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ABSTRACT 

Given the particularities and issues on dealing with two Dimensions (2D) 
images, as illumination and object occlusion, one better option to counteract this matter 
is to work with three Dimensions (3D) images or Red, Green and Blue – Depth (RGB-
D) as they are usually called. RGB-D images are invariant of illumination since mostly 
of its acquisition devices use infra-red or time-of-flight laser sensors. The Microsoft® 
Kinect developed in partnership with PrimeSense is an amazing tool for RGB-D low 
resolution image acquisition, which its applications vary from gaming to medical 
imagery. Since Kinect has an accessible cost, it has been widely used in researches 
on many areas that use computer vision and image classification. Several datasets 
have already been developed with the Kinect for RGB-D image classification, as for 
example the Berkeley’s Multimodal Human Activity Database (MHAD) from the Tele 
immersion Laboratory of University of California and the  Center for Imaging Science 
of Johns Hopkins University, which contain images of 10 subjects performing 11 
activities: jumping in place (jump), jumping jacks (jack), bending-hands up all the way 
down (bend), punching (punch), waving two hands (wave2), waving right hand 
(wave1), clapping hands (clap), throwing a ball (throw), sit down and stand up (sit 
+stand), sit down (sit), stand up (stand). The main goal of this dissertation is to compare 
different machine learning approaches, (i) using a proposed ensemble learning 
technique with Support Vector Machines (SVM), K-Nearest Neighbors (kNN), Extreme 
Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN) combined with 
three different dimensionality reduction techniques Principal Component Analysis 
(PCA), Factor Analysis (FA) and Nonnegative Matrix Factorization (NMF) and (ii) from 
the Deep Learning (DL) approach using a proposed convolutional neural network 
(CNN) architecture known as BOANet, using the MHAD as Dataset. The contribution 
of the project consists on a human activity recognition system (HAR) that uses Kinect 
for RGB-D image recognition and machine learning algorithm to build the model 
classifier. The proposed approaches have its performance compared with reference 
values from recent works with the MHAD of the literature. Both approaches got 
remarkable performance having better results than most of the reference values from 
the literature, the (i) approach achieved 99.93% of classification accuracy and (ii) 
achieved 99.05% of classification accuracy.   

 

Key-words: RGB-D, Kinect, Machine Learning, Deep Learning, Human Activity 

Recognition.  



 
 

RESUMO 

De acordo com certas particularidades e dificuldades em lidar com imagens 2D, 
como por exemplo iluminação e obstrução de objetos, uma melhor opção para o 
problema em questão é utilizar imagens três dimensões (3D) ou Red, Green and Blue 
- Depth (RGB-D) como comumente são chamadas. Imagens RGB-D são invariantes 
a luz pelo fato da maioria dos seus dispositivos de aquisição utilizarem infravermelho 
ou sensores de laser time-of-flight. O Kinect da Microsoft® que foi desenvolvido em 
parceria com a PrimeSense é uma ferramenta incrível para aquisição de imagens 
RGB-D de baixa resolução, suas aplicações variam de jogos a imagens médicas. 
Como o Kinect possui um custo acessível, vem sendo muito utilizado em pesquisas 
de diversas áreas que fazem uso de visão computacional e classificação de imagens. 
Diversas base de dados para classificação de imagens RGB-D já foram desenvolvidas 
com o Kinect, como por exemplo a base de dados multimodal de atividade humana 
(MHAD) desenvolvido pelo laboratório de tele imersão da Universidade de Califórnia 
em parceria com o Centro de Ciências de Imagem da Universidade John Hopkins, na 
qual contem imagens de 10 pessoas desenvolvendo 11 atividades: pulando no lugar 
(pular), polichinelo (polichinelo), curvando o corpo para frente até o chão (curvar), 
socando (socar), acenando com as duas mãos (acenando2), acenando com a mão 
direita (acenando), batendo palmas (palmas), arremessando uma bola (arremessar), 
sentar e ficar de pé (sentar+levantar), sentando (sentar), ficando de pé (levantar). O 
principal objetivo da dissertação consiste em comparar duas abordagens de 
aprendizado de máquina, (i) usando um proposto comitê de máquina com Support 
Vector Machines (SVM), K-Nearest Neighbors (KNN), Extreme Gradient Boosting 
(XGBoost) e Artificial Neural Networks (ANN) combinado com três diferentes técnicas 
de redução de dimensionalidade Principal Component Analysis (PCA), Factor Analysis 
(FA) e Nonnegative Matrix Factorization (NMF) e (ii) de uma abordagem de 
aprendizado profundo usando uma proposta arquitetura de Convolutional Neural 
Network (CNN) chamada de BOANet, usando o MHAD como base de dados. A 
contribuição do projeto consiste em um sistema de reconhecimento de atividade 
humana que usa o Kinect para reconhecimento de imagens RGB-D e algoritmos de 
aprendizado de máquina para construir um modelo classificador. As abordagens 
propostas tiveram sua performance comparada com valores de referência de recentes 
trabalhos com o MHAD da literatura. Ambas abordagens tiveram ótima performance 
obtendo resultados melhores do que a maioria dos valores referência da literatura, a 
abordagem (i) conseguiu atingir um valor de 99.93% de precisão de classificação e a 
(ii) 99.05%. 

 
 

Palavras-chave: RGB-D, Kinect, Aprendizado de máquina, Aprendizado profundo, 
Reconhecimento de Atividade Humana. 
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1 INTRODUCTION 

One of the main advantages on working with to dimensions (2D) video 

processing is the variety of hardware for image acquisition that is available today, and 

how accessible it can be, starting from a basic smartphone camera to an ultra-high 

resolution professional camera. 

However, regardless of image quality, some application with 2D images has 

their efficiency depending on factors as illumination and target position. For example, 

in a face recognition application, the result of the acquisition will vary depending on 

face position, illumination, the use of accessories and facial expression (LI et al., 2013; 

SEGUNDO et al., 2013; HAYAT et al., 2016). 

In the advent of new sensing technologies, one reliable alternative to solve 

such problems will be using three dimensions (3D) images acquisition. The results of 

a 3D image acquisition, since most sensors use infra-red light or laser sensor,  are 

invariant on illumination, even in absence of light (LI et al., 2013) and present a higher 

robustness regarding target position (SEGUNDO et al., 2013). 

There are several options for 3D image acquisition sensors on the market. One 

in particular regarding its effectiveness, noninvasive capture and low cost price is the 

Microsoft® Kinect sensor which since it was presented it became widely used in 

industry and research in several knowledge fields such as Time-Of-Flight systems 

(CORTI et al., 2016), pose and gesture recognition (DING; CHANG, 2015; 

KASTANIOTIS et al., 2015; DARBY et al., 2016; DOLATABADI et al., 2016; IBAÑEZ 

et al., 2016), reconstructions of chronic wounds (FILKO et al., 2016), face recognition 

(GOSWAMI et al., 2013; LI et al., 2013; SEGUNDO et al., 2013; HAYAT et al., 2016). 

The images that are acquired by the Kinect are called RGB-D images (Red, 

Green and Blue with Depth images) which are the result of acquisition of both color 

(2D) and depth (3D) images simultaneously.  

With the decrease of cost for 3D image sensors, several applications and novel 

datasets are getting publicly available for researchers, as in this project the Multimodal 

Human Action Database (MHAD) for Human Activity Recognition (HAR) from 

University of California with depth images proposed by (OFLI et al., 2013) will be used 

for the case study of HAR.  

Image and video datasets are known for being large and sometimes uneasy 

to handle given to the number and the resolution of its frames. In order to make the 



 
 

14 

original dataset possible to work with and access the curse of dimensionality issue, 

dimensionality reduction techniques would be applied to extract relevant features and 

reduce the size of the dataset without losing too much information. 

Principal Component Analysis (PCA) proposed by Pearson in 1901 

(PEARSON, 1901) in order to find the lines and planes that fits better in a set of points 

in space, is a widely used dimensionality reduction technique in image applications. 

Recent researches using PCA has produced promising results such as (ÜZÜMCÜ et 

al., (2003); PATIL; MUDENGUDI , (2011); SADHASIVAM et al., (2011); and LI; TAO, 

(2012); and ZHOU et al. (2013)). 

Factor analysis (FA) has its development commonly credited by Charles 

Spearman in 1904 on his work in the psychological field (SPEARMAN, 1904). It is a 

general scientific method for analyzing data and is one of a family of multivariate 

methods, as can be seen in the image applications in the works of MALINOWSKI 

(1978), BENALI et al. (1993), and MØRUP et al. (2006). 

 Non-Negative Matrix Factorization (NMF) belongs to the group of 

decomposition dimensionality reduction techniques and has a long history under the 

name of self-modeling curve resolution in chemometrics, was then introduced as the 

concept of Positive Matrix Factorization by Paatero and Tapper (PAATERO; TAPPER, 

1994), and finally popularized by Lee and Seung (LEE; SEUNG, 1999). NMF tries to 

build a feasible model for learning object parts by decomposing the original dataset 

into two smaller matrices, given its non-negative factorization has a high 

representability of the results. NMF has already reached great success in real world 

applications such as in face recognition (OKUN, 2004; CHEN et al., 2008), motion 

segmentation (MO; DRAPER, 2012), Brain images (PADILLA et al., 2012) and multi-

focus image fusing (XU et al., 2007). 

A set of statistical techniques known as machine learning techniques must be 

used in order to build the classification model that will perform HAR. These techniques 

can be applied individually or in an ensemble form where its strength points are 

combined and together they achieve a better performance than used alone.  

The Support Vector Machines (SVM) algorithm (VAPNIK; CORTES, 1995) 

consists on techniques based on statistical learning and are widely used in pattern 

recognition as in (GONÇALVES, (2009); JOSÉ; RIBEIRO, (2012); PRADHAN, (2012); 

BOUZALMAT et al., (2014); and BOARETTO et al., (2017)) . 
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The k-Nearest Neighbor (kNN) algorithm is a well-known instance-based 

method in pattern recognition proposed by (COVER; HART, 1967), and until today it 

has been reaching outstanding performance in many different research fields as in 

medical imager (MUSTAFA et al., 2012; RAMTEKE; Y, 2012), text classification (TAN, 

2006), image categorization (MEJDOUB; AMAR, BEN, 2013), among others. 

The Extreme Gradient Boosting (XGBoost ) algorithm is a recent improvement 

of the Friedman’s Gradient Boosting Machine (GBM) developed by (CHEN; 

GUESTRIN, 2016). XGBoost has already proved to be an efficient machine learning 

tool with several real world applications (HOLLOWAY; MARKS, 2016; BOARETTO; 

BUSSATO; et al., 2017; GHOSH; PURKAYASTHA, 2017; ZHANG; ZHAN, 2017) and 

already won several competitions hosted by the site Kaggle (a platform which hosts 

machine learning competitions, www.kaggle.com). 

Based on the studies that developed the first mathematical model of the 

biological neuron performed by MCCULLOCH and PITTS, (1943), the first ANN was 

developed by Rosenblatt in 1957 (ROSENBLATT, 1957) with the goal to solve pattern 

recognition problems. ANN has gained a lot of renown since its first development and 

has already been applied in the most diverse areas of study (TAM; KIANG, 1992; 

BURRASCANO et al., 1998; GARDNER; DORLING, 1998; KALOGIROU, 2000). 

In a world where information is widely spread and grow exponentially every 

second, the need to process and understand these huge amounts of data, usually 

called Big Data, has become a survival need for many tech companies. As quoted by 

Peter Sondergaard the SVP (Senior Vice President) and Global Head of Research at 

Gartner Research “Information is the oil of the 21st century, and analytics is the 

combustion engine”, the analysis of Big Data has helped many companies to 

understand its customers behavior and to identify new buyer patterns, as well in 

managing strategies as can be seen in MCAFEE et al., (2012). However, in order to 

process these huge amounts of data the shallows ANN are not efficient and demand 

too much of computational cost, new techniques with different approaches and more 

complex architectures have been developed in order to counteract this issue, this new 

branch of machine learning is known as Deep Learning (DL). 

 The term DL , in machine learning was introduced by (DECHTER, 1986) and 

later as referring to ANN used by (AIZENBERG et al., 2000). A brief description of a 

Deep ANN, consist on a ANN with a larger number of hidden layers, as will be 
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described in Section 3, where this complex architecture can identify non-linear patters 

on the input data, the Deep ANN size will depend on the non-linearity of input data.  

A specific group of ANN in DL called Convolutional Neural Networks (CNN) 

first developed by Lecun in 1998 (LECUN et al., 1998) has been widely used in 

machine vision applications (KRIZHEVSKY; HINTON, 2012; LECUN et al., 2015; 

SCHMIDHUBER, 2015; ZHOU et al., 2015; GUO et al., 2016; LINNA et al., 2016), 

given its powerful hierarchical architecture that mimics the human visual cortex can 

extract more abstract features of images. 

The proposed method in this dissertation consists on comparing two machine 

learning approaches ensemble learning and DL, in order to develop a HAR system, 

that will be built based on the MHAD using only depth images acquired with the Kinect 

sensor, as can be seen in Figure 1.1.  

 

Figure 1.1 - Proposed Methodology 
 

 
FONT: the author, 2017. 

1.1 RELATED WORK 

HAR is an important field in computer vision, being used in a series of real-

world applications such as gaming, human activity analysis, gait recognition, human 

posture, human-computer iteration, and sports. 

Since the growth of the number of RGB-D human activity image datasets 

available as in UT Kinect (XIA et al., 2012), MSRDailyActivity3D (WANG et al., 2012) 

, WorkoutSU-10 dataset (NEGIN et al., 2013), UCF Kinect (ELLIS et al., 2013), RGBD-
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SAR Dataset (ZHAO et al., 2013) several techniques were developed in order to solve 

HAR problems.  

The works of (TRAN; TRIVEDI, 2012) developed a system based on multi-

view inputs for recognize human gesture from upper body pose, the authors obtained 

90% of accuracy on the classification tests.  

The ideas of (CHOUDHURY; TJAHJADI 2012) consist on a two phased 

silhouette-based gait recognition by combining Procrustes shape analysis and elliptic 

Fourier descriptors, these authors were able to get better results than other known gait 

recognition methods.  

In gait-based gender recognition and dimensionality reduction techniques 

(KASTANIOTIS et al., 2015) used PCA to extract features from depth images acquired 

with the Kinect sensor and a Gaussian Support Vector Machine (G-SVM) trained with 

histogram descriptors in order to classify the computed histogram descriptor of the 

depth images, the authors used a real-time approach where their method got good 

results independently of the view angle.  

In the medical research field, musculoskeletal rehabilitation of the lower limbs 

with images acquired with the Kinect sensor developed by (TANNOUS et al., 2016), 

where the authors developed a serious game system in order to improve exercise 

rehabilitation.  

In the sports field, by using 3D laser sensors and human posture analysis 

(YAMAMOTO et al., 2016) were able to study the effects of drag force and lift force 

acted on a jumper during a take-off in ski jumping, and concluding that the position of 

the arms in a very low position strongly influences the flow structure.  

On this project, HAR from depth images with the MHAD will be treated as the 

case of study. Although the MHAD has 11 different actions it is a very complete dataset 

for HAR, it has three action categories of movement (1) actions with movement in full 

body parts, (2) actions with high dynamics in upper extremities and (3) actions with 

high dynamics in lower extremities. The size of the MHAD is sufficient in order to 

explore the robustness of a machine learning algorithm in order to perform HAR, some 

datasets as the UTD-MAD (CHEN et al., 2015)  has a huge number of actions and 

subjects that demands too much computational cost and are not trivial to be tested in 

systems with limited resources, hence the choice of working with a relatively small 

datasets with diverse actions as the MHAD.  
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Among the 156 citations of the MHAD in the literature, there are several 

different approaches to work with HAR with MHAD, mostly of them using Motion 

Capture (MOCAP) data also called Skeleton data for HAR as in (CHAUDHRY et al., 

2013; IJJINA; MOHAN, 2014, 2016), and another works it can be seen the use of 

combining Kinect + Acceleration data as in the works of (CHEN et al., 2015). 

As for this project with the goal to analyze the performance of machine learning 

techniques with RGB-D videos, will be considered only the Depth data of the Kinect. 

Similar methodologies of non-invasive HAR using only depth images from the 

Kinect sensor of the MHAD with machine learning approaches can be found in the 

literature as in (BRUN et al., 2014) the authors by using only depth images as data 

input and the HAck system  managed to achieve 97.7% of classification accuracy. In 

(ZHANG; PARKER, 2016) the authors achieved a performance of 92.4% of 

classification accuracy by using the CoDe4D as feature detector, the Adaptive MCOH 

as descriptor and SVM as classifier. In (CHEN et al., 2015) by only using the Kinect 

Images with a SVM classifier and Leave-one-out cross-validation the authors obtained 

a classification accuracy of 92.39%. In (OFLI et al., 2013) the authors reached an 

accuracy of 91.24% using a Kernel-SVM with Multiple Kernel Learning for classifier. In 

(CHEEMA et al., 2014) the authors used KNN in order to achieve 77.73% of 

classification accuracy. In (BRUN et al., 2015) by using HAR based on a string Edit 

Distance (HARED) achieved 87.1% of classification accuracy.  

Some research in the literature also used DL methods in order to get a higher 

classification accuracy rate as in (FOGGIA et al., 2014) used a  Deep Belief Network 

trained using a Restricted Boltzmann Machine obtained 85.8% accuracy classification. 

In the works of (ZHU et al., 2016) the authors used Recurrent Neural Network (RNN) 

with Long Short-Term Memory (LSTM) called Deep LSTM and achieved 100% of 

classification accuracy. In (DU et al., 2015) the authors used a Hierarchical 

Bidirectional Recurrent Neural Network (HBRNN) and also achieved 100% of 

classification accuracy. In (SHAFAEI; LITTLE, 2016) by using a proposed CNN 

architecture the authors were able to reach for 98.1% of classification accuracy in Pose 

estimation.  
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1.2 OBJECTIVES 

The general objective of this work, consist on building HAR system using 

machine learning techniques applied in a HAR problem comparing two machine 

learning approaches regarding its classification accuracy, one in an ensemble learning 

built with stacking and the other in deep learning using a proposed convolutional 

network architecture, using a dataset of depth images that were acquired with the 

Kinect sensor. 

1.2.1 Specific Objectives 

In order to achieve the general objective, the following specific objectives were 

outlined: 

a) Search on the literature, for efficient machine learning techniques that are 

used on depth video classification and feature extraction. 

b) Apply Image Processing techniques in order to perform extraction of Region of 

Interest and noise reduction. 

c) For the ensemble approach 

o Compare different dimensionality reduction techniques in order to 

achieve best reduction without too much loss. 

o Build a classifier model using different machine learning techniques in 

order to investigate which one has the best performance.  

o Compare the machine learning techniques individually and in an 

ensemble form, regarding its accuracy. 

d) For the deep learning approach 

o Given it demands too much computational cost compress the data in 

order to have a feasible processing time for the test. 

o Test the proposed convolutional neural network architecture in order to 

build a classifier model. 

e) Compare both machine learning approaches regarding its classification 

accuracy in order to get the best classifier model for the HAR system. 

f) Perform the integration with the Kinect sensor and the software. 

g) Apply the classifier model in the new images that are acquired with the Kinect 

sensor. 
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1.3 STRUCTURE OF THE DISSERTATION 

The remainder of this dissertation is organized as follows.  

In Chapter 2 a detailed definition of the problem, focusing on the sensor used 

to perform the data acquisition as well with a detailed presentation of the MHAD 

dataset is presented.  

In Chapter 3, a brief description of machine learning, with the respective 

techniques and approaches used for developing the experiment is presented. 

Chapter 4, on the methodology and the tools used to perform the experiments, 

described in order of application is demonstrated.  

In Chapter 5, the results that were performed in the experiments, with a 

description of the metric use to measure both approaches performance, a detailed 

presentation of the results for all the test and a comparison with reference values from 

the literature is presented. 

And finally, in Chapter 6 presents the final considerations with a conclusion of 

the thesis and suggestion for future works. 
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2 PROBLEM DEFINITION 

This chapter discusses the theoretical concepts on RGB-D images and the 

Kinect sensor, in order to build a background for understanding the problem and the 

software and hardware tools used to develop this problem.  

For last a description and detailed information about the MHAD dataset.   

2.1 KINECT SENSOR 

The Microsoft® Kinect sensor was developed in collaboration with 

PrimeSense Company and it was introduced in November 4th, 2010, as an accessory 

to Xbox 360 Console. In January of 2012 more 18 million units were sold (CRUZ et al., 

2012). 

A huge expectation was created in the computer graphics and computer vision 

academic communities, since the Kinect promised a new way to interact with games, 

completely based in gesture and voice (CRUZ et al., 2012). 

 The Kinect is a great sensor for low resolution RGB-D images acquisition, it 

captures images at 30 fps (frames per second) of both color and depth, in a distance 

between the range of 500mm and 4000mm. The color images of 32 bits are acquired 

with a resolution of 1280x960 pixels, and the depth images with a resolution of 

640x480 pixels. The values of the depth images vary inside a range of 0 to 4095, where 

0 means that the object is too close to the source and 4095 is too far away, and -1 for 

undefined depth (HAYAT et al., 2016), more technical data can be found in (CRUZ et 

al., 2012). As can be seen on Figure 2.1, the Kinect consists of two infra-red sensors 

(emitter and receiver) for depth and one RGB for color images. 

 

Figure 2.1 – Kinect Sensor. 
 

 
FONT: the author (2017). 
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Among the several options of 3D sensors the Kinect stands out in terms of low 

cost, high speed of acquisition and for having a compact size that is easy to be 

handled. Figure 2.2 and Table 2.1 show the comparison of technical and visual aspects 

between the Kinect and the Minolta 3D sensor.  

 
Table 2.1 – Comparison Between Kinect and Minolta 

 

Sensor 
Speed 

(seconds) 

Size 

(cm³) 

Price 

(USD) 

Precision 

(mm) 

Minolta 2.5 23073 >$50k ~0.1 

Kinect 0.033 680 <$200 ~1.5 - 50 

FONT: the author (2017). 

 

Figure 2.2 – Comparison Between Kinect and Minolta 
 

 

FONT: adapted from (LI et al., 2013). 

 

As the image acquired with the Kinect can present some noise given its low 

resolution acquisition, depending the application a simple smoothing method on the 

image processing step can correct this flaws (WANG et al., 2016). 

2.1.1  RGB-D 

The use of 2D images, has been widely problematic in the fields of pose 

recognition an gait analysis, due to its severities regarding illumination, object 

occlusion, angle and pose ambiguity (CHATTOPADHYAY et al., 2014).  

The resultant image acquired by the Kinect Is called the RGB-D image, which 

consists on the combination of the three-color channels (red, green and blue) with an 
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additional depth channel. Each color channel represents a matrix with the values of 8 

bits and for the depth channel a matrix with values of 16 bits, as shown in Figure 2.3. 

 

Figure 2.3 – Color and Depth Image from Kinect. 
 

 
FONT: the author (2017). 

 

2.2 MHAD  

The MHAD dataset developed in 2013 from University of California Tele 

immersion Lab and the  Center for Imaging Science, Johns Hopkins University (OFLI 

et al., 2013), and publicly available, contains 11 actions performed by 7 male and 5 

female subjects in the range of 23-30 years of age except for one elderly subject. All 

the subjects performed 5 repetitions of each action, yielding about 660 action 

sequences which correspond to about 82 minutes of total recording time.  

The MHAD can be used for different applications such as HAR, pose 

estimation, motion segmentation and dynamic 3D scene reconstruction. 

The specified set of actions comprises of the following: (i) actions with 

movement in both upper and lower extremities, e.g., jumping in place, jumping jacks, 

throwing, among others, (ii) actions with high dynamics in upper extremities, e.g., 

waving hands, clapping hands, among others, and (iii) actions with high dynamics in 
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lower extremities, e.g., sit down, stand up. The subjects have incorporated different 

styles in performing some of the actions (e.g., punching, throwing) (OFLI et al., 2013). 

The 11 actions are: jumping in place (jump), jumping jacks (jack), bending-

hands up all the way down (bend), punching (punch), waving two hands (wave2), 

waving right hand (wave1), clapping hands (clap), throwing a ball (throw), sit down and 

stand up (sit +stand), sit down (sit), stand up (stand), all actions from the color images 

and depth images as depicted by Figure 2.4.  

 

Figure 2.4 - Actions Performed By One Subject With Both Color and Depth Images. 
 

 
FONT: adapted from (OFLI et al., 2013). 

 
There are five sensor modalities in the Berkeley MHAD, optical motion capture 

system, four multi-view stereo vision camera arrays (L1 through L4, with cameras C1 

through C1 through C4), two Microsoft Kinect cameras (K1 and K2), six wireless 

accelerometers (H1 through H6) and four microphones (M1 through M4), the display 

of the sensors positions shown in Figure 2.5. 
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Figure 2.5 - Display of The Sensors from The MHAD. 
 

 
FONT: adapted from (OFLI et al., 2013). 
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3 FUNDAMENTALS OF MACHINE LEARNING  

Machine Learning in general consists of instead programming a machine to 

perform a task T, the computer as proposed by (MITCHELL, 1997) learn from 

experience E with respect to some class of tasks T and performance P, if its 

performance at tasks T, as measured by P, improves with experience E.  

The field of machine learning is concerned with the question of how to 

construct computer programs that automatically improve with experience (MITCHELL, 

1997).  

With the constant growth on data storage capacity and computational power 

that our civilization has been facing on the past few years the interest in machine 

learning has been growing a lot recently, as illustrated by Figure 3.1 a graphic from 

Google trends where the terms machine learning and artificial intelligence are 

analyzed.  

  

Figure 3.1 - Google Trends for Machine Learning Performed in 05/06/2017. 
 

 
FONT: the author, 2017. 

 

Although it seems to be a futuristic concept, machine learning has its roots in 

the early 50’s, when in 1959 Arthur Samuel wrote the first computer learning program, 

which was an IBM computer and the program was the game of checkers that improves 

the more it played, learning winning strategies and adding them in the program. Arthur 

Samuel also coined the term “Machine Learning” while on IBM in 1959 (SAMUEL, 

1959). 
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Machine learning has many applications as in the medical field (YOO et al., 

2014; DEO, 2015; MILJKOVIC et al., 2016; ROST et al., 2016), economics (GAN, 

2013; WUEST et al., 2014; ATHEY; IMBENS, 2015), geology (KLUMP et al., 2014; 

KORUP; STOLLE, 2014), data mining (REBENTROST et al., 2014; AL-JARRAH et al., 

2015; LANDSET et al., 2015). 

The machine learning algorithms are divided in four groups, supervised 

learning, unsupervised learning, semi-supervised learning and reinforced learning.  

In supervised learning both inputs and outputs are known for the algorithm, 

that try to learn a function that correctly describes the relation between the target 

prediction output and the input features, such that the generated model can generalize 

the predictions of the output values to new data based on those relationships which it 

learned from the previous data sets.  

Different from supervised learning, in unsupervised are trained with unlabeled 

data, because only the inputs are known. Unsupervised learning tries to use 

techniques on the input data to mine for rules, detect patterns, summarize and group 

the data points which help in deriving meaningful insights and describe the data better 

to the users.  

Semi-supervised can be seen as a combination of both supervised and 

unsupervised learning, where the algorithms work with either labeled and unlabeled 

data. When the process of obtaining labeled data is unfeasible due to either high 

computation cost or lack of human expertise, semi-supervised learning algorithm 

comes quite in hand, these methods takes advantage of the idea that even though 

there are unlabeled data in the dataset, this data carries important information about 

the input features. Semi-supervised learning is known to present higher accuracy with 

less effort (ZHU, 2005).  

Reinforced Learning, a type of learning that continuously learns from the 

environment in an iterative fashion. This method focusses on using observations 

gathered from the interaction with the environment to take actions that would maximize 

the reward or minimize the risk, depending on the application.  

Supervised Learning is used in this project, since all the inputs and outputs are 

known and the models are generated based on this information. 

This chapter will focus on the machine learning techniques that were used on 

this project, since dimensionality reduction, ensemble learning and classifier model 

selection. 
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3.1 DIMENSIONALITY REDUCTION 

In many applications of machine learning, usually the datasets used in the 

learning process are huge, especially when working with image or video, which can 

take a lot of time and computational effort or even can’t be analyzed depending the 

resources of the machine in case.   

As Bellman coined in (BELLMAN, 1961) the term curse of dimensionality, 

which states the relation between adding more variables to a problem and the 

exponential increase of the dimensionality of the mathematical space,  hence 

increasing the complexity of the problem. Given the complexity of a model O(nd2), 

where n is the number of samples and d is the dimension, as d increases the 

complexity O becomes too costly.  

This phenomena is also known as Hughes effect, as stated by Hughes in 

(HUGHES, 1968) in machine learning for classification specifically “the use of too many 

variables in a classification procedure may decrease classification accuracy”.  

So not only the computational cost increases but also the dimensionality 

affects directly in the classification performance, one way to counteract this matter is 

to use dimensionality reduction techniques as shown in Figure 3.2. 

 

Figure 3.2 - Dimensionality Reduction 
 

 
FONT: the author, 2017. 

 

Dimensionality reduction techniques not only help to reduce the computational 

cost but also reduce the probability of overfitting. Dimensionality reduction can be 

divided in two categories, feature extraction (not-supervised) and feature selection 

(supervised). On feature selection a subset of the original dataset is selected, while in 

feature extraction a new set of features is generated from the original dataset. Feature 

extraction involves a transformation of the features, which often is not reversible 
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because some information is lost in the process of dimensionality reduction. Examples 

of feature selection are Pearson’s correlation and ANOVA, examples for feature 

extraction are PCA and FA, as will be seeing in this Chapter.  

3.1.1 PCA 

PCA is a remarkable technique for dimensionality reduction proposed by 

Pearson in 1901 (PEARSON, 1901), in order to find the lines and planes that fits better 

in a set of points in space. Later in the 1930 PCA was developed by Hotelling 

(HOTELLING, 1933) in order to find a small set of variables that could represent a 

bigger set of variables, he called this small set as principal components.  

As quoted by (RICHARDSON, 2009) “PCA is the general name for a technique 

which uses sophisticated underlying mathematical principles to transforms a number 

of possibly correlated variables into a smaller number of variables called principal 

components (PC). One of PCA advantages is to work on reducing the dimension of 

the data without losing too much information (BOUZALMAT et al., 2014). 

PCA consists on an orthogonal linear transformation of the data Figure 3.3,  

where the general idea is to find the eigenvalues and eigenvectors of the covariance 

matrix of the dataset. 

 

Figure 3.3 - PCA Method from 3D to 2D 
 

 
FONT: http://blog.kaggle.com/2017/04/10/exploring-the-structure-of-high-dimensional-data-with-

hypertools-in-kaggle-kernels/ 
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Given a dataset X ← Dmxn, where m is the number of vectors xn (observations) 

with n components (variables), n also defines the dimensionality of the dataset. Firstly, 

the PCA algorithm subtract the average µm (eq. 3.1) of each element of the vector xn 

in X given by 

μ௠ =
∑ 𝑥௜

௡
௜ୀଵ

𝑛
 (3.1) 

Then the covariance matrix Σ (eq. 3.2) is calculated for X, where the covariance 

can be thought of as a measure of how much two variables change together 

(RICHARDSON, 2009). Regarding the covariance signal, if outcomes a positive value 

it means that both observed variables grow together, if negative both observations 

grow in different directions, if zero both observations are independent of each other. In 

this context,  

𝛴 = ቌ

𝑐𝑜𝑣(𝑥, 𝑥) 𝑐𝑜𝑣(𝑥, 𝑦) 𝑐𝑜𝑣(𝑥, 𝑧)

𝑐𝑜𝑣(𝑦, 𝑥) 𝑐𝑜𝑣(𝑦, 𝑦) 𝑐𝑜𝑣(𝑦, 𝑧)
𝑐𝑜𝑣(𝑧, 𝑥) 𝑐𝑜𝑣(𝑧, 𝑦) 𝑐𝑜𝑣(𝑧, 𝑧)

ቍ (3.2) 

where x, y and z correspond to three different observations and cov() means the 

covariance between two observations as in  

𝑐𝑜𝑣(𝑥, 𝑦) =
∑ (𝑥௜ − 𝜇௫)(𝑦௜ − 𝜇௬)௡

௜ୀଵ

𝑛 − 1
 (3.3) 

Of the covariance matrix Σ generated by the previous step on the PCA 

algorithm, is then calculated the eigenvalues λ (eq. 3.4) and eigenvectors e (eq. 3.5), 

the eigenvectors define the new space. 

𝛌 = det (𝛴 − 𝜆𝐼) (3.4) 

where I is the identity matrix given by 

𝛴𝒆 = 𝛌𝒆 (3.5) 

 The eigenvalues represent the largest possible degree of correlation 

between all variables with the principal axis, hence higher the eigenvalue higher the 

correlation. The principal components are sorted according with the eigenvalues, 
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where the ith principal component is equal to the ith eigenvalue divided by the sum of 

all eigenvalues presented in Figure 3.4. 

 

Figure 3.4 - Principal Components 
 

 
Font: the author 2017. 

 

In Figure 3.5 can be seen the PCA pseudocode. 

 

Figure 3.5 - PCA Pseudocode 
 

 
FONT: author, 2017. 

 

In order to reduce the dimension to a feasible number of components that 

represents the original dataset without losing too much information, there are a few 

methods that can be used. One simple way to solve is by a scree plot, first the 

proportion of variance of each component is calculated and then plotted in a 

descending order on a graphic, then is analyzed the n components that has the higher 

PCA pseudocode 

1) Given a dataset X ← Dmxn 

2) subtract the average µm (eq. 1) 

3) calculate the covariance matrix Σ (eq. 2) 

4) calculate the eigenvalues 𝛌 (eq. 4) and eigenvectors 𝒆 

(eq. 5) 

5) select PC  
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proportion and that the sum of this n components’ variance proportion do not result 

below 90%. Another method is to use only the components whose eigenvalues is 

above the average. Although both methods seem simple and practical, sometimes 

valuable information is lost leading to a bad representation of the original dataset that 

could result in overfitting, as shown in (WOLD et al., 1987; ABDI; WILLIAMS, 2010) 

the authors suggest  more complex methods can serve as a better criteria for this 

problem using Cross-Validation and Boosting.  

3.1.2 FA 

Factor analysis (FA), has its development commonly credited by Charles 

Spearman in 1904 on his work in the psychological field (SPEARMAN, 1904). In 

(SPEARMAN, 1927) was developed the two-factor model and later extended to a 

multiple factor model by THURSTONE (1935).  

As cited by DECOSTER; HALL (1998) is a collection of methods used to 

examine how underlying constructs influence the responses on a number of measured 

variables.  

The concept of FA consist on that the variables can be grouped by their 

correlations, it may be assumed that variables within a particular group are highly 

correlated among themselves, but they have relatively small correlations with variables 

in a different group (KHOSLA, 2004). By grouping all variables according to its 

correlations, the number of groups formed are the number of factors. 

One key on learning FA is to first understand the concept factors. Factors as 

formal concept, are coordinates defining the boundaries of the space and within it the 

location and magnitude of all vectors, also defined as symbolic terms within a 

mathematical function linking vectors and parameters to mathematical rules for their 

combination. Factor as a theoretical concept, measures the inner process of “black-

box” which observed inputs are transformed into observed outputs, factor define the 

causal nexus underlying the observed patterns. The third concept is factor as an 

empirical concept, which defines factor as characteristics that classify phenomena 

according to their inter-relationships (RUMMEL, 1988). 

The value of a factor analysis is dependent on the meaningfulness of the 

variability in the data, hence if the data has lower or none variability than a lower 

number of factors will be derived from the data (RUMMEL, 1988).  
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FA can be divided into two categories Confirmatory FA (CFA) and, Exploratory 

FA (EFA). 

CFA, the objective is to determine the ability of a predefined factor model to fit 

an observed set of data (DECOSTER; HALL, 1998), It Is more difficult to perform CFA 

than EFA, given the strong links to structural equation modeling (DECOSTER; HALL, 

1998). 

EFA is concerned on finding the number of common factors influencing a set 

of measures and the strength of correlation between each factor and each observed 

measure (DECOSTER; HALL, 1998). EFA is often confused with PCA.  

The common factor model, as can be seen in Figure 3.6, represents that each 

observed response (Measure 1 through 5) is influenced partially by underlying 

common factors (Factors 1 and 2) and partially by unique factors (E1 through E5). The 

strength of the link between each factor and each measure varies, such that a given 

factor influences some measures more than others(DECOSTER; HALL, 1998). 

 

Figure 3.6 - Common Factor Model 
 

 
FONT: adapted from  (DECOSTER; HALL, 1998). 

 

Factor analysis are performed by examining the pattern of correlations (or 

covariances) between the observed measures. Measures that are highly correlated 

(either positively or negatively) are likely influenced by the same factors, while those 

that are relatively uncorrelated are likely influenced by different factors (DECOSTER; 

HALL, 1998). 
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The common factor model, is a partial correlation approach to the data, it 

determines the minimum number of independent coordinate axes (dimension) 

necessary to reproduce the variation in vectors in the space (RUMMEL, 1988).  

The FA model is defined, as cited by (PAISLEY; CARIN, 2009) of modeling a  

data matrix X ∈ ℝNxD, where N and D represents respectively the number of samples 

and the dimension of the data matrix, as the multiplication, (eq. 3.6), of two matrix ϕ ∈ 

ℝKxD and Z ∈ ℝNxK , where K is the dimension of factors.  

𝑋 = 𝑍𝜙 + 𝐸 (3.6) 

where E is the error matrix also called specific factors.  

The steps of the FA algorithm, starts similar with the PCA algorithm, until the 

extraction step, while PCA uses the eigenvalues and eigenvectors approach, FA 

generally uses the Maximum Likelihood Estimation (MLE) method or the Principal 

Factor (PF) method. 

3.1.2.1 Extraction Methods 

There are several factor extraction methods applied in FA, as can be seen in 

Figure 3.7, however this topic will focus on the most commonly used methods PF and 

MLE. 

Figure 3.7 - FA Extraction Methods 
 

 
FONT: the author, 2017. 
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a) MLE 

 The MLE method was popularized by R. A. Fisher between the years of 1912 

and 1922 which introduced the term likelihood in 1921 and lathe the method name in 

1922 (HALD, 1999), is an approach for parameter estimation in classical statistics, it 

views the parameters θ as quantities whose values are fixed but unknown, the best 

estimate of the value is defined to be the one that maximizes the probability (likelihood)  

of obtaining the samples actually observed (KHOSLA, 2004), the basic idea of 

likelihood function L(θ) method can be seen in eq. 3.7.  

𝐿(𝜃) = 𝑓(𝑥1; 𝜃). 𝑓(𝑥2; 𝜃) … 𝑓(𝑥𝑛; 𝜃) = ෑ 𝑓(𝑥𝑖|𝜃)

𝑛

𝑖=1

 (3.7) 

where xn is a random sample with n samples for which the probability density function 

of each sample xi is f(xi;θ).  

MLE is a simple method that has good convergence properties as the number 

of training samples increase, the estimate has the smallest variance and are usually 

consistent and unbiased. However, drawback of MLE is that the correct probability 

distribution for the problem must be known. 

 

b) PF 

The PF method, also called principal axis method, resemble the principal 

component analysis approach, is better able to recover weak factors and that the 

maximum likelihood estimator is asymptotically efficient, as in PCA can analyze not 

only correlations but also covariances.  

As cited in (FABRIGAR et al., 1999) if data are relatively normally distributed, 

maximum likelihood is the best choice because “it allows for the computation of a wide 

range of indexes of the goodness of fit of the model and permits statistical significance 

testing of factor loadings and correlations among factors and the computation of 

confidence intervals.”  

3.1.2.2 Factors Rotation 

Sometimes the first solution produced by FA does not reveal the hypothesized 

structure of the factor loadings, one way to solve this issue is to apply a rotation 
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strategy to find another set of factor loadings, that can similarly fit the observations well 

and also can be easily interpreted. 

Although rotating the factors (Figure 3.8) can change the factor loadings and 

thus the meaning of the factors, the new rotated factors can reproduce precisely the 

original correlations of the unrotated factors, because they are mathematically 

equivalent they can explain the same amount of variance in each variable of the 

original unrotated factors (KLINE, 1994).  

 

Figure 3.8 – Factors Rotation 
 

 
FONT: the author, 2017. 

 

One common and widely used rotation strategy is the varimax method 

proposed by Kaiser in 1958 (KAISER, 1958), this methods gives us the smaller of 

variables which high factor loadings for each factor and this helps us to interpret the 

component in a clear way (EDITOR IJSMI, 2017). The goal is to make some of these 

loadings as large as possible and the rest as small as possible in absolute value. The 

varimax method encourages the detection of factors each of which is related to few 

variables, it discourages the detection of factors influencing all variables. 

3.1.2.3 Factors Score 

Factor scores in an important step to perform further analysis of the identified 

factors, one easy method for scoring the factors, is to add together the scores on the 

variables which load most highly on the factor. 
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 However more complex methods can also be applied in order to get a better 

evaluation of the factors estimates, as the Regression method or Weighted Least 

Squares (WLS).  

 

a) Regression  

The regression method or exact factor score methods, are mostly used when 

the MLE method is used to extract the factors, use the estimated parameters from a 

factor analysis to define linear combinations of observed variables that generate factor 

scores (EDITOR IJSMI, 2017). 

 

b) WLS  

Bartlett’s WLS method can be used to estimate factor scores if multivariate 

normality assumption is valid. Here original variables are considered as dependent 

variable and factors are treated as independent variable and factor scores are the 

unknown coefficients.  

Figure 3.9, shows the FA pseudocode. 

 

Figure 3.9 - FA Pseudocode 
 

 
FONT: the author, 2017 

3.1.3 PCA vs. FA 

As cited above “FA is often confused with PCA”, so it’s important to highlight 

some differences between both algorithms. 

Both PCA and FA resemble in: 

 the fact that both can be applied in dimensionality reduction by capturing the 

variance of the variables in a smaller set; 

FA pseudocode 

1) Given a dataset X ← Dmxn 

2) Calculate the covariance matrix Σ  

3) Select the number of factors f 

4) Extract factors (MLE or PF) 

5) Rotate factors (varimax rotation) 

6) Interpret the factors 

7) Factor Scores (Regression of WLS) 
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 both outputs look very similar; 

Although, they vary in many ways as can be seen in Table 3.1 as stated in 

(KHOSLA, 2004). 

 

Table 3.1 – Comparison Between PCA and FA. 
 

PCA FA 

 more of a dimensionality 

reduction technique. 

 more of a latent variable 

technique.  

 decomposes the total variance 

and in the case of standardized 

variables, it produces a 

decomposition of correlation 

matrix. 

 

 analyzes the decomposition of the 

reduced correlation matrix and the 

diagonal matrix of the unique 

variances associated with the 

variables. 

 

 Can be expressed as linear 

functions of the variables or the 

variables can be expressed as 

linear functions of the principal 

components. 

 Concentrates on defining the 

variables as a linear combination 

of common factors and unique 

factors. 

 Emphasis in expressing the 

principal components as a linear 

function of the variable set x. 

 Emphasis on explaining the 

variable set x as a linear function 

of unobservable common factors.  

 Regarding error, PCA will be 

linear composites of unreliable 

variables, and will contain 

measurement error. 

 Common factor is uncontaminated 

by measurement error because 

measurement error is part of the 

unique variance. 

 the principal components are 

based on the measured 

responses. 

 assumes that the measured 

responses are based on the 

underlying factors. 

FONT: the author, 2017. 
 

In summary, PCA has advantage over FA when there is no underlying model of 

the data in mind. Although FA is better when working with a dataset of variables that 
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contain measurement error, Figure 3.10 shows the main difference between PCA and 

FA in a graphical way. 

  

Figure 3.10 - FA Vs. PCA 
 

 
FONT: the author, 2017. 

3.1.4 Non-Negative Matrix Factorization 

As pointed in the previous topics, PCA an FA shares a respective set of 

properties, one in particular, that was not mentioned previously, is that there is no 

constraint in the sign of the elements in the resultant matrices, hence, the negative 

component or the subtractive combination is allowed in the representation matrix 

resulting in a lower representability of the results (WANG, 2013).   

In the group of decomposition methods, NMF as its name says, constrains the 

values of the factorization matrix to only non-negative elements, which leads to a part-

based representation because they allow only additive combinations (OKUN, 2004). 

Given a non-negative matrix Vmxn (m corresponds to the number of 

observations in a dataset and n number of features of each observation in m, as can 

be seen in Figure 3.11), the NMF algorithm decomposes the original Vnxm matrix in two 

smaller matrices Wnxr and Hrxm such in (eq. 3.8).  

𝐕௡୶௠ ≈ 𝐖௡௫௥𝐇௥௫௠ (3.8) 

where r corresponds to the number of elements that will be selected for the 

dimensionality reduction following the rule 𝑟 <
௡௠

௡ା௠
. 
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Figure 3.11 – NMF Decomposition 
 

 
FONT: the author, 2017. 

 

W and H correspond respectively to the basis and weight matrices. The learnt 

features from of each column in the original matrix V are stored in the columns of  the 

basis matrix W with a corresponding reduced representation of the same column in V 

in a column in the weight matrix H (Figure 3.12), in the words of (LEE; SEUNG, 2001), 

V remains of being a linear representation of W and H, and W can be regarded as 

containing a basis that is optimized for the linear approximation of the data in V.  

 

Figure 3.12 – NMF Decomposition with Image 
 

 
FONT: the author, 2017. 

 

In a way to measure the quality of the approximation V ≈ WH a cost function F 

must be defined, a good and useful way to do this is to simply use the square of the 

Euclidean distance between the matrix V and WH as in eq. 3.9. 
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𝐹 = ෍ ෍[𝑉௜௝ − (𝑊𝐻)௜௝]ଶ

௠

௝ୀଵ

௡

௜ୀଵ

 (3.9) 

By using the cost function F, the value of F describes the likelihood of the 

original images in V and the generated images from combining W and H. 

In order to reach the local minima of the cost function, a certain procedure that 

consists on that first W and H are initialized with random non-negative values, then 

they must be updated simultaneously iteratively as described by eq. 3.10 and 3.12, 

until a stop criterion is met (usually a pre-defined number of iterations or a value of F).  

𝑊௜௔ =  𝑊௜௔ ෍
𝑉௜௝

(𝑊𝐻)௜௝
𝐻௔௝

௝

 (3.10) 

𝑊௜௔ =  
𝑊௜௔

∑ 𝑊௔௝௝
 (3.11) 

𝐻௔௝ =  𝐻௔௝ ෍
𝑉௜௝

(𝑊𝐻)௜௝
𝑊௔௜

௜

 (3.12) 

Not restricted to the cost function described in eq. 3.9, the NMF algorithm 

allows other different cost functions that could present better results depending of the 

respective application. However, choosing the right cost-function could be a tricky task, 

as seen in (QUINTANILHA, 2016) a descriptive table with different kinds of application 

that provide useful information when choosing the right cost function is presented in 

Table 3.2.  

 

Table 3.2 – NMF Cost Functions 

Data Type Distribution f(W,H) Example 

Real Gaussian Frobenius Images 
Integer Multinomial KL Word Counter 
Integer Poisson Generalized KL Photons Counter 

Non-Negative Multiplicative Gamma Itakura-Saito Spectral Data 

Non-Negative Tweedie β-divergent 
Generalization of  
the models above 

FONT: adapted from (QUINTANILHA, 2016). 
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3.2 ENSEMBLE LEARNING 

Ensembles, consists on a group of machine learning techniques that seeks to 

aggregate knowledge gathered by the models that compose it, aiming to reach a global 

solution that results in a more efficient model than its components applied alone 

(WILFREDO; VILLANUEVA, 2006). In other words, an ensemble, also called a multiple 

classifier or committee, is a set of individual component classifiers whose predictions 

are combined to predict new incoming instances. 

The application of ensembles seeks to improve the generalization capacity 

using the advantages of each component on solving the same problem (WANG et al., 

2012; KANG et al., 2015; CHOI et al., 2016; LOCHTER et al., 2016; REN et al., 2016; 

XU et al., 2016), which makes it more preferable to choose diversified models that 

have more distinct characteristics as shown in Figure 3.13. 

 

Figure 3.13 – Example of Classification Using Ensembles 
 

 
Font:  adapted from (WILFREDO; VILLANUEVA, 2006) 

 

The ensemble techniques are composed by at least three components, and 

most of the cases adopt a three-step methodology, training (generation), selection and 

combination (LIMA, 2004), as illustrated in Figure 3.14. 
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Figure 3.14 – Stages of The Methodology of Creating an Ensemble. 

 
Font:, adapted from (WILFREDO; VILLANUEVA, 2006). 

 

On the training step, the ensemble models are generated. The combination 

step, the combination method will differ depending on what kind of problem it would be 

applied. In a classification problem, it can be used a voting technique, Figure 3.15a, 

but in case of a regression problem it is generally used an average of the resulting 

outcomes of each component, Figure 3.15b. 

 

Figure 3.15 – Application of an Ensemble, in Classification (a) and in Regression (b). 
 

 
FONT: the author, 2017. 
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On the selection step, the components that have the best performance are 

selected. When using a higher number of components, it is possible that not every 

component contributes for the global performance of the ensemble, hence refining 

technique are recommended to prune the ensemble according to a selection criterion 

which could be an error measure over a subsample of data (WILFREDO; 

VILLANUEVA, 2006). 

Whenever dealing with a highly complex real-world problem, the application of 

an ensemble learning by itself could not be sufficient to deal with tricky patterns and 

non-linearities of the feature space. In that case is recommended to use one of the 

meta-algorithms in order to decrease the variance (Bootstrap Aggregating), bias 

(Boosting) or improving the predictive force (Stacking Generalization). 

3.2.1 Bootstrap Aggregating  

The Bootstrap Aggregating (Bagging) algorithm developed by Breiman in 1996 

(BREIMAN, 1996) votes classifiers generated by different bootstrap samples. A 

bootstrap sample is generated by uniformly sampling m instances from the training set 

with replacement, Figure 3.16. N bootstrap samples B1, B2,…,BN are generated and a 

classifier Ci is built from each bootstrap sample Bi. A final classifier Ci is built from 

C1,C2,…,CN whose output is selected by majority vote from the output classes of the 

sub-classifiers (BAUER et al., 1999). In Bagging approximately 63% of observations 

from the sample occurs at least once and the remaining observations are called out-

of-bag (CUTLER et al., 2007). 

As (BREIMAN, 1996) point out, that improvements will occur with the bagging 

algorithm for unstable procedures (like artificial neural networks, linear regression and 

regression trees) where a small change in the dataset can result in a large change in 

the predictor model. 
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Figure 3.16 – Bagging 
 

 
FONT: from (IZMIRLIAN, 2004). 

3.2.2 Boosting 

Boosting is a general and provably effective method to improve the accuracy of 

any learning algorithm for both classification and regression applications (SCHAPIRE, 

1999). Unlike the parallel fitting of the base models of the bagging algorithm, boosting 

build models sequentially (XIA et al., 2017). 

Boosting was based on the questions of (KEARNS; VALIANT, 1988, 1994)  “can 

a set of weak learners create a single strong one?”. The first boosting algorithm was 

originally proposed by (SCHAPIRE, 1990). 

 

Figure 3.17 – Boosting 
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FONT: from author, 2017. 

 

The boosting algorithm, Figure 3.17, consists on a combination of weak 

mathematical models that are built iteratively each one is being trained with different 

subsets of the original dataset without substitution (ABNEY et al., 1999), it uses 

weights to each training set, setting a higher weight to poorly predicted examples so 

the probability of this example to be chosen in the next subset is higher. At the end of 

the process all of the models are weighted according to their score and then a final 

model is created by combined using voting 

The major difference between bagging and boosting methods is that the 

boosting method strategically resamples the training data to provide the most useful 

information for each consecutive model. The adjusted distribution during each step of 

training is based on the error produced by the previous models. Unlike the bagging 

method where each sample is uniformly selected to produce a training dataset, the 

probability of selecting an individual sample is not equal for the boosting algorithm. 

Samples that are misclassified or incorrectly estimated have more chances to be 

selected with higher weight. Therefore, each newly created model places emphasis on 

the samples that have been misclassified by previous models (ZHANG; HAGHANI, 

2015). 
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3.2.3 Stacking Generalization 

Stacking Generalization also called Stacking, introduced by Wolpert in 1992 

(WOLPERT, 1992). Stacking has already won several competitions from the site 

Kaggle  including the Netflix 1M (one million) prize  (http://netflixprize.com) with an 

implementation of a Feature-Weighted Linear Stacking (SILL et al., 2009). 

Different from bagging and boosting, stacking use the concept of meta learner 

instead of voting algorithms to combine the base learners, since when using voting it 

is not clear which learner to trust (WITTEN et al., 2017). 

First a set of base learners is used to learn part of the dataset that is left for 

training, then these same base learners make predictions on the other part of the 

dataset that is left to testing. A higher-level learner, called meta learner is trained using 

the predictions from the previous step as input, the process can be seen in Figure 3.18. 

Once the base learners are built, they do the predictions in an unseen part of 

the original dataset, hence their predictions are unbiased, therefore the data that will 

be trained in the meta learner reflects the true performance of the base learners 

(WITTEN et al., 2017) 

 

Figure 3.18 – Stacking 
 

FONT: the author, 2017. 
 

In Table 3.3, a comparison between the three meta-algorithms is presented.  
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Table 3.3 – Comparison Between Bagging, Boosting and Stacking 

Property  Bagging Boosting Stacking 

Partitioning of the 
data into subsets 

Random 
Giving misclassified 

samples higher 
preference 

Various 

Goal to achieve Minimize variance 
Increase predictive 

force 

Minimize variance and 
Increase predictive 

force 
Methods where this 

is using 
Random subspace Gradient descent Blending 

Function to combine 
single models 

Weighted average Weighted majority vote Logistic regression 

FONT: the author, 2017. 

3.3 SUPPORT VECTOR MACHINES 

SVM is a technique based on statistical learning developed by Vapnik in 1995 

(Vapnik, 1995), aiming to solve pattern classification problems. Since then it has been 

widely used in either classification (BURGES, 1998; GONÇALVES, 2009; JOSÉ; 

RIBEIRO, 2012; BOUZALMAT et al., 2014) and regression problems (Camps-Valls et 

al., 2006; Dutta, Pal, & Sen, 2016; Ghaedi et al., 2016). 

SVM is considered a technique easier to be applied than a neural network 

(BOUZALMAT et al., 2014). SVM in a classification problem, which presents linearly 

separable characteristics, performs a class separation with a hyperplane (eq. 3.13) 

positioned in a way that the distance (Euclidean distance) between the hyperplane and 

the classes are the largest as possible (GONÇALVES, 2009), Figure 3.19. 

wTx=0 (3.13) 

where w and x are vectors, the vector w will always be normal to the hyperplane 
because is the vector that will define the hyperplane. 

 
Figure 3.19 - SVM Classification Hyperplane 

 

 
FONT: adapted from (Bouzalmat et al., 2014). 
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In order to the distance between the hyperplane and the margin m is the largest 

as possible, the m must be maximized (eq. 3.14), hence the ||w|| must be minimized.  

𝑚 =  
2

||𝐰||
 (3.14) 

In case of a non-linearly separation of the characteristics, by its complexity is 

not trivial to perform a linear hyperplane application. Hence, according to the Cover’s 

theorem (Cover, 1965), in which a non-linear problem by having its dimensionality 

increased it has a better chance to become linearly separable, Figure 3.20, Kernel 

functions  are used  to map the characteristics  which makes the algorithm more 

efficient (GONÇALVES, 2009). Some of the basic Kernel functions used in SVM are 

linear, polynomial, sigmoid and radial basis (BOUZALMAT et al., 2014), as can be 

seen in Table 3.4.  

Figure 3.20 - Cover Theorem 

 
FONT: adapted from (Lorena & de Carvalho, 2007). 

 

The new mapped feature space is separated with a hyperplane as well, as seen 

in eq. 3.15.  

wTФ(x)=0 (3.15) 

where points of Ф(x) that satisfy the condition wTФ(x)=1are called support vectors. 
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Table 3.4 - Kernel Functions 

Kernel Functions 

Linear 𝐾(𝑥௜, 𝑥௝) = 𝑥௜
் × 𝑥௝ 

Polynomial 𝐾൫𝑥௜ , 𝑥௝൯ = (𝛾𝑥௜
் × 𝑥௝ + 𝑟)ௗ , 𝛾 > 0 

Radial-Basis Function 𝐾൫𝑥௜ , 𝑥௝൯ = 𝑒𝑥𝑝(−𝛾ฮ𝑥௜ − 𝑥௝ฮ
ଶ

), 𝛾 > 0 

Sigmoid 𝐾൫𝑥௜ , 𝑥௝൯ = 𝑡𝑎𝑛ℎ(𝛾𝑥௜
் × 𝑥௝ + 𝑟), 𝛾 > 0 

FONT: the author, 2017. 

 

where xi and xj represent the 2D vectors, γ is the kernel parameter, d is the degree of 

polynomial function, and r is coefficient of interception.  

 

 The best function to be chosen when working with SVM is the one that outcomes 

the lowest empirical risk 𝑅𝑒𝑚𝑝(𝑓) (eq. 3.16), which is the difference between the 

expected output y and the produced output 𝑓(x), for a given input x. 

𝑅𝑒𝑚𝑝(𝑓) =  
1

𝑚
෍ 𝐿(𝑓(𝑥௜), 𝑦௜)

௠

௜ୀଵ

 (3.16) 

where m is the number of observations in the set, and L(.) represents the cost function 

chosen as in eq. 3.17 also known as loss function, where 

𝐿(𝑓(𝑥), 𝑦) = ൜
0 𝑖𝑓 𝑦 = 𝑓(𝑥)

1 𝑖𝑓 𝑦 ≠ 𝑓(𝑥)
 (3.17) 

The SVM is a very robust technique on working with a high dimension of data, 

presents a convexity of the optimization problem that is formulated on its training 

process which implies on a existence of a single global minima (LORENA; 

CARVALHO, 2007),  despite of its advantages the SVM algorithm has a higher 

computational cost compared with other techniques regarding the classification 

problem and the model generated by the technique have a lower interpretability 

(LORENA; CARVALHO, 2007). 

3.3.1 Multi-Class SVM 

SVM not only have a good performance in binary classification but also in multi-

class classification. Though, the approach for dealing with a higher number of classes 

are different with the use of decomposition methods as in the one-vs-all and all-vs-all. 
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3.3.1.1 One-vs-all 

The one-vs-all approach, builds the number of k binary classifiers, k is the 

number of classes. Then each fi classifier handles each i class. As can be seen in eq. 

3.18, given a new observation x, the class which this new observation belongs is the 

class represented by the classifier fi that has the maximum value between the k 

classifiers (GONÇALVES, 2009), as shown in Figure 3.21. 

 

𝑓(𝑥) = arg maxଵஸ௜ஸ௞(𝑓௜(𝑥)) (3.18) 

 
Figure 3.21 - One-vs-All 

 

 
FONT: the author, 2017. 

3.3.1.2 All-vs-all 

 The all-vs-all approach, consists on comparing classes in pairs being needed 

௞×(௞ିଵ)

ଶ
 SVMs, where k is the number of classes. In order to attribute a class to a new 

observation x, instead of using a maximization function as in one-vs-all approach, all-

vs-all uses majority vote to classify the new observation (GONÇALVES, 2009). So, 

each one of the SVMs outcomes a result for the new observation, and the class in 

which has the majority number of votes is the one attributed to the new observation. 
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3.4 EXTREME GRADIENT BOOSTING 

The decision tree is a non-linear and non-parametric supervised classification 

algorithm where the nonterminal nodes indicate the features and terminal nodes are 

outcomes, as shown in Figure 3.22.   

 
Figure 3.22 – Decision Tree 

 

 
FONT: the author, 2017. 

 

The training of decision trees for both classification and regression problems, 

as defined by the term CART (Classification And Regression Trees) introduced by 

Breinman in 2001 (BREIMAN, 2001) starts with the root node, and binarily divides the 

nodes into branches until it reaches the leaves, where the nodes represents the test 

over a feature, the branch (split node) represents the value of the results from the test 

and the leaf node represent the class. 

3.4.1 Gradient Boosting Machine 

Gradient boosting machine (GBM) produces a competitive, highly robust, 

interpretable procedures for both classification and regression (FRIEDMAN, 2001).  In 

other words, GBM is an ensemble of boosted regression trees, regression trees differs 

from decision trees (Figure 3.22) on the fact that regression trees contains a 

continuous score on each of the leaf (CHEN; GUESTRIN, 2016).  

GBM uses a gradient-descent method ( 
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Figure 3.23) to build a tree which decrease the objective on the direction of the 

gradient, in consequence data-points which are hard to classify gain influence during 

the training (KECK, 2016). 

 

Figure 3.23 – Gradient Descent Method in a Surface 

 

 
FONT: the author, 2017. 

 

GBM works with the idea of additive training, by combining several weak 

learners to develop a strong learner (Urraca et al.,  2017). Given a dataset (xi,yi)Ni=1, 

where N is the number of samples, xi is the ith set of features and yi corresponds to its 

respective response variable. To determine the optimal model f, GBM calculates the 

optimal base learner fi given by eq. 3.19, by transforming fi in a parametrized function 

ρh(x,θ), where ρ given by eq. 3.20 and θ represents respectively the best scale 

coefficient. The best parameters in the base learner h(x,θ) where, 

𝑓௜ = 𝑓௜ିଵ + 𝜌௜ℎ(𝑥௜, 𝜃௜) (3.19) 

GBM uses the gradient-descent method to build a tree that decreases the 

objective value towards the gradient, assuring that the loss-function L will decrease on 

each iteration, where 

ρ௜ = arg𝑚𝑖𝑛௣ ෍ 𝐿ൣ𝑦௝ , 𝑓௝ିଵ൫𝑥௝൯ + 𝜌ℎ(𝑥௝, 𝜃௝)൧

ே

௝ୀଵ

 (3.20) 

Figure 3.24 shows a representation of the GBM pseudocode.  
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Figure 3.24 – GBM Pseudocode 

 
FONT: the author, 2017. 

3.4.2 XGBoost Algorithm 

Extreme Gradient Boosting (XGBoost) is new implementation of the GBM 

algorithm, as GBM’s additive learning nature have a higher risk of overfitting, XGBoost 

aims on preventing overfitting without jeopardizing the computation efficiency of the 

algorithm (Urraca et al., 2017). 

 XGBoost algorithm have a high scalability due to its several important systems 

and algorithmic optimizations and also are faster than other methods due to its parallel 

and distributed computing (CHEN; GUESTRIN, 2016). According to (ALER et al., 

2017) XGBoost automatically takes advantage of the available computes processor 

cores, CPUs (Central Processing Unit) and random access memory (RAM). 

Similar to GBM, XGBoost also uses an ensemble of i functions fi to create a 

strong optimized model f. As can be seen in (XIA et al., 2017) XGBoost uses CART 

form of base-learner ωq(x), q ϵ {1,2,…,T}, where T denotes the number of leaves, q the 

decision rules of the tree and ω the leaf weight of each node of the tree. 

In XGBoost a regularization term Ω(f) is added to the loss function given by 

f*   (3.21) 

where,  is the complexity parameter, λ is a fixed coefficient and  is the L2 norm of 

leaf weights. 

The core problem of XGBoost as said by (XIA et al., 2017) is to determine the 

optimal tree structure, in order to tackle this problem the algorithm uses a greedy search 

GBM Pseudocode 
Input: 

 dataset (𝑥௜ , 𝑦௜)௜ୀଵ
ே  

 maximum number of iterations M  
 loss-Function L(y,f)  
 base-learner model h(x,θ) 

Training: 
Initialize a tree f0 
for 𝑖 ← 1 𝐭𝐨 𝑀 𝐝𝐨 
    i)   Construct a new tree model h(x,θi) 
    ii)  Find the best gradient descent step ρi (3.20) 

    iii) Update the function fi (3.19) 
end for 
Output: 

 Best 𝑓 
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algorithm in finding an optimal tree structure called exact greedy algorithm for splitting 

finding (CHEN; GUESTRIN, 2016).  

Since the XGBoost algorithm is controlled by various hyperparameters, a proper 

selection of their values is important toward obtaining accurate results. To find the best 

hyper-parameters in each case, an exhaustive search over a grid of values is carried 

out and the best performing case is retained (ALER et al., 2017). 

The most common hyper-parameters of the XGBoost are the maximum depth 

of the tree which range from zero to infinity and by increasing its value will make the 

model more complex. The learning rate, which is the step size shrinkage used in 

update to prevents overfitting, the learning rate actually shrinks the feature weights to 

make the boosting process more conservative and varies from 0 to 1. The number of 

estimators which consists on the number of boosted trees for the XGBoost algorithm 

and it’s an integer number varying from 1 to infinity, by increasing this value it can 

influence in the processing time of the algorithm as well with its complexity.  

3.5 K-NEAREST NEIGHBORS 

The conventional kNN algorithm simply uses the k training samples 

(observations) that are closest to (nearest neighbors) the test sample according to a 

distance metric to classify it. It is called a lazy learning algorithm because the 

generalization occurs only when a new observation beyond the training data needs to 

be classified. The kNN can be seen as a nonparametric classification technique based 

on an empirical Bayes decision rule that can achieve high classification accuracy in 

problems that have unknown and non-normal distribution.  

 Its learning process consists on saving all the training instances with its class 

labels, to classify an unknown instance the classifier ranks the instance’s neighbors 

among the training instances and use the class label of k most similar neighbors to 

predict the class of the new instance (TAN, 2006).  

 The distance between the new instance and the k nearest neighbors is 

measured (eq. 3.22) throughout all dataset and the closest neighbors indicates the 

class for the new instance, as shown in Figure 3.25, where k is a parameter set in the 

beginning of the algorithm that represents the number of neighbors that will be 

compared. The value of k is preferable to be an odd number since an even number of 

neighbors can result in a tie decision. 
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𝑑(𝑥, 𝑥′) = ඥ(𝑥ଵ − 𝑥′ଵ)ଶ + (𝑥ଶ − 𝑥′ଶ)ଶ + ⋯ + (𝑥௡ − 𝑥′௡)ଶ (3.22) 

where d is the distance to be calculated between the two vectors 𝑥 and 𝑥′, and n is the 

number of elements of the vectors. 

Then the algorithm estimates the conditional probability P (eq. 3.23) for each 

class, that is, the fraction of points in the set of k closest neighbors with that given class 

label.  

𝑃(𝑦 = 𝑗|𝑋 = 𝑥) =  
1

𝑘
෍ 𝐼(𝑦(௜) = 𝑗)

௜∈𝒜

 (3.23) 

where, x is the input, y is the output, 𝒜 is the set of closest neighbors, I is the function 

which evaluates j to 1 if when the argument x is true and 0 otherwise.  

Different distance functions have been adopted in kNN design such as 

Euclidean, Hamming, Manhattan, Tanimoto, Jaccard, Mahlanobis, cosine, and 

Minkowski distance. 

 In this paper, the Euclidean distance measured is used to distance metric to 

the adopted case study of fire incident classification. 

 

Figure 3.25 –Distance Comparison Related to k Value in The kNN Algorithm 
 

 
FONT: the author, 2017. 
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The kNN algorithm and its variants have been widely used in the literature to 

solve real problems. For example, the kNN classifier has been applied to feature 

selection (PARK; KIM, 2015) and dimensionality reduction (Ingram & Munzner, 2015). 

Although KNN is a simple method, the large amount of design vectors are 

required in the classifiers results in a high computational cost ((HWANG; WEN, 1998)).   

3.6 ARTIFICIAL NEURAL NETWORK 

The average human brain has approximately 100 billion neurons and each of 

these neurons has from 1000 to 10000 connections with neighbor neurons. The neuron 

body consist of its nucleus, dendrites, axons and its terminals, as can be seen in Figure 

3.26. The dendrites are responsible for receive the synapsis from other neurons and 

carry this information to the nucleus. The nucleus processes this synapsis and send a 

new synapsis to other neurons through the axon and its terminals (BERESFORD, 

2000).  

 

Figure 3.26 – Biological Neuron 
 

 
FONT: the author, 2017. 
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ANNs are digitalized representations of the human brain, with ability to learn 

from training to recognize patterns and perform other task as in classification and 

regression.  

The mathematical representation of the neuron is seen in Figure 3.27. 

 
Figure 3.27 – Mathematical Representation of a Neuron 

 

 
FONT: the author, 2017. 

 

The mathematical operation named activation function that represents the 

nucleus activity to process the synapsis is given by f in eq. 3.24. 

𝑎 =  𝑓 ቀ෍ 𝑥௜ ∗ 𝑤௜ + 𝑏ቁ (3.24) 

where x is an input column vector that represents the synapsis of a neighbor neuron i, 

w is the weight associated with each input in order to express the importance of this 

input to the neuron, b is a bias value associated to the neuron. The activation function 

f processes the information that come from the input and its objective is to generate a 

new synapse to the next neuron through the output a. 

 Depending on the application of the ANN the activation function can differ, in 

Table 3.5 is presented the most common activation functions of the ANN algorithm. 

 

Table 3.5 – List of Activation Functions 

Activation function f(x) Output Range Curve Shape 
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Linear x a = x 

 

Sigmoid or Logistic 
1

1 + 𝑒ି௫
 0 < a < 1 

 

Tanh 
𝑒௫ − 𝑒ି௫

𝑒௫ + 𝑒ି௫
 -1 < a < 1 
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There are also some special activation functions like the softmax function (eq.  

3.25). The softmax function is a generalization of the logistic function and is often used 

in multiclass classification applications, it output y ranges from 0 to 1 predicting the 

probability P of a specific class j ϵ K from the dataset x with weights w. 

𝑃(𝑦 = 𝑗|𝑥) =  
𝑒௫೅௪ೕ

∑ 𝑒௫೅௪ೖ௄
௞ୀଵ

 (3.25) 

There are several ANN architectures on the literature as the Feedforward 

network (TAHMASEBI; AMIRKABIR, 2011), Feedback network (ZAMARREN; 

GONZA, 2005), RNN (ROJAS, 1996) and self-organizing maps.(KOHONEN, 1990). 

The Multi-Layer Perceptron (MLP), consists of layers of connected neurons that 

has one or more hidden layers on its architecture, Figure 3.28. The hidden layer 

consists of the transformation where the input data is projected into a linearly separable 

space, the most common transformation functions are tanh and sigmoid functions.  

 
Figure 3.28 – MLP Structure 
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Although the ANNs have a high adaptability rate in order to identify new patterns 

that have not being seen and are easy to implement, when not well tuned can present 

a high probability of overfitting and a low generalization accuracy. 

3.6.1 Deep Learning 

By the time ANN were developed in the early 40’s, the technology of the time 

limited its potentiality since store and processing capacities were both expensive and 

not sufficient. Given the exponential growth of the technology that allow us today have 

computers extremely more powerful than back in early 40’s and cheaper, now it is 

possible to perform ANN in high dimensionality datasets (Big Data) for several real-

world applications (YOO et al., 2014; AL-JARRAH et al., 2015; LANDSET et al., 2015; 

NAJAFABADI et al., 2015). 

One successful approach when working with a high dimensionality dataset, 

consist on reduce the dataset size by representing the original dataset’s features in a 

smaller dimension by using feature-extraction techniques. However, feature-extraction 

is a complex and time-consuming operation that is highly application-dependent 

impacts directly on the model’s performance. DL, different from machine learning, has 

a unique automatic feature-extraction procedure, in which each hidden layer is 

responsible for training the unique set of features based on the output of the previous 

layer, as shown in Figure 3.29. 

 

Figure 3.29 – Machine Learning vs. Deep Learning 
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 DL mimics the neocortex of the brain, which is responsible by many of cognitive 

abilities. The brain’s neocortex propagate the sensory signals through a complex 

hierarchy of models (LEE; MUMFORD, 2003), that performs extraction of complex data 

representations (features) at high levels of abstraction (NAJAFABADI et al., 2015). DL 

develop a layered, hierarchical architecture of learning and representing data, where 

higher-level (more abstract) features are defined in terms of lower-level (less abstract) 

features (NAJAFABADI et al., 2015). 

 DL algorithms use a huge amount of unsupervised data to automatically extract 

complex representation and have the capability to generalize in non-local and global 

ways, generating learning patterns and relationships beyond immediate neighbors in 

the data (BENGIO et al., 2007). 

 The main DL approaches are, Convolutional Neural Networks (CNNs), Deep 

Belief Networks (DBNs), Stacked Auto-Encoders, Hierarchical Temporal Memory 

(HTM) and Deep Spatiotemporal Inference Network (DESTIN) (AREL et al., 2010). 

3.6.2 Convolutional Neural Network 

The first CNN model, named as LeNet, was developed by Lecun in 1998 

(LECUN et al., 1998) in order to classify handwritten digits using The MNIST (Modified 

National of Standards and Technology) dataset on the training step of the LeNet, as 

shown in Figure 3.30. The authors concluded that the use of the CNN convolutional 

nature eliminates the need for hand-crafted feature extractors (LECUN et al., 1998). 

 

Figure 3.30 – LeNet Architecture. 
 

 
FONT: adapted from (LECUN et al., 1998) 

 
The CNN’s inspiration bases on the studies of the human visual cortex, in this 

particular cortex there is a small region with neurons that are sensible to information 
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of the visual range. In 1962 Hubel and Wiesel performed an experiment, as shown in 

Figure 3.31, where they were able to prove that when the human visual cortex is 

exposed to images composed by oriented edges in a specific direction there are 

neurons which generate strong synapses to this exposure. In this experiment they 

realized that these neurons form an specific structure in which each neuron generate 

a synapse for each determined edge orientation, and together theses neurons are able 

to produce a visual perception (HUBEL; WIESEL, 1962).   

By performing this experiment the authors manage to conclude that each 

neuron has a determined task in order to find a specific feature, and by combining the 

neurons’ task all feature detected by this neurons form the human visual perception 

(HUBEL; WIESEL, 1962). 

Figure 3.31 – Hubel and Wiesel Experiment. 
 

 
FONT: adapted from https://www.youtube.com/watch?v=8VdFf3egwfg 

  

Based on these biological facts previously described, the CNN use filters known 

as kernels, that are applied on the image through convolutions in order to extract 

features, hence mathematically performing the biological neuron function. The 

application of the convolution step on images, generate new images with determined 

features, and then these images successively generate new inputs for the deeper 

layers of the CNN, where the convolutions are applied again with different kernels 

sizes. By this dynamic, the superficial layers of the CNN can extract simpler features 

as vertical and horizontal edges, and as long as the image is advancing through deeper 

layers, more complex features are extracted as geometric shapes, until it reaches the 

layers where the combinations of these features (face and objects) are extracted. In 
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general, the deepest the layer of the CNN more abstract is the extracted feature. The 

analysis of all the abstracted features generate the image classification procedure. 

The CNN architecture is divided in layers, and in each layer a different kind of 

operation is performed. The CNN layers are divided as follows. 

3.6.2.1 Input Layer 

 In this layer is located the input data, and the size of this layer vary on the image 

size of the dataset in case. Usually the input layer takes an order three tensor as input 

with an image of M rows and N columns, and 3 channels (Red, Green and Blue color 

channels), as shown by Figure 3.32. The CNN can also take tensors of higher orders 

but the size of the input data can inflict directly on the processing time of the CNN.  

 
Figure 3.32 – Example of a 4x4x3 Input Image. 
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3.6.2.2 Convolution Layer 

 In the convolution layer of a CNN the kernels used are generally matrices with 

small dimensions (3x3,5x5,7x7…), as in the ANN model weights are attributed for each 

value of the positions of these kernels. The kernels move over the input image 

performing small convolutions, once the kernel has been displaced over all of the input 

image matrix and channels the outcome of the convolution it’s the product of the small 

convolutions performed by the kernel over the image.  

 The convolution process, as shown in Figure 3.33, is the sum of the 

multiplications pixel-by-pixel of the kernel and the image region where the kernel is 

currently moving.   
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Figure 3.33 – 2D Image Convolution 
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The discrete 2D convolution is given by eq. 3.26. 

𝑦(𝑚, 𝑛) = 𝑥(𝑚. 𝑛) ∗ ℎ(𝑚, 𝑛) =  ෍ ෍ 𝑥[𝑖, 𝑗] × ℎ[𝑚 − 𝑖, 𝑛 − 𝑗]

ஶ

௜ୀିஶ

ஶ

௝ୀିஶ

 3.26 

where y is the output matrix, x is the kernel matrix and h is the input matrix. The 

variables m, n, i and j are the iterators used to represent each positions of the matrices’ 

values.  

 More than one convolution layer can be applied in the CNN in order to extract a 

higher number of features in different levels of abstraction,  

 

3.6.2.3 Rectified Linear Unit Layer 

 The Rectified Linear Unit (ReLU) layer does not change the size of the input, is 

applied in order to increase the non-linearity in the image, as given by eq. 3.27, since 

the semantic information of the input image is highly non-linear the purpose of the 

ReLU layer is to make the output of the convolutional layer non-linear as well (WU, 

2017), as shown in Figure 3.34.  

𝑦௜,௝,ௗ = max {0, 𝑥௜,௝,ௗ
௟ } 3.27 

where y and x are respective the output matrix and input matrix, the values of i, j and 

d are the values of the positions of the input matrix constrained between the ranges of 

0 ≤ i < M, 0 ≤ j < N, and 0 ≤ d < D (channels), and l is the layer. 
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Figure 3.34 – ReLU Function Graph 
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However extensively used in ANN applications the ReLU function is fragile 

during the training step. Depending on how the learning rate of the ANN is set, the 

ReLU layer could cause the weights to update in such a way that the neuron will never 

activate on any data input again, this phenomenon is called “dying ReLU”. 

A special case of the ReLU function known as Leaky ReLU (eq. 3.28) with a 

quite small but significant modification can counteract the dying ReLU problem and 

prevent overfitting. As the ReLU function removes all the negative parts of the function 

the Leaky ReLU lower its magnitude and does not remove completely all the negative 

parts, as can be seen this behavior in Figure 3.35.  

𝑦௜,௝,ௗ = 𝑎𝑥௜,௝,ௗ
௟  3.28 

where 𝑎 is a very small constant usually 0.01. 

 

Figure 3.35 – Leaky ReLU Function Graph 
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3.6.2.4 Pooling Layer 

 In the Pooling layer, is performed transformations on the feature map prevenient 

of the previous layer, in order to increase the spatial invariance of the CNN (SCHERER 

et al., 2010), which means that the CNN can distinguish features and recognize 

patterns regardless of the image position or texture.  

In the max pooling operation, as shown in  

Figure 3.36, the maximum value of the feature map that is inside the pooling 

kernel goes to the pooled feature map. Although some researches use subsampling 

as a pooling approach, (SCHERER et al., 2010) shown that a max pooling operation 

is vastly superior for capturing invariances in image-like data, compare to a 

subsampling operation. 

 
Figure 3.36 – Example of Max Pooling Operation 
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 The max pooling operation is given by 

𝑦௝ାଵ = max (𝑥௝
௡௫௡𝑢(𝑛, 𝑛)) 3.29 

where, xj represents the feature map and yj+1 the pooled feature map, the index j 

represents the layer, n represents the pooling kernel size and u(n,n) a window function 

that is applied on the input patch. 

3.6.2.5 Flattening Layer 

 The flattening layer is a very simple step, consists on the vectorization of the 

previous layer, which is usually a pooled feature map, as shown in Figure 3.37. This 

step is performed as a preparation for input to the Fully Connected (FC) Layer, is 
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usually added to the CNN when there are several pooling layers in the CNN 

architecture. 

 
Figure 3.37 – Example of Flattening 
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3.6.2.6 Fully Connected Layer 

The Fully Connected (FC) layer is commonly used at the end of the CNN, as 

well in other approaches used two or more consecutive FC layers. The FC layer is a 

Fully Connected ANN that perform the combination of the extracted features from the 

previous layers into more attributes in order to increase the prediction accuracy. Is 

where the classification/regression process occurs, when working with classification 

one important step to configure the FC layer is needed one output per class. The output 

of the FC layer is the probabilities referring to the predictions of each class.  

The FC can benefit from pre-trained CNN models by having the ability to re-

interpret existing classifications nets (HARICH, 2016). 

3.6.2.7 Special Operations 

In order to prevent overfitting and enhance classification accuracy there are 

some special operations that can be performed in a CNN, as for example the batch 

normalization and dropout operations.  

The batch normalization operation, normalizes the data in each training mini-

batch in order to avoid internal covariant shift prevenient from normalizing layers 

inputs, batch normalization allows the use much higher learning rates and to be less 

careful about initialization (IOFFE; SZEGEDY, 2015).  
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The dropout operation, applied in the FC layers, as quoted by (SRIVASTAVA et 

al., 2014) is a simple operation that the key idea is to randomly drop neurons (along 

with their connections) from the neural network during training. This technique can be 

understood as training multiple models on different portions of the data and averaging 

the model’s predictions to reduce variance (ALMOUSLI, 2014). By performing dropout 

in the FC layer, it prevents neurons to co-adapt too much reducing overfitting and 

giving major improvements over other regularization methods.  
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4 METHODOLOGY 

This chapter will focus on the methodology applied on solving the problem in 

case. As can be seen in Figure 4.1 an illustrative flowchart giving a brief description of 

the methodology.  

 Each topic will be described in this chapter with the respective tools and 

software, as follows. 

Figure 4.1 - Methodology Flowchart 
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4.1 IMAGE PROCESSING 

As the dataset was already introduced in Chapter 2, this chapter starts with the 

image processing step, which is an important step that deals with noise correction and 

visualization. 

The image processing operation was performed with the OpenCV library. 

The depth images that come in the dataset for convenience of distribution were 

all in the “.ppm” format, the first step of the image processing was to convert all the 

images from “.ppm” to “.jpg”. Figure 4.2 shows the raw image that come in the dataset. 

 

Figure 4.2 - Depth Image from the Kinect Sensor 
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All raw depth images were in the size of 640x480 pixels, the focus of this 

problem is to recognize human activity, hence not all the elements of the picture are 

important for the analysis. For all the images, only the area where the human activity 

is projected will be important and the rest will be considered as noise.  

To extract the relevant features of the image a Region of Interest (ROI) 

extraction will be performed by a simple crop of the original depth images reducing the 

original size to a 320x320 pixels frame, as shown in Figure 4.3 a. 
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Figure 4.3 - a) Original Depth Image ROI Left, b) Background Subtraction Result Image ROI 
Right. 
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Even after the ROI extraction, there are still some elements that are not relevant 

to the analysis, the background is considered as noise as well. To counteract this 

issue, a background subtraction was used to isolate only the human pose by 

performing a bitwise-AND mask operation with the mask generated by manual analysis 

of the image values and the cropped image generated by the previous ROI extraction 

step. This operation compares the values bitwise and remove the values that are not 

in the mask range, as result the image in Figure 4.3 b. 

To enhance the quality of the visualization and hopefully improve the efficiency 

on the image detection a smoothing operation with a median filter was used. A median 

filter run through the whole image and replace each picture with the median of its 

neighborhood, result can be seen in Figure 4.4 a. In order to replace the dark shades 

of the grey image, which can sometimes be difficult to identify nuances and small 

shade variation a different colormap was applied in the image, as shown in Figure 4.4 

b, the difference of before and after the colormap change.  

 

 

 

 

 

 



 
 

73 

Figure 4.4 - a) Smoothed Image Left, b) Smoothed Image + Colomar Map Change Right. 
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As result of the whole image processing operation, instead of having a noisy 

large depth image from the original dataset, the analysis can be performed with smaller 

non-noisy images with contain only relevant aspects. By reducing the size of the 

images, the computational effort demanded for the next steps will be reduced, hence 

fastening the whole machine learning process.  

4.2 DIMENSIONALITY REDUCTION 

As discussed in Chapter 3, dimensionality reduction techniques are very 

important in order to work with large datasets that demands a lot of computational effort 

and to extract a relevant reduced feature space that describes precisely the original 

feature space. 

For both dimensionality reduction and classifications steps the scikit-learn 

package for python were used for the experiments.  

When working with image classification, the image generally comes in a size of 

MxNxK, where M and N represents the image resolution and K the image dimension 

which is 1 for a grayscale image and 3 for an RGB image. The images are then 

transformed in a vector of size 1x(MxNxK), ending with a dataset of Rx(MxNxK) where 

R is the number of samples in the dataset, in Figure 4.5 is presented a simple example 

of Image vectorization with a black and white 6x6x3 matrix. 
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Figure 4.5 - Image Vectorization Example 
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Dimensionality reduction techniques in image classification outcomes a reduced 

feature space that does not produce an image anymore but image features, and based 

on these set of features is where the classification will be performed. 

From previous test, by analyzing the values of the cumulative explained 

variance as can be seen in Figure 4.6. which explains the amount of how much 

variance of the dataset is explained by each one of the components, from each one of 

the three dimensionality reduction techniques PCA, FA and NMF. It was able to identify 

that with only 10 components explains more than 70% the variance. So, for each of 

the three techniques the number of components were set to 10 in order to compare 

their performance against each other in terms of the same number of components 

 

Figure 4.6 – Cumulative Explained Variance 
 

 
FONT: the author, 2017. 



 
 

75 

The original size of the dataset without any kind of pre-processing or 

dimensionality reduction is approximately 34.8 Gigabytes (GB) or 37,447,190,832 

bytes and after the 2 first steps of the project (Image Processing and Dimensionality 

Reduction) the new dataset has only 5.35 Megabytes (MB) or 5,611,520 bytes.  

The feature extraction process was performed individually by subject, it means 

that the features were extracted from a single subject performing a single action 

instead a whole group of subjects performing one action. The features extracted from 

each person performing an action are clearer to identify and has a more reliable 

representation, since each subject has different silhouette and by using the whole 

group it can generate inaccurate features of the action, hence this approach seems 

more trustworthy in order to maintain the diversity in the dataset and prevent overfitting 

in the classifier. 

4.3 ENSEMBLE LEARNING CLASSIFICATION 

As can be seen in Figure 4.7 the stacking implementation used in this project, 

where for the base learners is used SVM, kNN and XGBoost and an ANN was adopted 

as the meta leaner that combines the three base learners, the stacking approach will 

be combined with a 5-fold cross-validation (CV).  

 
Figure 4.7 – Proposed Stacking Approach 

 

 
FONT: the author, 2017. 

 

The parametrization of the base learners XGBoost, SVM and KNN is an 

important step to improve generalization accuracy and prevent overfitting, several tests 

have to be performed in order to achieve satisfactory results. The process that consist 

on finding the best parameters of a classifier model is called tuning, an efficient tuning 

can make a difference since the base learners are very sensitive to its parameters.   



 
 

76 

The parameters tuned for the ensemble in the base and meta learners are 

presented in Table 4.1.  

 

Table 4.1 – Base and Meta Learners Parameters List 

BASE LEARNERS META LEARNER 

SVM Algorithm XGBoost KNN ANN 

Parameter Value Parameter Value Parameter Value Parameter Value 

Kernel  

Function 
Radial-Basis 

Maximum 

Depth 
15 K 3 Neurons 100 

Gamma(γ) Automatic 
Learning 

Rate 
0.1     

Decomposition  

Function 
one-vs-all 

Number of 

Estimators 
400     
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4.3.1 K-fold Cross-Validation 

CV is a widely used model validation technique, as cited in BROWNE (2000), 

CV was originally employed to evaluate the predictive validity of linear  regression 

equations used to forecast a performance criterion from scores on a battery of tests 

(MOSIER, 1951). 

To understand the K-fold CV, first it must be explained the concept of holdout, 

which is the simplest kind of cv. Holdout consists on splitting the dataset in two subsets, 

the training set and the test set, usually the division takes 70% of data for the training 

set and the remaining for the test set. However simple the holdout method is 

considered a pessimistic estimator for only a portion of the data is given for training 

(KOHAVI, 1995). 

The general idea of the CV consists on dividing the original dataset in K equal 

sub-sets, so the holdout method is repeated K times, Figure 4.8.  

A general idea of the CV as described by (GEISSER, 1975), CV in brief involves 

the mean of K holdout estimators from different sub-sets of an original dataset. The 

advantage of this method is that it matters less how the data gets divided. Every data 

point gets to be in a test set exactly once, the disadvantage of this method is that the 

training algorithm has to be rerun from scratch k times, the CV error (eq. 4.1) is the 

average the K test errors. 
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𝐶𝑉(𝜆) =
1

𝐾
෍ 𝐸௜

௄

௜ୀଵ

 (4.1) 

where λ is the parameters to the K-1 parts, and E is the error of each predicted K. 

 

Figure 4.8 - CV Algorithm 
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4.4 DEEP LEARNING CLASSIFICATION 

As already mentioned previously in Chapter 3, the use of convolutional layers 

in the CNN eliminates the need of feature extraction techniques, and the CNN 

architecture complexity (deepness) will the depend on the non-linearity of the input 

data.  

After the image processing and the ROI extraction steps, the images of 320x320 

pixels of resolution are still unfeasible to process with CNN with a machine with limited 

resources. A simple and efficient measure that can counteract this issue, as can be 

seen in Figure 4.9, is to compress each image original size (320x320 pixels) into a 

smaller size (60x60 pixels) be processed in a CNN. 

The compression is performed by using the resize function in python, the 

process consists on reducing the original image size. As the original image consist on 

a very sparse image, there is no danger of losing too much information.  
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Figure 4.9 – Image Compression 
 

 
FONT: the author, 2017. 

 

After the image compression it is possible to perform the training step with the 

CNN. 

The proposed CNN architecture is called BOANet, its architecture can be seen 

in APPENDIX A with a detailed description of its layers and configurations.  
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5 EXPERIMENTAL RESULTS 

The experiments were performed on the following system, a Windows 10 – 

64bit OS, CPU core i7-4700HQ 2.4 GHz, RAM 8 GB and on the Python 3.5.2.  

The scoring parameter adopted for measuring the performance of the SVM 

algorithm is the accuracy of the confusion matrix. The confusion matrix is an easy and 

intuitive way to view a classifier performance in supervised learning, as can be seen 

in Figure 5.1 an example of a confusion matrix for binary classification.  

The confusion matrix generates a set of 4 variables, that helps on 

understanding the prediction performance compared with the original labels(targets), 

given a binary classification problem with two classes named as positive P and 

negative N: 

 True Positive (TP): correct positive prediction. 

 False Positive (FP): incorrect positive prediction. 

 True Negative (TN): correct negative prediction. 

 False Negative (FN): incorrect negative prediction. 

Figure 5.1 - Example of Confusion Matrix 
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 The accuracy of a confusion matrix (eq. 5.1) consists on the number of all 

correct predictions divided by the total number of the dataset, ranging from 0, which 

represents the worse accuracy, to 1 which represents the best accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 (5.1) 
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 The experiments were performed with the MHAD with 10 subjects performing 

10 actions, in total 11920 observations were used for the tests.  

 The accuracy results from the tests compared with previous results shown in 

the literature are shown in Table 5.1. 

 

Table 5.1 – Results 

Values from the Two Proposed Approaches 

Approach Techniques Accuracy

(i) approach 

PCA+SVM 18.42% 

PCA+KNN 22.38% 

PCA+XGBoost 20.13% 

PCA+Stacking 96.01% 

FA+SVM 13.79% 

FA+KNN 17.68% 

FA+XGBoost 12.78% 

FA+Stacking 99.93% 

NMF+SVM 28.04% 

NMF+KNN 27.64% 

NMF+XGBoost 25.09% 

NMF+Stacking 91.26% 

(ii) approach BOANet 99.05% 

Reference Values from the Literature 

Approach Techniques Accuracy

(BRUN et al., 2014) HAck system 97.70% 

(ZHANG; PARKER, 2016) CoDe4D + Adaptive MCOH + SVM 92.40% 

(CHEN, CHEN et al., 2015) SVM 92.39% 

(OFLI et al., 2013) Kernel-SVM 91.24% 

(CHEEMA et al., 2014) KNN 77.73% 

(BRUN et al., 2015) String Edit Distance (HARED) 87.10% 

(FOGGIA et al., 2014) Deep Belief Network 85.80% 

(ZHU et al., 2016) Recurrent Neural Network 100.00% 

DU et al., 2015) Hierarchical Bidirectional Recurrent Neural Network 100.00% 

(SHAFAEI; LITTLE, 2016) CNN 98.10% 
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Given the results presented in Table 5.1, it is possible to see that both methods 

proposed in this project achieved remarkable results.  

Regarding the ensemble approach, the techniques that were applied in the 

ensemble present very low classification accuracy when used alone, however in an 

ensemble form all three combinations of ensemble with FA, NMF and SVM achieved 
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accuracy higher than 90%. The best ensemble approach was the one that used FA as 

dimensionality reduction technique, loosing for only two of the reference approaches 

from the literature that used CNN in order to perform HAR.  

The proposed CNN architecture BOANet, even though achieved high 

classification accuracy of 99.05% winning from most of the reference values of the 

literature, it still loses from the proposed stacking with FA approach and from the works 

of (ZHU et al., 2016) and DU et al., 2015). 

In order to get a better view of botch approaches performance, Table 5.2 shows 

the values of accuracy per class for each class.  

 

Table 5.2 – Results of accuracy per class 

Actions 
Accuracy (%) 

FA + Stacking BOANet 

Sit down 100.00% 100.00% 

Jumping in place 100.00% 100.00% 

Jumping jacks 100.00% 99.18% 

Bending - hands up all the way down 100.00% 100.00% 

Punching (boxing) 99.83% 98.31% 

Waving - two hands 99.85% 99.26% 

Waving - one hand (right) 100.00% 98.37% 

Clapping hands 100.00% 97.71% 

Throwing a ball 99.54% 97.69% 

Sit down then stand up 100.00% 100.00% 

Total 99.93% 99.05% 
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 Both approaches present amazing results in the actions of sit down, sit down 

and then stand up, Bending and jumping in place. And also, both algorithm present its 

lower performance on the action of Throwing a ball.  
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6 FINAL CONSIDERATIONS  

In this Chapter is presented the conclusion of the theses and also the details for 

the future works, regarding suggestions for future researches and improvement of the 

results. 

6.1 CONCLUSION 

In this work two approaches of machine learning were compared against each 

other and with reference values from the literature in a HAR problem with depth images 

from the MHAD.  

One approach consisted on an ensemble form with stacking combining SVM, 

kNN, XGBoost and ANN. In order to decrease the computational cost of processing a 

large dataset of images, three different dimensionality reduction techniques FA, PCA 

and NMF were compared and combined with the stacking ensemble. 

The other approach consisted on building an architecture of CNN specifically 

for this application known as BOANet. In order to be able to process the large dataset 

without using hand crafted features, data compression was used to decrease the 

image size and speed the process.  

Both approaches performed very well, achieving remarkable results of 

classification accuracy that were higher than most of the reference values from the 

literature 99.05% for the BOANet and 99.93% for the Stacking with FA, losing only by 

two methods from the works of (ZHU et al., 2016 and DU et al., 2015) that with the use 

of DL techniques were able to reach 100% of accuracy.  

The Stacking with FA approach, from the proposed method was the one with 

the second highest accuracy, and even outperformed some DL techniques,   

6.2 FUTURE WORKS 

For future references, in order to improve classification accuracy to 100%, for 

the ensemble learning approach, a study with more dimensionality reduction 

techniques and machine learning techniques must be done, in order to find out which 

combinations of techniques present better results for the classes that presented the 

lowest accuracy rates. 
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For the DL approach, a study of the CNN architecture with a proper 

configuration must be taken in account in order to build a network that can outperform 

BOANet.  
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APPENDIX A  

Layer  Parameters 

conv1 Kernels (8) Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 

conv2 Kernels (16) Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 
MaxPo

ol1 
Pool Size 

(2x2) 
Strides (2x2)    

 
      

 

conv3 Kernels (32) Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 
MaxPo

ol2 
Pool Size 

(2x2) 
Strides (2x2)    

 
      

 

conv4 Kernels (16) Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 

conv5 
Kernels 
(128) 

Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 

conv6 Kernels (32) Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 
MaxPo

ol3 
Pool Size 

(2x2) 
Strides (2x2)    

 
      

 

conv7 Kernels (32) Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 

conv8 
Kernels 
(256) 

Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 

conv9 Kernels (64) Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 
MaxPo

ol4 
Pool Size 

(2x2) 
Strides (2x2)    

 
      

 

conv1
0 

Kernels (64) Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 

conv1
1 

Kernels 
(512) 

Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 

conv1
2 

Kernels 
(128) 

Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 
MaxPo

ol5 
Pool Size 

(2x2) 
Strides (2x2)    

 
      

 

conv1
3 

Kernels (64) Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 
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conv1
4 

Kernels 
(128) 

Kernel Size (3x3) 
Padding 
(same) 

Input Shape 
(60x60x1) 

Batch 
Normalizaton 

(True) 
Activation 

(LeakyReLU) 
      

 
Flatten

1 
     

 

FC1 
Output Size 

(256) 

Batch 
Normalizaton 

(True) 

Activation 
(ReLU) 

Dropout (0.5)  

 

FC2 
Output Size 

(128) 

Batch 
Normalizaton 

(True) 

Activation 
(ReLU) 

Dropout (0)  

 

FC3 
Output Size 

(64) 

Batch 
Normalizaton 

(True) 

Activation 
(ReLU) 

Dropout (0)  

 

FC4 
Output Size 

(10) 

Batch 
Normalizaton 

(False) 

Activation 
(Softmax) 

  

 

 


