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“Ao contrário”, continuou Tweedledee, “se foi assim, poderia ser; e se fosse assim, seria;
mas como não é, então não é. Isso é Lógico”.

“Contrariwise”, continued Tweedledee, “if it was so, it might be; and if it were so, it would
be; but as it isn’t, it ain’t. That’s logic”.

(Lewis Carroll, Through the Looking-glass: And what Alice Found There, 1875)



Abstract
Many environments may suffer from distributions or a posteriori probabilities changes
over time, leading to a phenomenon known as concept drift. In these scenarios, it is crucial
to implement a mechanism to adapt the classification system to the environment changes
in order to minimize any accuracy loss. Under a static environment, a popular approach
consists in using a Dynamic Classifier Selection (DCS)-based method to select a custom
classifier/ensemble for each test instance according to its neighborhood in a validation set,
where the selection can be considered region-dependent. In order to handle concept drifts,
in this work the general idea of the DCS method is extended to be also time-dependent.
Through this time-dependency, it is demonstrated that most neighborhood DCS-based
methods can be adapted to handle concept drift scenarios and take advantage of the
region-dependency, since classifiers trained under previous concepts may still be competent
in some regions of the feature space. The time-dependency for the DCS methods is defined
according to the concept drift nature, which may define if the changes affects the a
posteriori probabilities or the distributions only. By taking the necessary modifications,
the Dynse framework is proposed in this work as a modular tool capable of adapting the
DCS approach to concept drift scenarios. A default configuration for the Dynse framework
is proposed and an experimental protocol, containing seven well-known DCS methods and
12 concept drift problems with different properties, shows that the DCS approach can
adapt to different concept drift scenarios. When compared to state-of-the-art concept drift
methods, the DCS-based approach comes out ahead in terms of stability, i.e., it performs
well in most cases, and requires almost no parameter tuning.

Key-words: Pattern Recognition. Concept Drift. Virtual Concept Drift. Real Concept
Drift. Ensemble. Dynamic Classifier Selection. Local Accuracy.



Resumo
Muitos ambientes podem sofrer com mudanças nas distribuições ou nas probabilidades a
posteriori com o decorrer do tempo, em um problema conhecido como Concept Drift. Nesses
cenários, é imperativa a implementação de algum mecanismo para adaptar o sistema de
classificação às mudanças no ambiente a fim de minimizar o impacto na acurácia. Em um
ambiente estático, é comum a utilização da Seleção Dinâmica de Classificadores (Dynamic
Classifier Selection - DCS) para selecionar classificadores/ensembles customizados para cada
uma das instâncias de teste de acordo com sua vizinhança em um conjunto de validação,
onde a seleção pode ser vista como sendo dependente da região. Neste trabalho, a fim de
tratar concept drifts, o conceito geral dos métodos de Seleção Dinâmica de Classificadores
é estendido a fim de se tornar não somente dependente de região, mas também dependente
do tempo. Através da adição da dependência do tempo, é demonstrado que a maioria
dos métodos de Seleção Dinâmica de Classificadores podem ser adaptados para cenários
contendo concept drifts, beneficiando-se da dependência de região, já que classificadores
treinados em conceitos passados podem, em princípio, se manter competentes no conceito
corrente em algumas regiões do espaço de características que não sofreram com mudanças.
Neste trabalho a dependência de tempo para os métodos de Seleção Dinâmica é definida
de acordo com o tipo de concept drift sendo tratado, que pode afetar apenas a distribuição
no espaço de características ou as probabilidades a posteriori. Considerando as adaptações
necessárias, o framework Dynse é proposto como uma ferramenta modular capaz de
adaptar a Seleção Dinâmica de Classificadores para cenários contendo concept drits. Além
disso, uma configuração padrão para o framework é proposta e um protocolo experimental,
contendo sete Métodos de Seleção Dinâmica e doze problemas envolvendo concept drifts
com diferentes propriedades, mostra que a Seleção Dinâmica de Classificadores pode
ser adaptada para diferentes cenários contendo concept drifts. Quando comparado ao
estado da arte, o framework Dynse, através da Seleção Dinâmica de Classificadores, se
sobressai principalmente em termos de estabilidade. Ou seja, o método apresenta uma boa
performance na maioria dos cenários, e requer quase nenhum ajuste de parâmetros.

Key-words: Reconhecimento de Padrões. Concept Drift. Concept Drift Virtual. Concept
Drift Real. Conjunto de Classificadores. Seleção Dinâmica de Classificadores. Acurácia
Local.
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1 Introduction

When dealing with classification problems, most methods assume that the en-
vironment is static. Under this assumption, a supervised classification method can be
designed using historical labeled data, which is considered to contain all the information
necessary, and then be used in the classification task of unlabeled instances during an
indefinitely amount of time. Even thought the static environment assumption is valid in
many applications, it can however be unrealistic in some situations. In these scenarios
the distributions or the a posteriori probabilities may change over time in a phenomenon
called concept drift, requiring a mechanism to adapt the classifier to the changes in the
environment. Some examples of applications that must consider this phenomenon are the
intrusion, spam and fraud detection, medical decision support and climate data analysis
[1, 2, 3].

To illustrate the concept drift problem, consider the social media networks. Since
social media applications hold a vast collection of user images, they could employ these
images to recognize user faces in future images. Under this scenario, some challenges
may arise as a result of the fact that users’ faces are constantly changing due to aging
factors, or even through artificial aspects such as the use of makeup, beard growth/shaving,
different haircuts, etc.. This scenario may therefore suffer from a concept drift, since images
collected from the user in the past may not be suitable for recognizing him/her in the
present.

An example of a person changing its face over time due to an aging factor is
depicted in Figure 1, where we may ask how a learner trained with images collected when
the subject was younger can recognize him in the present. A possible approach is to employ
only the most recent labeled images (e.g. images from the last year only) to train the
classifier. Nevertheless, this naive approach is not optimal, since it could discard important
data from the past (e.g. the user face did not changed in the last 3 years), and it would
still have problems when the user changes its face artificially in an “abrupt” fashion (e.g.
the user stopped using a beard last week).

(a) 27 years ago (b) 21 years ago (c) Nowadays

Figure 1 – Images of the same person over the years.
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In this work the Dynamic Classifier Selection (DCS) is studied as an alternative to
deal with the concept drift problem. A DCS method basically involves selecting the best
classifier/ensemble from a pool of classifiers P based on a local region of the feature space,
usually defined as the neighborhood of the test instance in a validation set. The rationale
behind this is the possibility that we may have a pool of classifiers specialist in different
regions in the feature space, and the classifiers are chosen according to the test instance
location. Thus, the DCS can be defined as region-dependent.

However, the region dependency alone is not sufficient for scenarios containing
concept drifts, as will be demonstrated in the course of this work. Since under a concept
drift scenario the problem evolves over time, the DCS must be adapted to be not only
region-dependent, but also time-dependent. In the example of the Figure 1, a pool could
have classifiers trained at different times, and each classifier could be specialist in a different
region of the feature space. A DCS method provided with a time-dependency should then,
for instance, be able to detect that any classifier specialized in the region of the feature
space that define the colors can be a good candidate to classify the current test instances
(e.g. the hair and eye colors of the user did not change over time). Nevertheless the DCS
should be able to detect that the classifiers specialized in the skin texture trained in the
past may not be suitable in the present.

In other words, when just part of the feature space has a change between different
concepts (local changes), in this work it is hypothesized that most neighborhood DCS-
based approaches, provided with a time dependency, can present a good adaptation to the
changes, since it should be possible to detect the feature space areas that did not change,
where a classifier from a past concept may still be used. The DCS approach can be also
specially useful in scenarios where past concepts may reoccur in the future (recurrent
concepts), where classifiers trained in the past concept may just be reactivated when a
concept reoccurs.

The time dependency is considered in order to add new classifiers in the knowledge
base (i.e. pool) over time as new supervised information becomes available, and to define
the local region (i.e. neighborhood) of the test instances accordingly to the current
concept. In this Thesis it is also hypothesized that the time dependency must be modeled
accordingly to the concept drift nature, where the local region should be computed using
a set containing only the latest supervised information received under changes in the a
posteriori probabilities, or using a set that contains as much supervised information as
possible under changes in the distribution P (x). Another hypothesis is that, by correctly
modeling the time dependency when computing the local region of the test instances, a
pool containing as much classifiers as possible is beneficial under a concept drift scenario
when using a DCS-based approach (i.e. no information discard in the pool is necessary to
adapt to the new concepts).
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The user face recognition problem is just a simple example of the concept drift
phenomenon (which is used just for illustration purposes in the introduction of this work).
In the course of this work the necessary adaptations to the DCS approach to deal with
concept drifts are presented and discussed in order to create a general framework, named
Dynamic Selection Based Drift Handler (Dynse) framework. The framework is put to test
under a range of real world, and artificial well known benchmarks designed specifically to
test methods that deal with concept drifts, where it is demonstrated that almost all of the
tested DCS approaches can be adapted to concept drift problems, and generate results
comparable to the state-of-the-art.

1.1 Problem Definition
Nowadays it is a common sense that in many problems the assumption that the

environment is static and the training and testing data follows the same distribution is
violated, thus leading to the concept drift phenomenon [4, 5, 6]. In these environments,
where often the data arises in batches or in a stream fashion, methods based on a simple
online learning strategy may not be suitable, since the knowledge acquired by the method
over time may be conflicting, thus leading to a poor, or even unacceptable, classifier
performance.

Under a concept drift scenario, several complexities often arise, such as the unpre-
dictability, speed, severity, nature (e.g. a concept drift may affect only the distributions,
of the a posteriori probabilities), presence of recurrences and many other properties of
the concept drift. A DCS-based approach may be considered a natural answer for some of
these problems, such as the severity of the concept drift (i.e. if the concept drift does not
affect some region of the feature space, a DCS approach should be able to identify it), and
the reactivation of old classifiers in the presence of recurrences when a concept reoccurs.
Nevertheless, since a concept drift imposes that the environment can change over time,
a DCS-based approach must be modified in order to add a time-dependency to make it
possible to adapt to changes. Besides its popularity in stationary environments, just a few
works use a DCS-based approach to deal with concept drifts, where in these works just a
specific DCS-based method is used.

Thus, a general study on the time-dependency, neighborhood size definition and
pool generation for DCS-based strategies when facing concept drift problems is still an
open issue that, when dealt, may lead to a general DCS-based framework, capable to
adapt a vast number of well known DCS-based methods to deal with most of the concept
drift complexities, which may help the development of many systems that are inserted in
non-stationary environments.
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1.2 Objectives
In this work the DCS approach is proposed as an alternative to deal with the

concept drift problem. The necessary adaptations to the DCS methods are discussed and
presented as a general framework, named the Dynse framework. The framework must
be flexible, where each adaptation made to deal with the concept drift problem must be
presented as a interchangeable module (e.g. a module for the DCS strategy used, a module
for defining the most recent information, a module for pruning classifiers, etc.). One of the
most important adaptation that must be made in the DCS approach is the add of a time
dependency, where new classifiers should be trained over time, and the local region should
be computed considering only the current scenario (e.g. use only the latest supervised
information to select the local region).

Thought this time dependency, it is expected that the knowledge discard (i.e.
trained classifiers discard) should not be necessary to adapt to concept drifts. This can be
an interesting behavior under a concept drift scenario, since past information may still be
useful in the present in some areas of the feature space, where the DCS approach should
detect the regions where the classifiers are still relevant. The past information can also
become completely compatible with the current scenario in a phenomenon known as a
recurrent concept. However, the knowledge discard must implemented in the framework to
minimize computational resources consumption, like memory and CPU time.

The proposed framework must be able to deal with distribution changes (i.e.
changes in P (x)) and changes in the a posteriori probabilities, both of any speed and
extent. Changes in the a priori distributions (i.e. changes in P (y)) are not in the scope of
this work. Besides the main objective, which is the creation of a DCS based framework to
deal with concept drifts, the following secondary objectives should be accomplished by
this work:

• To test the Dynse framework under concept drift scenarios using several well known
DCS based methods. This test must be made in order to check the ability of the
framework to adapt different DCS based approaches to deal with concept drifts.

• To assess the proposed framework in real world and artificial well known datasets
found in the literature in order to verify the performance of the proposed method in
a large variety of environments containing concept drifts of several natures.

• To check the impact of the classical classifiers pruning strategies when dealing with
concept drifts using a DCS based approach. Besides that several authors already
studied and also proposed pruning strategies for environments containing concept
drift, there is a lack of evidence of the efficacy of those methods when using the
Dynamic Classifier Selection. A pruning approach that keeps only the best performing
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classifiers considering only the current concept may be a suboptimal solution, since
the DCS should be able to take advantage of a plural pool of classifiers (e.g. classifiers
trained under different concepts).

• To define the expected characteristics of a diverse pool for a DCS approach when
facing a concept drift problem. Such a pool should contain classifiers trained under
different concepts, and possibly covering different regions of the feature space. This
pool is defined as a Concept Diverse pool in this work, and it may lead to better
results when using a DCS approach to deal with concept drifts.

• To propose a default configuration of the proposed framework that must keep
an acceptable performance under a wide range of concept drift scenarios. This is
important since under some concept drift scenarios it may be difficult to acquire
relevant data in order to fine tune each possible module of the proposed framework.

1.3 Challenges
The development of a DCS based framework that is capable to deal with different

levels and types of concept drifts by adjusting its parameters and modules is the real
challenge of this work. To fully accomplish this task, the following challenges had to be
overcome in this work:

• To review the state-of-the-art in order to check the different concept drifts that
could happen in an environment and verify how the authors deal with these concept
drifts. This task can be specially difficult since the literature does not agree in many
aspects and different works can even have conflicting information.

• To check the impact of changing/adjusting the framework modules under different
concept drift scenarios to provide a guideline to researchers who wish to use the
proposed Dynse framework in a specific concept drift scenario.

• To define a metric of diversity of classifiers based on the feature region of expertise
of each classifier, considering also the concept used for the training.

1.4 Hypotheses
The main hypothesis of this work is that through a time dependency add to the

DCS approach, any neighborhood-based DCS method can represent a natural answer to
the concept drift problem, especially for problems where some portions of the feature space
are not affected by the concept drift (local changes), and for recurrent scenarios. In this
work is also hypothesized that the time dependency should be modeled according to the



Chapter 1. Introduction 26

nature of the concept drift problem (i.e. changes in the distribution or in the a posteriori
probabilities) when using a DCS based approach. Another hypothesis of this work is that
the DCS approach can benefit from a pool that is kept with as many classifiers as possible,
where this pool may be contain classifiers specialists in different regions of the feature
space and trained under different concepts.

1.5 Contributions
Besides the proposed framework, this work will contribute with the scientific

community with the following items:

• The proposed framework was transformed in an open source project issued under
the GNU General Public License 3 [7]. The framework is fully and freely available
for anyone at https://web.inf.ufpr.br/vri/software/dynse/.

• A comprehensive description of the datasets used in the literature to test concept drift
handling methods, and the main properties of the methods that use these datasets,
which can make easier the selection of the datasets to test future approaches based
on their characteristics.

• The proposal of a protocol to use the PKLot [8] dataset as a concept drift benchmark,
which may help researchers to put their methods to test under a challenging real
world scenario, where the distributions and the a posteriori information may change
due to weather, camera position and capture environment (i.e. parking lot) changes.

• The original K-E method was improved in this work in order to add a mechanism to
deal with noisy environments.

• The basic schematics of the proposed framework and experimental results present in
this work was published in [9].

1.6 Document Structure
This work is further organized in six chapters. Chapter 2 contains the theoretical

foundation about the DCS methods and concept drift problems, including the different
properties of the concept drift problems and the most popular artificial and real datasets
used to test concept drift handling methods. In Chapter 3 the state-of-the-art is described,
where the methods proposed in the literature are categorized in several families, like
window, gradual forgetting and ensemble based methods. Chapter 3 also contains a review
about the state-of-the-art and a mapping between the most common datasets employed
in the literature and the authors methods. The proposed framework is described and
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discussed in Chapter 4 altogether with the definition of a Concept Diverse pool and the
proposal of a pruning algorithm able to keep the pool concept diverse. In Chapter 4 a
modification for the K-E for noisy environments is also proposed, and the experimental
protocol is defined. Chapter 5 contains a series of experiments conducted in order to
validate the proposed approach. Finally, the work conclusions are described in Chapter 6.
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2 Theoretical Foundation

2.1 Concept Drift
In the pattern recognition field, a concept refers to the target variable that needs

to be modeled (learned), which is often the class variable [10]. A concept drift may happen
when there is a change in the hidden context, which denotes one or more features that
could give the true and static description of the problem, but for some reason they are
unknown or unobservable [6, 11, 12]. For instance, in an outdoor surveillance application
concept drifts may occur due to weather and environment changes. In this case, the hidden
context could contain information about climate conditions and objects positions in the
background that would help the system to correctly classify objects, but due to some
limitation, such information is unavailable. In a spam e-mail detection problem [13], the
impossibility of modeling the hidden context becomes evident, since it would probably
include information about the user mind state to track his preference changes.

The outdoor surveillance and spam e-mail detection problems are just some ex-
amples of environments presenting concept drifts. In Section 2.2 the different types of
concept drifts are described. The characteristics of the concept drifts are also explained in
this work, including the concept drift speed (Section 2.3), recurrence (Section 2.4), and
severity (Section 2.5). The data arrival forms for concept drift problems and datasets
containing concept drifts commonly used in the literature are presented in Sections 2.6
and 2.7, respectively. Since this work proposes to modify the DCS approach to deal with
concept drifts, in Section 2.8 the DCS idea for static environments is explained, altogether
with some classical DCS methods. Finally, in Section 2.9 methods for comparing multiple
classifiers over multiple datasets used in this work are explained.

2.2 Types of Concept Drifts
In a pattern recognition problem, an object can be described by a feature vector

x = [x1, x2, . . . , xL] containing L features, which is used to determine the object’s class
y by means of the a posteriori probabilities P (y|x) [14]. For the analysis of the concept
drifts in this work, also consider the features (unconditional) distribution as P (x), the
class conditional distribution as P (x|y), and the a priori probabilities as P (y). Given
these definitions, Subsection 2.2.1 describes the virtual concept drift phenomenon, which
can be caused by changes in the features distribution P (x) or in the class priors P (y).
Changes in the a posteriori probabilities P (y|x), known as real concept drift, are discussed
in Subsection 2.2.2.
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2.2.1 Virtual Concept Drifts

In a virtual concept drift, the instances distribution may change over time, while the
a posteriori probabilities remains unaltered. Figure 2 illustrates a virtual concept drift with
class prior probabilities P (y) changes, where the red class becomes more prevalent at time
t+1. The problem illustrated in Figure 2 has equal costs associated to the misclassification
of objects of all classes, causing no changes in the best boundary between times t and t+ 1,
denoted by the gray dashed line. However, when dealing with cost sensitive problems,
changes in P (y) can become specially harmful [1, 15, 4, 16].
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(b) Class distributions at time t+1

Figure 2 – Class prior probabilities change in a virtual concept drift, where Pt(y) 6= Pt+1(y).
Adapted from [1].

To better illustrate the class prior changes impact, consider the distributions of a
single feature with values contained in N (5, 1.8) for the blue class, and N (10, 1.8) for the
red one, at both times t and t+ 1, in the cost sensitive problem depicted in Figure 3. In
Figure 3a (time t), both classes are equiprobable and the threshold that separates them,
represented by the gray vertical dashed line, is at position 7 in the feature axis. The red
area in Figure 3a represents the proportion of the red class objects that will be classified
as the blue class and, despite the problem being equiprobable, the threshold is displaced
in order to decrease this area, considering that the misclassification cost of the red class is
higher than the blue one. In Figure 3b (time t+ 1) the mean and standard deviations of
both distributions remains unchanged, however the probability of finding objects of the
blue and red classes are 35% and 65%, respectively. By keeping the threshold in the same
position (i.e. keeping the same classifier unchanged), the probability of classifying a red
object as a blue one is increased by the proportion shown in the dark red area.

The concept drift caused by the change in the distribution P (x) between times
t and t+ 1 is also called virtual. Figures 4a and 4b show a virtual concept drift caused
by changes in the distribution P (x) between times t and t + 1. In Figure 4b (t + 1) it
is possible to notice a change in the circle class boundary, denoted by the leftmost gray
region. As in the class prior changes case, this concept drift should not alter the best
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(b) Class distribution at time t+1

Figure 3 – Class prior probabilities change in an one feature cost sensitive problem. The
dark red area in (b) denotes the extra probability of classifying a red class
object as blue after the drift.

boundary in a cost insensitive equiprobable problem, however it may cause problems in
cost sensitive methods, or force the classifiers remodeling to avoid performance losses due
to inaccuracies when estimating the distributions at earlier times (i.e. some regions of the
feature space were not known at time t )[1, 15, 4, 17, 18, 16].
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Figure 4 – Distributions change in a virtual concept drift, where Pt(x|y) 6= Pt+1(x|y).
Adapted from [1].

Even though changes in class priors and feature distributions will be referred as
a virtual concept drift in this work due to its popularity [19, 20, 17, 12, 1, 15, 16], there
are some equivalent nomenclatures in the literature like Population Drift [21, 20, 15, 18],
Covariate Shift [4, 22], Temporary Drift [23], Sampling Shift [24] and Feature Change [25].
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2.2.2 Real Concept Drifts

A real concept drift happens when the a posteriori probabilities P (y|x) change
over time, with or without changes in P (x) or P (y). In this kind of concept drift the
relation between the target classes and the feature vectors may change over time, as in
the spam e-mail filtering problem described in [26], where an e-mail represented by its
feature vector xe can belong to the class “spam” at a given time t, and can belong to the
class “non-spam” at a time t+ 1 due, for instance, user behavior changes [15, 1, 4, 16].

To better illustrate this concept drift behavior, consider the two class problem
in Figure 5. It shows a a posteriori probabilities change, causing a modification in the
problem boundaries between the times t and t + 1, showed in dashed lines in Figures
5a and 5b, respectively. The frontiers change forces an update in the classifier, since the
boundaries learned by it at time t become obsolete at time t+ 1, which may cause strong
accuracy drops.
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Figure 5 – Boundaries change in a real concept drift, where Pt(y|x) 6= Pt+1(y|x). Adapted
from [1].

Real concept drifts can also be referenced in the literature as Concept Shift [4, 27],
Concept Substitution [27, 28], Conditional Change [25] or simply Concept Drift [29, 30, 11].
In this work the term real concept drift is used to describe the change in the a posterior
probabilities since it is widely employed [1, 2, 15, 20, 6, 17, 16], and authors may disagree
with the use of other terms like the Concept Shift which is used as a real concept drift
synonym in [4], and represents real concept drifts combined with abrupt changes in [27].

2.3 Concept Drift Speed
In some cases, the new concept will take place abruptly when, for instance, the

user changes its face by shaving its beard in the user face recognition problem (Chapter
1). In other scenarios, the concept can change incrementally or gradually, taking several
steps to the new concept take place, thus creating a period of uncertainty between stable



Chapter 2. Theoretical Foundation 32

states (e.g. a sensor that wears off and start to lose accuracy gradually [15]). Formally, the
concept drift speed can be defined as the inverse of the number of steps taken for a new
concept completely replace the old one [1, 31, 16].

Figure 6 exemplifies different concept drift speeds over time in a one dimensional
problem. In Figure 6a the feature mean changes at once, characterizing an abrupt concept
drift. Figure 6b represents a gradual continuous, or incremental, concept drift, where the
population moves to the new concept gradually, adding small changes at every step until
the concept stabilizes. A gradual probabilistic, or Continuous, concept drift is represented in
Figure 6c, where it is possible to find objects from both concepts when the new one starts
to take place. The probability of finding an object from the old concept decreases over
time until the change is complete [15, 31, 32, 33]. Although Figures 6b and 6c distinguish
between two different gradual concept drifts, many authors [1, 2, 34, 27, 28, 35] do not
make this differentiation, considering both Figures examples of a gradual concept drift.
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Figure 6 – Concept drift speeds. Figures a, b and c represents Abrupt, Gradual Continuous
and Gradual Probabilistic concept drifts, respectively. Figure d represents an
outlier, that should not be interpreted as a concept drift. Adapted from [5].

Finally, an outlier, that should not be regarded as a concept drift, is exemplified in
Figure 6d, and represents one of the main challenges in concept drift problems, which is
distinguishing drifts from outliers [15]. This problem is related to the stability-plasticity
dilemma, which asks how an entity capable of learning (e.g. the human brain or a machine
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learning method) can be stable to irrelevant events, like outliers, maintaining the useful
information, and still be able to learn with new relevant information [36, 6, 27].

2.4 Concept Recurrence
Many applications may have a concept recurrence, where old concepts may reoccur

in the future [15, 31, 1, 33, 16]. Recurrent concepts are often related to seasonal changes,
e.g., an application that must detect people in an outdoor environment, that needs to
adapt to a new concept due to the snow in the winter season, and return to the old
concept in the spring. The recurrence can also be classified as cyclic, when the concepts
repeat in an ordered manner, or unordered (acyclic) [31, 16]. Keeping the information
(i.e. trained models or training samples) acquired in older concepts when dealing with
recurrent concepts can be a good practice, since this knowledge can be reused or refined
when the concept reoccurs.
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Figure 7 – Cyclic versus acyclic recurrent concept drifts. In (a) the drifts reoccur in an
unordered manner, while in (b) the concepts follows a cyclic pattern.

Figure 7 exemplifies recurring concepts in a one dimensional toy problem containing
three different concepts, where the data points in the plots represents the feature mean. In
Figure 7a the recurrence is random, while Figure 7b represents cyclic recurrent concepts,
since the concepts repeats always following the same order. In Minku et al.[31], the different
types of drifting sequences are further categorized according to their predictability (random
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or predictable) and according to its frequency (periodic for drifts that happens for every t
times, and nonperiodic otherwise).

2.5 Concept Drift Severity
Minku et al.[31] categorizes a concept drift based on its severity. A concept drift is

considered Severe if most of the classes change their labels in the next concept, otherwise
the drift can be considered Intersected. A similar definition is used in [12, 37], where
a change in a sub-region of the instance space is called a local concept drift. Figure 8
represents a two dimensional classification problem, where the feature space was divided
in four equally sized areas. The gray areas represent objects classified as the positive
class, and the white ones represent the negative class. Using Figure 8 as an example, two
different forms of measuring the drift severity can be considered [31]:

• Percentage of classes that changed its labels between the old and new concepts.
Considering the drift between Figures 8a and 8b, 50% of input space had its target
class changed.

• Consider the maximum percentage of a class that had its target concept changed
between the times t and t+ 1. Considering the drift between 8a and 8b, the positive
class (gray area) has 100% of its target concept changed, while the negative class
changed approximately 33% of its target concept. Considering this measure, the
maximum percentage of concept change would be 100%.
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Figure 8 – Example of intersected drift in a 2D problem. The gray area represents the
negative class objects while the white areas represents positive ones. Figure
adapted from [31].

Also according to Minku et al.[31], changes in the unconditional and class-conditional
Probability Density Functions (PDFs), which defines the Feature Severity, could be tracked
using, for instance, the difference between the areas of the old and new concepts uncon-
ditional PDFs, or calculating the percentage of the input space that has its probability
modified [32].
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2.6 Data Arrival Forms
In order to detect and adapt to concept drifts, the incoming data needs to be

analyzed, wherein this data can be available in several forms. For virtual concept drifts,
one possible approach is to detect changes in the incoming unlabeled instances distribution
P (x) to detect possible drifts, like in [38, 28, 39]. Using this method, called Novelty
Detection [40, 26], the classification method could request new labeled instances to perform
a model update only when a concept drift is detected [26]. Nevertheless, analyzing only
the unlabeled instances is unfeasible in environments that suffer from real concept drifts,
since in this case changes in the a posteriori probabilities P (y|x) cannot be tracked [16].
To illustrate this problem, consider the class swap scenario presented in Figure 9, where
the class conditional distribution swaps between y1 and y2 classes from the time t (Figure
9a) to t+ 1 (Figure 9b). Despite the swap, the feature distribution P (x) remains the same
(Figure 9c), making methods that only checks the data distribution blind to this rather
drastic change.
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Figure 9 – Class swap between times t (a) and t+ 1 (b)

Methods created to handle real concept drifts need to rely not only in the feature
distribution P (x) (and in many cases the distribution is not even considered in the
detection), but also in some supervised (labeled) data. This data must be fed to the system
regularly, and it represents the current concept. In some applications, it is considered that
a few supervised instances will be given to the system from time to time in order to detect
drifts or adapt the models [20, 19, 6]. In other applications it is possible to assume that
the true label of all instances will be known at some time [41, 17, 42] (e.g.: an application
that predicts the weather for tomorrow will have the true state of the weather next day).

Applications that have manually labeled instances to detect the concept drifts
can receive the data representing the current environment before classifying the batch
of data collected in the current concept for classification, but with the drawback that
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they often receive only a few instances (e.g. a human supervisor may label some samples
from the current test batch before handling it to the classification system). Methods that
consider that all instances will be labeled may have plenty data to adjust the model
and detect drifts, but at the cost that the supervised data will often arrive with a delay.
The supervised data can arrive to the system in a batch of N supervised instances form
(e.g. 100 instances for every month) [43, 41, 44, 20, 19], or in a stream, were the labeled
instances are given to the system one by one [27, 32, 29, 45] (e.g. one supervised instance
for every hour).

2.7 Datasets Containing Concept Drifts
One major problem when defining a method to deal with concept drift problems is

to find representative benchmarks. Despite the fact that there is a reasonable number of
proposed datasets that contain concept drifts, specially when considering the artificial ones,
not all of them can be employed for all methods. For instance, the STAGGER Concepts
[29] dataset contains severe changes from one concept to another, whilst the SEA Concepts
[46] dataset introduces smaller (intersected) changes for every new concept.

This section describes the most common datasets containing concept drifts found
in literature and its main features, like the drift type, speed and severity (Sections 2.2, 2.3
and 2.5, respectively). The number of samples available, or the methodology employed for
the dataset creation for the artificial datasets case, are also described. Subsections 2.7.1
and 2.7.2 contains the descriptions and the summary for the artificial datasets, respectively,
whilst subsections 2.7.4 and 2.7.3 contains, respectively, the description and summary for
the real datasets.

2.7.1 Artificial Datasets

A common practice adopted in the literature is to employ an artificial dataset to
test the concept drift handling methods. Artificial datasets allow for a deeper analysis
of the problems and methods, since the nature and moment of the concept drifts are
known and fully controllable. This subsection describes some of the most popular artificial
datasets used in the literature.

STAGGER Concepts: Introduced in [29], this synthetic dataset contains abrupt
real concept drifts. Its instances are represented by three features, each with three pos-
sible discrete values: color ∈ {red, green, blue}, shape ∈ {circle, triangle, rectangle} and
size ∈ {small,medium, large}. There are also two possible classes,
y ∈ {positive, negative}1 . In Maloof & Michalski[47], a guideline for using the Stagger Con-
1 Although originally the authors in [29] only defines the target concepts, not defining explicitly that the

objects can belong to the positive or negative classes, these classes were introduced to better conform
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cepts including severe concept drifts is given, where the number of training steps t for the
dataset is 120, and the classification system receive one supervised sample at each step. For
the first 40 time steps, the positive class is represented by color = red∧size = small. In the
next 40 times steps, the positive class is represented by color = green∨ shape = circle. In
the final 40 time steps, the positive class has the properties size = medium∨ size = large

(the true positive classes definition employed in [47] are the same of [29]). The three
concepts described can be seen in Figure 10, where the gray areas denotes positive class
objects.
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Figure 10 – Stagger concepts [47]. The gray areas represents the positive class.

At evaluation phase, at each time step, 100 instances of the current concept are
randomly generated and presented to the classification system, in order to check its
performance (e.g. the number of instances correctly classified). In Chen et al.[43], a
different approach for using the STAGGER Concepts dataset is used, where for every
positive class definition (i.e. each new target concept), ten data batches are generated
with 300 examples each. In each batch 100 examples are used or training and the other
200 examples for testing. Also in Chen et al.[43], a forth concept equal to the first one
is added to simulate recurrences. Although the original configuration of the STAGGER
Concepts contains only three distinct concepts, it can be easily modified to include more
concepts, besides recurrences and different drift speeds, as done in [32, 43].

SEA Concepts: Developed in [46], this artificial dataset contains three randomly
generated real features f1, f2 and f3 in the range [0, 10], where just f1 and f2 are relevant,
and two possible classes y ∈ {positive, negative}. Four data blocks containing 15.000
instances each are generated. The boundary that separates the classes in all blocks is
given by f1 + f2 ≤ θ, where the instances that respect this rule belong to the positive
class, or to the negative class otherwise. Concept drifts are introduced by varying the θ
threshold for each block. From the first to the last block, the thresholds used are 8, 9, 7

with the other datasets studied.
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and 9.5, respectively. The training data is composed by 12.500 samples of each block, and
the remaining samples are employed for testing. Class noise is inserted by swapping the
classes of 10% of the instances in the training data.

Figure 11 contains 1,000 samples of each concept for the SEA Concepts dataset. In
order to simplify the data visualization, the non representative f3 feature is not present
in the plots, and no noise was added. As can be seen in Figures 11a to 11d, the concept
drift occurs abruptly, and much of the information is shared between concepts (i.e. for
many objects the a posteriori probability does not change between concepts). Thus, in
this document the SEA Concepts dataset will be considered as containing real abrupt
concept drifts with intersected changes.
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Figure 11 – 1,000 instances for each Concept of the SEA dataset without noise. The
irrelevant f3 feature is not represented in the plots

In [6] a different approach is employed to use the SEA Concepts benchmark, where
for each time step, a supervised batch containing 250 samples is given for training, and
another batch containing 250 samples from the same concept is generated for testing. The
concept is changed for each 50 steps, thus generating a test with 200 time steps. It is
worth pointing out that in [6] only the training instances contain the 10% of noise.
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Moving Hyperplane: This two-class dataset was first used in [30], and it consists
of a d− dimensional real space containing samples generated uniformly in a predefined
range. Samples are classified as belonging to the positive or negative classes according to
Equation 2.1.

class =

 positive if ∑d
i=1 wixi > w0,

negative if ∑d
i=1 wixi ≤ w0

(2.1)

In Equation 2.1, xi is the ith attribute value, and wi is the ith attribute weight.
Concept drifts are introduced through the modification of the weights wi, that needs
to satisfy w0 = ∑d

i=1 wixi in order to keep the prior probabilities fixed. By changing
the weights with different values and at different times, the Moving Hyperplane can be
employed to generate d− dimensional datasets containing several kinds of concept drifts
like intersected, severe, abrupt and gradual drifts. Noise can also be modeled by swapping
classes of randomly chosen objects [15, 30].

Rotating Checkerboard Dataset: this dataset consists of two real attributes,
uniformly distributed in the [0 × 1][0 × 1] domain. To build the dataset, N objects are
created, and a checkerboard, containing four squares of side 0.5, is responsible to assign
the objects classes (e.g. objects that are in the dark squares will belong to the positive
class). Real concept drifts are introduced by rotating the checkerboard by and angle α, as
exemplified in Figure 12 [48, 6].

Figure 12 shows that the angle and location of the decision boundaries can change
drastically, depending on the rotation angle α and rotation axis position, affecting the
drift severity and speed (e.g. for small values of α the drift could be considered intersected
gradual continuous, since the boundaries are always changing by small portions). In the
configuration shown in Figure 12, it is also noticeable that the concept will reoccur after
a rotation of π (half a rotation). In order to prevent training on identical snapshots of
data when the concept reoccurs, Elwell & Polikar[6] add 10% of random noise. In the
same work, drift variability is introduced by changing the rotation angle α, which can be
constant or vary in a exponential, pulse or sinusoidal fashion. Elwell & Polikar[6] employed
this dataset by taking 25 training and 1024 testing samples from the window at each time
step.

Random RBF Generator: Bifet et al.[42] proposed to use a Radial Basis Func-
tion (RBF) generator to create an alternate complex concept type that is not straight-
forward to approximate with a decision tree model. The generator works by creating N
centroids in a real space. Each centroid has a random position, a single standard deviation,
a class label and a weight, which defines its prior probability. New samples are generated
by picking a centroid randomly, considering its weights (centroids with greater weights are
more likely to be chosen). The direction of the new sample offset is also determined at
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Figure 12 – Half a rotation on the checkerboard data [6]. The sampling window has 1x1
size and it is kept in a static position while the checkerboard rotates in its
own axis, thus changing the objects classes in the window.

random, and the displacement distance is drawn randomly from a Gaussian distribution
with standard deviation defined by the chosen centroid. Finally, the class of the centroid is
assigned to the sample. This process creates a normally distributed hypersphere of samples
around each centroid with varying densities. Concept drifts are introduced by moving the
centroids with a constant speed.

Since the concepts are always drifting with a constant speed, this dataset can be
considered as having a gradual continuous real concept drift. The concept drift severity
can be trickier to define, since it depends to the speed constant value. Higher values could
lead to severe drifts, since the centroids could move a large distance changing most of the
target concept. Otherwise, small values could lead to a intersected drift, since most of the
objects will not have their classes changed.

LED Generator: Available at the University of California, Irvine (UCI) Repos-
itory [49], this dataset was originally proposed in [50]. It contains 7 Boolean attributes
representing the Light-emitting Diodes (LEDs) states of a seven-segment display, and
10 possible classes, representing all decimal digits. Each attribute has a 10% chance of
being inverted (noise), thus leading to an optimal Bayes classification rate of 74%. Besides
originally not having concept drifts, drifts can be introduced by swapping attributes
positions [15, 5], thus generating abrupt real concept drifts. The drift severity will depend
of the number of swapped attributes. Some authors also introduces a number of irrelevant
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attributes to produce a more challenging classification task, like in [42, 2, 45].

Waveform Generator: Also proposed in [50] and available in the UCI Repository,
this dataset defines the classification task as distinguishing between three classes of a
waveform, where each waveform is generated by a combination of two or three base waves.
There are two versions of the Waveform Generator available: the first one, called wave21,
has 21 real attributes, all of them including noise, and the second one, called wave40,
has the same 21 attributes and additional 19 irrelevant attributes. Similarly to the LED
Generator, this dataset originally does not contain concept drifts, thus concept changes are
introduced by swapping the attributes positions [42, 15]. Its optimal Bayes classification
rate is 86% [42], and like in the LED Generator, this dataset can be considered to contain
abrupt real concept drifts, and the drift severity will depend of the number of swapped
attributes.

Gauss Datasets: this two-feature dataset consists basically of instances taken
from Gaussian distributions, each centered at some point in R × R. Each distribution
represents one class, and concept drifts are introduced by changing the distributions
centroids over time. In [48, 34, 51] the Gauss Dataset was employed to create two class
problems, where before the drift, instances with the positive class label are normally
distributed around the center [0, 0] with standard deviation 1. The negative instances are
normally distributed around [2, 0] with standard deviation 4. After the concept drift the
instances classes are swapped, thus generating an abrupt severe concept drift.

Gauss Dataset with Class Addition/Removal: Elwell & Polikar[6] cre-
ated a different configuration for the Gauss Dataset, containing a total of 4 classes
∈ {C1, C2, C3, C4}. The problem contains 300 time steps, where the concept drift is
defined as gradual. The problem begins with 3 the classes {C1, C2, C3}, and at time 120
the class C4 is introduced. At the time step 240 the class C1 is removed from the problem.
At each time step 20 supervised instances are given for training, and 1024 are given for
testing the method.

Sine Datasets: the sine function based datasets are composed basically of two
uniformly distributed features (x, y) in the [0× 1][0× 1] domain. There are two variants
commonly used of this dataset: the Sine1, where before the concept drift all points bellow
the curve y = sin(x) belongs to the negative class, and the Sine2 that defines the negative
samples as the points that satisfies y < 0.5 + 0.3 sin(3πx). For both cases the samples
classes are swapped after the drift, thus leading to a abrupt severe concept drift [51, 48, 34].

Artificially Modified Datasets: The LED and Waveform are examples of
datasets with artificially introduced concept drifts. Besides these two datasets, that are
quite recurrent in the literature, this practice is common with another datasets without
(known) concept drifts. Since the drifts are introduced artificially, and the moment and
severity of them is known, these datasets can be fit in the Artificial Datasets category,



Chapter 2. Theoretical Foundation 42

independently of how the data was created/collected originally. Some techniques for
artificially introducing drifts includes swapping the attributes positions [42, 15, 5, 2],
changing the objects classes [48, 52, 31], or even organizing the dataset in such a way that
new classes will appear after a number of steps [53]. The changes introduced in the dataset
will heavily depend on the characteristics of the method that will be tested using it, since
most methods are created to deal with specific concept drift types.

2.7.2 Summary of Artificial Datasets

One of the first noticeable aspects of the artificial datasets studied in this work
is that all of them contain real concept drifts, although virtual concept drifts could be
easily introduced by picking small and possible biased portions of data for training [54] or
by taking sets with different proportions of classes over time for training/testing (class
priors change) [44, 38, 55]. Other properties, like the number of features and classes, and
the drift speed and severity, can be seen in the Table 1, where configurable aspects of the
datasets are marked as PD (Problem Dependent). Table 1 shows that most of the datasets
have a low feature dimensionality, and except for the Random RBF Generator and the
LED Generator, all datasets define problems with 2 to 4 classes (low class dimensionality).

Table 1 – Main Properties of the Artificial Datasets

Dataset Real
Feat.

Discr.
Feat.

Num.
Class.

Drift
Speed

Drift
Severity

STAGGER
Concepts 0 3 2 Abrupt Severe1

SEA Concepts 3 0 2 Abrupt Intersected
Moving Hyperplane PD 0 2 PD PD
Rotating
Checkerboard 2 0 2 PD PD

Random RBF
Generator PD 0 PD Gradual

Continuous PD

LED Generator 0 7 or more2 10 Abrupt PD
Gauss Datasets3 2 0 2 Abrupt Severe
Gauss Dataset Class
Addition/Removal 2 0 4 Gradual Intersected

Sine Datasets 2 0 2 Abrupt Severe
Waveform Generator 21 or 40 0 3 Abrupt PD

Table 1 also shows that most datasets have at least one configurable parameter
(e.g. number of classes, drift speed, drift severity,...). This property is desirable, since the
customization can expand the datasets application. However, default configurations, like
1 The STAGGER Concepts are considered to have a severe concept drift when employing the configuration

proposed in [47]
2 Some authors include some extra irrelevant attributes in the LED Dataset, like in [2, 42]
3 The properties were based in the configuration used in [48, 34, 51]
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the ones described for the STAGGER and SEA Concepts, are necessary to make easier the
comparison of different methods. The drift recurrence property was not included in Table
1, since it can be easily achieved in the datasets that does not originally contain recurrence
by simply repeating old concepts. It is worth of remarking the importance of choosing the
correct dataset stated in the beginning of Section 2.7, since some of them have specific
properties that should be considered when picking the dataset to test a method.

2.7.3 Real Datasets

Section 2.7.1 presented the importance of employing artificial datasets to evaluate
concept drift handling methods. Nevertheless, despite their importance, they may not
fully represent real world environments. For this reason, testing methods in real datasets
is interesting since they represent real-world challenges, where the algorithms usability
can be put to test [15]. By using well established testing frameworks in these datasets
(e.g. using the same number of training samples per step of other works), they may also
make easier the comparison between different methods, since the data is fixed (i.e. not
randomly generated like in some artificial datasets). Nevertheless, these datasets have some
drawbacks, like the fact that it is not possible to know when the concept drift occurred, nor
even if the dataset really contains concept drifts. It is also not possible to verify properties
like the drift nature, speed and severity in these datasets.

Due to the difficulty in defining the concept drifts in these datasets, a common
practice is to employ data collected in environments where unpredictable changes are
expected, like the ones related to stock markets or the ones that are bounded to the user
preferences or climate changes. In this subsection, the most popular datasets used to
test concept drift handling methods found in literature that were collected in real world
environments are presented and described.

China Stock Market & Accounting Research Database: Jian-guang et
al.[41] and Sun & Li[17] employed the Chinese Stock Market information to produce a
dataset with (possible) concept drifts. The task defined in the dataset is to distinguish
between companies that are in financial distress from the healthy ones. Concept drifts are
expected to occur in this dataset when, for instance, an enterprise evolves from one stage
to other in its life cycle. For example, a starting-up enterprise can become a strong one
when it grows up, even though the enterprise had shown a deficiency of liquidity or a cash
flow difficulty in its first stages, which would be normal but could be misinterpreted as a
financial distress.

Electricity: This time series based dataset, introduced in Harries[56], contains
the data of the Australian New South Wales Electricity Market, being one of the most
popular datasets when testing concept drifts dealing methods. The prices in this electricity
market are not fixed and are affected by the demand and supply of the market, where these
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prices are set for every five minutes. The ELEC2 dataset, which is commonly employed
for the concept drifts studies, is composed of 45,312 instances drawn from 7 May 1996 to
5 December 1998, where each instance refers to a period of 30 minutes (i.e. 48 samples
per day). Each sample contains the attributes time stamp, day of the week, time (1-48
refering to the 30 minutes period of the day when the data was collected), the South Wales
electricity demand, the Victorian electricity demand and the scheduled power transfer
between states. Each sample also has a class, which identifies if its price is higher or lower
than a moving average of the last 24 hours.

Besides the popularity of the Electricity benchmark for testing methods under
concept drift scenarios, in an interesting work, Žliobaitė[57] showed that the labels of this
dataset are not independent, and a naive predictor that predicts the next label to be the
same as the current one (moving average of one) would achieve an accuracy higher than
85%. In this scenario, it is not possible to check if the method under test is really detecting
the concept drifts or if it is just firing random change alarms (the more data it discards, the
better). Thus, getting high accuracy on the Electricity dataset does not necessarily mean
that the method is correctly adapting to the concept drifts. To overcome this problem, in
[57] it is recommended to compare the testing accuracies with the accuracy of the moving
average of size one when using the Electricity Dataset. A similar conclusion is presented
in [58].

Poker-Hand dataset: In this dataset, available at the UCI Repository [49], the de-
fined task is to predict the poker-hand in a set of five cards drawn from a standard deck of 52
cards. Each card is described according to its suit ∈ {Hearts, Spades,Diamonds, Clubs}
and rank in the range [1, 13] representing (Ace, 2, 3, ..., Queen, King), for a total of 10
predictive attributes (5 cards times 2 attributes). A class attribute in the range [0, 9]
informs the value of the hand, where higher values indicates better poker-hands. In the
dataset the order of cards is important, which is why there are 480 possible Royal Flush
hands instead of just 4. The dataset contains a total of 1,025,010 samples [42, 45].

Nebraska Weather: The U.S. National Oceanic and Atmospheric Administration
has a compilation of weather measurements from over 9,000 weather stations worldwide.
The data is collected since 1930, providing a wide range of samples which can include
weather trends. The features present in this dataset includes temperature, wind speed,
indicators for precipitation and other weather-related attributes. Elwell & Polikar[6] and
Escovedo et al.[11] employed the data collected in the Offutt Air Force Base in Bellevue,
Nebraska, due to its extensive range of 50 years (1949-1999) and the presence of diverse
weather patterns. Both works employed only the eight features with a missing feature rate
less or equal than 15%. The remaining missing values were replaced by the mean of the
features in the preceding and following samples. The class labels are binary indicating
the presence or not of rain in the sample. The dataset contains a total of 18,159 samples,
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where 5,698 (31%) belongs to the rain class, and 12,461(69%) to the no rain class.

Forest Cover Type: Also available at UCI Repository [49], this dataset defines
the classification task as identifying the forest cover type for 30× 30 meters cells. Each
sample is described by 10 numerical and 44 categorical attributes, which defines carto-
graphic properties such as the area elevation, slope and soil type. The class attribute,
which belongs to the range [1, 7], identifies the forest cover type. The dataset is composed
of 581,012 samples [2, 59]. In this work the normalized dataset version available at the
Massive Online Analysis (MOA) [60] website2 was used, which consists of the original
dataset with the numerical attributes scaled in the range between 0 and 1 [14].

Bifet[58] presents some problems in the Forest Covert Type dataset, similar to
the Electricity dataset, where the author claims that this dataset may present a high
correlation between its data, thus a naive classifier, that does not detect or adapt to any
concept drift (just adds new information in the model), may perform better than a concept
drift detector when using the instances of this dataset in a test-then-train stream scenario.

2.7.4 Summary of Real Datasets

Table 2 shows that the real world datasets used in the literature are quite hetero-
geneous, showing different number of features, classes and samples. As described in the
beginning of the Subsection 2.7.3, it is not possible to verify the drifts properties in real
datasets, or even if they really contains concept drifts, reason why properties like the drift
speed or severity are not listed in the table.

Table 2 – Main Properties of the Real Datasets

Dataset Real
Features

Discrete
Features Classes Samples

China Stock Market & Accounting
Research Database 41 - 2 -

Electricity (ELEC2 ) 4 1 2 45,312
Poker-Hand dataset 5 5 10 1,025,010
Nebraska Weather 8 0 2 18,159
Forest Cover Type 10 44 7 581,012

2.8 Dynamic Classifier Selection
Since in this work it is proposed a framework for dealing with concept drifts through

the Dynamic Classifier Selection (DCS) approach, this section briefly describes the general
idea behind the DCS methods under static environments (the DCS idea is extended to
non-static environment in the course of this work). The DCS-based methods try to find a
2 http://moa.cms.waikato.ac.nz/datasets/
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good “custom selected” classifier or ensemble of classifiers for the unlabeled instance x,
usually based on its local region on the feature space, during the classification phase.

The local region of the instance x can be defined by, for example, the neighbors
of x in a validation or training set Q, where the classes of the instances in Q are known
[61, 62, 63, 64]. It is worth mentioning that, as suggested in [65, 64], the Dynamic Classifier
Selection (DCS) therm refers to methods that selects a single classifier [66, 67, 68],
while methods that selects one or more classifiers can be define as Dynamic Ensemble
Selection (DES) methods [69, 70, 62]. Nevertheless, due to the popularity of the therm
and for the sake of simplicity, we will refer to Dynamic Classifier Selection based methods
as DCS-based, regardless of the number of classifiers selected (i.e. a single classifier or
ensemble).

Lets denote as Nx = {n1, n2, ..., nk} the set containing k neighbors of x computed
in Q (Nx ⊆ Q). A DCS method will use the neighbors set Nx to estimate the classifiers
competence and them select a custom classifier/ensemble Ex (Ex ⊆ P ) for the test instance
x [61, 62, 63, 64]. Thus, a DCS-based approach can be seen as a function Ex = DS(Nx, P ).
The DCS basic idea is illustrated in Figure 13.

Test Instance x
Find the neighbors

of x in Q

Q

Ex

Validation Set Q Pool of

classi ers P

Estimate the classi ers

competence using   Nx

Nx

P

Figure 13 – Dynamic selection of classifiers basic framework.

Since under non-changing scenarios often a single training dataset is given to build a
classification system, usually both the pool P and the validation dataset Q are static. Thus,
since Nx is a subset of a specific region of Q, the DCS can be defined as region dependent
under static scenarios (in Section 4 the DCS is modified to be also time dependent in order
to deal with concept drifts). Several DCS methods that follows the general idea described
in this Section where proposed over the past years. The DCS methods used in this work
are next described:

Dynamic Classifier Selection by Local Accuracy (DCS-LA): Proposed by
Woods et al.[68], the DCS-LA basically selects the best performing classifier in the pool
for each test instance x based on its neighborhood in Nx. There are two variants of the
original method [68, 61, 63]:

DCS-LA Overall Local Accuracy (DCS-LA OLA): In this variant, the most accurate
classifier when considering Nx is selected to classify x. The accuracy is defined as the
number of samples correctly classified in Nx.
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DCS-LA Local Class Accuracy (DCS-LA LCA): Supposing that the classifier c
gives the class yc to the test instance x, the DCS-LA LCA approach computes the local
accuracy as the percentage of samples in Nx correctly classified by c, where all instances
in Nx must belong to the yc class (i.e. the K nearest neighbors that belong to the class yc
are selected to be part of Nx). As in the DCS-LA OLA variant, the classifier that achieves
the best accuracy is selected to classify x.

For both variants of the method, two (or more) classifiers may have the highest local
accuracy estimates. In the original paper [68] tie-breaking is handled by choosing the class
that is selected most often among the tied classifiers and, if a tie still exists, the classifier
with the next highest local accuracy will break the tie in the same manner. Nevertheless,
since the framework proposed in this work is able to handle methods that selects multiple
classifiers (see Section 4.1), all tied classifiers are used in the classification in order to
increase the implementation simplicity. Regarding to the neighborhood size, through a
range of tests, the authors of the original work [68] concluded that a neighborhood of
size 5 or 10 generally is able to generate good results for both variants of the DCS-LA
approach.

A Priori and A Posteriori methods: Both methods, proposed by Giacinto
& Roli[66], follows a similar idea of the DCS-LA approach, where one classifier is selected
to classify the test instance x based on its accuracy in the neighborhood Nx. Additionally,
the A Priori and A Posteriori approaches weights the accuracy of the classifiers according
to their a posteriori probabilities and the distance between each neighbor n ∈ Nx and the
test instance x. Formally, the classifier that will be selected is the one that maximizes the
probability of correctly classifying the test pattern x, where the equations for calculating
this probability depends on the approach variant implemented [66, 63].

Using the A Priori variant, the selection is performed without knowledge about
the class assigned by the classifier c to the test pattern x, using the Equation 2.2, whilst
the A Posteriori method, that uses the Equation 2.3, considers that the classifier being
tested c labeled the test instance x as being from the yc class. In both Equations 2.2 and
2.3, δi is equals to one divided by the Euclidean distance di between the neighbor ni and
the test instance x (δi = 1/di) [66, 63].

p(correctc) =
∑K
i=1 P (y|ni ∈ y)δi∑K

i=1 δi
(2.2)

p(correctc|c(x) = yc) =
∑
ni∈yc

P (yc|ni)δi∑K
i=1 P (yc|ni)δi

(2.3)

K-Nearest Oracles (KNORA): Proposed in [69, 70, 62], the KNORA works by
selecting an ensemble for the instance x based on its neighborhood Nx. How the classifiers
are selected to be part of the ensemble depends on the variant of the KNORA method
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implemented. Bellow are described the two main variants of the KNORA method proposed
in the original papers. In Section 4.7 a modification for the original K-E method for dealing
with noisy environments is proposed.

KNORA-ELIMINATE (K-E): considering the set of k neighbors Nx of the unlabeled
instance x, and supposing that a set of classifiers C correctly classifiers all instances in
Nx, then every classifier ci ∈ C should submit a vote on the unlabeled instance. There is
the possibility that no classifier can correctly classify all instances in Nx. In this case, the
value of K should be decreased and the set Nx recomputed, until at least one classifier
correctly classifies all instances in Nx.

The basic idea of the K-E is explained in Figure 14, where the instances in the
validation dataset Q are represented by small circles on the left side of the image. The
instance that needs to be classified x is represented by an hexagon and the K nearest
neighbors of x (Nx) are shown in gray. The right side represents the classifier space, and
each circle represents a set of classifiers that correct classifies a neighbor of x. The gray
area represents the classifiers that correctly labels all neighbors, being the set of classifiers
that should give a vote to classify x. The original K-E method is extended in Section 4.7
in order to introduce a slack variable.

X

Feature Space Classifier Space

Set Q

Figure 14 – The K-E scheme. On the left side the unlabeled instance x is shown as an
hexagon, and the K = 5 nearest validation points are showed as gray circles.
On the right side the intersection of all classifiers that correctly classifies all
instances is painted. Figure adapted from [62].

KNORA-UNION (K-U): considering the set of neighbors Nx containing k instances
and supposing that a set of classifiers C correctly classifies at least one instance in X, then
every classifier ci ∈ C should submit vi votes on the unlabeled instance, where vi is the
number of neighbors correctly labeled by the classifier ci (i.e. the more neighbors a classifier
labels correctly, the more votes it will give for classifying x). The K-U is represented
in Figure 15, where the only difference to K-E (Figure 14) is that, instead of using the
intersection of the classifiers sets, the union of all sets is employed (gray area on the right
side of the figure).

In the tested scenarios discussed in the original works [69, 70, 62] the authors
concluded that the KNORA algorithms family is robust to the number of neighbors
selected, although a small neighborhood size generated better results in most scenarios,
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Classi er Space

X

Feature Space

Set Q

Figure 15 – The K-U scheme. On the left side the unlabeled instance x is shown as an
hexagon, and the K = 5 nearest validation points are showed as gray circles.
On the right side the union of all classifiers that correctly classifies at least
one instance is painted. Figure adapted from [62].

where the K = 7 neighbors was the best performing configuration for the K-E approach
in [70, 62].

2.9 Comparing Classifiers Over Multiple Datasets
In this work is proposed a new framework for dealing with a range of concept drift

problems. Several datasets are used for testing the proposed framework performance under
different concept drift scenarios, which may raise the question of how we could verify the
methods performance over all datasets, since the framework may be the best performing
one in a dataset A, and be the worst performing one in a dataset B.

To mitigate this problem, this section presents some non-parametric tests for
statistical comparisons of classifiers over multiple datasets that will be employed in this
work. For this purpose, consider a set of K classifiers tested in N datasets, where we must
validate or reject the hypothesis that all classifiers have similar performances in these
datasets.

In this scenario, the Friedman test [71, 72, 73] may be used. When using the
Freedman test first it is necessary to rank the algorithms performance in each dataset (i.e.
the best performing method receives the rank 1, the second best receives rank 2, etc.).
In case of ties when assigning the ranks, the average of the ranks that would have been
assigned without a tie must be assigned to each tied method (e.g. if two methods are tied
in rank 5, then each method should receive the rank (5 + 6)/2 = 5.5). After ranking each
method in each dataset, the average rank of the methods should be computed. After the
methods ranking, the Friedman test can be computed according to Equation 2.4:

χ2
F = 12N

K(K + 1)

 K∑
j=1

R
2
j −

K(K + 1)2

4

 (2.4)

The Friedman test is distributed according to χ2
F with K − 1 degrees of freedom
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for big enough N and k (N > 10 and k > 5) [73]. Iman & Davenport[74] showed that the
Friedman test may be too conservative and derived the FF statistic, which distributed
according to the F-distribution with k− 1 and (k− 1)(N − 1) degrees of freedom [73]. The
FF is computed as shown in Equation 2.5:

FF = (N − 1)χ2
F

N(k − 1)− χ2
F

(2.5)

In both Friedman and FF tests, if the computed value is bigger than the critical
values, considering their respective distributions (χ2

F distribution for the Friedman test
and the F-Distribution for the FF test) and desired confidence level α, the null-hypothesis
is rejected, thus indicating that there are classifiers with different performances. Under this
scenario, the Nemenyi post-hoc test [75] may be used to make a pairwise comparison of all
classifiers in order to check if their performances are significantly different. The Nemenyi
post-hoc test can be computed using the Equation 2.6, and two classifiers are considered
significantly different if their average ranks differ by at least the Critical Difference (CD)
computed [73].

CD = qα

√
K(K + 1)

6N (2.6)

The critical value qα in Equation 2.6 is based on the Studentized range statistic
divided by

√
2. When all classifiers must be compared to a control classifier (e.g. compare

the proposed method with the state-of-the-art classifiers), the Bonferroni-Dunn test [76]
may be a more suitable approach than the Nemenyi test, since it adjusts the critical value
for making K − 1 comparisons, whilst the Nemenyi test adjusts the critical value for
K(K − 1)/2 comparisons. The Bonferroni-Dunn test can be computed using the same
equation used in the Nemenyi test (Equation 2.6), but using critical values for α(K − 1)
[73].

As an example, consider the Table 3, which contains six methods tested using five
datasets. In this table, each method is first ranked according to its performance in each
dataset (the numbers in parenthesis), and the average rank is computed in the last column
(R). The FF statistic computed for the Table 3 is equals to 2.59, which is bigger than the
critical value of 2.16, considering K − 1 = 5 and (K − 1)(N − 1) = 20 degrees of freedom
and a confidence level of 90% (α = 0.1). This result rejects the null hypothesis, indicating
that there are classifiers with different performances.

Considering now that the Method2 is a control classifier that should be compared
against all classifiers, the CD value computed through the Bonferroni-Dunn test obtained
is equals to 3.05, thus indicating that the Method2 performs significantly better only when
compared to the Method6 (the diference in the ranks between the Method2 and Method6
is of 3.5, which is bigger than the CD). This result is graphically represented in Figure
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Table 3 – Methods ranking table example. The numbers in parenthesis indicates the
ranking of the methods in each dataset, and R indicates the average rank of
each method.

Method Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 R
Method1 91%(4) 80%(2) 40%(5) 98%(1.5) 60%(4) 3.3
Method2 93%(2) 87%(1) 77%(2) 98%(1.5) 71%(1) 1.5
Method3 81%(6) 33%(6) 78%(1) 89%(5) 63%(2) 4.0
Method4 92%(3) 70%(4) 55%(4) 91%(3) 57%(6) 4.0
Method5 94%(1) 34%(5) 76%(3) 90%(4) 61%(3) 3.2
Method6 85%(5) 78%(3) 38%(6) 80%(6) 58%(5) 5.0

16, where the results achieved by the classifiers intersected by the red dashed line are not
considered significantly different when compared to the Method2.

3.3 - Method1

5 - Method61.5 - Method2 3.2 - Method5 4 - Method3

CD = 3.05

4 - Method4

Figure 16 – Bonferroni-Dunn test for the methods in Table 3

Methods deemed as equivalent by the Bonferroni-Dunn test can be further analyzed
using pairwise comparisons, considering the hypothesis of equality between each pair of
algorithms, using the Bergman-Hommel procedure3 [78, 77, 64], and the Wilcoxon Signed-
Ranks test [73]. Note that when using the Wilcoxon Signed-Ranks test, the significance
level should be adjusted using a correction for multiple comparison, as suggested in [73].
This should be done in order to avoid Type I Errors, where a pair of algorithms may be
falsely marked as different regardless of the other m− 2 algorithms. As in [79], the p-value
is adjusted by the Bonferroni correction [73, 79].

3 Implementation made by [77] available at http://sci2s.ugr.es/keel/multipleTest.zip
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3 State-of-the-Art of Concept Drift Handling
Methods

In this chapter the state-of-the-art of methods that deal with concept drifts is
presented. To make the reading easier, each method was put in one of the following cate-
gories: Windowed, Gradual Forgetting, Trigger, Ensemble, Neighborhood or Distribution
Analisys based. Besides some methods may be fit in two or more categories, for the sake
of simplicity, each method was put in exactly one category in this work based on the
method’s main characteristics.

The remainder of this Chapter is organized as follows: Section 3.1 presents the
methods that use time windows to adapt to concept drifts, whilst Section 3.2 discusses
the methods that employ some mechanism to gradually forget the instances. Section 3.3
shows the approaches that use some trigger as a active method to detect concept drifts,
Section 3.4 presents the methods based on ensembles of classifiers, Section 3.5 discusses
the methods that use the local region of the test instances to adapt to concept drifts, and
Section 3.6 shows the methods that employ a distribution analysis to handle concept drift.
A review containing the main properties of the methods and a discussion about them
is given in Section 3.9. Finally, Section 3.7 presents the datasets employed in the works
found in the literature to validate the proposed methods.

3.1 Windowed Methods
One of the classic methods to deal with the concept drift problem is to keep a

window containing the M latest samples, which is employed to train/update the classifier.
Using this approach, the classifier will “forget” old training instances, which could represent
an old concept, thus containing conflicting information. Besides its simplicity, the window
based methods raises the question of how large M should be to keep a good performance.
A small window can generate a system with a fast reaction to changes, but the low
number of training data may cause a loss in the classifier accuracy when the concept is
stable (i.e. outside the concept change regions). An alternative would be to define a large
window, which would create a stable and well trained classifier that slowly adapts when
the concept changes [26, 1, 5, 80]. This compromise between the fast adaptation versus a
good performance in stable regions by means of adjusting “forgetting” parameters can be
viewed as the stability-plasticity dilemma, as discussed in Section 2.3 [36, 26, 6, 81].

Figure 17 exemplifies the basic idea of the windowed methods, where each Si

represents a training sample (or batch), and the bigger the value of i, the more recent the
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instance. The window size employed in Figure 17 is equals to 5, where only the samples
inside the current window are employed to build/update the classification system. At time
t, samples S6 to S10 are in the current window, but at time t+ 1 the instances S11 to S13

arrive (gray samples), thus moving the current window and removing the instances S6 to
S8 from the current training set.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

New Instances Arriving

Window at time t

Window at time t+1

Instances available at time t

Instances that arrived at time t+1

Figure 17 – Windowed methods overview.

The family of FLORA algorithms [80] is one of the first supervised methods
proposed to deal with concept drifts by the use of a sliding window [15]. The original
FLORA consists of a window of fixed length, where every time a new sample arrives, the
oldest one is discarded and the model is updated using the current data. FLORA2 adds
the capability to adapt the window size, which can be extended if the algorithm detects a
stable region, or shrink in a changing region. Recurring concepts are taken into account in
the FLORA3, and the ability to deal with noisy data is added in FLORA4.

In Hulten et al.[30] it is proposed the Concept-adapting Very Fast Decision Tree
learner (CVFDT) algorithm, which is an extension to Very Fast Decision Tree learner
(VFDT) [82], capable of keeping the tree up to date with a window containing the M
latest supervised samples received. Every time a new supervised sample is available, the
statistics of the tree nodes are updated considering the new sample that was added, and
considering the old sample that was removed from the current window. A new tree is
created every time a split that passed in the Hoeffding test [83] no long do so. When new
tree becomes more accurate than the old one, it replaces the old tree.

Following the FLORA2 principle of adjusting the window size, Jian-guang et al.[41]
proposed a method to adapt the current window size to deal with concept drifts when
predicting companies financial distress. In their work, when a new supervised batch bt
(considering that t is the current time) is available, the method creates m training sets
K0 = {bt}, K1 = {bt, bt−1}, Km = {bt, bt−1, ..., bt−m}. For each training set, some of the
most recent instances are removed and a Support Vector Machine (SVM) is trained with
the remaining instances. The removed instances are then used to test the classifier, and
the training set that generated the classifier with the best accuracy is elected as the best
window. The instances in this window are then used to build a pool of classifiers using the
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bagging method. When an instance x needs to be classified, all classifiers of the pool are
employed.

The optimal window size problem is investigated in Kuncheva & Žliobaitė[81] work,
where an equation is given for estimating the optimal window size for two-class abrupt
concept drifts. Since the equation requires the a priori knowledge of some parameters,
like the moment t when the concept drift occurs and the errors of the classifiers for each
concept, this work consider the concept drift problem in a theoretical level. Nevertheless,
by making some assumptions, like considering that the error of the classifiers will be the
same in all possible concepts and that the concept drift is caused by and rotation or/and
translation of a plane, the authors were able to create a system that dynamically adapts
the current window size that achieved better accuracies than a fixed window size approach.

Concept drifts when predicting companies financial distress are also studied in Sun
& Li[17], where a window, that keeps track of the latest batch, is employed to build a
classifier. The accuracy of this classifier is verified in every former batch, and the batches
where the accuracy was bigger than a threshold are inserted in the training set, since they
are considered similar to the current window. The training set is then employed to build
the final model that will be used to classify new instances. Although both real and virtual
financial concept drifts may happen in the considered environment, the method focuses on
virtual concept drifts only.

In the method proposed in Rakitianskaia & Engelbrecht[84] a sliding window
defines the training dataset. Every time the window moves, a neural network is retrained
using a Particle Swarm Optimisation (PSO)[85] based algorithm, namely a reinitializing
PSO - which completely restarts the search after the window moves, a charged PSO -
that “charges” the particles, which can repel each other, and the Quantum PSO - based
on the model of an atom. Results showed that the neural networks trained with PSO
outperformed the back-propagation algorithm in environments exhibiting infrequent to
moderately infrequent gradual drifts. The back propagation algorithms converged faster
than the PSOs, outperforming them in scenarios with frequent abrupt drifts. The algorithms
that completely reinitializes the neural networks weights for retraining exhibited the worst
performances, giving evidences that the previous weights were still informative when the
concept changed.

3.2 Gradual Forgetting Methods
Methods that implements the gradual forgetting principle are quite similar to the

windowed approach, but instead of abruptly discarding training samples (a sample is or is
not present in the current window), these methods gradually decreases the importance of
old instances by applying some aging factor, thus allowing a more precise control over how
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instances are incorporated and removed to the model [15, 1]. Figure 18 shows the basic
framework of the gradual forgetting methods, where each square represents a single sample
or a training batch, and the darker the square color, the greater is its associated importance
(i.e. its weight). When a new training sample/batch arrives, the gradual forgetting methods
update the weights of all samples/batches by applying some fading factor. The training
samples are then used to update the current model considering the weight of each train
instance.

S1 S2 S3 S4 S5 S8 S10 S11 S12

New Instances Arriving

Figure 18 – Gradual Forgetting methods overview. Samples with bigger weights are repre-
sented with darker colors.

Considered one of the first concept drift handling methods, the STAGGER system
[29] keeps a pair of weights for each feature that indicates its sufficiency, which approximates
the degree that the presence of the feature increases the expectation of an outcome, and
the necessity, which gives an approximation to the degree that the lack of the feature
decreases the expectation of the outcome. To better cope concept drifts, the STAGGER
system may decay its weights over time. Concepts are represented by boolean operations
of the features (e.g. size = small and color = red), and the search through the space
of possible representations is guided by the computed weights. When a new supervised
instance is available, the method adjusts the weights in order to increase its accuracy and
adjust to new concepts.

Martínez-Rego et al.[27] proposed a one-layer neural network based on a online
learning algorithm to deal with concept drifts by means of a fading factor. The method
consists in an objective function for training the neural network that can be adjusted to
decrease the importance of old instances, where the weight decreasing method can be
chosen depending of the problem been modeled (e.g. a monotonically increasing function
to take into account the increment in the importance of current information in contrast
with the past one).

To deal with concept drifts in one-class classification problems, Krawczyk &
Woźniak[2] proposed a method that employes a Weighted One-Class Support Vector
Machine [86] in order to adapt to smoothly changing environments. The method updates
its model for each new batch received, where all training batches are weighted at each
iteration using a fading factor, an age metric (that disconsiders the initial weight of the
instances), or a sigmoidal decreasing function.
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3.3 Trigger Based Methods
The methods presented in this section uses some trigger, or change detection,

technique that tries to detect the exact moment when the concept drifted. Unlike the
passive methods that are “always adapting” (e.g. window or gradual forgetting based
methods), the trigger based methods adapts to the new concept by taking some action,
like updating the models or discarding samples from the old concept, only when a change
is detected. Figure 19 shows a stream of supervised samples, where at the time between
the samples 7 and 8 there is a concept change. The aim of the trigger based methods is to
detect this exact moment and take some measure [15, 87, 35].

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13
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Change Detected

Instances from Concept 1

Instances from Concept 2

Figure 19 – Trigger methods basic idea.

Trigger based methods have the advantage that when the concept is stable, the
classification system can remain unaltered, thus reducing the overhead, or every new
information collected in this stable region can be aggregated in the training set to improve
the current model. The fact that the moment when the drift happened is pointed by the
methods also is an advantage, since the information from the old concept, which can be
conflicting with the current one, can be promptly discarded. However, these methods can
suffer from some problems, like false alarms and delayed or undetected drifts [5]. A false
alarm case can cause an unnecessary discard of still relevant knowledge. Delayed alarms
or undetected drifts will cause a performance loss, since the classification system will keep
working in an old concept, which does not represent the current environment.

Instinctively, this kind of approach is more suitable to problems with severe abrupt
concept drifts [88], since in this case a “frontier” between the concepts can be easier defined
[89]. Gradual concept drifts or intersected ones may cause a delay in the drift detection
(or even lead the method to not detect the concept drift) if, for instance, the method
considers that the first batches with the new concept are just outliers.

One of the simplest trigger methods that can be employed is the checking of the
system error rate, which can flag a concept drift when, for instance, the error rate or the
variation of the error between two batches reaches a threshold. This kind of trigger is
used by Susnjak et al.[3], where a boosted cascade system inspired by [90] is proposed for
classification. The method weights every cascade layer employing the latest supervised
batch as a validation set, and when the error rate is above a specified threshold, the cascade
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is readjusted. Gama et al.[51] proposed a method called Drift Detection Method (DDM),
where an error rate based trigger is used to implement two alarms. The first one is a
warning level alarm that indicates a possibility of concept drift, and the second one
represents a drift level. When the drift level alarm is triggered, the current model is rebuild
using only the samples that arrived after the warning level alarm.

A variation of the DDM method, called Early Drift Detection Method (EDDM),
was proposed by Baena-Garcıa et al.[91]. In their approach, instead of alarming a possible
concept drift based on the error rate, the alarm is triggered based on the distance between
two consecutive errors. According to the authors this modification may generate a trigger
better suitable for environments containing gradual concept drifts. As in the original DDM
method, the approach consists of a warning and a drift alarm to handle concept drifts.

A strategy for triggering possible changes in a window of size W , called Adaptive
Windowing (ADWIN) was proposed by Bifet & Gavaldà[92]. The method works by testing
several sub-windows in the window W , and whenever two “large enough” subwindows
exhibit “distinct enough” means, it is concluded that the corresponding expected values
are different, and the older portion of the window is discarded. A Hoeffding bound based
threshold Ecut, defines the value when the difference between the windows is considered to
be a change. Besides that this method uses a window to check the moment of change, it
was considered to be trigger based since it tries to point out the moment when the concept
drift occurs in the current window to resize it.

A trigger based approach that uses a dissimilarity measure in order to detect
concept drifts were proposed by Pinage & Santos[93]. In their method one training cluster
is generated for each possible class. The dissimilarity between the test sample and each
cluster is then computed, and the class of the cluster less dissimilar to the test instance is
assigned to it as a reference prediction. A trained classifier is also used to classify the test
instance, and a method based on the DDM[51] or EDDM [91] triggers, is used to monitor
differences between the classifier and reference predictions in order to alarm a possible
concept drift.

Sakthithasan et al.[94] proposed an approach similar to the ADWIN[92] trigger
called OnePassSampler (the method was renamed to SeqDrift1 in [95]), where the main
difference is the use of the Bernstein inequality to define the Ecut threshold, whereas
the Hoeffding bound (which the authors in [94] claim to be too conservative) is used in
Bifet & Gavaldà[92]. The authors also concluded that the proposed method can achieve
results comparable to the ADWIN trigger by using a single pass in the window W . The
proposed approach was extended in Pears et al.[95], where the method called SeqDrift2 use
a reservoir sampling based approach [96] to keep the repository of previous seen instances
of the current concept.

Kuncheva[97] shows that trigger methods based in the Hotelling’s t2 test are
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blind to changes in the distributions when they are caused by shifts in the variances or
covariances between the features. In the work is also shown that the Kullback-Leibler
distance criterion may be an alternative to overcome this problem, with the drawback that
it lacks some fidelity when the distributions are not naturally discrete. The work shows that
both the Hotelling’s t2 and the Kullback-Leibler distance can be accommodated within
a common log-likelihood framework. A trigger based approach called Semiparametric
Log-Likelihood (SPLL) detector is proposed in the work, where a k-means clustering
algorithm is employed as a density approximation estimator, which is applied in two
distinct windows in order to verify if there is a concept drift between them.

Rodríguez & Kuncheva[88] proposed an ensemble containing both window and
trigger based classifiers, where the DDM [51] and the Sequential Probability Ratio Test
(SPRT) [98] methods, both based in the monitoring of the error rates, were applied as
change detectors in the tests. The Winnow method [99] was employed for combining the
classifiers in the ensemble. Gonçalves Jr & Barros[45] implemented a method for recurring
concepts that also can employ any change detection method. When a concept drift is
signaled, the instances from the current concept are compared with the past ones by
merging both sets that must be compared and computing the k-nearest instances of each
single sample in the merged set. If the K closest instances are equally divided between
the two sets that were merged, they are considered to be from the same concept, thus the
stored classifier that was trained with the past dataset becomes the current one. Otherwise
a new classifier is trained with the current instances.

In the same vein of methods that handle concept drifts by means of any triggering
approach, Minku & Yao[32] proposed a method where before a drift, an ensemble with
low and another one with high diversity are maintained and updated with every new
supervised instance, but only the low diversity ensemble is used for predictions. When
a drift is signaled, a new high and low diversity ensembles are created, and the old ones
are kept in the system. The old high diversity ensemble then starts to learn with the new
low diversity, and when an instance needs to be classified, the final result is given by the
weighted majority voting of the outputs of both high and low diversity old ensembles and
the new low diversity one. The old ensembles are kept in the system until the accuracies
of the new ensembles are significantly better than the old ones.

In Kapp et al.[21], a method to deal with virtual concept drifts by updating
dynamically SVMs hyperparameters and retrain them over time is described. The proposed
method use a change detection module that compares the system error on the newest
dataset to the previous one using an approximation to a binomial distribution, in order
to detect if the concept is stable or not. When a concept drift is detected, an adapted
grid-search is applied to find if the concept is recurrent and a previous hyperparameter
configuration can be used. If the grid-search does not locate a fit configuration, a Dynamic
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Particle Swarm Optimization (DPSO) is used to indicate a new optimum solution. Finally,
an Incremental Support Vector Machine (ISVM) or an ensemble of ISVMs is updated with
the new samples and hyperparameters. In the latter, where an ensemble is used, the fusion
method uses the classifiers that minimize the generalization bound measure introduced in
[100]. The method was further studied in [44].

Ross et al.[34] assume that the true label of all instances will be available some
time, and consider the classifier predictions as a stream Xt, where Xt = 0 if the prediction
of the sample t was correct, or Xt = 1 otherwise. Viewing Xt as a Bernoulli distribution,
the Weighted Moving Average (EWMA) [101] is employed to estimate the increase in the
mean of Xt, which is used to detect concept drifts. The method can limit the average run
time before a false concept drift positive by means of the adjust of its parameters.

In Chen et al.[43], a Student’s t-test with two significant levels α1 and α2 is applied
as a trigger. When a new supervised batch is available, for each classifier in the pool, if
the test with the significant level α1 detects that the concept is stationary, the classifier
is updated with the new batch and it is marked as useful. The test with the significant
level α2 checks if an intersected or severe concept drift occurred, where in the first case,
the classifier is still considered useful, but it is not updated. In the other hand, if the test
detects a severe concept drift, the classifier is not used in the classification. If none of the
classifiers is marked as useful, a new one is trained with the most recent batch and added
to the pool as a useful classifier. All classifiers marked as useful are employed to classify
the new unsupervised instances, where the classifiers are combined by the use of weights
inversely proportional to the errors of each classifier in the latest supervised batch.

Bifet & Gavaldà[102] proposed a method called Hoeffding Adaptive Trees, which
basically uses estimators of frequency statistics at every node of a Hoeffding tree. These
estimators are used by the tree nodes to decide which of the last instances are currently
relevant for training. Between the change estimators tested by the authors, the method
implemented using the ADWIN [92] achieved the best results.

The ADWIN trigger is also employed in the method proposed in Bifet et al.[103].
The method, called Leveraging Bagging, modifies the Online Bagging algorithm proposed
in [104] by increasing resampling through the use of larger values to compute the Poisson
distribution and by adding random output codes in order to increase the diversity of the
ensemble. When the ADWIN trigger detects a change, the worst classifier in the ensemble
is removed and a new one is added.

In Alippi et al.[48], a concept drift is detected by the analysis of the distribution of
the input data and also through the classification estimation error. When a new supervised
instance is available, it is inserted in the current concept dataset, while when just a new
feature vector is available, only the feature statistics are updated. Two change-detection
tests are performed to detect a concept drift. The first one inspects changes in the feature
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vectors and the second one analyses the estimated classification error (by means of the
supervised instances). If at least one of the tests detects a concept drift, a split method
is employed to separate the current concept from the old one. If the current concept is
considered recurrent, its instances are merged with the previous instances from the same
concept before the model update.

A two windows approach to trigger concept changes is employed in Salperwyck et
al.[105]. The method basically keeps a window Wref containing the observations related
to the beginning of the current concept, and another window Wcur which keeps track of
the latest supervised data. The instances in each window are labeled according to their
respective window W . The method tries to validate the hypothesis that given the instances
and their classes in Wref and Wcur it is possible to separate them according to W . If the
data is considered separable, a concept drift is triggered.

In Kithulgoda & Pears[106] is proposed a method that reuses stored learners in
concept stable regions in order to reduce the processing time, and employ an incremental
tree in concept changing regions. The proposed method keeps a decision tree forest that
is updated while the concept is considered unstable. The most accurate tree is stored in
a pool, which contains a compressed version of all previous accurate trees. Under stable
regions, the best performing classifier in the pool is used for classification, and no update
nor training is made in order to reduce the processing time. The authors used the SeqDrift2
[95] trigger as a mechanism to infer if the region is stable or not, nevertheless the authors
claim that any trigger based method may be employed.

In Chen et al.[107], a three layers trigger based concept drift detector is proposed
to predict concept drifts in streams containing periodic changes. The first layer contains a
drift detector that finds the drift points, whereas the second layer contains a volatility
detector that locates changes in the drift intervals. Finally, the third layer contains a
drift predictor, called ProSeed, that uses information from both the drift and volatility
detectors to estimate the next drift point based on previous concept drifts encountered in
the stream.

3.4 Ensemble Based Methods
Methods discussed in this section relies on ensemble of classifiers to deal with the

concept drift problem. Although in the previous sections many of the proposed methods
employed ensembles of classifiers, or could be modified to train an ensemble of classifiers
instead of a single model, the works presented in this section have ensemble of classifiers
as their main mechanism to deal with concept drifts, instead of using, for instance, some
trigger or windowing technique.

Ensemble methods can make easier the usage of non-incremental learners in the
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classification system since, for instance, a new classifier can be trained with every new
supervised batch available, where each new trained classifier is added to a pool. A system
that counts with a single non-incremental learner would need to discard the classifier and
train a new one with a dataset created by the merge of the old training instances and
the new batch. Ensembles can also deal with recurrent concepts in a simpler way, since
classifiers trained with past batches that reocurred in the present concept can be simply
reactivated and employed for classification [1].

One popular approach when using ensembles to deal with concept drifts is to weight
the available classifiers and them classify new instances by means of the Weighted Majority
method [108], where the weight of each classifier may refer to its performance in the latest
supervised batch/instances received [26, 15]. This idea is illustrated in Figure 20, where it
is also exemplified the approach of training and adding a new classifier to the pool every
time new supervised instances become available.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

New Instances Arriving

Old supervised Instances

Latest supervised instances received

C1 C 2 C N...

Pool of Classi�ers

Weight each classi�er using the latest 

supervised instances received

Train a new classi�er with the latest

supervised instances received

Figure 20 – Weighted pool of classifiers example.

When using a weighted ensemble, the main problem that needs to be dealt by the
methods is how to determine the classifiers performance (e.g. the size of the time window
with supervised samples employed to determine the classifiers weights, the metric used
to define the weights, etc.). Another problem that may arise in these methods is how
to prune classifiers from the pool if, for instance, the system have a limited amount of
memory to keep the models, and how to define if a concept is recurrent, although one
possible solution for these two questions is employing the classifiers weights (i.e. delete the
classifier with the lowest weight and consider classifiers with high weights as belonging
from the same concept).

Wang et al.[109] proposed a method called Accuracy-Weighted Ensembles (AWE),
where a new classifier is built for each new supervised batch available, and all classifiers
are weighted using the latest supervised batch. Only the K classifiers with the highest
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accuracy in the latest supervised batch are kept in the pool and, when classifying an
instance, the classifiers outputs are combined though a weighted averaging. In their work
the authors also present some indicators that an ensemble can outperform a single classifier
in the presence of concept drifts.

In Brzeziński & Stefanowski[110] is proposed a method called Accuracy Updated
Ensemble (AUE), which is inspired in the original AWE method of Wang et al.[109]. The
main differences of the AUE to the method proposed in Wang et al.[109] is a slightly
different weighting function and the use of online base classifiers. The usage of online
classifiers restriction was added since classifiers considered “accurate enough” in the latest
received supervised batch are updated using this batch.

The method proposed in Kolter & Maloof[20] maintains a weighted classifiers pool,
and when a new supervised sample is available, all classifiers in the pool are tested, and
the classifiers that are not able to correctly classify the new supervised sample have their
weights multiplied by a factor β. Classifiers with weights less than a threshold are removed
from the pool. After this first phase, the global prediction for the new supervised instance
is given as a weighted combination of all classifiers in the pool. If the global prediction
is incorrect, a new classifier trained with the new example is created and added to the
pool with a weight equal to one. Finally, all experts in the pool are trained using the new
labeled sample (the method use incremental learners). The weighted majority combination
of all classifiers in the pool is used to classify the unlabeled instances.

Street & Kim[46] proposed to create a new classifier for every new supervised
batch available, where the new classifier is then added to a pool. If the pool exceeds the
maximum number of classifiers, the one with the worst quality score is removed. The
quality score is computed for every classifier int the pool using the latest supervised batch,
where the classifiers weights are increased/decreased according to how hard the instance
being classified was considered, when classifying it using the combination of the entire
pool. The majority voting of all classifiers in the pool is employed for classification. In
this work the SEA Concepts dataset was introduced, which became a common benchmark
applied in many works (see Section 2.7.1).

Inspired in [111], in the work of Karnick et al.[112] is proposed the Learn++.NSE
algorithm, that uses ensemble of classifiers in order to deal with concept drifts. The
algorithm creates a new classifier for each new supervised batch. All classifiers are weighted
using their performances in all batches, where the batch importance in the weighting
method is decreased according to a sigmoidal function applied to the classifier’s ages. New
unsupervised instances are classified using a weighted voting of all classifiers in the pool.
The work is extended in [6] and in [113] in order to adjust the weights according to the
samples classification difficulty and to propose some pruning strategies for the method.

A bagging method using Hoeffding Threes [82] of different sizes to deal with data
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streams containing concept drifts is proposed by Bifet et al.[42]. The method differs from
the original Hoeffding Tree by having a maximum number of split nodes, and by deleting
some nodes after the maximum three size exceeds a limit. The trees errors are monitored
using an exponential weighted moving average, and they are weighted according to the
inverse of the squared error.

Escovedo et al.[11] proposed an ensemble of neural networks trained using a
Quantum-inspired Evolutionary Algorithm (QIEA) [114] for dealing with concept drifts. In
the proposed method, for every new supervised batch, a new Multilayer Perceptron (MLP)
with one hidden layer is trained by means of the QIEA. The new classifier is then added
in a pool and if the number of classifiers is greater than a threshold, the classifier that
performs the worst in the latest batch is removed. Classifiers weights are computed using
the latest batch also by means of the QIEA method. In the classification phase the weighted
sum of all classifiers in the pool is employed.

A method to estimate the best ensemble size at a given time t is proposed in
Pietruczuk et al.[115]. The proposed method estimate the competence of the current pool of
classifiers with and without the presence of a newly trained classifier considering a validation
batch N . The pool accuracy is given by an approximation to a normal distribution, and
the new classifier is added to the pool if the pool competence is significantly increased
when adding the new classifier. A similar approach is used to ascertain if a classifier C
present in the pool should be pruned, where the test is employed to check if the pool
competence does not decreases significantly without the presence of C, in which case C is
pruned.

Ditzler[116] proposed to weight the classifiers using the unlabeled test data by means
of the spectral meta-learning method proposed in [117]. The new supervised incoming
data is used to build new classifiers, that are added to a pool which keep all trained
classifiers. The authors claim that the method is able to correctly estimate the weights
of the classifiers under any learned concept, nevertheless it is not clear how the method
could estimate the classifiers competence under real concept drifts scenarios where the a
posteriori probabilities P (y|x) are changing and the distribution P (x) remain the same
(the authors presented a test in the SEA concepts dataset, which contains this exact
scenario).

3.5 Local Region Based Methods
Methods that use some estimation of the local competence of each classifier in the

pool dynamically to deal with concept drifts are discussed in this section. When classifying
an unlabeled instance x, the local competence based methods work by basically finding
local region of x in the feature space (e.g. its neighborhood in a validation set), and then
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the best performing classifiers in the local region are selected to classify x[13].

Since the classifiers competence are estimated in the local region of x, a labeled
validation set must be incorporated, from which the local region must be extracted. Thus,
when dealing with concept drifts using a local region method, one fundamental problem is
how to define this validation set to keep track of the current concept. Some methods, as
[37, 118, 19], use the latest supervised instances received as the validation dataset, while
other methods, like [119], define the validation dataset as the training sets of the classifiers.
Another important problem is how to define the local region of the test instance in the
validation dataset. Some methods may use the neighbors of x in the validation dataset
[118, 19], while others may define it as the nearest training sets of the classifiers to x
[53, 119]. A problem inherited from the ensemble based methods that also must be solved
is how to keep the pool up to date (e.g. train new classifiers over time). Figure 21 shows a
schematic of a local region based method. Note that the schematic presented in Figure 21
is similar to the original DCS idea for static environments, described in Section 2.8.
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Figure 21 – Local Region based methods overview.

Following the idea of using the training datasets as validation ones, Polikar et
al.[53] proposed a method that is a modification of the Learn++ [111] algorithm to handle
virtual concept drifts and to accommodate new classes that could appear over time. The
method iterates T times in each new supervised batch available. In each iteration, the
batch is split in a training Tr and testing Te sets. The training set is employed to create a
weak classifier that is tested using both Tr and Te. If the classifier error is greater than
50%, a new one is created and tested based on a new Tr and Te subsets, otherwise, a
weighted majority voting ensemble of all previous t generated classifiers is applied to
classify the latest supervised batch. In the next iteration, the instances correctly classified
by the ensemble will have their probability of being chosen into Tr reduced. The weights
assigned to the classifiers are based on the Mahalanobis distance of their training sets
to the instance that needs to be classified, and the final prediction of an unsupervised
instance is given by the weighted majority voting of all classifiers in the pool.

Tsymbal et al.; Tsymbal et al.[12, 37] proposed to keep a window containing the
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latest supervised samples received. Every time this window is moved a new classifier is
trained using the latest data and added to a pool, and the local accuracy estimation of all
classifiers is updated using the latest data (window). If the number of classifiers in the
pool is greater than a threshold, the classifier with the worst accuracy is discarded. To
integrate the classifiers in the pool, three different approaches were proposed: a Dynamic
Selection, wherein the classifier with the best local accuracy is selected, Dynamic Voting,
which is a Weighting Vote technique modified to apply the weights based on the local
accuracy, and the Dynamic Voting with Selection, which is similar to the Dynamic Voting,
but applies a threshold in the classifiers errors to discard them.

In the method proposed by Chan et al.[119], first the training set is divided in
m subsets R1, R2...Rm, where each subset Ri is composed of training instances that are
localized in a radius less than q of the center of the dataset. A classifier pool C =
{c1, c2...cm} is then created, wherein each classifier ci is trained with the subset Ri. In the
testing phase, the method checks if the instance that must be classified x is located inside
any neighborhood Ri. If x is located inside at least one Ri, then a weighted sum fusion
method applied to the classifiers Cn = {ci | ci is trained with Ri} is used to classify x,
where the weight of each classifier is based on the distance of the unlabeled instance to the
points in Ri. If the unlabeled instance is not located inside any Ri, it is classified using all
classifiers combined with a majority voting method or a distance weight adjusting method,
which defines the weight of a classifier based in the distance from x to the training set Ri

centroid. The instance is then added to a set Rnew, and when Rnew reaches a predefined
size, it is used to train a new classifier that is added to the pool. Note that the approach
used to define local region is similar to the clustering-based methods described in [64].

Zhu et al.[54] proposed a method to deal with virtual concept drifts that splits
each new supervised batch into small chunks S1, S2, ..., Si, and train a classifier with each
chunk. The classifiers are then added to a pool that holds the N most recent classifiers.
The classifiers are tested in an evaluation set Z, that contains some of the most recent
supervised instances. The set Z is partitioned in a series of subsets, where each subset
contains the instances corresponding to one specific attribute and value, so considering
that the instances contain the attributes A1, A2, ..., AM and each attribute Ai contain ni
values, Z contain

M∑
i
ni subsets. In the classification phase, the attributes of the instance

that needs to be classified are used to find the K subsets that contain similar instances in
the evaluation set Z. The classifier that achieved the highest accuracy when considering
the K subsets is selected to classify the new instance.

The problem of uncertain data stream classification is assessed in Pan et al.[118],
where it is considered that new supervised batches might not be sure of the actual classes
of each instance. In this case, a supervised instance contains a probability representing how
likely it belongs to each class. The method trains a new classifier for each new supervised
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batch using the algorithm proposed in Jenhani et al.[120]. Each newly trained classifier is
added to a pool that keeps the N most recent classifiers. The method was tested using a
static and a dynamic classifier ensemble. In the static ensemble, the classifiers are weighted
according to their performance in the latest supervised batch. The dynamic ensemble
weights the classifiers based on the distance of the K nearest neighbors of the instance that
needs to be classified considering the latest supervised batch, where the classifiers with
the lowest weights are discarded. In both static and dynamic approaches, the instances
are classified by means of a weighted sum of the classifiers predictions.

Pan et al.[19] proposed a method to classify positive and unlabeled text streams
in concept drift scenarios, where labeled positive samples are available over time, but
supervised negative ones are never fed to the system. To accomplish the task, the method
uses the algorithm proposed in Fung et al.[121] to extract negative samples from each new
batch. These negative samples and the supervised positive ones from the latest batch are
then used to build a new classifier, that is added to a pool that keeps the N most recent
classifiers. When an instance x needs to be classified, its K nearest neighbors in the most
recent supervised batch are computed using a cosine similarity metric. Then all classifiers
are weighted according to their performance in the K neighbors. The classifier weight is
also adjusted according to its global performance weight, which defines the performance of
the classifier in the current batch when compared with the batch that the classifier was
trained. Finally, x is classified using a weighted voting scheme.

Fischer et al.[122] proposed a method for streaming data that use a pre-trained,
static offline model and an online trained model. During the classification phase, the
method dynamically selects between the two models based on their confidences on the test
instance classification. The Generalized Learning Vector Quantization (GLVQ) [123] is
employed as the base learner, and the classifiers confidences are estimated by the distance
between the classifier prototypes and the test instance. The authors suggest that a virtual
concept drift may generate an imprecise confidence estimation, thus a metric learning and
weighting scheme is used to estimate the distances between the prototypes and instances.

3.6 Distribution Analysis Based Methods
Methods presented so far rely on supervised instances fed periodically to the system

to detect and adapt to concept drifts. However, in some situations it is not possible to
acquire new supervised data over time due, for instance, the high cost of labeling it. This
section presents the methods found in the literature that deal with concept drifts by means
of unlabeled data, which is often related to the unconditional distribution analysis.

Many of these methods basically implement some mechanism to track the appear-
ance of outliers in the distribution in a problem called novelty detection [40, 26]. Methods
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presented in this section also often deals with virtual concept drifts, since changes in the
posterior probabilities P (y|x) not necessarily reflects in a change in the unconditional
distribution P (x) or in the a priori probabilities P (y), making these methods blind to
some real concept drifts, as discussed in Section 2.6 (see the class swap problem) [26].

A method that deals with concept drifts by means of the distribution analysis is
proposed in Kurlej & Wozniak[28]. The author argues that in some real world scenarios
the categorization of all instances coming from a stream is an unfeasible task, and proposes
to identify which instances characterizes a possible virtual drift, needing to be supervised
and added to the classifier knowledge base. In the method, the expert is asked to supervise
an unlabeled instance if its distance to the nearest point in the actual knowledge set is
greater than a threshold d∗e, or if the difference in the distance between the unlabeled
instance and two points of distinct classes in the knowledge set is greater than a threshold
d∗d. When adding a new instance in the knowledge base, if the number of instances exceeds
a limit, the oldest one is discarded.

A method for detecting abrupt concept drifts based on unsupervised data is
proposed by Kmieciak & Stefanowski[87]. In the proposed method, firstly a decision tree is
induced using the first N supervised samples from the stream. This classifier is employed to
classify the incoming unsupervised samples. The probability distribution trend of changes
in the leaf statistic of the tree are observed to detect possible drifts. When a trend is
detected, the drift is signaled, the current classifier is discarded, a new supervised batch is
requested and a new classifier is trained using it. Besides the fact that in many situations
a real concept drift will not be noticed by only analyzing unlabeled data (see section 2.6),
the author implies that the method is capable of dealing with real concept drifts scenarios.

The distribution analysis to deal with real concept drift is also employed in the
work of Escovedo et al.[124]. The authors propose a method that detects abrupt real
concept drifts by applying statistical tests in both the conditional mean vector and in
the covariance matrix of the received batches of data. Since the authors considered that
only the first batch of data is supervised, the subsequent bathes are clustered using the
k-means [125] algorithm, where the number of groups (classes) and the center of each
group for the clustering algorithm is set as the same present in the first (supervised) batch.
In order to detect a concept drift, the method compares the conditional mean vector and
the covariance matrix of the recently received batch (grouped by the k-means) versus
the data of the first supervised batch. Besides not stated by the authors, it is clear that
the abrupt real concept drift must be followed by a virtual abrupt concept drift for the
proposed method detect a concept drift.

A method to cope with class prior probabilities concept drifts using the Hellinger
Distance [126] is described in González-Castro et al.[38]. The authors proposed two
quantification techniques to deal with the priors changes in binary problems. The first one,
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called HDx, is based on generating many validation datasets with different priors, and
then comparing the validation datasets with the current batch that need to be classified
using the Hellinger Distance. The a priori probability of the new batch is the one from
the validation set that minimizes the Hellinger Distance. Since the HDx method computes
all metrics using only the distributions, no classifier is needed to estimate priors of the
new batch. The second proposed method is the HDy, which works in a similar way to
the HDx method, but it compares the distributions output generated by a classifier in
the new batch and in the validation datasets. None of the methods requires supervised
instances and in both cases, after the estimation of the class priors, the classifier decision
threshold is adjusted to, for instance, keep a constant false positive rate. The HDy method
outperformed the HDx one in many of the tested scenarios.

Radtke et al.[39] proposed a method for coping with the class priors probabilities
drifts by analyzing the data in the Precision-Recall Operating Characteristic (PROC) [127]
space. The method creates several imbalanced validation datasets which are employed to
produce Boolean Combined curves using the method proposed in [55]. During operation,
the system approximates the current class imbalance level by comparing the newest
unlabeled batch to one of the unbalanced training batches using the Hellinger Distance.
The imbalance level of the batch that minimizes this distance is assumed to be the current
imbalance. The approximated imbalance is then used to find the most adequate set of
Boolean Combinated curves in the PROC space, where the selected curves have the closest
levels of imbalance when compared to the current environment.

More recently Gu et al.[128] proposed a method to deal with virtual concept drifts
by the use of a trigger based on the estimation of equal density regions. A metric called
DensityScale is used to verify the difference between two windows (e.g. the latest window
of data versus the previous one). A non-parametric test method is then used to verify if
the DensityScale change is significant enough to signal a concept drift.

Cavalcante et al.[129] proposed a method to detect concept drifts in time series
based data streams, where a change in P (x) affects P (y|x), since P (x) and P (y) are drawn
from the same distribution. The method, called Feature Extraction for Explicit Concept
Drift Detection (FEDD), extracts and monitors statistical features from a reference window
and compares it with the current time window of the time series in order to identify concept
drifts. The Cosine or the Pearson Correlation distance [130] are used to compute the
feature vectors dissimilarities. The EWMA[34] trigger is used to signal the concept drifts
based on the dissimilarities computed.

Raza et al.[131] argues that when dealing with classification problems in elec-
troencephalography based brain-computer interface, virtual concept drifts (P (x)) may
appear over time. To deal with these problems, the authors proposed to built a base
classifier with the available training data. In the work it is assumed that points which
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are closest to each other are likely to share the same label, thus a probabilistic weighted
k-nearest neighbors (KNN) algorithm, trained with the available supervised data, is used
to determine labels of the test data in a semi-supervised fashion. If the confidence of the
KNN algorithm is above a threshold when classifying the unsupervised instances, these
instances are added to the training set of the base classifier, where their class labels are
the ones given by the KNN. In the work the problem is considered binary, thus only the
equations to estimate the probabilistic weighted KNN for binary problems are given.

Pérez-Gállego et al.[132] proposed a method to deal with changes in the a priori
probabilities P (y) in quantification problems by means of an ensemble of classifiers. Given
a training dataset, the proposed method works by generating several training sub-datasets
with different prior distributions, where each sub-dataset is generated by a random
sampling with replacement from the original training dataset. A base quantifier algorithm
(classifier) is then trained over each generated sub-dataset. The training phase is executed
just once, thus no additional supervised data is necessary over time. In the testing phase,
all quantifiers built in the training phase are aggregated through an arithmetic mean.

A framework to deal with concept drifts in malware detection systems is proposed
by Jordaney et al.[133]. The framework, called Transcend, basically uses two quality
scores based the confidence of the classifiers in each unsupervised instance received for
classification. A quality score called credibility indicate how similar the classified instance
is to the objects from the same class according to the classifier. The confidence quality
score indicates how distinguishable the credibility is from the other classes. Both quality
scores are computed using P-values. Thresholds are used to signal a possible concept drift
based on the credibility and confidence, although the authors does not make clear what
action should be taken when a concept drift is signaled. The authors also does not make
clear if the malware detection problem involves changes in the distribution, since changes
in the a posteriori probabilities cannot be tracked without supervised instances if there is
no change in P (x) or P (y), as discussed in Sections 2.2.2 and 2.6.

3.7 Usage of the Datasets
This section presents the relationship between the reviewed methods and the

datasets described in Section 2.7. As mentioned previously, not all datasets are suitable
for testing all scenarios, since each dataset may contain only a specific type of concept
drift. Figure 22 shows the relationship between the methods and the artificial datasets.
The datasets are represented by circles and the methods by rectangles. The circle size is
proportional to the number of methods that uses them. It is worth of remark that only
the datasets used in two or more works in the surveyed literature are presented. To count
as the same dataset, its implementation must be at least similar to the ones described in
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Section 2.7.1. For instance, a Gauss distribution based dataset was used in [6], however it
employed a different configuration when compared to [48, 34, 51] that contained addition
and removal of classes and a gradual intersected concept drift, thus this work was not
related to this specific dataset.

Figure 22 shows that the most popular artificial datasets are the SEA Concepts,
STAGGER and Moving Hyperplane. Figure 22 also sustains the allegation that not all
datasets can be employed for testing some methods, depending on their nature. For
instance, only trigger-based methods use the Sine or the Gauss datasets, where these
datasets correspond to abrupt severe concept drifts (this type of concept drift is usually
easier to be detected by a trigger approach). Also note in Figure 22 that only a few local
region-based methods use a common test benchmarks. According to the surveyed literature,
only the the Moving Hyperplane problem was used as a common artificial benchmark
when considering the local region methods. As can be seen in Figure 23, no surveyed local
accuracy-based method use a real world common benchmark.

Another intriguing conclusion is that none of the distribution analysis based
methods use a standard dataset for the tests. This can be attributed to the nature of the
drift treated by these methods, that are mostly virtual. In this scenario the drift can be
caused, for instance, by factors like sub-sampling, thus not requiring a dataset with specific
properties for testing (e.g., the authors could use any common dataset and sub-sample the
instances when training the classifiers, such as in [119, 54]).

Figure 23 follows the same principle of Figure 22, but it shows the relationship
between the reviewed methods and the real datasets used for tests. It shows that the
Electricity dataset is the most popular one, being used by sixteen of the proposed methods,
where most of methods are trigger-based. As discussed in Section 2.7.3, Žliobaitė[57] and
Bifet[58] demonstrate that the Electricity dataset may not be suitable as a benchmark for
concept drift handling methods, since a random trigger could also achieve good results.
Besides the aforementioned problems, some recent methods, such as [2, 106, 116], still use
the Electricity dataset as a benchmark.

The Figures 22 and 23 analysis also indicate that most state-of-the-art methods
use just a few common benchmarks for testing the methods. For instance, in the works of
[43, 92, 102, 118, 11, 115] the methods are tested using only or two well known concept
drift benchmarks, making it difficult to compare or reproduce the results. Also note that,
a vast number of authors, such as [94, 124, 128], does not consider any well known concept
drift benchmark during their tests, thus these authors works are no present in Figures 22
and 23.
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Figure 22 – Relation between the artificial datasets and the proposed methods that em-
ployed them
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Figure 23 – Usage of real datasets.

3.8 Classifiers Pruning
When dealing with concept drift problems, one of the main challenges is to effectively

and efficiently remove irrelevant or obsolete data from the current knowledge base. This
data can be stored for future use (e.g. in a future concept this data can become relevant),
or the irrelevant data can be discarded to spare computational resources.

Some approaches, like the window and trigger based methods (Sections 3.1 and 3.3,
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respectively) strongly rely on the knowledge discard method to handle concept drifts. On
the other hand, most methods that uses a pool of classifiers (e.g. Ensemble based methods
- Section 3.4) could, in principle, keep classifiers trained under previous concepts, since
most approaches estimate the competence of the classifiers in the latest supervised data.

Nevertheless, methods that use a pool of classifiers should employ some pruning
strategy in order to keep the pool from increasing its size indefinitely. The works of Partridge
& Yates; Margineantu & Dietterich[134, 135] shows that the pruning of classifiers in the
pool may not significantly decrease the system performance and, in some scenarios, it
can even increase the classification system performance. Nevertheless, it is important to
mention that in [134, 135] the concept drift problem is not considered. Even so, a pruning
strategy may still be an important tool to reduce computational resources consumption,
specially in problems when the system is intended to work for a long period, where it is
expected that at some point the pool of classifiers will occupy all the available memory, if
the system just keeps adding classifiers to the pool without discarding any old/irrelevant
classifiers.

Next, some classical pruning approaches used in methods that employ pool of
classifiers to deal with concept drifts are presented. Note that, all studied methods presented
in this work will always try to prune a classifier from a concept different from the current
one. We present an alternative to this approach in Section 4.5, where the idea of Concept
Diversity is presented.

Age Based Pruning or Replace the Oldest: This may be one of the simplest
and lightweight pruning strategies used in many works [113, 44, 118, 19], where when the
pool reaches its maximum size, every new trained classifier replaces the oldest one in the
pool [26].

Accuracy Based Pruning or Replace the Loser: Another classical approach
to prune classifiers in a environment containing concept drifts is to evaluate all classifiers
using the most recent batch of data [26]. As in [113], the classifiers that exceeds an error
threshold can be pruned from the pool or, as in [109, 12, 37, 42, 110, 11, 115], every time
a new classifier is trained, the worst performing one can be removed from the pool to keep
it with a fixed size.

Quality Score Based Pruning: Following the accuracy based pruning idea, more
sophisticated “quality scores” may be developed for pruning classifiers, like in [46], where
the classifier quality is defined not only by its individual accuracy, but also by its accuracy
when compared with the current pool (nevertheless, in [46] only the latest supervised
information received is used to compute the quality score). The quality score may also
consider previous batches when estimating the importance of a classifier, where the most
recent batches will affect the most the score given to the classifier [20, 113]. When the pool
reaches its maximum, the classifier(s) with the worst quality scores may be then pruned.
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3.9 State-of-the-Art Review
Table 4 shows the main properties of the methods discussed in this chapter. It

includes aspects like the independence of classifiers of the methods, the usage of ensembles,
the concept drift types that the methods are supposed to deal with, and the suitability of
the methods for problems with more than two classes. This classification has been built
according to the methods main characteristics, although some of them could be fit in
more than one family, like the FLORA algorithms [80] that were classified as a window
based method, but also uses triggers to adapt the window size (FLORA2). Table 4 also
shows that some methods are designed to cope with specific concept drift scenarios (e.g.
virtual concept drift), making evident the importance of knowing the properties of the
concept drift present in the environment to choose the desired method correctly. However,
we believe that in most real situations, it is not possible to know a priori all the properties
of the concept drift present in the environment.

It can be observed that some methods are classifier dependent, which can be a
drawback, since it forces the use of a specific algorithm that may not be suitable for the
problem being modeled, even if the concept drift present in the environment is the same
treated by the proposed method. Another property that could limit some methods usage
is the number of classes that they can handle, since some methods are suitable for binary
problems only.

Table 4 also shows that many methods, not all of them belonging to the Ensemble
Based Methods class, use classifier ensembles to deal with both virtual and real concept
drifts, indicating that the diversity can be a good tool when dealing with different concept
drift scenarios. It is important to notice that only the methods that explicitly use ensembles
were marked as “uses ensembles”, although many of the Single Classifier based methods,
like [48, 21, 51], can be easily adapted to use ensembles as the base classifier.

When multiple classifiers are considered to deal with concept drifts, some authors
argue that weak classifiers should be used [3, 53, 119] since it may be simpler to train
the classifiers and also to increase the diversity. Nevertheless, in [6] it is advocated that,
since the environment is not stationary, the diversity is naturally provided even when
employing strong classifiers. The pool may also be considered diverse due to the use of
different training sets for each classifier, as stated in [64] (e.g. some methods may train new
classifiers for every new supervised information received). The most common approach in
the reviewed literature considers some trigger to detect changes in the concept.

Figure 24 show the main approaches used to deal with concept drifts of the surveyed
works over the years, (the number in parenthesis indicate the number of works in the time
period). It is worth pointing out that the survey present in this work does not contain
all possible methods published over the last years, as it could be a near to impossible
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task due to the vast number of published papers regarding to concept drifts. The analysis
of Figure 24 indicate that the trigger based techniques is a popular approach to deal
with concept drifts in all studied time periods, except before 1999, when just methods
based in simple approaches (Window or Gradual Forgetting based methods) were found.
Also according to Figure 24, ensemble based methods remained its popularity over the
years, further indicating that a multiple classifiers pool may be a powerful tool to deal
with concept drifts. The study of approaches based only on the data distribution analysis
(not considering the class conditional distributions P (y|x)) became popular after 2010
according to Figure 24.
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Table 4 – Main properties of some important contributions

Authors
Method
Name

Year
Classifier
Independent

Uses
Ensembles

Concept Drift
Type

Binary
Only

Window Based Methods

Hulten et al.[30] CVFDT 2001 No No Real No
Widmer & Kubat[80] FLORA 2006 Yes No Real No

Kuncheva & Žliobaitė[81]1 - 2009 Yes No
Real and Virtual
Abrupt

Yes

Jian-guang et al.[41] - 2010 Yes No Real No
Sun & Li[17] - 2011 Yes No Virtual No
Rakitianskaia &
Engelbrecht[84]

- 2012 No No Real No

Gradual Forgetting Methods

Schlimmer & Granger
Jr.[29]

STAGGER 1986 No No Real Yes

Martínez-Rego et al.[27] - 2011 No No Real No
Krawczyk & Woźniak[2] - 2014 No No Gradual Real Yes

Trigger Based Methods

Gama et al.[51] DDM 2004 Yes No Real No

Baena-Garcıa et al.[91] EDDM 2006 Yes No
Real Abrupt and
Gradual

No

Chen et al.[43] - 2006 Yes Yes Real No
Bifet & Gavaldà[92] ADWIN 2007 Yes No Real and Virtual No
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Rodríguez & Kuncheva[88] - 2008 Yes Yes Real No

Bifet & Gavaldà[102]
Hoeffding
Adaptive Tree

2009 No No Real and Virtual No

Bifet et al.[103]
Leveraging
Bagging

2010 Yes Yes Real and Virtual No

Kapp et al.[21] - 2010 No No Virtual No
Susnjak et al.[3] - 2012 Yes Yes - Yes

Minku & Yao[32] DDD 2012
No. It needs an
online classifier

Yes Real No

Ross et al.[34] ECDD 2012 Yes No Abrupt Real Yes
Sakthithasan et al.[94] SeqDrift1 2013 Yes No Real and Virtual No
Kuncheva[97] SPLL 2013 Yes No Real and Virtual No
Gonçalves Jr & Barros[45] RCD 2013 Yes Yes Real No
Alippi et al.[48] JIT 2013 Yes No Abrupt Real Yes
Pears et al.[95] SeqDrift2 2014 Yes No Real and Virtual No
Salperwyck et al.[105] MDD 2015 Yes No Virtual and Real No

Pinage & Santos[93]
DbDDM and
DbEDDM

2015 Yes No Real No

Kithulgoda & Pears[106] SOL 2016 No Yes Virtual and Real No
Chen et al.[107] ProSeed 2016 Yes No Real No

Ensemble Based Methods

Street & Kim[46] SEA 2001 Yes Yes Real No
Wang et al.[109] - 2003 Yes Yes Virtual and Real No
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Kolter & Maloof[20] DWM 2007
No. It needs online
classifiers

Yes Real No

Karnick et al.[112] Learn ++.NSE 2008 Yes Yes Virtual and Real No
Elwell & Polikar[113] - 2009 Yes Yes Virtual and Real No

Bifet et al.[42] ADWIN/ASHT
Bagging

2009 No Yes Real No

Brzeziński &
Stefanowski[110]

AUE 2011
No. It needs online
classifiers

Yes Virtual and Real No

Elwell & Polikar[6] - 2011 Yes Yes Virtual and Real No
Escovedo et al.[11] NEVE 2013 No Yes Real No
Pietruczuk et al.[115] AASE 2016 Yes Yes Real and Virtual No
Ditzler[116] Sense 2016 Yes Yes Real and Virtual Yes

Local Region Based Methods

Polikar et al.[53] Learn++ 2003 Yes Yes
Virtual (New classes
addition)

No

Zhu et al.[54] AO-DCS 2004 Yes Yes Virtual No
Tsymbal et al.[12] - 2006 Yes Yes Real No
Pan et al.[118] - 2010 No Yes Real No
Chan et al.[119] - 2011 Yes Yes Virtual No

Pan et al.[19] DCEPU 2012 Yes Yes
Real Abrupt and
Gradual

No

Fischer et al.[122] - 2016 No No Real and Virtual Yes
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Distribution Analysis Based Methods

Kurlej & Wozniak[28] - 2011 Yes No Virtual No
Kmieciak & Stefanowski[87] - 2011 No No Abrupt Real No
González-Castro et al.[38] HDx and HDy 2013 Yes No Virtual (priors drift) Yes
Radtke et al.[39] - 2014 Yes Yes Virtual (priors drift) Yes

Escovedo et al.[124] A2D2 2015 Yes No
Abrupt Real
(Followed by Virtual)

No

Gu et al.[128] - 2016 Yes No
Virtual (distribution
drift)

No

Cavalcante et al.[129] FEDD 2016 Yes No
Virtual (time series
streams)

-

Raza et al.[131] - 2016 Yes No Virtual Yes
Pérez-Gállego et al.[132] - 2017 Yes Yes Virtual (priors drift) No

Jordaney et al.[133] Transcend 2017
Classifier able to
generate scores

No Virtual No

1 The authors in Kuncheva & Žliobaitė[81] make some assumptions, like the that the classifiers accuracies will be the same in all concepts and they consider that
the drift was caused by a rotation and/or translation in the dataset.
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Figure 24 – Main approach used to deal with concept drifts in the surveyed works over
the years. The numbers in parenthesis indicate the number of works in the
time period.

Note that the Local Region based approaches are constantly used to deal with
concept drifts according to the Figure 24, nevertheless these approaches are not as
popular as the trigger or ensemble based techniques. Furthermore, besides some important
contributions that can be fit in the Local Region category presented in this work, no
surveyed work consider the DCS approach as a general solution for the concept drift
problem. Although some methods may use a DCS approach to deal with a concept drift,
the state-of-the-art methods lacks a study of the DCS methods in general under concept
drift scenarios and the necessary adaptations that should be made in the DCS approach
to deal with concept drift problems.



81

4 Proposed Method

This chapter describes the proposed method, which is a framework designed to cope
with different concept drift scenarios. As stated in Section 1.2, the proposed framework
aims to deal with concept drifts containing different complexities. The framework is
designed to cope with distribution changes (virtual concept drift) and real concept drifts
(Section 2.2), both of any speed and severity (Sections 2.5 and 2.3, respectively) by means
of the DCS approach. The only assumption made about the data is that some supervised
data (labeled according to the current concept) will be available over time to train new
classifiers. The proposed framework was designed so that there are no limitations like a
classifier dependency, assumption of specific concept drift type/properties or the number
of classes of the problem being modeled, which are present in many of the works in the
surveyed literature (see Section 3.9).

As discussed in Section 2.8, when dealing with static environments the DCS
approach is region-dependent only. Nevertheless, in this Section is discussed that under
a concept drift scenario, a time dependency must be incorporated in the DCS approach
since the region dependency alone will not suffice, specially under real concept drift
scenarios. The remainder of this Chapter is structured as follows: In Section 4.1 the Dynse
framework is presented, which implements a time dependency in the DCS approach by
means of the pool management (creation and pruning of classifiers over time) and by
keeping a validation dataset (called accuracy estimation window) up to date with the
latest information received.

In Section 4.2 it is presented a discussion about the DCS approach and its time
dependency under real concept drift scenarios, while in Section 4.3 a similar discussion is
presented concerning to virtual concept drifts. The neighborhood size when using a DCS
based method to deal with concept drifts is discussed in Section 4.4. In Section 4.5 it is
presented the Concept Diversity idea, which regards to the diversity of the pool under a
concept drift scenario when using a DCS-based approach. In Section 4.6 the NNPrune
algorithm is presented as a pruning strategy capable of keeping a Concept Diverse pool,
while in Section 4.7 a modification in the K-E algorithm to deal with noisy environments
is presented. Finally, in Section 5.1 the experimental protocol is discussed.

4.1 The Dynse Framework
In this section it is presented the Dynamic Selection Based Drift Handler (Dynse)

framework, which is a tool for dealing with concept drifts that uses the local region of
the test instance defined in a validation set to dynamically select a suitable ensemble
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for it. Algorithm 1 depicts the basic schematics of the Dynse framework operation. The
framework keeps a classifiers pool P and an accuracy estimation window W , which should
contain the M latest supervised batches (|W | = M). This window works as the set Q
described in Section 2.8, from which the local region (i.e. neighborhood) of the test instance
is extracted and used to check the competence of the classifiers in P .

The size of the accuracy estimation window M is directly related to the stability-
plasticity dilemma discussed in Section 2.3, since a bigger value ofM could generate a more
accurate system when the concept is stable, at the cost of a slower recover when a concept
drift occurs. A detailed discussion about the accuracy estimation window size under a
virtual and real concept drift is presented in Sections 4.2 and 4.3, respectively. Next, the
framework operation when it receives new supervised data and during the classification
phase are presented.

Input: Stream of batches {B1, B2, . . . , Bt},
Maximum pool Size (D),
Accuracy Estimation Window Size (M),
Classification Engine (CE),
Pruning Engine (PE),
Neighborhood Size (K)

1 W ← ∅
2 P ← ∅
3 foreach Batch B ∈ Stream do
4 if B is a Labeled Batch then
5 W ←W ∪B
6 if |W | > M then
7 removeOldestBatch(W )
8 end
9 C ← trainNewClassifier(B)

10 P ← PE(P,W,C,D)
11 end
12 else
13 foreach test instance x ∈ B do
14 Nx ← KNearestNeighbors(x, k,W )
15 Ex ← CE(Nx, P )
16 xclass ← classify(x, Ex)

// The result of the classification is available to the user
17 makeAvailable(xclass)
18 end
19 end
20 end

Algorithm 1: The Dynse Framework Algorithm

New supervised data arrival: As discussed in the beginning of this Chapter,
the Dynse framework needs new supervised batches of instances over time in order to
adapt to a possible concept drift. In the beginning of the algorithm, both the accuracy
estimation window W and the pool P are set to empty (steps 1 and 2). For each batch
available in the stream, if the next batch is supervised (labeled), the follow steps are
performed:
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• In steps 5 to 8, the accuracy estimation window W is updated to accommodate only
the M latest supervised batches received (|W | = M). This window can be seen as
the validation dataset Q in a DCS method, and its size should be adjusted according
to the type of the concept drift to correctly estimate the classifiers’ competence, as
discussed in Sections 4.2 and 4.3.

• In step 9, a new classifier C is trained using the supervised batch. In this step any
inducer may be used for building a new classifier (e.g. SVM, MLP, KNN, ...).

• Finally, in step 10, the current Pool P , the current accuracy estimation window
W , the newly created classifier C and the Maximum pool size D are handed to the
pruning engine PE, which must make a decision to maintain or to prune classifiers in
P (or add C in the P ), keeping the pool from increasing in size beyond the threshold
D. The Pruning Engine can be seen as a function PE(P,W,C,D) = Pp, where Pp
is the pruned pool, and |Pp| ≤ D. Since PE is a parameter in Algorithm 1, any
pruning strategy can be implemented in the framework.

On the other hand, when faced with a non-supervised batch (i.e. a test batch), the
steps 13 to 18 are executed, where for each test instance x in the current batch, the follow
steps are performed:

• In step 14, the k nearest instances in the accuracy estimation window W are selected
to represent the local region of x. The set containing the local region is defined as
Nx = {x1,x2, . . . ,xk}, Nx ⊆ W .

• In step 15, the Classification Engine CE uses the set of neighbors Nx to select
a custom classifier/ensemble Ex to x using the classifiers in P . The classification
engine CE is a parameter in the Dynse framework that can be seen as a function
Ex = CE(Nx, P ), and thus any DCS method based on the neighborhood of the test
instance can be used.

• In step 16, the custom classifier/ensemble Ex is used to classify x and, finally, in
step 17, the result of the classification is made available to the user.

For the sake of simplicity, Table 5 has a summary of the main parameters and
components of the Dynse framework. As one can observe, the Dynse framework is pretty
general, since any classification algorithm (e.g. SVM, MLP, KNN, ...) can be employed
to build the classifiers that will be added to the pool, and the pool itself can contain
classifiers built with several distinct algorithms. Also no assumption is made about the
number of classes of the problem, nor the number or type of the features extracted from
the instances. The only constraint made by the proposed method is that new supervised
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samples need to be available over time in order to adapt to new concepts (this constraint
is necessary in any method that deals with real concept drifts that does not affect P (x),
as discussed in Section 2.6).

Table 5 – Summary of the components and parameters of the Dynse framework.

Parameter/
Component Description

W
The Accuracy estimation window containing the latest supervised
instances received

M The Accuracy estimation window size (i.e. |W | = M)
k The number of neighbors of the test instance x selected from W

P
The pool of classifiers, which may contain classifiers trained using
any algorithm

D The pool maximum size (i.e. |P | ≤ D)

CE
The DCS-based classification engine used to dynamically select the
classifiers

PE
The pruning engine used to keep the pool from increasing its size
above D

It is important to notice that the accuracy estimation window may contain instances
used to train some classifiers in the pool (specially the latest created one). Under stationary
environments, this scenario is avoided by considering a separate validation dataset in order
to find the local region, where this validation dataset is not used to train any classifier.
Nevertheless, under concept drifting environments the supervised instances may be scarce,
and the latest supervised instances are the best representation of the current concept.
Thus, in this work it is recommended to build new classifiers using the new supervised
batches as soon as possible in order to have classifiers representing the current concept in
the pool and, in order to estimate the classifiers’ competences using the most adequate
instances for the current concept, also consider the latest supervised batches to estimate
the compentece of the classifiers. In order words, since the supervised data from the current
concept may be scarce, the same instances in the supervised batches should be used as
both as the accuracy estimation window and training sets.

Finally, since the proposed framework considers the neighborhood of the instance
that needs to be classified, in this work it will be considered as a Local Region based
method according to the state-of-the-art discussion presented in Chapter 3. However, it
could also be fit as an Ensemble based method, since it contains a pool of classifiers, or a
Windowed one, since the validation dataset only considers the latest M supervised batches.
The proposed framework is designed to be able to deal with real concept drifts, and virtual
concept drifts that affects only P (x), as described in Subsections 4.3 and 4.2, respectively.
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4.2 Dealing with real concept drifts using a DCS-based approach
Under a static environment a DCS-based method selects a classifier/ensemble based

on the classifiers’ competence with respect to the neighborhood Nx of the test instance
x in a validation dataset Q (e.g., select the classifier with the highest accuracy in Nx).
Seeing that the classifiers’ competence is estimated using a subset of Q (Nx ⊆ Q), Q must
have a good representation of the feature space and the a posteriori probabilities of the
problem. Since under a real concept drift, the a posteriori probabilities of the instances
may change over time (i.e., Pt(y|x) 6= Pt+1(y|x)), it is imperative to keep Q up to date
with the current a posteriori probabilities.

To illustrate this idea, consider the two discriminant features f1 and f2 of the SEA
Concepts benchmark (See Section 2.7.1). Also consider that between the times t and t+ 1
there is a concept drift from Concept 1, where θ = 8, to Concept 2, where θ = 9 (in the
SEA Concepts problem, if f1 + f2 ≤ θ the instance belongs to the positive class, or to the
negative class otherwise). Figure 25a shows a validation dataset (i.e., containing labeled
samples) Qt containing instances collected at time t, while in Figure 25b, the validation
dataset Qt+1 contains instances collected at t + 1 only. Circles are used to denote the
k = 5 nearest neighbors of a test instance x in Figure 25a (time t) and squares are used to
identify the k = 5 nearest neighbors of x in Figure 25b (time t+ 1).
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Figure 25 – Neighborhood Nx of a test instance x in a validation dataset collected at t
(25a) and t + 1 (25b). In 25c Nx was computed using a merged validation
dataset containing both t and t + 1 instances. In all figures x is placed at
(4, 4.5).

Considering t+ 1 as the current time, and a pool P containing classifiers trained
under Concept 1 (t) and classifiers trained under Concept 2 (t + 1), the neighbors Nx
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of x in Qt+1 may lead to a good competence estimation of the classifiers in P , since Nx

represents the local region of x, and Nx is a subset of Qt+1, which represents the current a
posteriori probabilities (see Figure 25b). To better understand the time dependency of the
validation dataset when dealing with real concept drift problems using a DCS approach,
consider Figure 25c, which contains a merge of the validation samples collected at both t
and t+ 1.

Under a static environment, this bigger validation dataset could improve the
DCS performance, since it would possibly have a better coverage of the feature space.
Nevertheless, since the boundary changed between t and t + 1, this dataset may have
some conflicting information. As can be seen in Figure 25c, only two neighbors of the test
instance x come from the current concept t+ 1 (i.e., the current a posteriori probabilities),
while 3 neighbors come from the old concept t. Thus, the neighbors depicted in Figure 25c
may lead to a poor estimation of the classifiers’ competence.

This time dependence of the validation dataset Q raises the question of how to
keep Q always up to date with the current concept or, in other words, we may ask “How
do we keep track of changes?”. Since often when dealing with real concept drifts, some
supervised samples are needed time to time (see Section 2.6), a possible solution is to keep
only the latest M supervised samples/batches received in Q. This idea is implemented in
the Dynse framework as the accuracy estimation window W , where |W | = M .

This approach can be seen as a windowing strategy in the validation dataset, and
it can be related to the stability-plasticity dilemma as follows: A bigger value for M could
lead to a better competence estimation of the classifiers under regions where the concept
is stable (more instances available and possibly a better coverage of the feature space).
Nevertheless, the instances belonging to an old concept (i.e. old a posteriori information)
would take more time to be pruned in the presence of a concept change, and thus, a
bigger window could lead to a poor estimation of the classifiers’ competence under concept
changing regions (i.e., some neighbors may belong to the old concept).

4.3 Dealing with virtual concept drifts using a DCS-based Ap-
proach
In this Section some insights about the DCS approach under changes in P (x) are

given (changes in P (y) are not within the scope of this work). Differently from a real
concept drift, under a virtual concept drift scenario, the a posteriori probabilities do not
change over time. Thus, data acquired in the past can be accumulated in the validation
dataset Q, since the classifiers’ competence estimation will not be negatively affected as
only the neighborhood of the test instance x in Q is considered to estimate the classifiers
competence. Differently from a real concept drift scenario, keeping as much data as possible
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in the validation set Q may be beneficial due to the better coverage of the feature space.
In order to demonstrate this, consider an artificial two-feature d1 ∈ [0, 1] and d2 ∈ [0, 1]
binary problem, where the instances belong to the positive class if sin(πd1)× (7

9) > d2, or
to the negative class otherwise.

Also consider that at the beginning of the system run time, at time t, only supervised
samples located in a region B1 are available, and so the pool P contains only classifiers
trained using instances located in B1. If we consider a validation dataset Qt at time t,
composed of some samples from B1, and a test instance x1, the neighborhood of x1 in Qt

may be considered as the “closest known local region” of x1. Thus, these instances can
be used to estimate the classifiers’ competence. This scenario is depicted in Figure 26a,
where the 5 nearest neighbors of x in Qt are considered.
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Figure 26 – Virtual concept drift caused by a change in P (x). In 26a are shown the
neighbors of a test instance x1 in the validation dataset at t, when just the B1
region was known. In 26b, are shown the neighbors of the instances x1 and x2
at t+ 1, when B1 and B2 regions were known.

If new data belonging to a region B2 become available at t+ 1, this new supervised
data can be used to train new classifiers and to estimate the classifiers’ competence. Since
the concept drift here is only virtual, the supervised samples collected in t are still relevant
for estimating the classifiers’ competence in t+ 1. This idea is presented in Figure 26b,
where instances collected at both t and t+ 1 are used in the validation dataset Qt+1. As
can be observed in Figure 26b, the k = 5 validation samples collected at t + 1 (i.e., in
the B2 region) are the closest to x1, and thus, these instances may be used to estimate
the classifiers’ competence with respect to x1. Still in Figure 26b, a test instance x2

is introduced, and as can be observed, the neighborhood of x2 is divided between the
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instances received at t (B1) and t+ 1 (B2), indicating that instances in both regions B1

and B2 may contribute to estimating the classifiers’ competence with respect to x2.

Note that under a scenario where the test instances have drifted to another region
in the feature space before new training data arrived with respect to this feature region,
a DCS-based approach is still able to estimate the classifiers competence based on the
closest “known” regions of the feature space. In summary, considering M as the number
of the latest supervised batches/instances accumulated in the validation dataset Q (e.g.,
the accuracy estimation window W in the Dynse framework), we may say that a good
policy would be to set M to be as big as possible in order to deal with a virtual concept
drift, whilst a small value for M should be used in a real concept drift scenario in order to
procure a faster adaptation to changes.

4.4 The Local Region of Competence
By taking into account the neighborhood of the test instance x under the current

validation set Q by means of a DCS method, we are assuming that some information
can be shared between concepts, and a classifier trained with an old concept may be
still suitable under the current concept in some regions of the feature space [12, 37]. To
illustrate the rationale behind this thinking, see the example in Figure 27a that shows the
changed region between Concepts 1 and 2 in the SEA Concepts problem (without noise
and not considering the irrelevant feature f3). Consider the instances x1 and x2 in Figure
27a, as well as Concept 2 (θ = 9) as the current one, and that Q only contains instances
labeled according to the current concept.

If we use the entire current validation dataset Q to estimate the classifiers’ compe-
tence for both instances, then the very same set of classifiers will be selected to classify
both x1 and x2. However, if we take into account only the local region of the test instances
(see the neighbors of x1 and x2 in Figure 27a), it becomes clear that classifiers trained
under Concept 1 or 2 can classify x2, since the a posteriori probabilities did not change in
the region where x2 was placed. On the other hand, it will be possible to verify that only
the classifiers trained under the presence of Concept 2 will be able to classify x1, since it is
expected that at least part of the neighborhood of x1 changed its a posteriori probabilities
when the Concept changed from 1 to 2 (i.e., some instances are in the changed area).

As we estimate the classifiers’ competence using the neighbors of the test instance,
one may wonder how big k should be to define the local region. This is a fundamental
problem with any DCS-based approach, regardless of whether or not the environment is
static. Under a concept drift scenario, it is possible to relate the neighborhood size to the
DCS plasticity, especially when the concept drift is intersected (as in the SEA Concepts
problem). To demonstrate this, consider the neighborhood of x1 in Figures 27a and 27b.
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Figure 27 – Neighbors of test instances in a validation dataset Q that contains only
instances with respect to the concept 2 in the SEA Concepts problem. The
gray area depicts the region that has a change between Concepts 1 (θ = 8)
and 2 (θ = 9).

As the neighborhood size is increased, as in Figure 27b, there is a greater probability
for some validation samples to be taken from regions that did not change; consequently,
classifiers that are oblivious to this change may be wrongly selected to classify the test
instance, depending on the DCS strategy implemented (e.g., a classifier trained in the
old concept may be selected, since it would have a high accuracy as most neighbors are
outside the changed region). On the other hand, a smaller neighborhood (Figure 27a)
could better represent the local region of the test instance in the current concept, thus
giving a better competence estimation for the classifiers with respect to the test instance
(i.e., a bigger proportion of the neighborhood is inside or near to the region that changed
between concepts).

It is important to note, though, that even a smaller neighborhood may contain
validation instances from areas where the concept did not change, specially when the test
instance is close to the boundary that changed between concepts. Therefore, under a real
concept drift scenario, the DCS method may take into consideration the fact that if a
classifier is able to correctly classify only a small portion of the local region of the test
instance x, it may be unsuitable for classifying x.

Estimating the optimal local region size may be a challenging task, but as discussed
in this section, some DCS-based methods may decrease their performances when using
larger local regions. Based on the fact that under static environments, DCS methods
provide good results with small neighborhoods (e.g., 5 nearest neighbors for the DCS-LA
methods [68] - see Section 2.8), it is reasonable to use the same values proposed in static
environment as a first guess when modeling a DCS approach for a concept drift scenario.
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Note that in the Dynse framework, the neighborhood size can be specified in the Find the
k neighbors of x module.

4.5 Concept Diversity
Section 3.8 briefly presented a discussion about some of the classical pool pruning

approaches used in the state-of-the-art. All studied methods present in the literature will
always try to remove classifiers that belong to a concept that is different from the current
one (i.e. different P (x) or P (y|x)). Using this kind of approach may increase the method
accuracy when the concept is stable. Nevertheless, under a recurrent concept scenario,
where the classifiers from the old concept could be simply reactivated, approaches that
keep the pool updated considering only the current concept may lead to a suboptimal
performance.

In order to make the most from the Dynse framework, we should keep a diverse
pool. The diversity is important for the Dynse due to the use of a DCS based approach to
select the most promising ensemble for the test instances (see the Classification Engine
in Section 4.1). Under a static environment, a DCS based method may benefit from a
pool that contains classifiers specialized in different regions of feature space [136], thus the
diversity is region dependent. The region dependency alone may also suffice in scenarios
that suffers from virtual concept drifts only. Nevertheless, the region dependency may
not be sufficient in a real concept drift scenario, where it is also necessary to add a time
dependency in order to keep classifiers trained under different concepts (here, a different
concept refers to a different a posteriori probability). In this work a pool that contains
classifiers specialized in different regions of the feature space (i.e. region dependency), and
trained under different concepts (i.e. time dependency) is defined as a Concept Diverse
pool.

The Dynse framework may benefit from a concept diverse pool in two folds: first,
when a concept reoccurs, the method can just reactivate the classifiers trained under the
previous concept to classify the incoming test instances. Second, under intersected concept
drift scenarios (see Section 2.5), some regions of the feature space may share the same a
posteriori probabilities between different concepts [12, 37]. Since the classification engine
selects the best ensemble based on the local region of the test instance, a classifier trained
under a previous concept may still be selected by the classification engine to classify a test
instance, if the classifier is still competent in the test instance region.

To better understand the concept diversity idea, consider the example in Figure 28,
where 3 supervised batches arrived at different times. Also consider that a classifier was
trained for each supervised batch. As can be observed in Figure 28, all received supervised
batches reffer to a similar region of the feature space, and there is a real concept drift
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between times t− 2 and t− 1. Considering Concept 2 as the current concept, if one of
the classifiers trained with these batches need to be removed, some authors may argue
that the information from the previous concept should be removed (e.g. remove the worst
classifier according to the latest supervised batch received) [12, 37, 11, 42, 110, 115].
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Figure 28 – Supervised batches received at different times. The Concepts marked in the
figures refers to a real concept drift.

Nevertheless, note that that both batches that arrived in t− 1 and t (Figures 28b
and 28c, respectively) share the same a posteriori probabilities and belong to a similar
region in the feature space, thus it is expected that the classifiers generated by these
datasets will be quite similar. In order to keep a concept diverse pool, containing classifiers
that may be specialist in different regions of the feature space and trained at different
concepts, a better solution may be to keep the classifier trained at Concept 1, and prune
one of the classifiers trained at Concept 2.

In this scenario, the Dynse framework should be able to select the classifiers trained
under the presence of Concept 2 to classify the test instance in the current concept
(Concept 2), and select the classifier trained under the presence of Concept 1 if this concept
reoccurs. Note that the classifier trained under the Concept 1 could also be selected to
classify test instances in the presence of Concept 2 (and vice versa), since some regions of
the feature space did not change its a posteiriori probabilities between the concept drifts.

Under the presence of changes in the unconditional distribution only (i.e. virtual
concept drift) it is possible to apply a similar reasoning when a classifier must be removed
from the pool. Consider the example in Figure 29, where we received 3 supervised batches
that share the same a posteriori distributions, but that may represent different regions
of the feature space. In this scenario, a reasonable approach should remove the classifier
trained with the dataset that arrived at time t− 2 or t− 1, since these datasets represent
similar information.

In both examples of a real concept drift and virtual concept drift (Figures 28 and



Chapter 4. Proposed Method 92

Positive Negative

0 0.5 10

0.2

0.4

0.6

0.8

1

d1

d2

(a) time: t− 2

0 0.5 1
d1

(b) time: t− 1

0 0.5 1
d1

(c) time: t

Figure 29 – Supervised batches received at different times. Only the unconditional distri-
bution is changed between batches (virtual concept drift).

29, respectively), a similar decision was made, nevertheless with different results. In the
real concept drift example, the diversity was kept in therms of the a posteriori information,
or in other words, we may have classifiers specialist in the same region, but trained with
different a posteriori probabilities. In the virtual concept drift example, the pool was kept
diverse in therms of the region of the training data.

4.6 The NNPrune Pruning Algorithm
In this Section the Nearest Neighbors Based Pruning (NNPrune) algorithm is

presented as a pruning strategy capable to keep a concept diverse pool (See Section 4.5).
The NNPrune algorithm takes into consideration both the features location of the train
set of the classifiers (virtual concept drift), and also the a posteriori probabilities of the
train set (real concept drift) in order to keep a fixed concept diverse size pool.

The algorithm works by comparing the training sets of each pair of classifiers in
the pool, where the removed classifier (or classifiers if more than on classifier must be
removed) is the one that has its training set “best represented” by another classifier that
is present in the pool. The basic algorithm is depicted in the Algorithm 2, where the
current pool of classifiers, the most recent classifier created and the maximum pool size
are passed as parameters. We take all possible pairs of classifiers Ci and Cj that can be
made considering the current pool (except for the newest created classifier). We take the
training set Ti of the classifier Ci to build a One-nearest neighbor (1NN) based classifier,
which is tested in the training set Tj of the classifier Cj.

The 1NN classifier was chosen to estimate similarity between batches in the
algorithm due to its high dependency on the feature region (P (x)) and class-conditional
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Input: currentPool, newestClassifier,maxSize
Output: the pruned pool PP

1 M ← ∅
2 PP ← ∅
3 foreach Classifier Ci in CurrentPool do
4 foreach Classifier Cj in CurrentPool do
5 if Ci != Cj and Cj != newestClassifier then
6 OneNNClassifier ← Ci.trainSet
7 acc← test(OneNNClassifier, Cj.trainSet)
8 M ←M ∪ {acc, Ci, Cj}
9 end

10 end
11 end
12 t← currentPool.size−maxSize
13 while t > 0 do
14 {acc, Ci, Cj} ← highestAccuracy(M)
15 M ←M ⊕ {acc, Ci, Cj}
16 if Cj not in PP then
17 if Ci not in PP then
18 PP ← PP ∪ Cj
19 t← t− 1
20 end
21 end
22 end
23 PP ← P ⊕ PP

Algorithm 2: NNPrune Algorithm

probabilities (P (x|y)) of its training set (actually, the training set itself is the classifier in
this algorithm), thus the 1NN can be considered a good representation of its training set,
differently from classifiers that may extrapolate the knowledge acquired during its training
as, for instance, a MLP classifier. Possibly for a similar reason, the 1NN is used for some
data complexity measures (see the N1,N2,N3 and N4 measures in [137]), although the
authors does not make this clear[137].

It is expected that when using Ti as a 1NN to classify Tj, a high accuracy will be
achieved only if P (x) and P (x|y) of Ti is similar, or more general than Tj (e.g. Ti may
cover a wider region of the feature space, or the instances in Ti may better represent the
boundary when compared to Tj). In this scenario, the classifier Ci, which was trained with
Ti, can be considered a good replacement to Cj (that was trained with Tj) . Note that
since Ti can be more general than Tj , a high accuracy when testing the train set Ti against
Tj does not necessarily reflects in a high accuracy when Tj is tested against Ti. Thus, Ci
may be a good replacement to Cj, nevertheless Cj may not be a good replacement to Ci
(i.e., it is not a reasonable to select arbitrarily between Ci and Cj to be removed from the
pool when one of the classifiers achieve an high accuracy when tested against the other).

The result of each test between pairs of classifiers is stored in a set M in tuples
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that follows the format {accuracy, trainclassifier, testclassifier}, where M is sorted by
the accuracy in a descending order. The top t test classifiers that appears in M are stored
in PP , where t is the number of classifiers that must be removed, and PP is the return set
containing the classifiers to prune. As an example of the set M , consider Table 6, where if
just one classifier should be removed, the best choice should be to prune classifier C3 (the
C2 classifier already has a good representation of C3).

Table 6 – Tuples containing the accuracy and the classifiers from which the datasets were
used as the train and test sets.

Acc Train Test
99% C2 C3
98% C3 C2
97% C1 C3
85% C1 C4
... ... ...

Note the conditions in the lines 16 and 17 in the Algorithm 2. These conditions are
necessary in scenarios where more than one classifier should be pruned in a single call of
the NNPrune. The condition in the line 16 checks if the classifier to be pruned is already
in the prune list PP (e.g. the classifier C3 would be removed twice according to Table 6 if
3 or more classifiers were pruned). We remove the classifier Cj assuming that the classifier
Ci already has a good representation of the same knowledge of Cj, nevertheless, there is
the possibility that Ci is already marked to be removed. For instance, considering that
we should remove 2 classifiers in the scenario depicted in Table 6, we would remove the
classifier C3, since C2 is similar to C3, and then we would remove C2, thus both C2 and
C3 are marked to removal, and we could end without a good classifier to represent the
knowledge of C2/C3. The condition in line 17 was created to avoid this scenario.

Since under a concept drift scenario the latest supervised batch of information
received is the one that best represents the current scenario, the newest classifier created
may replace another one in the pool, nevertheless no classifier is allowed to replace the
newest classifier (see the condition in line 5). Note that, by using the NNPrune algorithm,
it is necessary to keep the training set of each classifier in the pool. This can be considered
a drawback in systems where the available memory is scarce. Thus, in this work, the
NNPrune strategy will be considered as a preliminary study, thus this pruning approach
will not be used in the Dynse framework when comparing the results of the framework
with the state-of-the-art methods.
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4.7 The KNORA-Eliminate Method For Noisy Environments
The original K-E method presents a drawback when dealing with noisy environ-

ments, as some neighbors in Nx computed in the validation dataset Q may be wrongly
labeled, thus it is likely that no classifier will be able to correctly classify the entire
neighborhood Nx (the K-E method selects all classifiers that correctly classifies the en-
tire neighborhood Nx). Originally, when no classifier in the pool is able to classify all k
neighbors in Nx, a new set, containing k − 1 neighbors is generated, and the classifiers are
tested again. This process is repeated until at least one classifier correctly classifiers the
entire neighborhood.

Besides being valid, this approach does not mitigate the problem caused by noise
in the validation dataset, since a noisy sample may be the closest one to the test instance
x. Consider the scenario depicted in Figure 30, where it is expected that no classifier will
be able to correctly classify all instances in Nx due to the noisy sample. The size of Nx

will be decreased iteratively until only the k = 1 neighbors are selected to be part of Nx,
which will contain only the noisy instance (it is worth noticing this will not happen in
the unlikely scenario where some classifier in the pool is able to classify all neighbors,
including the noisy instance according to the labels given in Q). Finally, the classifiers will
be tested using a single wrongly labeled sample and, in this worst case scenario, classifiers
that wrongly classify the neighborhood will be selected to be part of the ensemble.

X

Feature Space

Set Q

Figure 30 – The k = 5 nearest neighbors of the test instance x in a validation dataset Q
(gray instances). The closest instance to x (lighter gray dashed) is noise.

The problem faced in the presence of noise may affect the K-E DCS method when
it is employed as a classification engine in the Dynse framework, since some samples
containing conflicting a posteriori probabilities may be found in the accuracy estimation
window W when the concept drifts. The instances that does not meet with the current
a posteriori probabilities may be considered noise (besides the targed classes of these
instances being correct in the past concept, they will have the same effect of noise in W
in the presence of the current concept), and it may take some time steps to completely
prune these instances from W depending on its size (i.e. considering M as the size of W ,
it will be necessary M time steps to completely prune the instances from the past concept
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when the concept drifts).

In order to make the K-E more suitable to noisy environments, in this work is
proposed a modification in the original K-E algorithm in order to introduce a slack variable
l, where 0 ≤ l < k. This variable controls the maximum number of neighbors that can be
incorrectly labeled by the classifiers that will be selected to be part of the ensemble. In
other words, considering that Nx contains k neighbors, all classifiers that correctly labels
at least k − l instances in Nx will be selected to be part of the ensemble.

When no classifier is able to correctly classify at least k − l instances, instead of
decreasing the Nx size as in the original method (i.e. decrease the value of k), we propose
to increase the slack variable l by one iteratively, until at least one classifier is selected to
be part of the ensemble. This approach make easier to a classifier that is able to classify
just a small portion of the neighborhood to be part of the ensemble (a behavior that is
similar to the K-U approach), nevertheless it may help to mitigate the problem generated
when the noise is too close to the test instance, as discussed in this Section (by decreasing
the neighborhood size, it may be possible to select a neighborhood set that contains only
noise).
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5 Experiments

This chapter focuses on a series of experiments carried out in order to assess
the proposed framework and its different configurations under several artificial and real
world scenarios. In Section 5.1 the experimental protocol used in this work is discussed. In
Section 5.2 the configurations of the proposed and state-of-the-art methods used during the
experiments are briefly described, while in Section 5.3 the used benchmarks configurations
are described. In Section 5.4 the slack variable introduced in the K-E DCS method is
put to test. In Section 5.5, the tests regarding to the impact of the main parameters
of the Dynse framework are presented. In Section 5.6 different classification engines are
tested using several well known benchmarks, where a default classification engine is also
defined for the Dynse framework. In Section 5.7 the impact of the classifiers pruning is
studied. The insights presented in Sections 5.4, 5.5, 5.6 and 5.7 are used to define a default
configuration of the Dynse framework, which is presented in Section 5.8. The default
configuration of the proposed method is tested against the state-of-the-art methods using
a series of common benchmarks in Section 5.9. Finally, in Section 5.8 tests in the real
world PKLot benchmark are presented.

5.1 Method Analysis
The proposed framework applicability will be analyzed using a standardized exper-

imental protocol (Subsection 5.1.1) under several real and virtual concept drift scenarios
(Subsections 5.1.3 and 5.1.2, respectively) by the use of both artificial and real datasets.
This analysis aims to identify not only the efficacy of the proposed framework under
different scenarios, but also the impact of diverse configurations of the approach by means
of the analysis of several validation window sizes, classification engines (also with different
configurations), and pruning strategies. How the method behaves under the presence of
recurring concepts is also studied by means of different datasets configurations (Subsection
5.1.5). The set of metrics that will be used to asses the framework performance is presented
in Subsection 5.1.6.

5.1.1 Baseline Methods for Comparison

In this Chapter several configurations of the proposed framework are tested and
compared with each other in order to detect which design generated the best results for each
concept drift scenario and to verify the behavior of the proposed method under different
scenarios. The different configurations that are tested include the implementations of the
proposed framework considering several classification engines (e.g. DCS-LA OLA, K-U,
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K-UW, etc.), different accuracy estimation window sizes and different classifier pruning
strategies.

The proposed framework is also tested against the state-of-the-art concept drift
handling methods. These methods may include some of the latest breakthroughs in the
concept drift detection field and also some of the classical methods found in the surveyed
literature. Both the proposed method and the state-of-the-art approaches were implement
using the MOA framework [60], which is a tool specifically designed to build, beside others,
data stream mining and concept drift dealing methods. The MOA framework is based
on the Waikato Environment for Knowledge Analysis (WEKA) workbench [138], and it
already has implementations of some concept drift handling methods and data generators,
like the SEA and STAGGER Concepts.

Besides the different configurations of the proposed method and the other state-of-
the-art concept drift handling methods, we propose to use other some classical strategies
to make a more accurate analysis of the results in the experiments, and also propose the
Oracle classifier selector as a upper bound for Neighborhood based methods for dealing with
concept drift scenarios. Each of these strategies has a different purpose in the experiments,
as described bellow.

Single Classifier: in this approach a single, and possible strong, classifier is
trained and used to classify all unsupervised instances. This classifier is never updated
or discarded. This approach can be used to check how a classical classification method
behaves in the benchmark employed in the tests. It may give an indication of the presence
of concept drifts in the dataset, since it is expected that if the dataset really contains a
concept drift, a statically trained classifier will suffer one or more performance drops over
time.

Naive Combination: in this method a new classifier is trained for each new
supervised batch and added to a pool of infinite size. When classifying an unlabeled
instance, the method just combines all classifiers in the pool by means of the majority
voting. The Naive combination was not designed to cope with real concept drift scenarios,
since no knowledge discard or selection method is implemented. This approach may be
included in some tests to check how a method without any explicit mechanism to deal
with concept drifts behave in the tested datasets.

This approach can also indicate if the concept drift is generated by changes in
P (x) only (virtual concept drift), since it is expected that in this scenario a method that
is always aggregating data in its knowledge base may improve its performance (i.e. at
each time step an unknown part of the distribution may be discovered by the method).
Nevertheless, as the Single Classifier method, the Naive Combination may suffer from
severe accuracy drops under scenarios containing real concept drifts, since under these
scenarios the Naive Combination will keep using old classifiers that may be inaccurate
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under the current concept.

Oracle: A common approach employed when testing DCS methods is to compare
the performance of the proposed method with an oracle, which can be considered a
theoretical upper limit of the performance of the pool from where the classifiers are
selected [70, 61, 139]. Given a pool of classifiers P , the basic idea of the Oracle is to
indicate if it is possible to build an ensemble of classifiers using a subset of P that is
capable of correctly classify the test instance x.

The Oracle performance can be estimated by checking if there is at least one
classifier in P capable of correctly classify x, where in this scenario x is marked as correctly
classified by the Oracle. The Oracle idea can be easily extended to verify the performance
of a DCS-based method designed to handle concept drifts. Considering xt the test instance
that arrived at moment t, and Pt the pool of classifiers at t, the instance xt can be marked
as correctly classified by the Oracle if there is at least one classifier in the pool Pt that
can correctly classify xt.

The Oracle can be seen as any other classification method (i.e. as any other
Classification Engine in the Dynse framework), thus a metric like the Accuracy versus
Time or the Average Accuracy (See Section 5.1.6) may applied in the Oracle in order to
compare the theoretical upper bound of those metrics achieved by the Oracle versus the
one achieved by the method being tested. It is important to observe that it only make
sense to compare a method with the Oracle if both of them have the same classifiers in the
pool at any given time t, or at least the classifiers are similar (e.g. the same classifier using
a different training subset taken randomly from a bigger set). An example of a Accuracy
Versus Time plot containing a comparison between the Oracle and the Dynse framework
(CE =K-E, M = 4, k = 5, no pruning engine and Hoeffding Trees as the base learner) in
the SEA Concepts problem is showed in Figure 31, where the accuracy achieved by the
Oracle in each batch can be seen as a upper limit. In other words, the plot in Figure 31
can give an indication of the limit of improvement that is possible by tuning the DCS
considering the same pool of classifiers.

Besides its popularity as a upper bound for DCS-based methods under static
environments, as far as studied in this work, the Oracle based upper bound was not
employed in any work that deal with concept drift scenarios. It is important to mention
that, besides being valid as an upper limit for the DCS methods, the Oracle may be
considered an overly optimistic accuracy limit [139, 136].

5.1.2 Method Evaluation Under Real Concept Drifts

In order to check the behavior of the proposed method under different concept
drift scenarios, both artificial and real datasets will be used as benchmarks. As stated in
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Figure 31 – Oracle versus the Dynse Framework accuracy over time plot example in the
SEA Concepts problem.

the objectives of this work (Section 1.2), the proposed framework should be flexible and
adapt to concept drifts with different properties, thus requiring several benchmarks, each
containing and specific concept drift scenario, to evaluate the proposed framework.

The first test battery will include some common artificial datasets found in literature.
As mentioned in Subsection 2.7.1, artificial datasets are ideal for analyzing a method
behavior in a concept drift scenario, since both the nature and the moment when the
concept drift happens are known, and the use of common datasets can make easier the
results comparison with others authors works. To verify the framework performance
under abrupt concept drift scenarios, the STAGGER and SEA Concepts will be used
as benchmarks, which contains severe and intersected concept drifts, respectively. The
Moving Checkerboard datasets family and the Gauss dataset configurations proposed in
[6] are employed to check the proposed framework under Gradual concept drifts scenarios,
where the Gauss benchmark is also be used to test the proposed approach in a problem
where classes are added/removed over time.

The proposed framework is also be put to test in some real world datasets in order
to check its behavior in a real environment. As one can see in Subsections 2.7.3 and 2.7.4,
the real world datasets found in literature usually have more features, thus leading to a
bigger classification challenge. It is important to reinforce that, despite the fact that these
datasets should contain real world classification tasks, they lack information about their
concept drift properties (e.g. when the concept drift happened, its speed, severity, ...), and
it is not even possible to know if a concept drift really happened in these datasets.

The real world benchmarks commonly found in the literature that will be employed
to assess the proposed approach performance are the Nebraska Weather and Forest datasets.
Besides its popularity, the Electricity dataset was not considered in the tests due to its high
correlation between test samples and lack of evidence of any concept drift, as discussed
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in Section 2.7.3. In this work the PKLot is proposed as a real world benchmark to verify
concept drift dealing methods performance and it is employed to asses the proposed
framework. In Section 5.1.4 the PKLot dataset is briefly described, and an experimental
protocol is defined for the PKLot benchmark.

5.1.3 Method Evaluation Under Virtual Concept Drifts

As stated in Section 1.2, the proposed framework should be able to deal with virtual
concept drifts, specifically, distribution changes concept drifts. To asses the framework
under virtual concept drift environments, small and possibly biased training batches will
be taken from well known datasets (e.g. the datasets available at the UCI Repository [49])
that are not considered to have real concept drifts. This strategy were used in several
works, like in [21, 119, 54, 39].

In order to generate the biased training sets to simulate a virtual concept drift,
the following approach will be used: given a dataset that does not contain any concept
drift, at each time step, a random sample and its G− 1 nearest neighbors are taken from
the dataset and then used in the training phase (i.e. G training samples are used). The
training samples are removed from the dataset, and then G samples are randomly taken
for the testing phase (differently from the training phase, all G samples are taken randomly
during the testing phase). The testing samples are also removed from the dataset, and a
new step begins. This process is repeated until the dataset is empty.

Note that this approach may generate a problem that is specially difficult in the
first time steps, since just some small regions of the feature space are known by the
classifiers, and the testing instances may be generated in any region of the feature space.
Figure 32 exemplifies this approach in a two-dimensional problem containing three classes,
where the circles D1, D2 and D3 represent portions of training data taken at times t1, t2
and t3, respectively. As one can see, each training data chunk covers a small problem
area, thus leading to a virtual concept drift (i.e. the distribution changes over time). It is
important to notice that there is no change in the a posterior probabilities, therefore the
problem does not contain real concept drifts.

In Figure 32 it is also exemplified a scenario where new classes could appear over
time, since the classification system would receive a training dataset containing samples
from the class Class 3 only at time t3. In this scenario the class addition could also be
considered a virtual concept drift, since there is no posterior probabilities changes, but
the models should be updated considering that the problem frontiers from a new area are
now known. This approach, where is considered that new classes will appear over time, is
applied in [53].
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Figure 32 – Training data in a two dimensional problem containing three classes. Each
circle marked as D1, D2 and D3 represents a portion of the data taken for
training at times t1, t2 and t3, respectively.

5.1.4 Concept Drifts in the PKLot Dataset

In this work the PKLot dataset is proposed as a real world benchmark to check the
performance of concept drift handling methods. This dataset was introduced in Almeida
et al.[140] and it was further extended in Almeida et al.[8]. It contains 12,417 images,
collected from two different parking lots (UFPR and PUCPR) under several weather and
light conditions. In the UFPR parking lot the images were also collected in two different
angles and heights (UFPR04 for the imagens collected from the 4th floor of a near building
and UFPR05 for the imagens collected in the 5th floor).

Each image present in the PKLot dataset has an associated XML file which contains
the image information, such as the position and class (occupied or empty) of its parking
spaces. Figure 33 shows some image examples from the PKLot dataset. As one can see,
due to the nature of the images, which were collected under different weather and light
conditions, and due to the presence of more than one parking lot and capture angle, this
dataset has the potential of containing several concept drifts.

The results achieved in [140, 8] demonstrated that a strong classifier, created using
50% of the samples present in the dataset is able to achieve an accuracy close to 100%.
Nevertheles, in the same works it is demonstrated that the change between different
parking lots may cause a severe drop in the accuracy (e.g. a classifier trained with the
UFPR04 may not perform well when tested in the PUCPR images). Thus, in this work
this dataset will be used as a real world benchmark to test methods to deal with concept
drifts.

In order to increase the test difficulty and possibly add a virtual concept drift in
the problem, just a small amount of supervised samples will be given for training for every
day present in the dataset. All experiments that will be conducted in this dataset will
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(a) UFPR04 image example (b) UFPR05 image example

(c) PUCPR image example

Figure 33 – Image samples from each parking lot/angle of the PKLot dataset containing
several lighting conditions

use the Local Binary Patterns (LBP) with uniform patterns [141] as the feature set, due
to the good results of these features in [140, 8] and simplicity. Next follows the complete
experimental protocol for the PKLot dataset:

• The problem is defined as classifying each parking individual space as vacant or
occupied, as in the original work [140, 8].

• The LBP with uniform patterns must be extracted from each individual parking
space to be used as the feature set (59 features).

• Days containing less than 50 samples for each class (vacant or occupied) will not be
considered.

• The parking lots are presented in the order UFPR04, UFPR05 and PUCPR. The im-
ages collected in each parking lot will be ordered in the chronological order. Each day
will represent a time step (i.e. the days will be fed neatly to the classification method).
Thus, the order will be: Day1_UFPR04, Day2_UFPR04, . . . , Last_UFPR04,
Day1_UFPR05, . . . , Last_UFPR05, Day1_PUCPR, . . . , Last_PUCPR.

• For each time step, 50 supervised samples of each class (i.e. 100 samples) referring
to the current day will selected randomly and given for training. The remaining
instances of the day will be used for testing (the training instances are not used in
the test).
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This protocol was designed in order to simulate a real world scenario, since a human
supervisor can easily label 100 instances every day in a few minutes using a tool specifically
designed for this purpose (e.g. a graphical tool where the human supervisor just clicks
in the occupied spaces of some images collected in the day). The parking lots order was
defined in order to first introduce an angle of view change (i.e. UFPR04 to UFPR05),
and then introduce an angle of view change accompanied of an environment change (i.e.
UFPR05 to PUCPR). The tests using the defined protocol in the PKLot dataset are
presented in Section 5.10, altogether with tests designed specifically to demonstrate that
this dataset may be used as a benchmark for testing methods that deal with concept drift
problems.

5.1.5 Concept Recurrence

The proposed framework should deal with concepts recurrence (Section 2.4), where
it is expected that previous acquired knowledge (i.e. classifiers in the pool) should be
reactivated when necessary. The datasets considered for testing recurrent concepts will be
the same specified in Subsection 5.1.2, since a recurrence can be easily simulated through
the repetition of some previous concepts (e.g. in Chen et al.[43] a configuration of the
STAGGER Concepts where the first concept is repeated is used).

In the concept recurrence tests the main objective will be to verify if classifiers
related to the old concept that repeated are reactivated, and if it leads to a better
performance by, for instance, comparing the accuracy of the proposed framework when
the concept first appeared versus its performance when it repeated. To this end, some of
the tested scenarios will not include a pruning approach in order to check if the classifiers
from the same concept created in the past are reactivated.

5.1.6 Metrics

When evaluating the performance of classification methods in static environments,
some common approaches may include classic metrics like the accuracy, false/true posi-
tive/negative rates, and the Receiver Operating Characteristic (ROC) curve analysis [142].
Besides their importance, these classical metrics may not fully represent the quality of
methods that deal with concept drift problems, since the performance of these methods
varies over the time. As an example, consider a problem with abrupt severe concept drifts
containing several long stable regions. A method that can keep a good performance in
stable regions may achieve a high average accuracy when put to test, even if the method
did not performed well under the concept changing regions, since in most of the time the
method will be dealing with stable regions. This example shows that just the classical
performance metrics are not sufficient to define how good a concept drift dealing method
is. In this Section the metrics of performance used in this work are presented, which are
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inspired in the metrics used in the state-of-the-art works, specially the Ensemble and Local
Region-based methods (Sections 3.4 and 3.5, respectively).

Average Accuracy: this classical metric is often used in works that deals with the
concept drift problems. The basic strategy is to compute the final accuracy achieved when
considering all presented test instances/batches [12, 42, 103, 6, 119, 17, 34]. As discussed
in the beginning of this Section, this metric may be a good indicator of performance,
nevertheless it may not suffice under a concept drift scenario when used alone. However,
some works in the state-of-the-art, such as [53, 54, 115, 122], use the average accuracy as
the only metric when measuring the quality of different methods. In this work the average
accuracy is one of the metrics considered and, in order to increase the discriminative power
of the metric, the accuracy standard deviation between test batches is also considered. The
accuracy standard deviation may be used as an indicator of the stability of the method
being tested.

Accuracy over Time: A common approach used in most of the works [29, 46, 43,
12, 20, 112, 42, 6, 119, 11, 2] is to plot the accuracy over the time, where the time can be
represented, for instance, by the testing batch number. An example of this representation
is given in Figure 34, where the concept changing areas are marked as vertical dashed lines
(considering that the moment when the concept drift happened is known). As one can
observe, this representation is ideal to verify the method behavior over time and, when
the moment of the concept drift is known, it can be used to check how well the method
performed in the concept changing area. This metric is used in this work as the main
approach to verify the behavior of the methods over time.
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Figure 34 – Accuracy versus Time (batch) example

Memory Usage: This metric can be used to evaluate the amount of resources
taken by the method being tested. Some authors define the memory usage in therms of
the RAM-Hours metric, where one RAM-Hour is defined as 1GB of RAM used in a period
of 1 hour. This metric is based on cloud computing services, where the resources can be
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deployed and charged by hour [103, 5, 15]. In this work a different strategy is employed,
where the memory consumption will be represented by a plot similar to the accuracy over
time, where at each time step the amount of memory used by the tested method will be
plotted [103, 33]. The final amount of memory needed by the method will be defined as
the maximum amount of memory consumed by the method, considering all time steps of
the problem. In [110] a similar approach is used, although in [110] the final memory used
is defined as the average memory consumed.

The Average Accuracy, Accuracy over Time andMemory Usage are the main metrics
used in this work, since they are the largely used to verify the performance of methods that
deals with concept drift by means of ensembles or local regions [46, 12, 20, 112, 119, 110, 11].
When suitable, a Bonferroni-Dunn test (see Section 2.9) with a 95% of confidence will
be used to compare a single configuration of the proposed Dynse framework with the
state-of-the-art methods. The Wilcoxon Signed-Ranks test [143, 73] is used to make a
pairwise comparison of different configurations of the Dynse framework.

5.2 Tested Methods
In this Section both the proposed framework configurations and the state-of-the-art

methods used in the experiments are presented. All experiments were designed using the
MOA [60] framework as a tool for implementing the proposed method. Most approaches
in the state-of-the-art employed in this work are already part of the MOA framework, thus
giving a reliable and well tested set of methods for comparison. Due to the vast number of
methods tested, each of them possibly containing several parameters that could be tuned
for optimization, in this work all comparisons between different methods use the methods
default configurations (available at the MOA framework). By following this guideline we
aim to provide a fair comparison without the need to deal with an explosive number of
parameters combinations during the tests.

Therefore, only the default configuration of the proposed Dynse framework is tested
against the state-of-the-art (although different classification and pruning engines are tested
in order to demonstrate that several DCS approaches may be used to deal with concept
drifts). Table 7 contain the main acronym of the state-of-the-art methods used in this work,
and the main techniques used to deal with concept drifts used by the method (Window
based, Trigger based, etc.). For a more detailed description about the state-of-the-art
methods consult Chapter 3. The methods discussed Subsection 5.1.1 are also present in
the Table 7, since they were used as baselines for several tests.

All methods, including the Dynse framework, was configured to use Hoeffding Trees
[82] as base learners. This base learner was chosen since some of the tested methods require
an online learner. Note that the DDM and EDDM methods are just triggers. To make the
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comparisons fair, these triggers uses a pool of Hoeffding Trees as the base learner, where
each new supervised batch received is used to create a new classifier, and the classifiers in
the pool are combined using the plurality vote.

Table 7 – Acronyms of the State-of-the-art tested methods and main types.

Acronym Description Type

AUE Accuracy Updated Ensemble (AUE) method
proposed in [110]. Ensemble

AWE Accuracy-Weighted Ensembles (AWE) method
proposed in [109]. Ensemble

DDM The Drift Detection Method (DDM) method
proposed in [51]. Trigger

EDDM The Early Drift Detection Method (EDDM) method
proposed in [91]. Trigger

HAT The Hoeffding Adaptive Tree proposed in [102] using
the ADWIN [92] method as a trigger. Trigger

LevBag The Leveraging Bagging method proposed in [103]
using the ADWIN [92] trigger to detect changes.

Trigger /
Ensemble

OzaAD The method proposed in [42] using the ADWIN [42]
trigger.

Trigger /
Ensemble

OzaAS The method proposed in [42] using Adaptive-Size
Hoeffding Trees.

Trigger /
Ensemble

NaiveC The Naive Combination method discussed in
Subsection 5.1.1. -

SingleTrain The Single Static Classifier approach discussed in
Subsection 5.1.1. -

Several configurations of the proposed framework are tested in this work. The
configurations include the use of different classification engines, pruning engines, number
of neighbors considered for the DCS and the accuracy estimation window size. The main
variables that may be changed in the Dynse framework are presented in Table 8, altogether
with the possible values that can be used in each variable during the tests. Note that the
Oracle theoretical DCS method, discussed in Subsection 5.1.1, is used in the tests as a
“perfect classification engine” in order to give an upper bound for the classification engines.
All results presented in this Chapter are an average of 10 executions.

5.3 Benchmarks Configuration
In Section 2.7 there is a description of some of the most common benchmarks used

in the literature. Despite being valid, this description may be too general since distinct
authors may employ a different strategy to use a benchmark in order to test a concept drift
handling method. To avoid any misinterpretation, in this Section the protocol employed
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Table 8 – Summary of the components and parameters of the Dynse framework.

Param. Description
M The accuracy estimation window size used

K
This parameter defines the number of neighbors of the test instance x
selected from the accuracy estimation window

D The pool maximum size
l The Slack Variable for the K-E method (See Section 4.7)

CE
The classification engine used by the Dynse to dynamically select the
classifiers. The dynamic selection based methods described in Section 2.8
were used in the tests with the acronyms bellow:
Acronym Dynamic Classifier Selection (DCS)
OLA The DCS-LA OLA
LCA The DCS-LA LCA
Priori The A Priori method
Post The A Posteriori method
K-U The K-U method
K-UW The K-UW method
K-E The K-E method

Oracle The The Oracle hypothetical dynamic selection method
discussed in Section 5.1.1, considered as an upper bound

PE
The pruning engine used to prune classifiers from the pool. The pruning
approaches discussed in Section 3.8 were used in the tests with the
acronyms bellow:
Acronym Pruning Engine (Method)
Inf No prunnig engine (the pool may increase its size indefinitely)
NN The NNPrune pruning algorithm (See Section 4.6)
Age Age based pruning (replace the oldest)

Acc Accuracy based pruning (replace the worst performing
classifier considering the current accuracy estimation window)

for each benchmark used is briefly described. Unless explicitly stated, the tests in this
Chapter will follow this protocol to use the benchmarks.

The main properties of each benchmark are showed in Table 9. Observe that
depending on the benchmark used in the tests, a holdout or a test-then-train approach
is used. In the holdout strategy, for each time step a train set is given, followed by an
independent test set. In the test-then-train approach, at each time step the system must
classify the received batch and, after the classification, the true labels of the batch are
given and used for training [16, 89]. The acronyms and a brief discussion about the datasets
used in the tests are follow given.

STAGGER: The tree different concepts defined in the original work [29] are
used, plus a fourth concept, with the same boundaries of the first one, is generated to
simulate a recurring scenario. During the experiments, there is a concept change for every
10 steps. A holdout evaluation is made [42, 15, 16], where at each time step, 20 supervised
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samples are given for training, and then 200 unsupervised samples are given for testing.

SEA: This benchmark refers to the SEA Concepts problem. The testing procedure
is inspired in [6], where for each time step, a supervised batch containing 250 samples is
given for training, and another batch containing 250 samples from the same concept is
generated for testing. The four original concepts of the problem are used [46], and the
concept is changed for each 50 steps, thus generating a test with 200 steps in total. A
holdout approach is used, thus the testing samples are never used as training ones. It is
worth mentioning that in [6] only the training instances contain noise, while in the tests of
this work both training and testing instances have 10% of noise.

SEARec: This benchmark follows a similar specification of the SEA benchmark.
Nevertheless, in this configuration there is a concept change for every 25 steps (in the
SEA benchmark the concept changes for every 50 steps). As in the SEA benchmark, there
is a total of 200 steps in the problem, thus all concepts are repeated once in the order
θ = 8, θ = 9, θ = 7, θ = 9.5, θ = 8, θ = 9, θ = 7, θ = 9.5.

CkrE, CkrP and CkrS: These configurations refer to the Rotating Checkerboard
problem considering a exponential, Gaussian pulse and sinusoidal change, respectively.
There is a total of 400 time steps, where at each time step 25 samples are given for training,
and 1024 are given for testing (Holdout test). This version of the benchmark is proposed
in [6], where the authors also provide a link to download the datasets.

Gauss: The Gauss Dataset with Class Addition/Removal used in [6]. This problem
contains 300 time steps, where at each time step 20 samples are given for training, and
1024 samples are used for testing. All classes are constantly drifting. At the time step
120 a new class is introduced, and at time 240 one of the classes is removed. The authors
in [6] made this dataset available for download, nevertheless only the class priors of the
testing batches are available (i.e. it is possible to know how many instances of each class
are available in the testing batch, but it is not possible to know the true label of each
individual instance), thus the Oracle accuracy was not computed for this dataset.

Nebr: The Nebraska Weather dataset using the same configuration employed
in [6] and [11], where only the eight features with a missing feature rate less or equal
than 15% were used, and the remaining missing values are replaced by the mean of the
features in the preceding and following samples. The dataset is ordered in a chronological
order and an interleaved batches approach is used. At each time step, 30 samples are used
for training, and the next 30 samples are given for testing. In the next time step, the
testing samples are used as a train batch (the real labels are given), and the subsequent 30
samples are given for testing. This procedure is repeated until all samples are used. There
is a total of 604 time steps in this problem.

For: This benchmark refers to the Forest Cover Type problem available at the



Chapter 5. Experiments 110

UCI repository [49]. Besides its popularity as a test-then-train dataset (i.e. a instance is
used for testing, and then for training in a stream fashion) [42, 103, 2, 107], in Bifet[58] it
is argued that this dataset may present a high correlation between its data, making it a
trivial problem to a classifier that just adds new information in its knowledge base without
detecting any concept drift. Thus, in order to increase the difficulty of the problem, the
instances are presented in the same order present in the original dataset, and at each time
step, a batch containing 200 samples is given for training, and a batch containing the next
2,000 samples is given for testing. The dataset is used in a holdout form, thus, the testing
samples are never used for training and, conversely, the training samples are never used
for testing. This process is repeated until all samples are used, hence generating a problem
with 264 time steps.

Dig and Let: The Digit [144] and Letters [145] problems available at the UCI
[49] repository with artificially introduced virtual concept drifts. To introduce a virtual
concept drift, the methodology described in Section 5.1.3 is employed. The parameter
G, that defines the batch size used for train/test, is set to 50 (G = 50). The Digit (Dig)
dataset generated 56 time steps, while the Letters (Let) generated a problem with 200
time steps.

PKLot: The PKLot dataset [140, 8] using the protocol specified in Section 5.1.4
(days ordered in the chronological order and for each day 100 samples are given for training,
and the remaining instances are used for testing).

Table 9 – Main properties of each benchmark used. The train/test sizes refer to the batch
size given for training/testing at each time step.

Benchmark Drift Type Test Type Feat. Classes Steps Train Size Test Size
Real Concept Drift Benchmarks

STAGGER [29] Abrupt Real Holdout 3 2 40 20 200
SEA [46, 6] Abrupt Real Holdout 3 2 200 250 250
SEARec1 [46] Abrupt Real Holdout 3 2 200 250 250
Ckr2 [6] Gradual Real Holdout 2 2 400 25 1024
Gauss [6] Gradual Real Holdout 4 2 300 20 1024

Real World Benchmarks
Nebr [6, 11] - Test-Train 8 2 604 30 30
For [49] - Holdout 54 7 264 200 2000
PKLot [140, 8] - Holdout 59 2 82 100 -

Virtual Concept Drift Benchmarks
Dig [49] Virtual Holdout 64 10 56 50 50
Let [49] Virtual Holdout 16 26 200 50 50

1 The SEARec is a variation of the original SEA benchmark containing recurrences
2 Configuration valid for all checkerboard benchmark variants (CkrE, CkrP, CkrS)

5.4 KNORA-Eliminate Slack Variable Tests
In this Section the original configuration of the SEA Concepts benchmark, which

contains 10% of noise, is used to test the behavior of the slack variable defined for the K-E
method in Section 4.7. The Dynse framework was configured with an accuracy estimation
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window size equals to 4 without any pruning strategy. The tested scenarios include the
original version of the K-E and the new proposed version including the slack variable l, as
classification engines.

Figure 35 shows the accuracy over time plots for the original version of the K-E
method, and the proposed version configured with a slack variable of 0 (l = 0) and 2
(l = 2). The tested scenarios in Figure 35 includes a neighborhood of size 9 and 5 (Figures
35a and 35b, respectively). Note that, at first sight, the l = 0 configuration may seems to
be equal to the original method. Nevertheless, one may observe that in the original version
the neighborhood Nx size is decremented when no classifier is able to classify all instances
in Nx, while in the proposed modification the slack variable l value is incremented in this
same scenario. The results in Figure 35 indicates that the introduction of the slack variable,
and the behavior change when no classifier is able to classify the entire neighborhood
(increase of the slack variable value), generated better results in the presented problem for
both k values tested.
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(a) K-E using k = 9

0 50 100 150 200
0.75

0.8

0.85

0.9

batch

k = 5; l = 0
k = 5; l = 2
K = 5;Original

(b) K-E using k = 5

Figure 35 – Original and modified version of the K-E method as the classification engine
in the SEA Concepts benchmark.

To better understand the behavior presented in Figure 35, see Table 10, where
the average number of neighbors in Nx correctly classified by the ensemble, the average
ensemble size and average accuracy for the original and modified version of the K-E
are presented. Note in Table 10 that the ensemble size is similar when comparing the
original and the version with a slack of size 0 of the K-E, nevertheless the proposed
modification generate a better result. This behavior may be explained by the average
number of neighbors correctly classified by the ensemble. For instance, in the original
version this number is 5.88 for the neighborhood of size 9 (k = 9), indicating that often
it is necessary to consider a much smaller neighborhood in order to make possible to at
least one classifier correctly classify the entire Nx. This may be caused by noise too close
to the test instance, as discussed in Section 4.7. On the other hand, the modified version
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keeps the neighborhood size, but starts to accept some errors by the increase of the slack
variable size. Thus, even if the noise is close to the test instance, a bigger neighborhood is
correctly classified by the modified version when compared with the original one.

Table 10 – Averages of the number of correctly classified neighbors, ensemble size and
accuracy in the SEA Concepts problem (with noise) using the original K-E
and the proposed modification.

k Configuration Avg. Neighbors
Correct

Avg. Ensemble
Size

Avg.
Accuracy

k = 5

Original 3.89 74.33 85.90%
l = 0 4.56 75.49 87.44%
l = 1 3.93 82.86 87.39%
l = 2 2.99 90.33 87.02%
l = 3 2.00 95.38 85.84%
l = 4 1.00 98.79 84.60%

k = 9

Original 5.88 68.94 85.73%
l = 0 8.18 69.08 88.00%
l = 1 7.76 73.78 87.87%
l = 2 6.95 80.92 87.73%
l = 3 5.99 86.82 87.36%
l = 4 5.00 91.66 86.67%

As the modified version selects classifiers that correctly classifies more instances in
the neighborhood, it is likely that the generated ensemble will be more competent than
the one generated by the original version. This also may explain the accuracy decrease
when the slack variable is started with values bigger than 0. When the value is started
with 0, only classifiers that correctly classifies the entire neighborhood will be selected
when possible (i.e. the slack is increased only if necessary), nevertheless, when the value is
started with, for instance, 3, all classifiers that correctly classifies the k, k − 1, k − 2 and
k − 3 neighbors will be selected, even if there is a subset of classifiers able to correctly
classify the entire neighborhood. Thus, by choosing bigger values of l, a more permissive
configuration of the K-E will be generated, where classifiers that commit more errors in the
neighborhood are accepted to be part of the ensemble. Due to the good results achieved,
the proposed modified version of the K-E with a slack of 0 (l = 0) will be used in this
work when defining the K-E as the classification engine.

5.5 Validation of the DCS approach under concept drift scenarios
It was argued in the course of this work that by incorporating a time dependency

in the DCS approach, it is possible to use the DCS methods in order to deal with the
concept drift problem. As a tool capable of incorporating the time dependency in any
DCS-based method in this work it is proposed the Dynse framework, which is tested under
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several artificially generated scenarios in this Section to validate the discussions presented
in Sections 4.2, 4.3 and 4.4. It is worth mentioning that the tests in this Section were not
designed to make any comparison with the state-of-the-art, thus the tests may involve
non-standard benchmark configurations (different configurations of the Dynse framework
and methods in the state-of-the-art are tested in standart benchmarks in Sections 5.6, 5.7
and 5.9).

All tests in this Section consider a pool of infinite size (i.e. no pruning engine).
Tests using different pruning approaches are presented in Section 5.7. First, the DCS
approach is tested in an intersected concept drift scenario, where it should be able to select
a good custom classifier/ensemble for the test instance x, regardless of the train concept
of each selected classifier. This assertion is justified since classifiers trained under previous
concepts may still be relevant in some regions of the feature space under an intersected
concept drift. To validate this, the Dynse framework configured with the K-E method
as the classification engine, and k = 5; l = 0;M = 4; was tested in the SEA Concepts
benchmark problem without considering noise 1.

Since the SEA Concepts benchmark represents an intersected concept drift problem,
it is expected that under the presence of concept j, some classifiers from a previous concept
i (i 6= j) should still be selected by the Dynse framework. Table 11 shows the average
proportion of classifiers trained with the concept i (lines) selected to be part of the ensemble
when classifying a test instance in which j is the current concept (columns) - e.g. in the
presence of Concept 2, 46.3% of the classifiers selected to be part of the ensembles were
trained under the presence of Concept 1. The numbers under parenthesis represents the
hypothetical perfect proportion that should be selected. The last line in Table 11 contains
the average accuracy achieved under the presence of each concept.

Table 11 – Average accuracy and proportion of classifiers trained in each concept selected
to classify the instances in the SEA Concepts problem without noise.

Test Concept
Concept 1 Concept 2 Concept 3 Concept 4 Concept 1

Tr
ai
n

C
on

ce
pt

1 100% (100%) 46.5% (47.8%) 34.5% (33.5%) 23.3% (24.0%) 26.3% (27%)
2 0.0% (0.0%) 53.5% (52.2%) 30.8% (30.4%) 26.7% (26.4%) 25.9% (24.7%)
3 0.0% (0.0%) 0.0% (0.0%) 34.7% (36.2%) 21.3% (21.9%) 23.8% (24.9%)
4 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 28.7% (27.7%) 23.9% (23.4%)

Accuracy 97.2% 97.6% 97.7% 97.4% 97.9%

The proportions presented in Table 4 are close to the theoretical perfect values,
indicating that with the Dynse framework, it is possible to create a DCS-based method
1 The noise was removed in order to better visualize the behavior of the method in the Sea Concepts

problem. Experiments including noise in the Sea Concepts benchmark are shown in Sections 5.6, 5.7
and 5.9.
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capable of correctly select classifiers trained under the current concept and also capable of
reusing classifiers trained under old concepts in regions where they are still useful.

Note that the Concept 1 was repeated as the last concept in Table 11 in order to
simulate a recurrent concept scenario. The proportion of selected classifiers close to the
theoretical perfect proportion, and the accuracy increase in the last concept compared
when it first appeared (97.9% versus 97.2%, respectively), further indicates the ability
of the Dynse framework to correctly select a promising ensemble when the pool contains
classifiers trained under several concepts, and its ability to reactivate classifiers under a
recurrent concept scenario.

In order to verify the impact of the local region size (the neighborhood size k
in the Dynse framework) discussed in Section 4.4, again the SEA Concepts benchmark
without noise is used. Nevertheless, in this test only the area that changed its a posteriori
probabilities between the concept change was used to generate the test instances. In the
experiment, at each time step 250 samples regarding to the entire feature space are given
for training, and 250 samples drawn from the changed area only are handed for testing.
The concept changes for every 50 steps, and there is a total os 200 steps. Note that in
the first 50 steps there is no concept drift, thus test instances are drawn from the entire
feature space in these steps. The gray regions in Figures 36a to 36d represent the areas
where the testing samples were generated for each concept.
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Figure 36 – The gray areas correspond to the regions in the feature space containing a
posteriori changes between concepts, which were used to generate the test
instances for the results presented in Table 12.

Since the test instances are drawn only from regions where the a posteriori prob-
abilities changed, the Dynse framework must select mostly classifiers trained under the
current concept to classify the incoming test instances. Note that the instances in the
changed areas are the closest ones to the boundary of the problem, making it even more
difficult. In this test the K-E and K-U were tested as classification engines, where the
number of neighbors varied from 3 to 9, and the slack variable l(see Section 4.7) varied
from 0 to 2 for the K-E. The remaining of the configuration is the same from the previous
test (i.e. M = 4 and no pruning engine). The results are shown in Table 12.
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Table 12 – K-E and K-U as classification engines in the SEA Concepts problem. The test
instances were taken from the changed a posteriori areas only. The best results
are shown in bold.

Engine k Con. 1 Con. 2 Con. 3 Con. 4 Avg.
3 97.0% 71.0% 91.2% 84.8% 86.0%

K-E 5 97.3% 74.9% 92.0% 87.2% 87.9%
l = 0 7 97.3% 78.4% 92.4% 88.1% 89.1%

9 97.4% 78.9% 92.6% 89.2% 89.5%
3 96.4% 50.1% 87.5% 73.9% 77.0%

K-E 5 97.0% 61.8% 89.8% 79.6% 82.0%
l = 1 7 97.2% 67.6% 91.2% 82.4% 84.6%

9 97.2% 72.2% 91.6% 84.3% 86.4%
3 95.3% 23.5% 82.1% 57.4% 64.6%

K-E 5 96.1% 41.2% 86.5% 69.5% 73.4%
l = 2 7 96.7% 52.7% 89.0% 75.2% 78.4%

9 96.9% 59.7% 90.0% 78.3% 81.2%

K-U

3 96.0% 35.0% 85.5% 63.6% 70.0%
5 95.6% 24.6% 84.4% 56.8% 65.4%
7 95.4% 20.7% 83.7% 53.1% 63.2%
9 95.2% 17.4% 83.1% 50.6% 61.6%

As can be observed in Table 12, larger values of k may increase the accuracy
when considering the K-E as the classification engine. At first sight, this result seems to
contradict the discussion presented in Section 4.4. However, the K-E works by selecting
the classifiers that correctly classify all (k − l) instances in the neighborhood. Thus, for
larger values of k, even if some neighbors may belong to areas that did not drift, these
added neighbors will just make more difficult for a classifier to be part of the custom
ensemble.

This also explains why larger values defined in the slack variable l decreased the
accuracy in Table 12. Since l controls the maximum number of neighbors that can be
misclassified for a classifier to still be selected to be part of the ensemble. One may argue
that the slack variable should not be used in the K-E, as its use increased the error
rate in all scenarios presented in Table 12. Nevertheless, we should remember that the
experimental results in Table 12 represent a rather simple problem without any noise
(the only “noise” is the one caused by a concept change, which will take at most 4 time
steps to be removed every time a change occurs), and the presence of noise would make it
impossible to correctly classify all k neighbors, as discussed in Section 4.7. More detailed
experiments regarding the modifications made in the K-E method are presented in Section
5.4.

The results of the K-U as a classification engine in Table 12 show an interesting
behavior, since larger values of k decreased the accuracy of the method. These results
were somehow expected, since a larger local region increases the possibility of taking
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neighbors in regions that did not change their a posteriori probabilities (i.e., outside the
areas presented in Figure 36). Since the K-U selects all classifiers that correctly classified
at least one neighbor, taking neighbors from outside the region that drifted may lead to a
poor classifier selection.

Although the K-E method performed better for bigger neighborhoods, it also
presented good results for smaller values of k. Thus, it is possible to conclude that a small
neighborhood size can be a good starting point for most DCS-based methods when dealing
with concept drift problems, specially under the presence of local changes (i.e. intersected
concept drift). This is an interesting result, since for non changing environments, the
authors of the DCS methods reported in Section 2.8 often define a small neighborhood for
their methods (usually a value between 5 and 10) [68, 70, 62], thus the very same values
defined for the non changing environments may be used as a good starting point when
adapting the methods for concept drift problems. Note that this result corroborates with
the discussion presented in Section 4.4.

In order to verify the impact of the accuracy estimation window size M in a real
concept drift scenario, the configuration of the SEA Concepts benchmark discussed in
Section 5.3 (containing noise) is used. The average accuracy achieved for different M sizes
considering the K-E and K-U as classification engines, and for the Naive Combination and
the Oracle methods, are presented in Table 13. The complete plot containing the accuracy
over time for some of the M sizes are presented in Figure 37. No pruning strategy was
used in any scenario.

Table 13 – Average accuracy of the Dynse framework in the original SEA Concepts Bench-
mark (including noise), considering different accuracy estimation window sizes.

Classification Eng. Accuracy Estimation Window Size (M)
M = 1 M = 4 M = 8 M = 16 M = 32 M =∞

K-E k = 5; l = 0 87.07% 87.48% 87.38% 86.98% 85.95% 84.22%
K-U k = 5 85.48% 86.09% 86.46% 86.33% 85.54% 84.09%
NaiveC 83.71%
Oracle 93.90%

Table 13 and Figure 37 shows that by incorporating more data in the accuracy
estimation window (i.e. bigger M values) causes a slower adaptation when the concept
changes (i.e. more time is needed in order to recover from a concept drift). Notwithstanding,
note that when the value of M is increased from 1 to 4 (and also from 4 to 8 for the K-U),
a better average accuracy is achieved. By analyzing the plots in Figure 37, it becomes
clear that, besides the larger value of M generated a slower recover under concept changes,
the average accuracy was improved by a more accurate classification when the concept is
stable, since for larger values of M the accuracy estimation window will take more time
to effectively discard information in the presence of a change, but it will have more data,
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Figure 37 – Average accuracy achieved in each test batch in the SEA Concepts problem
described for different M values. In 37a the K-E with k = 0; l = 2 was used,
while in 37b the K-U considering k = 5 was employed.

possibly covering a wider region of the feature space, in order to define the local region of
the test instance, which is beneficial when the concept is stable. These results meet with
the discussion about the stability-plasticity dilemma in the accuracy estimation window
presented in Section 4.2.

Note that the K-U classification engine, which selects all classifiers that correctly
classifies any instance in the local region, did not performed as well as the K-E classification
engine in this test, indicating that a classification engine that may select classifiers that
correctly classifies only a small portion of the local region may lead to suboptimal results
under real concept drift scenarios. By considering the results presented in this Section,
and also the discussion in Section 4.2, in this work an accuracy estimation window of size
4 (M = 4) will be considered as a good starting point for real concept drift scenarios, thus
this value will be defined as the default value for the variable M . This value was chosen
since it represents a good trade off between a fast reaction and a good performance in
stable regions.

To test a virtual concept drift scenario, the digit recognition problem described in
[144] with a virtual concept drift artificially introduced, as described in Section 5.1.3, was
used. Table 14 contains the results achieved by varying the accuracy estimation window
size for the Dynse framework using the K-E (k = 5; l = 0) and K-U (k = 5) classification
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engines, without any pruning. For comparison purposes, Table 14 also shows the results
achieved by the Naive Combination and the Oracle methods.

Table 14 – Average accuracy of the Dynse framework in a virtual concept drift scenario in
the Digit dataset[144], considering different accuracy estimation window sizes

Classification Eng. Accuracy Estimation Window Size (M)
M = 1 M = 4 M = 8 M = 16 M = 32 M =∞

K-E k = 5; l = 0 13.78% 36.02% 53.46% 68.56% 76.79% 77.17%
K-U k = 5 15.02% 38.90% 54.00% 68.70% 74.4% 75.80%
NaiveComb 12.89%
Oracle 86.15%

Some interesting insights can be inferred from Table 14. As can be observed, the
K-U achieved better results than the K-E-based classification engine for smaller values of
M . This indicates that differently from a real concept drift scenario, a classification engine
that selects a classifier to be part of the ensemble, even if it was able to correctly classify
just a small portion of the neighborhood, may be beneficial in a virtual concept drift
scenario. Clearly, it is possible to change the values of k and l for the classification engines
in order to create configurations where the K-E performed better than the K-U for most
M values. However, the point is to show that different classification engines may be more
suitable to a problem, depending on the problem characteristics. Figure 38 contains a plot
of the accuracy over time for the different accuracy estimation window sizes (M) tested
in this problem considering the K-E (Figure 38a) and K-U (Figure 38b) as classification
engines.
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Figure 38 – Average accuracy achieved in each test batch for a virtual concept drift
artificially introduced in the problem described in [144] for different M values.

It can be observed from Table 14 and Figure 38 that bigger values for M lead to
better results in the virtual concept drift problem. These results corroborate the discussion
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presented in Section 4.3, where is stated that the aggregation of previous data in the
accuracy estimation window is beneficial, when no change in the a posteriori probabilities
is expected (i.e. virtual concept drift only). Thus, in this work the accuracy estimation
window size will be set to 32 (M = 32) when dealing to a virtual concept drift that affects
P (x). Since the dataset used for the virtual concept drift test is relatively small, it was
possible to configure the Accuracy Estimation Window to keep all supervised instances
received. Of course, this may be impossible in most problems in the real world, and thus,
an interesting challenge for future works could be a method to maintain this window with
a fixed size and covering the biggest possible feature space in order to better adapt to a
virtual concept drift (see Chapter 6).

Observe in Table 14 and Figure 38 that even if the concept drift is only virtual,
some classifiers may be highly specialized in a region, and thus, it may be suboptimal to
use these classifiers to classify test instances that are too distant from the regions where
the classifiers are specialized. This behavior can be demonstrated by the poor performance
achieved by the Naive Combination method, since the method combines all classifiers,
regardless of their regions of expertise. Also observe that in the beginning of the test
the Dynse framework configured with large values for M generated results close to the
Oracle upper bound, however after about 10 time steps the Oracle become the leading
method, indicating that there is room for improvement for the methods implementation
and configuration.

Concluding this Section, the presented results in the SEA Concepts indicate that a
DCS-based approach is able to detect regions in the feature space that did not changed
between different concepts, and use classifiers from past concepts in order to classify test
instances located in these regions. These results meet with the discussion presented in
Section 4.4 and the hypothesis that a DCS-based approach can be a natural answer to
intersected concept drift problems. Results achieved under real and virtual concept drifts
indicate that, as hypothesized in this work, the accuracy estimation window size must be
related to the concept drift nature (time dependency in the accuracy estimation window
size). An increase in the accuracy under the presence of a recurrent concept indicates
that the DCS approach may benefit from classifiers trained under previous concepts by
reactivating them when the concept reoccurs. The results also indicate that, as discussed
in Section 4.4, a small neighborhood may be a good starting point when adapting the
DCS approach to concept drift scenarios for most DCS methods.

5.6 Classification Engines Tests using Common Benchmarks
In this Section the DCS methods listed in Section 5.3 (and described in Section

2.8) are used as classification engines for the Dynse framework. During the tests no
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pruning approach was implemented. As estimated in Section 5.5, the accuracy estimation
window size will be set to 4 (M = 4) for real concept drift problems, and to 32 for virtual
concept drift problems (M = 32). Since the authors of the DCS methods reported in
Section 2.8 often defined a small neighborhood to be a good starting point (usually a
value between 5 and 10), a neighborhood of size 5 (k = 5) was defined in the tests for all
DCS-based methods implemented as classification engines. As discussed in Section 4.4,
and demonstrated empirically in Section 5.5, this small neighborhood size can mitigate a
suboptimal estimation of the classifiers competences under a intersected real concept drift.

The results of the experiments using all benchmarks listed in Section 5.3 can be
seen in Table 15, where the average accuracy achieved in each dataset and the accuracy
standard deviation between test batches is shown. The results achieved by the Oracle
classification engine and by the Naive Combination methods are also presented in Table 15,
as upper and lower bounds, respectively. As can observed, the DCS-LA LCA classification
engine presented the worst results in the Dynse framework when considering the datasets
in Table 15, indicating that using the a posteriori information of the classifiers in order to
select the neighbors may lead to a poor estimation of the classifier competence under a
concept drift scenario, especially when new classes may appear over time (see the Digit
and Letters datasets results). This behavior may be explained by the a posteriori change
over time, which may lead to a suboptimal neighborhood selection when the neighbors are
chosen according to the class given to the test instance. This conclusion is reinforced by
the results of the A Posteriori method, which also consider the a posteriori information of
the classifier in order to compute the classifiers competences. Besides being able to adapt
to the concept drifts, the A Posteriori method was only the 5th best performing method
from the 7 classification engines tested.

Table 15 – Artificial and real world benchmarks average accuracies (%), using different
classification engines in the Dynse framework. Best results are in bold. The
average Rank (R.) is also shown.

CE STG SEA SEARec CkrE CkrP CkrS Gauss1 Nebr For Dig Let
R.

M = 4 M = 32
K-E
(l = 0) 92.0(16.6) 87.5(1.4) 87.1(1.8) 85.3(3.3) 86.5(4.9) 86.2(5.1) 89.5(5.7) 74.5(1.0)78.3(10.6)76.8(20.5) 66.5(14.0)2.5

Priori 93.6(12.0) 86.5(1.4) 86.3(1.6) 86.1(3.5) 86.8(4.8) 86.7(4.6) 90.1(5.4) 73.7(1.0) 77.5(10.5) 75.4(20.1) 64.6(14.3)2.9
OLA 91.9(17.7) 87.4(1.3) 87.1(1.8) 85.3(3.3) 86.5(4.9) 86.2(5.1) 89.5(5.7) 74.5(1.0)78.3(10.6) 74.9(20.6) 66.2(14.9)3.0
K-UW 91.8(14.3) 86.3(1.9) 86.3(1.9) 85.8(3.5) 86.7(4.7) 86.3(5.0) 89.5(7.0) 74.7(1.0) 77.8(11.0) 74.5(21.3)70.0(16.1)3.2
Post 93.9(12.3) 86.9(1.5) 86.6(1.7) 83.9(3.4) 85.2(5.0) 84.2(4.7) 89.9(6.6) 71.9(1.1) 76.3(11.0) 72.6(19.8) 58.5(11.6)4.4
K-U 86.1(17.9) 86.1(1.9) 86.3(2.0) 83.2(3.5) 85.1(5.1) 84.0(5.3) 89.4(7.1) 74.4(1.1) 77.5(11.1) 74.9(22.1) 67.1(15.7)5.0
LCA 75.2(13.9) 83.5(3.1) 83.5(3.0) 64.0(6.1) 68.4(6.9) 70.4(9.8) 85.9(8.1) 70.0(1.1) 50.2(19.8) 11.2(2.4) 23.1(8.4)7.5
NaiveC 66.3(17.6) 83.7(3.0) 83.8(3.2) 51.7(10.2) 49.2(8.8) 63.7(18.9) 78.4(13.3) 70.4(1.1) 68.8(11.9) 12.9(3.7) 41.9(16.0)7.5
Oracle 99.7(1.2) 93.9(1.4) 94.1(1.4) 99.6(3.8) 99.8(2.8) 99.6(3.6) - 97.2(4.3) 98.6(7.4) 86.2(24.4) 93.2(18.7) -
1 Only the class priors of the test batches are available in [6], thus it was not possible to compute the Oracle accuracy.

The results of the K-U method in Table 15 corroborates with the results presented
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in Section 5.5, since this classification engine showed a good performance in the virtual
concept drift problems, and achieved suboptimal results in some of the real concept drift
scenarios (e.g. see the STAGGER benchmark result in Table 15). Observe that, in average,
the weighted version of the Knora-Union method (K-UW) achieved better results than
the unweighted (K-U) version. This result indicates that DCS methods that take into
consideration the distance between the neighbors and the test instance when estimating
the pool competence are more suitable for concept drift scenarios. In the K-UW, even
thought a classifier that correctly classifies only a small portion of the neighborhood is
still selected to be part of the ensemble, this classifier has its weigh adjusted according to
the distance of these instances from the test instance.

This result is reinforced by the good performance of the A Priori method (which
also uses weights based on the neighborhood distance to define the pool competence). The
results presented by Tsymbal et al [37], which also use weights, corroborate these findings.
Note that the A Priori method is “less permissive” than the K-UW approach, since only
the best classifier is selected. This behavior seems to be beneficial in a gradual always
changing real concept drift environments, due to the good results of the A Priori approach
in all Checkerboard benchmark variants.

The results in Table 15 also demonstrate that, in general, the DCS approach
adapted using the Dynse framework, is able to handle the concept drifts in all tested
datasets with almost no parameter tuning (except for the accuracy estimation window
size, the same parameter values were used for all experiments). This can be concluded
by the good results achieved by the different DCS methods used as classification engines
when compared with the Naive Combination method, since the former does not implement
any approach to explicitly adapt to a concept drift (besides the addition of information in
the pool over time). Nevertheless, the results achieved by the Oracle classification engine
are far better than the results generated by any other classification engine, thus indicating
that there is room for improvement when considering a DCS-based approach to deal with
the presented concept drifts.

When comparing DCS methods that select a single classifier versus an ensemble
of classifiers as classification engines, the results does not indicate a clear best approach.
However, when considering the best average rank, the K-E approach, which selects an
ensemble of classifiers for each test instance, is the best performing approach. Some
accuracy over time plots with the K-E as the classification engine of the Dynse framework,
the Oracle and Naive Combination methods can be seen in Figure 39. Note that when
the change is abrupt, as in the STAGGER and SEA benchmarks (Figures 39a and 39b,
respectively), the K-E can quickly recover from the concept drift. Considering all plots
in Figure 39, it is clear that the Dynse framework is able to adapt to the concept drifts,
although the Oracle demonstrates that some improvement can still be made.
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Figure 39 – Accuracy over time plots considering the K-E classification engine, the Oracle
and the Naive Combination Methods.
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Figure 40 – Bonferroni-Dunn test with 95% confidence showing the methods that are not
significantly different from the K-E Classification Engine (i.e., the connected
methods).

In Figure 40 the classification engines that are not significantly better than the
K-E classification engine according to a Bonferroni-Dunn test for α = 0.05 are shown,
where it is possible to verify that most classification engines have no significant difference
to the K-E. However, in Figure 40 it is demonstrated that the Dynse framework using
the K-E classification engine is significantly more competent that a method that just
accumulates the new information without any adaptation (i.e. the Naive Combination
method) and than the DCS-LA LCA method. The six best ranked classification engines
deemed as equivalent by the Bonferroni-Dunn test are further analyzed using pairwise
comparisons, considering the hypothesis of equality between each pair of algorithms, using
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the Bergman-Hommel procedure [78, 77, 64], and the Wilcoxon Signed-Ranks test [79, 73],
considering the hypothesis of equality between each pair of algorithms. The comparison
results are presented in Table 16, where as in [64], hypotheses that are rejected at a
α = {0.1, 0.05, 0.01} are marked with a •, ••, and • • •, respectively.

Table 16 – Pairwise comparisons of the top 6 Classification Engines. (a) Comparison with
the adjusted p-values using the Bergmann-Hommel procedure. (b) Comparison
using the Wilcoxon Signed-Ranks test. The hypothesis are ordered according to
the p-value. Hypotheses that are rejected at a α = {0.1, 0.05, 0.01} are marked
with a •, ••, and • • •, respectively.

(a)
Hypothesis pBerg

K-E vs K-U •• 0.0314
Priori vs K-U • 0.0740
OLA vs K-U • 0.1000
K-E vs Post 0.2265
K-UW vs K-U 0.2265
Priori vs Post 0.3604
OLA vs Post 0.3938
Post vs K-UW 0.5539
K-E vs K-UW 1.0000
Post vs K-U 1.0000
K-E vs OLA 1.0000
Priori vs K-UW 1.0000
K-E vs Priori 1.0000
OLA vs Priori 1.0000
OLA vs K-UW 1.0000

(b)
Hypothesis pW ilcoxon

K-E vs K-U 0.0049
K-E vs Post 0.0176
K-UW vs K-U 0.0176
OLA vs K-U 0.0215
OLA vs Post 0.0234
Priori vs Post 0.0303
Post vs K-UW 0.1035
K-E vs OLA 0.1250
Priori vs K-U 0.1367
K-E vs Priori 0.3203
Priori vs K-UW 0.5742
K-E vs K-UW 0.6426
OLA vs Priori 0.6504
OLA vs K-UW 0.8242
Post vs K-U 0.8984

As one can observe in Table 16, the K-E classification engine is significantly better
than the K-U for α = 0.05 according to the Bergmann-Hommel test (Table 16a). The A
Priori and the OLA methods are also significantly better than the K-U according to the
Bergmann-Hommel procedure, but for α = 0.10. According to the Wilcoxon Signed-Ranks
test (Table 16b) no pairwise test resulted in a significant difference (i.e. no hypothesis
was rejected). Besides most classification engines being deemed as equivalent by the
statistical tests, the K-E will be used as the default classification engine for the Dynse
framework, since it was the best ranked method and showed a good performance in all
tested benchmarks.

5.7 The Pruning Impact
In this work it is hypothesized that a pool that contains as many classifiers as

possible, where these classifiers may be specialist in different concepts and feature space
regions, may be beneficial when using a DCS-based approach to deal with concept drift
scenarios. In Sections 5.5 and 5.6 it is demonstrated that the DCS-based approach can
adapt to concept drifts using a pool of “infinite size”. Nevertheless, an infinite size pool
is unfeasible under a real world scenario, thus, in this Section, the classical Age (remove
the oldest classifier), Accuracy (remove the less accurate classifier considering the current
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accuracy estimation window), and also the NNPrune strategies are used as pruning engines
in the Dynse framework. The pruning strategies were configured to keep at most 25
classifiers in the pool during the tests (note that this pool size is compatible with the
values used in state-of-the-art methods [103, 110, 109]).

The tests results are compared with the “infinite pool” of classifiers (i.e. no pruning
strategy). Note that the infinite pool can be considered the most Concept Diverse (See
Section 4.5) technique in the tested scenarios, since classifiers trained under all past
concepts are kept. In the tests the Dynse framework configured with the K-E considering
k = 5 and l = 0 as classification engine is used. The accuracy estimation window size is
set to 4 for the real concept drift scenarios (M = 4) and to 32 for the virtual concept drift
tests (M = 32).

Table 17 contains the average accuracies achieved considering the discussed pruning
strategies. Except for the Nebraska dataset2, all benchmarks in Section 5.3 were used in the
tests present in Table 17. As it can be observed in Table 17, except for the SEA and Gauss
benchmarks, the infinite size approach generated the best results in all considered scenarios.
This is an interesting result that helps to validate the hypothesis that a pool containing
as many classifiers as possible, including classifiers trained under different concepts, is
beneficial when using a DCS-based approach to deal with concept drifts, where this pool
can be considered a Concept Diverse pool. The Concept Diversity importance is also
reinforced by the good performance of the NNPrune pruning engine, since it performed
better that the age and accuracy based pruning strategies in the majority of the tested
scenarios.

Table 17 – Average accuracy achieved for different pruning strategies. The numbers in
parenthesis indicate the accuracy standard deviation between testing batches
(time steps).

Benchmark Pruning Engine
Infinite NNPrune Age Acc

STAGGER 92.0% (16.6) 91.8% (17.3) 91.4% (17.4) 91.7% (17.2)
SEA 87.5% (1.4) 87.4% (1.4) 87.6% (1.5) 87.8% (1.6)
SEARec 87.1% (1.8) 87.0% (1.8) 87.2% (2.2) 87.1% (2.2)
CkrE 85.3% (3.3) 83.6% (3.5) 83.4% (3.5) 83.5% (3.6)
CkrP 86.5% (4.9) 84.6% (4.9) 84.6% (4.8) 84.9% (5.0)
CkrS 86.2% (5.1) 84.8% (5.2) 84.3% (4.7) 84.3% (4.8)
Gauss 89.5% (5.7) 90.1% (5.7) 89.6% (5.8) 89.7% (5.7)
For 78.3% (10.6) 77.6% (10.8) 78.2% (10.8) 78.2% (10.8)
Dig 76.8% (20.5) 74.6% (20.4) 74.3% (20.7) 68.0% (17.3)
Let 66.5% (14.0) 62.2% (13.4) 60.3% (13.5) 62.0% (12.7)

The pruning strategies are analyzed using pairwise comparisons in Table 18, con-
sidering the hypothesis of equality between each pair of algorithms, using the Bergman-
2 The Nebraska was not considered in the pruning tests since it appears to have only minor drifts.
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Table 18 – Pairwise comparisons of the pruning strategies. (a) Comparison with the
adjusted p-values using the Bergmann-Hommel procedure. (b) Comparison
using the Wilcoxon Signed-Ranks test. The hypothesis are ordered according to
the p-value. Hypotheses that are rejected at a α = {0.1, 0.05, 0.01} are marked
with a •, ••, and • • •, respectively.

(a)
Hypothesis pBerg

Infinite vs Age • 0.0919
Infinite vs NNPrune 0.2498
Infinite vs Acc 0.2498
NNPrune vs Age 1.0
NNPrune vs Acc 1.0
Age vs Acc 1.0

(b)
Hypothesis pW ilcoxon

Infinite vs NNPrune 0.0117
Infinite vs Acc 0.0430
Infinite vs Age 0.0449
NNPrune vs Age 0.2266
Age vs Acc 0.3125
NNPrune vs Acc 0.6406

Hommel procedure [78, 77, 64], and the Wilcoxon Signed-Ranks test [79, 73], considering
the hypothesis of equality between each pair of algorithms. Hypotheses that are rejected
at a α = {0.1, 0.05, 0.01} are marked with a •, ••, and • • •, respectively. Note in Table
18 that the only significant difference found regards to the test of the infinite size pool
versus the age based pruning, considering the Bergmann-Hommel procedure (Table 18a).
Thus, in order to better visualize the approaches behavior, consider the plot in Figure 41,
where the average accuracy difference between each pruning strategy and the infinite size
pool is shown, where smaller values refers to better performances (results closer to the
infinite size pool). As one can observe in Figure 41, the NNPrune and Accuracy pruning
strategies achieved similar accuracies, although the NNPrune results are slightly better.
The Accuracy based pruning generated the worst results when considering the average
performance loss in Figure 41.

0.9% 1% 1.1% 1.2% 1.3% 1.4% 1.5% 1.6%
NNPrune

Age
Acc

0.9
1

1.6

Figure 41 – Average accuracy difference between each pruning strategy versus the infinite
size pool (smaller values are bettter).

The behavior of the Dynse framework when using the Infinite pool, the NNPrune
and the Accuracy based pruning strategies is showed in Figure 42, where the accuracy
over time plots for two of the tested benchmarks are shown. Figure 42 exemplifies two
different scenarios, where in Figure 42a, which represents a relativelly simple problem in
stable regions, all pruning strategies performed equally well. On the other hand, in Figure
42b, it is demonstrated that the accuracy based pruning engine may remove some relevant
information, which can lead to a poor performance under a more complex problem. The
age based pruning engine, that is not shown in Figure 42 in order to make the visualization
cleaner, generates curves similar to the NNPrune approach for both scenarios.

As stated before, the results in Figure 41 indicate that the NNPrune and Accuracy
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Figure 42 – Accuracy over time plots considering different pruning strategies.

pruning strategies can generate similar results. Nevertheless, the pools generated by these
two strategies are completely different. In order to demonstrate this, consider the plot in
Figure 43, where the number of classifiers trained under each concept in the pool over
time for the NNPrune and Age based pruning strategies are compared. The SeaRec was
used as a benchmark. As can be observed, when using the Age based pruning, classifiers
trained under a past concept will be completely pruned from the pool in at most 25 steps
(i.e. the maximum pool size in the test), while the NNPrune keep classifiers trained under
different concepts, regardless of the current concept (nevertheless, usually the majority of
the classifiers present in the pool are trained in the current concept).

The Concept Diversity created by the NNPrune approach may impact differently
on the accuracy of the Dynse framework, depending on the classification engine used.
To demonstrate this, consider Figure 44, where the K-UW is used as the classification
engine in the SEARec problem. As can be observed in Figure 44, the concept diverse pool
generated by the NNPrune can mitigate the accuracy drops under the concept change
regions when using the K-UW classification engine. In the same test discussed earlier, the
K-E classification engine achieved similar results for all pruning strategies (See Figure
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Figure 43 – Number of classifiers trained with each concept over time in a pool that
supports at most 25 classifiers in the SEARec problem, using the NNPrune
algorithm (a) and an Age based Pruning (b). Dashed lines were put in the
concept change areas.
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Figure 44 – Accuracy over time plot considering the K-UW classification engine and
different pruning strategies in the SEARec benchmark.

In Figure 45 is showed the accuracy over time plot for different pruning approaches
implemented in the AWE [109] method. Although the AWE method may not be able
to detect regions where classifiers from past concepts are still relevant (the weight is
given according to the entire feature space available in the latest supervised batch), the
AWE is capable of benefiting from the reactivation of classifiers when a concept reoccurs.
The results achieved by the Infinite Pool and by the NNPrune approaches in Figure 45
demonstrates that not only the DCS-based methods can benefit from a concept diverse
pool.

Note that, when using the NNPrune strategy, the maximum pool size must be
“big enough” in order to accommodate the classifiers specialist in different regions and
in different concepts. Otherwise, the pruning engine will have no option besides prune
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Figure 45 – The AWE method accuracy over time plot in the SeaRec problem, considering
an infinite size pool, the NNPrune (NN) and an accuracy based pruning.

classifiers that represent relevant information that no other classifier does. A possible
approach that may be used to mitigate this problem is to implement a flexible sized pool
using the NNPrune approach. The idea is to insert a classifier in the pool only when it
represents a region and a a posteriori information that no other does, regardless of the
current number of classifiers. The implementation of this approach is proposed as a future
work (See Section 6). Although, note that in the experiments in this work the size of 25
leaded to good results for the “fixed pool size” implementation of the NNPrune pruning
strategy.

As stated in this work, the primary function of the pruning engine in the Dynse
framework is to save computational resources, by keeping the pool from increasing its
size indefinitely. To this end, consider Table 19, where the amount of memory necessary
by the Dynse framework using each pruning engine is showed. The results in Table 19
demonstrates that, as expected, the Age and Accuracy-based pruning engines generated
a similar memory consumption for all considered benchmarks. The NNPrune approach,
on the other hand, consumed more memory than the infinite size pool in some tests. To
better hunderstand the NNPrune and the other pruning strategies behavior, consider the
memory over time plots in Figure 46 (the age based plot, which generate a curve similar
to the Accuracy Pruning, is not plotted). A Dashed line represents the instant when the
pool reaches its maximum (except for the infinite size pool), and the pruning strategies
starts to take action.

As can be observed, in both scenarios depicted in Figure 46 the pruning strategies
stabilizes the amount of memory consumed when the pruning starts, while the infinite
size pool continues to consume more memory linearly as time passes. Note that in the
Digit benchmark (Figure 46b) all tested approaches continues to consume more memory
until the batch 32, since new supervised data is still aggregated in the accuracy estimation
window, which contains the 32 latest supervised batches received in this virtual concept
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drift scenario.

Table 19 – Memory (MB) used by the Dynse framework considering each pruning engine,
for each tested benchmark.

Benchmark Pruning Engine
Infinite NNPrune Age Acc

STAGGER 0.24 0.78 0.18 0.18
SEA 16.23 3.46 2.77 2.80
SEARec 16.17 3.46 2.77 2.77
CkrE 3.24 0.92 0.30 0.31
CkrP 3.23 0.92 0.29 0.31
CkrS 3.20 0.92 0.29 0.30
Gauss 1.77 0.98 0.34 0.35
For 20.67 7.50 4.89 4.96
Dig 10.18 14.13 8.21 8.23
Let 15.85 7.85 4.62 5.24

Besides the memory consumption stabilization, the NNprune strategy consumes
more memory than the accuracy pruning method, since it is necessary to maintain the
training sets of the classifiers in the pool in order to choose which classifier should be
removed. In the SeaRec problem (Figure 46a) this can be considered a little price to
pay, nevertheless in the Digit problem (Figure 46a), the NNPrune uses about 70% more
memory than the Accuracy/Age based prunings and, due to the small number of steps in
the problem, the infinite size pool does not have steps enough to surpass the amount of
memory consumed by the NNPRune. Nevertheless, it is worth pointing out that under a
real world scenario, a method that linearly increases the amount of memory consumed
over time is unfeasible. Thus, the NNPrune approach can be considered for real world
applications since a fixed amount of memory is necessary.

Infinite Pool NNPrune Accuracy Pruning
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Figure 46 – Memory (MB) over time plots considering different pruning strategies.

As demonstrated in this Section, a DCS-based approach can benefit from a pool
containing classifiers trained under past concepts, since the “infinite size” pool generated
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better results than a pruned pool. The NNPrune strategy, which tries to keep a Concept
Diverse pool, was the best performing pruning strategy, although the results are close
to the Age based pruning approach. Besides the NNPrune strategy being able to keep
the Dynse framework from indefinitely increasing the amount of memory necessary over
time, one may argue that keeping the training sets of each classifier in the pool can be a
suboptimal solution.

Thus, despite the results in this Section demonstrated that the amount of memory
necessary by the NNPrune algorithm is relatively small, the Age pruning approach will
be defined as the default pruning engine for the Dynse framework in this work, since
it achieved results close to the NNPrune (not significantly different than the NNPrune
according to the statistical tests), and does not require the store of training information.
This may lead to a more fair comparison with the state-of-the-art methods, since most
authors claim that their methods operate with “restricted” computational resources. The
NNPrune will be considered a preliminary study in this work, and strategies to avoid
storing the complete training sets for the classifiers in the pool will be studied in the future
(See Chapter 6).

5.8 The Dynse Default Configuration
Based on the tests presented in Sections 5.4, 5.5, 5.7 and 5.9, and also considering

the discussions presented in the course of this work, in Table 20 is presented a default
configuration for the Dynse framework. Obviously, a parameter optimization may be
performed, and any component of the Dynse framework may be tuned/changed in order
to generate a more suitable configuration for a specific problem. Nevertheless, as it may be
difficult to acquire enough relevant data to fine tune a system under a concept drift scenario,
the proposed framework default configuration can be considered as a good starting point.
The proposed default configuration is used in this work in order to compare the results
with the state-of-the-art methods.

5.9 Tests Comparing to the State-Of-The-Art Results
In this Section the experiments performed on several real world and artificial well-

known benchmarks are presented. The benchmarks are used as defined in Section 5.3 to
guarantee the experiments reproducibility. In this Section some important state-of-the-art
methods are also presented and its performances are compared with the proposed Dynse
framework. The state-of-the-art methods were tested using their default configuration,
available in the MOA framework. The default configuration of the Dynse framework used
in the tests is the one discussed in Section 5.8, where the maximum pool size was set to
25 classifiers.
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Table 20 – The proposed default configuraion of the Dynse framework.

Description Var. Proposed Configuration/values

The accuracy estimation window
size. M

M = 4 for real concept drift
scenarios and M = 32 for virtual
concept drift scenarios.

The number of neighbors of the
test instance x selected from the
accuracy estimation window

K k = 5

The classification engine used by
the Dynse framework to
dynamically select the classifiers.

CE
The K-E method considering
l = 0.

The pool maximum size D D = 25.
The pruning engine used to
prune classifiers from the pool. PE

The Age Pruning engine (remove
the oldest).

As discussed in Section 5.2, all methods use Hoeffding Trees [82] as base learners and,
except for the Hoeffding Adaptive Tree (HAT) state-of-the-art method, all tested methods
use some sort of pool of classifiers (the DDM and EDDM triggers are also configured
to use a pool of Hoeffding Trees, as discussed in Section 5.2). Table 21 summarizes
the results of the experiments, where the ranks presented refers to the average ranks
considering all datasets. As can be observed in Table 21, the default configuration of
the Dynse framework generated the best results in the majority of the real concept drift
and real world scenarios, although closely followed by the Leveraging Bagging method.
In the virtual concept drift scenarios, the proposed framework is the best performing
method for both tested benchmarks. It is worth remembering that the accuracy estimation
window size was set to 32 in the virtual concept drift scenario, while the parameters in
the state-of-the-art methods was kept the same. Albeit it can be considered a tuning, a
wider accuracy estimation window size is a specification for the Dynse framework when
facing a virtual concept drift problem (See Section 5.8), and the tested methods in the
state-of-the-art does not specify any modification for this specific scenario.

In Table 21 it is also possible to verify that some state-of-the-art methods performs
worse than the Naive Combination (NaiveC) baseline method, which does not take any
action to adapt to a concept drift (besides the add of new classifiers in its pool over
time). For instance, the DDM trigger performed worse than the NaiveC method in all
Checkerboard benchmark variants. The results in Table 21 also demonstrate that, in spite
of the fact that some state-of-the-art methods surpassed the Dynse framework in some
benchmarks, these methods may be more sensitive to the parameters tuning or to the
concept drift properties featured in the datasets. This conclusion becomes clear when the
average rank is considered in Table 21, since the default Dynse framework configuration
is the best ranked method. In Figure 47 is showed a Bonferroni-Dunn test for α = 0.05,
where it is demonstrated that the default configuration of the Dynse framework performs
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significantly better than 5 of the state-of-the-art methods (and also better than the NaiveC
method).

Table 21 – Artificial and real world benchmarks average accuracies (%), the default config-
uration of the Dynse framework and some state-of-the-art methods. Best results
are in bold (the Oracle was not considered).

Method STG SEA SEARec CkrE CkrP CkrS Gauss Nebr For Dig Let
R.

M = 4 M = 32
Oracle 99.4(1.8) 92.1(1.4) 92.6(1.3) 98.4(4.1) 99.7(2.9) 99.4(3.8) - 94.8(3.7) 95.4(8.2) 82.7(21.1) 87.9(16.5)
Dynse 91.4(17.4) 87.6(1.5) 87.2(2.2) 83.4(3.5) 84.6(4.8) 84.3(4.7) 89.6(5.8) 74.1(1.1)78.2(10.8)74.3(20.7)60.3(13.5)1.7
LevBag 85.4(20.3) 88.1(1.8) 87.1(2.4) 77.0(7.9) 82.4(11.8) 79.4(10.6) 90.8(5.5) 77.0(1.3) 75.1(13.6) 61.4(17.3) 56.8(12.2) 2.5
AUE 93.7(10.3) 86.4(1.1) 86.3(1.5) 58.6(7.8) 54.3(7.2) 59.2(9.4) 90.5(5.2) 73.7(0.6) 73.7(11.9) 43.4(22.5) 58.4(12.1) 4.0
OzaAD 79.8(20.8) 86.4(2.2) 85.7(2.2) 59.0(7.8) 59.5(12.4) 50.7(8.6) 90.2(5.3) 73.4(1.5) 49.7(19.8) 62.9(19.3) 58.3(11.5) 5.0
AWE 97.0(3.0) 87.1(2.0) 86.7(1.8) 57.8(7.6) 54.2(7.9) 56.2(7.6) 90.4(5.5) 73.8(0.8) 66.4(15.8) 14.6(2.5) 23.2(10.1) 5.4
OzaAS 67.2(19.1) 85.2(2.5) 85.1(2.2) 58.4(10.4) 63.7(13.6) 57.1(10.9) 86.8(9.0) 73.5(1.6) 74.2(11.5) 65.0(19.0) 57.2(11.1) 5.5
HAT 66.3(20.1) 86.1(2.4) 84.9(2.6) 59.0(8.7) 56.4(9.4) 58.4(11.6) 61.3(23.6) 72.3(2.2) 67.2(12.5) 62.7(18.2) 56.7(11.3) 6.5
DDM 75.1(9.9) 86.3(3.0) 85.4(2.6) 49.3(5.5) 47.2(7.6) 47.9(5.9) 71.1(13.7) 70.1(1.4) 51.9(24.9) 22.0(7.6) 58.1(18.6) 7.7
NaiveC 66.3(17.6) 83.7(3.0) 83.8(3.2) 51.7(10.2) 49.2(8.8) 63.7(18.9) 78.4(13.3) 70.4(1.1) 68.8(11.9) 12.9(3.7) 41.9(16.0) 7.8
EDDM 69.0(8.5) 83.4(5.6) 82.9(4.1) 51.5(7.6) 49.0(7.3) 50.4(5.8) 86.9(13.2) 65.2(2.0) 46.2(21.9) 12.5(2.4) 56.5(19.7) 8.9
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Figure 47 – Bonferroni-Dunn test with 95% confidence showing the methods that are not
significantly different from the default configuration of the Dynse framework
(i.e., the connected methods).

The Dynse, Leveraging Bagging, AUE and OzaAD methods, deemed as equivalent
by the Bonferroni-Dunn test, are further analyzed using pairwise comparisons, considering
the hypothesis of equality between each pair of algorithms. The pairwise tests results can
be seen in Table 22, where the Bergman-Hommel procedure (Table 22a), and the Wilcoxon
Signed-Ranks test (Table 22b) were performed, considering the hypothesis of equality
between each pair of algorithms. Hypotheses that are rejected at a α = {0.1, 0.05, 0.01}
are marked with a •, ••, and • • •, respectively.

As one can observe, the Dynse framework was considered significantly better
than the OzaAD and AUE methods for α = 0.01 and α = 0.05, according to the
Bergman-Hommel test (Table 22a). Thus, according to the Bergman-Hommel test only
the Leveraging Bagging is not significantly different from the Dynse framework when
considering the significance levels tested. Note that the Wilcoxon Signed-Ranks leaded to
a more conservative result, where only the OzaAD method was deemed significantly worse
than the Dynse framework for α = 0.05.
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Table 22 – Pairwise comparisons of the top 4 methods. (a) Comparison with the adjusted
p-values using the Bergmann-Hommel procedure. (b) Comparison using the
Wilcoxon Signed-Ranks test. The hypothesis are ordered according to the
p-value. Hypotheses that are rejected at a α = {0.1, 0.05, 0.01} are marked
with a •, ••, and • • •, respectively.

(a)
Hypothesis pBerg

Dynse vs OzaAD • • •0.0043
Dynse vs AUE ••0.0314
LevBag vs OzaAD ••0.0499
LevBag vs AUE 0.1167
Dynse vs LevBag 0.6435
AUE vs OzaAD 0.6435

(b)
Hypothesis pW ilcoxon

Dynse vs OzaAD ••0.0020
LevBag vs OzaAD 0.0186
Dynse vs AUE 0.0264
Dynse vs LevBag 0.0420
LevBag vs AUE 0.0537
AUE vs OzaAD 0.4180

A compelling characteristic of the Dynse framework is its stability or, in other
words, if the method is not the best, it is close to the best. This is exemplified in Figure
48 where it is showed the average accuracy difference between each method presented
in Table 21 and the default configuration of the Dynse framework. The plot in Figure
48 indicates, for instance, that on average the default configuration of the Leveraging
Bagging method (the best performing state-of-the-art method) generates an accuracy
about 3.1% worse than the Dynse on average. The biggest average accuracy difference
refers to the EDDM method (22.0%), which not surprisingly was the worst ranked method
in the tests present in Table 21. Note that in Figure 48 no method performed better than
the Dynse framework considering the average accuracy on all datasets (i.e. no negative
average accuracy difference).
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Figure 48 – Average accuracy difference between each tested method versus the Dynse
framework, considered as a control.

Since in most real world scenarios it may be difficult to know a priori the exact
properties of the concept drift, or to collect a relevant amount of data in order to fine tune
the methods, the results in Table 21 and Figure 48 indicate that a DCS-based approach
should be considered in these scenarios due to its good performance without any fine
tuning. The method does need to know, however, if the concept drift is real or virtual in
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order to define a big or small accuracy estimation window, as discussed in this work. To
better visualize the behavior of the methods under the benchmarks tests presented in this
Section, the accuracy over time plots for some benchmarks are shown in Figure 49. Only
the default configuration of Dynse framework, the Leveraging Bagging, the Oracle and
the Naive Combination methods are present in the plots of the Figure 49.
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Figure 49 – The accuracy over time plot considering the default Dynse framework config-
uration, the Leveraging Bagging, the Oracle and Naive Combination methods
under some benchmarks.

As one can observe in Figure 49a, the Dynse framework was able to recover as fast
as the Leveraging bagging method under the concept drift regions of the SEA Concepts
problem (the Dynse framework was even faster in the first concept drift that happened).
Under the stable regions, the results were similar for both the Dynse and Leveraging
Bagging methods, although the Leveraging Bagging performed slightly better. In the
Checkerboard problem (Figure 49b), which represents a “always drifting” scenario, the
Dynse framework was able to keep its accuracy during the entire test, while the Leveraging
Bagging presented several accuracy drops. The Nebraska Weather problem (Figure 49c),
on the other hand, represents a scenario where the Leveraging Bagging was the best
performing method. Finally, in Figure 49d, the Digit virtual concept drift is showed,
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where the Dynse method was the best performing method, although both the Dynse and
Leveraging Bagging were able to increase their accuracies over time.

Note that, as expected, the Naive Combination method showed difficulties to
recover from the concept drift scenarios presented in the plots of Figure 49. Nevertheless,
in the Nebraska Weather problem (Figure 49c), the Naive Combination method did not
suffered any sudden accuracy drop after the first steps, and its accuracy dropped relatively
slowly over time. This behavior may indicate that this benchmark suffers from minor
changes over time, and even a method that is not able to deal with concept drifts can
keep a reasonable accuracy over all time steps. It is also possible to observe in all plots in
Figure 49, and in the results in Table 21, that the Oracle upper bound is far more accurate
than any other method, indicating that plenty of improvements can be made in the DCS
approach in order to try to reach the Oracle accuracy.

One may argue that the classification engine K-E was chosen specifically to get the
best results in the tests presented in Table 21 and in Figure 49, since the same datasets
are present in the tests of Section 5.6. Nevertheless, as showed in Section 5.6, no significant
difference between most classification engines was fount and, by switching the K-E by the
K-U classification engine (which is significantly worse than the K-E), the Dynse framework
would tie with the Leveraging Bagging method in Table 21, with an average rank of 1.5. In
this scenario, both the Dynse and Leveraging Bagging methods would share the best rank.

Table 23 – Amount of memory (MB) used by the Dynse framework and the Leveraging
Bagging methods.

Benchmark
STAGGER SEA SEARec CkrE CkrP CkrS Gauss Nebr For Dig Let

Dynse 0.18 2.80 2.77 0.31 0.31 0.30 0.35 0.53 4.96 8.23 5.24
LevBag 0.15 1.13 0.90 0.42 0.40 0.42 0.22 1.40 1.44 1.02 0.42

As a reference, the amount of memory spent by the default Dynse configuration and
by the Leveraging Bagging method is showed in Table 23, where it can be observed that,
often, the Leveraing Bagging uses less memory than the Dynse framework. Nevertheless,
as discussed in Section 5.7, in the worst case scenario the Dynse framework consumed
only 8.23MB of memory, which is a feasible amount of memory for most systems. Finally,
it is worth reminding that no parameter optimization was performed for any test in the
experiments of this Section. This means that it is possible to increase the performance
and reduce the amount of computational resources spent (e.g. reduce the number of
classifiers in the pool to reduce the amount of memory consumed) of all of the presented
approaches. Nevertheless, the focus of this Section is to demonstrate that the Dynse
framework may achieve results comparable to the state-of-the-art methods by means of its
default configurations.
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5.10 Tests in the PKLot Dataset
In this Section the PKLot datset is used as a real world benchmark to evaluate the

proposed method and the methods in the state-of-the-art. The experimental protocol used
is the same defined in Section 5.1.4. The default configuration of the Dynse framework for
real concept drift environments defined in Section 5.8 is used (considering the maximum
size pool D = 25 and M = 4). In the first experiment the Dynse framework accuracy is
compared with the Naive Combination method that keeps all trained classifiers in the
pool, and with a Single Train based classifier trained with 2,000 samples from each class
(i.e. 4,000 samples in total) collected int the first 3 days of the UFPR04 dataset. The
accuracy over time plot of this test can be seen in Figure 50a.
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(a) The Dynse framework versus methods not designed to deal with concept drifts
and the Oracle.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 800.7

0.8

0.9

1

UFPR04 UFPR05 PUCPR

batch (time)

ac
cu
ra
cy

(b) The Dynse framework and the two best performing methods in the state-of-
the-art.

Figure 50 – Accuracy over time plots int the PKlot Dataset.

As can be observed in Figure 50a, the Single Train classifier quickly decreases its
performance in the dataset, indicating that a classical classifier, trained with a considerable
number of samples and never updated, may not be suitable considering the proposed
experimental protocol for the PKLot dataset (nevertheless, a static classifier trained with
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a large number of samples randomly taken from possibly all days can generate a highly
accurate classifier under all parking lots, as demonstrated in [8]). The Naive Combination
method also does not perform well in this scenario, demonstrating that a method that just
adds new information in its knowledge base may be a suboptimal solution for this problem.
Note a severe accuracy drop for the Naive Combination and Single Train methods in
the change between UFPR05 and PUCPR parking lots. The presence of concept drifts
when changing the parking lot area or camera capture angle is reinforced in Almeida et
al.[8], where the authors verified that when the training and testing sets were collected in
the same parking lot and capture angle, the classifiers performed better than when the
training and testing sets were collected under different parking areas or when the camera
capture angle changed between them.

In Figure 50b the default configuration of the Dynse framework is compared with
the two best performing methods in the state-of-the-art according to Section 5.9. As one
can observe, the Dynse framework achieved better or similar results when compared to
the state-of-the-art methods in most of the time steps. The average accuracy3 considering
all test batches for the default version of the Dynse framework and for the state-of-the-art
methods is available in Table 24, where it is possible to verify that the default configuration
of the Dynse framework method was the best performing approach when considering the
average accuracy. The results in Figure 50b and in Table 24 reinforces the assumption that
a DCS-based method can be a good general solution for the concept drift problem, since
the Dynse framework performed better than the state-of-the-art methods in this scenario.

Table 24 – Average accuracies in the PKlot benchmark considering different methods.

Method Accuracy
Oracle 99.72%
Default Dynse 93.5%
Leveraging Bagging 92.5%
AUE 91.0%
AWE 90.3%
Oza Bagging Adwin Tree 90.0%
Oza Bagging ASHT Tree 89.3%
Hoeffding Adaptive Tree 87.1%
Naive Combination 80.8%
DDM 80.6%
EDDM 80.0%
Single Train 73.9%

The Leveraging Bagging was the best performing state-of-ther-art method in this
test considering the average accuracy. The Leveraging Bagging method is able to quickly
create a diverse ensemble of classifiers using a modified version of the Bagging algorithm
3 Since each batch may contain a different number of test samples, the accuracy standard deviation

between batches was not included, as it could mislead the reader.
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when a concept drift is signaled by its trigger. This behavior may explain the good
performance of the Leveraging Bagging in the PKLot dataset, and also in the results
presented in Section 5.9. As a future work, the same pool generation strategy may be
implemented in the Dynse framework in order to improve its performance (See Chapter 6).
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6 Conclusions

In this work it is demonstrated that through some modifications, the DCS approach
can be a powerful tool to deal with the concept drift phenomenon, especially under scenarios
where some areas do not change between concepts (intersected concept drifts). Although
under a static environment a DCS approach may be only region dependent, in this work
it is showed that under a concept drift scenario, this dependency alone is not sufficient,
thus a time dependency must also be considered. This time dependency was modeled as a
time window that keeps the latest supervised data received, called the accuracy estimation
window, which is used to track the current environment. When a test instance x needs to be
classified, the neighborhood of x in the accuracy estimation window is computed and used
to estimate the classifiers competence. The pool of classifiers must also be time-dependent,
where for every new supervised information received, a new classifier is trained and added
to the pool.

By taking into consideration the necessary modifications in the DCS approach
to deal with concept drift scenarios, the Dynse framework is proposed in this work as a
modular tool, capable to adapt the DCS approach to concept drift scenarios. The framework
deals with the time dependency through the accuracy estimation window and by creating
new classifiers when new supervised information is received. Any neighborhood-based DCS
method can be used to select the most promising classifier/ensemble from the accuracy
estimation window, where the DCS method is defined in the Classification Engine module
of the Dynse framework. Classifiers are pruned according to a component called Pruning
Engine, where any pruning strategy may be implemented. Another components of the
Dynse framework that may be tuned are the accuracy estimation window size and the
number of neighbors used to define the local region. The Dynse framework is classifier
independent, and its implementation was made publicly available in this work1.

Through the presented discussions and tests it was demonstrated that the size of
the accuracy estimation window must be defined according to the nature of the concept
drift, where a small window should be used in a real concept drift scenario, and a window
containing as much supervised data as possible should be defined in a concept drift
that affects only P (x). A discussion about the neighborhood size is also presented in
this work, where it is argued that bigger sets of neighbors may impact the classifier
competence estimation under a intersected real concept drift negatively. Tests using
different neighborhood sizes confirm that smaller neighborhood sizes may lead to better
results, except for approaches like the K-E method, that make it more difficult for a
classifier to be part of the ensemble as the neighborhood size increase.
1 The framework is fully available at https://web.inf.ufpr.br/vri/software/dynse/
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It is also argued that, differently from most approaches used to deal with concept
drifts, a DCS-based method may benefit from a pool containing classifiers trained under
different concepts, since classifiers trained under previous concepts may still be relevant in
some regions of the feature space. Ideally, the pool of classifiers should increase its size
indefinitely (i.e. an infinite size pool) in order to contain classifiers trained under different
concepts (time diversity) and specialists in different regions of the feature space (region
diversity). We defined such a pool, that is time and local diverse, as a Concept Diverse
pool. The experiment results demonstrate that a DCS-based approach does benefit from
this hypothetical infinite size pool. Nevertheless, since a infinite size pool is unfeasible
in the real world, a pool that keeps as many classifiers as possible, and that is kept as
Concept Diverse as possible should be considered. A method based on the 1NN algorithm,
called NNPrune, is presented as an alternative pruning strategy, which is able to keep a
Concept Diverse pool with a fixed size, however this method was not considered as the
default classification engine for the Dynse framework due to the necessity of keeping the
training sets of all classifiers in the pool.

Tests under intersected concept drift scenarios demonstrated that a DCS-based
approach is able to use classifiers trained under previous concepts in the regions of the
feature space that did not changed before the concept drift. Tests with recurrent concepts
also demonstrate that the classifiers from a concept that reoccurs may be reactivated, thus
leading to an increase in the accuracy of the method.

A default configuration of the Dynse framework is also proposed in this work, where
the K-E DCS method is used as the classification engine. This default configuration may
be used as a starting point configuration when using the Dynse framework to deal with
concept drift problems. Through an extensive range of experiments, it is demonstrated
that a DCS-based approach (the Dynse framework) is able to achieve results that are
better or similar to the state-of-the-art results in a range of problems without much tuning
of its parameters (it is only necessary to know if the concept drift is real or virtual), which
is advantageous in many concept drift scenarios since it may be impossible to know a
priori all the concept drift properties present in the environment, or to collect relevant
data in order to fine tune the method before deploying it.

The main drawback of the proposed framework is that it does need to know if the
concept drift is real or virtual in order to define accuracy estimation window size. The
tested methods in the state-of-the-art does not explicitly suggests any adjustment for
virtual concept drift scenarios, nevertheless the test results demonstrated that most of
these methods were not able to deal with this type of concept drift when considering its
default configurations.

The results presented in this work indicate that taking into consideration the
distance of each neighbor when selecting the custom ensemble for the test instance may
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lead to better results in some scenarios, as observed in the results achieved by the A
Priori and K-UW methods. As expected, most DCS methods used as classification engines
in the Dynse framework were capable to deal with the concept drifts present in the
benchmark problems used in this work. However, the DCS-LA LCA method achieved a
poor performance when compared to the other DCS methods, indicating that taking into
consideration the a posteriori information of the classifiers in order to select the neighbors
may be a suboptimal solution for dealing with the concept drift problem through a DCS-
based approach. Other contributions of this work include the definition of a slack variable
for the K-E DCS method, which may be used under noisy/concept drifting environments,
and a definition of an experimental protocol to use the PKLot dataset as a real world
benchmark for methods designed to deal with concept drift problems.

In short, the results indicate that the hypothesis of this Thesis that any neigh-
borhood DCS-based method can be adapted to deal with concept drift problems is valid,
although the test results indicate that methods that use the a posteriori information in
order to compute the neighborhood should be avoided. The DCS approach is able to
reuse classifiers from old concepts in regions not affected by concept drifts, making it an
appealing approach for scenarios containing intersected concept drifts, or even recurrences.
This also indicate that a pool containing as many classifiers as possible can be beneficial
when using a DCS approach. As hypothesized in this work, the results show that the time
dependency for the DCS-based methods must be modeled according to the concept drift
nature (real or virtual).

The discussions and tests presented in this work lead to several possible improve-
ments that are proposed as future works. Since the accuracy estimation window should be
set to be as big as possible under a virtual concept drift, one challenge for a future work
is to keep only the most representative instances in this window to spare computational
resources. Methods to avoid storing the entire training sets of each classifier when consid-
ering the NNPrune pruning approach should be considered, and the NNPrune algorithm
could be used to define the pool size dynamically, where a new classifier could be added to
the pool only if it represents a new information (i.e. a region in the feature space combined
with an a posteriori information that is not represented by any other classifier), regardless
to the current pool size. By adding only classifiers that represents new information to the
pool, it would not be necessary to configure the variable D that defines the pool maximum
size.

Another future work is to explore alternatives to maintaining the accuracy estima-
tion window up to date with the current concept under a concept drift scenario, such as
replacing the sliding window approach by a trigger-based one, which could even remove
the need to know the type of concept drift (real or virtual) a priori, in order to define this
window size. This trigger may be configured to signal a concept drift when any change is
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noticed, without concerning to false alarms, since the trigger could be used just to adjust
the accuracy estimation window to be as small as possible when the concept drift signal is
fired (e.g. put only the latest supervised batch in the accuracy estimation window). In
other words, the pool of classifiers, which should be as concept diverse as possible, must
not be updated according to this trigger.

Since in this work concept drifts that affects P (y) are not studied, classification
engines capable to deal with this type of virtual concept drift can be explored in future
works. Finally, alternatives to generate new classifiers for the pool could be explored in
future works, such as generating multiple classifiers every time a new supervised batch
arrives. By generating multiple classifiers, each of them trained with a different number of
supervised batches, the DCS strategy may be able to select the classifiers trained with
smaller sets under the presence of a concept drift (e.g. the classifiers trained with smaller
sets are less likelly to have conflicting information), and the classifiers trained with more
instances when the concept is stable. Another option is to train the pool of classifiers using
a boosting or bagging approach, as done in the Leveraging Baging state-of-the-art method.



143

Bibliography

1 HOENS, T.; POLIKAR, R.; CHAWLA, N. Learning from streaming data with concept
drift and imbalance: an overview. Progress in Artificial Intelligence, Springer-Verlag, v. 1,
n. 1, p. 89–101, 2012. ISSN 2192-6352.

2 KRAWCZYK, B.; WOźNIAK, M. One-class classifiers with incremental learning
and forgetting for data streams with concept drift. Soft Computing, Springer Berlin
Heidelberg, p. 1–14, 2014. ISSN 1432-7643.

3 SUSNJAK, T.; BARCZAK, A. L. C.; HAWICK, K. A. Adaptive cascade of boosted
ensembles for face detection in concept drift. Neural Computing and Applications,
Springer-Verlag, v. 21, n. 4, p. 671–682, 2012. ISSN 0941-0643.

4 MORENO-TORRES, J. G.; RAEDER, T.; ALAIZ-RODRÍGUEZ, R.; CHAWLA,
N. V.; HERRERA, F. A unifying view on dataset shift in classification. Pattern
Recognition, v. 45, n. 1, p. 521 – 530, 2012. ISSN 0031-3203.

5 GAMA, J.; SEBASTIÃO, R.; RODRIGUES, P. P. On evaluating stream learning
algorithms. Machine Learning, Springer US, v. 90, n. 3, p. 317–346, 2013. ISSN 0885-6125.

6 ELWELL, R.; POLIKAR, R. Incremental learning of concept drift in nonstationary
environments. Neural Networks, IEEE Transactions on, v. 22, n. 10, p. 1517–1531, Oct
2011. ISSN 1045-9227.

7 FREE SOFTWARE FOUNDATION. GNU General Public License. 2007. Available at:
<http://www.gnu.org/licenses/gpl.html>.

8 ALMEIDA, P. R. de; OLIVEIRA, L. S.; JR., A. S. B.; JR., E. J. S.; KOERICH,
A. L. {PKLot} – a robust dataset for parking lot classification. Expert Systems with
Applications, v. 42, n. 11, p. 4937 – 4949, 2015. ISSN 0957-4174.

9 ALMEIDA, P. R. L. D.; OLIVEIRA, L. S.; BRITTO, A. D. S.; SABOURIN, R.
Handling concept drifts using dynamic selection of classifiers. In: IEEE International
Conference on Tools with Artificial Intelligence. [S.l.: s.n.], 2016. p. 989–995.

10 WANG, S.; SCHLOBACH, S.; KLEIN, M. Concept drift and how to identify it. Web
Semantics: Science, Services and Agents on the World Wide Web, v. 9, n. 3, p. 247 – 265,
2011. ISSN 1570-8268. Semantic Web Dynamics Semantic Web Challenge, 2010.

11 ESCOVEDO, T.; CRUZ, A. V. A. D.; VELLASCO, M. M. B. R.; KOSHIYAMA,
A. S. Learning under concept drift using a neuro-evolutionary ensemble. International
Journal of Computational Intelligence and Applications, v. 12, n. 04, p. 1340002, 2013.

12 TSYMBAL, A.; PECHENIZKIY, M.; CUNNINGHAM, P.; PUURONEN, S. Handling
local concept drift with dynamic integration of classifiers: Domain of antibiotic resistance
in nosocomial infections. In: Computer-Based Medical Systems, 2006. CBMS 2006. 19th
IEEE International Symposium on. [S.l.: s.n.], 2006. p. 679–684. ISSN 1063-7125.

13 KUNCHEVA, L. Combining Pattern Classifiers: Methods and Algorithms. [S.l.]: Wiley,
2014. ISBN 9781118914540.

http://www.gnu.org/licenses/gpl.html


Bibliography 144

14 THEODORIDIS, S.; KOUTROUMBAS, K. Pattern Recognition. [S.l.]: Elsevier
Science, 2008. ISBN 9780080949123.
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