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RESUMO

O conceito de estabilidade a tempo finito (ETF) foi criado em 1950. Sistemas dinâmicos

cujas trajetórias convergem para o estado de equilíbrio em um tempo finito fazem parte desse

conceito. Sistemas chaveados lineares não homogêneos também estõ sendo considerados.

Esses sistemas são oriundos de muitas aplicações de controle e para casos aonde sistemas

físicos não são descritos por processos unicamente contínuos ou unicamente discretos.

Essa dissertação esta concentrada no problema de estabilidade a tempo finito de uma

classe de sistemas chaveados lineares não homogêneos contínuos no tempo sob um sinal de

chaveamento dependente do tempo seguindo um tempo de permanência T . Uma vez que

a estabilidade a tempo finito é garantida, um dos principais resultados dessa dissertação

garante que qualquer trajetória do sistema que comece em uma região Ω1 do espaço de

estados, permanecera dentro de Ω2 ⊃ Ω1 ao longo de um intervalo de tempo finito, e para

qualquer sequencia de chaveamento com tempo de estabelecimento T̄ ≥ T . As condições

de estabilidade a tempo finito obtidas na forma de inequações matriciais bilineares (BMIs),

podem ser transformadas em inequações matriciais lineares (LMIs) por uma sequência de

passos que incluem o cálculo dos conjuntos Ω1 e Ω2 por meio de um conhecimento prévio

dos limites de operação do sistema. Dois exemplos ilustrativos do estudo de estabilidade

em sistemas de potência são utilizados para apresentar a validade dos resultados.

Palavras-chave: estabilidade a tempo finito, sistemas chaveados não autônomos, inequações

matriciais lineares



ABSTRACT

The finite-time stability (FTS) concept was created in the 1950. Dynamical systems

whose trajectories converge to an equilibrium state in finite time are involved in this

concept. Switched non-homogeneous linear systems are being considered. These systems

can result from many control applications and for cases where physical systems are not

described by simply continuous or simply discrete processes. This dissertation is concerned

with the finite-time stability problem of a class of linear continuous-time non-homogeneous

switched systems under a time-dependent switching signal constrained by a dwell-time T .

Once the finite-time stability is guaranteed, one of the main results of the dissertation

guarantees that any system trajectory starting in a subset Ω1 of the state-space will remain

in Ω2 ⊃ Ω1 over a finite time interval, and, for any switching sequence with a dwell-time

T̄ ≥ T . The finite-time stability conditions which provided in the form of bilinear matrix

inequalities (BMIs), can be transformed to linear matrix inequalities (LMIs) by means

of a step-by-step procedure that includes the computation of the sets Ω1 and Ω2 by the

knowledge of the system’s operating range. Two illustrative examples in power system

stability study are used to show the validity of the results.

Keywords: finite-time stability, Non-autonomous switched systems, Linear matrix inequa-

lities
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CHAPTER 1

INTRODUCTION

Switched systems are dynamic systems that consists of a family of subsystems and a

switching law, that depending on the state and/or the time, selects which system should

be activated for each time instant (LIBERZON; MORSE, 1999). Switched systems can

be used to model many physical systems that cannot be described by purely continuous

or purely discrete processes (WANG et al., 2012). The switching events of a system can

arise from internal causes, like operating mode changes and failures (BALBIS et al., 2007).

For example, in the power systems area, an autonomous switched affine system can be

adopted to represent the electromechanical dynamics of a power distribution system with

synchronous generators, which is subject to changes in the system’s operating conditions

due to fast varying loads (KUIAVA et al., 2014). Hence, the switching events of this

system arise from load variations. Other practical examples of switched systems include

traffic control (C; GJ; S, 1998), aerospace control (BALBIS et al., 2007) and switching

power converters (CORONA et al., 2007).

The stability analysis and control synthesis of different classes of switched systems have

been addressed by many authors, see (BEMPORAD; FERRARI-TRECATE; MORARI,

2000; JP, 2004; HESPANHA et al., 2005; GEROMEL; COLANERI, 2006; GEROMEL;

COLANERI; BOLZERN, 2008; LIN; ANTSAKLIS, 2009; T, 2010; DEAECTO; GERO-

MEL; DAAFOUZ, 2011; VALENTINO et al., 2012; KUIAVA et al., 2013), as well as, the

references therein. For autonomous switched systems with a common equilibrium point

(typically the origin of the state-space), the asymptotic stability analysis at the origin can

be established, for example, from an auxiliary scalar-valued Lyapunov function common

to all the subsystems of the switched system (COLANERI; GEROMEL; ASTOLFI, 2008b;

LIN; ANTSAKLIS, 2009). The existence of this common Lyapunov function ensures
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that the origin is globally asymptotically stable for any arbitrary switching sequence.

Unfortunately, a common Lyapunov function for all the subsystems may be difficult to find

or a solution may not even exist. The search for this Lyapunov function can be simplified

by adopting the invariance principle and its extensions to switched systems, as discussed,

for example, in (HESPANHA et al., 2005; J; R, 2006; VALENTINO et al., 2012). Instead of

using a common Lyapunov function for all the subsystems, the asymptotic stability of the

origin can be verified by ensuring the subsystems are individually stable by the existence

of piecewise Lyapunov functions and also guaranteeing that the Lyapunov function of the

switched system, which is constituted by these piecewise functions, is uniformly decreasing

for all the time (JP, 2004; LIN; ANTSAKLIS, 2009). In comparison to (JP, 2004; LIN;

ANTSAKLIS, 2009), a less conservative result is given by (GEROMEL; COLANERI,

2006) and (COLANERI; GEROMEL; ASTOLFI, 2008b), where the above non-increasing

condition on the Lyapunov functions of the subsystems is relaxed and replaced by a weaker

condition where only the sequence of values of the Lyapunov functions in the switching

times have to be uniformly decreasing as time goes on.

The subsystems of the autonomous switched system can share a common equilibrium

point or not. When they do not share a common equilibrium point, stability can be

investigated with respect to a set, rather than a particular point by using the finite-time

and practical stability concepts. These concepts are investigated by (ZHAI; MICHEL,

2003, 2004; XU; ZHAI, 2005; XU; ZHAI; HE, 2007).

For Xu (2005), a hybrid, and switched system whose subsystems have no common

equilibrium point is considered practical or finite-time stable under appropriate switching

laws if its trajectory can keep within the bounds of a given point, in other words, these

two stability concepts require that the system trajectory be confined in a certain subset

of the state-space (region Ω2) over a finite time interval (for finite-time stability) or an

infinite time interval (for practical stability) given an initial state in a region Ω1 such that

Ω1 ⊂ Ω2 (ZHAI; MICHEL, 2003, 2004; XU; ZHAI, 2005; XU; ZHAI; HE, 2007).

One example of the applicability of these concepts of stability is in power systems
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stability analysis. The power system stability is relate to the dynamical behavior of the

system when disturbed from an equilibrium condition by a disturbance, such as short

circuits, lightning, switchings and others. According to Kundur (1994), two categories

should be considered when studying power system stability: small and large disturbances.

This classification categorizes the stability analysis in terms of disturbance intensity and

defines a mathematical approach to problem resolution.

The first category (large distubances) considers the system’s capacity to find an

equilibrium operating condition after a severe disturbance. The second category (small

distubances) is related to the system’s dynamic behavior when a small disturbance event

occurs, such as load switching. For this last case, the stability problem can be solved by

linearizing the power system model equations around the initial operation point, resulting

in a set of linear differential equations, that can be resolved using the linear systems theory.

This is a valid consideration, since after the small disturbance occurs, the system will

oscillate around the initial operation point and return to it, or to an equilibrium point

close to it, in cases that the system is considered stable.

Focusing on these concepts of stability, (KUIAVA et al., 2013) provides some sufficient

conditions concerning practical stability and finite-time stability of nonlinear and affine

continuous-time autonomous switched systems without a common equilibrium point and

(KUIAVA et al., 2014) applies these theoretical results on the problem of small-signal

stability in the power systems area. The class of switched systems studied by (KUIAVA et

al., 2014) considers an independent term constant, limiting the applicability of the results

for some physical systems.

1.1 Motivation

During the last decade, interest in systems with behavior that can be described

mathematically mixing logic based switching and difference/differential equations increased.

This happened because a lot of man-made and physical systems can be modeled using
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such a framework, for example Multiple-Models, Switching and Tuning paradigm from

adaptive control, Hybrid Control Systems and many other techniques in Driven Systems

(SHORTEN et al., 2007).

Therefore, this dissertation focuses on extend the study of finite-time stability presented

by Kuiava (2013,2014) considering the load dynamic in switched system model. For a

practical viewpoint, the distribution network with synchronous generators should be

working in a safety region (called of Ω2 ⊂ Rn, that is obtained using an allowed range

of values of state variables. So, in a realistic scenario, the problem of interest in this

work is determine for which conditions the system trajectories will be in region Ω2 for a

determinate time interval, for a initial condition in a set Ω1 ⊂ Rn such that Ω1 ⊂ Ω2.

The second point that this Masters’s degree work is focused is on developing a

methodology able to analyze the dynamical performance of distribution networks with

distributed generation (synchronous generator) considering the finite-time stability in

the presence of capacitor bank switching. When this kind of system is analyzed, the

resultant model is a class of continuous-time non-homogeneous switched system. This

kind of approach using finite-time stability theory to analyse a non-homogeneous system

resulting of the power system model was never studied before. These results are important

to analyze the the impacts of the capacitor bank switching in the power system quality

and confiability.

1.2 Contributions of the dissertation

The first contribution of this dissertation is to extend the theoretical results on finite-

time stability proposed by (KUIAVA et al., 2013, 2014) for a class of non-homogeneous

switched systems, considering the load dynamical model in practical system modeling.

The practical example used is the same used by Kuiava (2013,2014), but using the load

dynamic model, increased the difficulty of problem resolution. The results obtained are

presented in this dissertation.



18

The second and main contribution of this Master’s work is to study the finite-time

stability applicability into linear continuous-time non-homogeneous switched systems

without a common equilibria under a time dependent switching signal. From a practical

viewpoint, this class of switched systems allow us to study the dynamic behavior of,

for example, AC-DC converters, while in the class of switched systems investigated by

(KUIAVA et al., 2013, 2014) only CC-CC converters were studied. Sufficient conditions

for finite-time stability are provided in the form of bilinear matrix inequalities (BMIs),

which can be transformed to linear matrix inequalities (LMIs) by means of a step-by-step

procedure that includes the computation of the sets Ω1 and Ω2 by the knowledge of the

system’s operating range.

1.2.1 Main Objective

The main objective of this Master’s work is to study the finite-time stability applicabi-

lity into linear continuous-time non-homogeneous switched systems without a common

equilibria under a time dependent switching signal.

1.2.2 Specific Objectives

• Apply the existing results of finite-time stability proposed by Kuiava (2013,2014) in

distributed generating systems considering the load dynamic

• Develop sufficient results of the finite-time stability of a class of non-homogeneous

switched systems

• Develop a systematic proceeding based on LMIs resolution to apply results of

finite-time stability

• Apply the results of finite-time stability in a illustrative system.
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1.3 Dissertation outline

This dissertation comprises of four chapters and this is how it is organized:

Introduction: This is our current chapter where an introduction of this work is made,

a literature review, motivations for the study of this topic, as well as an outline about its

contributions;

Chapter 2 : In this chapter the theoretical fundamentals are presented. It starts by

presenting the hybrid and switched systems concepts followed by a brief explanation of

the Lyapunov stability, and then the direct method of Lyapunov is presented. After that,

the stability analysis for switched systems and an illustrative definition of the finite-time

stability of switched systems are presented;

Chapter 3 : It covers the finite-time stability of a class of continuous-time systems

when they are submitted to load switching. Following, the main results on finite-time

stability for the switched system with some subsystems are shown, and, then, some used

proofs and theorems are demonstrated, based on what already was investigated by Kuiava

(2013,2014). A distributed system with synchronous generations and load switching is

implemented to exemplify the theory and its results, considering the load dynamic model,

being the first contribution of this work;

Chapter 4 : It shows the finite-time stability of a class of continuous-time non-

homogeneous switched systems, that is the main contribution of this work. Next, the main

results on finite-time stability for the switched system with two or more subsystems are

presented, as well as some proofs of theorems. In one section a similar system used in

Chapter 3 is implemented to illustratively exemplify a real situation where this theory can

be applied and it is followed by the presentation of a numerical example.
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1.4 Notation

In this work, Rn and Rn×m denotes the n-dimensional Euclidean space and the set of

n×m real matrices, respectively. For a ∈ Rn and b ∈ Rn, {a, b} denotes the set constituted

by only these two elements a and b, while [a, b] denotes the set containing all the points in

the line segment between a and b. In addition, [a, b) denotes the set containing all the

points of [a, b], except the point b. Matrices are denoted by capital roman letters, such

as P . The n-dimensional identity matrix is denoted by In. For matrices and vectors, ()′

means transposition. When P is a symmetric matrix, P� 0 (respectively, P≺ 0) means

that P is positive definite (respectively, negative definite). Positive (respectively, negative)

semi-definiteness is denoted by P� 0 (respectively, P� 0). The Euclidean norm is denoted

by ‖ · ‖. For a set Ω ∈ Rn, Ω̄ and Ωc denote the closure and the complement of Ω,

respectively.
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CHAPTER 2

THEORETICAL FUNDAMENTALS OF SWITCHED

SYSTEMS AND POWER SYSTEMS STABILITY

The first part of this chapter aims to present some basic concepts necessary to

understand the process used in the dissertation. First, hybrid and switched systems

concepts and a real example are presented. Next, in order to better understand the

processes for the study of the switched systems stability analysis, Lyapunov’s stability

theory is presented, and the direct method of Lyapunov’s definitions is addressed. The

chapter also presents the typical representation of the continuous-time switched systems

and an illustrative representation of the finite-time stability, that are the interest of this

dissertation.

In second part are presented the power system stability definitions and the power

system transients definitions. This knowledge will be important to the understanding of

the dissertation.

2.1 Hybrid and Switched Systems

For Liberzon (2003), hybrid systems are all dynamical systems that describe an

interaction between continuous and discrete dynamics. A similar definition was done by

Shorten (2007) which considers that a hybrid system is a dynamical system described

using a mixture of continuous/discrete dynamics and logic based switching. For classical

theory, these systems evolve according to mode dependent continuous/discrete dynamics

and the transactions between these modes are called events.

The manual gearbox in an automobile is an example (SHORTEN et al., 2007). When a

car is traveling along a fixed path two variables can be considered: velocity v and position
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s and two inputs: throttle angle u and engaged gear g. The velocity response is directly

dependent on the throttle input of the engaged gear. For this situation, we can consider as

hybrid nature the dynamic of the automobile, because in each mode the dynamic evolves

in a continuous manner according to a differential equation. In Figure 2.1 it is possible to

analyze that by driver interventions in the form of gear changes the transitions between

modes are abrupt (SHORTEN et al., 2007).

Figura 2.1: A hybrid model of a car with a manual gearbox. Source: (SHORTEN et al.,
2007).

For the example presented above and all other examples presented by (SHORTEN et

al., 2007), it is possible to see that hybrid systems theory can be applied to modelling a

lot of complex dynamical systems. The complexity between modeling and analysis will

be different and will be dependent on the methodology and theory used. For analysis,

the main challenge is related to the fact that even simple hybrid dynamical systems

can produce an extremely complicated nonlinear behavior. Therefore, the non resolved

mathematical challenges increase with the study of switched systems, and most of them are

a consequence of hybrid dynamical systems stability problems (SHORTEN et al., 2007).

For the most part of the applications, the main interest is on the continuous dynamic

and its properties, the discrete dynamic has a secondary importance. So, instead of

studying the discrete dynamic details, it is possible to consider that the system can be

described by a set of continuous dynamics, and a switching logic is used for selecting

one of those dynamics to study. These systems, when there is a family of continuous

dynamics and a family of switchings between these dynamics, are called switched systems
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(MAZANTI, 2011). To obtain a switched system, some details of the discrete behavior will

be omitted so as to consider all possible switching patterns from a certain class. Doing that

we will be moving away to hybrid systems, mainly at the analysis stage. The switching

mechanisms are of greater importance in switching control design, but only essential

properties of the discrete behavior are normally analyzed (SHORTEN et al., 2007).

Mathematically, it is possible to describe a switched system in Rn by a family of

applications fk : Rn → Rn, k ∈ S, S being a set of indices, and a function σ : R+ → S

which is constant in parts, following the dynamic equation (MAZANTI, 2011):

ẋ = fσ(t)(x(t)), t ∈ R+ (2.1)

The state x takes values in Rd and the signal of the switching σ takes values in the set

of indices S (MAZANTI, 2011).

To better understand the problems caused by switchings and for the study of stability,

concepts and results from Lyapunov’s stability theory are necessary, and they will be

approached in the next subsection.

2.1.1 Lyapunov Stability

Consider a dynamical system which satisfies:

ẋ = f(t, x), x(t0) = x0, x ∈ Rn, (2.2)

where f(x, t) satisfies the initial conditions for the existence and uniqueness of solutions,

that is f(x, t) is Lipschitz continuous with respect to x, uniformly and piecewise continuous

in t. The point x∗ ∈ Rn is an equilibrium point of (2.2) if f(x∗, t) ≡ 0 for all t. The

equilibrium point is locally stable if all solutions that start near x∗ remain near x∗ for

all the time. If the equilibrium point x∗ is locally stable and all solutions starting near

x∗ tend towards x∗ as t→∞, so this equilibrium point is locally asymptotically stable
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(MURRAY; LI; SASTRY, 1994).

It can be considered that the equilibrium point of interest occurs at x∗ = 0 when the

shift occurs at the origin of the system. For the case where multiple equilibrium points

exist, the stability will need to be studied for each one by appropriately shifting the origin

(MURRAY; LI; SASTRY, 1994).

Definition 1. Stability in the sense of Lyapunov

The equilibrium point x∗ = 0 of Equation 2.2 is stable in the sense of Lyapunov at t = t0

if for any ε > 0 there exists a δ(t0, ε) > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε, ∀t ≥ t0 (2.3)

Remark 1. On equilibrium points Lyapunov stability is a very mild requirement. It is not

necessary that trajectories starting close to the origin tend to the origin asymptotically.

Stability is defined at a time instant t0 (MURRAY; LI; SASTRY, 1994).

Definition 2. Asymptotic Stability (MURRAY; LI; SASTRY, 1994)

We can consider that an equilibrium point x∗ = 0 of Equation 2.2 is asymptotically stable

at t = t0 if:

• x∗ = 0 is stable, and

• x∗ = 0 is locally attractive; For example, there exists δ(t0) such that Equation 2.4 is

respected.

‖x(t0)‖ < δ =⇒ lim
t→∞

x(t) = 0 (2.4)

Considering Definition 1 and Definition 2 are local definitions, we can say that they

describe the behavior of the system near an equilibrium point. It is possible to consider

that this equilibrium point is globally stable if it is stable for all initial conditions x0 ∈ Rn

(MURRAY; LI; SASTRY, 1994).
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2.1.2 The Direct Method of Lyapunov

With the direct method of Lyapunov, it is possible to study the stability of a system

without explicitly integrating the differential equation (2.2). The method is a generalization

of the idea that if there exists some "measure of energy" in a system, then we can study

the rate of change of the energy of the system to ascertain stability. To obtain more

precise results it is necessary to define what "measure of energy" means. Let Bε be a

circumference of radius ε around the origin, Bε = {x ∈ Rn : ‖x‖ < ε} (MURRAY; LI;

SASTRY, 1994).

Definition 3. Locally positive definite functions(lpdf)

A locally positive definite function is considered a continuous function V : Rn × R+ → R

if for some ε > 0 and for some continuous, strictly increasing function α : R+ × R

V (0, t) = 0 and V (x, t) ≥ α(‖x‖) ∀x ∈ Bε,∀t ≥ 0 (2.5)

a locally positive definite function is locally like an energy function. Functions which

are globally like energy functions are called positive definite functions (MURRAY; LI;

SASTRY, 1994).

Definition 4. Positive definite functions(pdf)

A positive definite function is considered a continuous function V : Rn × R+ → R if all

conditions presented on Definition 3 are satisfied and, additionally, α(p)→∞ as p→∞

(MURRAY; LI; SASTRY, 1994).

Definition 5. Decrescent functions (MURRAY; LI; SASTRY, 1994)

A decrescent function is considered a continuous function V : Rn × R+ → R if for some

ε > 0 and some continuous, strictly increasing function β : R+ → R (MURRAY; LI;

SASTRY, 1994),

V (x, t) ≤ β(‖x‖) ∀x ∈ Bε,∀t ≥ 0 (2.6)

Using the appropriate energy functions it is possible to determine the stability for a
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system using these definitions and the theorem presented in (2.7) .

V (x, t) ≤ β(‖x‖) ∀x ∈ Be,∀t ≥ t (2.7)

2.2 Switched Systems and Stability Analysis

In this dissertation, we are interested to study the stability of some classes of continuous-

time switched systems. The dynamical system presented in (2.2) typically represents these

systems whose general form is:

ẋ = fσ(·)(x(t)), x(t0) = x0 (2.8)

where x(t) ∈ Rn defined for all t ≥ 0 is the state, σ(t) is a piecewise constant function

called switching signal and t0 is the initial time. In this dissertation the switching signal

is being considered time-dependent. For this case, σ is a function of time defined as

σ(t) : I → S, being i = [t0, tf) and tf a finite constant. In addition S = {1, ..., N}

is a set of positive integers, where given a set of subsystems {f1, ..., fN}, the switching

signal is fσ(t) ∈ {f1, ..., fN} for each t ∈ I. It is clear that a discontinuity on fσ(t) is

naturally imposed by this model, since this matrix must jump instantaneously from fi

to fj for some i 6= j = 1, ..., N once switching occurs. For this case the instants of time

where fσ(t) is discontinuous are called switching times, this is, t1, t2, ..., tk, ... ∈ I where

t0 < t1 < t2 < · · · < tk < · · · (KUIAVA et al., 2013; GEROMEL; COLANERI, 2006).

The main difference between the common Lyapunov stability presented in the previous

section and the stability that will be presented in this section is that earlier, the interval

of interest was [t0,∞) and now is [t0, tf ).

Considering the class of switched systems presented in (2.8) and using an auxiliary

scalar-valued Lyapunov function, it is possible to obtain some results of asymptotic

stability of the origin from direct methods. The global asymptotic stability of the origin

is guaranteed if, using direct methods, there is a common, continuously differentiable,
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positive-definite real-valued Lyapunov function v(x(t)) for all subsystems {f1, ..., fN}, such

that
∂v

∂x
fi < −λiv, λi > 0, ∀i = 1, ..., N, x 6= 0. (2.9)

For this switched system, the equilibrium point x = 0 has the global asymptotic stability

guaranteed for any arbitrary switching signal if there is a common Lyapunov function for

all subsystems {f1, ..., fN}. For some systems’ behaviors and dimensions, sometimes it

can be very difficult to find a solution for inequality (2.9), or this solution may not exist,

making it necessary to restrict the switching signals to obtain the stability. When we

intend to study this kind of system, under restricted switching rules, the use of a common

Lyapunov function for all subsystems can be replaced by the existence of a family of

continuously differentiable, radially unbounded, positive-definite real-valued Lyapunov

functions {V1(x(t)), ..., VN(x(t))} such that (GEROMEL; COLANERI, 2006; JP, 2004):

∂Vi
∂x

fi < −λiVi, λi > 0, ∀i = 1, ..., N, x 6= 0. (2.10)

and,

Vik+1(x(tk)) ≤ Vik(x(tk)). (2.11)

where every switching time tk ∈ I at which σ switches from ik to ik+1, where ik, ik+1 ∈

S, ik 6= ik+1. Different from condition (2.9), the conditions (2.10)-(2.11) allow some

discontinuities in the Lyapunov function v(x(t)) = Vσ(t)(x(t)) at the switching times,

making them attractive for stability analysis of switched systems. For the situations

where the subsystems {f1, ..., fN} are individually stable (condition (2.10)) and v(x(t)) is

uniformly decreasing for all t ∈ I (condition (2.11)), the asymptotic stability of the origin

is then verified (KUIAVA et al., 2013; GEROMEL; COLANERI, 2006; JP, 2004).

Geromel and Colaner (2006) give a less conservative result relaxing Lyapunov functions,

and replacing them by a weaker condition which imposes that the sequence v(x(tk)),

t0, t1, ..., tk ∈ I must converge uniformly to zero, being v(x(tk)) = Vik(x(tk)) when σ
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switches to a mode ik at the switching time tk, requiring:

Vik+1(x(tk+1)) ≤ Vik(x(tk)), ik, ik+1 ∈ S, ik 6= ik+1, (2.12)

for all successive switching times k and k + 1, being σ(t) = ik ∈ S, ∀t ∈ [tk, tk+1). Figure

2.2 shows the difference between three stability conditions mentioned above. It is possible

to see, that cases (a), (b) and (c) are exemplifying the expected behavior of Lyapunov

functions when a solution is found for conditions (2.9), pair (2.10)-(2.11) and the pair

(2.10)-(2.12) respectively . Analyzing Figure 2.2 (c), it is possible to see that the piecewise

Lyapunov function allows that the current value be bigger than values in the past, for a

determined period of time. So, it is necessary to ensure that the sequence v(x(tk)), for all

k = 1, 2, ..., N , converges uniformly to zero when t→∞.

Figura 2.2: Lyapunov function for a found solution for (a) inequation (2.9), (b) inequations
(2.10)-(2.11) and (c) inequations (2.10)-(2.12) .

A common equilibrium is being considered by (BRANICKY, 1998; DECARLO et al.,

2000; LIBERZON, 2003; LIBERZON; MORSE, 1999) for all subsystems in the hybrid

and switched systems stability analysis, limiting the applicability of these systems. When

subsystems are not in equilibrium or have a different equilibria, if appropriate switching

laws are used, this system can produce interesting behaviors, its trajectory can be within

a surface around a given point. This concept was formally called practical stability for

ordinary differential equations (XU; ZHAI, 2005). Comparing with classical stability

concepts, for example, Lyapunov stability and asymptotic stability, are all considering a

system operating over an infinite interval of time. For the case of practical stability, they

also have an infinite interval of time, but for the situation where the system is operating
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with prescribed bounds and finite-time intervals, the term finite-time stability is used

(DORATO, 2006).

The sufficient conditions for finite-time stability will be presented in the following.

2.2.1 Sufficient conditions of finite-time stability of switched af-

fine systems

Let us consider the switched system presented in (2.8) as a switched affine system in

the form:

ẋ = Aσ(t)x(t) + bσ(t), x(t0) = x0, (2.13)

where σ(t) = ik ∈ S, ∀t ∈ [tk, tk+1), the finite-time stability definition will be presented in

Figure 2.3. This figure shows an illustrative example of a second order dynamical system

with ellipsoids representing the sets Ω1 and Ω2 (KUIAVA et al., 2014).

Figura 2.3: Illustrative example of the finite-time stability concept. Source:(KUIAVA et
al., 2014)

Definition 6. The switched affine system (2.13) is considered time-finite stable with

respect to the sets Ω1 ⊂ Rn and Ω2 ⊂ Rn (Ω1 ⊂ Ω2) in the time interval I = [t0, tf), if

x(t0) ∈ Ω1 implies x(t) ∈ Ω2, for all t ∈ I (KUIAVA et al., 2014).

Definition 7. The switched affine system (2.13) is considered finite-time unstable with

respect to the sets Ω1 ⊂ Rn and Ω2 ⊂ Rn (Ω1 ⊂ Ω2) in the time interval I = [t0, tf), if

there exist an instant t̄ ∈ I at which x(t̄) /∈ Ω2 for x(t0) ∈ Ω1.
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2.3 Power System Stability

Since 1920, power system stability has been considered an important problem for secure

system operation. Proof of that are some blackouts caused by power system instability.

Power systems are increasing continually and it is necessary to clarify our understanding of

the stability of the power system, and, consequently, the necessity to review the definition

and classification of power system stability. The stability of dynamic systems is similar to

that of the power system and requires the consideration of rigorous mathematical theories.

In this section there will be provided some physical motivation definitions of power system

stability that can be used with the right mathematical definitions (KUNDUR et al., 2004).

2.3.1 Definition of Power System Stability

Below there is a formal definition of power system stability which is easily understood

and readily applicable by power system engineering.

Definition 8. According to (KUNDUR et al., 2004), power system stability is the ability

of an electric power system, for a given initial operating condition, to regain the state

of operating equilibrium after being subjected to a physical disturbance, with most system

variables bounded so that practically the entire system remains intact.

This definition can be applied to an interconnected power system as a whole. Moreover,

there are cases where the loads or generator groups stability will be of interest. Our power

system is changing constantly when loads, generators and switches have its state altered.

When this happens, the initial operating condition and the nature of the disturbance are

important to stability analysis. Power systems should be able to maintain satisfactory

operating conditions when submitted to disturbances, whether small (load changes), severe

(short circuit on a transmission line or loss of a large generator) or large in nature (isolation

of the faulty elements) (KUNDUR et al., 2004).
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2.3.2 Classification of Power System Stability

The dynamic response of the high-order multivariable process comes from a modern

power system change following characteristics and responses of its devices. When all

opposing forces are balanced, the system is stable, but, an external action can cause an

imbalance of this system, generating instability. As the power system is so complex, the

classification of stability needs to be made detailing system representations and making an

appropriate analysis. These analyses are made by finding the main factors that contribute

to instability thus creating some methods to improve the stable operation (KUNDUR et

al., 2004).

For the practical analysis and resolution of the stability problems, their classification

is necessary. The following considerations are taken into account for categorization of

power systems stability (KUNDUR; GRIGSBY, 2012):

• The main variable affected in the system where the instability was observed and its

physical nature;

• The disturbance size, which will affect the prognostication and method of stability

calculation;

• Time interval, devices and processes considered to assess stability.

A general idea about the power system stability problem is presented in Figure 2.4,

where main categories and subcategories are identified. In the following there is a brief

discussion about some of them (KUNDUR et al., 2004).

• Rotor Angle Stability: Related to the ability that synchronous machines of an

interconnected power system have to keep in synchronism after a disturbance, or

related to the capacity of each synchronous machine in the system to maintain or

restore equilibrium between electromagnetic and mechanical torque. The instability

effects are related to the increase of angular swings of some generators caused by

the loss of synchronism with other generators. When a system is submitted to
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Figura 2.4: Classification of power system stability. Source: (KUNDUR et al., 2004).

a disturbance, its stability will depend on the deviations in angular positions of

the rotors resulting in sufficient restoring torques. The synchronism loss can be

from different causes, meaning that they can occur between groups of machines,

with synchronism maintained within each group after separating from each other or

between one machine and the rest of the system (KUNDUR; GRIGSBY, 2012).

According to (KUNDUR; GRIGSBY, 2012), for a better analysis and study of the

nature of stability problems, rotor angle stability will be subdivided in terms of two

subcategories:

– Small-disturbance (or small-signal) rotor angle stability: is related to the power

system’s ability to keep synchronism under small disturbances in rotor angle

stability, usually associated with insufficient damping of oscillations, where the

time frame is in the order of 10 to 20 seconds after the action;

– Large-disturbance rotor angle stability or transient stability: when a power

system is able to maintain synchronism after a severe disturbance, such as a

short circuit on a transmission line. Transient stability is mainly dependent on

the severity of the disturbance and the initial operating state of the system,

where the time frame studied is around 3 to 5 seconds after the disturbance.
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A class of rotor angle stability can be found in the literature as dynamic stability,

and, as shown in Figure 2.4 the transient stability and small-disturbance rotor angle

stability are classified as short term phenomena (KUNDUR et al., 2004).

• Voltage Stability: This stability is related to the power system’s ability to maintain

all bus voltages for a given initial operating condition after being affected by a

disturbance. It is directly related to the capacity to keep the equilibrium between

load demand and load supply from the power system. Normally these disturbances

are caused by loss of load in an area or when an action of transmission lines protection

takes place. When synchronism of some generators is lost, it can cause outages or

operating conditions that violate field current limits (VOURNAS, 1995).

According to (KUNDUR; GRIGSBY, 2012), similarly to the rotor angle stability

case, voltage stability is subdivided into two subcategories:

– Large-disturbance voltage stability: Related to system’s ability to keep voltage

stability after large disturbances, such as loss of generation, system faults or

circuit contingencies. It is related to the characteristics of the system and load,

and to the interaction between continuous and discrete controls and protections.

The time range of interest starts from a few seconds until tens of minutes;

– Small-disturbance voltage stability: Related to system’s ability to keep voltage

stability after small disturbances, such as incremental changes in system load.

It is related to the load characteristics, and continuous and discrete controls at

a given instant of time.

As presented in Figure 2.4, voltage stability can be classified as short-term or long-

term, depending on the time frame. In (KUNDUR et al., 2004) it is possible to see

its meaning, as presented below:

– Short-term voltage stability: related to the study of dynamic to the fast acting

load components, such as electronically controlled loads, induction motors and

HVDC converters, where the studied period is in the order of several seconds;
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– Long-term voltage stability: related to the study of dynamic to the slower acting

equipment, such as thermostatically controlled loads, tap-changing transformers

and generator current limiters, where the studied period can extend to several

or many minutes.

• Frequency Stability: Related to the power system’s ability to keep frequency after a

severe disturbance that will result in a significant imbalance between generation and

load. Severe perturbations in the system usually cause large excursions of frequency,

voltage, power flows and other system variables. It can be generated by the action

of controls, processes and protections that are not modeled in conventional voltage

stability or transient stability. The time period of interest for this kind of study

ranges from fractions of seconds. The frequency value variation is mainly related to

the abrupt voltage value variations and it can affect other components of the system

(KUNDUR et al., 2004).

2.4 Power System Transients

Nowadays, power utilities, electric energy consumers and also the manufacturers of

electric and electronic equipment are increasingly interested in the quality of voltage

waveforms, that are expected to be a pure sinusoidal with a given frequency and amplitude.

The waveform can be affected by different disturbances, and when it happens, the quality

of the voltage supplied by the electrical power companies is affected too. Since most of

the loads existent in power systems are inductive in nature, the reactive power needs to

be supplied by the system. For that, normally capacitor banks are installed. However,

the power quality is affected when capacitor banks are switched in electrical distribution

systems creating transients (LOBOS; REZMER; KOGLIN, 2001). Next, there will be a

quick presentation of the classification of power system transients and proposed results on

finite-time stability to a physical system affected by some of these transient cases.

According to (BOLLEN; STYVAKTAKIS; GU, 2005), the term "transient"comes from
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electric circuit theory, where it corresponds to the voltage and current components that

appear during the transition from one steady-state to another steady-state. Differential

equations can be used for electric circuit descriptions, where the solutions are the sum

of a homogeneous solution and a particular solution. The steady-state of the system is

found in particular solutions and the transient is in homogeneous solutions. A transient

will always exist when we change the stable state of the system with a switch action. For

power systems the transient has a slightly different meaning, considered as a phenomena

in voltage and current with a short duration. For this case, the time limit is not so

stiff, in a general mode transients are considered phenomena with a duration less than

one cycle and are normally related to the correct operation of circuit breakers. But, for

(DUGAN et al., 2004), transients need to be considered as a potential power-quality

problem, making necessary new requirements on characterization and analysis of transient

waveforms. Waveform characteristics and equipment performance need to be related, and

transient waveforms need to have their information extracted using theoretical methods,

and these methods need to be able to quantify site and system performance, transients need

to be considered as a potential power-quality problem, making necessary new requirements

on characterization and analysis of transient waveforms (BOLLEN; STYVAKTAKIS; GU,

2005).

One of the main challenges to the study of power system transients is a precise model

at higher frequencies and the characterization of the measured values from the transient

phenomena. These transients can be caused by lightning strokes to the wires in the

power system or to the ground or by the equipment switch in the network (BOLLEN;

STYVAKTAKIS; GU, 2005). For (STYVAKTAKIS, 2002), power system phenomena can

be classified into three main classes:

• Events that can be classified by their fundamental frequency magnitude: in this

case, voltage magnitude endures big changes for long time intervals. These kinds

of transients are normally fault-induced events, transformer saturation, induction

motor starting and others. The duration can be several seconds, to hours;
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• Events that present significant changes in the fundamental frequency magnitude but

of short duration: For this case, the voltage magnitude changes are worrisome. An

example of this kind of transient is when self healing is activated;

• Events of very short duration (transients) for which the fundamental frequency

magnitude does not offer important information.

In (BOLLEN; STYVAKTAKIS; GU, 2005) we have a power system transient classification

that considers the waveform shapes. In this case, these events can be classified into

"oscillatory transients"and "impulsive transients", a brief synthesis of this classification is

shown in Table 2.1.

Tabela 2.1: Categorization of transients based on waveform shapes.
Mode Waveform-based classification Event-based classification
impulsive transients lightning
oscillatory transients capacitor energizing

restrike during capacitor de-energizing
line or cable energizing

multiple transients current chopping
multiple restrikes
repetitive switching actions

2.4.1 Impulsive Transients

Impulsive transients are abrupt changes in the stable condition of voltage, current or

both. They do not propagate far from their source and are quickly damped by the resistive

elements in the circuit. They have rise and decay time characteristics. Normally they are

caused by lightning. We have an impulsive overvoltage induced when the lightning strike

hits a transmission line (BOLLEN; STYVAKTAKIS; GU, 2005).

2.4.2 Oscillatory Transients

These transients correspond to the homogeneous solution of linear differential equations.

They can present a damped frequency rate which can reach several megahertz. Since it
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is possible to represent the electric power system by a set of linear differential equations,

these are the "natural transients". A common cause to this kind of transient is the bank

capacitor energization. Following is the main cause of oscillatory transients (BOLLEN;

STYVAKTAKIS; GU, 2005):

• Capacitor energizing with magnification;

• Capacitor Energizing Without Magnification;

• Line Energizing.

2.4.3 Multiple Transients with a Single Cause

In real systems we normally will not have just one transient occurring with one single

action, for example, in three-phase systems, when the switching actions occur, normally

they do not happen at exactly the same time for all phases (BOLLEN; STYVAKTAKIS;

GU, 2005). In this context, a good example case is the study by (STYVAKTAKIS, 2002),

where events were considered separately from cases phase-to-phase and the phase-to-ground

voltages.

2.5 Summary of the Chapter

This chapter has presented the theory necessary for a better understanding of this

dissertation. The hybrid and switched systems definition was first presented, and next

Lyapunov’s stability theory was addressed in order to provide a better idea about the

methods used to study the switched systems stability analysis. Moreover, an illustrative

representation of the finite-time stability was presented.

Let us consider an example where system (2.13) describes a power distribution system.

The set Ω2 is the region where the system is operating with security guaranteed and the

set Ω1 will include the initial conditions created by a number of perturbations that can

occur during the operation (KUIAVA et al., 2014). This real application of the finite-time
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stability analysis is the main goal of this dissertation and will be addressed in next sections,

where first the disturbance is created by load switching and in the second approach a class

of continuous-time non-homogeneous switched system is studied.
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CHAPTER 3

FINITE-TIME STABILITY OF A CLASS OF

CONTINUOUS-TIME SWITCHED AFFINE SYSTEMS

WITHOUT A COMMON EQUILIBRIA

In this chapter, the problem of finite-time stability of some classes of continuous-time

switched systems is studied, and some sufficient conditions are presented concerning to

finite-time stability of continuous-time switched nonlinear systems without a common

equilibrium for all subsystems. In this class of switched system, the equilibrium point varies

discontinuously according to a time-dependent switching signal. The stability is discussed

with respect to a set, rather than a particular point. Using the stability preliminary result,

sufficient conditions are presented in the form of linear matrix inequalities (LMIs) for

finite-time stability of a particular class of switched affine systems without a common

equilibria. In last part of this chapter is presented an illustrative example for one of the

power system stability classes presented in previous chapter, showing the validity of the

results.

3.1 Problem Statement and Assumptions

Consider the continuous-time switched system represented by equations (2.8) presented

previously. In general, the main results in the analysis of the dynamic behavior of

continuous-time switched systems assume that all subsystems of (2.8) share a common

equilibrium (normally the origin x = 0, for example, fi(0) = 0 for all i = 1, ..., N), and

hence the stability of (2.8) is actually the stability of this common equilibrium (KUIAVA et

al., 2014; COLANERI; GEROMEL; ASTOLFI, 2008a; DECARLO et al., 2000; SHORTEN

et al., 2007). In this dissertation we will not assume the existence of a common equilibria
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for all subsystems {f1, ..., fN}. The switching signal is defined as:

σ(t) = ik ∈ S = {1, ..., N}, ∀t ∈ [tk, tk+1), (3.1)

where tk and tk+1 are two consecutive switching times that satisfy:

tk+1 − tk ≥ TD (3.2)

for all switching times t1, t2, ..., tk, tk+1, ... ∈ I and the index ik ∈ S is arbitrarily selected

at each of these switching times. For each, TD is a positive number called dwell-time of

the switching signal σ(t) (LIN; ANTSAKLIS, 2009).

Definition 9. A positive number TD is called a dwell-time of the switching signal σ(t) if

the time interval between any two consecutive switchings k and k + 1 is no smaller than

TD.

Once the switching signal σ(t) is only time-dependent and it is not considering a

common equilibria for all subsystems, an asymptotic convergence of the system trajectories

is not guaranteed to a specific equilibrium point. For this reason, stability with respect to

a set, rather than a particular point, is studied in this dissertation in terms of finite-time

stability (ZHAI; MICHEL, 2004).

Definition 10. The switched system (2.8) is considered finite-time stable with respect to

the sets Ω1 ⊂ Rn and Ω2 ⊂ Rn (Ω1 ⊂ Ω1 ) in the time interval I = [t0, tf), if x(t0) ∈ Ω1

implies x(t) ∈ Ω2, for all t ∈ I.

Remark 2. If tf is a finite scalar, that is, tf < ∞, the concept of practical stability is

also known as finite-time stability.

The first problem considered is:

Problem 1. Given the sets Ω1 and Ω2 (Ω1 ⊂ Ω2) and a time interval I = [t0, tf),

determining a scalar TD > 0 such that the switched system (2.8) without a common
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equilibria is finite-time stable with respect to Ω1 and Ω2 in the time interval I, for every

switching signal σ(t) satisfying (3.1) and (3.2) with a dwell-time TD (KUIAVA et al.,

2014).

With the solution of Problem 1, it is possible to derive some results on finite-time

stability for a particular class of switched systems without a common equilibria, for

example, the switched affine system presented in (2.13), where the switching signal σ(t) is

given by (3.1) and (3.2). Considering all matrices Ai, i = 1, ..., N as being nonsingular,

each subsystem has a single equilibrium point at xei = −A−1
i bi, i = 1, ..., N (KUIAVA et

al., 2014).

In chapter 4, there will be presented some sufficient results on finite-time stability

for a more general class of switched system (and this is the main contribution of this

dissertation), where the switched affine system (2.13) is a particular case.

Switched affine systems can arise naturally in many applications, for example in

electric power systems. These systems can be affected by unexpected changes on their

structures and operation, caused by the load demand and system topology for example,

and, consequently, on their equilibrium points. In the next sections there will be presented

examples in power system stability area, where the system modeling will be made by

considering the switched affine systems (2.13).

The problem of interest is similar to the one studied by (KUIAVA et al., 2014), that

determines the conditions (in terms of dwell-time TD) under which the system trajectories

(starting on x(t0) ∈ Ω1) will be confined into the security region of operation Ω2 for the

interval I. So, the second considered problem is presented bellow.

Problem 2. Given the sets Ω1 and Ω2 (Ω1 ⊂ Ω2) and a time interval I = [t0, tf),

determining a scalar TD > 0 such that the switched affine system (2.13) is finite-time

stable with respect to Ω1 and Ω2 in the time interval I, for every switching signal σ(t)

satisfying (3.1) and (3.2) with a dwell-time TD (KUIAVA et al., 2014).
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3.2 Main Results

Next, two theorems will be presented to provide sufficient results for Problems 1 and

2. These theorems were proposed in (KUIAVA et al., 2013).

Theorem 1. Let the sets Ω1 ⊂ Rn and Ω2 ⊂ Rn (Ω1 ⊂ Ω2) and a time interval I = [t0, tf )

be given. If there exists a scalar TD > 0, a family of radially unbounded, real-valued

functions {V1, . . . , VN} satisfying local Lipschitz conditions in Ω2 and a positive number

µ > 1 such that

(i) V̇i(x(t)) ≤ 0, ∀i ∈ S, ∀t ∈ I, ∀x ∈ Ω2,

(ii) Vik+1(x(tk+1)) ≤ µVik(x(tk+1 − TD)), ∀ik, ik+1 ∈ S, ∀t ∈ I, ik 6= ik+1,∀x ∈ Ω2,

(iii)µN̄(t0,tf ) max
i∈S

sup
x∈Ω1

Vi(x(t0)) < min
i∈S

inf
x∈Ωc2

Vi(x(t)), ∀t ∈ I,

then, the switched system (2.8) is finite-time stable with respect to Ω1 and Ω2 in the time

interval I for every switching signal σ(t) satisfying (3.1)-(3.2) with a dwell-time TD.

Proof 1. The proof is by contradictions and can be checked on (KUIAVA et al., 2012,

2013).

Let us consider the following set Ω1 and Ω2:

Ω1 =
N⋂
i=1

Ω1i , Ω2 =
N⋃
i=1

Ω2i , (3.3)

where,

Ω1i = {x∈Rn : (x−xei)′Pi(x−xei)+di<α} , (3.4)

Ω2i = {x∈Rn : (x−xei)′Pi(x−xei)+di<β}

α and β being positive scalars that satisfy α < β, Pi ∈ Rn×n a positive matrix, di a

nonnegative scalar, xei = −A−1
i bi the equilibrium point of the subsystem i, where Ai is

nonsingular and i = 1, ..., N (KUIAVA et al., 2014). Considering the sets Ω1 and Ω2
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given in the form of (3.3), the theorem presented bellow provides sufficient conditions for

finite-time stability of the switched affine system (2.13). The proposed result was created

applying Theorem 1 to Problem 2, assuming a piecewise Lyapunov function given by:

v(x(t)) = Vσ(t)(x(t)) = (x− xeσ(t))
′Pσ(t)(x− xeσ(t)) + dσ(t) (3.5)

Theorem 2. Let the sets Ω1 and Ω2 be given in the form of (3.3), the positive definite

matrices P1, ..., PN , the scalars d1, ..., dN > 0, α and β (α < β) are known. If the condition

A′iPi + PiAi 4 0 is satisfied for all i ∈ S = {1, ..., N}, and, there exist a scalar TD > 0

and a number µ such as that the following matrix inequalities are satisfied:

 eA
′
iTDPje

AiTD − µPj eA
′
iTDPj∆xeij

∗ ∆x′eijPj∆xeij + (dj − µdi)

 � 0, ∀i, j ∈ S, i 6= j,(3.6)

1 < µ < N̄(t0,tf )
√

β
α

(3.7)

where ∆xeij = xei − xej , then the switched affine system (2.13) is finite-time stable with

respect to Ω1 and Ω2 in the interval I, for every switching signal σ(t) satisfying (3.1) and

(3.2) with a dwell-time TD (KUIAVA et al., 2013).

Proof 2. The proof can be checked on (KUIAVA et al., 2012, 2013).

In the next section there will be presented an illustrative example in the power system

stability area and its corresponding results, which demonstrate the effectiveness of the

main result on finite-time stability for a switched system without a common equilibria

and considering a time dependent switching control.

3.3 Numerical Example 1

In the last decades, the dominant stability problem on most systems has been the

transient instability, being the focus of much of the industry’s attention concerning system

stability. This problem creates the necessity to clarify the understanding of different types
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of instability, how they are interrelated, and their physical nature (KUNDUR et al., 2004).

Below, there will be presented the definition and classification of power systems stability

and the applicability of the proposed result on finite-time stability to a physical system

affected by some of these instability cases.

3.3.1 Tests and Results

Considering the power system stability classification presented in section 2.3, below is

presented a case related to rotor angle stability classification. Fig. 3.1 shows a typical

arrangement of a distributed system with synchronous generation, usually viewed in

cogeneration plants in the sugarcane industry of Brazil (KUIAVA et al., 2014). The

same system was used by Kuiava (2014), but one contribution of this dissertation is

the application of results presented in 3.2 considering the dynamic load modeling. The

cogeneration plant (G) is represented by a gas-turbine driven synchronous generator

injecting 10MW to the grid. The synchronous generator is modeled by a third-order model

Figura 3.1: One-line diagram of the study system. Source: (KUIAVA et al., 2014).
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given by (ARRIFANO et al., 2007):

δ̇(t) = wsw(t)− ws, (3.8)

ω̇(t) = 1
2H [Pref − E ′q(t)Id(t)], (3.9)

Ė ′q(t) = 1
τ ′d0

[Efd(t)− (Xd −X ′d)Id(t)− E ′q(t)], (3.10)

where δ(t) and ω(t) are the generator rotor angle and angular speed, respectively; E ′q(t) is

the quadrature axis transient internal voltage of the generator and Efd(t) is the voltage

applied to the field circuit. Detailed information regarding this system model can be

obtained in (ARRIFANO et al., 2007).

A set of local parallel loads (L1 and L2) is connected to bus 3. These loads can be

active or not during an operating period of the system. The value of the actual equivalent

local load depends on which of the local loads are active. This representation describes

the operation of an industrial power plant in cogeneration scheme, at which the power

excess can be sent to the bulk power system (ARRIFANO et al., 2007). In addition,

considering the power system stability classification, this load switching is assumed to be

a small disturbance and thus the rotor angle stability can be studied in accordance to the

small-signal angle stability.

The synchronous generator is considered to be equipped with a first order model of an

automatic voltage regulator (AVR) given by

Ėfd(t) = 1
Ta

(−Efd(t) +Ka(Uref − |Ut(t)|)) , (3.11)

where |Ut(t)| is the absolute value of the generator terminal voltage, while Ka and Ta are,

respectively, the gain and time constant of the AVR.
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In addition, the local load is represented by a dynamic load model given by

ġL(t) = 1
TLi

(P0i − gL(t)|U3|2), (3.12)

ḃL(t) = 1
TLi

(Q0i − bL(t)|U3|2), (3.13)

where i = 1, 2. Also, gL(t) and bL(t) are, respectively, the real and imaginary parts of the

ith load admittance; TLi is the load time constant, P0i and Q0i are the load active and

reactive equivalent powers in steady-state, |U3| is the absolute value of the load terminal

voltage, where I = [t0, tF ) is the time interval of interest, being t0 and tF , respectively,

the initial and final instants of time. The operating modes are described in Table 3.1.

Tabela 3.1: Operating modes of the system.
Mode (i) L1 L2 Equivalent active power Equivalent reactive power

1 active active 6.4 MW 2 MVAr
2 active inactive 3.2 MW 1 MVAr
3 inactive active 3.2 MW 1 MVAr
4 inactive inactive 0 MW 0 MVAr

The nonlinear model of the system shown in Figure 3.1 was created using the equations

(3.8)-(3.13), resulting in the following set of differential equations:

δ̇(t) = wsw(t)− ws,

ω̇(t) = 1
2H

[
Pref − E ′q(t)(E ′q(t)G22 −G21cos(δ)−B21sin(δ))−D(w(t)− ws)

]
,

Ė ′q(t) = 1
τ ′d0
{Efd(t)− E ′q(t) + E ′q(t)(Xd −X ′d)(G21sin(δ)−B21cos(δ) +B22)}

[(E ′q(t)sin(δ)− Utsin(θ))sin(δ) + (E ′q(t)cos(δ)− Utcos(θ))cos(δ)]},

Ėfd(t) = 1
Ta

[
−Efd(t) +Ka(Uref − |Ut(t)cos(θ)|)

]
, (3.14)

ġL(t) = 1
TLi

(P0i − gL(t)|U3|2),

ḃL(t) = 1
TLi

(Q0i − bL(t)|U3|2)

Parameters G22, G21, B21 and B22 are functions of operating conditions, where G22, G21,

B21 and B22 are elements of the reduced admittance matrix, which in turn is obtained from
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the expanded bus admittance matrix. This matrix reflects the topological characteristics

of the distribution network, including the reactance and resistance of the line 2− 3, the

reactance of the transformers and the load impedances (KUIAVA et al., 2014). Detailed

information about the equations of the presented model and their respective parameters

can be obtained in (KUNDUR, 1994).

The focus of this system representation is to study the electromechanical transients

of the generator due to load switching. For this purpose, the state-space model for the

distribution system with synchronous generator shown in Figure 3.1 is a composition of

equations (3.14), and can be written in the compact form

Σ̄A =



˙̄x(t) = f̄ (x̄(t), p̄(t))

˙̄p(t) = 0

x̄(t0) = x̄t0 , p̄(t0) = p̄t0 , p̄(t1) = p̄t1 , · · ·

(3.15)

where t ∈ I, x̄(t) = [δ(t) ω(t) E ′q(t) Efd(t) gL(t) bL(t)]′ is the vector with the continuous

state variables, f̄ : R6 × R2 → R6 is a nonlinear vector function obtained from the

right-hand side of (3.8)-(3.13), t1 < t2 < · · · < tk < · · · ∈ I, are the time instants of load

switching; so, p̄(t) = p̄tk ∈ S̄ for all t ∈ [tk, tk+1), where tk and tk+1 are two consecutive

load switching times that satisfy tk+1 − tk ≤ TD, where TD is a positive number.

The general form of the system model used for finite-time stability studies with load

switching is a generalization of Σ̄A for power systems described by a n-dimensional state

vector and a q-dimensional piecewise constant vector:

ΣA =


ẋ(t) = f (x(t), p(t))

ṗ(t) = 0

x(t0) = xt0 , p(t0) = pt0 , p(t1) = pt1 , · · ·

(3.16)

where t ∈ I, t0 < t1 < · · · < tk < · · · ∈ I, are the time instants of a load switching

sequence. Also, x(t) ∈ Rn is the vector with state variables, p(t) ∈ S is the vector with

the piecewise constant parameters, f : Rn × Rq → Rn is the nonlinear vector function.
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The equilibrium point xe of the system

ẋ(t) = f (x(t), p(t)) (3.17)

is calculated, such that (f(xe, p) = 0) for a specific operating condition, in this case, with

different load levels. For the simulated case, four different load levels are considered, as

shown in Table 3.1. So, xe1, xe2, xe3 and xe4 are calculated.

Considering a linearized representation of (3.17) in the vicinity of the equilibrium

points xe1, xe2, xe3 and xe4, the ith linearized model is given in the state-space form as

(3.18) (KUIAVA et al., 2013).

∑
i

: ∆ẋi(t) = Ai∆xi(t) (3.18)

where Ai ∈ R6×6 is the ith state matrix, ∆xi(t) = x(t)− xei , and i = 1, 2, 3, 4. So, ∑i is

the linear approximation of (3.17) in the vicinity of its equilibrium point xei . To transform∑
i into an affine system, the process presented in (3.19) was made.

∑
i

: ∆ẋi(t) = Ai∆xi(t)⇒

ẋ(t)− ẋei = Ai(x(t)− xei)⇒ (3.19)

ẋ(t) = Aix(t)− Aixei ⇒∑̂
i

: ẋ(t) = Aix(t) + bi

where bi = −Aixei and i = 1, 2, 3, 4 (KUIAVA et al., 2013). For the time interval of interest

I = [t0, tf), we modeled the set of affine systems ∑̂1,
∑̂

2,
∑̂

3 and ∑̂4 as switched affine

system and used to study the finite-time stability of the system during the time interval I,

where switchings can occur among the systems ∑̂2,
∑̂

3 and ∑̂4 (KUIAVA et al., 2013).

So, in order to study the finite-time stability of distributed system with synchronous

generator under consideration, the switched affine system presented in (2.13) was adopted,
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where matrixes Aσ(t) and bσ(t) are presented in (3.20)-(3.23).

A1 =



0 377.0 0 0 0 0

−0.3 −0.7 −0.8 0 −0.2 0.1

0 0 −0.3 0.2 −0.1 −0.1

−142.5 0 −2304.1 −100 106.9 299.3

−10.5 0 −107.2 0 −96.6 19.9

−3.3 0 −33.5 0 1.9 −96.4



b1 =



377

−1.8

−0.2

−2315.8

−168.2

−52.6



(3.20)

A2 =



0 377 0 0 0 0

−0.3 −0.7 −0.7 0 −0.3 0.1

0 0 −0.3 0.2 −0.1 −0.1

−47.9 0 −1999.7 −100 81.9 268.7

−2.5 0 −54.7 0 −102.9 10.4

−0.8 0 −17.1 0 0.8 −102.2



b2 =



377

−1.7

−0.2

−1942.7

−83.9

−26.2



(3.21)

A3 =



0 377 0 0 0 0

−0.3 −0.7 −0.7 0 −0.3 0.1

0 0 −0.3 0.2 −0.1 −0.1

−47.9 0 −1999.7 −100 81.9 268.7

−2.5 0 −54.7 0 −102.9 10.4

−0.8 0 −17.1 0 0.8 −102.2



b3 =



377

−1.7

−0.2

−1942.7

−83.9

−26.2



(3.22)
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A4 =



0 0.377 0 0 0 0

−0.3 −0.7 −0.7 0 −0.3 0.1

0 0 −0.3 0.2 −0 −0.1

17.3 0 −1719.5 −100 60.3 237.5

0 0 0 0 −107.4 0

0 0 0 0 0 −107.4



b4 =



377

−1.7

−0.2

−1604.2

0

0



(3.23)

With values of matrixes Ai and vectors bi, it is possible to calculate the equilibrium

point for each subsystem by xei = −A−1
i bi. The numerical values of the parameters used

are: ω = 379.99rad/s, H = 1.5s, D = 0.2, |U1| = 1 p.u., R23 = 0.751 p.u., X23 = 0.242 p.u.,

XT1 = XT2 = 0.05 p.u., Pm = 0.1 p.u.. So the four equlibrium points calculated are

presented on (3.24):

xe1 =



0.6762

1.0000

0.9774

0.9240

0.6238

0.1949



xe2 =



0.9618

1.0000

0.9379

0.7148

0.3034

0.0948



xe3 =



0.9618

1.0000

0.9379

0.7148

0.3034

0.0948



xe4 =



1.2136

1.0000

0.9116

0.5764

0

0



(3.24)

Let TD = 6s, t0 = 0s and tf = 24s. In (3.25) is shown the allowable operating range of

the system.

X̄ := {[δ(t) ω(t) E ′q(t) Efd(t) gL(t) bL(t)]′ ∈ R6 :

−2 ≤ δ ≤ 2; 0.95 ≤ ω ≤ 1.05; 0.9 ≤ E ′q ≤ 1.1; (3.25)

0.7 ≤ Efd ≤ 1.1; 0.2 ≤ gL ≤ 0.8; 0.05 ≤ bL ≤ 0.3}

In the sequence, there was specified a set of points x̂1, ..., x̂m that should be in Ω1 and a

set of points x̄1, ..., x̄m that should be in Ω2, where the used points are presented in (3.26)
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and (3.27) respectively.

x̂1 = [2.0; 1.05; 1.1; 1.1; 0.8; 0.3]′; (3.26)

x̂2 = [−2.0; 0.95; 0.9; 0.7; 0.2; 0.05]′;

x̄1 = [2.2; 1.155; 1.21; 1.21; 0.88; 0.33]′; (3.27)

x̄2 = [2.4; 1.26; 1.32; 1.32; 0.96; 0.36]′;

Theorem 2 was used to study the finite-time stability of the switched system (2.13).

The parameter α was specified as 0.85 and β as 0.86. We specified µ = 0.99µ̄, where µ̄

is the upper bound of µ. The calculated sets Ω1 and Ω2 are shown in Figure 3.2 where

both of them are constituted by border and inside. This plot corresponds to the cut of

the actual estimate of the sets Ω1 and Ω2 in the hyperplane defined by the system states

δ and ω. The set Ω2 represents a realistic operating region of a power system where the

rotor speed can vary depending on the rotor angle value, in other words, Ω2 is the region

where the system can operate with safety.

Figura 3.2: The sets Ω1 and Ω2 representing a realistic operating region of the power
distribution system.

In Figure 3.3 we can see the rotor speed behavior during the studied interval. It is



52

possible to check that in switching times the curve is altered, meaning that the proposed

model is responding to the load variations.

Figura 3.3: Rotor speed of the switched affine system for TD = 6s.

The same happens to the generator rotor angle, as can be checked in Figure 3.4.

Figura 3.4: Rotor angle of the switched affine system for T = 6s.

The system trajectory for an initial condition in Ω1 and for a switching signal with

a dwell-time TD = 6s is shown in Figure 3.5. It can be seen that the trajectory remains

confined in Ω2 for all t ∈ I, so we can conclude that this is stable in terms of finite-time

stability.

Figure 3.6 shows the value of the Lyapunov function for this same system trajectory.



53

Figura 3.5: System trajectory for an initial condition x0 ∈ Ω1 and a dwell-time TD = 6s.

Analyzing this figure and considering that µ is lower than 1, it is possible to check that the

Lyapunov function has an expected dynamic, meaning that its initial value is the biggest

value, and for the following switchings, the peak values are lower than the previous switch

and bigger than the latter switch value.

Figura 3.6: Lyapunov function for a system trajectory starting in Ω1 and with dwell-time
TD = 6s.

Figure 3.7 shows a system trajectory starting outside of Ω1 and not confined in Ω2 for

all the time, representing an instability case in terms of finite-time stability. It was caused

by an abrupt change to the initial values, meaning that the trajectory is not starting close

to the equilibrium value, in this case the δ equilibrium changed from 0.6762 to 1.3525.
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Figura 3.7: System trajectory starting for an unstable situation for TD = 6s.

3.4 Summary of the Chapter

This chapter has presented the problem of finite-time stability of some classes of

continuous-time switched systems. For the finite-time stability analysis, were considered

continuous-time switched nonlinear systems without a common equilibrium for all subsys-

tems. The example used to implement the finite-time stability analysis presented in this

chapter was the load switching in a power system. This is a different approach of the

stability theory and it can be proved that it is a valid method that can complement the

stability analysis of the power systems submitted to disturbances of such nature.

In the next section the finite-time stability will be studied for the cases where non-

homogeneous switched systems appear.
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CHAPTER 4

FINITE-TIME STABILITY OF A CLASS OF

CONTINUOUS-TIME NON-HOMOGENEOUS SWITCHED

SYSTEMS

In this chapter the main results of this dissertation are presented. The chapter is

concerned with the finite-time stability problem of a class of linear continuous-time non-

homogeneous switched systems under a time-dependent switching signal constrained by a

dwell-time TD, similar to the results presented in the last chapter. Once the finite-time

stability is guaranteed, one of the main results is guaranteeing that any system trajectory

starting in a subset Ω1 of the state-space will remain in Ω2 ⊃ Ω1 over a finite time interval

and for any switching sequence with a dwell-time TD. The finite-time stability conditions

are provided in the form of bilinear matrix inequalities (BMIs), which can be transformed

to linear matrix inequalities (LMIs) by means of a step-by-step procedure that includes

the computation of the sets Ω1 and Ω2 by the knowledge of the system’s operating range.

The illustrative example is used to show the validity of the results.

4.1 Problem Statement and Assumptions

Consider I = [t0, tf) a finite time interval, where t0 is the initial time and tf is a

finite and positive number such that tf > t0. Hence, since tf is finite, our interest is

on finite time stability. In this chapter, our interest is on the class of continuous-time

non-homogeneous switched systems, described by a set of subsystems Σi in the general

form

Σi : ẋ(t) = Aix(t) + gi(t), x(t0) = x0, (4.1)
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where Ai ∈ Rn×n is an invertible and Hurwitz matrix, gi : I → Rn is a known function

of class C1, i ∈ S = {1, · · · , N}, where N is the number of subsystems of the switched

system and x0 is the initial state. It is important to emphasize that the main difference

between (4.1) and the switched system class presented in Chapter 3 is the independent

term, that before was constant and now is time-varying. This allows us to study, for

example, dynamic systems with time-varying input signals.

The active subsystem at each time instant t ∈ I is regulated by a switching sequence

σ over I that belongs to the set

DT,I := {σ = ((t0, i0), . . . , (tk−1, ik−1), (tk, ik), . . .) : ik−1, ik ∈ S, tk − tk−1 ≥ T,

tk−1, tk ∈ I, k = 1, 2, · · · } ,

where TD is the dwell-time of σ and the instants t1, t2, · · · ∈ I are the switching times.

The switching sequence adopted here is the same as the one adopted in the last chapter

(see (3.1) and (3.2)). The difference here is only the definition of the set DT,I composed

by all the possible switching sequences for a given TD and time interval I.

Thus, the subsystem Σik−1 is assumed to be active for all t ∈ [tk−1, tk) and at tk the

system is switched to Σik , where ik−1, ik ∈ S, ik−1 6= ik and k = 1, 2, · · · . This means that

the trajectory x(t) of the switched system is the trajectory of the subsystem Σik−1 for all

t ∈ [tk−1, tk). Basically, the index ik ∈ S does not depend on the state, only on the time.

So, the family of switching sequences in DT,I is time-dependent one.

Also, for a switching sequence σ ∈ DT,I , the number of switching times is finite and

equal to NDT,I (σ).

Remark 3. For a certain time interval I and constant TD, the maximum number of

switching times that a switching sequence can possess is N̄DT,I = max
σ∈DT,I

NDT,I (σ).

For the finite-time stability analysis of the switched system (4.1), notice that for the
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time interval [tk−1, tk), the solution of (4.1) can be written as

x(t) = xzi(t) + xzs(t) = eAik−1 (t−tk−1)x(tk−1) +
∫ t

tk−1
eAik−1 (t−τ)g(τ)dτ, (4.2)

where t ∈ [tk−1, tk), xzi(t) and xzs(t) are, respectively, the zero-input and zero-state

responses (CHEN, 1999).

We consider that the zero-state response xzs(t) for t ∈ [tk−1, tk) can be written as

xzs(t) =
∫ t

tk−1
eAik−1 (t−τ)g(τ)dτ = hik−1(t)− eAik−1 (t−tk−1)hik−1(tk−1), (4.3)

where hik−1(t) is such that ḣik−1(t) = Aik−1hik−1(t) + gik−1(t). This allows us to write the

solution of (4.1) for the time interval [tk−1, tk) in the form

x(t) = eAik−1 (t−tk−1)
(
x(tk−1)− hik−1(tk−1)

)
+ hik−1(t). (4.4)

This form of writing the solution of (4.1) has two terms, one describing the transient

behavior of x(t), and the other, that is, hik−1 , the steady-state of x(t).

In this dissertation, we are particularly interested in those switched systems where

the functions hi(t), i = 1, · · · , N , are limit cycles or equilibrium points of their respective

subsystems. Also, our interest is not in studying the stability of these equilibrium points

and limit cycles, but the asymptotic behavior of (4.1). In order to clarify this point, let us

consider the following example.

Example 1. Consider the switched system with two subsystems given by

Σi : ẋ(t) = aix(t) + gi(t), x(t0) = x0, (4.5)

where x(t) ∈ R, ai is a negative real scalar and i ∈ S = {1, 2}. Also, g1(t) = Am cos(ωt)

and g2(t) = 0 for all t ∈ I, being Am and ω, respectively, the amplitude and frequency of

the sinusoidal function. Let us assume the active subsystem at each time instant t ∈ I is

regulated by a switching sequence σ ∈ DT,I , where TD is a known positive constant. This
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switched system can arise, for example, in AC-DC power inverters. Consider that the

subsystem Σ1 is active for all t ∈ [tk−1, tk). So, the solution of (4.5) for this time interval

can be written as

x(t) = xzi(t) + xzs(t) = ea1(t−tk−1)x(tk−1) + xzs(t),

where the zero-state response xzs(t) can be written as

xzs(t) =
∫ t

tk−1
ea1(t−τ)Am cos(ωτ)dτ = h1(t)− ea1(t−tk−1)h1(tk−1),

where

h1(t) = Am√
a2

1 + ω2
cos(ωt+ φ), (4.6)

being φ = π + tan−1
(
w
a1

)
. The function h1(t) is then a limit cycle of the subsystem Σ1.

On the other hand, h2 = 0, which means that h2 is an equilibrium point of Σ2.

Notice that, for a positive scalar τ = π
ω
s, we have that

‖h1(t)− h2(t)‖ ≤ ‖h1(t− τ)− h2(t− τ)‖

for all t ∈ [t0 +τ, tf ). The existence of this positive scalar τ is important for the application

of the results on finite-time stability for the switched system (4.1) with two subsystems, as

they will be presented in Theorem 4.

Given a time interval of interest I, an initial state x0 and a switching sequence

σ ∈ DT,I , the focus of this dissertation is to study the asymptotic behavior of the solutions

of (4.5), that is, the behavior of x̃(t) = x(t)− hi(t), being the value of the index i ∈ S at

each time instant t ∈ I regulated by σ.

Assuming, for example, that subsystem Σ1 is active for all t ∈ [tk−1, tk), then the
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asymptotic behavior of the solution of (4.5) for this time interval is

x̃(t) = ea1(t−tk−1) (x(tk−1)− h1(tk−1)) .

In subsection (4.4.2) will be presented results for this example using the results on

finite-time stability proposed further below.

The concept of finite-time stability to the system (4.7) is also based on behavior of

switched system solutions in sets Ω1 and Ω2 as discussed in previous chapter. So, the

extension of the concept for (4.7) is given as:

Definition 11. Given a time interval of interest I = [t0, tf), a positive scalar TD, a

switching sequence σ ∈ DT,I and a pair of subsets Ω1 and Ω2 of Rn such that Ω1 ⊂ Ω2, the

system (4.1) under the switching sequence σ is said to be finite-time stable with respect to

(I,Ω1,Ω2) if x̃(t0) ∈ Ω1 implies x̃(t) ∈ Ω2 for all t ∈ I, where x̃(t) = x(t) − hi(t), being

the value of the index i ∈ S at each time instant t ∈ I regulated by σ.

The main results on finite-time stability for this class of switched systems are presented

in the next section.

4.2 Main Results

Let us first consider the class of nonlinear continuous-time non-homogeneous switched

systems described by a set of subsystems Σ̂i in the general form

Σ̂i : ẋ(t) = fi (x(t)) + gi(t), (4.7)

where x ∈ Rn is the state, fi : Rn → Rn is a nonlinear function of x, gi : I → Rn is a

known time-varying function of class C1. The proposed results on finite-time stability

from (4.7) are useful for the development of results on finite-time stability of the system
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(4.1).

The next theorem provides sufficient conditions of finite time stability for the switched

system (4.7).

Theorem 3. Let the sets Ω1 ⊂ Rn and Ω2 ⊂ Rn (Ω1 ⊂ Ω2), a time interval I = [t0, tf ), a

positive scalar TD and a switching sequence σ ∈ DT,I be given. If there exists a family of

radially unbounded, real-valued functions {V1, . . . , VN} satisfying local Lipschitz conditions

in Ω2 and a scalar µ > 1 such that

(i) V̇i(x(t), t) ≤ 0,

(ii) Vik(x(tk), tk) ≤ µVik−1(x(tk − TD), tk − TD),

(iii) µN̄DT,I max
i∈S

sup
x∈Ω1

Vi(x(t0), t0) < min
i∈S

inf
x∈∂Ω2

Vi(x(t), t),

∀ik−1, ik ∈ S, ∀t ∈ I, ik−1 6= ik, ∀x ∈ Ω2, then the switched system (4.7) governed by the

switching sequence σ is finite-time stable with respect to (I,Ω1,Ω2).

Proof 3. The proof is by contradiction. Let us consider x(t) as being the corresponding

trajectory of (4.7) under a switching sequence σ ∈ DT,I for an initial time t0 and state

x(t0) = x0 ∈ Ω1. Let us assume that there exists a t̄ ∈ I such that x(t̄) /∈ Ω2 for the first

time. Let the switching times be denoted beforehand. For a switching sequence σ ∈ DT,I , we

have that fik−1 is active for all t ∈ [tk−1, tk), ik−1 ∈ S, k = 1, . . . ,m, where tk = tk−1 + Tk

with Tk ≥ T .

Let v(x(t), t) = Vi(x(t), t), i ∈ S, be a piecewise Lyapunov function for the switched

system (4.7), where Vi is switched among the elements of the set {V1, . . . , VN} in accordance

with the switching sequence σ, so v(·) = Vik−1(·), ik−1 ∈ S, for all t ∈ [tk−1, tk). Since Vi,
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i ∈ S, satisfies local Lipschitz conditions, we have

• σ(t) = im ∈ S, ∀t ∈ [tm, t̄],

v(x(t̄), t) = Vim(x(t̄), t̄) = Vim(x(tm), tm) +
∫ t̄

tm
V̇im(x(τ), τ)dτ

• σ(t) = im−1 ∈ S, ∀t ∈ [tm−1, tm),

v(x(t−m), t−m) = Vim−1(x(t−m), t−m) = Vim−1(x(tm−1), tm−1) +∫ tm

tm−1
V̇im−1(x(τ), τ)dτ

...

• σ(t) = i0 ∈ S, ∀t ∈ [t0, t1),

v(x(t−1 ), t−1 ) = Vi0(x(t−1 ), t−1 ) = Vi0(x(t0), t0) +
∫ t1

t0
V̇i0(x(τ), τ)dτ,

where V̇i(x(t), t) = ∂Vi(x(t),t)
∂x(t)

dx(t)
dt

+ dVi(x(t),t)
dt

denotes the derivative of V̇i(x(t), t) along x(t)

while subsystem i ∈ S is active. Using the inequality (i) of Theorem 3 in the above sequence,

we have

v(x(t̄), t̄) = Vim(x(t̄), t̄) ≤ Vim(x(tm), tm) (4.8)

Vim−1(x(t−m), t−m) ≤ Vim−1(x(tm−1), tm−1) (4.9)
...

Vi0(x(t−1 ), t−1 ) ≤ Vi0(x(t0), t0) = v(x(t0), t0) (4.10)

Now, we show that v(x(tk), tk) ≤ µv(x(tk−1), tk−1) for any two consecutive switching
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times. For that, using the inequality (ii) of Theorem 4, we have

v(x(tk), tk) = Vik(x(tk), tk)

≤ µVik−1(x(tk − TD), tk − TD)

≤ µ

(
Vik−1(x(tk−1), tk−1))+

∫ tk−TD

tk−1
V̇ik−1(x(τ), τ)dτ

)
≤ µVik−1(x(tk−1), tk−1)=µv(x(tk−1), tk−1), (4.11)

where the second inequality maintains once that for every tk − TD ≥ 0 it is true that

V̇ik−1(x(t), t) ≤ 0.

Now, using inequalities (4.11) and (4.8)-(4.10) it follows that

v(x(t̄), t̄)≤Vim(x(tm), tm)≤µVim−1(x(tm−1), tm−1) ≤ · · · ≤ µmVi0(x(t0), t0) =

µmv(x(t0), t0)⇒ v(x(t̄), t̄) ≤ µmv(x(t0), t0), (4.12)

where m is the number of switching times on the time interval [t0, t̄).

Let us consider the maximum number of switching times NDT,I that a switching sequence

of DT,I can possess (which satisfies NDT,I ≥ m). Hence, it follows from the inequality in

(4.12) and condition (iii) that

v(x(t̄), t̄) ≤ µmv(x(t0), t0)

≤ µm max
i∈S

sup
x∈Ω1

Vi(x(t0), t0)

≤ µN̄DT,I max
i∈S

sup
x∈Ω1

Vi(x(t0), t0)

< min
i∈S

inf
x∈∂Ω2

Vi(x(t̄), t̄),

for a µ > 1. So, we have that v(x(t̄), t̄) < mini infx∈∂Ω2 Vi(x(t̄), t̄), which implies that

x(t̄) /∈ Ωc
2. This leads to a contradiction with the original assumption. So, there is not a

t̄ ∈ [t0, tf ) such that x(t̄) ∈ Ωc
2, which means that x(t) ∈ Ω2, ∀t ∈ [t0, tf ).

Obviously, for general switched systems in the form (4.7), finding a family of functions
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Vi(x(t)), i ∈ S, satisfying the conditions of Theorem 3 may be difficult, once the constraints

(i)-(ii) must be checked along the time interval I. However, for the special class of non-

homogeneous switched systems in the form of (4.1), more applicable results on finite-time

stability can be obtained from the general result presented in Theorem 3. These results on

finite-time stability for the switched systems in the form of (4.1) are presented in Theorems

4 and 5.

4.2.1 Results on finite-time stability for the switched system

(4.1) with two subsystems, Σ1 and Σ2.

Let us consider the switched system (4.1) with only two subsystems, Σ1 and Σ2,

S = {1, 2}, and also that there exists a positive scalar τ such that ‖h1(t)− h2(t)‖ ≤

‖h1(t− τ)− h2(t− τ)‖ for all t ∈ [t0 + τ, tf). This type of switched system can appear,

for example, in power converters.

Based on the idea of studying the asymptotic behavior of the solutions of (4.1), let us

consider the sets Ω1 and Ω2 in the following form

Ω1 = Ω11

⋂
Ω12 , Ω2 = Ω21

⋃
Ω22 , (4.13)

where,

Ω1i =
{
x∈Rn : (x−zi)′Pi(x−zi)+di ‖zi − zj‖2<α, zi∈Hi, zj∈Hj, j 6= i ∈ S

}
,

Ω2i =
{
x∈Rn : (x−zi)′Pi(x−zi)+di ‖zi − zj‖2<1, zi∈Hi, zj∈Hj, j 6= i ∈ S

}
,

and i = 1, 2, being α a positive scalar satisfying α < 1, Pi ∈ Rn×n, di ∈ R a positive scalar

and

Hi = {zi ∈ Rn : zi = hi(t), t ∈ I} .

Theorem 4. Consider the switched system (4.1) with two subsystems, Σ1 and Σ2. Let
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the time interval I = [t0, tf ), a positive scalar TD such that

‖h1(t)− h2(t)‖ ≤ ‖h1(t− TD)− h2(t− TD)‖

for all t ∈ [t0 + TD, tf ) and a switching sequence σ̄ ∈ DT,I be given. If there exist positive

definite matrices P1 and P2, positive scalars d1 and d2, as well as, ϕ, α and µ such that

A′iPi + PiAi � −ϕPi, (4.14) eA
′
iTDPje

AiTD − µPi eA
′
iTDPj

∗ Pj + (dj − µdi)In

 � 0, (4.15)

µN̄DT,I < 1
α
, (4.16)

di ≤ min
t∈I

{
ϕ/
(
ϕ ‖hi − hj‖2 + 2(ḣi − ḣj)′(hi − hj)

)}
(4.17)

i, j = 1, 2, i 6= j, then the switched system (4.1) with two subsystems under the switching

sequence σ is finite-time stable with respect to (I,Ω1,Ω2).

Proof 4. For the proof, we can show that the pair of conditions (4.14)-(4.17), as well as,

conditions (4.15) and (4.16) are equivalent, respectively, to the conditions (i), (ii) and (iii)

of Theorem 3.

Let us consider a switching sequence σ ∈ DT,I and also that the subsystem Σi is active

∀t ∈ [tk−1, tk), where tk = tk−1 + Tk with Tk ≥ T , and at t = tk, the system switches to Σj,

for some i, j = 1, 2, i 6= j.

Consider the piecewise Lyapunov function given by v(x(t), t) = Vi(x(t), t), where

Vi(x(t), t)=(x(t)−hi(t))′ Pi (x(t)− hi(t))+di ‖hi(t)− hj(t)‖2 , (4.18)

and hi(t) is such that ḣi(t) = Aihi(t) + gi(t) (according to (4.3)), where i, j = 1, 2, i 6= j.

For convenience, the time-dependency of x and h will be omitted in the next developments.

For all t ∈ [tk−1, tk), the time derivative of the Lyapunov function (4.18) along an
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arbitrary trajectory of the system (4.1) is given by

v̇(x(t), t) = (x− hi)′ (A′iPi + PiAi) (x− hi) + 2di(ḣi − ḣj)′(hi − hj),

From (4.14), (4.13) and (4.17), one can see that for all t ∈ [tk−1, tk), the time derivative

of the Lyapunov function (4.18) along an arbitrary trajectory of the system (4.1) holds

v̇(x, t) = (x− hi)′ (A′iPi + PiAi) (x− hi) + 2di(ḣi − ḣj)′(hi − hj)

≤ −ϕ (x− hi)′ Pi (x− hi) + 2di(ḣi − ḣj)′(hi − hj)

≤ −ϕ
(
1− di ‖hi − hj‖2

)
+ 2di(ḣi − ḣj)′(hi − hj)

≤ 0,

for all x̃ = x− hi ∈ Ω2, which satisfies the condition (i) of Theorem 3. Now, let us rewrite

condition (4.15) as

 eA
′
iTDPje

AiTD eA
′
iTDPj

∗ Pj + djIn

 � µ

 Pi 0

∗ diIn

 (4.19)

Multiplying (4.19) on the right and the left by

 eAi(Tk−TD) 0

∗ In

 and

 eA
′
i(Tk−TD) 0

∗ In

 ,

respectively, we have that

 eA
′
iTkPje

AiTk eA
′
iTkPj

∗ Pj + djIn

 � µ

 eA
′
i(Tk−TD)Pie

Ai(Tk−TD) 0

∗ diIn



Using this last inequality and also that ‖hi(t)−hj(t)‖ ≤ ‖hi(t−TD)−hj(t−TD)‖ for
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all t ∈ [t0 + TD, tf ), we have

Vj(x(tk), tk)

= (x(tk)− hj(tk))′ Pj (x(tk)− hj(tk)) + dj ‖hj(tk)− hi(tk)‖2

=
(
eAiTk (x(tk−1)− hi(tk−1)) + hi(tk)− hj(tk)

)′
Pj (∗) + dj ‖hi(tk)− hj(tk)‖2

=

 x(tk−1)− hi(tk−1)

hi(tk)− hj(tk)


′  eA

′
iTkPje

AiTk eA
′
iTkPj

∗ Pj + djIn


 x(tk−1)− hi(tk−1)

hi(tk)− hj(tk)



≤ µ

 x(tk−1)− hi(tk−1)

hi(tk)− hj(tk)


′  eA

′
i(Tk−TD)Pie

Ai(Tk−TD) 0

∗ diIn


 x(tk−1)− hi(tk−1)

hi(tk)− hj(tk)


≤ µ

[(
eAi(Tk−TD) (x(tk−1)− hi(tk−1)) + hi(tk − TD)− hi(tk − TD)

)′
Pi (∗) +

di ‖hi(tk)− hj(tk)‖2
]

≤ µ
[
((x(tk − TD)− hi(tk − TD))′Pi (∗) + di ‖hi(tk)− hj(tk)‖2

]
≤ µ

[
((x(tk − TD)− hi(tk − TD))′Pi (∗) + di ‖hi(tk − T )− hj(tk − T )‖2

]
≤ µ [Vi (x(tk − TD), tk − TD)] ,

which leads to the condition (ii) of Theorem 3. Now, from the sets Ω1 and Ω2 given by

(4.13), we have that

max
i∈S

sup
x∈Ω1

Vi(x(t0), t0) = α, min
i∈S

inf
x∈Ωc2

Vi(x(t), t) = 1,

where S = {1, 2}. So, it is easy to notice that constraint µN̄DT,I < 1
α
leads to the condition

(iii) of Theorem 3.

Remark 4. Since the finite-time stability is guaranteed by Theorem 4, any system trajectory

x̃ starting in a subset Ω1 of the state-space will remain in Ω2 ⊃ Ω1 over a finite time

interval and for any switching sequence σ ∈ DT,I .
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4.2.2 Results on finite-time stability for the switched system

(4.1) with N subsystems, Σ1, · · · ,Σ2.

Let us consider the switched system (4.1) with N subsystems, so S = {1, · · · , N}. Let

us also consider the sets Ω1 and Ω2 in the following form

Ω1 =
N⋂
i=1

Ω1i , Ω2 =
N⋃
i=1

Ω2i , (4.20)

where

Ω1i = {x ∈ Rn : (x− z)′Pi(x− z) + di < α, z ∈ Hi} ,

Ω2i = {x ∈ Rn : (x− z)′Pi(x− z) + di < 1, z ∈ Hi} ,

being α a positive scalar satisfying α < 1, di a positive scalar, Pi ∈ Rn×n, Hi =

{z ∈ Rn : z = hi(t), t ∈ I} and i ∈ S.

Theorem 5. Let the time interval I = [t0, tf), a positive scalar TD and a switching

sequence σ ∈ DT,I be given. If there exists a set of positive definite matrices P1, . . . , PN

and positive scalars d1, . . . , dN , α and µ such that

A′iPi + PiAi � 0, (4.21) eA
′
iTDPje

AiTD − µPi eA
′
iTDPj∆hij(tk)

∗ ∆hij(tk)′Pj∆hij(tk) + dj − µdi

 � 0, (4.22)

µN̄DT,I < 1
α
, (4.23)

∀i, j ∈ S, i 6= j, ∀k = 1, 2, · · · , such that tk ∈ I, where ∆hij(tk) = hi(tk) − hj(tk), then

the switched system (4.1) under the switching sequence σ is finite-time stable with respect

to (I,Ω1,Ω2).

Proof 5. For the proof of Theorem 5, we only need to show that conditions (4.21), (4.22)

and (4.23) lead, respectively, to the conditions (i), (ii) and (iii) of Theorem 3.
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Let us assume a piecewise Lyapunov function given by

v(x(t), t) = Vi(x(t), t) = (x(t)− hi(t))′ Pi (x(t)− hi(t)) + di. (4.24)

Now, let us consider a load switching sequence σ ∈ DT,I in which σ = i ∈ S ∀t ∈ [tk−1, tk),

where tk = tk−1 + Tk with Tk ≥ TD, and at t = tk, σ jumps to j ∈ S, i 6= j. From (4.21),

one can see that for all t ∈ [tk−1, tk), the time derivative of the Lyapunov function (4.24)

along an arbitrary trajectory of the system (4.1) holds

v̇(x(t), t) = (x(t)− hi(t))′ (A′iPi + PiAi) (x(t)− hi(t)) ≤ 0,

for all x ∈ Ω2, which satisfies the condition (i) of Theorem 3. Now, let us rewrite condition

(4.22) as  eA
′
iTDPje

AiTD eA
′
iTDPj∆hij(tk)

∗ ∆hij(tk)′Pj∆hij(tk) + dj

 � µ

 Pi 0

∗ di

 , (4.25)

where ∆hij(tk) = hi(tk)−hj(tk). Multiplying (4.25) on the right and the left by diag(eA′i(Tk−T ), 1)′

and diag(eA′i(Tk−T ), 1), respectively, we have that

eA
′
iTkPje

AiTk eA
′
iTkPj∆hij(tk)

∗ ∆hij(tk)′Pj∆hij(tk) + dj

 � µ

 eA
′
i(Tk−TD)Pie

Ai(Tk−TD) 0

∗ di

 .

Using this last inequality we have

Vj(x(tk), tk)

= (x(tk)− hj(tk))′ Pj (x(tk)− hj(tk)) + dj

=
(
eAiTk (x(tk−1)− hi(tk−1)) + ∆hij(tk)

)′
Pj(∗) + dj

=

 x(tk−1)− hi(tk−1)

1


′  eA

′
iTkPje

AiTk eA
′
iTkPj∆hij(tk)

∗ ∆hij(tk)′Pj∆hij(tk) + dj

 (∗)
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≤ µ

 x(tk−1)− hi(tk−1)

1


′ eA

′
i(Tk−TD)Pie

Ai(Tk−TD) 0

∗ di


 x(tk−1)− hi(tk−1)

1


≤ µ

(
eAi(Tk−TD) (x(tk−1)− hi(tk−1)) + hi(tk − TD)− hi(tk − TD)

)′
Pi (∗) + di

≤ µ((x(tk − TD)− hi(tk − TD))′Pi(∗) + di

≤ µVi (x(tk − TD), tk − TD) ,

which leads to the condition (ii) of Theorem 3. Now, from the sets Ω1 and Ω2 given by

(4.13), we have that

max
i∈S

sup
x∈Ω1

Vi(x(t0), t0) = α, min
i∈S

inf
x∈Ωc2

Vi(x(t), t) = 1,

so, it is easy to notice that constraint µN̄DT,I < 1
α
leads to the condition (iii) of Theorem 3.

Remark 5. Due to the time-dependency of the inequalities (4.22), the finite-time stability

of the switched system (4.1) with N subsystems is guaranteed only for the switching sequence

σ ∈ DT,I , unless the functions hi(t), i = 1, · · · , N , are constants for all t ∈ I. In this case,

the finite-time stability is guaranteed for any switching sequence in DT,I .

4.3 Step-by-step procedure to using Theorems 4 and 5 to assess

the finite-time stability of the switched system (4.1)

The step-by-step procedure proposed below systematizes the use of Theorems 4 and 5

to assess finite-time stability of the switched system (4.1). This procedure includes the

computation of the sets Ω1 and Ω2.

Step 1: Initialization - (i) calculate the functions hi(t), i = 1, . . . , dN , of each

subsystem of the switched system; (ii) from a practical knowledge of the study system,

specify a set of m points, x̂1, · · · , x̂m, that should be in Ω1 and a set of q points, x̄1, · · · , x̄q,

that should not be in Ω2; (iii) specify a time interval of interest I = [t0, tf ).
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Step 2: Computing the sets Ω1 and Ω2 - (i) specify a value for α such that

α < 1; (ii) solve the following optimization problem on the variables P1, . . . , PN , as well

as, d1, . . . , dN , λ, ϕ > 0:

minimize λ

subject to

If N=2

0 � Pi � λI, i = 1, 2 (4.26)

max
t∈I
‖x̂k−hi(t)‖2 λ+max

t∈I
‖hi(t)−hj(t)‖2 di<α, i, j=1, 2, i 6= j, k=1,· · ·,m (4.27)

min
t∈I
‖x̄k−hi(t)‖2 λ+min

t∈I
‖hi(t)−hj(t)‖2 di>1, i, j=1, 2, i 6= j, k=1,· · ·,q (4.28)

A′iPi + PiAi � −ϕPi, i = 1, 2 (4.29)

di ≤ min
t∈I

{
ϕ/
(
ϕ ‖hi − hj‖2 + 2(ḣi − ḣj)′(hi − hj)

)}
, i = 1, 2 (4.30)

Else

0 � Pi � λI, i = 1, 2, · · · , N (4.31)

max
t∈I
‖x̂k−hi(t)‖2 λ+di<α, i, j=1, 2, · · · , N i 6= j, k=1,· · ·,m (4.32)

min
t∈I
‖x̄k−hi(t)‖2 λ+di>1, i, j=1, 2, · · · , N i 6= j, k=1,· · ·,q (4.33)

A′iPi + PiAi � 0, i = 1, 2 (4.34)

Step 3: Checking the finite-time stability for a specific TD - (i) specify a value

for TD; (ii) compute the maximum number of switchings NDT,I that can occur within

the time interval I; (iii) solve the following feasibility problem on the variable µ (using

P1, . . . , PN , d1, . . . , dN , α computed in the previous step):
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find µ

subject to

If N=2 eA
′
iTDPje

AiTD − µPi eA
′
iTDPj

∗ Pj + (dj − µdi)In

 � 0, i, j = 1, 2, i 6= j (4.35)

µN̄DT,I < 1
α
, (4.36)

Else eA
′
iTDPje

AiTD − µPi eA
′
iTDPj∆hij(tk)

∗ ∆hij(tk)′Pj∆hij(tk) + dj − µdi

 � 0, (4.37)

µN̄DT,I < 1
α
, (4.38)

∀i, j = 1, · · · , N, i 6= j, k = 1, 2, · · · , such that tk ∈ I.

Remark 6. The computation of the sets Ω1 and Ω2 via Step 2 requires a practical knowledge

of the study system. In electric power systems, for example, the set Ω2 may be viewed as a

representation of an operating security region, which means that the allowable range for the

system variables is known and this information is essential for Step 2. On the other hand,

the set Ω1 includes the initial conditions created by a number of perturbations to which

the system may be subject during its operation (these perturbations are usually known in

advance as the results of the process of contingency screening).
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4.4 Numerical and Illustrative Examples

4.4.1 Power System Transient Illustrative Example

In Chapter 3 we showed a typical arrangement of a distributed system with synchronous

generation presented by (KUIAVA et al., 2014). To exemplify a real case of power systems

where the finite-time stability of a class of continuous-time in non-homogeneous switched

systems theory can be applied, a capacitor was inserted in parallel to the load. This

capacitor is in series with a switch as presented in Figure 4.1 and will be switched depending

to the necessity of the system. Considering the power system transient classification

presented in section 2.4, when it happens, that is within oscillatory transient classification.

Figura 4.1: One-line diagram of the study system with switched capacitor.

To model system intention the synchronous generator is represented by an ideal AC

voltage source (Eq(t)) connected to an inductance (Ld). The substation is represented by

an ideal AC voltage source (V (t)). Transformers are represented by inductances (LT1 and

LT2), while the line and the load by resistances and inductances as shown in Figure 4.1.

The focus of this system representation is to study the current and voltage transients of

the network stimulated by switching events of the capacitor.

The state-space model of the system shown in Figure 4.1 can be obtained by nodal
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analysis and it can be written in the form

Σi : ẋ(t) = Aix(t) + gi(t), x(t0) = x0, (4.39)

by considering a linear description of each element of the network, where x(t) = [x1(t) x2(t)

x3(t) x4(t)]′, t ∈ I = [t0, tf), Ai is an invertible matrix, gi(t) ∈ R4 is function of t and

i = 1, 2. The states x1(t), x2(t) and x3(t) are currents, while x4(t) is the capacitor voltage,

as it is shown in Figure 4.1. The subsystems Σ1 and Σ2 describe the operating modes

at which the switch is open and closed, respectively. The active subsystem at each time

instant t ∈ I is regulated by a switching sequence σ over I that belongs to DT,I , where TD

is the minimum time elapsed between two consecutive capacitor switchings.

This is just an illustrative example, so there are no numerical results created for this

case. A numerical example is presented below.

4.4.2 Numerical Example

Let us consider again the switched system (4.5) of Example 1 presented in Section 4.1,

where the parameters a1 and a2, as well as, the function g1(t) are given by, respectively,

−10, −5 and 5 cos(100t). The function h1(t) is given by (4.6) and h2 = 0 for all t ∈ I,

where I = (0, 1], which means that t0 = 0s and tf = 1s. The step-by-step procedure

proposed in Subsection 4.3 was adopted to use the Theorem 4 to assess the finite-time

stability of this switched system.

For this switched system, let us consider a dwell-time TD = π
w
s, which satisfies the

condition ‖h1(t)− h2(t)‖ ≤ ‖h1(t− TD)− h2(t− TD)‖ for all t ∈ [t0 + TD, tf ). With this

value of dwell-time, we have that NDT,I = 120 (in accordance to Remark 1) and the upper

bound for parameter µ (in (4.16)) is 1.0058, by considering α = 0.5.

Some points for the state x satisfying |x| < 6 and |x| > 8 were adopted to, respectively,

build the constraints (4.27) and (4.28). Parameter ϕ was chosen to be equal to 2 (this

value was easily chosen from the fact that the eigenvalues of subsystems 1 and 2 are,
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respectively, −10 and −5).

Figure 4.2 shows the system trajectory for an initial condition in Ω1 and for a switching

signal with a dwell-time T = π
w
s.

Figura 4.2: System trajectory for an initial condition in Ω1 and with a dwell-time T = π
w
s,

where the blue and red lines are the solution of the switched system when subsystems 1
and 2 are active, respectively.

Figure 4.3 shows the value of the Lyapunov function for this same system trajectory.

It can be seen that the trajectory remains confined in Ω2 for all t ∈ I.

Figura 4.3: Lyapunov function for a system trajectory starting in Ω1 and with a dwell-time

T = π
w
.
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4.5 Summary of the Chapter

This chapter presented the main contribution of this dissertation. To study the finite-

time stability problems of a class of linear continuous-time non-homogeneous switched

systems under a time-dependent switching signal some theorems were proposed and a

step-by-step procedure on using them. Next, a numerical example showed the application

of the theory presented, and an illustrative real example was shown where the switching

of one capacitor is able to create a scenario in power systems where finite-time stability

can be studied applying the results obtained in this chapter.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE STUDY

In this chapter a summary of the entire work is presented, together with some comments

about the achieved results.

5.1 Concluding Remarks

The contextualization of this dissertation was presented, how it can contribute to

the academic society and how the theory of switched systems can be applied in a real

situation. It started with an explanation about hybrid and switched systems, presenting

some definitions and how they are classified. Next, the Lyapunov stability theory and

mathematical definitions, including the direct method of Lyapunov, were presented consi-

dering time-dependent switched systems. This was necessary because the largest part of

definitons used subsequently in the document were based on Lyapunov stability.

Another topic was the continuous-time switched systems representation and how the

stability analysis can be done in these systems, considering the general idea that there

exists a common equilibria for all subsystems. Considering cases where there is not a

common equilibrium point, it was necessary to present the finite-time stability theory with

definitions and theorems.

In the first contribution of this dissertation, where in addition to what was studied and

proposed by (KUIAVA et al., 2013, 2014), the system modelling was done considering the

load dynamic and consequently, increasing the state space representation of the studied

system.

As the power system stability was being studied, a definition was presented for it and

the main categories and subcategories, considering affected variables, disturbance size and
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time interval. Next, a system with rotor angle stability affected by load switchings was

studied. The nonlinear model was presented and the linearization process too, considering

that all four subsystems do not have the same equilibrium point.

The proposed results provide means to evaluate the conditions in which the system

trajectories of a switched system will be confined within a certain region in the state-space

(region Ω2). The set Ω2 may represent a realistic operating region of a power system. The

obtained results can be used, for example, to evaluate the power quality delivered to power

suppliers in power distribution networks.

The main contribution of this dissertation was presented, namely some sufficient results

on finite-time stability for a class of non-homogeneous switched systems. Since the type of

system studied in this chapter resulted from power system transients, a brief theory about

that was presented too and its categorization of transients based on waveform shapes.

The proposed results provide means to evaluate the conditions in which the system

trajectories of a switched system will be confined within a certain region in the state-space

(region Ω2). It is important to observe that the construction of constraints (4.27) and

(4.28), or alternatively, (4.32) and (4.33), requires a practical knowledge of the study

system.

The application of the proposed results on finite-time stability in the power system

stability area by considering impulsive transients in the network will be the next steps in

this research.

The main contributions of this work can be summarized as follows:

• Extended the results presented by Kuiava (2014) considering the load switching in

system modeling;

• A new methodology to analyze the finite-time stability of linear continuous-time

non-homogeneous switched system;

• Use the proposed theory to study the finite-time stability of power systems, repre-
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senting a new applicability for this method.

5.2 Further Study

This work has shown the illustrative example of the finite-time stability of a class of

continuous-time non-homogeneous switched systems, as further study, this example can

be applied considering the three theorems presented in Chapter 4.

The application of the proposed results on finite-time stability in the power converts

analysis and design is one direction of our research. Another direction is to extend the

proposed results to a class of switched systems with switching governed by a finite state

Markov chain, as well as, a switching governed by a state dependent signal.
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