
Pos: 6

(Y, 6)
Pos: 4

(Y, 1)
Pos: 8

(A) (B) (C) (D)

Figura 3.2: Example of KD-Tree construction using medians.

Since, finding the median of any set of elements by ordering is very costly, we decided

to use the algorithm of Quickselect [19]. It works by finding the nth smallest element of an array

without having to order it, to find the median we simple need to find the N
2

th smallest element.

3.1.2 Search

Searching on a KD-Tree starts in the same way as any tree-like data structure, by setting

the root as the current node, but differently from other structures, the search can end in one or

more non neighbor leafs. The process of searching consists of comparing the current node’s key

with its respective part in the query, i.e., if a node has a discriminator column of X then it should

compare its key only with the part of the query that has a filter on X .

It is extremely important to notice that: the search process will yield the partitions that

have the results, but this does not mean that every tuple in said partitions answer the query, it is

still necessary to do a scan.

Comparing a node with a query can yield three different outcomes, Figure 3.3 depicts a

visual representation:

35

1. The node’s key is less than the range, Figure 3.3 (A), so the left path should be examined.

2. The node’s key is greater than the range, Figure 3.3 (B), so the right path should be

examined.

3. The node’s key is inside the range, Figure 3.3 (C), both paths should be examined.

5

5

1 <= X < 4

7 <= X < 10

4 <= X < 7

(a)

(b)

(c)

1 2 3 4 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 6 7 8 9

Figura 3.3: Possible different outcomes of comparing a value to a range.

If a partial multidimensional range query is to be searched, some nodes may not have

predicates that select on their discriminator column, in this case both of the paths should be

followed.

Figure 3.4 shows two examples of the search process. We start by analyzing example 1,

the left most. On figure (1.A), the search compares the root node with the given query, since the

query is greater than the root, the right path should be followed. On figure (1.B), the node (Y, 1)

is compared, again, the right path should be followed, since the query is greater than the node.

On figure (1.C), the leaf node (X, 7) is analyzed, which leads us to the left path, which is the

partition with only position 8.

Analyzing example 2, on figure (2.A), the root is compared with the query, since the

node’s key is inside the query range, both paths should be followed. On figure (2.B), the node (Y,

6) is greater than the query, so its left path is followed, and node (Y, 1) is smaller than the query,

so its right path is followed. Finally, on figure (2.C), the leaf (X, 2) is inside the query range, so

both partitions need to be scanned, and the leaf (X, 7) is greater than the query, so only its left

partition needs to be scanned.

36

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 3 9 0

7 6 6 0

8 5 5 4

9 1 7 2

10 9 8 1

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 3 9 0

7 6 6 0

8 5 5 4

9 1 7 2

10 9 8 1

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 3 9 0

7 6 6 0

8 5 5 4

9 1 7 2

10 9 8 1

(X, 5)
Pos: 6

(Y, 6)
Pos: 4

(Y, 1)
Pos: 8

(X, 2)
Pos: 2

(X, 7)
Pos: 9

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 3 9 0

7 6 6 0

8 5 5 4

9 1 7 2

10 9 8 1

(X, 5)
Pos: 6

(Y, 6)
Pos: 4

(Y, 1)
Pos: 8

(X, 2)
Pos: 2

(X, 7)
Pos: 9

SELECT ID FROM R
WHERE 5 ≤ R.X < 7
AND 1 ≤¬R.Y <6

SELECT ID FROM R
WHERE 0 ≤ R.X < 7
AND 1 ≤¬R.Y <6

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 3 9 0

7 6 6 0

8 5 5 4

9 1 7 2

10 9 8 1

(X, 5)
Pos: 6

(Y, 6)
Pos: 4

(Y, 1)
Pos: 8

(X, 2)
Pos: 2

(X, 7)
Pos: 9

(X, 5)
Pos: 6

(Y, 6)
Pos: 4

(Y, 1)
Pos: 8

(X, 2)
Pos: 2

(X, 7)
Pos: 9

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 3 9 0

7 6 6 0

8 5 5 4

9 1 7 2

10 9 8 1

(X, 5)
Pos: 6

(Y, 6)
Pos: 4

(Y, 1)
Pos: 8

(X, 2)
Pos: 2

(X, 7)
Pos: 9

(X, 5)
Pos: 6

(Y, 6)
Pos: 4

(Y, 1)
Pos: 8

(X, 2)
Pos: 2

(X, 7)
Pos: 9

(1.A) (2.A)

(1.B) (2.B)

(1.C)
(2.C)

Figura 3.4: Two examples of the KD-Tree searching process demonstrating the difference between

having to search one and multiple partitions.

3.1.3 Disjunctive Searches

Up until now we only talked about conjunctive searches, i.e., searches that have an AND

operation between the filters. However, we also need to deal with disjunctive searchers, i.e.,

searches that have an OR operation between the filters.

Our proposed solution for disjunctive queries is: splitting the query into different

conjunctive queries.

37

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 3 9 0

7 6 6 0

8 5 5 4

9 1 7 2

10 9 8 1

(X, 5)
Pos: 6

(Y, 6)
Pos: 4

(Y, 1)
Pos: 8

(X, 2)
Pos: 2

(X, 7)
Pos: 9

Pos ID X Y

1 2 0 0

2 7 4 5

3 10 2 0

4 4 3 6

5 8 1 8

6 3 9 0

7 6 6 0

8 5 5 4

9 1 7 2

10 9 8 1

SELECT ID FROM R
WHERE 5 ≤ R.X < 7

SELECT ID FROM R
WHERE 1 ≤¬R.Y < 6

(X, 5)
Pos: 6

(Y, 6)
Pos: 4

(Y, 1)
Pos: 8

(X, 2)
Pos: 2

(X, 7)
Pos: 9

SELECT ID FROM R
WHERE 5 ≤ R.X < 7
OR 1 ≤¬R.Y < 6

IDs = {2, 7, 8, 9, 10}

IDs = {7, 8, 9, 10} IDs = {2, 8, 9, 10}

Union

Figura 3.5: Example of query transformation process on disjunctive searches. Note that the

partitions in green still need to be scanned for the correct tuples.

Figure 3.5 depicts an example. Given the query SELECT id FROM R WHERE

5 ≤ R.X < 7 OR 1 ≤ R.Y < 6. We can split it into two different queries:

SELECT id FROM R WHERE 5 ≤ R.X < 7

SELECT id FROM R WHERE 1 ≤ R.Y < 6.

Then proceed to search them separately, which will yield two sets of IDs, ID1 =

{7, 8, 9, 10} and ID2 = {2, 8, 9, 10}, and simple calculate the union of the two results, which is

the set of IDs = {2, 7, 8, 9, 10}.

3.1.4 Adaptive Indexing

The major difference between the Cracking KD-Tree and a regular KD-Tree is how they

are built. As mentioned above, the regular KD-Tree is constructed based on the medians of each

column, whereas the Cracking KD-Tree is constructed based on the incoming range queries.

Given any range query, for example, x1 <= X < x2 AND y1 <= Y < y2, we first split the query

into pairs of columns and keys, from left to right, e.g., (X, x1), (X, x2), (Y, y1), (Y, y2), then each

pair is added to the index. It is important to notice that one pair can be inserted in multiple

38

locations, different from one dimensional search trees where one insertion meant one new leaf,

here one insertion can mean one or more new leafs.

Notice that the cracking process does not happen on the original table, when the first

query arrives, the table is copied to a data structure called cracker table, and then this data

structure is cracked. By making the copy we are able to keep all attributes aligned, which eases

the process of tuple reconstruction afterwards. Also, since the tuples are aligned, the method

works with both explicit and implicit IDs on the columns.

Pos ID X Y
1 1 7 2
2 2 0 0
3 3 9 0
4 4 3 6
5 5 5 4
6 6 6 0
7 7 4 5
8 8 1 8

9 9 8 1

10 10 2 0

Initial State

Pos ID X Y
1 10 2 0
2 2 0 0
3 8 1 8
4 4 3 6
5 7 4 5
6 6 6 0
7 5 5 4
8 3 9 0

9 9 8 1

10 1 7 2

Insert X, 4

X, 4
P: 5

Pos ID X Y
1 10 2 0
2 2 0 0
3 8 1 8
4 4 3 6
5 7 4 5
6 6 6 0
7 5 5 4
8 3 9 0

9 9 8 1

10 1 7 2

Insert X, 7

X, 4
P: 5

X, 7
P: 8

Pos ID X Y
1 10 2 0
2 2 0 0
3 8 1 8
4 4 3 6
5 6 6 0
6 7 4 5
7 5 5 4
8 3 9 0

9 9 8 1

10 1 7 2

Insert Y, 1

X, 4
P: 5

X, 7
P: 8

Y, 1
P: 6

Y, 1
P: 9

Y, 1
P: 3

(a) (b) (c) (d)

select¬ID¬from R
where 4 <= X < 7¬and

1 <= Y

Figura 3.6: Process of cracking the data using the query 4 ≤ X < 7 AND 1 ≤ Y .

Figure 3.6 provides an example. In step (a), we have the initial state of the data, and the

incoming query, 4 ≤ X < 7 AND 1 ≤ Y . In step (b), first, the table is copied to the cracker table,

and since there is no index yet, the table is cracked and the node (X ,4) is inserted as the root.

In step (c), first it is necessary to find what partitions should be cracked, starting from the root,

the new node (X, 7) is greater than the root, so the right path should be followed, which leads

to a partition, which is cracked and the node is inserted as the right child of the root. In step

(d), the node (Y, 1) is to be inserted, first the partitions to be cracked need to be found, since the

root and the node to be inserted do not share the same column, both paths should be followed.

When following the left one, we end up in a partition, which is then cracked and the new node is

inserted as the left child of the root. The right path leads to node (X, 7), since this node and the

node to be inserted do not have the same column, both paths should be followed, since both paths

lead to partitions, both partitions are cracked, separately, and both new nodes are inserted as the

children of (X, 7).

3.2 Search Complexity

Since the construction process of the Cracking KD-Tree depends on the incoming

searches and has no restrictions whatsoever, the resulting KD-Tree may or may not be balanced,

i.e., Cracking KD-Tree‘s complexity will have as upper and lower bounds the best and worst case

scenarios, respectively, discussed below.

In the best case scenario, a balanced KD-Tree, Lee and Wong [24] demonstrated

that, given N points, in the worst case the cost of a range search in a complete KD-Tree is

39

O(d ∗ N1−1/d + F), where d is the number of dimensions queried, and F is the number of points

found in the range.

In the worst case scenario, the resulting KD-Tree has only one branch, behaving in the

same way as a linked list, and thus having a search complexity of O(N) where N is the number of

nodes.

3.3 Drawbacks

There are two possible scenarios that may decrease the performance of the Cracking

KD-Tree. However, none of them were tested.

The first scenario is when there is a huge difference between the number of attributes in

a query, and the number of attributes indexed by the Cracking KD-Tree. For example, imagine

that the we have 20 different attributes indexed, and we need to answer a query that filters on only

one of them. When the search process arrives at a node with the column equal to one of the other

19 attributes, both children will need to be searched. In other words, the node did not help with

the search. Imagining that the distribution of nodes per attribute in the index is approximately

equal, only 1
20

nodes would be helpful.

The second scenario, since the Cracking KD-Tree is not balanced, some workloads may

create an unbalanced index resulting in high performance variation, which is not ideal. One

workload of this kind is one with ever increasing values on filters. For example, the first query is

in the likes of 0 ≤ X < 5 (...), then the second is 6 ≤ X < 10 (...), the third is 11 ≤ X < 15 (...)
and so on.

40

4 Experiments

In this Section we describe and analyze all experiments performed. We start with the

setup used, then we briefly explain the algorithms compared, and finally we study the results

obtained.

4.1 Setup and Algorithms

To implement and compare the Cracking KD-Tree with other algorithms, we extended

the core of the database cracking simulator1 used in [40] to be used with multidimensional data

and queries. The simulator is a single-threaded stand-alone program written in C++ and compiled

with GNU g++ version 7.3.1 using optimization level -O32. All experiments were conducted

on a machine equipped with 256 GB of main memory and two 2.6 GHz Intel Xeon E5-2650 v2

CPUs, each with 20 MB L3 cache, 8 cores and hyper-threading enabled, running Fedora 26.

The experiment is a multidimensional extension of the experimentation used in [40],

the major differences are the selectivity and number of tuples. Our dataset consisted of a table

with 8-bit integers attributes holding 107 tuples. The values per attribute were independent and

uniformly distributed. We varied the number of attributes between 2, 4, 8 and 16.

8 SELECT COUNT(R.C1) FROM R
9 WHERE LowC1 ≤ R.C1 < HighC1 AND ... AND LowCn ≤ R.Cn < HighCn

Listing 4.1: Query form used on experiments.

Our workload consisted of 1000 queries, all of them in the form depicted in Listing 4.1.

Where n is the number of dimensions queried3. All queries had selectivity equal to 20% per

column, one might notice that the total selectivity of the queries in the query stream will vary

since the query predicates are selected in a random pattern. We repeat the entire workload 10

times and take the average run time of each query as the reported time.

We implemented five different algorithms to compared with the Cracking KD-Tree. Two

of them, Quasii and Sideways Cracking, were already described in Chapter 2, now we briefly

explain the remaining three.

Standard Cracking AVL. Each column goes through the process of database cracking

separately. Afterwards, the results are intersected by the creation of bit-vectors, as explained in

Chapter 2.

Full Index KD-Tree. All columns are indexed using a KD-Tree pivoting by median

values and choosing the dimensions in a round robin fashion. The query result is then given by a

look up in the KD-Tree.

1Available at: https://bigdata.uni-saarland.de/research/publications.php

2According to the GCC Optimize Options Documentation (see https://gcc.gnu.org/onlinedocs/gcc/Optimize-

Options.html) -O3 is the option for which the compiler applies the most optimization in the code.

3All queries searched on all available attributes.

41

Full Scan. We use a vectorized, predicated scan approach [7] that produces a candidate

list per scanned vector of a column, Figure 4.1 depicts an example. Given a MDRQ and a table,

with attributes X, Y and Z, in a columnar database. The algorithm starts by scanning attribute

X creating a candidate list with tuple IDs, {1, 2, 3, 9, 10}. Then, it proceeds to refine the list

by scanning on attribute Y, but only on tuples that have the ID in the candidate list, resulting

in {1, 9, 10}. Finally, the same process happens on attribute Z and the final result is presented,

IDs = {1, 10}. Also, the algorithm scans the data by blocks, instead of the entire table at once,

each block size is in accordance to the L2 cache size.

ID X
1 4
2 3
3 2
4 1
5 0
6 9
7 8
8 7

9 6

10 5

ID Z
1 3
2 1
3 2
4 9
5 8
6 0
7 7
8 5

9 6

10 4

ID Y
1 5
2 6
3 7
4 8
5 9
6 0
7 1
8 2

9 3

10 4

SELECT ID FROM R WHERE
2 ≤ X < 7 AND 1 ≤¬Y < 6 AND 1 ≤¬Z < 6

ID

1

2

3

9

10

ID

1

9

10

ID

1

10

Candidate List

Result

Figura 4.1: Full Scan example.

4.2 Experiment Discussion

We start by analyzing how every algorithms responds to workloads with varying number

of attributes, more specifically, the time every algorithm took to answer separated workloads

with 2, 4, 8 and 16 attributes. And then we make our conclusions.

In figure 4.2(a) we can see the change in workload response time as we vary the number

of columns. One might notice that with more attributes the query selectivity gets smaller, with

four attributes it is less than 1%.

As expected Standard Cracking and Sideways Cracking have the worst performance,

because both have to deal with huge partial results that have a high cost to intersect. It gets even

worse with 16 attributes, where the result size is extremely small, but each partial result is 20%

of each column. Both techniques cannot make good use of low query selectivity in MDRQs.

Next comes the Full Scan algorithm, that maintains its performance because the query

selectivity diminishes with more attributes. This happens because it produces a candidate list per

scanned column, since the number of intersections between each column is low the candidate list

tends to get small quickly.

42

Finally, Quasii, Full KD-Tree and Cracking KD-Tree all have similar response times,

when compared to the other three algorithms. Figure 4.2(b) presents a comparison between the

three, and from now on will be our main contrast point.

(a) All algorithms. (b) Quasii, Full KD-Tree and Cracking KD-Tree.

Figura 4.2: Workload response time when changing the number of attributes.

In Figure 4.3 we can observe how the algorithms’ index creation and scan times change

when we increase the number of columns. The first thing to notice is that while the index creation

increases in a linear fashion, the scan time resembles a negative exponential.

(a) Time to create the index. (b) Time to scan the table.

Figura 4.3: Time per query.

One can see that the Cracking KD-Tree shows a linear scalability with respect to the

number of attributes, however it stagnates the scan time when the selectivity gets too low.

In Figure 4.4 we can see with more details what happened in each workload. The total

response time is split into four categories:

Index Creation. Time spent constructing the index, includes the cracking time.

Index Lookup. Time spent traversing the index structure to find the partitions.

Scan Time. Time to scan the table for the correct ID’s.

Comparing Figure 4.4(a) to Figure 4.4(b), there is a huge decrease in scan time, from 4

seconds to around 1 second. While the index creation time increases, it is nowhere near the rate

of the scan time. That explains why a workload with two columns takes more time to process

than one with four or eight columns.

43

(a) 2 columns. (b) 4 columns.

(c) 8 columns. (d) 16 columns.

Figura 4.4: Total response time breakdown.

Figure 4.4 provides us some insights: Firstly, Cracking KD-Tree’s index creation time is

the fastest of the three. Seconly, both KD-Trees have negligible index lookup times, however, the

Cracking KD-Tree’s scan time is higher. This happens because the Cracking KD-Tree cannot

create good partitions when the query selectivity gets too low, and it has to scan more parts of

the data to get the final result.

Now we need to analyze why Quasii has a better performance when compared to the

Cracking KD-Tree on workloads with four and eight columns.

If we observe Figure 4.3, the variation in index creation and scan time, with four and

eight columns, is the point where scan time has diminished a lot and index creation time is still

slowly increasing, which is the best world for Quasii, low selectivity and not a lot of columns

make its cracking operation fast, and the low selectivity makes the scan time be near zero because

Quasii creates good partitions.

One might notice that, with two columns the cracking time is high because the selectivity

is high and lots of slices will go through the artificial slicing process, and with 16 attributes the

time is high because there is a lot of dimensions to crack. Figures 4.5(a) and 4.5(d) demonstrate

this effect on the response time per query.

44

(a) 2 columns. (b) 4 columns.

(c) 8 columns. (d) 16 columns.

Figura 4.5: Response time per query.

In Figures 4.5(b) and 4.5(c), the Cracking KD-Tree starts high a higher response time

per query, however at the end of the workload the cost is slightly smaller. If more queries existed

in the workload, Cracking KD-Tree would surpass Quasii. As one can see in Figures 4.6(b) and

4.6(c), which represent the accumulated query response time, by analyzing the growth of each

algorithm.

45

(a) 2 columns. (b) 4 columns.

(c) 8 columns. (d) 16 columns.

Figura 4.6: Accumulated response time.

From all this analysis, we can make some conclusions regarding the behavior of

the Cracking KD-Tree and Quasii: With respect to index creation, the Cracking KD-Tree

demonstrated a good scalability, with a higher number of attributes, and is independent from

the selectivity. In contrast, Quasii depends heavily on both, high selectivity or lots of attributes

makes Quasii’s adaptive process to be slow.

Cracking KD-Tree demonstrated a good performance on index lookup time, since in

every experiment it was almost negligible.

With respect to scan time. Since the Cracking KD-tree utilizes the predicates of the

queries as hints, queries with low selectivity makes it create bad partitions during the index

creation process, and so, during the scan more partitions have to searched. Quasii, on the other

hand, is efficient on low selectivity, but is slower otherwise.

To conclude, we proposed a novel adaptive indexing technique for multidimensional

data, utilizing a multidimensional index to store the partitions created during the adaptive process.

Our technique, Cracking KD-Tree, demonstrated to be more efficient (Sideways Cracking) or at

least equivalent (Quasii) with respect to answering multidimensional range queries.

46

5 Conclusion and Future Work

Database Cracking was proposed in the last decade, implementing the idea of adaptively

create indexes as a byproduct of query execution. Since then, multiple researches were made to

improve it in other directions. To name a few: Stochastic Cracking improved its robustness, Hybrid

Cracking its time to converge to a full index, Sideways Cracking improved tuple reconstruction,

Quasii extended it to multidimensional object data and queries. However, no work had been done

yet on multidimensional point data and MDRQs.

We proposed a novel adaptive indexing technique, called Cracking KD-Tree, capable of

efficiently processing multidimensional range queries. Our technique makes use of a cracker
table during the cracking process, which moves the entire tuple instead of only the attributes

filtered in the query, keeping the data aligned. We also make use of a multidimensional data

structure, KD-Tree, to keep track of the partitions created. We experimented on workloads

with 20% per column selectivity and independent uniform random data and query predicates

distribution. The following results were obtained:

• 2 Attributes. 6.7x faster than Sideways Cracking, and 1.4x faster than Quasii.

• 4 Attributes. 21x faster than Sideways Cracking, and 0.87x slower than Quasii, however

given a bigger workload the Cracking KD-Tree will be faster than Quasii.

• 8 Attributes. 20x faster than Sideways Cracking, and 0.79x slower than Quasii, however

given a bigger workload the Cracking KD-Tree will be faster than Quasii.

• 16 Attributes. 19x faster than Sideways Cracking, and 1.7x faster than Quasii.

Still, there are more areas that can be explored for future work, to name them:

• New benchmarks. Until now we only tested the work using a synthetic benchmark, the

next steps are to find new benchmarks that reflect real world applications.

• Data structures. Not only the KD-Tree can be used as an adaptive index with

multidimensional data. Other structures like Grid-File, R-Tree and Multidimensional

Search Tree can also be adapted.

• Concurrency. Until this point we have not touched the case of multiple queries

accessing the index structure.

• Updates. In this work we only studied the problem of adaptive indexing on multidimen-

sional data on a read-only environment, but it is an interesting challenge to export these

concepts to environments with updates.

• KD-Tree cracking. The cracking process we described is more spread through the

index, however creating one with a more narrow approach could be useful, since it

would decrease the index creation time.

47

• Machine Learning. KD-Trees are used to speed up the K-Nearest Neighbors machine

learning algorithm, perhaps the Cracking KD-Tree can be used in the same sense.

• Insertion order. Analyze what would be the impact of inserting using different orders

in the cracking process.

• Keys per node. Implement the Cracking KD-Tree using multiple keys per node and

using the same discriminator column, and analyze the impacts.

• Sorting. Analyze the impacts of sorting the partitions, on some attribute, when it hits

the threshold.

• One dimensional range queries. Analyze the behavior of each algorithm when dealing

with one dimensional range queries.

48

Referências

[1] Lars Arge, Mark De Berg, Herman Haverkort, and Ke Yi. The priority r-tree: A practically

efficient and worst-case optimal r-tree. ACM Trans. Algorithms, 4(1):9:1–9:30, March 2008.

[2] Manos Athanassoulis, Zheng Yan, and Stratos Idreos. Upbit: Scalable in-memory updatable

bitmap indexing. In Proceedings of the 2016 International Conference on Management of
Data, SIGMOD ’16, pages 1319–1332, New York, NY, USA, 2016. ACM.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The r*-

tree: An efficient and robust access method for points and rectangles. SIGMOD Rec.,
19(2):322–331, May 1990.

[4] J. L. Bentley and H. A. Maurer. Efficient worst-case data structures for range searching.

Acta Inf., 13(2):155–168, February 1980.

[5] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.

Commun. ACM, 18(9):509–517, September 1975.

[6] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The x-tree: An index structure

for high-dimensional data. In Proceedings of the 22th International Conference on Very
Large Data Bases, VLDB ’96, pages 28–39, San Francisco, CA, USA, 1996. Morgan

Kaufmann Publishers Inc.

[7] Peter A Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining query

execution. In CIDR, volume 5, pages 225–237, 2005.

[8] Chee-Yong Chan and Yannis E. Ioannidis. Bitmap index design and evaluation. SIGMOD
Rec., 27(2):355–366, June 1998.

[9] Chee-Yong Chan and Yannis E. Ioannidis. An efficient bitmap encoding scheme for selection

queries. SIGMOD Rec., 28(2):215–226, June 1999.

[10] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method for

similarity search in metric spaces. In Proceedings of the 23rd International Conference
on Very Large Data Bases, VLDB ’97, pages 426–435, San Francisco, CA, USA, 1997.

Morgan Kaufmann Publishers Inc.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.

Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[12] George P. Copeland and Setrag N. Khoshafian. A decomposition storage model. SIGMOD
Rec., 14(4):268–279, May 1985.

[13] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In Proceedings of the
Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
PODS ’89, pages 247–252, New York, NY, USA, 1989. ACM.

49

[14] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite keys.

Acta Inf., 4(1):1–9, March 1974.

[15] Goetz Graefe and Harumi Kuno. Self-selecting, self-tuning, incrementally optimized

indexes. In Proceedings of the 13th International Conference on Extending Database
Technology, EDBT ’10, pages 371–381, New York, NY, USA, 2010. ACM.

[16] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data, SIGMOD

’84, pages 47–57, New York, NY, USA, 1984. ACM.

[17] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap. Stochastic database

cracking: Towards robust adaptive indexing in main-memory column-stores. Proc. VLDB
Endow., 5(6):502–513, February 2012.

[18] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321–, July 1961.

[19] C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321–322, July 1961.

[20] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database cracking. In CIDR
2007, Third Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 7-10, 2007, Online Proceedings, pages 68–78, 2007.

[21] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Self-organizing tuple reconstruction

in column-stores. In Proceedings of the 2009 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’09, pages 297–308, New York, NY, USA, 2009. ACM.

[22] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. Merging what’s cracked,

cracking what’s merged: Adaptive indexing in main-memory column-stores. Proc. VLDB
Endow., 4(9):586–597, June 2011.

[23] H. V. Jagadish. Linear clustering of objects with multiple attributes. In Proceedings of the
1990 ACM SIGMOD International Conference on Management of Data, SIGMOD ’90,

pages 332–342, New York, NY, USA, 1990. ACM.

[24] D. T. Lee and C. K. Wong. Worst-case analysis for region and partial region searches in

multidimensional binary search trees and balanced quad trees. Acta Inf., 9(1):23–29, March

1977.

[25] Ting Liu, Andrew W. Moore, and Alexander Gray. New algorithms for efficient high-

dimensional nonparametric classification. J. Mach. Learn. Res., 7:1135–1158, December

2006.

[26] Jon Louis Bentley. Decomposable searching problems. Journal of Algorithms, 8:244–251,

06 1979.

[27] Donald Meagher. Geometric modeling using octree encoding. Computer Graphics and
Image Processing, 19(2):129 – 147, 1982.

[28] Jorge Augusto Meira, Eduardo Cunha Almeida, Dongsun Kim, Edson Ramiro Filho,

and Yves Traon. "overloaded!-- a model-based approach to database stress testing. In

Proceedings, Part I, 27th International Conference on Database and Expert Systems
Applications - Volume 9827, DEXA 2016, pages 207–222, New York, NY, USA, 2016.

Springer-Verlag New York, Inc.

50

[29] Bongki Moon, H. v. Jagadish, Christos Faloutsos, and Joel H. Saltz. Analysis of the

clustering properties of the hilbert space-filling curve. IEEE Trans. on Knowl. and Data
Eng., 13(1):124–141, January 2001.

[30] J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The grid file: An adaptable,

symmetric multikey file structure. ACM Trans. Database Syst., 9(1):38–71, March 1984.

[31] Stephen M. Omohundro. Five balltree construction algorithms. Technical report, 1989.

[32] Patrick O’Neil and Goetz Graefe. Multi-table joins through bitmapped join indices.

SIGMOD Rec., 24(3):8–11, September 1995.

[33] Patrick O’Neil and Dallan Quass. Improved query performance with variant indexes.

SIGMOD Rec., 26(2):38–49, June 1997.

[34] Patrick E. O’Neil. Model 204 architecture and performance. In Dieter Gawlick, Mark

Haynie, and Andreas Reuter, editors, High Performance Transaction Systems, pages 39–59,

Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

[35] Patrick E O’Neil. The set query benchmark, 1993.

[36] J. A. Orenstein and T. H. Merrett. A class of data structures for associative searching. In

Proceedings of the 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, PODS ’84, pages 181–190, New York, NY, USA, 1984. ACM.

[37] Mirjana Pavlovic, Darius Sidlauskas, Thomas Heinis, and Anastasia Ailamaki. Quasii:

Query-aware spatial incremental index. 2018.

[38] Meikel Poess and John M. Stephens, Jr. Generating thousand benchmark queries in seconds.

In Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume
30, VLDB ’04, pages 1045–1053. VLDB Endowment, 2004.

[39] Hanan Samet. Foundations of Multidimensional and Metric Data Structures (The Morgan
Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2005.

[40] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. The uncracked pieces in

database cracking. Proc. VLDB Endow., 7(2):97–108, October 2013.

[41] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree: A dynamic index

for multi-dimensional objects. pages 507–518, 1987.

[42] Kurt Stockinger and Kesheng Wu. Bitmap indices for data warehouses, 01 2006.

[43] Markku Tamminen. The extendible cell method for closest point problems. BIT Numerical
Mathematics, 22(1):27–41, Mar 1982.

[44] Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Inf.
Process. Lett., 40:175–179, 1991.

[45] Harry K. T. Wong, Hsiu-Fen Liu, Frank Olken, Doron Rotem, and Linda Wong. Bit

transposed files. In Proceedings of the 11th International Conference on Very Large Data
Bases - Volume 11, VLDB ’85, pages 448–457. VLDB Endowment, 1985.

51

[46] Peter N. Yianilos. Data structures and algorithms for nearest neighbor search in general

metric spaces. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’93, pages 311–321, Philadelphia, PA, USA, 1993. Society for Industrial

and Applied Mathematics.

