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RESUMO

Esta dissertação trata, em bases matemáticas, do estudo das técnicas de aferição e im-

posição da passividade, uma propriedade qualitativa, geral e fundamental de transfor-

madores. Para esse propósito, são propostas duas novas abordagens: uma de perturbação

de dados no domı́nio da frequência, chamada pré-processamento, bem como um novo

procedimento de perturbação de parâmetros no domı́nio do tempo, denominado pós-

processamento. Inicialmente, métodos de aferição da passividade são empregados para

distinguir sistemas passivos dos não-passivos bem como caracterizar as violações. Veri-

ficadas violações de passividade nos dados, usualmente devidas ao processo de medição,

estes mesmos dados são perturbados, configurando o pré-processamento, de modo que

todas as violações sejam suprimidas. Tal procedimento envolve encontrar matrizes de

perturbação que, em cada frequência, atinjam esse objetivo causando, ao mesmo tempo,

e em certo sentido, a menor perturbação posśıvel. Os dados já passivos podem ser identi-

ficados e um modelo então obtido. Como dados passivos não garantem a obtenção de um

modelo passivo, faz-se mister a imposição da passividade ao modelo obtido. Apesar de

conduzir a resultados mais precisos, o pré-processamento de dados não é condição sine qua

non para obtenção de modelos passivos. O procedimento de pós-processamento é que,

per se, assegura a passividade, permitindo que este seja empregado de forma indepen-

dente daquele. Por meio de resultados obtidos com dados experimentais, demonstra-se,

de forma individual e conjunta, a validade das técnicas ora propostas.

Palavras-chave: Transformadores de Potência, Perturbação de dados, Perturbação de

Parâmetros , Passivity-Enforcement, Modelagem, Análise de Transitórios.
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ABSTRACT

This dissertation addresses the problem concerning the mathematical assessment and

enforcement of passivity, a qualitative, general and fundamental property of power trans-

formers. For serving that purpose, two novel approaches are introduced: a pre-processing

approach consisting of frequency-domain data perturbation as well as a post-processing

one comprising a time-domain parameter perturbation. Initially, passivity assessment

methods can be used to distinguish passive systems from non-passive ones and charac-

terize passivity violations. As data can reveal passivity violations owing to the data

acquisition process, it is pre-processed so that violations be suppressed. This procedure

entails finding a data perturbation matrix that achieves such objective and causes a least

possible perturbation, in some sense. Passive data can be identified and a model then ex-

tracted. Since passive data does not ensure the extraction of a passive model whatsoever,

the employment of passivity enforcement is an indispensable resource for fully guaranteed

model passivity. Despite leading to more accurate results, pre-processing is not a sine

qua non for obtaining passive models. It is passivity enforcement that per se ensures

model passivity, thus allowing post-processing to be used regardless of pre-processing.

Underpinned by results achieved upon experimental data, the effectiveness of the meth-

ods herein proposed are individually and jointly confirmed.

Key-words: Power Transformers, Data Perturbation, Model Parameter Perturbation,

Passivity-Enforcement, Modelling, Transient Analysis.
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ẋ(t) - state-vector derivative ∈ Rn

y(t) - output vector ∈ Rm

Mα - Hamiltonian Matrix for hybrid parameters

α - Hybrid Hamiltonian Matrix’s parameter for adjusting threshold

Mγ - Hamiltonian Matrix for scattering parameters

γ - Scattering Hamiltonian Matrix’s parameter for adjusting threshold

Ω - Set of purely imaginary eigenvalues of the Hamiltonian matrix in ascending order

T - Half-size test matrix

⊗ - Kronecker product

Θ - vector of parameters

∆ - Perturbation matrix

viii



ix

CONTENTS

1 INTRODUCTION 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Passive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Systematic approaches to passivity . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 BACKGROUND AND PASSIVITY ASSESSMENT 9

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Admittance Y-Parameters . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Impedance Z-Parameters . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Scattering S-Parameters . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.5 Discussion on Background . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Transfer Matrix Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Assessment Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Frequency Sweeping test . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 LMI-based test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Hamiltonian test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4 Half-size Test Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.5 Discussion on Assessment . . . . . . . . . . . . . . . . . . . . . . . 36

3 PRE-PROCESSING APPROACH 40

3.1 Pre-Processing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



3.1.1 Uniform Eigenvalue-Shift Perturbation - UESP . . . . . . . . . . . 41

3.1.2 Least Diagonal Perturbation - LDP . . . . . . . . . . . . . . . . . . 42

3.1.3 Least-Eigenvalue Perturbation - LEP . . . . . . . . . . . . . . . . . 42

3.1.4 Least-Norm Perturbation - LNP . . . . . . . . . . . . . . . . . . . . 43

3.1.5 Weighted LEP and LNP . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 POST-PROCESSING APPROACH 47

4.1 Perturbative Passivity Enforcement . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Discrete-frequency Passivity Enforcement . . . . . . . . . . . . . . . 48

4.1.2 Hamiltonian Perturbation Methods . . . . . . . . . . . . . . . . . . 54

4.2 Non-perturbative Passive Enforcement . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Convex Optimization Methods I - PRL/BRL . . . . . . . . . . . . . 58

4.2.2 Convex Optimization Methods II - PFVF . . . . . . . . . . . . . . 62

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 CASE STUDIES 67

5.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 CONCLUSIONS 84

x



1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Dynamical models are mathematical constructs chiefly devised to yield the finest possible

predictions of every imaginable aspect of the surrounding world. In the early days of

dynamics the astounding accuracy achieved in celestial mechanics to describe planetary

motion prompted an obsession with prediction making at the highest level that has per-

sisted unabated throughout time. Along this intellectual journey many fruitful ideas have

flourished leaving a rich legacy of conceptual frameworks that once resided in the arcane

realms of pure science and eventually spread out to a vast breadth of application fields

to solve a myriad of problems. Progress however comes in fits and starts, the real pin-

nacles or revolutionary ideas come very infrequently. In electrical engineering, dynamic

systems abound. A formidable example of intricacy is provided by electrical networks and

their constituent parts, each part a system in its own right. Among others, a ubiquitous,

prominent and essential component of such networks are power transformers. These are

not only indispensable to a reliable steady-state system operation but also highly sen-

sitive to the seemingly inexorable occurrence of transient events which may ultimately

lead to their own failure and possibly widespread power disruption. Today’s ferocious

energy-dependent economies cannot afford accidental power outage due to isolated inci-

dents, not to mention the prohibitive costs impinging on the budgets of electricity utilities

whenever power transformers have to be replaced prematurely. These critical needs have

prompted significant research from both manufacturers and researchers over the causes of

transformer failure. There is a wide diversity of attributable causes related to transformer

malfunction and failure. These claims are substantiated by statistics drawn from JWG-

A2/C4.39 (2014), Hori et al. (2007) and Shipp et al. (2011) that attribute equipment

malfunction and eventual breakdown to electromagnetic transients generated by dynam-



ical interactions between transformers and other neighbouring network components. An

investigation conducted in Brazil Bechara (2010) reported that 6 out of 20 step-up trans-

formers under analysis most likely owed their failures to very fast transient over-voltages.

In many transient studies, e.g. lightning or switching overvoltage studies, power trans-

formers have been successfully modeled as linear time-invariant dynamical systems since

non-linearities are of lesser importance in the frequency range of interest. The use of

linearity would have been precluded in case core non-linear effects to simulate inrush

currents and ferroresonance must be considered.

General-purpose time domain simulation tools for studying transient behavior of elec-

trical networks have been constantly evolving in both scope and capabilities, illustrative

instances of such computer-aided tools include the Electromagnetic Transients Program

(EMTP), Alternative Transients Program (ATP), PSCAD and so forth. These software

packages have long underpinned multiple transformer engineering decisions ranging from

the early product-design phase to everyday operational occurrences thus further subsidiz-

ing improved design choices (chiefly those concerning insulation design and coordination,

as in Transformers-Switchgear-Committee (2010) and JWG-A2/C4.39 (2014)), as well

as permitting more accurate security measures, contingency plans and locating potential

sources of problem. Indeed, time domain electromagnetic transient simulations can pro-

vide much understanding of and fascinating insights into transformer dynamics, with the

caveat that the simulator be correctly parameterized. Most engineers endeavouring to

generate models from measured data or running network-level time domain simulations

are almost certainly no experts in dynamic systems, system identification, rational approx-

imation, passive networks or any other seemingly arcane research area. However, a holistic

approach to the problem requires some system-level knowledge so that meaningful results

be achieved, precluding the unintentionally cavalier attitude when one sometimes hopes

to accidentally type in a valid parameter set, thus corroborating the GIGO paradigm

(Garbage in, garbage out). Consequently, transient simulations can only be effective if

well underpinned by carefully devised models.

In a more general setting, questions arise about what properties should models be

2



endowed with so that simulators achieve their best possible performance and thriving

simulation results ensue. Ideally, a suitable model must accurately reflect every feature

of the actual system to be emulated. In qualitative analysis of linear systems, the usual

intrinsic properties pertaining to such systems can be enumerated as: causality, stability,

passivity, controllability, observability etc. As described in Chen (2012), these funda-

mental properties comprise a necessary condition for obtaining a consistent description

(model) of the physical system.

According to Aguirre (2007) and Ljung (2010), even though it is not unanimously

standard in the literature, the model identification problem has been subsumed into three

main categories, namely white-box, black-box and grey-box models, such that:

• White-box models comprise those based on first principles, i.e. the physical laws

governing the system behavior hence requiring in-depth knowledge of all intrinsic

properties of the actual system. By way of illustration, devising a white-box trans-

former model would require information usually regarded as strictly confidential,

e.g., equipment geometry and properties of manufacturing materials, thus prevent-

ing this approach from being employed by most independent practitioners due to

industrial and trade secrets.

• Black-box models constitute an experimental data-based technique which requires

little or no prior knowledge of the system being modeled that has gained preference

among many modelers for it only depends on exogenous input/output measure-

ments, either in the time or frequency domains.

• Grey-box modeling is conceived as in-between Black and White-box models, usually

relying on any auxiliary and additional information beyond the initial data, varying

degrees of shade can be achieved depending on what and how information enters

the problem, further details can be found in Ljung (2010).

Wide-band models have become the tool of the trade in transient simulations. Nonethe-

less, achieving representative simulation results is only possible should the model bear all

the intrinsic properties of the actual system being emulated. For a broad perspective

3



and some illustrative case studies of black-box modeling of power transformers in the

frequency-domain, refer to Akçay et al. (1998), Gustavsen & Semlyen (1998), Gustavsen

(2010), Reginato & Oliveira (2007), Reginato & Oliveira (2008) , Reginato (2008),OLIVEIRA

(2009), Maestrelli & Oliveira (2010), Maestrelli (2010) and Oliveira & Mitchell (2013).

1.2 Passive Systems

As pointed out by Coelho et al. (2004), there is a common misconception that passive data

yields a passive model by simply estimating model parameters that result in a sufficiently

faithful approximation, but it proves not to be a strong enough condition to rely on when

devising a consistent model. However counter-intuitive this statement may sound, model

accuracy implies neither model passivity nor consistency, not to mention the frequent

occurrences of data already corrupted by passivity violations. According to Triverio et al.

(2007), accuracy is a major concern but it is neither the only nor the most important

feature of any model and, in order to be consistent, models of passive systems must bear

three fundamental properties, namely stability, causality and passivity; such that the

latter is the strongest for it implies both causality and stability. Network-level simulations

require that different systems be interconnected to form an overall network. Intuitively,

passive system are those unable to generate energy. This definition can be formalized

in terms of Lyapunov functions as in reference Willems (1972) which also offers a proof

that the interconnection of dissipative systems leads to an overall dissipative (passive)

system, which mathematically means that passivity possesses a closure property. It was

once thought stability was closed by compounding various systems but unlike passivity,

stability and causality are not closed under system composition, thus also reinforcing the

need to draw a clearer distinction between stable and passive systems, which is of major

importance when devising models for transient simulations. Therefore, as mentioned

in Coelho et al. (2004), merging stable models with other stable or even passive ones

does not imply that the resulting system be stable. Moreover, network-level instability

cannot be predicted at the moment each individual model is devised, for the ultimate

response is strongly dependent upon the properties of each constituent model forming the

4



overall network, thereby leading to a complex interplay between the network and each of

its constituent parts. For that reason, network-level compatibility can only be a priori

guaranteed by enforcing model compliance with passive behavior. Otherwise, nonphysical

anomalies may compromise any time-domain simulation, e.g., terminal quantities that

grow arbitrarily with no bounds.

Consequently, passivity has been broadly explored in the literature as a golden model

property and has been fully incorporated as a modeling task as well. Passivity is a

power-transformer fundamental property which cannot remain an unmodeled effect. As a

consequence, when deriving a mathematical model from transformer’s own data, means to

retain this characteristic feature are indispensable. Not only for the sake of transient simu-

lation but also because power transformers are intrinsically passive systems. Nonetheless,

the ubiquitous black-box modeling technique has strong reliance on data that has been

invariably subjected to corrupting factors during its acquisition, since existing technology

and instrumentation are so sensitive that isolation from external disturbances is often im-

possible, e.g., stray capacitances and inductances due to measurement cables, numerical

noise, round-off error and so forth. As a result, the data thus produced is inherently noisy

and systematic data collection constitutes a problem in its own right. Furthermore, even

during model parameter estimation, there is no guarantee whatsoever that the passivity

feature be preserved. As it cannot remain an unmodeled effect, models must undergo a

passivity enforcement insofar as the system’s original passive behavior be recovered. Since

any model must retain the intrinsic principles and physical properties of the system it is

supposed to emulate, irrespective of the technique employed in its derivation. From a

passivity perspective, accuracy is somewhat relative.

1.3 Systematic approaches to passivity

Many impressive strides have been made in the relentless quest to address the issue of

passivity enforcement. Most endeavours have concentrated on model passivity as opposed

to data passivity. The former is generally framed as a post-processing approach since it

occurs in a stage subsequent to model identification whereas the latter comprises the pre-
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processing approach which in turn is applied to raw data, i.e., preceding the model identi-

fication. Post-processing is a mature subject, pre-processing is still in its infancy. Model

passivity enforcement, i.e., post-processing can be divided into two classes of enforcement

strategies, namely perturbative and non-perturbative enforcement schemes. Perturbative

enforcement relies on model parameter perturbation to recover passivity when a model re-

veals passivity violations. Perturbative enforcement algorithms use different strategies to

achieve the final passive behaviour, some methods are based on discrete frequency methods

such that common implementations include Linear Programming (LP) in Saraswat et al.

(2004), Quadratic Programming (QP) in Gustavsen & Semlyen (2001) and Second-order

Cone Programming (SOCP) in Grivet-Talocia & Ubolli (2008). Another perturbative

method uses a Hamiltonian Perturbation as in Grivet-Talocia (2004). On the other hand,

non-perturbative methods estimate parameters leading to passive behaviour. Instances

of non-perturbative methods comprise those based on the positive-real lemma, namely

Coelho et al. (2004) and the one originated from this research Oliveira et al. (2014), as

well as the Positive Fraction Vector Fitting - PFVF in Tommasi et al. (2011).

As opposed to the traditional model passivity-enforcement, comparatively small amount

of effort has been devoted to data pre-processing on the grounds that passive data does not

ensure a passive model. In references Morched et al. (1993) and Gustavsen & Semlyen

(1998) instances of preprocessing based on matrix diagonalization were used to obtain

models and reduce computation times. A more recent example can be found in Gus-

tavsen (2014), where the problem of accurately representing small eigenvalues is resolved

by the introduction of a similarity transformation matrix, thus better revealing the eigen-

values of the admittance matrix; the transformation preserves passivity and symmetry.

The herein proposed pre-processing ventured into a different direction: pre-processing is

used to suppress passivity violations corrupting the data used in the further identification

process.
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1.4 Objectives

1.4.1 General Objective

This research’s prime objective is to propose a systematic approach to the passivity prob-

lem pertaining to the modeling of power transformers derived from its own terminal data

for the purposes of transient simulations. Passivity enforcement can be properly framed

as a twofold task, since violations usually arise in both transformer data and model.

1.4.2 Specific Objectives

The primary research objective can be broken down into the following set of sub-objectives:

• Propose a pre-processing methodology based on data passivity compensation;

• Propose a post-processing methodology based on model passivity compensation;

• Unify the pre- and post-processing into a single passivity enforcement procedure;

• Apply and validate the proposed methodology on transformer actual data;

1.5 Research Contributions

The contributions of this research are stated as follows:

• A Pre-processing approach is herein formulated which can improve model accuracy

by suppressing existing passivity violations corrupting transformer measured data.

The Convex formulation employed is mathematically sound and preserves intrinsic

properties pertaining to power transformers such as symmetry and passivity, thus

judiciously obtaining perturbation matrices that are mathematically and physically

consistent with the problem. This contribution has been published in the IEEE

Transactions on Power Delivery, refer to Ihlenfeld et al. (2015).

• A Post-processing formulation is proposed which involves the building and formu-

lation of a convex optimization methodology based on Linear Matrix Inequalities
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(LMI-based), intended for obtaining an optimal, passive, black-box model for power

transformers since there is no guarantee whatsoever of identifying passive black-box

models without enforcement. This contribution has been published in the IEEE

Transactions on Power Delivery, refer to Oliveira et al. (2014).

1.6 Document Outline

The outline of this document is as follows: in chapter one a basic exposure and contex-

tualization of the problem in the realm of electrical engineering is made. Subsequently,

essential background foundations as well as assessment methods are laid in chapter two.

Next passivity enforcement schemes applicable to data and model form the theoretical

substance of chapters three and four, respectively. Chapter five then introduces some case

studies to corroborate and validate the previously expounded theory. Conclusions and

prospects for further research constitute the closing chapter.
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CHAPTER 2

BACKGROUND AND PASSIVITY ASSESSMENT

This chapter commences with a brief review of some basic concepts and definitions from

linear systems and networks, focusing on making explicit the assumptions that underly the

ensuing exposure as well as steering the discussion to the point of view of linear systems

as n-ports (n-terminals). Since the treatment is by no means encyclopedic, and is meant

mostly to set out the notation, terminology and context pertaining to the research, fine

mathematical details should be omitted to avoid heavy notations and long derivations.

The second part of the chapter is devoted to passivity assessment methods which are

essentially mathematical criteria that permit distinguishing passive systems from non-

passive ones. The exposure on assessment is a consolidation of the techniques currently

in vogue in the technical literature.

2.1 Background

The starting point for this discussion about passivity entails some further clarification

on how transformers actually enter into the discussion. When considering black-box

modelling, the experimental data upon a model is further derived sets the way in which

the whole process develops. A decision has therefore to be made as to the measurement

setup for data acquisition which assuredly depends on the available instrumentation. As

usual, one can either have at his disposal time or frequency domain measurements thus

leading to a time or frequency domain modelling approach, this research concentrates

exclusively on the latter. The justification for proceeding in this manner is a rather

simple one: the data underpinning this research happens to be in the frequency domain.

The measurements that serve as input to this investigation are indeed frequency re-

sponse measurements comprising a set of experimental data having the following usual

format:



{(ωk, |H(ωk)|, φ(ωk)) | k = 1, . . . , K}, (2.1)

where ωk, |H(ωk)| and φ(ωk) correspond to angular frequency, magnitude and phase of

the frequency response. This initial step leads to a set of tabulated frequency responses

of the structure under investigation. Such system description contains all the needed

information concerning the sinusoidal steady-state response of the system (or network)

function for several frequency points. Assuming the Laplace Transform is used to describe

a given continuous-time linear time-invariant (CT-LTI) system, its network function H(s)

is, by definition in Chen (2012) and Desoer & Kuh (1969), an algebraic function of s (the

complex frequency or Laplace variable), relating the Laplace Transform of the input to

that of the output with a zero initial state (initially inert system). In a more general set-

ting, a linear system is, from a mathematical viewpoint, one whose behaviour is governed

by linear equations, whether linear algebraic, linear difference equations, or linear differ-

ential equations. This general description of linear systems contained in Cheng (1972)

paves the way for a definition of network function irrespective of the Laplace Transform:

the network function is a relation between input (excitation) and output (response) by

a linear differential equation or linear difference equation whether in the continuous or

discrete time respectively.

According to Desoer & Kuh (1969), amplitudes and relative phases of a given si-

nusoidal input and output are easily measurable quantities and they are related to the

network function via the frequency response, since the latter is nothing but the earlier,

namely H(s), evaluated at s = jwk. This is how it is possible to experimentally de-

termine the network function of a system without any knowledge of its topology and

its constituent element values, that is to say, a black-box description. As a result, this

analysis is bound by the experimental data to be linear. Hitherto, the words system

and network have been used interchangeably, even though the emphasis has lain in the

latter. Henceforth, to make the wording unambiguous and tailor it to the purposes of

this work, the network or, more precisely, the n-port viewpoint of a linear system as in

reference Wohlers (1969) is considered. In electric network theory, the word port has a
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Figure 2.1: The schematic of a LTI one-port.

special meaning. In a somewhat non-rigorous but customary sense, Kuo (1966) defines

a port as a pair of terminals in which the current into one terminal equals that of the

other terminal and is completely specified when the voltage-current relationship at the

terminals of the port is given. Figure (2.1) is an illustration of this concept. As long as

linearity is concerned, whether this one-port comprises a single resistor or a number of

interconnected RLC lumped components is of little importance for it can be completely

described by an easily measurable set of experimental data similar to that of equation

(2.1).

However useful and effective this concept of one-port may be, it is essentially applicable

to scalar problems but it can, nonetheless, be further expanded to the more general

multivariable case thus leading to the n-port concept. This generalization is not only

of theoretical interest but also of a practical one for there exist many electrical devices

requiring more than just two terminals (one-port) for their mathematical description, e.g.

a power transformer.

For establishing the n-port concept, one simply builds on the former, scalar concept:

instead of a single pair of terminals there are as many as n pairs, or alternatively 2n

terminals, and their associated port variables, e.g. voltages across the terminals Vi and

input/output currents Ii, as depicted in Figure (2.2). Again, each pair of terminals

recursively obeying the conservation of current: the current flowing into one terminal of

the pair equals the current flowing out of the other terminal. As succinctly remarked

in Allen (2004) and Chua & Lam (1973), any n-port is completely characterized by a

11



Figure 2.2: The schematic of a LTI n-port.

collection of voltage vectors and current vectors that can appear on its ports.

In reference Huelsman (2011), there is a discussion connecting this idea of n-port and

its associated 2n variables expressed as pairs of column vectors, with n rows each, related

via a n× n square matrix.

Hence, it is possible to conceive of a n× n×K matrix whose every entry consists of

a set of data just as the one described by equation (2.1). In fact, as in Horn & Johnson

(2012), a matrix is itself a set which allows one to rewrite equation (2.1) in set-theoretic

notation. Since describing the data in this set formalism is cumbersome (to which one

is referred to Boyd & Chua (1982), Wohlers (1969) and Chua & Lam (1973)), and the

majority of the literature uses matrix notation, this set-theoretic notation is not herein

pursued. The frequency responses for a n-port at every frequency wk are essentially linear

mappings between collections of inputs (independent variables which may be varied at

one’s discretion) and outputs (dependent variables which are determined by the network

once inputs are specified), i.e. the system acts as a mathematical operator. In summary,

one can make fruitful use of the compact matrix notation for describing a LTI network

and the Multi-input-Multi-output (MIMO) network function describing a n-port can be

thus compactly written as:

f(x) = Ax, (2.2)

such that A is a n × n matrix which defines f as a vector-valued linear function,
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f : Cn → Cn, that maps n-vectors to n-vectors. The description of a LTI n-port as

a general function f(x) = Ax, dissociated from physical quantities, has far-reaching

benefits, since, as in Boyd & Chua (1982), this general framework may assume many

forms that have special names such as impedance, admittance, hybrid, scattering and

transmission.

Each of these special cases are treated as specific formalisms, representations or pa-

rameters associated with n-ports, according to Allen (2004), Wohlers (1969), Kuo (1966)

and Chua & Lam (1973). Consequently, the form of the system function depends on

whether the excitation is a voltage or current source - or even some linear combination

thereof - and whether the response is a specified current or voltage, i.e. it depends on

what is assigned as port variables (input-output) and how they are grouped, as pointed

out in Kuo (1966).

The following subsections contain a discussion on these specific forms of system func-

tions, reflecting the various choices of input-output quantities, thus assigning different

physical meanings to equation (2.2) by different groupings of the voltage and current

variables. Owing to the context, this exposure focuses on the frequency-domain, though

all results are equally valid for the time-domain.

2.1.1 Admittance Y-Parameters

When the general system matrix A (equation (2.2)) linearly maps input voltage vectors

into output current vectors, it is assigned a specific symbol or notation, namely Y, and is

called the admittance matrix. In this particular setting, equation (2.2) can be rewritten

in the frequency-domain as:

i(jw) = Y(jw) v(jw), (2.3)

which is usually referred to in the literature as the admittance representation (or formula-

tion/formalism in a more mathematically inclined discussion, e.g. Allen (2004), Wohlers

(1969) or Chua & Lam (1973)) of a network. Similarly, the entries of the matrix Y are
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known to be the admittance parameters associated with the n-port. Equation (2.3), which

is in fact a compact notation for a set of linear equations, can be written out as follows:



I1(jw)

I2(jw)

...

In(jw)


=



Y11(jw) Y12(jw) · · · Y1n(jw)

Y21(jw) Y22(jw) · · · Y2n(jw)

...
...

. . .
...

Yn1(jw) Yn2(jw) . . . Ynn(jw)


×



V1(jw)

V2(jw)

...

Vn(jw)


, (2.4)

such that each Ii(jw) and Vl(jw) correspond to the current and voltage at ports i and l.

Every Yil(jw) entry of the admittance matrix is determined by setting the port voltages to

zero (by short-circuits), except at the lth port, while measuring the short-circuit current

at the ith port; this statement can be framed more pragmatically as:

Yil(jw) =
response

excitation
=
Ii(jw)

Vl(jw)

∣∣∣
Vk(jw)= 0 | k 6= l

. (2.5)

Equation (2.5) corresponds to the procedure used in testing and measurement condi-

tions. The diagonal entries Yii(jw), obtained when both the excitation and response are

measured at the same port (or between the same pair of terminals), are referred to as

the short-circuit driving-point admittances whereas the otherwise obtained off-diagonal

entries Yil(jw), such that i 6= l, as short-circuit transfer admittances.

Valuable information and further details on the measurement setup for admittance

matrices can be found in Gustavsen (2004b) and Gustavsen (2004a), specially considering

the context of power transformers, providing useful schematics as well as touching some

numerical issues. A thorough study of the impact of the measurement setup, the measur-

ing cables to be more precise, on the admittance matrix’s entries can be found in Sans

et al. (2012) and Sans (2013).

2.1.2 Impedance Z-Parameters

By interchanging the input and output vectors of equation (2.3), i.e., the system now

linearly maps input current vectors into output voltage vectors, the resulting matrix
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corresponds to the inverse mapping of the previous formulation and is also assigned a

specific symbol, namely Z, such that Z = Y−1. Similarly, matrix Z is technically called

the impedance matrix and produces the following linear mapping:

v(jw) = Z(jw) i(jw), (2.6)

whose entries form the impedance parameters associated with the n-port represented by

Z and is equivalent to:



V1(jw)

V2(jw)

...

Vn(jw)


=



Z11(jw) Z12(jw) · · · Z1n(jw)

Z21(jw) Z22(jw) · · · Z2n(jw)

...
...

. . .
...

Zn1(jw) Zn2(jw) . . . Znn(jw)


×



I1(jw)

I2(jw)

...

In(jw)


. (2.7)

Each entry Zil(jw) of the impedance matrix is determined by the ratio of the voltage

obtained at the ith port due to a current applied to the lth port and the remaining ports

open-circuited (currents are zero). Thus,

Zil(jw) =
response

excitation
=
Vi(jw)

Il(jw)

∣∣∣
Ik(jw)= 0 | k 6= l

. (2.8)

The diagonal entries Zii(jw) may be referred to as the open-circuit driving-point

impedances whereas the off-diagonals as the open-circuit transfer impedances.

2.1.3 Hybrid

According to Huelsman (2011), for the general system matrix of equation (2.2) to be a set

of hybrid parameters, it is simply required that the entries of the output vector f(x) be

neither all voltages nor all current variables. Therefore, there is no such thing as the hybrid

parameters for a given n-port, but rather various hybrid parameters. In one possible

choice of hybrid representation for a n-port, the first n
2

coordinates of the n-dimensional

input vector can be driving currents whereas the remaining coordinates driving voltages.

Conversely, for the n-dimensional output vector, the first n
2

coordinates are chosen to
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be voltages and the remaining ones are currents. Equation (2.2) is a mapping of input

current-voltage hybrid vectors into output voltage-current hybrid vectors, thus called a

hybrid matrix. For this particular choice the overall structure assumes the following

matrix form:

 v1(jw)

i2(jw)

 =

 h11(jw) h12(jw)

h21(jw) h22(jw)

×
 i1(jw)

v2(jw)

 , (2.9)

such that h11(jw), h12(jw), h21(jw) and h22(jw) are block matrices of dimension (n
2
)×(n

2
)

and the input-output vectors are formed by stacking the corresponding vector partitions:

v1 =



V1(jw)

V2(jw)

...

Vn
2
(jw)


; i2 =



In
2
+1(jw)

In
2
+2(jw)

...

In(jw)


; i1 =



I1(jw)

I2(jw)

...

In
2
(jw)


; v2 =



Vn
2
+1(jw)

Vn
2
+2(jw)

...

Vn(jw)


.

A closer examination of equation (2.9), reveals that the blocks h11(jw), h12(jw),

h21(jw) and h22(jw) correspond to impedances, voltage-ratio transfer functions, current-

ratio transfer functions and admittances. When reduced to a special case of a 2-port,

equation (2.9) is usually used in describing simple transistor circuits.

As mentioned, equation (2.9) is a particular choice of hybrid parameters. The input-

output vectors could also have an alternating pattern, such as:

f(x) =



V1(jw)

I2(jw)

...

Vn−1(jw)

In(jw)


; x =



I1(jw)

V2(jw)

...

In−1(jw)

Vn(jw)


.

There are many other possibilities, including those with the condition that both vari-

ables from at least one of the ports be part of the input-output vectors, but there can be
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impeding exceptions. In fact, as mentioned in Huelsman (2011), since a n-port comprises

2n variables (to every port is assigned a current and a voltage), there are c possible ways

(number of combinations, without considering the permutations) in which these variables

once they have been selected, such that:

c =
(2n)!

(n!)2
, (2.10)

where n is the number of ports. Consequently, there are c different sets of parame-

ters for a given n-port. For the simple case of a 2-port, c equals six. These are the

usual z-parameters, y-parameters, h-parameters, g-parameters, Transmission-parameters

and Inverse Transmission-parameters. For three and four ports the number of sets is

even larger: 20 and 70. In fact, it is even possible to form new variables by means of

linear combinations of the voltage-current variables. This representation constitutes a

formulation in its own right, namely the scattering parameters.

2.1.4 Scattering S-Parameters

In this conceptually different formulation, each coordinate of the input vector is itself a

linear combination of the current and voltage associated to a port. Reference Kuo (1966)

stresses that this network characterization is a powerful analytical tool, originally used by

transmission engineers. Hence, when equation (2.2) comprises a linear mapping between

linear combinations of the port variables to other linear combinations of the port variables,

the matrix is called the scattering matrix S and the following notation is used:

v−(jw) = S(jw) v+(jw). (2.11)

Equation (2.11) is the compact form of:
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

V −1 (jw)

V −2 (jw)

...

V −n (jw)


=



S11(jw) S12(jw) · · · S1n(jw)

S21(jw) S22(jw) · · · S2n(jw)

...
...

. . .
...

Sn1(jw) Sn2(jw) . . . Snn(jw)


×



V +
1 (jw)

V +
2 (jw)

...

V +
n (jw)


, (2.12)

where the pluses and minuses, superscripts in the input-output vectors, reflect the orig-

inal transmission line terminology and allude to incident and reflected voltage waves, or

forward- and backward-traveling waves. The input-output column vectors V−(jw) and

V+(jw) in equation(2.11), are the following linear combinations of the port variables, as

defined in Kuo (1966) and Huelsman (2011):

v+(jw) = 1
2
(vn(jw) + in(jw))

v−(jw) = 1
2
(vn(jw)− in(jw))

, (2.13)

such that vn(jw) and in(jw) are the normalized (indicated by the superscript n) port

voltages and current. Therefore, it is assigned a pair of variables, also called the scattering

variables (V +
i (jw) as input and V −i (jw) as output), to each ith port and the variables

in the pair are themselves proportional to the sum and difference (linear combinations)

of the port’s own voltages and currents. By using a constant factor, called the reference

impedance, the normalization does not affect the linearity between the port variables

and their normalized combination (equation 2.13). Each port has its own normalization

constant roi and the normalized voltage and current coordinates are chosen such that:

V n
i (jw) =

Vi(jw)

(roi)
1
2

Ini (jw) = Ii(jw).(roi)
1
2

Zn
i (jw) =

V n
i (jw)

Ini (jw)
=
Zi(jw)

roi(jw)

, (2.14)

the reference impedance (can be chosen at one’s own discretion) is taken to the square

root to allow the definition of the normalized impedance as the ratio of the normalized

voltages and currents. For clarity, assume a special scalar case of equation (2.11), i.e., a
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one-port (Figure 2.1):

V −(jw) = S(jw) V +(jw). (2.15)

The scattering parameter (unique since it is a scalar simplification) can be defined as:

S(jw) =
V −(jw)

V +(jw)
=

V n(jw)− In(jw)

V n(jw) + In(jw)
=

Zn(jw)− 1

Zn(jw) + 1
, (2.16)

this interpretation of the scattering parameter (as a ratio containing the normalized

impedance) is very useful since it reveals the advantages of the scattering formulation

over the other ones. Indeed, if the normalized impedance in equation (2.16) is chosen to

equal unity (matched impedances), S(jw) is zero.

The multi-variable analogous is of equation (2.15) is, according to Huelsman (2011):

S(jw) = [Zn(jw)− I][Zn(jw) + I]−1, (2.17)

where Zn(jw) is a diagonal matrix whose entries correspond to the normalized impedances

at the various ports and I is the n×n identity matrix. Each entry Sil(jw) of the scattering

matrix is determined by the ratio of the reflected quantity at the ith port due to the

incident quantity at the lth port and the remaining ports with matched impedances.

Thus,

Sil(jw) =
response

excitation
=
V −i (jw)

V +
l (jw)

∣∣∣
Zn
k (jw)= 1 | k 6= l

. (2.18)

Since the entries Sil(jw) relate scattered or reflected voltage waves from the network to

incident voltage waves upon the network, they have been appropriately named scattering

parameters. The diagonal entries Sii(jw) correspond to reflection coefficients whereas off-

diagonal entries Sij(jw) to forward (below the diagonal) or reverse (above the diagonal)

transmission coefficients.

Further details on the scattering parameters can be found in the classical references

Kurokawa (1965) and Carlin (1956).
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2.1.5 Discussion on Background

These background concepts serve the purpose of elucidating some characteristics of the

data to be used in the following discussion and also to provide an illustration of some

basic applications of matrices (Linear Algebra) to circuit theory. Such applications will

be further expanded and serve as useful tools in the study of the passivity property.

The customary sets of network parameters and their basic properties have been dis-

cussed. For all previous network representations or parameters, the input variables can

be chosen to be the port voltages, currents or even a linear combination thereof. In the

case of the admittance and impedance representations, the coordinates of the input vec-

tor are either all voltages or all currents, respectively. For the hybrid representation, the

input vector has at least one current coordinate and at least one voltage coordinate, thus

allowing for various different choices and permutations. The scattering representation is

defined in terms of linear combinations of the currents and voltages.

The difference from one parameter set to another lies in the choice of the indepen-

dent and dependent variables. Nonetheless, there are some practical issues dictating the

parameter choice which is best suited to the application at hand. According to Gus-

tavsen & Silva (2013) and Zhongyuan et al. (2013), there arise a number of difficulties

when measuring admittances and impedances at frequencies above 1 MHz. Equations

(2.5) and (2.8) require short- and open-circuit conditions for determining the admittance,

impedance and hybrid parameters which can be exceedingly difficult to be accurately

achieved over a broad band of frequencies since short-circuits behave like “inductors”

while open-circuits present leakage and “stray capacitances”. Such difficulties can be cir-

cumvented by employing the scattering parameters, since these do not depend on open

or short circuit conditions to characterize a network; instead, matched loads are used, as

in equation (2.18). These terminations provide numerous practical advantages over the

open-circuit and short-circuit terminations when higher frequencies are used. Moreover,

from a theoretical standpoint, at higher frequencies the lumped-parameter assumption

for a linear network does not exactly hold. Therefore, the scattering parameters of a

network characterization are necessary so that the characterization be accurate also at
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higher frequencies. In Carlin (1956), the author emphasizes that all passive networks pos-

sess scattering parameters and, at higher frequencies, incident and reflected parameters

play dominant roles while the usual voltage-current description is of lesser importance.

Nevertheless, the decisive factor in choosing the network characterization is the avail-

able instrumentation. Scattering-parameter measurements require equipment that is usu-

ally not readily available to measure the total voltages and currents at network ports.

Alternatively, when faced with limited resources and lack of the appropriate appa-

ratus, the experimenter might supposedly consider, take admittance measurements and

then, reliant on Z = Y−1, convert them into impedance ones. As far as pure algebra

is concerned, parameter conversion poses no problem but for the obvious assumptions

of matrix invertibility and so on. However, in the realm of numerical matrix analysis

and estimation, this can be problematic. In reference Gustavsen & Silva (2013), the

author stresses that, in addition to the initial parameter estimation error, a parameter

conversion can contribute to even larger errors. This conversion issue can be as subtle

as eigenvalue deterioration, e.g., in Gustavsen (2014), there is discussion on reducing the

error magnification due to inaccurately measured small eigenvalues. Should the operation

Z = Y−1 be necessarily carried out, small eigenvalues of Y become large eigenvalues of

Z thus enlarging the overall error as well. Therefore, parameter conversion is usually

discouraged.

In the context of power transformers, it is customary to adopt the admittance repre-

sentation, the reason why favouring admittance matrices in this discussion. Seen as an

n-port, the data-acquisition process for a transformer comprises experimentally determin-

ing the frequency-responses for all n2 entries of the admittance matrix at every frequency

in the sequence {wk}Kk=1 of all measured frequencies. This implies the acquisition, storage

and manipulation of as many as n2K numbers in floating point format, or elements of

the measurement set in a more stilted mathematical language. In fact, there is a factor

of 2 dropped in this count, since every entry consists of magnitude and phase responses

(or every entry is a complex number with real and imaginary parts), but in this sort of

analysis one is mostly interested in a rough estimate of the order of magnitude. Spe-
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cially favourable to the acquisition process, the experimenter need not determine n2K

admittances, since power transformers are special cases of reciprocal networks. In matrix

language, this translates as the admittance matrix Y of a power transformer being a

symmetric one. According to Huelsman (2011), reciprocal networks allow the interchange

of input (excitation) and output (response) while their ratio remains unchanged. Hence,

reciprocity implies Yil(jw) = Yli(jw), i.e., if the excitation is applied at the ith port and

the corresponding response measured at the l-port, or alternatively in reversed order, the

same resulting ratio (admittance) is obtained. Therefore, the experiment is only per-

formed for the diagonal entries and those above it (or below), substantially reducing the

number of measurements.

Another relevant point to be made before proceeding to the next topic concerns the

distinction between a n-port and a n-terminal formulation. There has been hitherto only

a tepid mention of n-terminals in the opening paragraph of this chapter. The difference

between the two does not entail the form (the representation) of the network to which the

terminals give access to, but rather how they are externally interconnected. According

to Huelsman (2011), since the port voltages are specified with respect to the potential

difference between its own two terminals, voltage differences between potentials of termi-

nals belonging to different ports, or any terminal with respect to a reference (grounding

point), are essentially meaningless. On the other hand, a terminal representation does

not apply when any external component is connected to a single network terminal but is

isolated from the other terminals.

In fact, the measurement setup can require a reference node, common or grounded

terminal (as in Gustavsen (2004b)), thus qualifying the transformer as a n-terminal net-

work. The point in carrying the discussion on the underlying fundamentals in terms of

n-ports is well grounded in basically two facts: virtually all the literature of active and

passive network theory is developed considering the network on a port basis and, for this

research purposes, an n-port can be reduced to a (n + 1)-terminal as a special case. A

discussion on the equivalence between n-ports and n-terminal networks can be found in

Huelsman (2011). Furthermore, the matrix representation and the physical significance
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of the variables is identical.

2.2 Transfer Matrix Synthesis

Each of the representations discussed serve as experimental frequency response data from

a LTI n-port which is further processed so as to obtain a frequency dependent equivalent

(FDE): an algebraic expression (model structure) used to express the dynamics of the

LTI n-port as a function of frequency. A survey of available techniques for obtaining

such equivalents as well as their structures can be found in Annakkage et al. (2012)

and references therein. These equivalents are parametric approximations that supposedly

reproduce the data upon their parameters were estimated and predict outcomes for new

“unseen” data, i.e., the FDE must also possess a generalization ability. The algebraic

expressions herein used to approximate a frequency-dependent transfer matrix H(jw) are

expressed as follows:

H(jw) ∼= D +
N∑
m=1

RmΦm(jw) (2.19a)

H(jw) ∼= D + C(jwI−A )−1B (2.19b)

where ∼= denotes an approximation in the least-squares sense. In equation (2.19), the left-

hand equivalent comprises a truncated series expansion of a polynomial rational function

whereas the right-hand one is a modal equivalent associated with a state-space realization.

Approximations of the forms defined in 2.19 can be obtained by means of iterative methods

such as the Vector Fitting Algorithm Gustavsen & Semlyen (1999), which is a Sanathanan-

Koerner-type algorithm based on the pioneering reference Sanathann & Koerner (1963).

Assuming a n-port (n-terminal) LTI system with a N -th order realization, the matrices

that constitute the model parameters (to be evaluated) have the following dimensions:

Hn×n, AN×N , BN×n, Cn×N ,

Dn×n, Rn×n.
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Succeeding parameter estimation, the end result is a model with the aforementioned

structures which allow efficient time domain simulations by discretization methods, nu-

merical recursive convolution and time-domain trapezoidal integration of state-space dif-

ferential equations. According to Anderson & Vongpanitlerd (2006), a state-space real-

ization usually leads to faster and easier computation of time-domain integrations com-

pared with Laplace transforms and their inverses. Furthermore, the state-space approach

furnishes a clearer understanding of the internal content of a network description for

both analysis and synthesis problems fully underpinned by matrix analysis. The classical

Laplace-transform approach places stronger reliance on complex variable analysis instead.

Whichever model structure of equation (2.19) is employed during the initial parameter

estimation, there may be a need for conversion of one parameter set into the other. This

poses no major difficulty for these parameters are interchangeable, some illustrations of

the conversion procedure can be found in Gustavsen & Semlyen (2004) and Gustavsen &

Semlyen (2009a).

The state-space realization with matrices A, B, C, D provides the following time-

domain characterization:

 ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
, (2.20)

where y(t) and u(t) are n−dimensional time-domain output and input vectors at the

terminals and the n-port can be referred to as the system {A,B,C,D}. Equation (2.20)

denotes a finite dimensional state representation with (A,B) controllable, all eigenvalues

of A have negative real part, D + DT > 0 and x(0) = 0 (initially inert system). Accord-

ing to Chen (2012), by taking the Laplace Transform of equation (2.20) and after some

rearrangements, it yields:

H(s) = D + C(sI−A )−1B , (2.21)

which is precisely the right-hand side of equation (2.19) and H(s) is referred to as the

transfer matrix of the lumped system {A,B,C,D}, whose transfer function is also as-
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sumed rational. The left-hand side of equation (2.21) is also algebraic equivalent to

equation (2.2) in the Laplace domain. By way of illustration, should y(t) and u(t) in

equation (2.20) be respectively i(t) and v(t) (n−dimensional time-domain current and

voltage vectors at the terminals) then H(s) turns out to be the admittance representation

Y(s). In this sense, a transfer matrix can be understood as more general multi-variable

network function. Therefore, the mathematical structures herein employed are restricted

to transfer matrices and state-space realizations, the earlier being a input-output (black-

box) description whereas the latter can be viewed as a composition of a state-transition

mapping and a memoryless read-out function. Henceforth, equation (2.19) and their re-

spective parameter sets associated with any port representation can be referred to as a

system under all the assumptions hitherto made.

2.3 Assessment Techniques

Passivity assessment constitutes a system analysis problem intended for determining the

inability of a given system to generate energy: the distinguishing feature of passive sys-

tems. This analysis can be made rather rigorous with precise mathematical definitions,

which in turn depend on the description adopted for the n-port network. According to

Willems (1972), “Dissipative systems are of particular interest in engineering and physics.

The dissipation hypothesis, which distinguishes such systems from general dynamic sys-

tems, results in a fundamental constraint on their dynamical behavior.” Power transform-

ers are a typical example of a passive/dissipative system in which part of the electrical

energy is dissipated in its windings and core in the form of heat. The terminology dissi-

pative is more formal and can be used as a generalization of the concept of passivity. As

early as 1931, besides coining the term positive-real function, Otto Brune (Brune (1931))

first established the association between passivity and positive-real functions. In fact,

Brune proved that a rational positive-real function could be realized as a immittance

(impedance or admittance) representation of a network consisting of resistors, capacitors,

inductors and transformers, i.e., admittance and impedance parameter matrices of passive

electrical networks are positive real matrix rational functions.
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In 1954 a proof that extends this association to the multi-variable case was provided

in Raisbeck (1954). From the late 1950’s through the 1960’s, electrical engineers had a

running debate on the axioms of network theory. As in reference Allen (2004), the referred

debate centered on listing the minimal properties of an n-port to obtain the standard

formalisms of traditional circuit theory. More formal proofs appeared such as the classical

proof D. C. Youla & Carlin (1959) and others based on distribution theory (as in Wohlers

(1969) and Zemanian (1963)). Such advanced mathematical background prompted a

search for alternative means to prove and assess the passivity property. While positive-

realness is a necessary condition, it is not sufficient to establish passivity. In reference

Boyd & Chua (1982) a formal proof using general coordinates (which can be derived

for any of the representations of the last section) of the passivity criteria is provided,

employing Measure Theory but no Distributions. Some methods for assessing passivity of

LTI n-ports have been perfected while others have arisen. What follows is a compilation

of existing passivity assessment criteria currently being employed to LTI n-ports, starting

with classical transfer function/matrix criteria and later evolving to modern methods.

2.3.1 Frequency Sweeping test

Considering a LTI n-port defined in terms of equation (2.21), such that the transfer

matrix H(s) assumes any of the specific representations (as earlier defined: admittance,

impedance and etc.) and the following definition:

Φ(s) =

 HH(s) + H(s) (hybrid representations)

I−HH(s)H(s) (scattering representations)
, (2.22)

where the superscript H denotes Hermitian transpose, the LTI n-port thus characterized

by H(s) is positive-real matrix of the complex variable s, as stated in reference Triverio

et al. (2007), if the following conditions are satisfied in the open right-half s-plane (i.e.,

for Re(s) > 0):

1) each Hil(s) in H(s) is defined and analytic;
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2) Φ(s) > 0;

3) H(s∗) = H∗(s);

such that the superscript ∗ denotes complex conjugate. The matrix transfer function of

a linear time-invariant system that is positive real satisfies analyticity, conjugacy and

positive-definiteness. When H(s) comprises a scattering representation, and since the

second condition poses a unitary bound for Φ(s), these three conditions are equivalent

to requiring bounded-realness, a terminology that appropriately generalizes the fact that

each port has reflection coefficient smaller than one, meaning the reflected or transmitted

waves can only be a fraction of the incident wave (when considering the incident and

reflected waves interpretation for the scattering parameters).

As noted in Triverio et al. (2007), condition one also implies BIBO (Bounded-Input-

Bounded-Output) stability, while the second one is a multi-variable generalization for the

fact that any passive one-port impedance/admittance has a positive real part. The third

condition also ensures that the system impulse response be real. Despite being a side issue

that will be later addressed, it is noteworthy that conditions one and three can be even

satisfied by default as a direct consequence of the adopted model structure. Satisfying

the second condition can be numerically critical, though. Conditions one through three

have to be satisfied for all s in the right-half plane (Re(s) > 0) however, according to

Wohlers (1969) and Triverio et al. (2007), the lumped-parameter assumption which implies

a rational transfer matrix permits testing only along the imaginary axis (i.e., s = jw).

Consequently, a simple passivity assessment test broadly used in the literature is:

Φ(jw) > 0 ∀ ω, (2.23)

namely checking positive realness for hybrid representations or bounded realness for scat-

tering ones. In the context of measured port data, equation (2.23) is evaluated only at

each frequency in the finite sequence {wk}Kk=1 of all measured frequencies (as opposed to

all the infinite imaginary axis), thus the terminology frequency-sweeping assessment.

Under the working assumption of a symmetric system, in agreement with a power-
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transformer application, this frequency-sweeping assessment test can be further tailored

to simpler forms. Then, let the LTI n-port measured data to be represented in terms of

its admittance matrix, thus H(jw) = Y(jw), which is the customary representation for

power transformers. Therefore, the positive-realness condition as given by equation (2.23)

for all measured frequencies yields:

YH(jwk) + Y(jwk) > 0 ←→ G(jwk) > 0. (2.24)

In such circumstances, passivity requires that the conductance matrix (G(jwk) =

Re[Y(jwk)]) be positive real. Should the inequality in equation (2.24) hold, then the

following inequality also holds:

Ppot(jwk) = Re{v∗(jwk)Y(jwk)v(jwk)} = Re{v∗(jwk)G(jwk)v(jwk)} > 0. (2.25)

In the quadratic form of equation (2.25) whose associated physical interpretation is

that of absorbed active power, v(jwk) is a voltage vector. It is a well-established fact

from linear algebra, as can be found in references such as Golub & Loan (2012) and Horn

& Johnson (2012), that the eigenvalues of a positive real quadratic form such as that in

equation (2.25) are all strictly positive. If all eigenvalues of G(jwk) are strictly positive,

so is the smallest one. Thus, the passivity assessment condition can take the even simpler

form:

λmin(G(jwk)) > 0, (2.26)

where λmin( . ) denotes smallest eigenvalues of a matrix. Stated in other terms, if the

smallest eigenvalue of G(jwk) is negative, the passivity condition is said to be locally

violated. The violation is local in the sense that once a violation is confirmed at frequency

wk there is no implication so as to violations at frequencies wk−1 nor wk+1, i.e., passivity

has to be verified in the frequency sweeping manner. As a matter of fact, equations (2.24)
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through (2.26) are equivalent. According to Triverio et al. (2007), if H(jw) = S(jw), the

LTI n-port is a scattering representation and similar assessment criteria can be derived.

In this case, the positive-realness condition for Φ(jwk) produces:

I− SH(jwk)S(jwk) > 0. (2.27)

If Φ(jwk) is a positive-real matrix, then S(jwk) is bounded-real or unitary bounded,

following the usual literature terminology. From equation (2.27), the requirement for

passivity is that the eigenvalues of the Gram matrix SH(jwk)S(jwk) be smaller than those

of the identity, and therefore smaller than one. Since the square roots of the non-zero

eigenvalues of the associated Gram matrix are the singular values of the original matrix

S(jwk), it has become standard procedure in the literature to establish the passivity

criterion in terms of the singular values of S(jwk) rather than the eigenvalues of the

associated Gram matrix. Thus,

σmax(S(jwk)) ≤ 1, (2.28)

where σmax( . ) denotes largest singular value of a matrix. Equations (2.27) and (2.28) are

the analogues, for the scattering representation, of equations (2.24) and (2.26), respec-

tively. Hence, if the largest singular value of S(jwk) is larger than one, the nonexpansivity

(scattering analogous of passivity) condition is also said to be locally violated.

Table (2.3.1) summarizes all the discussion on frequency-sweeping assessment tech-

niques for LTI n-ports.

Table 2.1: Physicality Constraints
Representation Y (Z or hybrid) S H

Symmetry Y = YT S = ST -
Realness Y(s) = Y∗(−s) S(s) = S∗(−s) H(s) = H∗(−s)
Passivity λmin > 0 σmax < 1 -

Matrix Dimension n× n n× n noutput × ninput
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2.3.2 LMI-based test

This assessment method relies upon a connection between the feasibility of linear matrix

inequalities associated with a state-space description and the positive-realness (bounded-

realness) condition of the transfer matrix, this latter concept has been previously defined

for the frequency-sweep assessment. The LTI system transfer matrix system is positive

real if its state space realization satisfies the Positive Real Lemma (PRL). These concepts

originate in Control Theory and are associated with the solution to the Lur’e equation. In

reference Kalman (1964) this connection is first established for Single-Input-Single-Output

(SISO) systems, the extension of this result to the multi-variable case (MIMO) appeared

later in Anderson (1967b). Considering a LTI n-port as characterized by equation (2.21),

a system thus characterized is passive only if the following LMI, whose variable P is a

n× n matrix, is feasible:

 ATP + PA PB−CT

BTP−C −DT −D

 ≤ 0, (2.29)

with feasibility meaning that the solution set to equation (2.29) is nonempty, i.e., there

exists at least one matrix P such that it is symmetric and positive-definite (P = PT > 0).

Otherwise, the system is said to be non-passive. Feasibility of the LMI is a sufficient

condition for system passivity, since it implies that HH(s) + H(s) > 0 for all Re(s) > 0,

i.e., the system is globally passive. Thus, in this sense, feasibility and passivity are

equivalent statements. According to Curtain (1999) and Boyd et al. (1994), the result

in equation (2.29), the positive-real lemma (PRL), is also usually called the Yakubovich-

Kalman-Popov-Anderson or Kalman-Yakubovich lemma to reflect its authorship. The

nonexpansivity condition for the scattering representation in terms of a LMI test, derived

in Anderson (1967a), is called the bounded-real lemma (BRL) in the variable P and its

associated matrix inequality is:
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
ATP + PA PB CT

BTP −I DT

C D −I

 ≤ 0, (2.30)

such that P = PT > 0. If the BRL is satisfied, then S(s) is a bounded-real matrix:

SH(s)S(s) < I for all Re(s) > 0 and the system is globally nonexpansive. As noted in

Boyd et al. (1994), this fact can also be expressed as ‖S‖∞ ≤ 1. In reference Curtain

(1999), one can find some extensions of these results to the infinite-dimensional case as

well as further perspectives.

2.3.3 Hamiltonian test

The spectral properties of certain Hamiltonian matrices provide yet another connection

to the positive/bounded-realness of the transfer matrix. A proof of this connection is es-

tablished in reference Boyd et al. (1989), whence the following definition of a Hamiltonian

matrix M is a simple restatement of:

J−1M J = −MT where J =

 0 I

−I 0

 , (2.31)

i.e., a matrix M satisfying equation (2.31), with J−1 = JT = −J, is a Hamiltonian Matrix.

Besides, as emphasized in Grivet-Talocia (2004), its spectrum is symmetric with respect

to both the real and imaginary axis and its characteristic polynomial is real and even-

ordered. Therefore, if λi is an eigenvalue of M (λi ∈ {λ(M)}) then, due to the spectral

symmetry, −λi is also an eigenvalue of M: −λi ∈ {λ(M)}.

Assuming a LTI n-port characterized as in equation (2.21), the system associated

Hamiltonian matrices are formed as follows:

Mδ =

 A + B[2δ I−D−DT ]−1C B[2δ I−D−DT ]−1BT

−CT [2δ I−D−DT ]−1C −AT −CT [2δ I−D−DT ]−1BT

 , (2.32)
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for hybrid representations and

Mγ =

 A−B[DTD− γ2 I]−1DTC −γB[DTD− γ2 I]−1BT

γCT [DDT − γ2 I]−1C −AT + CTD[DTD− γ2 I]−1BT

 , (2.33)

for the scattering representation whose respective parameters (δ and γ) are both strictly

positive and δ is not an eigenvalue of (D + DT )/2 whereas γ is not a singular value of D.

Thus, the following connection can be established:

 δ ∈ {λ(H(jwk))} ←→ jwk ∈ {λ(Mδ)} (for hybrid representations)

γ ∈ {σ(H(jwk))} ←→ jwk ∈ {λ(Mγ)} (for scattering representations)
, (2.34)

such that the parameters δ and γ are respectively eigenvalues and singular values of

the corresponding transfer matrix if and only if the associated hamiltonian matrix has

purely imaginary eigenvalues, as proved in Boyd et al. (1989). According to Grivet-

Talocia (2004), this result permits one to determine the exact frequencies at which the

eigenvalues and singular values cross or are set in the neighbourhood of a given threshold

which correspond to the values assigned to parameters δ and γ. If the hamiltonian matrix

has no purely imaginary eigenvalue, the assigned threshold is not crossed nor “touched”.

The threshold of interest is zero (δ = 0) for hybrid representations and one (γ = 1)

for the scattering case. In this particular setting, purely imaginary eigenvalues of the

corresponding hamiltonian matrix (if any) should provide evidence as to the violation of

the positive-realness condition posed by equation (2.23). Therefore, a LTI n-port given

in terms of equation (2.21) is passive, or nonexpansive, under this Hamiltonian criterion,

if and only if:

M(δ=0) =

 A−B(D + DT )−1C B(D + DT )−1BT

−CT (D + DT )−1C −AT + CT (D + DT )−1BT

 , (2.35)

for hybrid representations and
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M(γ=1) =

 A + B(I−DTD)−1DTC B(I−DTD)−1BT

−CT (I−DTD)−1C −AT −CTD(I−DTD)−1BT

 (2.36)

for the scattering representation have no purely imaginary eigenvalues. By construction,

M is a matrix of size 2n×2n, twice the size of the state dynamics matrix and, as stressed

in references Grivet-Talocia & Ubolli (2008) and Grivet-Talocia (2004), this passivity

assessment is frequency-independent with the resultant Hamiltonian matrices also being

constant since its parameters are the matrices {A,B,C,D} associated to the LTI system.

Hence, it is possible to conclude that the absence of purely imaginary eigenvalues in the

referred set implies feasibility of the LMI’s, equations (2.29) and (2.30), as well as positive

realness of equation (2.22). On the other hand, if there exists at least one purely imaginary

eigenvalue, the system is non-passive.

The mere existence of purely imaginary eigenvalues of the Hamiltonian matrix is suffi-

cient for distinguishing passive from non-passive behavior. However, further information

can be obtained. By way of illustration, assume a Hamiltonian matrix (associated to a

system as described by equation (2.21) whose k positive imaginary eigenvalues form the

following set:

Ω = {λ1 = jω1, λ2 = jω2, . . . , λk = jωk}. (2.37)

such that the eigenvalues are sorted in ascending order and k ≤ n
2
. Each of these eigen-

values correspond to the frequencies at which the positive-realness threshold of equation

(2.22) is reached, i.e., if:

Φ(jwi) ≯ 0 ∀ λi = jωi ∈ Ω. (2.38)

Nonetheless, since the eigenvalues or singular values are a continuous function of fre-

quency, it is possible to characterize how the boundary is reached, that is to say, whether

non-passive (or passive) behavior is found at frequencies higher than some jwi or other-
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wise.

Using a first-order approximation based on Perturbation Theory, the author in Grivet-

Talocia (2004) derives a continuous function of frequency for the eigenvalues or singular

values whose slope at the threshold can be evaluated, e.g., the frequencies at which the

eigenvalues of G(jw) change sign. Hence, the elements in the set Ω define breakpoints

between passive and non-passive behavior depending on the slope at each jwi thus elim-

inating the need for sweeping along the frequency axis. As a result, passivity can be

characterized in terms of bands of violation. With the set Ω and knowledge of the slopes

at each of its k breakpoints, or crossover frequencies, the whole spectrum of frequencies can

be divided into intervals, e.g., (0, ω1), (ω2, ω3), ..., (ωk,∞), such that the behavior within

each (ωi−1, ωi) can be specified. It is even possible to quantify the maximum violation

in each band (ωi−1, ωi) using the bisection algorithm, as proposed in Boyd et al. (1989).

Alternatively, bands of violation can also be identified more pragmatically by evaluating

the positive-realness criterium, equation (2.23), at the midpoint frequency between each

successive element in the set Ω, e.g., (ωi−1+ωi)/2. Hence, if the positive-realness criterium

fails to hold at the midpoint frequency (ωi−1 + ωi)/2, then (ωi−1, ωi) defines a violation

band. Furthermore, evaluate the same criterium at w1/2 (from DC to w1) and 2wn (from

wn to ∞, asymptotic behavior).

Finer details, generalizations and further technical assumptions can be found in Grivet-

Talocia (2004), Boyd et al. (1989), Golub & Loan (2012) and references therein.

2.3.4 Half-size Test Matrix

Some technical difficulties arise when computing the purely imaginary eigenvalues of a

Hamiltonian matrix that define frequency boundaries for passivity violations: (i) the

eigenvalues are not purely imaginary but have a small real component due to numerical

noise and (ii) the Hamiltonian matrix is twice as large as the associated state-dynamics

matrix, thus leading to a time-consuming eigenvalue computation for large models. As a

matter of fact, the eigenvalue computational complexity grows cubically with the matrix

dimension.
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Considering its symmetrical spectrum, the Hamiltonian eigenvalues appear in pairs

and quadruples. Therefore, there is redundancy in computing the same information twice.

Only for symmetrical systems, large computational savings can be obtained so as to estab-

lish the crossover frequencies and the passivity violating intervals with matrices whose size

are half that of the Hamiltonian matrix, thus the name Half-size test matrices. These test

matrices haven been proposed in references Gustavsen & Semlyen (2009a) and Gustavsen

& Semlyen (2008) for admittance (impedance) and scattering representations respectively.

Owing to some incorrect statements in Gustavsen & Semlyen (2009a), the authors made

a revision to their own claims in Gustavsen & Semlyen (2009b), but a read of a further

discussion on this issue as presented in Wong & Zhang (2010) is also recommended. A re-

duction in the size of the test matrix by a factor of two corresponds to the computational

complexity to fall off by a factor of nearly eight (due to the cubic complexity relation),

thus making the eigenvalue computation less of an issue. The numerical noise problem

in the eigenvalues is also compensated since the eigenvalues of the half-size matrix are

noiseless purely real and whose square roots correspond to the crossover frequencies that

determine the breakpoints between passive and non-passive behavior hence also corre-

sponding to the eigenvalues of the Hamiltonian matrix, with no redundancy. Assuming a

LTI n-port expressed as in equation (2.21), the Half-size test matrices are:

T = A[BD−1C−A], (2.39)

for admittance (impedance) representation and

T = [A−B[D− I)]−1C][A−B[D + I]−1C], (2.40)

for the scattering case. In a procedure similar to that of the Hamiltonian matrix, the

crossover frequencies can be identified as the square root of the positive-real and negative-

real eigenvalues of T, for the admittance and scattering representations respectively.

Therefore, the admittance Half-size test equivalent of the set given in equation (2.37)

yields:
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Ω = {λ1 = ω2
1, λ2 = ω2

2, . . . , λk = ω2
k}. (2.41)

The rest of the procedure to determine the violating frequency bands follows the same

steps as explained for the Hamiltonian matrix. A performance comparison between the

half-size test and hamiltonian test matrices is made in Gustavsen & Semlyen (2009a).

2.3.5 Discussion on Assessment

These assessment techniques or passivity criteria have been ordered as they have histori-

cally appeared in the literature and permit passivity characterization at different levels of

detail. Deciding upon which one to use is not at one’s full discretion. For instance, assess-

ing passivity before a model is synthesized rules out any choice of assessment technique

based on model parameters. Hence, passivity assessment on raw data can only be accom-

plished with a search over measured frequencies, i.e., the sweeping technique. As for the

parameter-based techniques, they assume a state-space realization to assemble the test

matrices, which is by no means the only model structure usually deployed. Rational mod-

els constitute yet another commonly used structure in the context of frequency-dependent

behaviour, specially the ubiquitous pole-residue rational form. Even though the majority

of passivity criteria is formulated in terms of {A,B,C,D} parameter set, a model initially

synthesized in rational form can be converted into a state-space realization so that the test

matrices be correctly assembled, an example of the conversion procedure can be found in

Gustavsen & Semlyen (2004). Each assessment technique has its own pros and cons and

the right choice of assessment must also best reflect one’s interest in assessing passivity,

e.g., a simple passivity certificate or a more detailed and refined passivity characterization

so as to identify some localized equipment pathology.

Applicable to both raw data and model, the frequency-sweeping tests constitute the

simplest form of assessing passivity, at least conceptually. They are frequency-dependent

in the sense that the test must be performed at every single frequency point: theoretically

in the whole continuum of the right-half s-plane, Re(s) > 0, and experimentally for the
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finite set {wk}Kk=1 of measured frequencies. Searching for positive-real matrices over a

discrete set of measured frequencies imposes major limits on what conclusions can be

reached due to inexorable experimental obstacles such as upper and lower bounds of

the acquisition process and coarse sampling intervals. Owing to these two illustrative

difficulties, one remains ignorant of what the system behavior can be between successive

frequency samples as well as beyond the upper and lower bounds. As a result, if no

negative eigenvalue is found at any frequency, test is inconclusive for positive-realness

is only a necessary condition for passivity (not sufficient). Nonetheless, if this same

procedure returns a single negative eigenvalue at a single frequency point, the system is

assuredly non-passive since the necessary condition is not fulfilled. Therefore, this test is

remarkably effective in furnishing a non-passivity certificate, but ineffective otherwise.

The LMI-based tests are very efficient in furnishing a global passivity certificate, in

fact this test provides a single bit of information: the system is either passive or otherwise,

no further information can be retrieved. It is a frequency-independent test for there is

no search over frequencies and only applicable once a model has been synthesized, since

it is parameter-dependent. The passivity certificate is issued as soon as a single matrix

P is found, this constitutes a feasibility problem that can be formulated as in Boyd &

Vandenberghe (2004) and numerically solved with CVX, a package for specifying and

solving convex programs CVX Research (2012),Grant & Boyd (2008) with core solver

SEDUMI Sturm (1999). If there is no such P, i.e., the solution set to the LMI is empty,

the problem is infeasible and the system is non-passive but there are no means so as to

specify where along the frequency axis the violations occur.

The Hamiltonian test is the most detailed among all the assessment tests. It involves

no search over frequencies, thus frequency-independent, but it does require models pa-

rameters, hence a parameter-dependent test. Its appealing feature lies precisely in the

possibility of specifying where along the frequency axis violations occur, if they ever do.

Recalling that the purely imaginary eigenvalues of the Hamiltonian matrix are sorted in

ascending order and the continuous bands of frequencies arranged in ascending order from

ω = 0 up to ω → ∞, i.e., (0, ω1), (ω2, ω3), ..., (ωn,∞); the first (0, ω1) and last (ωn,∞)
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bands allow passivity assessment in d.c. and asymptotic terms, therefore a global contin-

uous assessment (as opposed to finite discrete frequencies). Furthermore, as in reference

Grivet-Talocia (2004), these results are not compromised in case of inaccurate sampling.

In many respects the Half-size test is similar to the Hamiltonian test. As matter of

fact, according to Gustavsen & Semlyen (2008) and Gustavsen & Semlyen (2009a), the

motivations for deriving it were specially the Hamiltonian matrix’s long eigenvalue com-

putation time that can be very time-consuming for large models and also their sensitivity

to noise resulting in small real components as opposed to the purely imaginary form.

The eigenvalue computation can actually dominate the total computation time of further

modeling steps, e.g., parameter estimation or passivity enforcement. Half-size tests are

frequency-independent and parameter-dependent as well, they can reduce the eigenvalue

computation time by a factor of nearly eight but have a major restriction: they are only

applicable to symmetric models.

The frequency-independent methods are more reliable, namely the LMI-based, Hamil-

tonian and Half-size tests, since the usual problems associated with the sweeping method

such as determining how fine a search over the frequencies should be do not arise. How-

ever, the only choice for assessing passivity before parameter estimation is the sweeping

assessment which can effectively provide a passivity violation certificate if there is at least

a single negative eigenvalues (or a singular value larger than one) for at least one fre-

quency point. Otherwise, knowledge of passivity violations remain in obscurity and the

test is inconclusive.

Even though most of the literature on passivity assessment concentrates on symmetri-

cal models on the grounds that physical systems result in symmetrical port matrices there

is something of note regarding any model symmetry assumption. For instance, the simpli-

fying correspondence established in equation (2.24) and the arguments of equations (2.25)

and (2.26) are strictly valid provided the system is symmetric, as noted in Gustavsen &

Semlyen (2009a) and Wong & Zhang (2010). However, the positive-realness condition for

the general form of equation (2.23) must hold for a passive system, irrespective of any

symmetry assumptions. The Half-size tests are valid exclusively for symmetric systems
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whereas the LMI-based and Hamiltonian tests apply even when the system is devoid of

symmetry. In the case of power transformers, symmetry is generally not an issue but

care must be taken when synthesizing a model for some strategies aimed at reducing

the computational time of parameter estimation can break the symmetry of the original

data. A practical illustration of this difficulty comprises the use of pole-residue modeling

obtained via the algorithm known as Vector Fitting (VF), as in Gustavsen & Semlyen

(1999), employing its column-wise fitting procedure aiming at computational savings thus

resulting in slightly unsymmetrical models. Furthermore, conversion from the rational to

the state-space forms requires a specific procedure so that symmetry is not broken, as

demonstrated in Gustavsen & Semlyen (2004) and Gustavsen & Semlyen (2008).

It is of paramount importance to interpret the common occurrence of inconsistent

time-domain simulations of intrinsically passive systems. Examples of such difficulties

abound in the literature and their root causes are usually associated with unmodeled

characteristic features such as stability, causality, and chiefly passivity, both in the data

used in model derivation or the model itself. Obviously, these arguments favouring passiv-

ity as a desired or characteristic feature exclude the cases concerning data and models of

explicit sources such as generators. These passivity assessment techniques are essentially

passivity conditions expressed as mathematical criteria that through various equivalent

algebraic conditions provide means to distinguish passive systems from non-passive ones

within the broader general set of all linear systems. Even though this research dwells

on the linearity assumption, most of the results can be extended, mutatis mutandis, to

time-varying and infinite dimensional systems as well.
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CHAPTER 3

PRE-PROCESSING APPROACH

This chapter concerns the formulation of a novel pre-processing approach as a means

to enforce passivity on data that has been invariably corrupted during the acquisition

process. The vast majority of efforts on passivity enforcement have favoured model pa-

rameter perturbation, requiring an initial approximation to be modified until passivity is

eventually attained, on the grounds that passivity may not be preserved during model

parameter estimation, i.e., passive data do not imply passive models. Conversely, what

follows is a pre-processing formulation in terms of data passivity enforcement to serve the

very purpose of recovering the characteristic passive behavior of data from degradation

sustained during acquisition, preceding any parameter estimation.

3.1 Pre-Processing Strategies

Since data is discrete and finite, the pre-processing is formulated as a point-by-point

frequency-domain counter-acting perturbation matrix that when added to the corrupted

non-passive measurement matrix is capable of enforce positive-real conditions, i.e., recover

the n-port original dissipative (passive) properties. This statement translates as:

Ĝ(jwk) = G̃(jwk) + ∆(jwk) > 0. (3.1)

where wk denotes a discrete measurement frequency in the set {wk}Kk=1 of all measured

frequencies, Ĝ(jwk) is the perturbed positive-definite conductance matrix, G̃(jwk) is the

unperturbed data, ∆(jwk) is the perturbation matrix and G̃(jwk) is found to violate the

passivity criteria at a given measurement frequency wk. Perturbation matrices are used

only in case passivity violations occur, such that:



∆(jwk) =


0 if @ λ{G̃(jwk)} < 0

∆(jwk) if ∃ λ{G̃(jwk)} < 0

(3.2)

where λ{G̃(jwk)} is the set of eigenvalues of G̃(jwk) at frequency wk. This procedure

aims at suppressing any passivity violations corrupting the original data, specially large

violations, which would otherwise be propagated through the identification algorithm and

render invalid the core assumption of small violations that the enforcement algorithms

work on, possibly resulting in larger accuracy degradation or even lack of convergence.

Therefore, the objective is to determine a matrix (a data perturbation matrix) that adds to

the raw, unprocessed, corrupted measurement data and enforces positive-real constraints,

and yet causes - in some sense - the least possible deviation from the original data. Four

distinct criteria to find a perturbation matrix are herein proposed so that the perturbed

data fulfills the positive-realness condition.

3.1.1 Uniform Eigenvalue-Shift Perturbation - UESP

This first approach uses a special perturbation matrix to satisfy equation (3.1), namely a

diagonal matrix that shifts up all the eigenvalues of G̃(jwk) by the absolute value of its

most negative eigenvalue at every violating frequency:

∆(jwk) = µ(jwk)I, (3.3)

where I is the identity matrix and the parameter µ(jwk) ∈ IR is defined, at every fre-

quency, according to equation (3.2). This procedure has a least effect in the sense that all

eigenvectors are invariant under the pre-processing and the nullspace is forced to coincide

with the direction of the eigenvector associated with the largest passivity violation, the

rank is reduced by one, see Horn & Johnson (2012). Furthermore, the perturbation matrix

has structure: its diagonal (thus sparse), symmetric and positive-definite by construction.

By preserving the eigenvectors during the pre-processing, any previous diagonalization

(as in Gustavsen (2014)) of the data matrix G̃(jwk) still holds for the pre-processed (thus
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passive) data.

This could be interpreted as a correction for a uniform corruption of all eigenvalues

during data acquisition and not only the violating (negative) eigenvalues. As far as the

conventional wisdom goes, only negative eigenvalues are unacceptable, thus only ad hoc

corrections are made. However, even positive eigenvalues are possibly less positive (the

system appears to be less dissipative) due to data corrupting agents.

3.1.2 Least Diagonal Perturbation - LDP

In the previous strategy, all eigenvalues are increased by the same amount, whereas the set

of eigenvectors remain invariant. However, it can be modified so that its impact on the

the diagonal entries be least in a different sense, namely a minimum trace criterium.

Consequently, a different perturbation matrix ∆(jwk) can be formed while retaining

its diagonal (thus sparse), symmetric and positive-definite structure. As a result, we

formulate the following optimization problem to obtain such perturbation matrix:

min
∆

. tr(∆(jwk))

s.to G̃(jwk) + ∆(jwk) > 0

∆(jwk) diagonal

∆(jwk) > 0

(3.4)

where tr denotes the trace of the perturbation matrix, i.e., the sum of its diagonal el-

ements, Horn & Johnson (2012). In (3.4), the perturbation matrix is the smallest (as

measured by its trace), positive-definite, diagonal matrix to enforce positive-realness. In

preceding algebraic formulation (UESP), the perturbation matrix ∆(jwk) is by construc-

tion positive definite with repeated eigenvalues, whereas in alternative this formulation

the perturbation matrix is allowed to have different positive eigenvalues.

3.1.3 Least-Eigenvalue Perturbation - LEP

The preceding formulations result in perturbation matrices that are exclusively diagonal.

As a consequence, only the diagonal entries are perturbed. By suppressing the require-
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ment that the perturbation matrix be diagonal, the possibilities to obtain a perturbation

matrix ∆(jwk) resulting in a least impact on measurements increase, for even off-diagonal

entries can be allocated to compensate passivity violations. Therefore, we require that

the perturbation matrix ∆(jwk) to ensure positive-realness has the least possible maxi-

mum eigenvalue. The problem is then to find a symmetric ∆(jwk) whose λmax(jwk) is

minimized and still satisfies the positive-realness condition (3.1):

min
∆

. λmax(∆(jwk))

s.to G̃(jwk) + ∆(jwk) > 0
(3.5)

where λmax(∆(jwk)) is the maximum eigenvalue of the perturbation matrix. As in Boyd

& Vandenberghe (2004), equation (3.5) with a non-differentiable and highly non-linear

objective can be reewritten as an equivalent Semidefinite Program (SDP embedding):

min
µ,∆

. µ

s.to ∆(jwk) < µI

G̃(jwk) + ∆(jwk) > 0

(3.6)

the formulation is now affine in the variables and can be reliably solved. This formulation

has a least effect on G̃(jwk) in the sense that the perturbation being added (∆(jwk)) has

its largest eigenvalue minimized.

3.1.4 Least-Norm Perturbation - LNP

Alternatively, a symmetric ∆(jwk) could also have a different least effect: it can be

required to have the smallest euclidean norm, as long as (3.1) be satisfied. Therefore, we

reformulate the optimization objective to obtain a Least-Norm Perturbation matrix, as

follows:

min
∆

. |(∆(jwk))|2

s.to G̃(jwk) + ∆(jwk) > 0
(3.7)

Equation (3.7), a constrained norm minimization with a non-differentiable and non-
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linear objective, which is also SDP-representable, i.e. we can write its equivalent Semidef-

inite Program (SDP embedding), or LMI representation, as (also refer to Boyd & Van-

denberghe (2004)):

min
µ,∆

. µ

s.to G̃(jwk) + ∆(jwk) > 0 µI ∆(jwk)

∆T (jwk) µI

 > 0,

(3.8)

which is now a LMI representation of problem (3.7) and can be reliably solved.

3.1.5 Weighted LEP and LNP

Both the LEP and LNP formulations furnish full perturbation matrices as opposed to the

strictly diagonal (by construction) matrices of the UESP and LDP formulations. However,

since the measured transformer admittance matrices happen to have their largest entries

in the diagonals, this same pattern repeats for the perturbation matrices. This can cause

the deviations for the diagonal entries of the perturbed measurement to be larger than

the corresponding deviations for the non-diagonal entries.

The problem can be circumvented by adding a penalty term to the scalar objective

function. This is accomplished adding a quadratic (thus convex) penalty function to the

objective so that the pre-processing algorithm finds a perturbation matrix that smoothly

allocates its entries, between diagonal and off-diagonal entries, such that the positive-

realness is attained with a compensation that still satisfies equation (3.1). Equation (3.6)

for the LEP formulation is reworked into its weighted version:

min
µ,∆

. µ(jwk) + β
∑n

i=1(G
2
ii(jw))

s.to ∆(jwk) < µ(jwk)I

G̃(jwk) + ∆(jwk) > 0

(3.9)

where β is scalar factor that can be tunned and
∑n

i=1(G
2
ii(jw)) is the sum penalizing the

objective function for the allocation of large entries to the diagonal of the perturbation
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matrix. Similarly, the LNP (3.8) is also reworked into its weighted version, thus the

problem can be recast as:

min
µ,∆

. µ(jwk) + β
∑n

i=1(G
2
ii(jw))

s.to G̃(jwk) + ∆(jwk) > 0 µ(jwk)I ∆(jwk)

∆T (jwk) µ(jwk)I

 > 0.

(3.10)

3.1.6 Algorithm

There follows a pseudo-code to better illustrate the overall modeling flow while placing

the pre-processing approach into a detailed perspective.

INPUT: G̃(jw)← frequency-domain input data

for all wk ∈ {wk}Kk=1 do

Preprocessing (G̃(jwk)) {

if ∃ λ(G̃(jwk)) < 0 then

G̃(jwk)← preprocessed data

else

G̃(jwk) remains unchanged

end if

}

end for

do System Identification

do Passivity Enforcement

OUTPUT: Model

3.2 Discussion

This exposition of the pre-processing strategy is to be further employed and analyzed for

actual power transformers in chapter 5. The advantage of pre-processing resides in accu-

racy gains that can be achieved by relieving parameter adjustment for the compensation
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of in-band violations, thus resulting in a better overall compromise. Other instances of

pre-processing in the context of power transformers exist and, as matter of fact, any data

adjustment can be regarded as a pre-processing. In reference Morched et al. (1993), for

instance, diagonalization of a transformer admittance matrix Y(jw) with a real similarity

transformation matrix is used to obtain computation time gains. Similarity transforma-

tion matrices are in general complex and frequency-dependent. In order to achieve a real

similarity transformation matrix, the authors in the aforementioned reference considered

the admittance matrix as individual blocks, each block pertaining to a transformer wind-

ing. Diagonal and off-diagonal entries are then averaged so that blocks are balanced,

thus permitting block diagonalization with real matrices. This approach however finds

limitations in terms range of application for symmetry within transformer admittance

matrices depends on winding configuration. Another simplistic pre-processing approach

using diagonalization employing Fortescue transformation can be found in reference Gus-

tavsen & Semlyen (1998). A more recent example of pre-processing devised to prevent

increased error magnification in time-domain simulations due to inaccurate representation

of small eigenvalues of the admittance matrix can be found in Gustavsen (2014). The

author introduces a special similarity transformation matrix to avoid error magnification

simulations with arbitrary terminations are of interest. This pre-processing called Mode-

Revealing Transformation is simpler and faster an alternative to the Modal Vector Fitting,

as in Gustavsen & Heitz (2008).

Pre-processing as herein formulated comprises an original formulation also intended

for better accuracy, but the basic principle is to enforce passivity on data thus relieving

modal parameter perturbation to achieve a better global compromise.
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CHAPTER 4

POST-PROCESSING APPROACH

This chapter concerns the post-processing approach thus marking the dividing line be-

tween data and model passivity, the former has been discussed in the preceding chapter

whereas the latter is hereupon discussed. Post-processing is intended for ensuring that

the model behavior be strictly passive under any circumstances and it basically hinges

on either deriving a passive model from a non-passive one or directly devising a passive

model. However subtle the difference between these alternatives may seem, it is impor-

tant that they be distinguished. Therefore, the first part of the chapter is committed to

perturbative model passivity enforcement (estimate parameters then enforce passivity)

and the second part focuses on non-perturbative passive approximation (enforce passivity

as parameters are estimated). This discussion is independent of any previous attempts

at taming passivity during the pre-processing stage, whether they have proved fruitful or

not, and even the general case for which no pre-processing is used.

4.1 Perturbative Passivity Enforcement

Passivity enforcement is a procedure whose sole purpose is to ascertain that the passivity

criteria be fulfilled by computing a correction or perturbation to an existing model of

a given frequency response. In the search for a passive model to a passive system, it

is precisely passivity violation as identified by some assessment method what prompts

the enforcement task to be performed. As passivity has remained an unmodeled effect

during parameter estimation, the estimated parameters do not reflect the exact system

dynamics and must therefore be changed insofar as passive behavior be recovered. Model

parameters are usually evaluated by means of some minimizing criteria so as to yield an

optimal approximation to data, hence any parameter perturbation must be minimal as

well. Typically, not all but only some parameters are actually perturbed to compensate



passivity violations specially those permitting some further structure simplification to be

favourably exploited, e.g., linearity. In general terms, a parameter perturbation comprises

computing a ∆ to be incorporated into a set of parameters Θ, i.e.,

Θ̂′ = Θ̂ + ∆, (4.1)

such that the computed perturbation simultaneously renders the model passive and has

a least impact on the original model:

min ‖∆‖. (4.2)

As a result, any compensation made to the original parameters is minimal in terms of

the resulting model approximation error.

4.1.1 Discrete-frequency Passivity Enforcement

This particular enforcement strategy presupposes an existing accurate model in some

functional form whose parameters serve as the starting point for further developments.

As the discrete-frequency qualifier indicates, this procedure entails formulating a problem

constraint that ensures the direct enforcement of the passivity condition for all or some ju-

diciously selected frequency samples at which passivity is violated so as to recover a global

passive behavior. Since the method relies on discrete enforcement, it is therefore unable

to guarantee that a globally passive behavior be attained. Nevertheless, to overcome this

difficulty, the enforcement algorithm can be embedded into an iterative procedure asso-

ciated with the right assessment methods so that strategic frequencies be chosen and a

global solution is thus obtained. As a consequence, the difference between existing formu-

lations in the literature lies in the choice of the adaptive frequency sampling employed and

the optimization strategy used to formulate an objective function as well its constraints.

Common implementations include Linear Programming (LP) in Saraswat et al. (2004),

Quadratic Programming (QP) in Gustavsen & Semlyen (2001) and Second-order Cone

Programming (SOCP) in Grivet-Talocia & Ubolli (2008). The problem constraints must
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establish a functional correspondence between parameter and eigenvalue perturbation,

such correspondence is usually a non-linear one thus leading to another iterative proce-

dure in order to attain a satisfactory result. In terms of problem formulation, parameter

perturbations resulting in a minimal change to the initial approximation can be computed

by some optimization-based algorithm.

First developed in Gustavsen & Semlyen (2001), the passivity enforcement method

accompanying the Vector Fitting (VF) algorithm Gustavsen & Semlyen (1999) is based on

Quadratic Programming. The overall package structure, i.e., estimation and enforcement

was packed into a single routine in Gustavsen (2002) and Gustavsen (2007). In this

particular setting, the existing initial approximation is structured as a pole-residue model,

as parameterized by VF algorithm:

H(jw) ∼= Ĥ(jw) =
N∑
m=1

Rm

jw − am
+ D + sE, (4.3)

whose parameters Rm, am, D and E can be modified so that the passivity criteria be

fully satisfied and the terms D and E, that define the system’s high-frequency asymptotic

properties, possibly equal zero as stressed in Gustavsen (2007). By keeping the parame-

ters in the denominator unchanged (the system’s poles am), the computed values of the

initial approximation and its parameters are linearly related; consequently, incremental

changes made to its parameters are also linearly related to incremental changes to the

approximation values. Since power transformers are this research’s target application, it

is assumed that Ĥ(jw) = Ŷ(jw), the transformer’s admittance matrix is approximated

with a pole-residue model. The symmetry of the admittance matrix is easily attained

during the identification process since it implies that Rm, D and E be all symmetric.

The following formulation of passivity enforcement was initially devised in Gustavsen

& Semlyen (2001) and later refined in Gustavsen (2007), and is chiefly based on residue

perturbation. Hence, the objective is to change the models’ parameters so that the ap-

proximation remains as accurate as possible and the passivity criteria is fully satisfied,

thus:
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∆G(jw) =
N∑
m=1

∆Rm

jw − am
+ ∆D ≈ 0

Ĝ(jw) + ∆G(jw) > 0

(4.4)

which can be brought to a standard form QP, such as:

minimize (1/2)∆xT (KTK)∆x− (KTb)T∆x

subject to F∆x < c

, (4.5)

where ∆x is formed by stacking the parameters (∆Rm,∆D) to be perturbed, K is a

matrix built upon a linear relation between parameters and admittances increments and

F comprises the constraint matrix which establishes a linear relation between parameter

change and eigenvalue change. Equation (4.5) defines a constrained least squares fitting

whose constraints are directly related to the passivity requirement. Consequently, any

correction made to the initial approximation is minimal in terms of the resulting fitting

error, since it ensures passivity with a smallest possible increase in a least-squares sense,

which can also be manipulated by some weighting scheme. The problem possibly has

to be iteratively solved due to the actual nonlinear relation between its parameters and

the associated eigenvalues, which has been linearized. For a general case comprising an

admittance matrix of size n×n and an approximation order ofN , the vector ∆x containing

the n2(N + 1) stacked parameters is formed as:

∆xT = [∆R11,1 . . .∆R11,N ∆D11 R21,1 . . .∆R21,N ∆D21,1 . . .∆Rnn,1 . . .∆Rnn,N ∆Dnn]T .

According to Gustavsen & Semlyen (2001), the vector ∆x is linearly related to the

incremental changes to every entry ∆ĝij(jwk) of the model Re(Ŷ(jwk)) at every frequency

point wk by a matrix Kk(jwk), i.e., ∆ĝ(jwk) = Kk(jwk)∆x such that ∆ĝ(jwk) comprises

a vector whose entries are the stacked columns of ∆Ĝ(jwk).

The matrix Kk(jwk) that establishes the linear relation is based on the assumptions

that the set of poles {am} initially estimated are held fixed while the other parameters

are readjusted. Thus, Kk(s = jwk) equals:
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

1
s−a1 . . . 1

s−aN
1 0 . . . 0 0 . . . 0 . . . 0 0

0 . . . 0 0 1
s−a1 . . . 1

s−aN
1 0 . . . . . . 0 0

... . . .
...

... 0 . . . 0 0
. . . 0

. . .
...

...

...
. . .

...
...

...
. . .

...
...

. . . 0 . . . 0 0

0 . . . 0 0 0 . . . 0 0 0 1
s−a1 . . . 1

s−aN
1


.

Therefore, the matrix K in equation (4.5) is formed by stacking all Kk(jwk) corre-

sponding to every individual frequency sample wk, notice that the matrix K is due to an

assumed linearization between parameter change and conductance change. The vector

b in equation (4.5) contains the stacked columns of the difference matrix between the

measured and estimated admittance matrix: Y(jw)− Ŷ(jw). As for the matrix F, it de-

fines the linearization between the vector of parameter perturbation ∆x and the vector of

eigenvalue perturbation c, such that F = QK. The matrix K is built as earlier discussed

whereas matrix Q consists of the stacked Qk(jwk) matrices for every violating frequency

containing the following arrangements of the normalized (so that their 2-norm is unitary)

eigenvectors of the approximated conductance matrix at each wk:

Qk(jwk) =



vT1 0 . . . 0

0 vT2 . . . 0

... 0
. . . 0

0 0 . . . vTn





vT1 . . . 0

...
. . . 0

0 . . . vT1

vT2 . . . 0

...
. . .

...

...
. . .

...

0 . . . vTn−1

vTn . . . 0

...
. . . 0

0 . . . vTn



.

such that v1, . . . , vn are the normalized eigenvectors of the associated diagonalization

of the measured admittance matrix, i.e., the columns of the matrix of eigenvector T in
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Y(jwk) = T(jwk)Λ(jwk)T
−1(jwk). Matrices K and F in equation (4.5) owe their sizes to

the number of measured frequencies and the number of violating frequencies respectively,

the higher the number of frequencies the larger the matrices, hence implying a longer

computation time. In its earliest formulation in reference Gustavsen & Semlyen (2001),

all frequency samples found to violate the passivity criteria are involved in the process

of adjusting the residues, with an impact on the size of matrix F and the vector b of

equation (4.5). This process was later refined in Gustavsen (2007) for which the authors

use the Hamiltonian matrix to define strategic frequencies within every violation band

instead of sweeping the whole measured spectrum and including all violating frequencies

in the constraint equations. With the Hamiltonian assessment method, the constraint

equations are significantly reduced in size by only including the frequencies for which the

passivity violation is the largest within every band instead of the entire violating band.

Nonetheless, assessing passivity with the Hamiltonian matrix requires that the model be

converted from the pole-residue form to the state-space form, conversion details can be

found in Gustavsen & Semlyen (2004) and Gustavsen & Semlyen (2009a).

The main drawback of being selective in choosing the frequencies to constitute the

problem constraint is that unpredicted violations can be created at frequencies other

than those initially assessed, which is why the robust iterative procedure proposed in the

paper Gustavsen (2007) are used. Its basic strategy is to include in the constraint matrix

F additional samples chiefly outside the fitting band which are assigned a small weight so

that the enforcement scheme does not concentrate within the bounds of the fitting range.

However, the problem reduction via the Hamiltonian assessment greatly improves

computation times since matrix F is full but only contains as many rows as ones chooses

for the enforcement. On the other hand, matrix K is sparse thus permitting this feature

to be favourably exploited. One last remark about the Hamiltonian assessment method is

that it allows to include frequency points beyond the fitting range, not possible with in the

earlier formulation using sweeping assessment methods, thus allowing a global passivity

enforcement to be attained in an iterative scheme.

It is noted that the vector ∆x does not include any ∆Eij. As discussed in Cipparrone
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et al. (2001), even if the improper term E is non zero, it does not exert influence on the

matrix Re(Ŷ(jwk)) whose eigenvalues should be perturbed. Therefore any ∆Eij is not

related to the passivity requirement, it can however be enforced to be positive-definite

for circuit realization purposes. As a matter of fact, in its earliest formulation published

in Gustavsen & Semlyen (2001), the vector ∆x contained only the residue terms and

passivity was enforced separately to both D and E with an algebraic procedure based on

matrix diagonalization. For this reason, this particular passivity enforcement scheme is

known as Residue Perturbation (RP).

The RP scheme enforces passivity while minimizing the approximation change to the

measurements in an element-wise fashion. There is however a sensitivity problem con-

cerning n-port systems (e.g., power transformers) with a large spread in the admittance

matrix eigenvalues, i.e., a significant disparity in the magnitudes of the eigenvalues. This

poses a difficulty in cases requiring matrix inversion due to testing a model with terminal

conditions other than those assumed for parameter estimation. A common example is

the inversion of an estimated admittance matrix so that a open-circuit terminal configu-

ration be simulated or even using current sources as input to the model instead voltage

sources. Care must be taken in matrix inversion processes, specially where the maximum-

to-minimum eigenvalue ratio is large. As consequence of linear algebra, small eigenvalues

of Ŷ(jw) become large eigenvalues of Ẑ(jw) = Ŷ
−1

(jw) giving rise to numerical issues.

Therefore, parameter perturbations should take into account this relative impact on each

system mode.

As a result, a Modal Perturbation (MP) was proposed in Gustavsen (2008b). Basically,

this MP approach comprises a reformulation of equation (4.4) so that the perturbation

size of the admittance eigenvalues is inversely proportional to the eigenvalue size. The

reformulated objective writes as follows:

(
N∑
m=1

∆Rm

jw − am
+ ∆D

)(
ti(jw)

|λi(jw)|

)
≈ 0

Ĝ(jw) + ∆G(jw) > 0

(4.6)

where ti(jw) and |λi(jw)| are the eigenvectors and eigenvalues associated with Y(jw) =
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T(jw)Λ(jw)T−1(jw). This reformulation basically includes a weighting scheme for which

the sizes of the perturbations are inversely proportional to that of the corresponding

eigenvalue magnitudes, thereby avoiding uneven perturbational effects over small modes

(eigenvalues) such that they are perturbed relatively to their size, thus preserving the

overall model behavior when using hybrid terminations. The relative weighting scheme

comes at the cost of a relative higher computation time for enforcement, thus its main

drawback as compared with the preceding RP and thereby limiting the MP approach to

small and medium-scale problems associated with the need of parameter conversion and

arbitrary terminal configurations. This modal perturbation resulted in a reformulation

of the vector fitting main algorithm (VF) for special uses addressing arbitrary terminal

conditions, as in reference Gustavsen & Heitz (2008).

Even though both the RP and MP approaches have a small perturbational effect

over the initial parameter, they are relatively demanding in terms computation time. In

Gustavsen (2008a), the author proposes another refinement to RP and MP enforcement

methods which significantly reduces the computation time at the expense of a slightly

poorer approximation, i.e, a larger modelling error. The idea is to reduce the number

of variables in the vector ∆x of the QP formulation in equation (4.5). The reduction is

attained by perturbing only the eigenvalues of each matrix ∆Rm and ∆D (also ∆E, if

applicable) as opposed to the earlier strategies that perturb each individual entry of these

matrices. This procedure leads to the Fast Residue Perturbation (FRP) and the Fast

Modal Perturbation (FMP) methods, both described in Gustavsen (2008a).

Therefore, the discrete-enforcement scheme as formulated by equation (4.5) comes

in four variations, namely the Residue Perturbation (RP), Modal Perturbation (MP),

Fast Residue Perturbation (FRP) and Fast Modal Perturbation (FMP). A performance

comparative can be found in reference Gustavsen (2008a).

4.1.2 Hamiltonian Perturbation Methods

This passivity enforcement scheme is a natural continuation of the Hamiltonian assess-

ment method for which the initial approximation is structured as a state-space model.
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Its applicability encompasses all the LTI n-port representations earlier discussed, i.e., any

state-space realization whose input-output transfer matrix is in admittance, impedance,

hybrid, or scattering form. Basically, the process entails the determination of a compensa-

tion to the state-space matrices {A,B,C,D} such that the perturbed system is rendered

passive at the cost of a minimal change to system’s input-output characteristic response.

Under the Hamiltonian perspective, a given system is passive if its associated Hamilto-

nian matrix has no purely imaginary eigenvalues, thus meaning that the compensated

state-space realization obtained from this passivity enforcement must have an associated

Hamiltonian matrix whose set of eigenvalues does not contain a single purely imaginary

eigenvalue. In Grivet-Talocia (2004), a perturbation scheme is devised so as to displace

these purely imaginary eigenvalues off the imaginary axis (a passivity requirement) and

yet cause a least change to the system’s input-output characteristic response. This ob-

jective is pursued by applying a perturbation to associated matrix C only, leaving the

remaining matrices unchanged. According to Gustavsen & Semlyen (2004), the matrix C

of a state-space model corresponds to all residue matrices of a pole-residue model and, in

this sense, this Hamiltonian perturbation scheme is also referred to in the literature as a

residue perturbation.

In order to guarantee that the deviation of the perturbed system’s input-output re-

sponse from those of the original system be minimal, the cost function in the variable ∆C

used as criteria for a least deviation minimizes the energy associated with the change of

each matrix element’s impulse responses. The task involves computing a ∆C that per-

turbs the initially estimated state matrix C, i.e., C′ = C + ∆C, such that the perturbed

system {A,B,C′,D} be passive while minimizing the cumulative energy of the induced

perturbation on the system’s impulse responses:

E =
n∑

i,j=1

∞∫
0

|(∆h)i,j(t)|2dt = tr(∆C W ∆CT ) (4.7)

where tr(.) denotes the trace operator that takes as argument a square matrix and W

is the system controllability Gramian (defined in Chen (2012)), computed as the unique,
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symmetric and positive definite solution of the Lyapunov equation AW+WAT = −BBT .

The right-hand side of equation (4.7) can be further simplified by means of a suitable

coordinate change, namely ∆Ck = ∆C KT , such that KT is derived from the Cholesky

factorization of the Gramian (W = KTK), thus yielding:

E = tr(∆Ck∆CT
k ) = ||∆Ck||2F = ||vec(∆Ck)||22 (4.8)

with vec(.) denoting an operator that stacks the columns of a matrix into a single column

vector and the subscript F standing for the Frobenius norm. According to Grivet-Talocia

(2004), equation (4.8) establishes a correspondence between the minimization of the sys-

tem impulse-response perturbations and the perturbation of the state matrix C which is

minimal in this sense, using the appropriate coordinate system.

Again, the relation between the residues (free variables) and the passivity condition

is a nonlinear one, thus a first-order perturbation (linearization) will be applied to the

system’s original Hamiltonian matrix (Mδ=0 in the hybrid case and Mγ=1 for scattering

representations) so as to displace its imaginary eigenvalues, in an iterative scheme, hence

forcing them to eventually move off the imaginary axis. The perturbed Hamiltonian

matrix whose set of eigenvalues contains no purely imaginary element can be written as:

M′
δ=0
∼= Mδ=0 + ∆Mδ=0

M′
γ=1
∼= Mγ=1 + ∆Mγ=1

for both hybrid and scattering representations, respectively. The first-order terms are

themselves Hamiltonian matrices in terms of the free variable ∆C, assembled as follows:

∆Mδ=0 =

 BQ−1δ ∆C 0

−CTQ−1δ ∆C−∆CTQ−1δ C −∆CTQ−1δ BT

 , (4.9)

with Qδ = 2δ I−D−DT for hybrid representations and

∆Mγ=1 =

 −BR−1γ DT∆C 0

CTS−1γ ∆C + ∆CTS−1γ C ∆CTDR−1γ BT

 , (4.10)
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with Rγ = DTD−γ2I and Sγ = DDT−γ2I for scattering representations. By changing

the initial parameter matrix C, the first order perturbation induces a displacement of each

imaginary eigenvalue jwi which is given by the following linear expression:

j∆wi =
vHi J∆Mvi

vHi Jvi
(4.11)

where vi are the eigenvectors associated to the purely imaginary eigenvalues jwi of the

original unperturbed Hamiltonian matrix and the matrix J as defined in equation (2.31).

Equation (4.11) contains the prescribed amount by which the eigenvalues can be displaced

under the first-order perturbation scheme and its numerator is a linear function of the free

variable ∆C, as in equations (4.9) and (4.10) depending on the representation adopted.

This linear relation is used to derive a linear equality between parameter perturbation

and eigenvalue displacement. According to Grivet-Talocia (2004), this linear relation can

be written as:

Re[vTi1 ⊗ zHi ]vec(∆Ck) = − Im[vHi1vi2](∆wi) (4.12)

where the original Hamiltonian matrix eigenvector vi has been partitioned as vi =

[vTi1 vTi2]
T , ⊗ is the Kronecker product (defined in Loan (2000)) and zi = −Q−1δ BTvi2 −

Q−1δ Cvi1 is used for hybrid representations whereas zi = DR−1γ BTvi2 + S−1γ Cvi1 for the

scattering representations. Equation (4.12) establishes a linear constraint to every violat-

ing eigenvalue jwi of the original unperturbed Hamiltonian matrix. Therefore, by mini-

mizing the system energy criterion devised in equation (4.8) constrained by the equalities

given by equation (4.12), the following optimization problem is formulated:

minimize ||vec(∆Ck)||2

subject to Zvec(∆Ck) = y

, (4.13)

such that Z and y are formed by the left- and right-hand sides of the constraint equation

(4.12) for every purely imaginary eigenvalue in the set Ω. As observed in Grivet-Talocia

& Ubolli (2008), the above formulation is not convex which implies that an iterative
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application of equation (4.13) may fail to converge, its solution however can be obtained

for every iteration via standard pseudo-inverse methods.

4.2 Non-perturbative Passive Enforcement

This second class of passivity enforcement differs from its predecessor in that no pertur-

bation is applied, instead these methods enable the identification of a priori guaranteed

passive models by construction, thus meaning that the customary passivity assessment

and the consequential enforcement based on parameter-perturbation are no longer re-

quired. Both methods herein presented are technically underpinned by convex optimiza-

tion methods and a prescribed set of system poles, i.e., a fixed-denominator strategy will

be used.

4.2.1 Convex Optimization Methods I - PRL/BRL

Originally devised in Coelho et al. (2001) and Coelho et al. (2004), this method assumes a

priori knowledge of the system poles. In a state-space context, this statement corresponds

to having as starting point a prescribed state-dynamics matrix A. In practice, this ini-

tial information is derived from a system-identification procedure attaining satisfactory

accuracy such that all parameters are discarded, with exception of the system poles.

Since the authors in the aforementioned references claim that any convenient rational

approximation algorithm can be used to generate this initially prescribed pole structure,

no reference to any specific algorithm is herein made, even though some possible choices

have been mentioned earlier in this text. The early assumption made on the matrix

A of a state-space characterization as given by equation (2.21) leads to a linear model,

for the denominator is fixed. As opposed to the previous methods based on additive

compensation of the transfer function, the objective is no longer to seek for a minimal

perturbation so that the model be rendered passive but rather compute (re-compute) the

remaining parameters from scratch and under passive constraints. Therefore, the problem

is twofold: pole estimation and the subsequent estimation of the remaining parameters

58



(chiefly the residues) under the passivity constraints. This latter part is then formulated

as a convex programming problem since the passivity constraint as represented by the

positive(bounded)-real lemma is a linear matrix inequality (LMI), thus convex.

Therefore, suppose a transformer admittance matrix with a given initial pole set,

a guaranteed passive approximation for a LTI n-port in hybrid representation can be

attained by solving the following problem:

minimize
n∑
i=1

n∑
l=1

K∑
k=1

|Ξil(jwk)|
∣∣∣Yil(jwk)− Ŷil(jwk)∣∣∣2

subject to

 −ATP−PA −PB + CT

−BTP + C DT + D

 ≥ 0

P ≥ 0

(4.14)

where Ξil(jwk) is a weighting function, Yil(jwk) correspond to data measurement whereas

Ŷil(jwk) = Dil + Ci[jwkI −A]−1Bl is the corresponding model approximation for every

matrix entry, the difference between the two which is to be minimized for all entries at

all frequency points is the objective function. For simplicity, each weighting function

Ξil(jwk) could assumed to be Ξil(jwk) = 1 without any loss of generality. This particular

optimization problem is also formulated in Oliveira et al. (2014). Considering the use of

a controllable canonical form for the system {A,B,C,D} and the a priori knowledge of

A, the remaining system matrices C and D as well as the matrix K in the LMI (Positive-

real Lemma, as in equation (2.29)) constitute the problem variables. The assumption

of a controllable form for the re-estimation of parameters is not a restricting one, since

it reflects the fact that only pole preservation is actually relevant for this procedure,

irrespective of any specific coordinate system.

Hence, the objective and constraint functions of equation (4.14) are linear (affine) in

the variables. Basically, the matrix numerator C and the constant term D are recalculated

so that the PRL is satisfied and the error between the measurements and the model

approximation is minimized. The formulation for scattering representations is identical,

except that the LMI constraint should be replaced by the Bounded-real Lemma (BRL),

59



equation (2.30). Convexity ensures that the final result is the best passive approximation

of the data, given the pole set. As in Coelho et al. (2004), equation (4.14) can be rewritten

in an equivalent form. Let ei denote ith column of the identity matrix as well as matrices

Fil ∈ R2K×n and Yil ∈ R2K be defined as follows:

Fil(k, :) =

 Ξil(jwk) Re[J(k)] k ≤ K

Ξil(jwk) Im[J(k −K)] k > K

Yil(k) =

 Ξil(jwk) Re[Y(k)] k ≤ K

Ξil(jwk) Im[Y(k −K)] k > K

(4.15)

such that J(k) = [BT
l [jwkI−A]−1eT(l)] is a row vector, Yil(k) contains the real and imag-

inary parts of each admittance entry measurement (i, l) for all jwk and each k comprises

the sequence of measured frequencies. Hence, these definitions permit the rewriting of

the objective function in equation (4.14) as:

n∑
i=1

n∑
l=1

K∑
k=1

|Ξil(jwk)|
∣∣∣Yil(jwk)− Ŷil(jwk)∣∣∣2 =

n∑
i=1

n∑
l=1

||FilXi − Yil|| (4.16)

such that Xi is the ith column of the matrix X containing all model parameters to be

estimated:

X =

 CT

DT

 .
With the standard QR factorization, every Fil becomes Fil = QilRil, where Qil is an

orthogonal matrix (QT
ilQil = I) and Ril full rank. Thus,

||FilXi − Yil|| = [FilXi − Yil]T [FilXi − Yil] = ET
ilEil − δ2il, (4.17)

such that δ2il = YTil [I − QilQ
T
il ]Yil and Eil = [RilXi − QT

ilYil]. It is noteworthy that all

these matrices are real by construction (according to equation (4.15)), thus leading to real

parameter matrices as solutions. Therefore, the equivalent formulation of problem (4.14)
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is:

minimize t(C,D,K)

subject to

 −ATP−PA −PB + CT

−BTP + C DT + D

 ≥ 0

P ≥ 0

ET
ilEil − δ2il ≤ til

t ≥ 0

til ≤ t

∣∣∣∣
1 ≤ i,l ≤ n

(4.18)

which is a convex problem in its epigraph form. This formulation is due to Coelho et al.

(2004) and epigraph forms are explained in Boyd & Vandenberghe (2004). Other op-

timization goals could have been established to solve this problem, nevertheless. The

error constraint, namely Eil = [RilXi −QT
ilYil], can be further rewritten in terms of its

semi-definite equivalent formulation via the Schur complement and therefore be replaced

in equation (4.18) by the following LMI:

 ti,l − δ2i,l ET
il

Eil I

 ≥ 0. (4.19)

This problem can be solved with CVX, a package for specifying and solving convex

programs CVX Research (2012),Grant & Boyd (2008) with core solver SEDUMI Sturm

(1999). Ad hoc problem reformulations can be done, specially structure-exploiting ones

thus leading to better efficiency. In Coelho et al. (2004), the explicit positive-real lemma

LMI constraint and its accompanying matrix variable P are removed. Furthermore, the

constraint ET
ilEil − δ2il ≤ ti,l is a second-order cone which allows specific SCOP reformu-

lations as well. The formulation herein presented can be employed to any MIMO system

with no specific assumption on matrix structure. Many approximation methods fit MIMO

systems in parts, i.e., a matrix can have its columns fit independently as if each column

consisting of SIMO systems so that the overall MIMO system is eventually obtained by

column concatenation. This strategy is well illustrated in Coelho et al. (2001), for the
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positive-real lemma formulation.

The PRL approach can also be formulated as a perturbative enforcement scheme, an

example is provided by Grivet-Talocia & Ubolli (2008). A similar formulation of the PRL

constrained problem has been implemented to serve as a test bed for the case studies

analyzed in the subsequent chapter. Details can be found in Oliveira et al. (2014), in

essence it involves the use of orthonormal basis functions (Takenaka-Malmquist) and the

Sanathanan-Koerner iterations for the pole estimation. Basically, the constrained problem

of equation (4.14) is reworked into a semi-definite formulation by transforming quadratic

inequalities to linear matrix inequalities (LMI’s) via Schur complement.

4.2.2 Convex Optimization Methods II - PFVF

Another non-perturbative enforcement method that estimates parameters ensuring a pri-

ori passive behavior is the Positive Fraction Vector Fitting (PFVF). It first appeared in

Tommasi et al. (2008) for single-input single-output (SISO) systems and was later ex-

tended to multi-input multi-output (MIMO) systems in Tommasi et al. (2011). Although

this method also relies on convex programming for parameter estimation, passivity is not

enforced by requiring that the positive(bounded) real lemma be satisfied which was the

case in the previous convex approach. The Vector Fitting algorithm is used to determine

an initial set of poles for the system’s transfer matrix, therefore a fixed-pole structure

is also pursued. Considering the pole-residue model structure, the transfer matrix is ex-

panded as a truncated series of residue matrices and the associated poles. Essentially, the

method obtains an overall passive transfer matrix by constraining each individual term of

the series to be positive-real, i.e., each subsystem is passive. Therefore, the PFVF com-

bines pole identification via the Vector Fitting (VF) algorithm with convex constrained

residues identification, once the poles are known the problem constraints are easily written

in convex form. The overall strategy of the PFVF method defines a sufficient condition to

guarantee positive-realness for the overall transfer matrix, but not a necessary condition.

Considering a pole-residue expansion of the transfer matrix with fixed poles as in equation

(4.3), a passive transfer function can be attained by requiring that each model constituent
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fraction is positive-real, namely:

D ≥ 0 , E ≥ 0, , R1 ≥ 0 , . . . , RN ≥ 0.

Since the system poles are known, these constraints comprise LMI constraints, thus

convex. In case the set of poles contains complex conjugate pairs Ri

jw−ai and
R∗

i

jw−a∗i
, they

enter the constraint set as two distinct matrices:

−[Re(ai) Re[Ri] + Im(ai) Im[Ri]] ≥ 0

−[Re(ai) Re[Ri]− Im(ai) Im[Ri]] ≥ 0

Hence, a guaranteed passive approximation for a LTI n-port in admittance represen-

tation can be realized by solving the following convex problem:

minimize
n∑
i=1

n∑
l=1

K∑
k=1

∣∣∣Yil(jwk)− Ŷil(jwk)∣∣∣
2

subject to

D ≥ 0

E ≥ 0

R1 ≥ 0

...

RN ≥ 0

(4.20)

where each Yil(jwk) corresponds to admittance measurement and Ŷil(jwk) is a linear

function of model parameters. As proposed in Tommasi et al. (2011), this problem is

solved with CVX, a package for specifying and solving convex programs CVX Research

(2012),Grant & Boyd (2008).

4.3 Discussion

The essence of all passivity enforcement schemes is to use the passivity conditions defined

in chapter (2) as problem constraints so that passivity be either recovered as in perturba-

tive schemes or secured as in non-perturbative schemes. All enforcement approaches seek

the best compromise by being rigorous and offering global guarantees on positive-realness
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at the cost of a small accuracy loss due to further constraining the modeling process.

As passivity enforcement enters the modeling process it seems natural to conjecture that

sacrificing model optimality for passive behavior might be fruitless. Obviously, under

passivity enforcement the problem is further constrained and the unconstrained approxi-

mation is shifted from the allegedly optimal solution thus prompting a sense of a degraded

solution. Nonetheless, model parameter estimation that exclusively relies on accuracy as

a guiding criteria can only provide allegedly optimal approximations since its based on

data that is sampled, incomplete, noisy and finite in range thus failing to contain the

system’s genuine dynamics as also expressed by passive behaviour. Therefore, passivity

constraints displace allegedly optimal solutions to genuinely optimal passive solutions.

Under this perspective, a poorer data fit is actually a better data fit.

This chapter has been divided into two sections in order to distinguish the striking

features between perturbative and non-perturbative enforcement procedures. A key fac-

tor contributing to large deviations between a passive approximation and data is the

eigenvalue spread, i.e., how large the negative eigenvalues are. Algorithms employing

parameter perturbation are more sensitive to the presence of significant violations since

they are based on first-order approximations which are valid under the assumption that

correcting the eigenvalues only requires small perturbations. This can become remarkably

delusional for anyone evaluating model performance for approximations are tested within

the frequency range of the available measurements while ignorance prevails as to what

the system dynamics is beyond the observations. This is a distinguishing feature between

the two perturbative methods: discrete-frequency samples and the Hamiltonian pertur-

bation. The earlier places stronger emphasis on observed data to compensate passivity

violations thus keeping good in-band accuracy whereas the second compensates passivity

even for out-of-band behavior hence requiring a possibly larger parameter perturbation

for the model may have large out-of-band passivity violations, perhaps even larger than

the in-band ones, reflecting in a poorer in-band fit for the Hamiltonian method.

Therefore, the best local accuracy must be carefully weighed against the averagely

global passive behavior. For perturbative methods, an increased number of iterations may
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be required since it is not guaranteed that for every iteration all violating eigenvalues

are suppressed in addition to the fact that parameter perturbation can generate new

violations, hence the need for a recursively applied process. These limitations obviously

influence the number of iterations required before convergence is attained thus leading

to increased accuracy degradation or even divergence for some pathological cases with

large violating eigenvalues. Specially critical for perturbative methods, the assumption of

small accuracy degradation during passivity enforcement is only valid provided passivity

violations are small. This is a consequence of using linearization to establish the passivity

constraints. Large violations can inflict lack of convergence or large model degradation.

Such large violations can be suppressed in a pre-processing procedure based on data

passivity enforcement so that the model be more amenable to passivity enforcement which

in turn becomes more effective and substantial accuracy gains be accomplished.

Instead of applying parameter perturbation, both convex optimization methods are

frequency-independent and rely on fixed-pole parameter estimation permitting the iden-

tification of a priori guaranteed passive models thus eschewing the passivity check and

consequential parameter perturbation as required by most of the other available algo-

rithms. The intrinsic limitations of first-order linearization no longer apply, therefore

these methods are less sensitive to the eigenvalue spread. The PRL/BRL approach is the

most general of the two convex-based approaches, since the positive-real lemma constraints

provide necessary and sufficient conditions for system passivity. The major drawback of

the PRL/BRL approach lies in the fact that the number of problem variables considerably

increases due to the additional LMI matrix variable P which suggests its use for problems

of moderate complexities.

The PFVF formulation was motivated precisely by the fact that the PRL/BRL ap-

proach is relatively involved and requires unacceptable computation time for LTI systems

with a large number of ports. Since the PFVF establishes sufficient but not necessary pas-

sivity conditions, sub-optimal solutions are usually attained. The number of optimization

variables grows linearly with system order for the PFVF, as opposed to the quadratic

relation of the PRL/BRL approach (due to the LMI constraint matrix P). Therefore,
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computational efficiency and straightforward criteria come at the price of sub-optimality.

Choosing which constraints to be applied is a problem that can affect the effectiveness

of the enforcement procedure. Constraints must guarantee that the transfer function be

positive-real but be only as restrictive as necessary to allow the algorithm to search all

possible models that are passive given the pole set. Over-constraints can result in prob-

lem infeasibility, i.e., there are no parameters that guarantee passive behavior within some

small approximation tolerance. According to Coelho et al. (2004), constraining each sub-

system to be positive-real ensures that the overall system be indeed positive-real, but it

could also exceedingly over-constrain the problem instead of admitting all passive models

and thus leading to inaccurate models.

It is possible to conclude that there is some trade-off between perturbative and non-

perturbative algorithms: the former can lead to accuracy degradation or even fail to

converge but the computational cost rises favourably with model order, the latter is

insensitive to the eigenvalue spread and a priori guaranteed to provide a passive result but

can be impractical for large models in terms of computation time. A comparative study

providing illustrative examples of each enforcement scheme can be found in Gustavsen

(2008b) and Chiariello et al. (2010).
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CHAPTER 5

CASE STUDIES

This chapter is devoted to present results obtained with both pre- and post-processing. In

the first half of the chapter, a comparative study reveals in terms of approximation accu-

racy the positive impact of data pre-processing when large and small passivity violations

occur, as opposed to the usual approach wherein no data pre-processing is employed. The

second part of the chapter concentrates solely on post-processing, results achieved by the

LMI-based (convex) formulation herein established are presented.

In Figures (5.1) and (5.2), it is possible to visualize flowcharts corresponding to the

traditional approach (without preprocessing) and the proposed approach (including pre-

processing), respectively. These figures provide a perspective of the overall process. Dot-

ted lines are used to indicate the different modeling stages for which a comparison is be

made. As a fitness measure, we use the relative index proposed in Chiariello et al. (2010)

and defined as follows:

error =
1

K

K∑
k=1

||Ydata(k)−Yfit(k)||F
||Ydata(k)||F

(5.1)

Another guiding index is the percentage of frequency intervals where violations occur

with respect to the overall frequency interval ψ, also defined in Chiariello et al. (2010).

5.1 Pre-processing

In order to illustrate and assess the impact of the preprocessing on the overall modelling

procedure, this analysis is underpinned by results obtained with two 6 × 6 and a 4 × 4

terminal admittance matrices of operating power transformers with different ratings, thus

a total of three transformers are employed in the pre-processing analysis. The data are

in full compliance with what is discussed in section (2.1) and references therein.



Figure 5.1: Modeling Pro-
cess: post-processing only.

Figure 5.2: Propossed mod-
eling Process: pre- and
post-processing

While problem (3.3) is purely algebraic, to solve problems (3.4), (3.9) and (3.10) we

used CVX, a package for specifying and solving convex programs CVX Research (2012),

Grant & Boyd (2008) with core solver SEDUMI Sturm (1999). For the System Identifi-

cation step - SYSID - we used Vector Fitting, as in Gustavsen (2002), and its embedded

Passivity Enforcement scheme, as described in Gustavsen & Semlyen (2001) and Gus-

tavsen (2007). The number of poles for each approximation has been defined according

to the Akaike’s Information Criterion, see Chapter 16 of Ljung (1999).

5.1.1 Example 1

In this first example, a 72/6.9kV, 6 MVA, Yd, three-phase power transformer is analyzed,

the data comprises 1001 logarithmically spaced samples between 100 Hz and 10 MHz,

approximated with 64 poles and an inverse weighting of the admittance magnitude. Figure

(5.3) reveals the overall transformer’s eigenvalue profile with its zero-crossings (violations)

whereas Figure (5.4) contains the raw frequency-response measurements.

Table 5.1 summarizes the ψ index, accounting for the percentage of frequencies at

which inequality (2.26) is violated with respect to the full measured band. As one reads

along the columns, the ψ index is presented at different modeling steps (according to
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Figure 5.3: Example 1 - G̃(jwk) Eigenvalues.

flowcharts); rows one to four contain the results obtained with preprocessing (see Figure

5.2) whereas in the bottom row lies the corresponding figures for no preprocessing (see

Figure 5.1). Column one shows the percentage index for the original raw-data, as also

illustrated in Figure (5.3).

In the second column, the same index is recomputed considering the effect of prepro-

cessing on data which is made passive - with exception of the last row, accounting for the

traditional approach (without preprocessing). Column three summarizes the percentage

of violation for the unenforced models, i.e., the outputs of the SYSID step. Analysis of col-

umn three reveals that the models obtained with preprocessed data have a smaller ψ than

the traditional model, thus requiring a smaller number of iterations for the enforcement

algorithm to reach convergence.

Table (5.2) consolidates the results in terms of misfit, as defined in equation (5.1), see

Figures (5.1) and (5.2) for a reference on all errors. Column one contains Error 1 between

the input and output of the identification procedure, i.e., a misfit between data (with and
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Figure 5.4: Example 1 - Magnitude HH’s, XX’s and HX’s admittance diagonal entries.

Table 5.1: Example 1 - ψ Percentage of Violating frequencies
Raw Data Prep. Data Model Pass. Model

UESP 73.3 0.0 37.5 0.0
LDP 73.3 0.0 42.8 0.0
LEP 73.3 0.0 37.5 0.0
LNP 73.3 0.0 37.7 0.0

No prep. 73.3 - - 61.0 0.0

Table 5.2: Example 1 - Relative Error
Error 1 Error 2 Error 3

UESP 0.1139 0.1754 0.2168
LDP 0.1235 0.1838 0.2087
LEP 0.1028 0.1674 0.2017
LNP 0.1024 0.1679 0.2009

No prep. 0.1245 0.2888 - -
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Figure 5.5: Example 1 - HH’s, XX’s and HX’s admittance errors.

without pre-processing) and model. The second column reveals Error 2 between the input

to SYSID and the passive model.

The rightmost column is only computed for the preprocessing approach so that the

ultimate misfit reflects the overall difference to the raw original data (see Figure 5.2). In

the case of preprocessing, the data to serve as input to identification is not the original

data, but the passive preprocessed data. Consequently, we compute error 3 (only appli-

cable when preprocessing is applied) so that results be indeed comparable, i.e., the same

data base is used. By comparing the final errors (the rightmost column for preprocessed

data and the central column in the bottom row for no preprocessing - both in boldface)

one can see that preprocessing led to improved model accuracy, for any of its alternative

formulations. According to Table (5.2), the best performance was attained for this data

set was the Least-Norm Perturbation (LNP).

On closer examination, we notice that all preprocessing formulations have achieved

similar performance, in terms of misfit. It is somewhat expected that the purely algebraic
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formulation UESP performed slightly poorer than the alternative preprocessing formula-

tion, as it is the most conservative in the sense that all eigenvalues are shifted up (in a

passivity-seeking direction), thereby leading to a further increase in data passivity. Among

the optimization-based strategies, the LDP perturbation has resulted in the largest misfit,

this pattern will also repeat in the subsequent examples. Justification for this improved

performance on the part of preprocessing lies in the fact that it relieves model parameter

perturbation (passivity enforcement in post-processing) of the larger violations, permit-

ting the use of the linearization assumption under which such algorithms work best, as

confirmed by Table (5.2). For this example, the weighting used for both the LEP and

LNP formulations correspond to a unitary β. Figure (5.5) displays the error curves for

the computed frequency-response curves obtained with and without preprocessing. By

inspection of Figure (5.3), we see that the majority of passivity violation occurs in the

first two log-cycles, confirming the largest differences in the errors curves to occur in that

same interval, which is precisely where the preprocessing acts more actively (where the

larger violations occur).

5.1.2 Example 2

This second example comprises data of a 537/16 kV, 155MVA, single-phased power trans-

former represented by its 4×4 admittance matrix, with 1141 logarithmically spaced sam-

ples between 20 Hz and 10 MHz, approximated by a model containing 50 poles and a

inverse weighting of the admittance magnitude. Figure (5.6) shows the transformer’s

eigenvalue profile where it is possible to see the presence of large violations and Figure

(5.7) contains the raw frequency-response measurements.

The indices ψ and relative error can be visualized in Tables (5.3) and (5.4), respectively.

Similarly, Table (5.3) reveals that the unenforced models obtained with preprocessed data

violate less than those obtained with the traditional approach. Table (5.4) confirms that

preprocessing leads to more accurate models. The best error performance was achieved

with the LEP with a weighting factor β equals one.

Figure (5.8) displays the error curves for the computed frequency-response curves
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Figure 5.6: Example 2 - G̃(jwk) Eigenvalues.
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Figure 5.7: Example 2 - Magnitude HH’s, XX’s and HX’s admittance diagonal entries.
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Table 5.3: Example 2 - ψ Percentage of Violating frequencies
Raw Data Prep. Data Model Pass. Model

UESP 68.9 0.0 56.0 0.0
LDP 68.9 0.0 59.6 0.0
LEP 68.9 0.0 59.0 0.0
LNP 68.9 0.0 58.7 0.0

No prep. 68.9 - - 68.2 0.0

Table 5.4: Example 2 - Relative Error
Error 1 Error 2 Error 3

UESP 0.0627 0.0786 0.0842
LDP 0.0534 0.0730 0.0836
LEP 0.0406 0.0620 0.0739
LNP 0.0538 0.0669 0.0767

No prep. 0.0448 0.0892 - -
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Figure 5.8: Example 2 - Magnitude HH’s, XX’s and HX’s admittance errors.

obtained with and without preprocessing. As before, analysis of Figure (5.6) reveals most

of the passivity violation to occur at lower frequencies which corroborates the largest

differences in the errors curves to occur in a similar manner.
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Figure 5.9: Example 3 - G̃(jwk) Eigenvalues.

5.1.3 Example 3

In this last example, the data comprises a 500/230 kV, 400 MVA, Yd, three-phase power

transformer, comprising 600 logarithmically spaced samples between 10 Hz and 2 MHz in a

76-poles approximation and a inverse weighting of the admittance magnitude. Figure (5.9)

shows the transformer’s eigenvalue profile, the violations are small (not large as opposed

to all previous examples), and Figure (5.10) contains the raw frequency-response mea-

surements in a similar manner. Table (5.5) reveals that the unenforced models obtained

with preprocessed data violate less than those obtained with the traditional approach, for

all preprocessing choices.

Table (5.6) displaying the relative error confirms that preprocessing has contributed

to a smaller error hence increasing the model accuracy, even in the case of small passivity

violations. In this example, the accuracy gains of pre-processing are modest, as expected.

This comes as a result of the small passivity violations which is precisely the requirement

for the linearity assumption of the enforcement algorithms. In such circumstances, the
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Table 5.5: Example 3 - ψ Percentage of Violating frequencies
Raw Data Prep. Data Model Pass. Model

UESP 3.3 0.0 8.0 0.0
LDP 3.3 0.0 4.8 0.0
LEP 3.3 0.0 4.6 0.0
LNP 3.3 0.0 4.6 0.0

No prep. 3.3 - - 8.2 0.0
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Figure 5.10: Example 3 - Magnitude HH’s, XX’s and HX’s admittance diagonal entries.

enforcement algorithms are working in optimal conditions. However, this example has

revealed that even in this less favourable case, pre-processing has increased the accuracy

for both the LEP and LNP or did not affect the ultimate misfit as it was the case for

UESP and LDP. For this example, the best misfit was achieved with both the LEP and

LNP with not weighting.

Figure (5.11) displays the error curves for the computed frequency-response curves ob-

tained with and without preprocessing. The eigenvalues violate more at lower frequencies,

as seen in Figure (5.9).
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Table 5.6: Example 4 - Relative Error
Error 1 Error 2 Error 3

UESP 0.0035 0.0035 0.0035
LDP 0.0035 0.0035 0.0035
LEP 0.0034 0.0034 0.0034
LNP 0.0035 0.0034 0.0034

No prep. 0.0035 0.0035 - -
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Figure 5.11: Example 4 - Magnitude HH’s, XX’s and HX’s admittance errors.

5.2 Post-processing

The following two examples serve to illustrate an alternative implementation of the convex

formulation passivity enforcement scheme base on the positive-real lemma (PRL). These

case studies also use data from actual power transformers as measured by their admittance

formulations. These results have appeared in Oliveira et al. (2014).

5.2.1 Example 4

The high-voltage terminal admittance of a single-phase 525/18 kV, 256 MVA step-up

transformer serves as an example for testing the proposed enforcement procedure. In

Oliveira & Mitchell (2013), this particular data set was also employed, nonetheless the

emphasis then resided in passivity-related issues and their consequences in transient anal-

ysis.

With frequency-response admittance measurements at the high-voltage winding, a

black-box model is obtained. In this case n = 1. The available measurements Y (jwk)
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Figure 5.12: High-voltage terminal admittance: (a) magnitude [dB] and (b) angle [de-
grees]; and, (c) High-voltage terminal conductance [S].

(K = 910) are depicted in Figure 5.12. In that same figure, the terminal conductance can

be visualized (see equation (2.26)).

Measurements depicted Figure 5.12 clearly demonstrate anomalous behavior since the

conductance matrix is not positive definite at various frequencies, chiefly in the higher-

frequency range, this is assuredly attributable to measurement interference and noise.

A state-space realization for Y can be obtained with the system identification proce-

dure defined in reference Oliveira et al. (2014), assuming that: {φ11m(t)}∞m=1 are Takenaka-

Malmquist basis functions, truncated at the first 10 basis functions (N = 10), such that

the weighting function Ξ(jwk) is chosen to be Ξ(jwk) = 1/|Y (jwk)|.

Within 40 iterations, a model is identified. A comparison between model approxima-

tion and measurements can be observed in Figure (5.13). According to Figure (5.12) mea-

surements happen to be non-passive, the anomaly propagates into the estimated model as

revealed in Figure (5.13) and confirmed by the presence of purely imaginary eigenvalues
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Figure 5.14: Model, data frequency response and modelling error: (a) magnitude [dB]
and (b) Conductance [S].

Table 5.7: Example 4 - MSE
Data 1st model Enforced model

ψ 12.86% 8.57% 0%
MSE (×10−3) 3.34 21.5

in the associated Hamiltonian matrix eigenvalues’ set.

The procedure proposed in Oliveira et al. (2014) is therefore applied so that matrices

C and D are once more obtained. Figure 5.14 is a comparison of the new model approxi-

mation and measurements; it also reveals the model conductance which is clearly positive

at all frequencies and the passivity conditions are then satisfied.

The index ψ, proposed in Chiariello et al. (2010), which consists of the percentage rate

of violating frequencies with respect to the full frequency range, is computed. Even though

frequencies beyond measurements are neglected, the referred index still is an interesting

parameter for evaluating passivity violation. Table 5.7 is a summary for the obtained

ψ index and model mean-square error (MSE), considering wk and k = 1, . . . , 910. Row
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Figure 5.15: Measurement (solid line) and non-passive model (dashed line) admittance
matrices (dashed line).

one reveals the degree to which initial-unprocessed data (column 1) is non-passive to be

higher than that of the model without enforcement (column 2 ). Column three confirms

that the enforcement is successful and has taken the index to zero. By examining MSE

results, it is evident that enforcement penalizes model approximation so as to render it

passive.

5.2.2 Example 5

The convex-optimization enforcement procedure is employed to model a two-terminal,

single-phased, 537/16 kV, 155 MVA, power transformer admittance matrix. Terminals

H0 and X2 are assumed grounded. For the remaining terminals, i.e. H1 and X1, n = 2.

The available admittance measurements Y (jwk) (K = 1141) are displayed in Figure 5.15.

Measurement conductance matrix (see equation (2.26)) eigenvalues can be visualized in

Figure 5.16 which reveals passivity violation for some frequencies.
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Figure 5.16: Measured conductance matrix eigenvalues, a) full-range b) near-zero ampli-
tude magnification.

A state-space realization for Y can be obtained with the system identification pro-

cedure from reference Oliveira et al. (2014), assuming that: {φ11m(t)}∞m=1 are Takenaka-

Malmquist basis functions, restricted to the first 14 functions (N = 14), and the weighting

function Ξ(jwk) is chosen to be Ξ(jwk) = 1/|Y (jwk)|. Within 50 iterations, a model is

identified. A comparison between model approximation and measurements can be ob-

served in Figure 5.15. According to Figure (5.16), the identified model is perfectly con-

sistent with non-passive measurements, i.e. both are non-passive. As a result, there is no

matrix P such the positive-real lemma is satisfied thus confirming non-passive behavior.

The identified model is then subjected to the LMI-based enforcement procedure, in

the variables C and D, so that the optimal and passive approximation to the data is

obtained. Figure 5.17 displays a comparison between the identified passive optimal model

and measurements. The optimal model is clearly passive and satisfies the positive-real

condition, at the expense of a slightly poorer model approximation.
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Figure 5.17: Measurement (solid line) and non-passive model(dashed line) admittance
matrices.

Table 5.8: Example 5 - MSE
Data 1st model Enforced model

ψ 45.62% 42.68% 0%
MSE (×10−5) H1H1 3.98 3.42
MSE (×10−7) H1X1 2.07 2.64
MSE (×10−5) X1X1 8.77 8.81

Table 5.8 is a summary for the obtained ψ index and model mean-square error (MSE),

considering wk and k = 1, . . . , 1141. Data and prior-to-enforcement model are non-passive

to a similar degree. The enforced model is unambiguously passive, as expected. There

seems to be an apparent degrading for the enforced model when it is compared against

the non-passive model. In terms of MSE, terminal H1H1 MSE has slightly decreased for

the enforced model in spite of the acute misfit at about 5kHz. For terminals H1X1 and

X1X1, MSE has slightly increased.
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CHAPTER 6

CONCLUSIONS

Modeling is an intellectual activity brimming over with subtleties which can certainly

undermine the whole enterprise if not addressed appropriately. This research is entirely

devoted to one vitally important aspect of the subject: passivity. Devising a passive

model is a multi-faceted problem which consistently reappears in the context of transient

simulations. Many algorithms exist that robustly conceive frequency-domain approxima-

tions to an arbitrarily close degree of accuracy, with no guarantee on simulation stability,

nevertheless. As passivity constraints enter the modeling problem it grows in both com-

plexity and difficulty. Many different formulations exist to address this issue with varying

degrees of reliability and computation time. This particular research has culminated in

a original formulation for pre-processing and a reformulation of a convex post-processing

which can be employed either independently or jointly.

Pre-processing cannot by itself obviate the need for model passivity enforcement. Its

advantage resides in improving model accuracy by providing guaranteed passive data to

identification algorithms and subsequent passivity enforcement. This is particularly cru-

cial in case of large passivity violations whereby the linearity assumptions under which

the problem constraints reside are no longer valid. Therefore, pre-processing is a good

modeling practice. Moreover, by delivering passive data to the identification algorithm,

preprocessing actually delivers better-to-emulate data. When adjusting parameters, the

model performance is affected globally, on the other hand data passivity compensation

partly relieves the global accuracy comprise of the approximation and increased accu-

racy is achieved. Data perturbation seems to cost less, in terms of model accuracy and

approximation, than parameter perturbation. Even though the case studies herein pre-

sented consisted exclusively of admittance parameters, it is readily applicable to all n-port

representations requiring only trivial modifications for the scattering parameters.



Post-processing is a sine qua non for obtaining passive models. The novel convex

formulation herein formulated based on the positive-real lemma provides both necessary

and sufficient conditions for obtaining a guaranteed passive model. The well-known disad-

vantage of convex formulations concerns the usual large computation time for high-order

models due to the additional LMI variables. The enforcement formulation herein pro-

posed is independent of the algorithm employed to generate the initial approximation, any

public domain algorithm can be used, e.g., VF. The method furnishes a high-accuracy

guaranteed-passive model and can be implemented in packages available in the public

domain.

As a few parting remarks, it is important to highlight what is envisaged as possible

extensions of what has been so far proposed. First and foremost, formulating passivity

conditions for non-linear model structures remains, to the best of this author’s knowledge,

an open question. Challenging issues pertaining to the task of enforcing physical real-

izability, i.e., converting a given model structure into an electrical network with strictly

positive elements, still deserves further consideration. This approach seeks models that

are structurally passive/dissipative. Infinite-dimensional or Distribution Theory formula-

tions pose yet another challenge to the passivity community, chiefly in terms of numerical

implementation in a digital computer. Minor extensions to this research could certainly

address the systematic use of weighting schemes to avoid accuracy degradation of specific

entries, promising ideas seem to be emerging of modal formulations. Another issue of

relevance entails passivity-preserving model-order reduction, specially for convex formu-

lations which require long computation times for high-order models. These techniques are

basically intended for eliminating model redundancy or dynamics with negligible effects

on the transfer functions aiming at computational gains.

Prospecting for further research areas is an obviously challenging task for one can

always do the subject an injustice by offering others too partial a view on the subject,

thus ending up luring talents away from it. Hopefully, the saturation point of this vibrant

subject of passive models will not be reached anytime soon and many unexpected emergent

ideas will arise.
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