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RESUMO 

 

Em relação à contínua necessidade de procurar novas moléculas bioativas 

e do crescente interesse pelas atividades biológicas de diterpenos tetracíclicos, o 

principal objetivo deste trabalho foi sintetizar novos derivados de esteviol, 

isoesteviol e avaliar suas in vitro bioatividades contra alvos biológicos 

selecionados. Os novos derivados foram 2, 4-dinitrofenil-hidrazina (2, 4-DNPH), 4-

nitro-fenil-hidrazona (4-NPH), e também mais simples hidrazona, hidrazona 

isopropílico. Uma série de éster de benzilo e éster de fenacilo p-metoxi também 

foram preparados. Estes derivados foram avaliados quanto à sua in vitro anti-

tumoral, anti-maláricos, anti-Trypanosoma cruzi, anti-Corynebacterium diphtheriae 

e anti-leishmaniose atividades.  Os antitumorais  bioensaios foram avaliados 

contra três células tumorais: Carcinoma do pulmão (A549), glioma do cérebro 

humano (T98MG), glioblastoma humano-astrocitoma (U8MG). Os resultados  

mostraram que os análogos de isoesteviol possuindo fragmentos de hidrazona e 

oxima em C16 são citotóxicos. Os ensaios anti-maláricos  mostraram que os 

derivado isoesteviol com 2, 4-dinitro-fenil-hidrazona e 4-nitro-fenil hidrazona 

moiety  eram moderadamente activo contra plasmodium falciparum W2 

(cloroquine-resistante). Os ensaios de anti-Trypanosoma cruzi mostrou que a 

modificação em C16 de isoesteviol tem um impacto positivo sobre a actividade de 

T. cruzi. O derivado de oxima mostrou atividade moderada contra as duas formas 

de T. cruzi, enquanto os outros derivados eram inativos Os resultados in vitro 

demonstraram que os derivados de hidrazona eram inactivos contra T. cruzi. Uma 

analyise de in silico docking para prever a afinidade de ligação de alguns 

derivados de C. diphtheriae sortase proteínas também foi realizado, com oito 

derivados isoesteviol (1e, 2g, 3g, 4g, 5g, 5m, 5i, 5j). Preliminares resultados in 

vitro mostraram que os compostos 3g mostrou melhor  inibição  em comparação 

com outros derivados. 

 



 

 

ABSTRACT 

 

Regarding the continuous need to search for new bioactive molecules and 

the increasing interest for the biological activities of tetracyclic diterpenes, the 

main goal of this work was to synthesize known and new derivatives of steviol and 

isosteviol and evaluate for their in vitro bioactivities against selected biological 

targets. The new derivatives were 2, 4-dinitro phenyl hydrazone (2, 4-DNPH), 4- 

nitro phenyl hydrazone (4-NPH), and also simpler hydrazone, isopropyl 

hydrazone. A series of benzyl ester and p-methoxy phenacyl ester were also 

prepared. These derivatives were evaluated for their in vitro anti-tumor, anti-

malarial, anti-Trypanosoma cruzi, anti-Leishmaniasis and anti-Corynebacterium 

diphtheriae activities. The antitumor bioassays were evaluated against three 

human cancer cell lines: lung carcinoma (A549), human brain glioma (T98MG), 

human glioblastoma-astrocytoma (U8MG). The results showed that isosteviol 

analogues having hydrazone and oxime fragments at C16 are cytotoxic. The 

antimalarial assays showed that isosteviol derivative with 2, 4-dinitro phenyl 

hydrazone and 4-nitro phenyl hydrazone derivatives were moderately active 

against Plasmodium falciparum W2 (cloroquine-resistant). The anti-Trypanosoma 

cruzi assays showed that the modification at C16 of isosteviol has positive impact 

on the T. cruzi activity. The oxime derivative showed moderate activity against 

both forms of T. cruzi while the other derivatives were inactive. The in vitro results 

showed that hydrazone derivatives were inactive against T. cruzi. 

An in silico docking analysis to predict the binding affinity of some 

derivatives to C. diphtheriae sortase proteins was also carried out, with eight 

isosteviol derivatives (1e, 2g, 3g, 4g, 5g, 5m, 5i, 5j). Preliminary in vitro results 

showed that compounds 3g showed good inhibition then other derivatives. 

 

Keywords: Isosteviol, cytotoxicity, Plasmodium falciparum, tetracyclic 

diterpenes. 
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1 INTRODUCTION 

 

1.1 NATURAL PRODUCTS IN DRUG DISCOVERY 

 

Drug discovery and development has a long history and dates back to the 

early days of human civilization. In those ancient times, drugs were not just used 

for physical remedies but were also associated with religious and spiritual 

healing. 

Even today, after more than 100 years of research in pharmaceutical 

industries, there is still a great need for innovative drugs. Only one third of all 

diseases can be treated efficiently (M ller et al., 2000). Analysis of the number 

and sources of anti-cancer and anti-infective agents, reported mainly in the 

Annual Reports of Medicinal Chemistry from 1984 to 1995. It was observed that 

over 60% of the approved drugs and pre-NDA (New Drug Applications), 

candidates (for the period 1989-1995), excluding biologics (vaccines, monoclonal 

antibody, etc. derived from mammalian sources), developed in these disease 

areas are of natural origin (Cragg et al., 1997).  

Nature itself has constantly supplied mankind with a broad and structurally 

diverse array of pharmacologically active compounds that continue to be utilized 

as highly effective drugs to combat a multitude of deadly diseases or as lead 

structures for the development of novel synthetically derived drugs that mirror 

their models from nature (Proksch et al., 2002). The ancient medical literature 

reports that when surgery was performed the physicians also recommended the 

use of some natural, and especially plant products, which represent an 

interesting point of comparison with current knowledge. Natural products play a 

key role in the discovery of leads for the development of drugs for the treatment 

of human disease. The world of plants, and indeed all natural source represents 

a virtually untapped reservoir of novel drugs (Newman & Cragg, 2007). Natural 

products play a significant role in cancer therapy today with substantial numbers 
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of anti-cancer agents used in the clinic being either natural or derived from 

natural products from various sources such as plants, animals and 

microorganisms. Large-scale anticancer drug discovery and screening programs 

such as those promoted by the National Cancer Institute (NCI) have played an 

important role in the development of anticancer natural compounds (Stefania et 

al., 2009). 

In this background a proposed multidisciplinary approach is important for 

drug discovery involving a new generation of molecular diversity from natural 

origin, along with total combinatorial synthesis and optimizing their biosynthetic 

pathways (Newman et al., 2003). On the basic skeleton of natural products it's 

feasible to design and facilitates combinatorial libraries with new modified 

structure and remedial potential and once a biologically active compound is 

obtained, from natural ancestor and its structure is establish. The basic skeleton 

of the molecule show the pharmacophore of the molecule and suggest 

modifications to additional groups attached to it. Most of the natural products 

compounds have different functional groups such as hydroxyl, group’s double 

bonds, and carbonyl groups etc, which are likely to be modified by simple 

reaction. With these modifications we can obtain information about the 

importance of modified activity group in the molecule and also the importance of 

some effects as changes in hydrophobicity, elimination of donor group hydrogen 

bonds, changing the electron density of certain groups,(Filho, 2000, Nielsen, 

2002). 

Developing a new drug from original idea to the launch of a finished product 

is a complex procedure which can take long time from the discovery to the stage 

of development. During this long procedure some factors must be considered, 

such as process: structural simplicity, with possible modifications in order to 

optimize their pharmacotherapeutic profile, and has good pharmacokinetic 

properties such as absorption, distribution, metabolism, excretion and toxicity 

(Lima, 2007). 
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1.2 STEVIOSIDE 

 

Stevioside is a natural glycoside of steviol found in the leaves of Stevia 

rebaudiana Bertoni. It is used as a low-calorie sugar alternative in foods (Hanson 

& De oliveira., 1993). Stevia is an herb that belongs to the Asteraceae family. 

Besides its edulcorant properties stevioside also has diverse biological activities 

described in literature, some of them are outlined in Table 1. 

 

Table 1: Biological actvities of stevioside. 

 

Biological activities Reference 

anti-hyperglycemic Gregersen et al., 2004; Cekic et 

al., 2011, 

anti-hypertensive effect Hsu et al., 2002 

anti-inflammatory & immunomodulatory Boonkaewwan et al., 2006 

anti-amnesic (Sharma et al., 2010) 

anti-viral (Takahashi et al., 2001) 

anti-cancer (Nakamura et al., 1995; Paul et 

al., 2012 

anti-tuberculosis (Sharipova et al., 2011) 

anti-bacterial (Tomita et al., 1997) 

anti-atherosclerosis (Geeraert et al., 2010) 

 

1.3 DITERPENES 

 

Diterpenoids constitute an immense class of isoprenoid natural products, 

biosynthesized from four unit of mevalonic acid through 2E, 6E, 10E- 

geranylgeranyl pyrophosphate (GGPP). They are secondary metabolite and 

widely distributed in plants and fungi. They are classified as  
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1) Acyclic diterpenoids such as E-eleganonal (1) eleganoic acid (2). 

 

  

 

 

Figure 1: Chemical structure of E-eleganonal (1) eleganoic acid (2). 

 

2) Monocyclic diterpenoids such as infuscatrienol (3)), jaspaquinol (4). 

 

 

 

Figure 2: Chemical structure of infuscatrienol (3) Jaspaquinol (4). 
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3) Bicyclic diterpenoids such as Z-abienol (5) labdene diol (6). 

 

 

 

Figure 3: Chemical structure of Z-abienol (5) labdene diol (6). 

 

4) Tricyclic diterpenoids such as pimaranes (7) and abietanes (8)  

 

 

 

Figure 4: Chemical structure of Pimarane (7), Abietanes (8). 
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5) Tetracyclic diterpenoid are Beyerane (9), Kaurane (10). 

 

 

 

Figure 5: Chemical structure of Beyerane (9), Kaurane (10). 

 

6) Macro cyclic diterpenes Tasumatrols (11), Echinoic acid (12). 

 

 

 

Figure 6: Chemical structure of Tasumatrols (11), Echinoic acid (12). 

 

Diterpenes have drawn increasing attention because of their provoking 

biological activities and for being is a rich reservoir of compounds for drug 

discovery and their derivatives possess interesting biological activities. Although 

thousands of diterpenes compounds have been described in literature from 

terrestrial and marine organism, only few of them are clinically effective. Some of 

their biological activities described in literature are listed in Table 2, page 7. 
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Table 2: Diverse types of biological activities of diterpenes. 

 

Biological activities Reference 

anti-inflammatory (Chen et al., 2010; Chatter et al., 2011; Kim et al., 

2013; Liu et al., 2014) 

hepatoprotective (Jain et al., 2000) 

analgesic (HernandezPerez et al., 1995; Wang et al., 2009) 

anti-microbial (Rodriguezlinde et al., 1994; Mendoza et al., 1997; 

Murthy et al., 2005; Tatsimo et al., 2005; Mothana et 

al., 2009) 

anti-mycotic (Cotoras et al., 2001; Yang et al., 2003), 

immunomodulatory (Ayatollahi et al., 2010; Aachoui & Ghosh, 2011; Lin 

et al., 2013) 

anti-hepatitis (Yang et al., 2011) 

anti-malarial (Lane et al., 2009; Stout et al., 2010) 

anti-HIV (Gustafson et al., 1991; de Souza Pereira et al., 

2005; Bodiwala et al., 2009; Vidal et al., 2012; Asada 

et al., 2013) 

anti-protozoal   (Mothana et al., 2014), 

anti-spasmodic (Tirapelli et al., 2008) 

molluscicidal (Tringali et al., 1986) 

cytostatic and cytotoxic 

effects 

(Kubanek et al., 2005; Chen et al., 2011; Tai et al., 

2013) 

 

1.3.1 TETRACYCLIC TERPENOIDS 

 

The kauranes and beyeranes are important tetracyclic naturally occurring 

molecules with high biological potential, low water solubility having a rigid 

tetracyclic skeleton with a per-hydrophenanthrene moiety (rings A, B and C), 
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fused with a cyclopentane ring (D), at C8 and C13. The nomenclature, 

stereochemistry and numbering style for skeleton of kaurene (13), ent-kaurene 

(14), beyerane (15), ent-beyerane (16), have already been assigned by the 

IUPAC (García et al., 2007) 

 

 

 
Figure 7: Chemical structures of kaurene (13), ent-kaurene (14). 

 
Kaurane diterpenes are commonly found in several species of plants 

belonging to numerous families such as Asteraceae (Le Quesne et al., 1985; Kos 

et al., 2006), Annonnaceae (Quijano et al., 1982; Chang et al., 1998), 

Euphorbiaceae (Jia et al., 1994; Jahan et al., 2004), Celastraceae (Duan et al., 

1999), Apiaceae (Somova et al., 2001), Velloziaceae (Somova, Shode, Moodley 

& Govender, 2001), Lamiaceae (Ghoumari et al., 2005; LiLiLi et al., 2006), 

Fabaceae (Cunha et al., 2003), Chrysobalanaceae (Braca et al., 2005). 

Jungermanniaceae (Kondoh et al., 2005), Rhizophoraceae (Han et al., 2004; Han 

et al., 2005), (Bruguiera spp.). Sun et al. described about 518 diterpenoids 

isolated specially with oxygenated and non oxygenated ent kaurene skeleton 

from isodon species (Sun et al., 2006). 

Kaurene and ent-kaurene, its chemically semi-synthetic and 

biotransformed product have attracted increasing attention because of their 

remarkably broad spectrum of biological activities. Some of their derivatives are 

found to possess interesting in vitro biological activities; some of them are 

described in Table 3.  
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Figure 8: Chemical structure of beyerane (15), ent-beyerane (16). 

 

Table 3: Biological activities of Kaurene, ent-kaurene, beyerane, ent-beyerane. 

 

Biological activities Reference 

Anti-spasmodic (Aguiar et al., 2012) 

Anti-allergic (Cheenpracha et al., 2006) 

Anti-proliferative (Fatope et al., 1996; Gui et al., 2004; Li 

et al., 2006; Ding et al., 2010; Ding et 

al., 2011; Lizarte Neto et al., 2013), 

Anti-bacterial (Velikova et al., 2000; Kubo et al., 

2004) 

Anti-acetyl cholinesterase (Thirugnanasampandan et al., 2008) 

Immunosuppressive (Zhao et al., 2004), 

Anti-microbial (Rezende et al., 2000), 

Anti-HIV (Chang, Yang, Lin, Lee & Wu, 1998 

Plant growth regulating, anti-malarial (Boampong et al., 2013) 

Anti-trypomastigote (Vieira et al., 2002; Haraguchi et al., 

2011) 

Insect anti-feedant ( ond   et al., 2000), 

Hypotensive and anti-inflammatory (Paiva et al., 2002) 

Anti-cariogenic (de Andrade et al., 2011) 

Anti-convulsant (Okoye et al., 2013) 
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1.3.2 ISOSTEVIOL AND STEVIOL 

 

Isosteviol also known as ent-16-ketobeyeran-19-oic acid, is a tetracyclic 

beyerane diterpenoid synthesized via acid catalyzed Wagner-Meerwein 

rearrangement of steviol (AVENT et al., 1989). While the steviol is the base 

catalyzed or enzymatic hydrolytic product of stevioside (OGAWA et al., 1980, 

SHIBATA et al., 1991). In the literature steviol, isosteviol and their derivatives 

show an impactful number of pharmacological effects, including anti- 

inflammatory, anti-hyperglycemic, anti-hypertensive, anti-inflammatory, anti- 

diarrheal, diuretic, and immunomodulatory actions (Chatsudthipong & 

Muanprasat, 2009), some synthetic novel derivatives of isosteviol showing anti- 

bacterial activity (Wu et al., 2010), the hydrazide, hydrazone and phosphate 

groups show inhibition of Mycobacterium tuberculosis (H37Rv, in vitro) (Garifullin 

et al., 2012). 

 

1.3.2.1 BIOLOGICAL ACTIVITY OF STEVIOL, ISOSTEVIOL, AND THEIR 

DERIVATIVES 

 

The interesting structural feature of steviol (17), isosteviol (18), and its 

broad spectrum of bioactivities attract researchers to make new modifications in 

the parent skeleton of these molecules. Positions C15, C16 of isosteviol and C19 

have been the main target for chemical modification.  

The carboxylic acid carbon (C19) of both compounds has been 

transformed into esters, amides, azides and reduced to to alcohol.  

The ketonic carbon (C16) of isosteviol has also been reduced to alcohol, 

and also converted into hydrazone, oxime, imine, amine etc. The methylene 

group of steviol has been hydrogenated and halogenated. The C15 of isosteviol 

has been halogenated, hydroxylated and also used for aldol type condensation 

etc, the same position of steviol has been hydroxylated (SeO2). 
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The bioactivity of some derivatives of both compounds is described in the 

following section. 

 

 

 

Figure 9: Chemical structure of isosteviol (17), steviol (18). 

 

1.3.2.1.1 ANTI-TUMOR ACTIVITY 

 

There are several reports in the literature describing the antitumor effects 

of isosteviol and steviol derivatives. Mizushina et al., prepared biotranformed 

derivatives of isosteviol and studied their inhibitory properties towards both 

mammalian DNA polymerases (pols), and human DNA topoisomerase (topoII), 

the in vitro results shows that isosteviol with free carboxylic acid was found to 

inhibit the DNA polymerases (pols), (IC50 64.0 µM) and human DNA 

topoisomerase (topoII) (IC50 190 µM). The results were in assessment with other 

derivative shows that ketone and carboxylic acid is important for the inhibitory 

effect in mammalian DNA polymerases (pols) (Mizushina et al., 2005). 

S.-L. Zhu et al. synthesized a set of novel derivatives of isosteviol (Figure 

10, page 12), with pyrazole (19a-19o, page 12), and pyrazoline (20, page 12), 

heterocyclic ring and in vitro bioassays of these derivatives were evaluated 

against four human cancer cells line such as Human Gastric cell line (SGC7901), 

adenocarcinoma human alveolar basal epithelial cells (A549), human Burkitt 

lymphoma cells (Raji), and Human Negroid cervix epitheloid carcinoma (Hela). 

The results are summarized in Table 4, page 13. 

http://en.wikipedia.org/wiki/Human
http://en.wikipedia.org/wiki/Pulmonary_alveolus
http://en.wikipedia.org/wiki/Basal_lamina
http://en.wikipedia.org/wiki/Epithelial
http://en.wikipedia.org/wiki/Cell_(biology)
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Mono halogenated pyrazole derivatives such as 19a_19f (Table 4, page 

13), showed slight changes in cytotoxicity value, when the position of halogen is 

changed from ortho, to para position while the meta halogenated such as 19c 

and 19e derivatives show potent cytotoxicity in Raji cell line. Mono methylated 

substituted pyrazole derivatives 19g_19i. The compound 19h was found inactive 

in four cell lines, while compound 19g show moderate cytotoxicity in Raji and was 

inactive in other three cells line, derivative 19i show moderate cytotoxicity in 

three cancer cells line but show potent cytotoxicity in (Raji), with IC50 3.9 μM.  

Dihalogenated pyrazole derivatives 19j, was found to be moderate 

cytotoxic in Raji while inactive in other cell line. Compound 19k showed moderate 

cytotoxicity in A549 and Raji with 20.2 μM and 27.6 μM IC50 value and was found 

inactive in rest of two cell lines. Dimethylated pyrazole derivative such 19n show 

moderate cytotoxicity in Raji with IC50 11.1 μM, while inactive in rest. Compound 

19o showed moderate cytotoxicity in Raji and Hela with IC50 12.6 μΜ and IC50 

30.3 μΜ, was found inactive in other cell lines. 

 

 

 
Figure 10: Chemical structure of pyrazole (19), pyrazoline (20), and derivatives of 
isosteviol. 
 

Another set of halogenated and methylated pyrazoline derivatives of 

isosteviol (20a-20o) were synthesized and the results of cytotoxicity are listed in 

Table 4, page 13. The compound 20a, 20b and 20c showed potent cytotoxicity 

while display moderate cytotoxicity in SGC7901 and A549 cell line and in Hela 

cell line. 
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Table 4: Cytotoxicity results of pyrazole and pyrazoline derivatives of isosteviol 
(IC50, µg/mL). 

 R1 R2 R3 R4 SGC7901 A549 Raji Hela 

19a F H H H 34.6 32.6 17.2 50 

19b  H F H H 50 50 29.1 50 

19c  H H F H 50 50 4.5 50 

19d  Cl H H H 50 50 50 50 

19e H Cl H H 50 50 4.5 50 

19f  H H Cl H 50 50 50 50 

19g  CH3 H H H 50 50 19.8 50 

19h H CH3 H H 50 50 50 50 

19i H H CH3 H 29.3 13.6 3.9 29 

19j F H F H 50 50 13.5 50 

19k F H H F 50 20.2 27.6 50 

19l Cl H Cl H 50 50 22.4 50 

19m Cl H H Cl 50 50 25.6 50 

19n CH3 H CH3 H 50 50 11.1 50 

19o CH3 H H CH3 50 50 12.6 30.3 

20a F H H H 35.6 26.9 4.1 50 

20b H F H H 35.8 19.1 3.4 50 

20c H H F H 25.5 22.3 7.0 50 

20d Cl H H H 25.4 21.5 10.1 34.5 

20e H Cl H H 26.3 28.2 9.5 50 

20f H H Cl H 8.4 35.3 13.8 50 

20g CH3 H H H 35.3 19.0 7.7 15.1 

20h H CH3 H H 13.5 12.3 4.8 50 

20i H H CH3 H 34.9 18.8 8.6 50 

20j F H F H 28.4 20.11 9.9 50 

20k F H H F 50 50 7.1 50 

20l Cl H Cl H 2.7 3.18 1.0 50 

20m Cl H H Cl 50 50 11.7 50 

20n CH3 H H H 18.7 16.5 6.6 43.3 

20o CH3 H H CH3 32.9 17.0 7.9 34.3 
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The compounds 20e and 20f were found inactive in HeLa cell line and was 

moderate cytotoxic in SGC7901, A549 and Raji cell line. The compound 20d 

showed moderate inhibitory effect in all four cell line. Methylated derivatives such 

as 20g, 20h, and 20i showed better cytotoxicity in Raji cell line while 20g was 

found moderate cytotoxic in rest of cell line. The compound 20h and 20i were 

found inactive in hela and moderate cytotoxic in rest of two cell lines. The 

compounds 20j and 20k show potent cytotoxicity in Raji, while 20j showed 

moderate in rest of two cell lines SGC7901, A549, and were found inactive in 

HeLa cell line. The 20k was found inactive in rest of three cell lines. Comparing 

the results of 20l and 20m, the analogue 20l showed potent cytotoxicity in three 

cell lines SGC7901, A549 and Raji cell and was found inactive in hela. The 

compound 20m showed moderate inhibition in Raji and was inactive in rest of 

three cell lines. The compound 20n showed potent cytotoxicity in Raji and were 

moderate cytotoxic in rest of three cell line. 

Comparatively the results in Table 4, page 13, showed that alkylated and 

halogenated pyrazole derivatives displayed much better cytotoxicity then 

pyrazoline derivatives of isosteviol (Zhu et al., 2013) 

Recently another research group Ukiya et al. synthesized a set of new 

acylated derivatives of steviol and isosteviol (Figure 11, page 15), at 19-o 

(carboxylic acid) site and these derivatives were in vitro screen for cytotoxicity in 

four human cancer line such as leukemia (hl60), lung (A549), stomach (AZ521), 

and breast (Sk-Br-3), cancer cell line. The results are listed in (Table 5, page 15 

). Steviol (21a-21e, page15), derivative 21a and 21c display potent inhibitory 

effect in selected cancer cell lines with IC50 value 5.3 μM (Hl60), 7.2 μM (A549), 

3.1 μM (AZ521), 1.7 μM (Sk-Br-3), for compound 21a, while for 21c the IC50 

values 8.8 μM (Hl60), 2.9 μM (A549), 1.1 μM (AZ521), 2.2 μM (Sk- Br-3). The 

compound 21b and 21e showed beneficial inhibitory effect in three lines, and 

moderately cytotoxic in HL60. The compound 21d displayed moderate 

cytotoxicity in Hl60, A549 and Az521, and was found beneficial cytotoxic in SK-

Br-3. Isosteviol (22a-22c), the compound 22a showed potent cytotoxicity in three 
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cell line with IC50 value 8.2 μM (A549), 1.2 μM (Az521), 2.4 μM (Sk-Br-3), while 

moderate cytotoxic in (Hl60), cell line with IC50 value 24.0 μM.  

 

 

 

Figure 11: Chemical structure of steviol ester (21), isosteviol ester (22). 

 
Table 5: Cytotoxicity of ester derivatives of steviol (21) and isosteviol (22) (IC50, 
µg/mL). 
 

 

The compound 22b was found to be inactive in A549 with IC50 greater 

than 100 μM and displayed moderate cytotoxicity in two cell line HL60 and 

SKBR-3 with IC50 value 64.4 μM and 25.0 μM, and was found potent cytotoxic in 

Az521 cell line (IC50 9.0 μM). The 22c analogue display potent inhibitory effect in 

 R1/R2 HL60 A549 AZ521 SKBR-3 

21a 2-Me-C6H4CH=CH- 5.3 7.2 3.1 1.7 

21b 3-Me-C6H4CH=CH- 15.9 6.0 2.9 4.7 

21c 4-Me-C6H4CH=CH- 8.8 2.9 1.1 2.2 

21d Ph-CH2CH2- 56.2 17.0 29.0 9.4 

21e Ph- 41.3 4.3 2.5 2.2 

22a 2MeC6H4CH=CH- 24 8.2 1.2 2.4 

22b 3MeC6H4CH=CH- 64.4 >100 9.0 25.0 

22c 4MeC6H4CH=CH- 20.3 >100 19.8 2.2 
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SkBr-3 with IC50 value 2.2 μM, while moderate cytotoxic in HL60 and Az521, and 

was found inactive in A549 cell line. The above results suggest 19-O acylated 

derivatives of steviol and isosteviol exhibited cytotoxicities, and it was found that 

ortho methylated aromatic derivatives of isosteviol and steviol display potent 

inhibition in the selected cancer cell line (Ukiya et al., 2013). 

T. Zhang et al., synthesized a set of novel semi-synthetic polyhydroxy, 

oxime and amine, derivatives of isosteviol (Figure 12, page 17), and these 

analogues were in vitro evaluated in four human cancer cells line, such as 

esophageal carcinoma cell line (ec9706), human esophageal squamous, 

carcinoma (Eca-109), human-prostate lines (PC-3), and human colon cancer 

cells (HCT116). These modifications were made at C15 (R2) and C16 (X), (23a-

23h, page 17). The results of cytotoxicity are listed in (Table 6, page 17). The 

compound 23h display much higher cytotoxicity in selected four cancer cells lines 

with IC50 value 4.01 μM in (EC9706), 5.02 μM (Eca109), 15.31 μM (PC-3), 12.25 

μM (HCT-116), while 23e derivative showed moderate inhibitory effect with IC50 

value 19.33 μM (EC9706), 41.32 μM (Eca109), 25.38 μM (PC-3), and 20.13 μM 

(HCT-116). These results demonstrate that the presence of NH2 group either at 

C15 or C16 enhances the cytotoxicity of the precursor isosteviol. The compound 

23b was found moderately active in two cancer cells line with IC50 value 24.42 

μM (EC9706), 26.52 μM while found inactive in (Eca109), >100 μM (PC-3), >100 

μM (HCT-116), when the position of oxime and the hydroxyl group were 

exchanged between the C15 and C16 such as in compound 23c the decrease of 

cytotoxicity was observed in EC9706 line (IC50 56.64 μM), while increases in 

Eca109 (IC50 17.87 μM), line and was found inactive in PC-3 (IC50 >100 μM), and 

HCT-116 line (IC50 >100 μM). The cytotoxicity of 23f derivative display low IC50 

60.67 μM (EC9706), 69.55 μM (Eca109), and was found inactive in other two 

cells line. The thio amide derivative such as 23g show low inhibitory effect with 

IC50 value 72.28 μM (Eca109), and was found inactive in three cell lines (Zhang 

et al., 2012). 
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Figure 12: Chemical structure of Isosteviol derivatives (23). 

 
Table 6: Cytotoxicity of isosteviol derivatives (IC50, µg/mL). 

 

 R2 X EC9706 Eca109 PC-3 HCT116 

23a OH -OH 52.08 90.6 87.56 >100 

23b CHO =NOH 24.42 26.52 >100 >100 

23c =NOH OH 56.64 17.87 >100 >100 

23d O= CH=NOH >100 >100 >100 >100 

23e OH -NH2 19.33 41.32 25.38 20.13 

 

23f 

 

OH 

 

 

60.67 

 

69.55 

 

>100 

 

>100 

 

23g 

 

-CHO  

 

>100 

 

72.28 

 

>100 

 

>100 

23h -CH2NH2 -OH 4.01 5.02 15.31 12.25 

 

Another research group Y. Wu et al. synthesized novel derivatives of 

isosteviol mainly focusing C16, C15 and evaluated cytotoxicity of these 

derivatives against B16-F10 melanoma cells IC50 values for some active 

derivative are shown in (Table 7, page 18), the modification were made at C15 

(R2), and C16 (X). Isosetviol derivative 24a show moderate cytotoxicity having 

IC50 value 58 μM while derivative 24b display 68 μM IC50. The analogues 24c 
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and 24d show enhance cytotoxicity with IC50 value (25 μM), and (22 μM), 

respectively. The results shown in Table 7, suggest that the introduction of 

hydroxy methylene, at C15 decrease cytotoxicity while the pyridine carbonyl at 

C15 and C16 increase cytotoxicity of isosteviol in B16-F10 cell line (Wu et al., 

2009). 

 

 

 

Figure 13: Chemical structure of ethyl ester of Isosteviol (24). 

 

Table 7: Cytotoxicity results of isosteviol derivative (24) and (IC50. µg/mL) 

 
 R2 X B16-F10 

24a H OH 58 

24b -CH2OH OH 68 

 

24c 

 

 

-OH 

 

25 

 

24d 

 - 

 

22 

 

Methoxy methyl ether (MOM) and carbamate derivatives of isosteviol 

(Figure 14, page 19) were synthesized by Malki et al. and the cytotoxicity of 

these derivatives were in vitro evaluated in human lungs cancer cells line 

(H1299). MOM ester derivative of isosteviol (25a-25d, page 19), such as 
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compound 25a demonstrate potent cytotoxicity with IC50 8 μM, while compound 

25b, and 25d display moderate cytotoxicity with IC50 value 13 μM, and 20 μM.  

 

 

 
Figure 14: Chemical structure of MOM ester (25), carbamate ester of 

isosteviol (26). 

 

Table 8: Cytotoxicity of isosteviol derivative against cancer cells line (IC50, µg/mL) 

 

 

 

 

 

 

 

 

 

 

 

\ 

 

The MOM carbamate ester of isosteviol (26a-26g, page 19), derivatives 

such 26c show moderate cytotoxicity the result shown in Table 8, while the other 

carbamate are low cytotoxic. These results demonstrate that isosteviol having 

 R1/R2 Growth inhibition (%) 

25a Ph- 8 

25b CH3- 13 

25c n-C7H15- 95 

25d i-Pro 20 

26a Ph- 65 

26b 4-(MeCO)-C6H4 60 

26c n-C3H7 20 

26d 4-(MeO)-C6H4CH 89 

26e -CH2Ph 50 

26g n-C7H15 48 



INTRODUCTION 

 

 

20 

MOM ester at C16 and aromatic nucleus at 19-O carbamate moiety showed 

potent inhibition then straight chain or branched chain analogues. While in case 

of MOM carbamate the straight chain derivative display better inhibition then 

derivative with branched and aromatic nucleus. The results demonstrate that 

MOM ester analogues display beneficial cytotoxicity then MOM carbamate ester 

of isosteviol (Malki et al., 2014). 

A set of isosteviol and steviol derivatives (Figure 15) were synthesized by 

Li et al. and evaluated for their in vitro cytotoxicity in three human cancer cell 

lines such as breast carcinoma (MDA-MB-231), hepatocellular carcinoma (Hep-

G2), and gastric carcinoma (MGC-803). The results are shown in Table 9 page 

21. 

 

 

 

Figure 15: Chemical structure of steviol (27), isosteviol derivatives (28). 

 

The analogue 27a was found inactive in cancer cell line MDA-MB-231 

while showed potent inhibition in Hep-G2 and MGC-803 (IC50 3.69 μM, 3.38 μM), 

respectively the 27b derivative display potent cytotoxicity in cancer cell lines 

having IC50 2.51 μM (MDA-MB-231), 2.7 μM (Hep-G2), 2.8 μM (MGC-803), these 

results indicate that benzyl esterification at 19-O carboxylic site enhance the 

cytotoxicity of the steviol in cancer cells line. The compound 27d also display 

potent inhibition in selected human carcinoma while the 27c was found inactive in 

selected cell lines. The results shown in Table 9, page 21 demonstrate that 

benzyl esterification at 19-O of carboxylic site enhances the cytotoxicity of 
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compounds, in selected cancer cells lines with IC50 1.24 μM (MDA-MB-231), 0.95 

μM (Hep-G2), 2.41 μM (MGC-803). 

 
Table 9: Cytotoxicity of steviol, isosteviol derivative and their (IC50, µg/mL)). 

 
 R1 R2  X  MDA-MB-231  Hep-G2    MGC-803 

27a H O= CH2 ND 3.69 3.38 

27b Bn O= CH2 2.51 2.70 1.80 

27c H CH2= O= ND ND ND 

27d Bn CH2= O= 1.24 0.95 2.41 

 R3  R4  X    

28a H CH2= O= ND ND ND 

28b Bn CH2= O= 1.58 ND 2.22 

28c H  O= CH2= ND ND ND 

28d Bn  O= CH2= ND ND ND 

 

Isosteviol (28a-28d, page 20), analogue 28a don’t show inhibition in 

selected three cancer cells lines while its benzyl derivative 28b show potent 

inhibition in two cancer cells lines IC50 1.58 μM (MDA-MB-231), and 2.22 μM 

(MGC-803), compound 28c and 28d with free carboxylic and benzyl ester at 19-

O (Carboxylic acid), don’t show inhibition in selected cancer cells lines. The 

results shown in Table 9 indicate that the benzyl esterification at 19-O 

(Carboxylic acid) enhances the cytotoxicity of steviol and isosteviol while 

exchanging the position of oxymethylene and exocyclic oxygen in isosteviol at 

C15 and C16 also change the cytotoxicity results (Li et al., 2011).  

Another research group Lin et al, synthesized dimeric amides of 

stevioside, steviol and isosteviol (Figure 16, page 22), and were in vitro bio 

assayed in human cancer cells lines, the results are presented in Table 10, page 

22. Stevioside dimeric amide compound 29a display low cytotoxicity in two 

cancer cells line the IC50 value 90.9 μM in caucasian promyelocytic leukemia 

(HL60), and 99.4 μM in human fetal lung fibroblast cell line (MRc-5). The 
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analogue 29a was found inactive with IC50 value greater than 100 μM in human 

liver hepatocellular carcinoma cell line (Hep G2), and in human lungs cancer cell 

line (H460), while compound 29b display increase inhibition with IC50 value 31.1 

μM in (HL60), 31.9 μM (H460). The compound 29c show low cytotoxicity in the 

selected cancer cells line. The steviol dimer 29d demonstrate potent inhibition 

with IC50 value 4.3 μM in (HL60), while moderate cytotoxic in rest of three cells 

lines with IC50 17.2 μM (HepG2), 10.7 μM (H460), 17.7 μM (MRc-5), 

 

 

 

Figure 16: Chemical structure of dimeric amide of steviol (29). 

 
Table 10: Cytotoxicity of stevioside, steviol and isosteviol dimeric amide (IC50, 
µg/mL)). 

 R R1 R2 R3 R4 HL60   HepG2       H460   MRc-5 

29a (CH2)2 O-Glu-Glu =CH2 O-Glu-Glu =CH2 90.9 >100 >100 99.4 

29b (CH2)4 O-Glu-Glu =CH2 O-Glu-Glu =CH2 >100 31.1 32.9 >100 

29c (CH2)5 O-Glu-Glu =CH2 O-Glu-Glu =CH2 56.8 60.2 84.7 90.9 

29d CH2CH2 OH =CH2 OH =CH2 4.3 17.2 10.7 17.0 

29e CH2CH2 CH3 =O CH3 =O 4.8 17.4 14.0 22.6 
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while isosteviol dimeric amide such as compound 29e also display potent 

inhibition with IC50 value 4.8 μM in (HL60), and found moderate cytotoxic with 

IC50 17.4 μM (HepG2), 14.0 μM (H460), 22.6 μM (MRc-5). These results specify 

that dimeric amide of stevioside, steviol and isosteviol at C19 are cytotoxic and 

their cytotoxicity are dependent on the number of methylene carbon unit the 

results shown in Table 10, page 22 that increase of number methylene carbon 

unit in between the nitrogen atoms the cytotoxicity also increase (Lin et al., 

2004). 

 

1.3.2.1.2 ANTI-HYPERGLYCEMIC ACTIVITY 

 

 Isosteviol is a new addition to anti-diabetic drugs list and is used to lower 

the glucose level in blood during the treatment of type 2 diabetes. Chen et al. 

explored the potential role of isosteviol on α-cell function and its effects on 

expression of specific genes following long-term exposure to palmitate. The 

experimental results indicate that isosteviol decreases palmitate-induced 

hyperglucagonemia in both cell line of mouse such as pancreatic a-cell line, 

aTC1–6 cells, and in isolated mice islets (Chen et al., 2012). 

Isosteviol is a sole novel chemical entity with proven anti-diabetic 

capabilities in both man and rodent. Nordentoft et al. scrutinizes beneficial effects 

of isosteviol on the metabolism and gene expression in the diabetic KKAy-

mouse. This study demonstrates that Isosteviol may be used as a new insulin 

sensitizer in the treatment of type 2 diabetes (Nordentoft et al., 2008). 

 J. Ma et al. studied the effect of Isosteviol on blood glucose and insulin 

level during intravenous glucose tolerance test (IVGTT), in Zucker diabetic fatty 

(ZDF), rats. The experimental results demonstrated that isosteviol lower the 

glucose level significantly in the area under the curve (AUC), of glucose during 

the IVGTT. The glucose-lowering effect of isosteviol may be due to changes in 

the sensitivity of peripheral tissues to insulin (Ma etal., 2007). 
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A set of isosteviol derivatives were synthesized and were evaluated in vitro 

by intravenous glucose tolerance test (IVGTT), assays. The results showed that 

the diesterification at 19-O (Carboxylic acid) exhibited the most effective anti-

hyperglycemic effects compared to the positive drug rosiglitazone maleate. The 

other synthesize derivatives having the lactam, mono ester, hydroxyl group at 19-

O (Carboxylic acid)  and C16, don’t show significant anti-hyperglycemic activities 

(Chen et al., 2010).  

The α-glycosidase plays a key role in digestion of complex carbohydrate, 

in treating glycoproteins and glycolipids. Alpha-glycosidase inhibitors (AGIs) are 

drugs that prevent the absorption of carbohydrates from the gut and may be used 

in the treatment of patients with type 2 diabetes or impaired glucose tolerance. 

Y.Wu et al. prepared and studied the structure–activity correlation of novel 

isosteviol derivatives (Figure 17). The results (Table 11, page 25 ) showed that α-

glycosidase inhibition was dependent on the nature of the ester moiety, and it 

was found that ester at 19-O (Carboxylic acid) having more number of carbons 

show better inhibition. While in comparison of straight chain ester with branched 

chain, the branched chain ester show low inhibitoy effect. The introduction of 

double bond and aromatic ring in ester chain also show low inhibitory activity 

against α-glycosidase. The compound 30a (IC50, 95.5 µM) display low inhibitory 

effect then compound 30b with (IC50, 85.4 µM). The compound 30c and 30d 

shows slight deference of inhibitory effect against α-glycosidase. The oxime and 

amine fragments in isosteviol structure also shows inhibitory effect both in ester 

and free carboxylic form. The results demonstrate that oxo, oxime and amine are 

low α-glycosidase inhibitor both in ester form while found inactive with free 

carboxylic acid. 
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Figure 17: Chemical structure of 15α-hydroxy methylene isosteviol (30), and 

isosteviol (31). 

 

Table 11: Inhibition activities of isosteviol derivatives against a-glycosidase (IC50, 

µM). 

 

The conversion of isosteviol to lactone (32), lactam (33), and indole (34), 

derivatives display higher inhibition activities especially for lactam and indole. 

The compound 32 and 33 display IC50 81.6 µM, IC50 83.2 µM with free carboxylic 

acid while ester derivative showed IC50 72.4 µM and IC50 68.2 µM. The 

compound 34 showed 138.6 µM IC50 with free carboxylic acid and display 118.4 

 R1 R2 IC50(µM)  R3 x IC50(µM) 

30a -CH3 -CH2OH 95.5 31a H =O >200 

30b -CH2CH2CH3 -CH2OH 85.4 31b -CH2CH3 =O >200 

30c -CH(CH3)2 -CH2OH 97.2 31c H =NOH 92.1 

30d -CH2CH(CH3)2 -CH2OH 102 31d CH2CH3 =NOH 88.9 

30e -C(CH3)3 -CH2OH 113.8 31e H -NH2 >200 

30f -CH2CH=CH2 -CH2OH 143.2 31f -CH2CH3 -NH2 91.2 

30g -CH2-C6H5 -CH2OH 132.5 31g H -OH 156.3 

30h -CH2CH3 -OCOCH3 132.5 31h -CH2CH3 -OH 132.1 

30i -CH2CH3 OCOC6H5 112.4     
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µM IC50 with ester moiety the result demonstrate that esterification at 19-O 

(Carboxylic acid) enhances the α-glycosidase inhibition (Wu et al., 2009). 

 

   

 

Figure 18: Chemical structures of isosteviol lactone (32), isosteviol lactam (33), 

and isosteviol indole (34). 

 

1.3.2.1.3 ANTI-MICROBIAL ACTIVITY 

 

 The anti-microbial activities of stevioside, steviol and isosteviol have also 

been reported and these compounds were found active against gram-positive 

gram-negative and anaerobic bacteria. In this connection anti-microbial activities 

were investigated by Lin et al. A set of dimeric amide of stevioside, steviol and 

isosteviol (Figure 19, page 27), were semi-synthesized and these semi-synthetic 

analogues were in vitro tested against the Bacillus subtilis (BCRC 10029. The 

results are shown in Table 12, page 27. The compound 35a, 35b and 35c 

dimeric amides of stevioside displayed inhibition concentration 22.09 µg/mL, 

45.04 µg/mL, 97.81 µg/mL in Bacillus subtilis (BCRC 10029), while compound 

35d and 35e were found inactive against Bacillus subtilis (BCRC 10029). The 

results from the Table 12, page 27 specify that the inhibition against Bacillus 

subtilis increased with the increase of methylene carbons unit in between the 

nitrogens atoms of the dimeric amides (Lin, Lee, Sheu & Lin., 2004). 
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Figure 19: Chemical structure of stevioside, steviol and isosteviol dimeric Amides 

(35). 

 

Table 12: Antimicrobial activities of stevioside analogs (IC50, µg/mL). 

 

 R1 R2 R3 1X X2 µg/mL MIC µM 

35a -O Glu-Glu -O Glu-

Glu 

(CH2)12- =CH2 =CH2 32 22.09 

35b -O Glu-

Glu 

-O Glu-

Glu 

(CH2)10- =CH2 =CH2 64 45.04 

35c -O Glu-

Glu 

-O Glu-

Glu 

-(CH2)2- =CH2 =CH2 128 97.81 

35d OH OH -(CH2)2- =CH2 =CH2 >256 -- 

35e CH3 CH3 -(CH2)2- =O =O >256 -- 

 

Isosteviol and its bis-quarternized derivative (Figure 20, page 28) were 

prepared and were in vitro tested for bacteriostatic and bactericidal, activities it 

was found that bacteriostatic and bactericidal activity (0.5 µg/mL), of bis-

quaternized isosteviol derivatives were correspondent to the antibacterial drug 

ciprofloxacin (0.25 µg/mL). The results for compound (36, page 28), where R1 

(CH2)n, stand for variable number of methylene carbon unit between two nitrogen 
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atom in dimer, (n = 5, n = 9, n = 12). These three dimeric analogues with different 

alkyl chain between two nitrogen display more inhibition towards Staphylococcus 

aureus with 3.0 µg/mL, 0.78 µg/mL, and 0.5 µg/mL inhibition concentrations 

respectively. When these three dimers were tested against other bacterial strain, 

such as Bacillus cereus the inhibition concentration values were found 31.1 

µg/mL, 3.9 µg/mL, and 1.5 µg/mL, respectively. These results indicate that the 

increase of the methylene carbon unit chain between two nitrogen of bis-

quaternized isosteviol, the percentage of inhibition increases in both strain of 

bacteria (Korochkina et al., 2012). 

 

 

 

Figure 20: Chemical structure of bis-quaternized isosteviol (36). 

 

Wu et al. synthesized a set of isosteviol derivatives and tested in vitro for 

anti-bacterial activities in two strains of bacteria Bacillus subtilis and 

Staphylococcus aureus the results are shown in Table 13, page 29. The 

compound 37a was found inactive in both strains of bacteria, while 37b, 37c and 

37d show significant inhibition with 12.5 µg/mL minimum inhibitory 

concentrations in Bacillus subtilis and was found inactive in Staphylococcus 

aureus. 
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Figure 21: Chemical structure of ethyl ester of isosteviol (37). 

 

The highest inhibition was observed for compound 37e with 3.12 µg/mL minimum 

inhibitory concentrations in Bacillus subtilis strain and was found inactive in 

Staphylococcus aureus strain. The pyridine carbonyl substitution increases the 

inhibition in Bacillus subtilis strain while the presence of 2NO2 at both position 

also show moderate inhibition in Bacillus subtilis strain and was found inactive in 

Staphylococcus aurous (Wu et al., 2010). 

 

Table 13: Antimicrobial activities of isosteviol derivatives (IC50, µg/mL). 

 
  

R1 

 

R2 

Bacillus 

subtilis 

Staphylococcus 

aureus 

37a -OH -OH 200 >100 

37b =O -OH 12.5 >100 

37c -ONO2 -ONO2 12.5 >100 

 

37d 

 

 

-OH 

 

 

12.5 

 

>100 

 

37e 

  

 

3.12 

 

>100 
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1.3.2.1.4 ANTI-INFLAMMATORY AND IMMUNOMODULATORY ACTIVITY 

 

Immunomodulation is a procedure, which adjusts the immune system of 

an organism by interfering with its functions. This interference results in either 

immunostimulation or immunosuppression. An immunomodulator is any 

substance that helps to regulate the immune system. This "regulation" is a 

normalization process, so that an immunomodulator helps to optimize immune 

response. Boonkaewwan et al. investigated the anti-inflammatory and 

immunomodulatory assays of stevioside and its derivative, steviol using an in 

vitro model lipopolysaccharide (LPS), stimulated human monocytic THP-1 cells 

and study the production of inflammatory cytokines, tumor necrosis factor α 

(TNF-α), interleukin 1β (IL-1β), and nitric oxide. The intracellular signaling 

pathway was deliberated by analysis of Inhibitor of nuclear factor kappa-B kinase 

subunit beta (IKK β), and NF-kB stimulation, and the direct effect of stevioside on 

TNF-α secretion mediated by TLR4 was scrutinized. When THP-1 cell was 

treated with stevioside (1 mm), after 6h the results show significant release of 

TNF-α (before treatment 20.6±15 pg/mL after treatment 1135±193 pg/mL), and 

IL-1β (before treatment 0 pg/mL and after treatment 140±21 pg/mL). While LPS 

show significant stimulation with (1µg/mL), after 6h and release pro-inflammatory 

cytokines such as TNF-α (2986±165 pg/mL), and IL-1β (312 ±35 pg/mL). The 

results on inhibition show that nitric oxide (before treatment 6±0.4 µm and after 

treatment 4.7±0.5 µm), production was suppressed when THP-1 was stimulated 

with LPS (1 µg/mL), along with stevioside (1 mm), concentration 

(BOONKAEWWAN et al., 2006). 

Recently in another work Boonkaewwan et al. study the effect of 

stevioside and steviol on human colon carcinoma Caco-2cells along with anti-

inflammatory and immunomodulatory factor. Significant decrease in tumor 

necrosis factor (TNF-α), were observed when Caco-2 cells are treated with LPS 

and steviol. Stevioside and steviol decreases cytokines production up to 60% in 

LPS stimulating group during the release of interleukin 1β (IL-1β), and also inhibit 
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IL-6 production in LPS group. The experimental result show partial suppression 

of stevioside and steviol on the, nuclear factor kappa-B kinase (NF-KB), in Caco-2 

cell line (Boonkaewwan & Burodom, 2013). 

In another research work Boonkaewwan et al. demonstrate potent 

biological effect of steviol on increases Cl- secretion in human colonic 

adenocarcinoma cell line (T84 cells), and decrease of tumor necrosis factor 

receptor (TNF-R), and Interleukin 8 (IL-8), release was observed in human 

colonic cell linesT84, Caco-2, and HT29. While the precursor stevioside slightly 

raises Cl- secretion, at concentrations which not affect cell viability, and hence 

stevioside does not change TNF-R function. The stevioside did not show any 

effect on IL-8 release even it high concentration but in Caco-2 and HT29 cells 

they release significantly IL-8. The result shows decrease of 80% viability in 

selected three cells with 2 mm stevioside. Steviol has slightly increases the IL-8 

in T84 cell but it fails to show results in Caco-2 and HT29 cells. IL-8 release was 

inhibited 21.1-35.4% in the presence of steviol and TNF-α in T84 cell, 16.2% in 

Caco-2 and 17% was observed in HT29 cells. The results show that 2 and 5 mm 

stevioside reduced cell viability to 76-82 and 33-68%, correspondingly. At lower 

concentrations, 0.2 and 0.8 mm steviol also decreased cell viability to 80-90% 

and 7-34%, respectively. It is interesting that steviol, at 0.4 and 0.6 mm, and 

stevioside, at 2 and 5 mm, are less cytotoxic in HT29 and Caco-2 than in T84 

cells (Boonkaewwan et al., 2008). 

 

1.3.2.1.5 ANTI-TUBERCULOSIS ACTIVITY 

 

Tuberculosis (TB) remains a foremost worldwide health problem. It was 

estimated that more than 8.6 million people were infected and nearly 1.3 million 

people died from tuberculosis in 2012 (WHO 2012).  

In the literature around hundred natural product compounds are reported 

that inhibits the Mycobacterium tuberculosis (H37RV strain), growth. In this 
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connection a series of macro cyclic isosteviol analogue having azine, hydrazone 

and hydrazide functionality (Figure 22, page 33), were prepared and was in vitro 

evaluated against Mycobacterium tuberculosis (H37RV), the results are shown in 

Table 14. The compound 38 and 39 having hydrazine hydrazone functionality, 

show strong inhibition with (MIC 1.7 µg/mL) and (MIC 3.1 µg/mL), while 

compound 40 and 41, show good inhibition with hydrazone functionality with MIC 

value 6.3 µg/mL. Generally it was observed that increase of methylene carbon 

unit between the macrocylic hydrazide analogues of isosteviol also improves the 

inhibition against Mycobacterium tuberculosis (H37RV) strain (Garifullin et al., 

2011). 

 

Table 14: MIC 50 µg/mL value of different derivative of steviol and isosteviol.  

 

 H37RV  H37RV 

38 3.1 42 20.0 

39 1.7 43 5.0 

40 6.3 44 20.0 

41 6.3   
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Figure 22: Chemical structure of hydrazone hydrazide (38), hydrazone (39), 

dimeric hydrazone (40), hydrazone and dimeric hydrazide of isosteviol (41). 

 

Another research group Khaybulline et al. prepared saturated steviol 42 

and its dimeric compound 44 and 43 these analogues were in vitro evaluated 

against Mycobacterium tuberculosis (H37RV) strain, similar inhibitory 

concentration (MIC 20.0 µg/mL ) were found for both derivatives, while 

compound 43, show potent inhibition (MIC 5.0 µg/mL), as shown in Table 14. 

The inhibitory results showed that per acid and anhydride moiety in dimeric 
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steviol improves the inhibition in Mycobacterium tuberculosis (H37RV strain) 

(Khaybullin et al., 2012). 

 

 

 

Figure 23: Chemical structure of steviol (42), dimeric per acid anhydride (43) 

steviol dimeric anhydride (44). 

 

In continuation of the synthesis of biologically active isosteviol derivatives, 

Sharipova et al. synthesized 15-oxo-thiosemicarbazone 45 and 15-oxo-oxime 46, 

of isosteviol and these derivatives were in vitro evaluated against Mycobacterium 

tuberculosis (H37Rv) strain. The compound 45 showed moderate inhibitory 
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activity The minimum inhibitory concentration (MIC), of compound 45 (20 µg mL–

1), is twofold lower than MIC found for isosteviol. 

 

 

Figure 24: Chemical structure of 15-oxo-thiosemicarbazone (45), 15-oxo 16-

oxime derivatives of isosteviol (46). 

The higher value of MIC for compound 46 demonstrate that compound 

with oxo-oxime fragment was found inactive against Mycobacterium tuberculosis 

(H37Rv) strain. It can be assumed that an increase in the activity is associated 

with the introduction of carbazone fragments in isosteviol skeleton (Sharipova et 

al., 213). 

 

1.3.2.1.6 ANTI-HEPATITIS B ACTIVITY 

 

 Hepatitis B is a viral infection that attacks the liver and can cause both 

acute and chronic disease, and is a potentially life-threatening disease caused by 

the hepatitis B virus. It can cause chronic liver disease and chronic infection and 

puts people at high risk of death from cirrhosis of the liver and liver cancer. 

Individuals who develop chronic hepatitis may develop significant and potentially 

fatal disease. In general, the frequency of clinical disease increases with age, 

whereas the percentage of carriers decreases. Nearly about 1 million global 

deaths occur each year due to chronic forms of the disease (WHO. 2013). 
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In the literature several research groups described the effect of natural 

products and their semi-synthetic analogues against hepatitis B to find novel and 

potentially bioactive secondary metabolite. In this connection, T-J. Huang et al. 

synthesized a set of alkylated ureide of isosteviol at C19 and these derivatives 

were in vitro evaluated against HBV in HepG2 cells the results are shown in 

Table 15, page 37. The compound 47a, (ent-16-oxobeyeran-19-N-methylureido), 

exhibited potent inhibition in HBV surface antigen (HBsAg), strain and moderately 

active against HBV e antigen (HBeAg) secretion, with IC50 7.89 µg/mL inhibitory 

concentration and was found moderately active with IC50 24.3 µg/mL in HBsAg 

secretion. The compound 47c was moderately active in HBeAg strain while 

inactive in HBsAg, compound 47b was inactive in both strains of Hepatitis B. The 

compound 47d show potent inhibition against HbeAg strain (IC50 9.36 µg/mL), 

and was found inactive in HBsAg strain. Generally the comparative results 

demonstrate that the substituted aromatic alkylated ureide nitrogen causes more 

inhibition, while halogenated ureide nitrogen show moderate inhibition (Huang et 

al., 2014). 

 

 

 

Figure 25: Chemical structure of alkylated ureide of isosteviol (47). 
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Table 15: Anti-viral activities of isosteviol analogues (IC50, µg/mL). 

 

 R TC50 HBsAg HBeAg 

47a -CH3(NC-8) 53.52 7.89 24.30 

47b -CH2-C6H5 70.30 --- ---- 

47c p-HOC6H4- 125.86 ----- 24.83 

47d 3,4(OH)C6H3- 75.18 26.13 9.36 

 

        The literature data shown above indicate the potential of kauranes and 

beyeranes as prototypes for the development of new bioactive compounds. The 

potency and selectivity profile of steviol and isosteviol along with the semi 

synthetic derivatives makes it an attractive medicinal chemistry target. Since 

hydrazone, oxime, polyhydroxy, benzyl ester and p-methoxy acetophenone ester 

usually behaves as a bioactive fragments in various natural products. We 

planned the semi-synthesis of new derivatives of steviol/isosteviol to shape a 

new family of bioactive compounds. 
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2 OBJECTIVES 

 

2.1 GENERAL OBJECTIVES 

 
Derivatization of steviol and isosteviol by chemical methods, and 

evaluation of some of their biological activities. 

 

2.2 SPECIFIC OBJECTIVES 

 

2.2.1 Preparation of steviol and isosteviol semi synthetic derivatives by 

chemical method targeting, at C15, C16 and C19. 

2.2.2 Evaluation of anti-tumor activities against selected human cancer cell line 

such as lung carcinoma (A549), human brain glioma cell lines (T98MG), 

human glioblastoma-astrocytoma, epithelial-like cell line (U8MG). 

2.2.3 Evaluation of anti-malarial activity of analogues by the methods of 3 [H] -

hipoxantina and lactate dehydrogenase (LDH). 

2.2.4 Evaluation of anti-Trypanosomal activity of derivatives by MTT [3-(4, 5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. 

2.2.5 Evaluation of anti-Leishmanicidal activity of derivatives by MTT [3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide]. 

2.2.6 Evaluation of Anti-Corynebacterium diphtheriae activity. 
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3 EXPERIMENTAL 

 

3.1 INSTRUMENTATION 

 
The structure identification of compounds was carried out using NMR Bruker 

DPX-200 (1H NMR, 13C NMR and DEPT135), spectrophotometer TMS as internal 

standard. IR Spectra: as KBr pellets on a Thermo Nicolet IR200 spectrometer. 

ESI-MS were carried out using ―Thermo Fisher Scientific Inc.LTQ XL Linear Ion 

Trap Mass Spectrometer‖ was used at Department of Chemistry of Federal 

University of Parana.  

 

3.1.1 CHROMATOGRAPHY 

 

All reactions were monitored by thin-layer chromatography, and visualized 

under UV (254 and 366 nm), or by spraying using methanol/sulphuric acid or 

vanillin/sulphuric acid reagents, followed by heating. The following 

chromatographic conditions were used for analysis:  

a) Thin layer chromatographic PF254 pre coated plates with silica gel (0.25mm) 

(Merck® Germany). 

b) Silica gel 60 (0.04-0.063 mm Merck®, Germany), for column chromatography. 

c) Preparative circular chromatography (Chromatotron, Harrison Research, Palo 

Alto, CA, USA model 7924T), silica gel, TLC grade 7749, with gypsum binder 

and fluorescent indicator. 

 

3.1.2 SOLVENTS 

 

All solvents were purchased commercially and were distilled before use. 

Deuterated (CDCl3, CD3OD, CD3COCD3), solvent were used for NMR analysis. 
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3.2 SEMI SYNTHESIS OF THE STEVIOSIDE DERIVATIVES 

 

3.2.1 PREPARATION OF ISOSTEVIOL (1a) 

 

 

 

Commercial stevioside (10.00 g, 12.2 mmol) was dissolved in 5% 

hydrochloric acid solution (200 mL, 12M), and the mixture was heated under reflux 

for 1 hour. After cooling the reaction mixture was filtered and the filtrate was 

extracted with ethyl acetate (3 X 100 mL). The organic portion were combined and 

dried over anhydrous sodium sulphate (Na2SO4). The solvent was evaporated in a 

rotary evaporator providing 4.1 g of a solid residue. The solid obtained was then 

purified on a silica column (3 x 30 cm), using mixtures of hexane and ethyl acetate 

of increasing polarity as mobile phase. Similar fractions were combined and the 

solvent was evaporated. (AVENT, HANSON & OLIVEIRA, 1989).  

White crystalline compound 1a (3.3 g) was obtained, 33% yield after 

purification using chromatotron. IR; 1734 cm-1, 1692 cm-1, 1269 cm-1. 1H NMR 

(200 MHz, CDCl3), δ 0.68 (3H, s, H20), δ 0.98 (3H, s, H18), δ 1.19 (3H, s, H17), δ 

1.55 (1H, dd, J = 11.30, 2.2 Hz, H14), δ 2.62 (1H, dd, J = 18.62, 3.65 Hz, H15), δ 

3.64 (3H, s, OCH3). 
13C NMR (50 MHz, CDCl3), δ 13.2 (C20), δ 18.9 (C2), δ 19.8 

(C17), δ 20.3 (C11), δ 21.7 (C6), δ 28.8 (C18), δ 37.3 (C12), δ 37.9 (C3, C10), δ 

39.4 (C8), δ 39.8 (C1), δ 41.5 (C7), δ 43.7 (C4), δ 48.4 (C13), δ 48.7 (C15), δ 51.2 

(OCH3), δ 54.3 (14), δ 54.7 (C9), δ 57.1 (C5), δ 177.8 (C19). 
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3.2.1 GENERAL PROCEDURE FOR PREPARATION OF 16-HYDROXY 

DERIVATIVES OF ISOSTEVIOL AND 17-HYDROXY ISOSTEVIOL 

 

Sodium borohydride (37.83 mg, 1 mmol), was added portion wise to an ice-

cold solution of isosteviol 1a or 17-hydroxy isosteviol 4h (318 mg, 0.5 mmol), in 

dry ethanol (5 mL). The reaction mixture was keep stand for 1h. The progress of 

reaction was followed by TLC. After complete disappearance of starting material, 

the reaction mixture was quenched by adding saturated aqueous NH4Cl (5 mL) 

solution, along with stirring. The reaction mixture was then brought back to room 

temperature the ethanol was removed under reduced pressure. The reaction 

mixture was extracted with ethyl acetate (3 x 30 mL). The organic layer was 

washed with brine (5 mL), and was dried over anhydrous sodium sulphate 

(Na2SO4). The reaction mixture was filtered and concentrated under reduced 

pressure.  

 

3.2.1.1 16-HYDROXY ISOSTEVIOL (1b) 

 

 

 

White crystalline solid 1b (240 mg, 80%). IR; 3468 cm-1, 1723 cm-1, 1454 

cm-1, 1141 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.72 (3H, s, H20), δ 0.91 (3H, s, 

H18), δ 1.16 (3H, s, H17), δ 2.15 (1H, d, J =12.62 Hz), δ 3.62 (3H, s, OCH3), δ 

3.85 (1H, dd, J = 10.23, 5.44 Hz, H16). 13C NMR (50 MHz, CDCl3), δ 13.1 (C20), δ 

18.9 (C2), δ 20.4 (C11), δ 21.7 (C6), δ 24.9 (C17), δ 28.8 (C18), δ 33.7 (C12), δ 

38.0 (C3, C10), δ 39.9 (C1), δ 41.7 (C7), δ 41.9 (C8), δ 42.0 (C13), δ 42.8 (C15), δ 
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43.7 (C4), δ 51.1 (OCH3), δ 55.2 (14), δ 55.8 (C9), δ 57.1 (C5), δ 80.5 (C16), δ 

178.1 (C19). 

 

3.2.1.2 17, 16-DIHYDROXY ISOSTEVIOL (5i) 

 

 

 

White crystalline solid (218 mg, 73%). IR; 3413 cm-1, 3218 cm-1, 1698 cm-1, 

1391 cm-1, 1233 cm-1, 1175 cm-1, 1027 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.77 

(3H, s, H20), δ 1.20 (3H, s, H17), δ 2.12 (1H, br, d, J = 12.7 Hz, H12), δ 3.45 (1H, 

d, J = 10.12 Hz, H17), δ 3.5 (1H, d, J = 10.12 Hz, H17), δ 3.66 (3H, s, OCH3), δ 

4.22 (1H, dd, J = 10.3, 5.15 Hz, H16), δ 5.34 (2H, s, H17). 13C NMR (50MHz, 

CDCl3), δ 13.1 (C20), δ 18.9 (C2), δ 19.9 (C11), δ 21.7 (C6), δ 28.8 (C18), δ 29.3 

(C12), δ 38.1 (C3, C10), δ 39.9 (C1), δ 41.6 (C7), δ 42.1 (C15), δ 42.5 (C8), δ 43.7 

(C4), δ 46.6 (C13), δ 50.0 (C14), δ 51.1 (OCH3), δ 56.5 (C9), δ 57.1 (C5), δ 71.2 

(C17), δ 78.5 (C16), δ 178.0 (C19). 

 

3.2.2 GENERAL PROCEDURE FOR THE PREPARATION OF 16-OXIME OF 

ISOSTEVIOL AND 17-HYDROXY ISOSTEVIOL 

 

Solution of sodium acetate (164 mg, 2 mmol), and hydroxyl amine 

chloride (139 mg, 2 mmol), in water (5.3 mL), was added to the solution of 

isosteviol or 17 hydroxy isosteviol (318 mg, 1 mmol), in ethanol and water (25 

mL: 4:1) ratio. The reaction mixture was kept under stirring for 24h at room 
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temperature. The progress of reaction was monitored by TLC. After complete 

disappearance of starting material water (50 mL), was added to the reaction 

mixture which was extracted with ethyl acetate (3x50 mL). The organic layer was 

dried over anhydrous sodium sulphate. After filtration ethyl acetate was removed 

under reduced pressure and the product was recrystallized from methanol. 

 

3.2.2.1 ISOSTEVIOL 16-OXIME (1c) 

 

 

 

A white crystalline solid (260 mg, 78%). IR; 3446 cm-1, 1720 cm-1, 1694 

cm-1, 1601 cm-1, 1262 cm-1, 961 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.76 (3H, s, 

H20), δ 1.12 (3H, s, H17), δ 1.20 (3H, s, H18), δ 1.34 (1H, dd, J = 17.51, 3.98 

Hz, H14), δ 2.19 (1H, d, J= 12.65 Hz), δ 2.98 (1H, dd, J = 18.30, 2.98 Hz, H15), δ 

3.64 (3H, s, OCH3). 
13C NMR (50 MHz, CDCl3), δ 13.1 (C20), δ 18.9 (C2), δ 20.4 

(C11), δ 21.7 (C6), δ 22.1 (C17), δ 28.7 (C18), δ 36.8 (C12), δ 37.9 (C10), δ 38.0 

(C3), δ 39.5 (C15), δ 39.9 (C1), δ 40.6 (C8), δ 40.8 (C7), δ 43.7 (C4, C13), δ 

51.1 (OCH3), δ 54.8 (9), δ 56.2 (C14), δ 57.1 (C5), δ 170.2 (C16), δ 178.0 (C19). 
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3.2.2.2 17-HYDROXY, 16-OXIME OF ISOSTEVIOL (5j) 

 

 

 

White crystalline solid (206 mg: 68%), yield. IR; 3359 cm-1, 1707 cm-1, 

1451 cm-1, 1236 cm-1, 1183 cm-1, 925 cm-1, 784 cm-1. 1H NMR (200 MHz, 

CDCl3), δ 0.89 (3H, s, H20), δ 1.21 (3H, s, H17), δ 2.99 (1H, dd, J = 18.40, 3.0 

Hz, H15), δ 3.55 (1H, dd, J = 16.70, 10.90 Hz, H17). 13C NMR (50 MHz, CDCl3), 

δ 13.0 (C20), δ 18.9 (C2), δ 19.8 (C11), δ 21.7 (C6), δ 28.5 (C18), δ 34.4 (C12), 

δ 36.9 (C7), δ 37.8 (C3), δ 38.1 (C10), δ 39.8 (C1), δ 40.7 (C8), δ 40.8 (C15), δ 

43.2 (C4), δ 48.9 (C13), δ 51.3 (C14), δ 55.4 (C9), δ 56.8 (C5), δ 66.4 (C17), δ 

167.5 (C16), δ 178.7 (C19). 

 

3.2.2.3 ISOSTEVIOL LACTONE (1d) 

 

 

 

Hydrogen peroxide 30% (1 mL, 9.8 M), was added to a well stirred solution 

of isosteviol (318 mg, 1 mmol), in acetic acid. The reaction mixture was kept under 

stirring for 96 hours. The progress of reaction was followed by TLC. The reaction 
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mixture was added to water and was extracted with chloroform (3x50 mL).The 

organic layer was dried over anhydrous sodium sulphate. After filtration excess of 

chloroform was removed under reduced pressure. The reaction mixture was 

chormatoghraphed on chromatotron using silica rotors (1 mm), and mixture of 

ethyl acetate and n-hexane (2:8) was used as a mobile phase. 

The product recovered was white crystalline solid (130 mg, 39%), yield. The 

ESI-MS [M]+; 334.25. IR; 1720 cm-1, 1688 cm-1, 1244 cm-1, 1156 cm-1. 1H NMR 

(200 MHz, CDCl3), δ 0.76 (3H, s, H20), δ 1.18 (3H, s, H17), δ 1.35 (3H, s, H18), δ 

2.19 (1H, d, J = 12.97 Hz), δ 3.09 (1H, dd, J = 18.67, 2.60 Hz, H15). ), δ 3.64 (3H, 

s, OCH3). 
13C NMR (50 MHz, CDCl3), δ 13.4 (C20), δ 18.5 (C11), δ 18.8 (C2), δ 

19.5 (C6), δ 28.3 (C17), δ 28.6 (C18), δ 34.9 (C8), δ 37.8 (C10), δ 37.9 (C7), δ 

38.4 (C3), δ 38.7 (C12), δ 39.9 (C1), δ 43.6 (C15), δ 43.7 (C4), δ 47.7 (C14), δ 

51.1 (OCH3), δ 55.8 (9), δ 57.2 (C5), δ 80.2 (C13), δ 172.5 (C16), δ 177.5 (C19). 

 

3.2.3 GENERAL PROCEDURE FOR THE PREPARATION OF 15α-HYDROXY 

METHYL, 16β-HYDROXY OF ISOSTEVIOL AND 17-HYDROXY 

ISOSTEVIOL 

 

Excessive amount of aqueous formaldehyde (37%, 13.3 M, 2 mL), was 

added drop wise to the solution of isosteviol or 17-hydroxy isosteviol (318 mg, 

0.62 mmol), in ethanol (4 mL), and sodium hydroxide (1.6 M), in water (6 mL) the 

reaction mixture was stirred for 3 hour at 90 0C. The progress of reaction was 

followed by TLC. The reaction mixture was acidified with dilute hydrochloric acid 

filtered and was chromatographed on chromatotron using silica rotors (1 mm), 

and mixture of ethyl acetate and n-hexane (3:8) was used as a mobile phase. 
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3.2.3.1 15α-HYDROXY METHYL, 16β-HYDROXY OF ISOSTEVIOL (1e) 

 

 

 

White crystalline solid with (153 mg: 78%), yield. ESI-MS data [M+Na]+; 

373.21. IR; 3392 cm-1, 1694 cm-1, 1553 cm-1, 1534 cm-1, 1454 cm-1, 1067 cm-1. 1H 

NMR (200 MHz, CDCl3), δ 0.74 (3H, s, H20), δ 0.93 (3H, s, H18), δ 1.15 (3H, s, 

H17), δ 2.15 (1H, dd, J = 13.51 Hz, H12), δ 3.46 (1H, t, J = 10.27 Hz, H1′), δ 3.63 

(3H, s, OCH3). 
13C NMR (50 MHz, CDCl3), δ 13.0 (C20), δ 18.9 (C2), δ 19.5 (C11), 

δ 22.2 (C6), δ 25.0 (C17), δ 28.9 (C18), δ 33.1 (C12), δ 34.8 (C7), δ 37.9 (C3), δ 

38.1 (C10), δ 39.6 (C1), δ 40.9 (C8), δ 42.5 (C13), δ 43.7 (C4), δ 50.3 (C15), δ 

51.2 (OCH3), δ 54.3 (14), δ 57.1 (C9), δ 57.7 (C5), δ 64.9 (C1′), δ 86.7 (C16), δ 

177.9 (C19). 

 

3.2.3.2 15α-HYDROXY METHYL, 16β-HYDROXY OF 17-HYDROXY 

ISOSTEVIOL (5n) 

 

 

 

White crystalline solid (146 mg, 71%), yield. ESI-MS, [M-H]+ 365.33. IR; 3419 cm-

1,1693 cm-1, 1222 cm-1, 755 cm-1. 1H NMR (200 MHz, CD3COCD3), δ 0.79 (3H, s, 
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H20), δ 1.17 (3H, s, H18), δ 2.93 (1H, br, d, J = 4.3 Hz, H15), δ 3.35 (1H, d, br, J = 

5.84 Hz, H1′), δ 3.62 (2H, s, H17). 13C NMR (50 MHz, CD3COCD3), δ 12.6 (C20), 

δ 18.8 (C2), δ 19.0 (C11), δ 22.2 (C6), δ 28.2 (C18), δ 34.9 (C12), δ 37.8 (C3, C7), 

δ 38.1 (C10), δ 39.6 (C1), δ 42.6 (C8), δ 43.4 (C4), δ 45.6 (C13), δ 49.2 (C14), δ 

50.2 (C15), δ 50.4 (OCH3), δ 57.0 (C9), δ 58.5 (C5), δ 63.1 (C1′), δ 68.3 (C17), δ 

80.7 (C16), δ 177.1 (C19). 

 

3.2.4 STEVIOL (1h) 

 

 

 

Sodium per iodate (10 g, 46.8 mmol), was added to the solution of 

commercial stevioside (10g, 12.2 mmol), in water (500 ml), and was kept in dark 

for 16 hours. Sodium hydroxide (187 mmol) was added to the mixture and was 

refluxed for 1h. The reaction mixture was cooled immediately by addition of ice. 

Acetic acid was added to the mixture till the pH 4 of solution was attained. The 

reaction mixture was immediately extracted with ethyl acetate (100X4 mL). The 

organic layer was dried over anhydrous sodium sulphate. After filtration ethyl 

acetate was removed under reduced pressure. The crude product was 

recrystallized in methanol.  

White crystalline solid with (1.3 g: 13%), yield. IR; 3461 cm-1, 1691 cm-1, 

1470 cm-1, 1237 cm-1, 1187 cm-1, 1027 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.84 

(3H, s, H20), δ 1.19 (3H, s, H17), δ 1.29 (1H, dd, J = 10.82, 2.13 Hz, H9), δ 1.87 

(1H, dd, J = 10.82, 2.5 Hz, H14), δ 3.66 (3H, s, OCH3), δ 4.84 (1H, br, s, H17), δ 

5.0 (1H, br, s, H17). 13C NMR (50 MHz, CDCl3), δ 15.3 (C20), δ 19.1 (C2), δ 20.4 
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(C11), δ 21.8 (C6), δ 28.7 (C18), δ 38.0 (C3), δ 39.2 (C10, C12), δ 40.8 (C1), δ 

41.3 (C7), δ 41.6 (C8), δ 43.7 (C4), δ 46.9 (C15), δ 47.4 (C14), δ 51.1 (OCH3), δ 

53.8 (C9), δ 56.9 (C5), δ 80.2 (C13), δ 102.9 (C17), δ 156.1 (C16), δ 177.9 (C19). 

 

3.2.5 STEVIOL EPOXIDE (2h) 

 

 

 

m-chloro per benzoic acid (300 mg: 1.7 mmol), was added into the solution 

of steviol (318 mg: 1 mmol), in dichloromethane (50mL). The reaction mixture was 

stirred for 12 hour at room temperature. The progress of reaction was followed by 

TLC. The reaction mixture was washed with saturated sodium carbonate solution 

(3x30 mL). The organic layer was dried over anhydrous sodium sulphate 

(Na2SO4). After filtration excess of dichloromethane was removed under reduced 

pressure. The reaction mixture was chromatoghraphed on chromatotron using 

ethyl acetate and n-hexane (3:7). The product was recovered and recrystallized 

from ethyl acetate. 

 White crystalline solid with (196 mg: 60%), yield. IR; 3257 cm-1, 1715 cm-1, 

1244 cm-1, 939 cm-1, 794 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.86 (3H, s, H20), δ 

1.19 (3H, s, H17), δ 2.2 (1H, d, J = 11.0 Hz, H12α), δ 2.79 (1H, d, J = 4.34 Hz, 

H17), δ 2.94 (1H, d, J = 4.34 Hz, H17), δ 3.65 (3H, s, OCH3). 
13C NMR (50 MHz, 

CDCl3), δ 15.5 (C20), δ 19.0 (C2), δ 19.5 (C11), δ 21.8 (C6), δ 28.6 (C18), δ 34.7 

(C12), δ 37.9 (C3), δ 39.2 (C10), δ 40.7 (C1), δ 41.2 (C7), δ 41.6 (C8), δ 43.7 

(C4), δ 45.7 (C 14), δ 46.5 (C15), δ 48.6 (C17), δ 51.1 (OCH3), δ 53.8 (C9), δ 56.8 

(C5), δ 65.2 (C16), δ 74.7 (C13), δ 177.8 (C19). 
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3.2.6 17-HYDROXY ISOSTEVIOL (4h) 

 

 

 

Dilute solution of hydrochloric acid (20 mL: 5%), was added to the solution 

of steviol epoxide (334 mg: 1 mmol), in acetone (20 mL). The reaction mixture 

was heated on water bath for 30 minutes at 58 0C. The progress of reaction was 

followed on TLC. The excess of solvent was removed under reduced pressure 

and the product was recovered with ethyl acetate (3x50 mL), and dried over 

anhydrous sodium sulphate. After filtration the reaction mixture was 

chromatographed over chromatotron using ethyl acetate and n-hexane (3:7). 

The products were then characterized by spectroscopic methods.  

White crystalline product recovered with (215 mg: 64%) yield. IR; 3348 cm-1, 

1691 cm-1, 1183 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.72 (3H, s, H20), δ 1.21 (3H, 

s, H17), δ 2.68 (1H, dd, J = 18.88, 3.74 Hz, H15), δ 3.52 (1H, d, J = 10.99 Hz, 

H17), δ 3.66 (3H, s, OCH3). 
13C NMR (50 MHz, CDCl3), δ 13.1 (C20), δ 18.9 (C2), 

δ 19.8 (C11), δ 21.7 (C6), δ 28.8 (C18), δ 32.1 (C12), δ 37.9 (C3), δ 38.0 (C10), δ 

39.6 (C8), δ 39.8 (C1), δ 41.3 (C7), δ 43.7 (C4), δ 48.9 (C15, C14), δ 51.2 (OCH3), 

δ 54.1 (C13), δ 55.4 (C9), δ 56.9 (C5), δ 65.1 (C17), δ 177.9 (C19). 
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3.2.7 GENERAL PROCEDURE FOR THE PREPARATION OF BENZYL ESTER 

OF ISOSTEVIOL AND ITS DERIVATIVES 

 

To the solution of isosteviol (1a) or 17-hydroxy isosteviol (4h) derivatives 

1b, 1c, 1d, 5i, and 5j (0.5 mmol), in acetone (30 mL), along benzyl chloride (0.7 

mL, 0.043 mmol), and K2CO3 (1 mmol), were heated under refluxed for 2 hour. 

The progress of reaction was followed by TLC. Excess of acetone and benzyl 

chloride were removed under vacuum. The reaction mixture was chromatographed 

on a chromatotron using silica rotors (1 mm), and elution was made with ethyl 

acetate: n-hexane (1:9). The products were then characterized by spectroscopic 

methods. 

 

3.2.7.1 BENZYL ESTER OF ISOSTEVIOL (2a) 

 

 

 

The compound was isolated as a white crystalline solid with (167 mg, 82%), 

yield. ESI-MS [M-H]+ 407.46. IR; 1738 cm-1, 1720 cm-1, 1453 cm-1, 1147 cm-1, 740 

cm-1. 1H NMR (200 MHz, CDCl3), δ 0.60 (3H, s, H20), δ 0.97 (3H, s, H18), δ 1.21 

(3H, s, H17), δ 2.55 (1H, dd, J = 18.60, 3.6 Hz, H15), δ 5.1 (1H, dd, J = 18.16, 

12.41 Hz, H7′′), δ 7.35 (5H, s, H2′′-H6′′). 13C NMR (50 MHz, CDCl3), δ 13.3 (C20), 

δ 18.9 (C2), δ 19.8 (C17), δ 20.3 (C11), δ 21.7 (C6), δ 28.9 (C18), δ 37.3 (C3), δ 

37.9 (C12, C10), δ 39.4 (C8), δ 39.8 (C1), δ 41.5 (C7), δ 43.9 (C4), δ 48.3 (C15), δ 

48.7 (C13), δ 54.3 (14), δ 54.7 (C9), δ 57.1 (C5), δ 66.1 (C7"), δ 128.1 (C4"), δ 

128.4 (C2", C6"), δ 128.5 (C3", C5"), δ 135.9 (C1"), δ 176.9 (C19). 
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3.2.7.2 BENZYL ESTER OF 16-HYDROXY ISOSTEVIOL (2b) 

 

 

 

White crystalline solid, (166 mg, 81%), yield. ESI-MS [M-H]+ 409.39. IR; 

3460 cm-1, 1721 cm-1, 1454 cm-1, 1147 cm-1, 696 cm-1. 1H NMR (200 MHz, CDCl3), 

δ 0.71 (3H, s, H20), δ 0.93 (3H, s, H18), δ 1.22 (3H, s, H17), δ 2.22 (1H, br, J = 

12.26 Hz, H12), δ 3.87 (1H, dd, J = 9.61, 5.6 Hz, H16), δ 5.0 (1H, d, J = 12.45, Hz, 

H7′′), δ 5.2 (1H, d, J = 12.45 Hz, H7′′), δ 7.38 (5H, s, H2′′-H6′′). 13C NMR (50 MHz, 

CDCl3), δ 13.3 (C20), δ 18.9 (C2), δ 20.4 (C11), δ 21.8 (C6), δ 24.9 (C17), δ 29.0 

(C18), δ 33.7 (C12), δ 38.0 (C3, C10), δ 39.9 (C1), δ 41.7 (C7), δ 42.0 (C8, C13), 

δ 42.7 (C15), δ 43.9 (C4), δ 55.2 (14), δ 55.9 (C9), δ 57.3 (C5), δ 65.9 (C7′′), δ 

80.6 (C16), δ 128.0 (C4′′), δ 128.2 (C2′′, C6′′), δ 128.4 (C3", C5"), δ 136.1 (C1′′), δ 

177.3 (C19). 

 

3.2.7.3 BENZYL ESTER OF 16-OXIME ISOSTEVIOL (2c) 
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White crystalline compound with (172 mg, 81%), yield. ESI-MS [M-H]+ 

422.33. IR; 3287 cm-1, 1723 cm-1, 1453 cm-1, 1147 cm-1, 930 cm-1, 696 cm-1. 1H 

NMR (200 MHz, CDCl3), δ 0.73 (3H, s, H20), δ 1.13 (3H, s, H18), δ 1.24 (3H, s, 

H17), δ 2.95 (1H, dd, J = 18.62, 3.03 Hz, H15), δ 5.00 (1H, d, J = 12.47 Hz, H7′′), 

δ 5.23 (1H, d, J = 12.47 Hz, H7′′), δ 7.4 (5H, s, H2'′-H6'′). 13C NMR (50 MHz, 

CDCl3), δ 13.3 (C20), δ 18.9 (C2), δ 20.4 (C11), δ 21.7 (C6), δ 22.1 (C17), δ 28.9 

(C18), δ 36.7 (C12), δ 38.0 (C3, C10), δ 39.5 (C15), δ 39.9 (C1), δ 40.6 (C8), δ 

40.9 (C7), δ 43.7 (C4), δ 43.9 (C13), δ 54.8 (C9), δ 56.3 (C14), δ 57.3 (C5), δ 65.9 

(C7′′), δ 128.0 (C4′′), δ 128.1 (C2′′-C6′′), δ 128.5 (C3, C5′′), δ 136.1 (C1′′), δ 170.2 

(C16), δ 177.1 (C19). 

 

3.2.7.4 BENZYL ESTER OF ISOSTEVIOL LACTONE (2d) 

 

 

 

White crystalline solid with (170 mg, 76%), yield. ESI-MS [M+Na]+ ion 

447.39. IR; 1713 cm-1, 1453 cm-1, 1237 cm-1, 1146 cm-1, 745 cm-1, 698 cm-1. 1H 

NMR (200 MHz, CDCl3), δ 0.70 (3H, s, H20), δ 1.22 (3H, s, H17), δ 1.36 (3H, s, 

H18), δ 2.22 (1H, d, J = 13.70 Hz, H12), δ 3.02 (1H, dd, J = 18.81, 2.37 Hz, H15), 

δ 5.0 (1H, d, J = 12.34 Hz, H7′′), δ 5.1 (1H, d, J = 12.34 Hz, H7′′), δ 7.38 (5H, s, 

H2′′-H6′′). 13C NMR (50 MHz, CDCl3), δ 13.5 (C20), δ 18.5 (C11), δ 18.8 (C2), δ 

19.5 (C6), δ 28.3 (C17), δ 28.7 (C18), δ 34.8 (C8), δ 37.8 (C10, C3), δ 38.4 (C7), δ 

38.5 (C12), δ 39.8 (C1), δ 43.6 (C15), δ 43.7 (C4), δ 47.7 (C14), δ 55.8 (C9), δ 

57.3 (C5), δ 66.1 (C7′′), δ 80.2 (C13), δ 128.2 (C4′′), δ 128.3 (C2′′, C6′′), δ 128.5 

(C3′′, C5′′), δ 135.8 (C1′′), δ 172.5 (C16), δ 176.7 (C19). 
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3.2.7.5 BENZYL ESTER OF 17-HYDROXY ISOSTEVIOL (5l) 

 

 

 

White crystalline solid (147 mg: 69%), yield. ESI-MS data, [M+H]+ 425.33. 

IR; 3408 cm-1,1722 cm-1, 1254 cm-1, 1124 cm-1, 772 cm-1, 668 cm-1. 1H NMR (200 

MHz, CDCl3), δ 0.64 (3H, s, H20), δ 1.24 (3H, s, H17), δ 2.24 (1H, br, d, J = 13.52 

Hz, H12), δ 2.61 (1H, dd, J = 18.97, 3.78 Hz, H15), δ 3.50 (1H, d, J = 11.37, Hz, 

H17), δ 3.6 (1H, d, J = 11.37 Hz, H17), δ 5.0 (1H, d, J = 12.3 Hz, H7′′), δ 5.1 (1H, 

d, J = 12.3 Hz, H7′′), δ 7.37 (5H, s, H2′′-H6′′). 13C NMR (50 MHz, CDCl3), δ 13.2 

(C20), δ 18.9 (C2), δ 19.8 (C11), δ 21.7 (C6), δ 28.9 (C18), δ 32.1 (C12), δ 37.9 

(C3), δ 38.1 (C10), δ 39.6 (C8), δ 39.7 (C1), δ 41.3 (C7), δ 43.9 (C4), δ 48.9 (C15, 

C14), δ 54.1 (C13), δ 55.3 (C9), δ 57.1 (C5), δ 65.1 (C17), δ 66.1 (C7′′), δ 128.1 

(C4′′), δ 128.3 (C2′′, C6′′), δ 128.5 (C3′′, C5′′), δ 135.9 (C1′′), δ 176.9 (C19). 

 

3.2.7.6 BENZYL ESTER OF 17, 16-DIHYROXY ISOSTEVIOL (6i) 

 

 

 

White crystalline solid with (165 mg: 77%), yield. ESI-MS data, [M-H]+ 

425.29. IR; 3391 cm-1, 1720 cm-1, 1453 cm-1, 1147 cm-1, 754 cm-1, 696 cm-1. 1H 
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NMR (200 MHz, CD3COD3), δ 0.72 (3H, s, H20), δ 1.18 (3H, s, H18), δ 2.17 (1H, 

br, J = 12.7 Hz, H12), δ 3.33 (1H, dd, J = 16.93, 10.58 Hz, H17), δ 4.11 (1H, dd, J 

= 11.28, 4.08 Hz, H16), δ 5.0 (1H, d, J = 12.45 Hz, H7′′), δ 5.1 (1H, d, J = 12.45 

Hz, H7′′), δ 7.39 (5H, s, H2′′-H6′′). 13C NMR (50 MHz, CD3COD3), δ 13.0 (C20), δ 

18.8 (C2), δ 19.8 (C11), δ 21.8 (C6), δ 28.2 (C18), δ 29.3 (C12), δ 37.0 (C10), δ 

37.9 (C3), δ 39.8 (C1), δ 41.8 (C7), δ 42.0 (C8), δ 42.4 (C15), δ 43.6 (C4), δ 46.9 

(C13), δ 50.1 (C14), δ 56.5 (C9), δ 57.1 (C5), δ 65.5 (C7′′), δ 68.2 (C17), δ 75.5 

(C16), δ 127.9 (C4′′), δ 128.2 (C2′′, C6′′), δ 128.4 (C3′, C5′′), δ 136.5 (C1′′), δ 176.5 

(C19). 

 

3.2.7.7 BENZYL ESTER OF 17-HYDROXY, 16-OXIME ISOSTEVIOL (6j) 

 

 

 

White crystalline solid (147 mg: 66%), yield. ESI-MS data, [M+H]+ 440.4. IR; 

1881 cm-1, 1578 cm-1, 1480 cm-1, 1163 cm-1, 999 cm-1, 773 cm-1, 587 cm-1. 1H 

NMR (200 MHz, CDCl3), δ 0.69 (3H, s, H20), δ 1.20 (3H, s, H18), δ 2.20 (1H, br, J 

= 12.7 Hz, H12), δ 2.92 (1H, br, d, J = 18.30, Hz, H15), δ 3.59 (2H, s, H17), δ 5.01 

(1H, d, J = 13.59 Hz, H7′′), δ 5.18 (1H, d, J = 12.39 Hz, H7′′), δ 7.34 (5H, s, H2′′-

H6′′). 13C NMR (50 MHz, CDCl3), δ 13.3 (C20), δ 18.9 (C2), δ 19.9 (C11), δ 21.7 

(C6), δ 28.9 (C18), δ 34.1 (C12), δ 37.0 (C7), δ 37.9 (C3), δ 38.1 (C10), δ 39.8 

(C1), δ 40.8 (C15), δ 40.9 (C8), δ 43.9 (C4), δ 49.4 (C13), δ 51.0 (C14), δ 55.6 

(C9), δ 57.2 (C5), δ 65.9 (C7′′), δ 66.7 (C17), δ 128.1 (C4′′), δ 128.2 (C2′′, C6′′), δ 

128.5 (C3′, C5′′), δ 136.1 (C1′′), δ 169.2 (C16), δ 177.1 (C19). 
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3.3 GENERAL PROCEDURE FOR THE PREPARATION OF p-METHOXY 

PHENACYL ESTER 

 

Steviol (1h), isosteviol (1a), and derivative such as 1b and 1c (0.31 mmol), 

solution in acetone (10 mL), was treated with a mixture of 2-bromo-4'- methoxy 

acetophenone (225 mg, 0.983 mmol), and triethylamine (20 mg/mL in acetone), 

and the reaction mixture was irradiated in a microwave oven for four minutes 

(Silva & Ferraz, 2006). The reaction progress was followed on TLC. After 

completion (4 minutes) of reaction, acetic acid (40 μL), was added and the mixture 

was irradiated again for 1 minute. The reaction mixture was chromatographed on a 

chromatotron using silica rotors (1 mm), and elution was made with acetone: n-

hexane (1:9). The product obtained, was then characterized by spectroscopic 

methods. 

 

3.3.1 p-METHOXY PHENACYL ESTER OF ISOSTEVIOL (3a) 

 

 

 

White powder solid with (112 mg: 81%), yield. ESI-MS [M]+ ion 466.63. IR; 

1736 cm-1, 1601 cm-1, 1454 cm-1, 1146 cm-1, 966 cm-1, 696 cm-1. 1H NMR (200 

MHz, CDCl3), δ 0.77 (3H, s, H20), δ 0.98 (3H, s, H18), δ 1.34 (3H, s, H17), δ 2.29 

(1H, br, d, J = 13.2 Hz, H12), δ 2.65 (1H, dd, J = 18.69, 3.65 Hz, H15), δ 3.88 (3H, 

s, OCH3 ), δ 5.2 (1H, d, J = 16.0 Hz, H8′), δ 5.3 (1H, d, J = 16.0 Hz, H8′), δ 6.95 

(2H, d, J = 9.00 Hz, H3′, H5′), δ 7.90 (2H, d, J = 8.97 Hz, H2′, H6′). 13C NMR (50 
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MHz, CDCl3), δ 13.5 (C20), δ 18.9 (C2), δ 19.8 (C17), δ 20.3 (C11), δ 21.7 (C6), δ 

29.1 (C18), δ 37.3 (C3), δ 38.0 (C12), δ 38.1 (C10), δ 39.5 (C8), δ 39.8 (C1), δ 

41.5 (C7), δ 44 1 (C4), δ 48.5 (C15), δ 48.7 (C13), δ 54.3 (C14), δ 54.7 (C9), δ 

55.5 (OCH3), δ 57.1 (C5), δ 65.2 (C8′), δ 114.0 (C3′, C5′), δ 127.4 (C1′), δ 130.0 

(C2′, C6′), δ 163.9 (C4′), δ 176.8 (C19), δ 190.9 (C7′). 

 

3.3.2 p-METHOXY PHENACYL ESTER OF 16-HYDROXYL ISOSTEVIOL (3b) 

 

 

 

White powder solid with (105 mg: 75%), yield. ESI-MS, [M+Na]+ ion 

491.35. IR; 3556 cm-1, 1719 cm-1, 1692 cm-1, 1603 cm-1, 1161 cm-1, 966 cm-1, 

838 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.81 (3H, s, H20), δ 0.92 (3H, s, H18), δ 

1.32 (3H, s, H17), δ 2.29 (1H, br, d, J = 13.2 Hz, H12), δ 3.88 (3H, s, OCH3 ), δ 

5.2 (1H, d, J = 16.1 Hz H8′), δ 5.3 (1H, d, J = 16.1 Hz, H8′), δ 6.95 (2H, d, J = 9.0 

Hz, H3′, H5′), δ 7.90 (2H, d, J = 8.97 Hz, H2′, H6′). 13C NMR (50 MHz, CDCl3), δ 

13.5 (C20), δ 18.9 (C2), δ 20.5 (C11), δ 21.7 (C6), δ 24.9 (C17), δ 29.1 (C18), δ 

33.7 (C12), δ 38.1 (C3, C10), δ 39.9 (C1), δ 41.7 (C7), δ 41.9 (C8), δ 42.1 (C13), 

δ 42.8 (C15), δ 44.0 (C4), δ 55.3 (C14), δ 55.5 (OCH3), δ 55.8 (C9), δ 57.2 (C5), 

δ 65.2 (C8′), δ 80.5 (C16), δ 113.9 (C3′, C5′), δ 127.5 (C1′), δ 130.0 (C2′, C6′), δ 

163.9 (C4′), δ 177.0 (C19), δ 191.1 (C7′). 
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3.3.3 p-METHOXY PHENACYL ESTER OF 16-OXIME ISOSTEVIOL (3c) 

 

 

 

White powder solid with (115 mg: 79%), yield. ESI-MS [M]+ ion 481.39. IR; 

3447 cm-1, 1719 cm-1, 1692 cm-1, 1601 cm-1, 1162 cm-1, 963 cm-1. 1H NMR (200 

MHz, CDCl3), δ 0.86 (3H, s, H20), δ 1.13 (3H, s, H18), δ 1.37 (3H, s, H17), δ 2.2 

(2H, s, H12), δ 3.01 (1H, dd, J = 18.5, 2.6 Hz, H15), δ 3.91 (3H, s, OCH3 ), δ 5.14 

(1H, d, J = 16.0 Hz, H8′), δ 5.42 (1H, d, J = 16.0 Hz, H8′), δ 6.9 (2H, d, J = 8.9 Hz, 

H3′, H5′), δ 7.9 (2H, d, J = 8.90 Hz, H2′, H6′). 13C NMR (50 MHz, CDCl3), δ 13.5 

(C20), δ 18.9 (C2), δ 20.4 (C11), δ 21.7 (C6), δ 22.1 (C17), δ 29.0 (C18), δ 36.8 

(C12), δ 38.1 (C3, C10), δ 39.5 (C7), δ 39.9 (C1), δ 40.6 (C8), δ 40.9 (C15), δ 43.7 

(C4), δ 44.0 (C13), δ 54.9 (C9), δ 55.5 (OCH3, 9′), δ 56.3 (C14), δ 57.2 (C5), δ 

65.2 (C8′), δ 114.0 (C3′, C5′), δ 127.5 (C1′), δ 130.1 (C2′, C6′), δ 163.9 (C4′), δ 

170.4 (C16), δ 176.9 (C19), δ 191.0 (C7′). 
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3.3.4 p-METHOXY PHENACYL ESTER OF STEVIOL (3h) 

 

 

 

White powder solid, (110 mg: 78 %), yield. ESI-MS [M+Na]+; 489.47. IR; 

3488 cm-1, 1728 cm-1, 1692 cm-1, 1602 cm-1, 1263 cm-1, 1149 cm-1, 965 cm-1. 1H 

NMR (200 MHz, CDCl3), δ 0.91 (3H, s, H20), δ 1.32 (3H, s, H18), δ 2.13 (1H, dd, J 

= 10.6 Hz, H14), δ 3.88 (3H, s, OCH3), δ 4.8 (1H, br, s, H17), δ 4.9 (1H, br, s, 

H17), δ 5.2 (1H, d, J = 16.1 Hz, H8′), δ 5.4 (1H, d ,J = 16.1 Hz, H8′), δ 6.95 (2H, d, 

J = 8.95 Hz, H3′, H5′), δ 7.91 (2H, d, J = 8.95 Hz, H2′, H6′). 13C NMR (50 MHz, 

CDCl3): δ 15.7 (C20), δ 19.1 (C2), δ 20.4 (C11), δ 21.8 (C6), δ 29.0 (C18), δ 38.1 

(C3), δ 39.2 (C12), δ 39.4 (C10), δ 40.7 (C1), δ 41.3 (C7), δ 41.7 (C8), δ 44.1 

(C4), δ 46.9 (C15), δ 47.4 (C14), δ 53.8 (C9), δ 55.5 (C9′), δ 57.0 (C5), δ 65.2 

(C8′), δ 80.3 (C13), δ 102.9 (C17), δ 114.0 (C5′, C3′), δ 127.4 (C1′), δ 130.1 (C2′, 

C6′), δ 156.2 (C16), δ 163.9 (C4′), δ 176.9 (C19), δ 191.0 (C7′). 

 

3.4 GENERAL PROCEDURE FOR THE PREPARATION OF 16-HYDRAZONE 

 

Hydrazine hydrate (3 mL, 10 mm) was added to solution of 1a, 2a, 4h and 

5l (0.314 mm), in methanol (30 mL), the reaction mixture was heated under 

refluxed for 8 hours. The reaction progress was followed by TLC. After reaction 

completion, the excess of solvent and hydrazine were removed under reduced 

pressure and the products were re-crystallized from methanol. The products 
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obtained were characterized by spectroscopic methods (Garifullin, Chestnova, 

Mironov & Kataev., 2012). 

 

3.4.1 16-HYDRAZONE OF ISOSTEVIOL (1f) 

 

 

 

White crystalline solid with (83 mg: 83%), yield, ESI-MS, [M+H]+ 333.31. IR; 

3352 cm-1, 1712 cm-1, 1453 cm-1, 1399 cm-1. 1H NMR (200 MHz, CD3OD), δ 0.85 

(3H, s, H20), δ 1.06 (3H, s, H17), δ 1.24 (3H, s, H18), δ 2.17 (1H, br, d, J = 13.14 

Hz, H12), δ 2.66 (1H, dd, J = 17.6, 2.0 Hz, H15α). 13C NMR (50 MHz, CD3OD), δ 

13.5 (C20), δ 18.9 (C2), δ 20.5 (C11), δ 21.7 (C6), δ 22.1 (C17), δ 29.1 (C18), δ 

36.3 (C12), δ 37.9 (C3), δ 38.2 (C10), δ 39.3 (C7), δ 39.9 (C1), δ 40.8 (C8), δ 41.2 

(C15), δ 43.6 (C4), δ 44.1 (C13), δ 54.9 (9), δ 56.3 (C14), δ 57.1 (C5), δ 165.5 

(C16), δ 182.4 (C19). 

 

3.4.2 16-HYDRAZONE OF 17-HYDROXY, ISOSTEVIOL (5k) 
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White crystalline solid with (90 mg: 86%), yield. ESI MS, [M-H]+ 347.33. IR; 

3412 cm-1, 3221 cm-1, 1698 cm-1, 1234 cm-1, 1175 cm-1, 1027 cm-1. 1H NMR (200 

MHz, CD3OD), δ 0.96 (3H, s, H20), δ 1.19 (3H, s, H18), δ 2.16 (1H, br, d, J = 12.9 

Hz, H12), δ 2.89 (1H, br, d, J = 17.9 Hz, H15), δ 3.57 (2H, br, s, H17), δ 3.65 (3H, 

s, OCH3). 
13C NMR (50 MHz, CD3OD), δ 12.9 (C20), δ 19.2 (C2), δ 19.7 (C11), δ 

21.9 (C6), δ 28.8 (C18), δ 34.2 (C12), δ 36.8 (C7), δ 38.0 (C10), δ 38.6 (C3), δ 

40.2 (C1), δ 40.8 (C8), δ 41.3 (C15), δ 44.1 (C4), δ 49.1 (C13), δ 51.0 (C14), δ 

55.6 (C9), δ 57.4 (C5), δ 66.1 (C17), δ 165.4 (C16), δ 182.9 (C19). 

 

3.4.3 16-HYDRAZONE BENZYL ESTER OF ISOSTEVIOL (3f) 

 

 

 

White crystalline solid with (105 mg: 84%), yield, ESI-MS, [M+2H]+ 423.30. 

IR; 3432 cm-1, 1713 cm-1, 1453 cm-1, 1237 cm-1, 1146 cm-1, 745 cm-1, 698 cm-1. 1H 

NMR (200 MHz, CDCl3), δ 0.66 (3H, s, H20), δ 1.06 (3H, s, H18), δ 1.22 (3H, s, 

H17), δ 2.22 (1H, br, d, J = 13.17 Hz, H12), δ 2.55 (1H, dd, J = 17.5, 2.8 Hz, H15), 

δ 5.1 (1H, d, J = 12.4 Hz, H7′′), δ 5.2 (1H, d, J = 12.4 Hz, H7′′), δ 7.36 (5H, s, H2′′-

H6′′). 13C NMR (50 MHz, CDCl3), δ 13.4 (C20), δ 18.9 (C2), δ 20.5 (C11), δ 21.7 

(C6), δ 22.2 (C17), δ 28.9 (C18), δ 35.8 (C12), δ 37.9 (C3), δ 38.0 (C10), δ 39.3 

(C7), δ 39.8 (C1), δ 40.7 (C8), δ 41.2 (C15), δ 43.8 (C4), δ 43.9 (C13), δ 54.9 

(C9), δ 55.8 (C14), δ 57.3 (C5), δ 66.1 (C7′′), δ 128.2 (C4′′), δ 128.3 (C2′′, C6′′), δ 

128.5 (C3′′, C5′;), δ 135.9 (C1′′), δ 172.6 (C16), δ 176.7 (C19) 
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3.4.4 16-HYDRAZONE BENZYL ESTER OF 17-HYDROXY, ISOSTEVIOL (6k) 

 

 

 

White crystalline solid with (96 mg: 73%), yield, ESI-MS, [M]+ 439.42. IR; 

3432 cm-1, 1721 cm-1, 1453 cm-1, 996 cm-1, 752 cm-1, 695 cm-1. 1H NMR (200 

MHz, CDCl3), δ 0.65 (3H, s, H20), δ 1.20 (3H, s, H18), δ 2.2 (1H, br, d, J = 12.9 

Hz, H12), δ 2.56 (1H, dd, J = 17.3, 2.4 Hz, H15), δ 3.5 (1H, d, J = 11.0 Hz, H17), 

δ 3.6 (1H, d, J = 11.0 Hz, H17), δ 5.0 (1H, d, J = 12.50 Hz, H7′′), δ 5.1 (1H, d, J = 

12.50 Hz, H7′′), δ 7.35 (5H, s, H2′′-H6′′). 13C NMR (50 MHz, CDCl3), δ 13.4 

(C20), δ 18.9 (C2), δ 20.0 (C11), δ 21.7 (C6), δ 28.9 (C18), δ 33.9 (C12), δ 36.2 

(C7), δ 37.9 (C3), δ 38.1 (C10), δ 39.8 (C1), δ 41.1 (C15), δ 41.4 (C8), δ 43.9 

(C4), δ 48.8 (C13), δ 51.1 (C14), δ 55.7 (C9), δ 57.2 (C5), δ 65.9 (C17), δ 67.9 

(C7′′), δ 128.0 (C4′′), δ 128.2 (C2′′, C6′′), δ 128.4 (C3′′, C5′), δ 136.1 (C1′′), δ 

164.8 (C16), δ 177.0 (C19). 

 

3.5 GENERAL PROCEDURE FOR THE PREPARATION OF ISOPROPYL 

HYDRAZONE 

 

Hydrazone of isosteviol 1f, 3f and 6k (0.3 mmol), were heated under 

refluxed in acetone (4 mL), for 1h. The progress of reaction was followed by TLC. 

The excess of acetone was removed and the residue was recrystallized from 

methanol. The products, 2f, 4f and 7k, were characterized by spectroscopic 

methods. 
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3.5.1 ISOPROPYL HYDRAZONE OF ISOSTEVIOL (2f) 

 

 

 

Light yellow crystalline solid (98 mg: 84%), yield. ESI-MS [M]+ ion 386.29. 

IR; 1721 cm-1, 1658 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.69 (3H, s, H20), δ 1.12 

(3H, s, H17), δ 1.17 (3H, s, H18), δ 1.83 (3H, s, H1′), δ 2.01 (3H, s, H3′), δ 2.68 

(1H, dd, J = 18.5, 3.2 Hz, H15), δ 3.63 (3H, s, OCH3). 
13C NMR (50 MHz, 

CDCl3), δ 13.2 (C20), δ 17.6 (C3′), δ 18.9 (C2), δ 20.5 (C11), δ 21.7 (C6), δ 22.2 

(C1′), δ 24.9 (C17), δ 28.8 (C18), δ 37.9 (C3, 10), δ 39.0 (C12), δ 39.4 (C7), δ 

39.9 (C1), δ 40.6 (C8), δ 41.1 (C15), δ 43.8 (C4), δ 44.2 (C13), δ 51.2 (OMe), δ 

55.0 (C9), δ 56.0 (C14), δ 57.2 (C5), δ 159.1 (C2′), δ 174.3 (C16), δ 177.9 (C19). 

 

3.5.2 ISOPROPYL HYDRAZONE BENZYL ESTER OF ISOSTEVIOL (4f) 

 

 

 

Light yellow crystalline solid (105 mg, 75 %), yield. ESI-MS [M+H]+ 

463.39. IR: 1721 cm-1, 1658 cm-1, 1453 cm-1, 1147 cm-1, 753 cm-1, 698 cm-1. 1H 
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NMR (200 MHz, CDCl3), δ 0.63 (3H, s, H20), δ 1.13 (3H, s, H18), δ 1.21 (3H, s, 

H17), δ 1.83 (3H, s, H3′), δ 2.03 (3H, s, H1′), δ 2.20 (1H, d, J = 14.8 Hz, H12), δ 

2.63 (1H, dd, J = 18.5, 3.1 Hz, H15), δ 5.11 (1H, dd, J = 17.7, 12.3 Hz, H7′′), δ 

7.3 (5H, s, H2′′-H6′′). 13C NMR (50 MHz, CDCl3), δ 13.4 (C20), δ 17.6 (C1′), δ 

18.9 (C2), δ 20.5 (C11), δ 21.7 (C6), δ 22.2 (C3′), δ 24.9 (C17), δ 28.9 (C18), δ 

37.9 (C3), δ 38.0 (C10), δ 38.9 (C12), δ 39.3 (C7), δ 39.8 (C1), δ 40.6 (C8), δ 

41.1 (C15), δ 43.9 (C4), δ 44.2 (C13), δ 54.9 (C9), δ 55.9 (C14), δ 57.3 (C5), δ 

65.9 (C7′′), δ 127.9 (C4′′), δ 128.2 (C2′′-C6′′), δ 128.4 (C3′′, C5′′), δ 136.1 (C1′′), δ 

158.7 (C2′), δ 174.1 (C16), δ 177.1 (C19). 

 

3.5.3 16-ISOPROYL HYDRAZONE BENZYL ESTER OF 17-HYDROXY 

ISOSTEVIOL (7k) 

 

 

 

Light yellow crystalline solid (94 mg: 65%), yield. ESI-MS [M+H]+ 479.50. 

IR; 3426 cm-1, 1720 cm-1, 1656 cm-1, 1455 cm-1, 1147 cm-1, 771 cm-1, 694 cm-1. 

1H NMR (200 MHz, CDCl3), δ 0.66 (3H, s, H20), δ 1.22 (3H, s, H17), δ 1.9 (3H, 

s, H1'), δ 2.07 (3H, s, H3'), δ 2.19 (2H, s, H12), δ 2.8 (1H, dd, J = 18.8, 3.0 Hz, 

H15), δ 3.55 (1H, d, J = 10.7 Hz, H17), δ 3.76 (1H, d, J = 10.9 Hz, H17), δ 5.1 

(1H, dd, J = 12.45 Hz, H7′′), δ 5.2 (1H, dd, J = 12.45 Hz, H7′′), δ 7.39 (5H, s, 

H2"-H6"). 13C NMR (50 MHz, CDCl3), δ 13.4 (C20), δ 18.1 (C1′), δ 18.9 (C2), δ 

20.0 (C11), δ 21.7 (C6), δ 25.0 (C3′), δ 28.9 (C18), δ 33.9 (C12), δ 37.9 (C3), δ 

38.1 (C10), δ 39.5 (C7), δ 39.8 (C1), δ 40.9 (C15), δ 41.3 (C8), δ 43.9 (C4), δ 
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48.9 (C13), δ 50.9 (C14), δ 55.7 (C9), δ 57.2 (C5), δ 65.9 (C7′'), δ 68.0 (C17), δ 

128.0 (C4'′), δ 128.2 (C2'′, C6′'), δ 128.4 (C3", C5'′), δ 136.1 (C1'′), δ 162.2 

(C16), δ 177.0 (C2′), δ 177.9 (C19). 

 

3.6 PROCEDURE FOR THE PREPARATION OF 2, 4 DINITRO PHENYL AND 

4-NITRO PENYL HYDRAZONE OF ISOSTEVIOL AND ITS DERIVATIVES 

 

To the solution of isosteviol 1a or 17-hydroxy isosteviol 4h and their 

derivatives 2a and 5l (0.3 mm), in ethanol (10 mL), was combined with solution of 

2, 4-dinitro phenyl hydrazine, or 4-nitro phenyl hydrazine (2 mmol), in sulphuric 

acid, water and ethanol (1:1.5:1.5), the reaction mixture was kept stirred for 12 

hours, at room temperature. The progress of reaction was followed by TLC. Water 

(20 mL), was added to the reaction mixture and the product was recovered with 

ethyl acetate. The organic layer was dried over anhydrous sodium sulphate. After 

filteration the solvent was removed under reduced pressure. The residue was 

chromatographed on a chromatotron using silica rotors (1 mm), and elution was 

made with acetone: n-hexane (1:9). The products, 2g, 3g, 4g, 5g, 5m, 6m, 7m 

and 8m were then characterized by spectroscopic methods. 

 

3.6.1 2, 4-DINITRO PHENYL HYDRAZONE OF ISOSTEVIOL (2g) 
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Yellow crystalline solid with (80 mg: 70%), yield. ESI-MS, [M-H]+ ion 497.36. 

IR; 3315 cm-1, 1692 cm-1, 1618 cm-1, 1517 cm-1, 1337 cm-1. 1H NMR (200 MHz, 

CDCl3), δ 0.93 (3H, s, H20), δ 1.20 (3H, s, H17), δ 1.29 (3H, s, H18), δ 2.65 (1H, 

dd, J = 18.69, 3.65 Hz, H15), δ 7.8 (1H, d, J = 9.61 Hz, H6′), δ 8.11 (1H, dd, J = 

9.66, 2.5 Hz, H5′), δ 8.96 (1H, d, J = 2.52 Hz, H3′), δ 10.6 (1H, s, NH). 13C NMR 

(50 MHz, CDCl3), δ 12.8 (C20), δ 18.8 (C2), δ 20.3 (C11), δ 21.5 (C6), δ 22.1 

(C17), δ 28.9 (C18), δ 37.4 (C12), δ 37.6 (C3), δ 38.3 (C10), δ 39.5 (C1), δ 39.5 

(C15), δ 40.7 (C7), δ 41.4 (C8), δ 43.6 (C4), δ 45.2 (C13), δ 54.8 (C9), δ 55.8 

(C14), δ 56.9 (C5), δ 116.2 (C6′), δ 123.4 (C5′), δ 128.4 (C1′), δ 129.5 (C3′), δ 

137.2 (C2′), δ 144.9 (C4′), δ 171.7 (C16), δ 184.0 (C19). 

 

3.6.2 4-NITRO PHENYL HYDRAZONE OF ISOSTEVIOL, (3g) 

 

 

 

Yellow crystalline solid with (70 mg: 51%), yield. ESI-MS, [M-H]+ ion 

452.36. IR; 3319 cm-1, 1693 cm-1, 1595 cm-1, 1322 cm-1, 1109 cm-1, 841 cm-1, 

751 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.90 (3H, s, H20), δ 1.2 (3H, s, H17), δ 

1.3 (3H, s, H18), δ 2.8 (1H, d, J = 16.9 Hz, H15), δ 7.07 (2H, s, H2′-6′), δ 8.15 

(2H, s, H3′-5′). 13C NMR (50 MHz, CDCl3), δ 13.6 (C20), δ 18.9 (C2), δ 20.6 

(C11), δ 21.6 (C6), δ 22.2 (C17), δ 29.0 (C18), δ 36.7 (C12), δ 37.7 (C3), δ 38.3 

(C10), δ 39.4 (C7), δ 39.8 (C1), δ 41.1 (C15), δ 41.4 (C8), δ 43.8 (C4), δ 44.3 

(C13), δ 54.8 (C9), δ 55.9 (C14), δ 56.9 (C5), δ 111.4 (C2′, C6′), δ 126.1 (C3′, 

C5′), δ 139.6 (C1′), δ 150.6 (C4′), δ 163.5 (C16), δ 184.0 (C19). 
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3.6.3 2, 4-DINITRO PHENYL HYDRAZONE BENZYL ESTER OF ISOSTEVIOL 

(4g) 

 

 

 

Yellow crystalline solid with (80 mg: 45%), yield. ESI-MS [M]+ 587.46. IR, 

3316 cm-1, 1720 cm-1, 1619 cm-1, 1591 cm-1, 1335 cm-1, 1141 cm-1, 755 cm-1, 

697 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.67 (3H, s, H20), δ 1.19 (3H, s, H17), δ 

1.22 (3H, s, H18), δ 2.88 (1H, dd, J = 17.82, 2.54 Hz, H15), δ 5.1 (2H, s, H7′), δ 

7.4 (5H, s, H2′′-H6′′), δ 7.96 (1H, d, J = 9.65 Hz, H6′), δ 8.28 (1H, dd, J = 9.72, 

2.60 Hz, H5′), δ 9.13 (1H, J = 2.5 Hz, H3′), δ 10.7 (1H, s, NH). 13C NMR (50 

MHz, CDCl3), δ 13.3 (C20), δ 18.9 (C2), δ 20.5 (C11), δ 21.6 (C6), δ 22.1 (C17), 

δ 28.9 (C18), δ 37.4 (C12), δ 37.9 (C3), δ 38.1 (C10), δ 39.4 (C7), δ 39.8 (C1), δ 

40.9 (C15), δ 41.4 (C8), δ 43.8 (C4), δ 45.2 (C13), δ 54.8 (C9), δ 55.9 (C14), δ 

57.1 (C5), δ 66.2 (C7′′), δ 116.3 (C6′), δ 123.4 (C5′), δ 128.2 (C4′′), δ 128.5 (C2′′, 

C6′′), δ 128.6 (C3′′, C5′′), δ 128.9 (C4′), δ 129.5 (C3′), δ 135.9 (C1′′), δ 137.5 

(C2′), δ 145.2 (C1′), δ 171.2 (C16), δ 176.9 (C19). 
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3.6.4 4-NITRO PHENYL HYDRAZONE BENZYL ESTER OF ISOSTEVIOL (5g) 

 

 

 

Yellow crystalline solid with (75 mg: 46%), yield. ESI-MS, [M-H]+ 542.69, IR; 

3320 cm-1, 1738 cm-1, 1598 cm-1, 1321 cm-1, 1172 cm-1, 752 cm-1, 695 cm-1. 1H 

NMR (200 MHz, CDCl3), δ 0.69 (3H, s, H20), δ 1.16 (3H, s, H17), δ 1.23 (3H, s, 

H18), δ 2.67 (1H, dd, J = 17.4, 2.4 Hz, H15), δ 5.0 (1H, d, J = 12.58 Hz, H7′′), δ 

5.1 (1H, d, J = 12.58 Hz, H7′′), δ 7.0 (2H, dd, J = 6.7, 2.0 Hz, H2′, H6′), δ 7.4 (5H, 

s, H2′′-H6′′), δ 8.1 (2H, dd, J = 6.54, 1.99 Hz, H3′, H5′). 13C NMR (50 MHz, CDCl3), 

δ 13.6 (C20), δ 18.9 (C2), δ 20.6 (C11), δ 21.7 (C6), δ 22.2 (C17), δ 28.9 (C18), δ 

36.5 (C12), δ 37.8 (C3), δ 38.1 (C10), δ 39.4 (C7), δ 39.8 (C1), δ 41.1 (C15), δ 

41.4 (C8), δ 43.9 (C4), δ 44.7 (C13), δ 54.7 (C9), δ 55.9 (C14), δ 57.2 (C5), δ 65.9 

(C7′′), δ 111.4 (C2′, C6′), δ 126.2 (C3′, C5′), δ 128.0 (C2′′, C4′′, C6′′), δ 128.5 (C3′′, 

C5′′), δ 136.6 (C1′′), δ 139.6 (C1′), δ 150.6 (C4′), δ 163.5 (C16), δ 177.0 (C19). 
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3.6.5 2, 4-DINITRO PHENYL HYDRAZONE OF 17-HYDROXY ISOSTEVIOL 

(5m) 

 

 

 

Yellow crystalline solid with (88 mg: 57%), yield. ESI-MS, [M-H]+ 513.29. 

IR; 3315 cm-1, 1692 cm-1, 1618 cm-1, 1591 cm-1, 1518 cm-1, 1337 cm-1. 1H NMR 

(200 MHz, CD3COCD3), δ 0.94 (3H, s, H20), δ 1.30 (3H, s, H17), δ 2.98 (1H, br, 

dd, J = 18.3, 2.86 Hz, H15), δ 3.84 (1H, d, J = 11.4 Hz, H17), δ 3.73 (1H, d, J = 

11.4 Hz, H17), δ 7.71 (1H, d, J = 9.58 Hz, H6'), δ 8.20 (1H, dd, J = 9.58, 2.51 Hz, 

H5′), δ 9.00 (1H, d, J = 2.53 Hz, H3′), δ 10.70 (1H, s, NH). 13C NMR (50 MHz, 

CD3COCD3), δ 12.9 (C20), δ 18.7 (C2), δ 19.8 (C11), δ 21.5 (C6), δ 28.9 (C18), 

δ 34.3 (C12), δ 37.6 (C7), δ 37.9 (C3), δ 38.3 (C10), δ 39.6 (C1), δ 40.6 (C15), δ 

41.5 (C8), δ 43.6 (C4), δ 50.5 (C14), δ 50.6 (C13), δ 55.4 (C9), δ 56.8 (C5), δ 

66.4 (C17), δ 115.8 (C6′′), δ 123.4 (C5′′), δ 128.8 (C1′′), δ 129.9 (C3′′), δ 137.7 

(C2′′), δ 144.5 (C4′′), δ 170.9 (C16), δ 183.7 (C19). 
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3.6.6 2, 4-DINITRO PHENYL HYDRAZONE BENZYL ESTER OF 17-HYDROXY 

ISOSTEVIOL (7m) 

 

 

 

Yellow crystalline solid with (73 mg: 40%), yield. ESI-MS [M-H]+ 603.39. IR; 

3315 cm-1, 1718 cm-1, 1618 cm-1, 1517 cm-1, 1134 cm-1, 1143 cm-1, 754 cm-1, 

697 cm-1. 1H NMR (200 MHz, CDCl3), δ 0.67 (3H, s, H20), δ 1.23 (3H, s, H18), δ 

2.86 (1H, dd, J = 17.80, 2.60 Hz, H15), δ 3.73 (1H, dd, J = 17.9, 11.39 Hz, H17), 

δ 5.1 (2H, s, H7′′), δ 7.39 (5H, s, H2′′ to H6′′), δ 7.76 (1H, d, J = 9.61 Hz, H6′), δ 

7.78 (1H, d, J = 9.70, 2.54 Hz, H5′), δ 9.14 (1H, d, J = 2.54 Hz, H3′), δ 10.78 (1H, 

d, s, NH). 13C NMR (50 MHz, CDCl3), δ 13.3 (C20), δ 18.9 (C2), δ 19.9 (C11), δ 

21.6 (C6), δ 28.9 (C18), δ 34.2 (C12), δ 37.9 (C3, C7), δ 38.1 (C10), δ 39.8 (C1), 

δ 40.8 (C15), δ 41.5 (C8), δ 43.8 (C4), δ 50.6 (C13, C14), δ 55.4 (C9), δ 57.0 

(C5), δ 66.2 (C17), δ 66.5 (C7′′), δ 115.9 (C6′), δ 123.5 (C5′), δ 128.2 (C4′′), δ 

128.5 (C2′′, C6′′), δ 128.6 (C3′′, C5′′), δ 129.2 (C4′), δ 130.1(3′), δ 135.9 (C1′′), δ 

137.9 (C2′), δ 144.7 (1′), δ 170.6 (C16), δ 176.8 (C19). 
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3.6.7 4-NITROPHENYL HYDRAZONE OF 17-HYDROXYISOSTEVIOL (6m) 

 

 

 

Yellow crystalline solid (69 mg: 49%), yield. ESI-MS, [M-H]+ 468.39. IR, 

3527 cm-1, 3341 cm-1, 1696 cm-1, 1600 cm-1 1322 cm-1, 1109 cm-1, 838 cm-1. 1H 

NMR (200 MHz, CD3COCD3), δ 0.87 (3H, s, H20), δ 1.22 (3H, s, H17), δ 2.95 

(1H, dd, J = 18.23, 2.86 Hz, H15), δ 3.6 (1H, d, J = 10.9 Hz, H17), δ 3.7 (1H, d, J 

= 10.9 Hz, H17), δ 7.18 (2H, d, J = 9.33 Hz, H2′, H6′), 8.12 (2H, d, J = 9.36 Hz, 

H3′, H5′), δ 9.14 (1H, s, NH). 13C NMR (50 MHz, CD3COCD3), δ 13.1 (C20), δ 

18.9 (C2), δ 19.8 (C11), δ 21.7 (C6), δ 28.5 (C18), δ 34.6 (C12), δ 37.8 (C7), δ 

37.9 (C3), δ 38.0 (C10), δ 39.8 (C1), δ 40.9 (C15), δ 41.1 (C8), δ 43.2 (C4), δ 

50.0 (C13), δ 50.8 (C14), δ 55.3 (C9), δ 56.7 (C5), δ 65.9 (C17), δ 111.1 (C2′, 

C6′), δ 125.7 (C3′, C5′), δ 138.9 (C1′), δ 151.5 (C4′), δ 162.7 (C16), δ 178.1 

(C19). 
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3.6.8 4-NITRO PHENYL HYDRAZONE BENZYL ESTER OF 17-HYDROXY 

ISOSTEVIOL (8m) 

 

 

 

Yellow crystalline solid (87 mg: 51%), yield. ESI-MS, [M]+ 559.29. IR; 3472 

cm-1, 1727 cm-1, 1458 cm-1, 1320 cm-1, 1147 cm-1, 753 cm-1, 697 cm-1. 1H NMR 

(200 MHz, CDCl3), δ 0.69 (3H, s, H20), δ 1.23 (3H, s, H18), δ 2.73 (1H, dd, J = 

17.43, 2.35 Hz, H15), δ 5.0 (1H, d, J = 12.61 Hz, H17), δ 5.2 (1H, d, J = 12.64 Hz, 

H7′′), δ 6.96 (2H, d, J = 9.15 Hz, H2′, H6′), δ 7.39 (5H, s, H2′′-H6′′), δ 8.14 (2H, d, J 

= 9.15 Hz, H3′, H5′). 13C NMR (50 MHz, CDCl3), δ 13.6 (C20), δ 18.9 (C2), δ 20.0 

(C11), δ 21.7 (C6), δ 28.9 (C18), δ 34.1 (C12), δ 37.0 (C7), δ 37.8 (C3), δ 38.2 

(C10), δ 39.7 (C1), δ 40.9 (C15), δ 41.7 (C8), δ 43.9 (C4), δ 49.8 (C13), δ 50.7 

(C14), δ 55.4 (C9), δ 57.1 (C5), δ 65.9 (C17), δ 67.2 (C7′′), δ 111.5 (C2′, C6′), δ 

126.2 (C3′, C5′), δ 128.0 (C3′′, C4′′, C5′′ ), δ 128.5 (C2′′, C6′′), δ 136.2 (C1′′), δ 

140.1 (C1′), δ 149.8 (C4′), δ 163.6 (C16), δ 176.9 (C19). 

 

 

 

 

 

 

 

 



EXPERIMENTAL 

 

 

72 

3.7 BIOLOGICAL ACTIVITIES 

 

3.7.1 ANTI-MALARIAL ACTIVITIES 

 

The assessment of in vitro antimalarial activity of steviol, Isosteviol and its 

derivatives was performed at the bioassays Laboratory of the Faculty of 

Pharmacy, Federal University of Minas Gerais (UFMG), as part of the Natural 

Products Network for Antimalarial Chemotherapy - PRONEX Project CNPq / 

FAPEMIG under coordination of Prof. Alaíde Braga de Oliveira (UFMG) and 

Prof. Fernando de Pilla Varotti (UFSJ). The tests were performed using 

erythrocytes infected with P. falciparum clone W2 resistant to chloroquine, by the 

method of incorporation of [3H] -hipoxantine (DESJARDINS et al., 1979) to AB 

method and lactate dehydrogenase (LDH) (MAKLER; HINRICHS, 1993) for other 

derivatives. 

The experiments were performed as follows: 1) Incubation 1-parasite drugs: 

20 µL of each test compound dilution placed in 96-well microplates in triplicate, 

which were already 180 µL suspension of infected erythrocytes (1% hematocrit, 

2% parasitemia), from a culture kept in the laboratory bioassays. Controls without 

drugs with infected red blood cells (positive control), or uninfected erythrocytes 

(negative control), were used. hematocrit, 2% parasitemia), from a culture kept in 

the laboratory bioassays. Controls without drugs with infected red blood cells 

(positive control), or uninfected erythrocytes (negative control), were used. Plates 

were incubated in an atmosphere of 5% CO2 at 37 °C for 48 hours, with samples 

and controls. After this period, the microplates were frozen (-20 °C for at least 

24h), to promote lysis of erythrocytes. The cell lysate was transferred to 96-well 

plates to which were added 100 µL Malstat reagent and reagent 25 µL NBT / PES. 

After 1h incubation, the absorbance of each well of the plates was recorded in a 

spectrophotometer (540 nm).  

The following experiments were conducted: In the first experiment, two 

concentrations of the samples, 25 and 50 mg / mL, each in triplicate to evaluate 
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the percentage reduction of parasitemia that was determined by the LDH method 

were employed. The percentage reductions in the growth of parasites were 

calculated from the absorbance. Reduction of samples with parasitaemia >50% at 

the concentrations tested had their IC50 determined in three separate experiments 

in six different concentrations, with triplicates of each concentration. The results 

were analyzed with Origin 8.0 software to determine the dose-response curves 

plotted with sigmoidal fit. We determined the inhibitory concentration of 50% 

growth of the parasites (IC50), compared to controls without drugs. According to 

the results, the samples were classified as:  

VERY ACTIVE - IC50 values below 1 mg / mL; 

LIVE - IC50 values of 1 to 15 µg / mL; 

MODERATELY ACTIVE - IC50 values between 15.1 and 25 mg / mL, 

LITTLE LIVE - IC50 values between 25.1 and 50 mg / mL, 

INACTIVE - IC50 above 50 g / mL 

 

3.7.2 ANTI-TUMOR ACTIVITIES 

 
The anti-tumor activity in vitro of steviol, isosteviol derivatives against 

three cancer lines were performed at Laboratory of Cell Biology (Biochemistry 

Department UFPR/ Curitiba, PR), by Otávio Martins Cruzi under the supervision 

of Prof. Dr. Sheila M. B. Winnischofe. Initially nine compounds were tested for 

cytotoxicity’s in human glioblastoma astrocytoma cell line (U87MG), human 

lungs carcinoma cell line (A549), and human glioblastoma multiform cell line 

(T98G).  

 

3.7.2.1 MATERIAL METHOD 

 

All glassware used for materials and procedures for cell cultivation 

(solutions for vials and culture medium, solution filtration equipment, covers, 

plastic tips for automatic pipettes and glass pipettes), were sterilized by 



EXPERIMENTAL 

 

 

74 

autoclaving at 120 °C for 30 minutes under a pressure of 1 atm. After sterilization, 

the material was dried in an incubator at 50 °C. The handling of cell cultures for 

experimentation was performed under sterile conditions inside a laminar flow 

hood. 

 

3.7.2.2 SOLUTIONS, CULTURE MEDIA AND MATERIALS 

 

The phosphate buffered saline (PBS) used for washing the cells in culture 

was prepared as a concentrated stock solution five times (NaCl 680 mmol/L, KCl 

13.4 mmol/L, Na2HPO4, 40.5 mmol/L) and diluted for further use. This solution is 

adjusted to pH 7.4, and sterilized by autoclaving and stored in the above 

conditions at room temperature. Adherent cells were released from their substrate 

using trypsin-EDTA solution (NaCl, 137 mmol/L, KCl, 54 mmol/L, glucose, 5 

mmol/L, Na2HPO4, 0.42 mmol/L, KH2PO4, 0.44 mmol/L, NaHCO3, 2,3 mmol/L, 

EDTA, 0.53 mmol/L and 50 mg % trypsin, pH 7.4). This solution is sterilized by 

sterile filtration with a pore 0.22 μm membranes (Millipore) apparatus under 

pressure Sartorius laminar and stored at -20 °C flow.  

 

3.7.2.3 CULTURE MEDIA, CELL LINES AND CULTURE CONDITIONS 

 

The culture medium used was DMEM High Glucose (Sigma-Aldrich). The 

medium was supplemented with 10% fetal bovine serum (FBS - Gibco) and 100 

μg/mL of gentamicin (Sigma-Aldrich). The studied cell lines (U87MG, T98G and 

A549), were kindly provided by Dr. Mari Clyde Sogayer (USP). The cells grow as 

adherent cultures grown in sterile polystyrene bottles (Techno Plastic Products - 

TPP). These cultures were maintained in an incubator under an atmosphere of 5% 

CO2 and 37 °C. The sub-culture was performed according to the confluence of the 

cells using a trypsin-EDTA solution to detach them from the plastic substrate. The 

medium changes, when necessary, were made every 48-72 hours by monitoring 
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the indicator color of pH of the culture medium. For the storage of strains, cells 

were suspended in culture medium supplemented with 10% DMSO and 

cryopreserved in liquid nitrogen.  

 

3.7.2.4 EVALUATION OF CELL VIABILITY MTT METHOD 

 

The U87MG, T98G, A549 and inbred lines were plated in 96-well plates in 

DMEM high glucose supplemented with 10% FBS, totaling 1,5x104 cells / well and 

24 hours were allowed to adhere. Cells were treated control using only the vehicle 

of drugs, DMSO (dimethylsulfoxide), at a concentration corresponding to 10 μM, 

25 and 50 µM of the compounds examined at 24h. After the treatment period, the 

medium was removed from culture and added to 900 μL H SS solution and 100 

mL of solution of MTT in HBSS at a concentration of 5 mg/mL. The plates were 

kept in an incubator at 37 °C in an atmosphere of 5% CO2 for 3 hours protected 

from light. After the time, the MTT solution was removed and formazan crystals 

dissolved in 1 mL of DMSO (dimethylsulfoxide). The absorbance was determined 

in a microplate reader (TECAN Infinite 200) using a 540 nm filter. Results were 

calculated from the mean absorbance values of the experimental triplicates and 

expressed as a percentage of crystal formazan formed compared to control 

(considered as 100%). 

 

3.7.3 ANTI-TRYPANOSOMA CRUZI ACTIVITIES 

 

The in vitro anti-Trypanosoma cruzi activity of steviol, isosteviol and its 

derivatives was performed at the Laboratory of Cell Biology, Carlos Chagas 

Institute/ Fiocruz-PR, Curitiba, PR under coordination of Maurilio Jose Soares and 

Luz Helena Villamizar is a fellow of the Students Program–Post-Graduation 

Agreement PEC-PG from CAPES/CNPq-Brazil.  
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The tests were performed using epimastigotes or trypomastigotes, by cell 

viability marker MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 

bromide], according to standard protocols (Rita & Francis., 1986; Keet al., 1999). 

The assays were quantified at 550 nm using the ELISA reader BIOTEXEL-800 

(Biotek, Winooski, VT, USA).  

 

3.7.3.1 VERO CELLS AND PARASITES 

 

Verocells (ATCCCRL-1586), were maintained at 37C in a humidified 5% 

CO2 atmosphere. The cells were grown in 75 cm2 culture flasks with RPMI-1640 

medium supplemented with 5% fetal calf serum (FCS), 1% L-glutamine, 1% 

penicillin and 10 mg/mL streptomycin. For the cytotoxicity bioassays, 4-day-old 

confluent Vero cells monolayers were washed with phosphate buffered saline 

(PBS, pH 7.2), and detached from the substrate by treatment with 0.25% trypsin 

+0.1% EDTA for 5 minutes at 37C. The cells were then resuspended in the same 

medium, centrifuged for 2 minutes at 800g and the cell pellet was collected. 

Culture epimastigote forms of Trypanosomacruzi clone Dm28c were maintained in 

LIT (liver infusion-tryptose), medium at 28°C (Camargo, 1964), with serial 

passages at every three days (mid-log phase of growth). For the experiments, 

parasites obtained from 72-hour cultures were inoculated into fresh LIT medium 

and then added to 96-well plates at a concentration of 5x107 cells/well. To obtain 

cell-derived trypomastigote forms, Vero cell cultures were infected with 

trypomastigote forms at a 10:1 parasite: host cell ratio. After four hours of 

interaction, the host cell monolayers were washed with PBS to remove non-

internalized parasites. The cultures were kept for 96 hours at 37°C in RPMI / 2.5% 

FCS in a 5% CO2 humidified atmosphere. After that period, trypomastigotes 

released to the supernatant were collected and washed with PBS by centrifugation 

at 3000g. The purified trypomastigotes were transferred to RPMI-1640 medium at 

a concentration of 5x107 cells/mL and then added to 96-well plates at 100 µL/well. 



EXPERIMENTAL 

 

 

77 

3.7.3.2 BIOLOGICAL ASSAYS 

 

Steviol and Isosteviol derivatives were diluted in dimethyl sulfoxide 

(DMSO), and added to 96 well plates containing parasites (epimastigotes or 

trypomastigotes), at final concentrations ranging from 12 to 500 µM. The 

concentration that inhibited parasite growth in 50% after 24 hours of incubation 

(IC50/24h), was determined with the cell viability marker MTT [3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], according to standard 

protocols (Rita &Francis, 1986; Keet al, 1999). The assays were quantified at 550 

nm using the ELISA reader BIOTEXEL-800 (Biotek, Winooski, VT, USA). All 

experiments were performed in biological and technical triplicate. The CompuSyn 

software was used to calculate the IC50/24h. Controls were grown in medium 

containing 0.5% DMSO, without addition of derivates. 

 

3.7.3.3 CYTOTOXICITY ASSAYS 

 

Vero cells were seeded at a concentration of 2x104 cells/well in 96-well 

plates containing RPMI-1640 medium supplemented with 5% FCS and maintained 

at 37°C and 5% CO2 atmosphere. After 24 hours the steviol/isosteviol derivatives 

were added at different concentrations, ranging from 50 to 1000 µM. The cytotoxic 

centration (CC50/24h), was determined after 24h of incubation using the MTT 

enzymatic assay, as described above. 

The Selectivity Index (SI) was determined based on the ratio of the CC50 

value in the host cell divided by the IC50 value of the parasite. 

 

3.7.4 ANTI-LEISHMANIASIS ACTIVITIES 

 

The in vitro anti-Leishmania bioassays were carried out by Keylla Lençone, 

at the Laboratory of Hematology (Pharmacy Department, UFPR), under the 

supervision of Dr. Almeriane Maria Weffort Santos The viability of the parasites 
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was assessed by the colorimetric method of death bromide 3 (4, 5-dimethylthiazol-

2-yl), -2, 5-diphenyl tetrazolium bromide (MTT).  

 

3.7.4.1 STRAIN OF PARASITE AND CELL CULTURE 

 

Two commercial strains of Leishmaniasis obtained from the Collection of 

the Oswaldo Cruz Institute, National Reference Laboratory for typing of 

Leishmania, called L. (L.) amazonensis (IFLA / BR / 1967 / PH8), L. (V.) 

braziliensis (MHOM / BR, 1975 / M2903), were used in the experiments.  

The promastigote forms on blood agar seeded with a low passage number 

(three or seven), were collected and transferred to culture flasks of 25 cm2 

containing M199 medium (Gibco-BRL), which was prepared by diluting the powder 

to medium 199 in distilled water and by adding 40 mM Hepes, pH 7.4, 0.1 mM 

adenine, 0.005% hemin, supplemented with 20% fetal calf serum heat inactivated 

(FBS). The medium was sterilized by filtration and maintained sterility in the 

competition for 24h at 37°C. Cultures were maintained and an incubator at 25 °C.  

 

3.7.4.2 ASSAY SUSCEPTIBILITY OF PROMASTIGOTE FORMS  

 

The promastigotes in logarithmic phase (5 days) were counted in 

NeubauerLate chamber under light microscopy and the concentration was 

adjusted to 2x107 cells / mL. Promastigosta forms of leishmania were plated in 96-

well plates 50-100 microliters was added to each well (3x106 cells / well) and 

maintained at 25 °C for 24 hours.  

 

3.7.4.3 TREATMENT IN VITRO 

 

Substances 2g, 3g, 1f, 2f, 5k, 5m, and 6m were dissolved in DMSO at a 

concentration of 0.1% and then diluted in culture medium to final concentrations of 
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1, 10, 100 and 1000 mM. The effects of the substance against promastigote forms 

were evaluated in triplicate from 24 to 48 hours. DMSO dissolved in culture 

medium was used as control.  

 

3.7.4.4 VIABILITY ASSAY 

 

The viability of the parasites was assessed by the colorimetric method of 

death bromide 3 (4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

(MTT). After each incubation period, 30 l of bromide 3 (4,5-dimethylthiazol-2-yl), -

2,5-diphenyl tetrazolium bromide (M2128 - Sigma-Aldrich), at a concentration of 5 

mg / mL was added and kept for 2h at 24 oC. The reaction was stopped by adding 

50 µL of a solution of sodium dodecyl sulfate, SDS. Each well was homogenized 

and the absorbance was read at 595 nm using as reference 690 nm in microplate 

Fluostar Optima (BMG Labtech), reader. The results obtained were compared with 

the absorbance of a control culture cells, treated in the same manner. The 

experiments were performed in triplicate and the results expressed as percentage 

of viable cells compared to control (untreated cells), which was assigned to 100%. 

Amphotericin B, Triton X-100 and Glucantime were used as positive control death.  

 

3.7.4.5 STATISTICAL ANALYSIS 

 

The biological tests were carried out three times in independent 

experiments and each concentration was tested in triplicate. All data obtained from 

biological activity were subjected to statistical analysis. The results of biological 

activities are presented as mean ± standard deviation (SD) of several repetitions 

of the experiments. For statistical analysis, we used the "t" test analysis of 

variance (ANOVA), with Tukey's test execution and test. The calculations were 

performed using the GraphPad Prism-5, version 2007, and Microsoft Office Excel 

2010 programs Values of p ≤ 0.05 were considered statistically significant. IC50 
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values (concentration required to cause 50% inhibition) were calculated by linear 

regression analysis from the Kc values for each concentration. 

 

3.7.5 ANTI-CORYNEBACTERIUM DIPHTHERIAE ACTIVITIES 

 

The in silico and experimental in vitro anti-Corynebacterium diphtheriae 

activity of isosteviol derivatives was performed at Laboratory of Cell Biology 

(Biochemistry Department UFMG), with help of Dr. Syed Shah Hassan under the 

supervision of Prof. Dr. Vasco Ariston de Carvalho Azevedo. 

We performed Homology molding. To carry out Homology molding, we retrieved 

the FASTA sequences of all sortases proteins of the Corynebacterium diphtheria, 

from the UniProt (http://www.uniprot.org). The query sequence was searched for 

sequence identity using the Basic Local Alignment Search Tool (BLAST) against 

Protein Database (PDB) for the corresponding template. The computational 3D 

(three-dimensional) structure of target proteins were generated by comparative 

homology modeling using the respective template structures obtained from 

SWISS-MODEL (Arnold K., 2006), that is a fully automated protein structure 

homology-modeling server, accessible via the ExPASy web server. We used a set 

28 synthesized compounds for our docking analysis against these drug resistant 

proteins via MVD software (Thomsen R., 2006). 

 Furthermore these docking results were validated. For the validation we 

followed the protocol mention by Bhar et al 2013. The 8 best compounds with 

more H-bonds & comparatively low MolDock scores were tested for their individual 

growth inhibition efficacy against C. diphtheria. The bacteria were cultured in 

http://www.uniprot.org/
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Brain-Heart Infusion (BHI) broth (Sigma-Aldrich Co. LLC), at 37 oC for 48 hours to 

reach the log phase. Then, cells were harvested by centrifugation and 10 CFU mL 

cells were re-suspended in tubes containing BHI broth and 1, 25, 50, 75 and 100 

μg/mL concentrations of the compounds. Treatment with 100 μg/mL of 

chloramphenicol and Kanamycin was used as control. Cultures were then 

incubated at 37 oC for 24 hours in a shaker. The number of colony-forming units 

(CFUs) was counted each 30 min interval by obtaining the CFU/mL from serial 10-

fold dilutions prepared in BHI agar (Sigma-Aldrich Co. LLC). 
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4 RESULTS AND DISCUSSION 

 

4.1 ISOSTEVIOL (1a) 

 

A known derivative compound 1a (3.3g) was recovered as a white crystalline 

solid in 33 %, yield (Scheme 1, page 144). IR spectrum (Figure 34, page 164) 

showed the expected absorption bands (cm-1), at 1734 (ketone), 1692 (ester), 

1269 (ester carbon oxygen).  

The spectral 1H NMR (Figure 35, page 165) data is found in Table 20, page 

150 revealed the presence of 3CH3 at δ 0.68, δ 0.97, and δ 1.19, correspond to 

H20, H18 and H17, respectively. A broad doublet visible at δ 2.17 corresponds to 

1H at H12. Multiplit visible at δ 2.63, correspond to 1H at H15.  

 

 

 

Figure 26: Wagner-Meerwein rearrangment of Kaurene. 

 

Additionaly the 13C NMR (Figure 36, page 166) data reported in Table 30 

page 160 show twenty carbons signals. The carboxylic resonance observed at δ 

177.8 (C19) in low field region. The presence of 2 angular methyl was confirmed at 

resonance of δ 13.1 (C20), δ 19.8 (C13), and one methyl at δ 28.8 (C18). The 

experimental DEPT135 spectrum (Figure 37, page 167) multiplicities indicate four 

quaternary carbons, two methine carbons, nine methylene carbons, three methyl 

carbons, one carboxylic carbon, and one oxymethyl carbon, on the basis of 
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comparison of the spectral data with the literature of the compound 1a, was 

identified as a isosteviol (Avent, Hason & Oliveira., 1989). 

 

4.2 16-HYDROXY ISOSTEVIOL (1b) 

 

Known compound 1b (240 mg) was recovered as a white crystalline solid in 

80%, yield (Scheme 1, page 144). IR spectrum (Figure 38, page 168) showed the 

predictable absorption bands (cm-1), at 3468 (alcohol), 1723 (ester), 1454 

(alcoholic), 1267 (ester carbon oxygen). 

The 1H NMR spectrum (Figure 39, page 169) revealed several key signals 

that assisted in determination of its structure. The spectral 1H NMR data is found in 

Table 20, page 150. Three methyl signals were visible at δ 0.71, δ 0.90, δ 1.16 

corresponds to H20, H18, H17, respectively. Broad doublet at δ 2.17 corresponds 

to H12. Quaternary 1H resonance observed at δ 3.85 assigned to H16. 

The 13C NMR spectrum (Figure 40, page 170) of 16-hydroxy isosteviol 

methyl ester show twenty one carbons signals, the spectral data is reported in 

Table 30 page 160. The resonance at δ 80.5 indicates that ketone carbon is 

reduced to the secondary alcohol. The signal at δ 178.1 shows the presence of 

carbomethoxy functionality. Tertiary methyl resonance detected at δ 28.8 (C18), δ 

24.9 (C17), and δ 13.1 (C20). The DEPT135 spectrum (Figure 41, page 171) 

multiplicities indicate four quaternary carbons, three methine, nine methylene, 

three methyl one oxymethyl, and an carboxylic carbon on the basis of comparison 

of the spectral data with the literature of the compound 1b, was identified as a 16-

hydroxy isosteviol (Lin et al., 2007). 

 

 

 

 

 



RESULTS AND DISCUSSION 

 

 

84 

4.3 17, 16-DIHYDROXY ISOSTEVIOL (5i) 

 

Known analogue 5i (218 mg) was recovered as a white crystalline solid in 

68 % Yield (Scheme 1, page 148). IR spectrum (Figure 73, page 203) showed the 

expected absorption peaks (cm-1), at 3413 (primary hydroxyl), 3218 (secondary 

hydroxyl), 1698 (ester), 1175 (secondary hydroxyl), 1027 (primary hydroxyl). 

The spectral 1H NMR (Figure 74, page 204) data is found in Table 22, page 

152 showed the visible signals at δ 0.77, δ 1.20, related to 2CH3 at H20, H18. A 

visible doublet at δ 3.51 with coupling constant 10.1 Hz corresponds to 1H at H17. 

Another doublet at δ 3.45 with J 10.1 Hz is related to 1H at H17. Multiplit at δ 4.2 

having J 10.0 and 5.3 Hz correspond to H16. 

The 13C NMR spectral (Figure 75, page 205) data reported in Table 30, page 

160, shows twenty one carbons signals. The resonance visible at δ 78.5 specifies 

that ketonic carbon (C16) is reduced to secondary alcoholic moiety. The signal at 

δ 178.0 is the characteristic region of carbomethoxy functionality. Resonance at δ 

71.2 corresponds to methylene unit at C17. Resonance of tertiary methyl groups 

was appears at δ 28.8 (C18) and δ 13.1 (C20). The experimental DEPT135 

spectrum (Figure 76, page 206) multiplicities indicate four quaternary carbon, 

three methine carbons, ten methylene carbons, two methyl carbons, one 

carboxylic carbon and one oxymethyl carbon the structure of compound 5i was 

confirm with reported literature data (Oliveira et al., 2008). 

 

4.4 16-OXIME OF ISOSTEVIOL (1c) 

 

The recovered known derivative 1c (260 mg) was a white crystalline solid in 

78 %, yield (Scheme 1, page 144). The IR spectrum showed (Figure 42, page172) 

the expected absorption bands (cm-1), at 3449 (oxime), 1720 (ester), 1694 (carbon 

nitrogen double bond), 1262 (carbon carbon), 961 (nitrogen oxide). 
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1H NMR spectrum (Figure 43, page 173) reported in Table 20, page 150 

shows the presence of three tertiary methyl resonance at δ 0.76, δ 1.11, δ 1.19 

correspond to H20, H17, H18 respectively. Broad doublet resonance visible at δ 

2.19 corresponds to H12. Multiplet observed at δ 2.98 for H15. Singlets at δ 3.62 

indicate the presence of oxymethyl.  

The 13C NMR spectral (Figure 44, page 174) data reported in Table 30 

page 160 of compound 1c shows twenty one carbons resonance. The resonance 

at δ 170.21 specifies that keto carbon (C16) is changed to oxime functionality. The 

resonance at δ 178.0 is the characteristic region of carbomethoxy functionality. 

Resonance of tertiary methyl groups was observed at δ 28.7 for (C18), δ 22.9 

(C17), and δ 13.1 (C20). The experimental DEPT135 spectrum (Figure 45, page 

175) multiplicities indicate four quaternary carbons, two methine carbons, nine 

methylene carbons, three methyl carbons, one oxime carbon, one carboxylic 

carbon and one oxymethyl carbon. The structure of compound 1c was confirmed 

with reported literature data (Change et al., 2009) 

 

4.5 17-HYDROXY, 16-OXIME OF ISOSTEVIOL (5j) 

 

Known compound 5j (206 mg) was recovered as a white crystalline solid in 

68%, yield (Scheme 5, page 148). IR spectrum (Figure 82, page 212) showed the 

expected absorption peaks (cm-1), at 3441 (oxime), 1709 (ester), 1262 (carbon 

carbon). 

The 1H NMR spectral (Figure 83, page 213) data reported in Table 22, page 

152, display signals at δ 0.90, δ 1.22 were attributed to two tertiary methyl protons 

at H20, H18. Broad singlet visible at δ 2.13 corresponds to 2H, at H12. Multiplet at 

δ 3.54 with coupling constant 16.70 and 10.99 Hz correspond to H17. Another 

multiplet for a one proton at δ 2.99 with coupling constant 18.40 and 3.0 Hz 

correspond to H15. 
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The 13C NMR spectral (Figure 84, page 214) data of 17-Hydroxy-16-oxime 

isosteviol reported in Table 31, page 161 show twenty carbons signals, oxime 

functionality resonance at δ 167.5 related to C16. The rest of twenty carbons 

multiplicities were derived from the DEPT135 spectrum (Figure 85, page 215) as 

four quaternary, two methine, ten methylene and two methyl carbons, one 

hydrazone carbon, one carboxylic carbon, one oxymethyl carbon. The 13C signal 

at the δ 178.7 and δ 66.4 show the presence of carbomethoxy and primary 

alcoholic functionalities respectively at C20 and C17. The 13C signals at δ 28.5 and 

δ 13.0 correspond to two tertiary methyl at C18, and C20 respectively on the basis 

of comparison of the spectral data with the literature of the compound 5j, was 

identified as a 16-hydroxy isosteviol (Oliveira et al., 2008). 

 

4.6 ISOSTEVIOL LACTONE (1d) 

 

The recovered known derivative 1d (130 mg) was a white crystalline solid in 

39%, yield (Scheme 2, page 145). The molecular formula C20H30O4 determined on 

the basis of ESI-MS (Figure 46, page 176) data, which showed the [M]+ ion; 

334.25, corresponding to the calculated mass of the compound. The IR spectrum 

(Figure 47, page 177) showed the absorption bands (cm-1), at 1720 (lactone 

carbonyl), 1688 (ester carbonyl), 1244 cm-1 (ethereal). 

The 1H NMR (Figure 48, page 178) spectral data reported in Table 20, page 

150 displays the presence of three tertiary methyl protons resonance at δ 0.75 

(H20), δ 1.17 (H18), δ 1.34 (H17). Multiplet detected at δ 3.89 corresponds to 1H 

(H15). Broad doublet visible at δ 2.18 corresponds to H12. Singlet visible at δ 3.62 

corresponds to oxymethyl. 
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Figure 27: Baeyer-villager oxidation of isosteviol 

The 13C NMR (Figure 49, page 179) spectral data reported in Table 30, 

page 160 revealed twenty one carbons signals. The signal at δ 172.5 represents 

lactone carbonyl (C16). The signal at δ 177.5 is the characteristic region of 

carbomethoxy functionality. Resonance of tertiary methyl groups was observed at 

δ 28.56 (C18), δ 28.25 (C17), and δ 13.9 (C20). The experimental DEPT135 

spectrum (Figure 50, page 180) multiplicity specifies four quaternary carbons, two 

methine carbons, nine methylene carbons, three methyl carbons two carboxylic 

carbons and one oxymethyl carbon the spectral data was corresponding to the 

literature data of compound 1d (Change et al., 2009). 

 

4.7 15α-HYDROXY METHYL-16β-HYDROXY ISOSTEVIOL (1e) 

 

Known compound 1e (153 mg) was obtained as white crystalline solid in 

78%; yield (Scheme 2, page 145). The molecular formula C21H34O4 determined on 

the basis of ESI-MS (Figure 51, page 181) data, which showed the [M+Na]+; ion 

373.21, which corresponds to the calculated mass of the compound. The IR 

spectrum (Figure 52, page 182) showed the bands (cm-1), at 3392 (Hydroxyl), 
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1694 (ester carbonyl), 1553, 1534, 1454 (hydroxyl bending), and at 1067 (carbon 

oxygen).  

1H NMR spectral (Figure 53, page 183) data reported in Table 21, page 151 

showed key resonance information at δ 0.74, δ 0.93, δ 1.15 corresponds to 3CH3 

at H20, H18, and H17 respectively. Triplet visible at δ 3.46 corresponds to 1H, with 

coupling constant 10.3 Hz (H1′). Singlet at δ 3.62 (OCH3), attributed to the methyl 

ester at C19, and quartet at δ 3.99 correspond to (H15). 

13C NMR spectral (Figure 54, page 184) data reported in Table 30, page 

160, also shows twenty two carbons signals. The resonance at δ 86.7 specifies 

that ketonic carbon is reduced to secondary alcohol functionality. The carbon 

resonance at δ 177.9 is the characteristic region of carbomethoxy functionality. 

Resonance of tertiary methyl groups was observed at δ 28.9 (C18), δ 24.9 (C17), 

and δ 13.0 (C20). The experimental DEPT135 spectrum (Figure 55, page 185) 

multiplicities specify four quaternary carbons, four methine carbons, nine 

methylene carbons, three methyl carbons, one carboxyl and an oxymethyl carbon. 

The spectral data was corresponding to the literature data of compound 1e (Y.wu 

et al., 2009) 

 

4.8 15α-HYDROXYMETHYL, 17, 16β-DIHYDROXY ISOSTEVIOL (5n) 

 

New derivative 5n (146 mg) was obtained as a white crystalline solid in 71%, 

yield (Scheme 5, page 148). The calculated molecular formula C21H34O5 on the 

basis of ESI-MS (Figure 77, page 207 ) data, [M-H]+ 365.33, which corresponds to 

the calculated mass of the compound. The IR spectrum (Figure 78, page 208) 

showed the intrested absorption bands (cm-1), at 3419 (broad band Hydroxyl), 

1692 (ester carbonyl), 1222 (primary hydroxyl). 

The 1H NMR (Figure 79, page 209) spectral data reported in Table 22, page 

152 showed resonance at δ 0.79, δ 1.16; corresponds to 2CH3 at H20, H18. The 

resonance appeared at δ 2.9 corresponds to methylenic proton at H15. 
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Resonance visible at δ 3.34 with broad doublet corresponds to H1′. Resonance of 

proton at δ 3.6 was assigned to H17.  

The 13C NMR (Figure 80, page 210) spectral data is outline in Table 30, 

page 160 showed twenty two carbons signals. The resonance observed at δ 80.7 

specifies that ketonic carbon was reduced to secondary alcohol functionality. The 

resonance at δ 177.1 is the characteristic region of carbomethoxy functionality. 

Resonances of tertiary methyl groups at δ 28.1 (C18), and δ 12.6 (C20), and two 

hydroxy methylene unit at δ 68.3 (C17), and δ 63.1 (C1′), were observed. The 

experimental DEPT135 spectrum (Figure 81, page 211) multiplicities specify four 

quaternary carbons, four methine carbons, ten methylene carbons, two methyl 

carbons one oxymethyl and a carboxylic carbon. 

 

4.9 STEVIOL (1h) 

 

Known compound 1h (1.3 g), was obtained as a white crystalline solid in 

13%, yield (Scheme 4, page 147). The IR spectrum (Figure 61, page 191) showed 

the interested bands (cm-1), at 3274 (hydroxyl), 1691 (carbonyl ester), 1237 

(hydroxyl bending), 1087 (carbon oxygen). 

The 1H NMR (Figure 62, page 192) spectral data reported in Table 21 page 

151 revealed the resonance at δ 0.84, δ 1.19 corresponds to tertiary methyl 

protons at H20 and H18. Multiplet observed at δ 1.87 with J 10.82, 2.13 Hz 

corresponds to 1H at H14. Singlet visible at δ 3.66 corresponds to (OCH3). Two 

broad singlet’s at δ 4.9 and at δ 4.83 related to two olefinic protons at H17. 

The 13C NMR (Figure 63, page 193) data reported in Table 30, page 160 

showed twenty one carbon signals, resonance at δ 102.9 and δ 156.1 correspond 

to olefinic carbons at (C17), and (C16). The rest of twenty carbons multiplicities 

were derived from the DEPT135 spectrum (Figure 64, page194) as four quaternary 

carbons, two methine carbons, ten methylene carbons and two methyl carbons 

one carboxylic one exocyclic olefinic carbon and one oxymethyl. The 13C signal at 
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δ 177.9 (C20), for carbomethoxy, δ 80.2 (C13), for tertiary alcoholic functionalities. 

Resonance at δ 28.7 and δ 15.3 corresponds to 2CH3 at C20, and C18 

respectively. The spectral data was corresponding to the literature data of 

compound 1h (Yang et al., 2007)  

 

4.10 STEVIOL EPOXIDE (2h) 

 

Known compound 2h (196 mg) was recovered as white crystalline solid in 

60%; yield (Scheme 4, page147). The IR spectrum (Figure 65, page 195) showed 

the absorption bands (cm-1), at 3257 (hydroxyl), 1715 (carbonyl ester), 1244 

(hydroxyl bending),  

The 1H NMR (Figure 66, page 196) data reported in Table 21, page 151 

showed resonance at δ 0.86, δ 1.19 correspond to tertiary methyl protons at H20 

and H18. Doublet at δ 2.20 corresponds to H12. Two doublet at δ 2.79 and δ 2.94 

with 4.35 Hz coupling constant correspond to 2H at H17. Singlet at δ 3.65 

corresponds to (OCH3). 

The 13C NMR spectrum (Figure 67, page 197) showed twenty one carbons 

signals reported in Table 30, page 160, resonance at δ 65.2 and δ 48.7 

corresponds to carbons at (C16), and (C17). The rest of nineteen carbons 

multiplicities were derived from the DEPT135 spectrum (Figure 68, page 198) as 

five quaternary, two methine, ten methylene carbons, two methyl carbons one 

carboxylic and one oxymethyl. The 13C signal detected at δ 177.8 (C20), for 

carbomethoxy, and δ 74.7 (C13), for tertiary alcoholic functionalities. Resonance 

at δ 28.6 and δ 15.5 corresponds to 2CH3 at C20 and C18 respectively. The 

spectral data was found to be corresponding to the literature data of compound 2h 

(Yang et al., 2007). 
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4.11 17-HYDROXY ISOSTEVIOL (4h) 

 

Known compound 4h (215 mg), was obtained as a white crystalline solid, in 

64%, yield (Scheme 4, page 147). The IR spectrum (Figure 69, page 199) showed 

the interested absorption bands (cm-1), at 3448 (primary alcohol), 1691 (ester), 

1183 (carbon oxygen). 

The 1H NMR (Figure 70, page 200) data mentioned in Table 22, page 152 

showed the signals of 2CH3 at δ 0.70, and δ 1.21 attributed to H20, H18 

respectively. Broad doublet observed at δ 2.2 corresponds to H12. Doublet of 

doublet appear at δ 2.68 with coupling constant 18.88, and 3.74 Hz correspond to 

1H at H15. Doublet visible at δ 3.52 with coupling constant 10.99 Hz related to 1H, 

at H17.  

The 13C NMR (Figure 71, page 201) data found in Table 30, page 160 

showed 21 carbons signals. The carboxylic carbon was observed at δ 177.7 

(C19), and the primary alcoholic moiety at δ 65.1 (C17). The signals at δ 28.8 and 

δ 13.1 assigned to 2CH3 at C20 and C18. The carbonyl group at C16 is missing. 

The carbon multiplicities were derived from DEPT135 spectrum (Figure 72, page 

202) as four quaternary, two methine, ten methylene and two methyl carbons, one 

carboxylic carbon and one oxymethyl carbon. The spectral data was 

corresponding to the literature data of compound 4h (Oliveira et al., 1999). 

 

4.12 BENZYL ESTER OF ISOSTEVIOL (2a) 

 

A New analogue 2a (167 mg) was isolated as a white crystalline solid in 

82%, yield (Scheme 1, page 144). The ESI-MS (Figure 96, page 226) data 

showed [M-H]+ ion at 407.46, which corresponds to the calculated mass of the 

compound with the formula C27H36O3. IR spectrum (Figure 97, page 227) showed 

the expected absorption peaks (cm-1), at 1738 (ketone), 1720 (ester carbonyl), 

1453, 1147, 740 (aromatic ring).  
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The spectral data results of 1H NMR (Figure 98, page 228 ) mention in 

Table 23, page 153 showed three methyl singlet’s at δ 0.60, δ 0.97 and δ 1.21 

corresponding to the H20, H18 and H17, respectively. Broad doublet visible at δ 

2.2 was assigned to H12. Quartet at δ 2.55 corresponds to 1H at H15. A doublet at 

δ 5.08 having J 17.58 and 12.46 Hz corresponds to 1H (H7′′). Singlet at δ 7.34 

corresponds to aromatic 5H (H2′′ to H6′'), of the benzoate.  

The 13C NMR (Figure 99, page 229) data reported in Table 31, page 161 

display 26 carbons signals. The carboxylic carbon signal was observed at δ 

176.98 (C19). The evidence of the benzyl group was confirmed by the presence of 

signals at δ 136.5 (C1'′), δ 128.2 (C2′', C6'′), δ 128.5 (C3'′, C5'′), δ 128.1 (C4'′), and 

the methylene carbon at δ 65.8 (C7'′). The carbons multiplicities were derived from 

DEPT135 spectrum as five quaternary, seven methine, ten methylene, three methyl 

carbons, and one carboxylic carbon. 

 

4.13 BENZYL ESTER OF 16-HYDROXY ISOSTEVIOL (2b) 

 

A New compound 2b (240 mg) was recovered as a white crystalline solid, in 

80 %, yield (Scheme 1, page 144). Its molecular formula has been determined as 

C27H38O3 on the basis of ESI-MS (Figure 100, page 230) data which showed the 

[M-H]+ ion at 409.39, which corresponds to the calculated mass of the compound. 

The IR spectrum (Figure 101, page 231) showed the absorption bands (cm-1), at 

3460 (alcohol), 1721 (ester), 1454, 1147, 740 (aromatic ring). 

The 1H NMR (Figure 102, page 232) data reported in Table 23, page 153 

showed the signals of 3CH3 at δ 0.70, δ 0.93 and δ 1.21 attributed to H20, H18, 

and H17 respectively. Doublet visible at δ 2.22, with coupling constant 12.26 Hz 

corresponds to H12. Doublet of doublet visible at δ 3.86 corresponds to 1H (H16). 

Multiplet at δ 5.10 corresponds to methylene 1H (H7 ′′). Singlet visible at δ 7.3 

corresponds to 5H (2H′′-6H′′). 
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The 13C NMR (Figure 103, page 233) data mention in Table 31 page 161 

showed 27 carbons signals. The carboxylic carbon was detected at δ 177.3 and 

the secondary alcoholic moiety at δ 80.5. The benzyl group was evidenced by the 

presence of the aromatic carbons δ 136.1 (C1''), δ 128.2 (C2'', C6''), δ 128.4 (C3'', 

C5''), δ 127.9 (C4''), and methylene carbon at δ 65.9 (C7''). The assignment of the 

observed signals in the 13C NMR spectrum was confirmed by comparison with the 

DEPT135 spectrum (Figure 104, page 234) as five quaternary, eight methine, ten 

methylene, three methyl carbons, and one carboxylic carbon. 

 

4.14 BENZYL ESTER OF 16-OXIME ISOSTEVIOL (2c) 

 

The compound 2c (172 mg) new derivative was recovered as a white 

crystalline solid in 81%, yield (Scheme 1, page 144). The molecular formula 

C27H37NO3 was confirmed on the basis of ESI-MS (Figure 105, page 235) data 

which showed the [M-H]+ ion 422.33, corresponds to the calculated mass of the 

compound. The IR spectrum (Figure 106, page 236) showed the concerned 

absorption bands (cm-1), at 3294 (oxime), 1721 (carbonyl), 1454 (hydroxyl 

bending), 1146, 696 (aromatic ring). 

The 1H NMR (Figure 107, page 237) data reported in Table 24, page 154 

showed the resonance of 3CH3 at δ 0.73, δ 1.13 and δ 1.24 assigned to H20, H18 

and H17 respectively. Multiplet at δ 2.95 corresponds to H15. Doublet at δ 5.0 

corresponds to 1H at H7′′. Another doublet visible at δ 5.2 assigned to 1H at H7′′. 

A singlet at δ 7.38 corresponds to aromatic 5H (2H′′ to 6H′′). 

The 13C NMR (Figure 108, page 238) data outlined in Table 31, page 161 

showed resonance at δ 128.1 (C2′′ and C6′′), and δ 128.5 (C3'′ and C5'′), 

correspond to two carbons each, totaling 27 carbons. The benzyl group was 

evidenced by the presence of the aromatic carbons δ 136.5 (C1'′), δ 128.2 (C2'′, 

C6'′), δ 128.5 (C3'′, C5'′), δ 128.1 (C4'′), and for methylene carbon at δ 65.8 (C7'′). 

The assignments were confirmed by comparison with the DEPT135 spectrum 
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(Figure 109, page 239) as five quaternary, seven methine, ten methylene, three 

methyl carbons, one carboxylic carbon and one oxime carbon. 

 

4.15 BENZYL ESTER OF ISOSTEVIOL LACTONE (2d) 

 

The compound 2d (170 mg) new derivative was obtained as a white 

crystalline solid in 76% yield (Scheme 2, page 145) had molecular formula 

C27H36O4 on the basis of ESI-MS (Figure 110, page 240) data which showed the 

presence of an [M+Na]+ ion 447.39, which corresponds to the calculated mass of 

the compound. The IR spectrum (Figure 111, page 241) showed the absorption 

bands (cm-1), at 1721 (ester carbonyl), 1454 (hydroxyl bending), 1237, 1143 

(asymmetric stretch ester), 745, 698 (Aromatic ring).  

The 1H NMR (Figure 112, page 242) spectral data outlined in Table 24, page 

154 showed resonance at δ 0.70, δ 1.22, and δ 1.35, assigned to three methyl at 

H20, H18, and H17. Doublet at δ 2.22 was assigned to H12. Multiplet at δ 3.01, 

represent methylene unit at H15. Two doublets visible at δ 5.0, and δ 5.2, with 

12.3 Hz coupling constant was assigned to 2H, at H7′′. Resonance at δ 7.36, 

corresponds to the aromatic 5H (H2′′ to H6'′), of the benzoate.  

The 13C NMR (Figure 113, page 243) spectral data outlined in Table 31, 

page 161, showed 25 carbons signal. Resonance at δ 128.3 (C2′', C6'′), and δ 

128.5 (C3'′, C5'′), is equivalent to two carbons, totaling 27 carbons. The benzyl 

group was evidenced by the presence of the aromatic carbons δ 136.5 (C1′'), δ 

128.2 (C2'′, C6'′), δ 128.5 (C3′', C5'′), and δ 128.1 (C4'′), and methylene carbon 

unit at δ 65.8 (C7'′). The assignment of the observed signals in the 13C NMR 

spectrum was confirmed by comparison with the DEPT135 spectrum (Figure 114, 

page 244) as five quaternary, seven methine, ten methylene, three methyl 

carbons, and two carboxylic carbons. 
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4.16 BENZYL ESTER OF 17-HYDROXY ISOSTEVIOL (5l) 

 

A new compound 5l (147 mg) was recovered as a white crystalline solid in 

69%, yield (Scheme 5, page 148). The molecular formula C27H36O4 was derived 

from the ESI-MS (Figure 120, page 250) data, [M+H]+ 425.23, which corresponds 

to the calculated mass of the compound. The IR spectrum (Figure 121, page 251) 

showed the interested absorption bands (cm-1), at 3408 (Hydroxyl), 1722 

(carbonyl), 1124 (carbon-oxygen), and at 772, 668 (Aromatic ring). 

The 1H NMR (Figure 122, page 252) spectral data reported in Table 25, 

page 155 showed the signals at δ 0.63, and δ 1.25, was assigned to H20 and H18. 

The multiplet observed at δ 2.61 (J = 18.97 and 3.78 Hz), was attributed to H15. 

Doublet visible at δ 2.24 corresponds to 1H at H12. Two doublets visible at δ 3.52, 

and δ 3.66, with coupling constant 11.4 Hz was assigned to 2H at H17. The 

doublet at δ 5.0 and δ 5.1 corresponds to 2H of methylene carbon unit (H7′′). The 

benzyl group was evidence at δ 7.37, assigned to 5H (H2′′ to H6'′). 

The 13C NMR (Figure 123, page 253) spectral data reported in Table 32, 

page 162 showed twenty six carbons signals. The multiplicities were derived from 

the DEPT135 spectrum (Figure 124, page 254) as five quaternary, seven methine, 

eleven methylene and two methyl carbons and one carboxylic carbon. The signals 

at δ 176.9 and δ 65.0 indicate the presence of carbomethoxy and primary 

alcoholic functionalities at C20, and C17, respectively. The signals at δ 28.9, and δ 

12.9, correspond to 2CH3 at C20, and C18. The carbonyl group at C16 is missing. 

The benzyl group was confirmed by the presence of aromatic carbons resonance 

at δ 135.9 (C1′′), δ 128.3 (C2′′, C6′′), δ 128.5 (C3′′, C5′′), δ 128.1 (C4′′), and 

methylene carbon (C7′′), resonance was observed at δ 66.09. 
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4.17 BENZYL ESTER OF 17, 16-DIHYROXY ISOSTEVIOL (6i) 

 

The compound 6i (165 mg) a new derivative was obtained as a white 

crystalline solid in 77%, yield (Scheme 5, page 148). The molecular formula 

C27H38O4 was derived from the ESI-MS (Figure 125, page 255) data, [M+H]+ 

425.29, which corresponds to the calculated mass of the compound. The IR 

spectrum (Figure 126, page 256) showed the absorption bands (cm-1), at 3391 

(broad band Alcohol), 1720 (ester carbonyl), 1454 (hydroxyl bending), 1147 

(carbon oxygen stretch), 754, 696 (Aromatic ring) 

The 1H NMR (Figure 127, page 257) spectral data reported in Table 25, 

page 155 showed signals at δ 0.72, δ 1.21 corresponds to 2CH3 at H20, H18. The 

doublet visible at δ 3.4 (J = 10.1 Hz), was assigned to H17 and the multiplet visible 

at δ 5.1 correspond to the one proton resonance of methylene unit at H7′′. A 

singlet was observed at δ 7.4 (H2′′ to H6'′) corresponds to the aromatic 5H protons 

of the benzoate. 

The 13C NMR (Figure 128, page 258) spectral data outlined in Table 31, 

page 161 showed twenty five carbons signals. Resonance visible at δ 128.44 

(C3′′, C5′′), δ 128.20 (C2′′, C6′′), corresponds to two carbons each totaling 27 

carbons. The carbons multiplicities were derived from DEPT135 spectrum (Figure 

129, page 259) as five quaternary, eight methine, eleven methylene two methyl 

carbons and one carboxylic carbon. The resonance at δ 177.0, δ 71.0 and δ 78.3, 

showed the presence of carbomethoxy, primary alcoholic and tertiary alcoholic 

functionalities at C19, C17 and C16 respectively. The signals at δ 28.9, and δ 

13.5, correspond to 2CH3 at C20, and C18. The signal relative to the benzyl group 

were observed at δ 136.1 (C1′′), δ 128.2 (C2′′, C6′′), δ 128.4 (C3′′, C5′′), δ 127.9 

(C4′′), and methylene carbon (C7′′), resonance was observed at δ 65.9. 
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4.18 BENZYL ESTER OF 17-HYDOXY, 16-OXIME ISOSTEVIOL (6j) 

 

A new compound 6j (147 mg) was obtained as a white crystalline solid in 

66%, yield (Scheme 5, page 148). The molecular formula C27H37NO4 was derived 

from the ESI-MS (Figure 130, page 260) data, [M+H]+ 440.39, which corresponds 

to the calculated mass of the compound. The IR spectrum (Figure 131, page 261) 

showed the absorption bands (cm-1), at 1881 (ester carbonyl), 1578 (oxime carbon 

nitrogen), 1480, 1163 (carbon oxygen), 999 (nitrogen oxide), 773, 587 (aromatic 

ring). 

The 1H NMR (Figure 132, page 262) spectral data reported in Table 25, 

page 155 indicates the signals at δ 0.69 and δ 1.20 corresponds to 2CH3 at H20 

and H18. Doublet visible at δ 2.20 corresponds to H12. Broad, doublet resonance 

visible at δ 2.92, having J = 18.30 Hz, correspond to H15, singlet at δ 3.59 was 

assigned to 2H at H17. Resonance of two protons at δ 5.01 and δ 5.18 with 12.39 

Hz coupling constant corresponds to 2H at H7′′. A singlet was observed at δ 7.34 

assigned to 5H (H2′′-H6′′) of benzoate. 

The 13C NMR (Figure 133, page 263) spectral data outlined in Table 31, 

page 161 showed twenty five carbons resonance. Signals visible at δ 128.5 (C3′′, 

C5′′), δ 128.2 (C2′′, C6′′), corresponds to two carbons each totaling 27 carbons. 

The carbons multiplicities were derived from DEPT135 spectrum (Figure 134, page 

264) as five quaternary carbons, seven methine carbons, eleven methylene 

carbons, two methyl carbons one oxime functional and one carboxylic carbon. The 

resonance at δ 177.0, δ 169.2 and δ 66.7, showed the presence of carbomethoxy, 

oxime and primary alcoholic functionalities at C19, C16 and C17 respectively. The 

signal visible at δ 28.9 and δ 13.3 corresponds to 2CH3 at C20, and C18. The 

signals relative to the benzyl group were visible at δ 136.1 (C1′′), δ 128.2 (C2′′, 

C6′′), δ 128.5 (C3′′, C5′′), δ 128.1 (C4′′), and methylene carbon (C7′′), resonance 

was observed at δ 65.9. 

 



RESULTS AND DISCUSSION 

 

 

98 

4.19 p-METHOXYPHENACYL ESTER OF ISOSTEVIOL (3a) 

 

The product 3a (112 mg) a new derivative was obtained as a white powder 

solid in 82%, yield (Scheme 1, page 144), had the molecular formula C29H38O5 

determined on the basis of ESI-MS (Figure 135, page 265) data, which showed 

the [M]+ ion 466.59, corresponds to the calculated mass of the compound. The IR 

spectrum (Figure 136, page 266) revealed the interested absorption bands (cm-1), 

at 1736 (carbonyl), 1454 (methylene C-H), 1146, 696 (aromatic ring). 

The 1H NMR (Figure 137, page 267) spectral data reported in Table 28, 

page 158 spectrum showed the resonance at δ 0.77, δ 0.98, and δ 1.34 was 

assigned to H20, H18 and H17 respectively. Multiplet at δ 2.66 (1H, J 18.69 and 

3.65 Hz) was attributed to H15. The singlet at δ 3.88 was assigned to oxymethyl 

functionality. Two doublets at δ 5.2 and δ 5.3 having 16.1 Hz coupling constant 

corresponds to 2H was attributed to H8′. Doublet visible at δ 6.95 (2H, J 9.00 Hz), 

was attributed to H3′ and H5'. The signal at δ 7.90 (2H, J 8.97 Hz), was assigned 

to H2′ and H6′. 

The 13C NMR (Figure 138, page 268) spectral data outlined in Table 33 

page 163 showed 26 carbons resonance. The signals at δ 130.1 (C2', C6'), and δ 

114.0 (C3', C5'), is equivalent to two carbons, totaling 28 carbons, ketonic carbon 

at C16 was not observed. Carboxylic functionality resonance was visible at δ 

176.8. The p-methoxy acetophenone group was evidenced by the presence of the 

aromatic carbons, methoxy carbon, carbonyl group and methylene carbon. The 

carbonyl carbon resonance visible at δ 190.9 (C7′). The aromatic carbon 

resonance observed at δ 127.4 (C1'), δ 130.1 (C2', C6'), δ 114.0 (C3', C5'), and δ 

163.9 (C4'). The methylene carbon resonance appears at δ 65.2 (C8'), and 

methoxy linked with aromatic ring visible at δ 55.5 (C9′). The assignments were 

confirmed with the DEPT135 spectrum (Figure 139, page 269) as six quaternary, 

six methine, ten methylene carbons, three methyl carbons, one carbonyl 

functional, one carboxylic carbon and one oxymethyl carbon. 
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4.20 p-METHOXY PHENACYL ESTER OF 16-HYDROXY ISOSTEVIOL (3b) 

 

The compound 3b (105 mg) a new derivative was obtained as a white 

powder solid in 75%, yield (Scheme 1, page 144). The molecular formula C29H40O5 

was determined on the basis of ESI-MS (Figure 140, page 270) data, which 

showed the [M+Na]+ ion 491.35, which corresponds to the calculated mass of the 

compound. The IR spectrum (Figure 141, page 271) exhibit the absorption bands 

(cm-1), at 3556 (secondary hydroxyl), 1719 (ester carbonyl), 1603 (aromatic ring 

stretching), 1161 (aromatic C-H stretch). 

The 1H NMR (Figure 142, page 272) spectral data reported in Table 28, 

page 158 the resonance at δ 0.81, δ 0.92 and δ 1.32 corresponds to 3CH3 at H20, 

H18 and H17. Singlet visible at δ 3.88 corresponds to 3H at (OCH3). Two doublets 

at δ 5.2 and δ 5.3, with coupling constant 16.1 Hz corresponds to 2H at H8′. 

Another doublet at δ 6.95 with 8.92 Hz coupling constant was assigned to 2H at 

(H3′, H5′). Resonance visible at δ 7.9 (J = 8.9 Hz) corresponds to 2H at (H2′, H6′). 

The 13C NMR (Figure 143, page 273) spectral data reported in Table 33, 

page 163 showed 27 carbons resonance. The resonance observed at δ 130.0 

(C2', C6'), and δ 113.9 (C3', C5'), is equivalent to two carbons, totaling 29 

carbons. The p-acetophenone carbonyl group resonance visible at δ 191.1 (C7′). 

The aromatic carbons resonance are at δ 127.5 (C1'), δ 130.0 δ (C2', C6'), δ 

113.9 (C3', C5'), and δ 163.9 (C4'). The methylene carbon unit resonance 

observed at δ 65.2 (C8'), and resonance of (OCH3), with aromatic ring at δ 55.5 

(C9′). The assignments were confirmed with the DEPT135 spectrum (Figure 144, 

page 274) as six quaternary, seven methine, ten methylene carbons, three methyl 

carbons one carbonyl functional one carboxylic carbon and one oxymethyl carbon. 
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4.21 p-METHOXY PHENACYL ESTER OF 16-OXIME ISOSTEVIOL (3c) 

 

The product 3c (115 mg) a new derivative was recovered as white powder 

solid in 79%, yield (Scheme 1, page 144). The molecular formula C29H39NO5 was 

deducted on the basis of ESI-MS (Figure 145, page 275) data, showing [M]+ ion 

481.35, which corresponds to the calculated mass of the compound. The IR 

spectrum (Figure 146, page 276) showed absorption bands (cm-1), at 3447 

(oxime), 1719 (ester), 1692 (ketone), 1601, 1162 (aromatic ring), 963 (N-O). 

The 1H NMR (Figure 147, page 277) spectral data reported in Table 28 

page 158 revealed the signals at δ 0.86, δ 1.13 and δ 1.37 assigned to H20, H18 

and H17 respectively. The singlet at δ 3.91 (3H), was assigned to the oxymethyl 

functionality. Two doublets visible at δ 5.1, and 5.4, with 16.0 Hz coupling constant 

was attributed to 2H at oxymethylene unit (H8′). The doublet at δ 6.99 (J 8.9 Hz, 

2H), was assigned to H3′, H5'. Another doublet visible at δ 7.93 (J 8.9 Hz, 2H), 

was attributed to 2H at H2′ and H6′. 

The 13C NMR (Figure 148, page 278) spectral data outlined in Table 33, 

page 163 showed 27 carbons resonance, at δ 130.1 (C2', C6'), and δ 114.0 (C3', 

C5'), is equivalent to two carbons, totaling 29 carbons. The p-methoxy 

acetophenone group was evidenced by the presence of the aromatic carbons, 

methoxy carbon, carbonyl group and methylene carbon. The acetophenone 

carbonyl resonance appears at 191.0 (C7′). The aromatic carbon resonance are at 

δ 127.5 (C1'), δ 130.1 (C2', C6'), δ 114.0 (C3', C5'), and δ 163.9 (C4'). The 

methylene carbon unit resonance appears at 65.2 (C8'), and methoxy linked with 

aromatic ring was observed at δ 55.5 (C9′). The assignments were confirmed with 

the DEPT135 spectrum (Figure 149, page 279) as six quaternary, six methine, ten 

methylene carbons, three methyl carbons one carbonyl functional one carboxylic 

carbon one oxime carbon and one oxymethyl carbon. 
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4.22 p-METHOXY PHENACYL ESTER OF STEVIOL (3h) 

 

A new analogue 3h (110 mg) was recovered as a white powder solid in 78%, 

yield (Scheme 4, page 147). The molecular formula C29H38O5 was deducted on the 

basis of MS-ESI (Figure 150, page 280) data, showing [M+Na]+; 489.46, which 

corresponds to the calculated mass of the compound. The IR spectrum (Figure 

151, page 281) showed characteristic absorption bands (cm-1), at 3493 (tertiary 

hydroxyl), 1731 (ester), 1692 (ketone), 1603, 1262 (Aromatic). 

The 1H NMR (Figure 152, page 282) spectral data outlined in Table 28, page 

158 showed signals at δ 0.91, δ 1.32, corresponds to 2H at H20 and H18. Doublet 

observed at δ 2.28 with, (J = 12.1 Hz), corresponds to 1H at H12. Singlet at δ 3.88 

corresponds to aromatic methoxy 3H. Two broad singlet’s visible at δ 4.81 and δ 

4.97 were assigned to H17. Two doublets visible at δ 5.2 and δ 5.4 with coupling 

constant 16.11 Hz were related to methylene unit at H8′. The doublet at δ 6.95 

were assigned to 2H at H3′ and H5'. Doublet at δ 7.91 with J = 8.95 Hz, related to 

2H at H2′ and H6′. 

The 13C NMR (Figure 153, page 283) spectral data is reported in Table 33, 

page 163 showed 27 carbons resonance, at δ 130.1 (C2', C6'), and δ 114.0 (C3', 

C5'), is equivalent to two carbons, totaling 29 carbons. Olefinic carbon resonance 

at δ 102.9 (C17). Tertiary alcoholic functionality resonance observes at δ 80.3 

(C13). The p-methoxy acetophenone group was evidenced by the presence of the 

aromatic carbons, methoxy carbon, carbonyl group and methylene carbon. The 

acetophenone carbonyl resonance appears at δ 191.0 (C7′). The aromatic 

carbons resonance were observed at δ 127.5 (C1'), δ 130.1 (C2', C6'), δ 114.0 

(C3', C5'), and δ 163.90 (C4'). The methylene carbon unit resonance appears at δ 

65.2 (C8'), and methoxy linked with aromatic ring was observed at δ 55.5 (C9′). 

The assignments were confirmed with the DEPT135 spectrum (Figure 154, page 

284) as six quaternary, six methine, eleven methylene, two methyl carbons one 

carbonyl, one carboxylic carbon, one olefinic carbon and one oxymethyl carbon. 
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4.23 16-HYDRAZONE OF ISOSTEVIOL (1f) 

 

A known product 1f (83 mg) was obtained as white crystalline solid in 83%, 

yield (Scheme 2, page 145). The calculated molecular formula C20H32N2O2 was 

derived on the basis of ESI-MS (Figure 56, page 186) data, [M+H]+ 333.3, which 

corresponds to the calculated mass of the compound. The IR spectrum (Figure 57, 

page 187) showed characteristic bands (cm-1), at 3352 (hydrazone), 1712 

(carboxylic), 1453 (methylene C-H), 1399 (methyl C-H).  

The 1H NMR spectrum (Figure 58, page 188) of 1f revealed several key 

signals that assisted in the determination of its structure. The 1H NMR spectral 

data found in Table 21, page 151 showed the resonance at δ 0.85, δ 1.06 and δ 

1.24, are the characteristics proton shift region for the basic skeleton of isosteviol. 

The resonance at δ 2.2 is attributed to 1H at H12. Multiplet at δ 2.66 having 

coupling constant 17.44 and 1.84 Hz, are assigned to H15. Oxymethyl proton 

resonance appears at δ 3.64. 

The 13C NMR spectrum (Figure 59, page 189) showed twenty carbons signal. 

13C NMR spectral data reported in Table 30, page 160 .The hydrazone 

functionality signal was observed at δ 165.5 (C16). The rest of nineteen carbons 

multiplicities were derived from the DEPT135 spectrum (Figure 60, page 190) as 

four quaternary, two methine, nine methylene three methyl one carboxyl and one 

hydrazone carbons. The three tertiary methyl and carbomethoxy functionality 

resonance were observed at δ 13.6 (C20), δ 22.1 (C17), δ 29.1 (C18), and δ 182 4 

(C19), respectively (Garifullin et al., 2012). 
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Figure 28: General mechanism for hydrazone formation includes nucleophilic 

addition-elimination reaction. 

 

4.24 17-HYDROXY, 16-HYDRAZONE OF ISOSTEVIOL (5k) 

 

The product 5k (90 mg) new derivative was recovered as a white crystalline 

solid in 86%, yield (Scheme 5, page 148). The calculated molecular formula 

C20H32N2O3 was derived on the basis of ESI-MS (Figure 86, page 216) data, [M-

H]+ 347.33, which corresponds to the calculated mass of the compound. The IR 

spectrum (Figure 87, page 217) showed characteristic absorption bands (cm-1), at 

3412 (primary hydroxyl), 3221 (nitrogen hydrogen), 1698 (ester carbonyl).  

The 1H NMR (Figure 88, page 218) spectral data reported in Table 23 page 

153 showed the resonance at δ 0.96, δ 1.19, ascribed to 2CH3, at H20 and H18, 

respectively. The broad doublet at δ 2.16 corresponds to 1H at H12. Another 

broad doublet at δ 2.89 (J 18.20 Hz), corresponds to 1H at H15 and a broad 

singlet visible at δ 3.57 was assigned to H17. 



RESULTS AND DISCUSSION 

 

 

104 

The 13C NMR (Figure 89, page 219) spectral data are reported in Table 31, 

page 161, and display the hydrazone functionality resonance at δ 165.4 (C16). 

The rest of nineteen carbons multiplicities were derived from the DEPT135 

spectrum (Figure 90, page 220) as four quaternary, two methine, ten methylene 

two methyl carbons, one carboxylic and one hydrazone carbon. The signals at the 

δ 182.9 and δ 66.1 were attributed to the carbomethoxy (C20), and primary 

alcoholic (C17), functionalities, respectively. The signals at δ 28.8 and δ 13.0 

correspond to 2CH3 at C20 and C18 respectively. 

 

4.25 BENZYL ESTER 16-HYDRAZONE OF ISOSTEVIOL (3f) 

 

The compound 3f (105 mg) a new derivative was obtained as a white 

crystalline solid in 84%, yield (Scheme 3, page 146). The molecular formula 

C27H38N2O2 was based on the ESI-MS (Figure 115, page 245) data [M+H]+ 

423.40, which corresponds to the calculated mass of the compound. The IR 

spectrum (Figure 116, page 246) showed characteristic absorption bands (cm-1), 

at 3391 (hydrazone NH), 1720 (ester carbonyl), 1453 (methylene C-H), 1147 

(ether carbon oxygen), 754, 697 (aromatic ring C-H). 

The 1H NMR spectrum (Figure 117, page 247) of 3f revealed several key 

signals that helped in the determination of its structure. The 1H NMR spectral data 

is found in Table 24, page 154 showed resonance at δ 0.66, δ 1.06 and δ 1.22, 

assigned to 3CH3 at H20, H18 and H17 respectively. Multiplet at δ 2.55 (J 17.5 

and 2.8 Hz, 1H), was attributed to 1H at H15 and the two doublet at δ 5.1 and δ 

5.2, with 12.45 coupling constant were assigned to 2H at H7′′. A singlet observed 

at δ 7.4 corresponded to 5H at (H2′′ to H6'′). 

The 13C NMR spectrum (Figure 118, page 248) showed 25 signals. The 

spectral data outlined in Table 31, page 161. The signals visible at δ 128.2 (C2′', 

C6′') and δ 128.4 (C3′', C5′'), in benzoate ring corresponds to two carbons each 

totaling 27 carbons. The hydrazone resonance appeared at δ 164.4 (C16). The 
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carboxylic carbon (C19), resonance appeared at δ 177.0. The benzyl group was 

evidenced by the presence of the aromatic carbons at δ 136.1 (C1′'), δ 128.2 

(C2'′, C6′'), δ 128.4 (C3'′, C5'′), δ 128.0 (C4′'), and methylene carbon unit at δ 

65.9 (C7′'). The DEPT135 spectrum (Figure 119, page 249) show as five 

quaternary, seven methine, ten methylene, three methyl carbons, one carboxylic 

and one hydrazone carbon. 

 

4.26 BENZYL ESTER 16-HYDRAZONE 17-HYDROXY ISOSTEVIOL (6k) 

 

The product 6k (96 mg) new derivative was obtained as a white crystalline 

solid in 73%, yield (Scheme 5, page 148). The calculated molecular formula 

C27H38N2O3 on the basis of ESI-MS (Figure 155, page 285) data which showed the 

presence of an [M+H]+ 439.42, which corresponds to the calculated mass of the 

compound. The IR spectrum (Figure 156, page 286) revealed characteristic 

absorption bands (cm-1), at 3426 (broad band hydrazone NH and hydroxyl), 1720 

(ester carbonyl), 1656 (hydrazone C=N), 1455 (methylene C-H), 1147 (ether 

carbon oxygen), 771, 694 (aromatic ring, C-H). 

The 1H NMR (Figure 157, page 287) spectral data is shown in Table 27, 

page 157 showed the resonance at δ 0.65, and δ 1.20, were assigned to 2CH3 at 

H20 and H18, respectively. Multiplet observed at δ 2.56 (J 17.26 and 2.45 Hz), 

corresponds to 1H at H15. Doublet at δ 3.49 (J 11.10 Hz), and another doublet at 

δ 3.64 with coupling constant 11.10 Hz were assigned to 2H, at H17. Multiplet at δ 

5.09 (J 18.5, 12.6 Hz) corresponds to 1H, at H7′′. A singlet was observed at δ 7.35 

(H2′′ to H6'′), corresponds to the aromatic 5H, of the benzoate.  

The 13C NMR (Figure 158, page 288) spectral data in Table 32, page 162 

showed twenty five carbons resonance. Signals visible at δ 128.44 (C3′′, C5′′), δ 

128.20 (C2′′, C6′′), corresponds to two carbons each totaling 27 carbons. The 

multiplicity of the 27 carbons were derived from DEPT135 spectrum (Figure 159, 

page 289) as five quaternary, seven methine, eleven methylene two methyl 
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carbons, one carboxylic and one hydrazone carbon. The resonance at the δ 177.0, 

and δ 67.9 showed the presence of carbomethoxy and primary alcoholic 

functionalities at C19 and C17. The resonance visible at δ 164.8 was assigned to 

(C16). The 13C signals at δ 28.9, and δ 13.4, corresponds to 2CH3 at C20, and 

C18. The Benzyl group was confirmed by the presence of aromatic carbon at δ 

136.1 (C1′′), δ 128.2 (C2′′, C6′′), δ 128.4 (C3′′, C5′′), δ 128.0 (C4′′), and 

methylene carbon (C7′′) resonance observed at δ 66.1. 

 

4.27 16-ISOPROPYL HYDRAZONE OF ISOSTEVIOL (2f) 

 

A new compound 2f (98 mg) was obtained as a light yellow powder solid in 

84%, yield (Scheme 2, page 145). The molecular formula C24H38N2O2 was 

determined on the basis of ESI-MS (Figure 91, page 221) data showing [M]+ ion 

386.29, which corresponds to the calculated mass of the compound. The IR 

spectrum (Figure 92, page 222) showed the interested absorption band (cm-1), at 

1721 (carbomethoxy), 1658 (C=N), 1452 (methylene C-H), 1235 (carbon nitrogen), 

1170 (ether carbon oxygen).  

The 1H NMR (Figure 93, page 223) spectral data outlined in Table 23, page 

153. Analysis of the 1H NMR spectrum revealed the resonance of 5CH3 at δ 0.69, 

δ 1.13, δ 1.18, δ 1.84, and δ 2.01, at H20, H18, H17, H1′, H3′ respectively. The 

multiplet at δ 2.68 (J 18.47 and 3.20 Hz), corresponds to H15 and the singlet at δ 

3.64, was assigned to 3H (OCH3). 

The 13C NMR (Figure 94, page 224) spectral data mentioned in Table 31, 

page 161 showed 24 signals. The resonance at δ 174.3 and δ 159.1, specifies that 

ketonic carbon was reduced to hydrazone moiety at (C16), and (C2′), respectively. 

The resonance at δ 177.9 is characteristic region for the carbomethoxy 

functionality (C19). The five methyl resonance appears at δ 28.8 (C18), δ 24.9 

(C17), δ 22.2 (C1′), δ17.6 (C3′), and at δ 13.2 (C20). The DEPT135 spectrum 

(Figure 95, page 225) showed the expected multiplicity with four quaternary 
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carbons, two methine carbons, nine methylene carbons, five methyl carbons one 

carboxylic carbon, and one oxymethyl carbon. 

 

4.28 16-ISOPROPYL HYDRAZONE BENZYL ESTER OF ISOSTEVIOL (4f) 

 

A new product 4f (105 mg) was obtained as a light yellow crystalline solid in 

75% yield (Scheme 3, page 146). The molecular formula C30H42N2O2 was based 

on the ESI-MS (Figure 160, page 290) data which showed the [M+H]+ 463.39, 

which corresponds to the theoretically calculated mass of the compound. The IR 

spectrum (Figure 161, page 291) showed the interested absorption bands (cm-1), 

at 1721 (carbomethoxy), 1658 (C=N), 1453 (methylene C-H), 1147 (ether C-O), 

753, 698 (aromatic C-H). 

The 1H NMR (Figure 162, page 292) spectral data is reported in Table 27, 

page 157. The resonance observed at δ 0.63, δ 1.13, δ 1.21, δ 1.83, and δ 2.03, 

corresponding to the 5CH3 at H20, H18, H17, H1′, H3′, respectively. The multiplet 

at δ 2.63 (J 18.54 and 3.12 Hz, 2H), was assigned to 1H at H15 and another 

multiplet at δ 5.09 (J 18.98 and 12.38 Hz, 1H), was attributed to 1H at H7′′. A 

singlet appeared at δ 7.35, was assigned to 5H at H2′′ to H6'′. 

The 13C NMR (Figure 163, page 293) spectral data outlined in Table 32, 

page 162 showed 28 carbons resonance; the signals at δ 128.2 (C2′', C6′'), and δ 

128.4 (C3′', C5′'), for benzoate ring corresponds to two carbons each, totaling of 

30 carbons. The hydrazone resonance visible at δ 174.1 and δ 158.7 

corresponding to C16 and C2′ respectively. There was a slightly upshift of 

hydrazone at C2′ due to absence of ring strain. The carboxylic carbon signal C19 

was evident at δ 177.1, and the benzyl group was evidenced by the presence of 

the aromatic carbons at δ 136.1 (C1′'), δ 128.2 (C2'′, C6′'), δ 128.4 (C3'′, C5'′), δ 

127.9 (C4′'), and methylene carbon unit at δ 65.9 (C7′'). The two methyl carbon 

resonance for C1′ and C3′ were also evident at δ 22.2, and δ 17.6. The DEPT135 

spectrum (Figure 164, page 294) showed the expected multiplicity with five 
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quaternary carbons, seven methine carbons, ten methylene carbons, five methyl 

carbons, one carboxylic carbon, and two hydrazone carbons. 

 

4.29 16-ISOPROYL HYDRAZONE BENZYL OF 17-HYDROXY ISOSTEVIOL-

ESTER (7K) 

 

A new compound 7k (94 mg) was isolated as a light yellow solid in 65%, 

yield (Scheme 5, page 148). The molecular formula C30H42N2O3 was based on the 

ESI-MS (Figure 165, page 295) data which showed the [M+H]+ 479.50, which 

corresponds to the calculated mass of the compound. The IR spectrum (Figure 

166, page 296) display the interested absorption bands (cm-1), at 3426 (broad 

band hydrazone NH, and hydroxyl OH), 1720 (ester carbonyl), 1656 (C=N), 1455 

(methylene C-H), 1147 (ether carbon oxygen), 771, 694 (aromatic C-H). 

The 1H NMR (Figure 167, page 297) spectral data reported in Table 27, 

page 157 displayed the basic skeleton resonance at δ 0.66, δ 1.22, corresponding 

to 2CH3 at H20, H18. Two singlet’s visible at δ 1.89, and δ 2.06, correspond to 

2CH3 at H1′, H3′ of isopropyl hydrazone moiety. The multiplet visible at δ 2.80 (J 

18.7 and 3.0 Hz), corresponds to 1H at H15 and another doublet at δ 3.7 (J 10.8 

Hz), was assigned to 1H at H17. Multiplet at δ 5.11 (J 18.5, 12.5 Hz) corresponds 

to 1H at H7′′. A singlet was also observed at δ 7.4 (H2′′ to H6'′), corresponds to 

the aromatic 5H of the benzoate. 

The 13C NMR (Figure 168, page 298) spectral data shown in Table 32, 

page 162 exhibited twenty eight carbons signals. The resonance at δ 128.44 (C3′′, 

C5′′), and δ 128.20 (C2′′, C6′′), corresponds to two carbons each, totaling 30 

carbons. The carbons multiplicity were derived from DEPT135 spectrum (Figure 

169, page 299) show five quaternary, seven methine, eleven methylene and four 

methyl, two hydrazone carbons and one carboxylic carbon. The signals at δ 177.9, 

and δ 67.9 were attributed to the carbomethoxy and primary alcoholic 

functionalities at C19 and C17. Two hydrazone carbons resonance visible at δ 
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177.0 and δ 162.2 was assigned to C16 and C2' respectively. The signals 

detected at δ 28.9, and δ 13.5 corresponds to 2CH3 at C20, and C18 and the 

resonance at δ 18.0, and δ 25.1 corresponds to 2CH3 at C1′ and C3′. The benzyl 

group was confirmed by the presence of aromatic carbons at δ 136.1 (C1′′), δ 

128.4 (C3′′, C5′′), δ 128.2 (C2′′, C6′′), δ 128.0 (C4′′), and methylene carbon (C7′′), 

resonance observed at δ 65.9.  

 

4.30 2, 4-DINITRO PHENYL HYDRAZONE OF ISOSTEVIOL (2g) 

 

A known product 2g (80 mg) was isolated as a yellow crystalline solid in 

70%, yield (Scheme 2, page 145). The molecular formula C26H34N4O6 was 

determined on the basis of ESI-MS (Figure 170, page 300) data which showed the 

[M-H]+ ion 497.36, related to the calculated mass of the compound. The IR 

spectrum (Figure 171, page 301) showed characteristic absorption bands (cm-1), 

at 3315 (hydrazone, N-H), 1692 (ester carbonyl), 1618 (aromatic ring), 1517 (NH). 

The 1H NMR (Figure 172, page 302) spectral data found in Table 26, page 

156 showed the characteristic signals of basic isosteviol skeleton. The 3CH3 

signals were observed at δ 0.92, δ 1.19 and δ 1.28 at H20, H18 and H17 

respectively, multiplet visible at δ 2.65 (J = 18.69 and 3.65 Hz, 1H), was assigned 

to 1H at H15. The doublet observed at δ 7.80 (J = 9.61Hz), was assigned to 1H at 

H6′ while the doublet at δ 8.96 (J = 2.52 Hz), was assigned to 1H at H3′. Multiplet 

visible at δ 8.11 (J = 9.66 and 2.55 Hz), was attributed to 1H at H5′. 

The 13C NMR (Figure 173, page 303) spectral data shown in Table 32, 

page 162 showed twenty five carbons signals, where resonance at δ 39.55 (C1, 

C15), corresponds to two carbons, totaling 26 carbons. The carbons multiplicity 

were derived from DEPT135 spectrum (Figure 174, page 304) show seven 

quaternary, five methine, nine methylene three methyl carbons, one hydrazone 

carbon and one carboxylic carbon. The carboxylic resonance appears at δ 184.4 

(C19). The formation of the 2, 4-dinitro phenyl hydrazone moiety is evidenced by 
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the resonance visible at δ 171.7 (C16). The 2, 4-dinitro phenyl hydrazone group 

was confirmed by the resonance of the carbons of 2, 4-dinitro benzene group at δ 

144.9 (C1'), δ 137.3 (C2'), δ 129.5 (C3'), δ 128.4 (C4'), δ 123.4 (C5'), and δ 116.2 

(C6'). 

 

4.31 4-NITRO PHENYL HYDRAZONE OF ISOSTEVIOL (3g) 

 

The compound 3g (70 mg) a new derivative was isolated as a yellow 

crystalline solid in 51%, yield (Scheme 2, page 145). The molecular formula, 

C26H35N3O4, was deducted from the ESI-MS (Figure 175, page 305) data which 

showed the presence of an [M]+ ion 452.36 corresponding to the calculated mass 

of the compound. The IR spectrum (Figure 176, page 306) showed the absorption 

bands (cm-1), at 3319 (hydrazone, N-H), 1693 (ester carbonyl), 1595 (aromatic 

C=C), and 1322 (N-O). 

The 1H NMR (Figure 177, page 307) spectral data found in Table 26, page 

156 revealed the presence of 3CH3 resonance at δ 0.89, δ 1.19 and δ 1.30, at 

H20, H18 and H17, respectively. The doublet at δ 7.06 (J 9.12 Hz, 2H), was 

assigned to 2H at H2′, H6′. The doublet at δ 8.15 (J 9.12 Hz, 2H), was attributed to 

2H at H3′ and H5′. 

The 13C NMR (Figure 178, page 308) spectral data shown in Table 32, page 

162 exhibited 24 carbons resonance, where the signals at δ 126.13 (C3′, C5′), and 

δ 111.41 (C2′, C6′), corresponds to two carbons, totaling 26 carbons. The 

carboxylic functionality observed at δ 184.0 (C19). The formation of the 4-nitro 

phenyl hydrazone is evidenced by the presence of a signal at δ 163.5 (C16). The 

4-nitro phenyl hydrazone group was evidenced by the presence of the carbons of 

4-nitrobenzene group at δ 139.6 (C1'), δ 111.4 (C2'), δ 126.1 (C3'), δ 150.6 (C4'), 

δ 126.1 (C5'), and δ 111.4 (C6'). The carbons multiplicity were derived from 

DEPT135 spectrum (Figure 179, page 309) show six quaternary, six methine, nine 



RESULTS AND DISCUSSION 

 

 

111 

methylene three methyl carbons, one hydrazone carbon and one carboxylic 

carbon. 

 

4.32 2, 4-DINITRO PHENYL HYDRAZONE BENZYL ESTER ISOSTEVIOL (4g) 

 

The product 4g (80 mg) a new derivative was recovered as a yellow 

crystalline solid in 45%, yield (Scheme 3, page 146). The molecular formula 

C33H40N4O6 was based on the ESI-MS (Figure 180, page 310) data which showed 

the presence of an [M-H]+ 587.46 which are in close agreement with the calculated 

mass of the compound. The IR spectrum (Figure 181, page 311) showed 

characteristic absorption bands (cm-1), at 3316 (hydrazone N-H), 1719 (ester 

carbonyl), 1619 (aromatic ring C=C), 1591 (NH), 1335 (nitrogen oxygen N-O), 

1141(ether C-O), 755, 697 (aromatic ring C-H). 

The 1H NMR (Figure 182, page 312) spectral data reported in Table 29, 

page 159 exhibited the resonance of 3CH3 at δ 0.70, δ 1.22 and δ 1.25, are the 

characteristic signals of isosteviol skeleton. Singlet observed at δ 5.15 

corresponds to 2H at methylene unit (H7′′). Another singlet visible at δ 7.42 

corresponds to aromatic 5H at (H2′′ to H6'′). Broad doublet observed at δ 7.99 (J 

9.68 Hz), corresponds to 1H (H6′). Multiplet observed at δ 8.3 (J 9.68 and 2.5 Hz), 

corresponds to 1H at H5′. Doublet at δ 9.16 with week coupling constant 2.5 Hz 

corresponds to 1H (H3′). Singlet detected at δ 10.8, was assigned to (NH). 

The 13C NMR (Figure 183, page 313) spectral data found in Table 33, page 

163 revealed the resonance of 31 carbons, the signals at δ 128.5 (C2′', C6′'), and 

δ 128.5 (C3′', C5′'), in benzoate ring, corresponds to two carbons each total 33 

carbons. The formation of the hydrazone bond with C16 was confirmed at δ 171.2. 

The carboxylic carbon resonance (C19), visible at δ 176.9. The benzyl group was 

evidenced by the presence of the aromatic carbons at δ 135.9 (C1′'), δ 128.5 

(C2'′, C6′'), δ 128.5 (C3'′, C5'′), and δ 128.2 (C4′'), and methylene carbon at δ 

66.2 (C7′'). The 2, 4-dinitro phenyl hydrazone group was confirmed by the 
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presence of aromatic carbon at δ 145.2 (C1′), δ 137.5 (C2′), δ 129.8 (C3′), δ 128.9 

(C4′), δ 123.5 (C5′), δ 116.4 (C6′). The assignments were further confirmed by 

DEPT135 spectrum (Figure 184, page 314) as eight quaternary, ten methine, ten 

methylene three methyl carbons, one hydrazone carbon and one carboxylic 

carbon. 

 

4.33 4-NITRO PHENYL HYDRAZONE BENZYL ESTER ISOSTEVIOL (5g) 

 

The product 5g (75 mg) a new derivative was obtained as a yellow 

crystalline solid in 46%, yield (Scheme 3, page 146). The molecular formula 

C33H41N3O4 was founded on the ESI-MS (Figure 185, page 315) data, [M-H]+ 

542.69, which corresponds to the calculated mass of the compound. The IR 

spectrum (Figure 186, page 316) showed the characteristic absorption bands (cm-

1), at 3320 (hydrazone N-H), 1720 (ester carbonyl), 1598 (aromatic ring C=C), 

1321 (nitrogen oxygen, N-O), 1172 (ether C-O), 752, 670, 695 (aromatic C-H). 

The 1H NMR (Figure 187, page 317) spectral data found in Table 29, page 

159 exhibited the basic resonance of isosteviol skeleton at δ 0.68, δ 1.15 and δ 

1.23, corresponds to 3CH3 at H20, H18 and H17. Doublet at δ 5.0 and δ 5.2 

having coupling constant 12.6 Hz represent methylene unit 2H at H7′′. Singlet 

visible at δ 7.36 corresponds to aromatic 5H (H2′′ to H6'′). Doublet observed at δ 

7.03 (J 9.2 Hz), corresponds to 2H (H2′, H6′). Another doublet visible at δ 8.13 (J 

9.3 Hz,), corresponds to 2H (H3′, H5′). Singlet at δ 9.04 corresponds to (NH).  

The 13C NMR (Figure 188, page 318) spectral data mention in Table 33, 

page 163 showed 29 carbons signals, the resonance at δ 128.0 (C2′', C6′'), and δ 

128.5 (C3′', C5′'), in benzoate ring, and at δ 111.4 (C2′, C6′), δ 126.2 (C3′, C5′), in 

p-nitro phenyl hydrazone correspond to two carbons each total 33 carbons. The 

formation of the hydrazone bond at C16 was confirmed at δ 163.5. The carboxylic 

carbon (C19), resonance visible at δ 177.0 and the benzyl group was evidenced 

by the presence of the aromatic carbons at δ 136.2 (C1′'), δ 128.2 (C2'′, C6′'), δ 
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128.5 (C3'′, C5'′), δ 128.0 (C4′'), and for the methylene carbon at δ 65.9 (C7′'). The 

p-nitro phenyl hydrazone group was confirmed by the presence of aromatic carbon 

resonance at δ 139.6 (C1′), δ 111.4 (C2′, C6′), δ 126.2 (C3′, C5′), δ 150.5 (C4′). 

The assignment of the observed signals in the 13C NMR spectrum was confirmed 

by comparison with the spectrum DEPT135 (Figure 189, page 319) as seven 

quaternary, eleven methine, ten methylene three methyl carbons, one hydrazone 

and one carboxylic carbon 

 

4.34 2, 4-DINITRO PHENYL HYDRAZONE 17-HYDROXY ISOSTEVIOL (5m) 

 

The product 5m (88 mg) a new derivative was obtained as a yellow 

crystalline solid in 57%, yield (Scheme 6, page 149). The calculated molecular 

formula C26H34N4O7 was the based on ESI- MS (Figure 190, page 320) data, [M-

H]+ 513.29, corresponding to the calculated mass of the compound. The IR 

spectrum (Figure 191, page 321) showed characteristic absorption bands (cm-1), 

at 3432 (prim hydroxyl OH), 3341 (hydrazone N-H), 1692 (carbonyl ester), 1618, 

1591 (aromatic ring C=C), 1518, 1337 (nitrogen oxygen N-O). 

The 1H NMR (Figure 192, page 322) spectral data found in Table 26, page 

156 showed the resonance at δ 0.94, δ 1.30, corresponds to 2CH3 at H20 and 

H18 respectively. Multiplet observed at δ 2.97 (J 18.23 and 2.05 Hz), was 

attributed to 1H at H15. The doublet of doublets visible at δ 3.78 (J 21.3, 11.50 

Hz), was assigned to 1H at H17. The 2, 4-dinitro phenyl hydrazone moiety was 

characterized by the doublet at δ 7.70 (J 9.58 Hz, H6′). The multiplet δ 8.19 (J 

9.63 and 2.54 Hz), corresponds to 1H at H5′. The doublet observed at δ 8.99 (J 

2.53 Hz), was assigned to 1H at H3′ and the singlet visible at δ 10.7 corresponds 

to hydrazone proton (-NH). 

The 13C NMR (Figure 193, page 323) spectral data outlined in Table 32, page 

162 displayed twenty six carbons signals. The hydrazone functionality resonance 

was observed at δ 170.9 (C16). The rest of twenty four carbons multiplicities were 
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derived from the DEPT135 spectrum (Figure 194, page 324) as seven quaternary, 

five methine, ten methylene, two methyl carbons, one carboxylic and one 

hydrazone carbon. The signals at δ 183.7 and δ 66.4 were assigned to the 

carbomethoxy and primary alcoholic functionalities (C20 and C17), respectively. 

The signals at δ 28.9 and δ 12.9 correspond to 2CH3 at C20, and C18, 

respectively. The 2, 4-dinitro phenyl hydrazone moiety was confirmed by the 

presence of aromatic carbon resonances at δ 144.5 (C1′), δ 137.7 (C2′), δ 129.9 

(C3′), δ 128.8 (C4′), δ 123.4 (C5′), δ 115.8 (C6′). 

 

4.35 2, 4-DINITRO PHENYL HYDRAZONE BENZYL ESTER 17-HYDROXY 

ISOSTEVIOL (7m) 

 

The product 7m (73 mg) a new derivative was recovered as a yellow 

crystalline solid in 40%, yield (Scheme 6, page 149), the calculated molecular 

formula C33H40N4O7 on the basis of ESI-MS (Figure 195, page 325) data showed 

the presence of an [M-H]+ 603.39, which corresponds to the calculated mass of 

the compound. The IR spectrum (Figure 196, page 326) showed characteristic 

absorption bands (cm-1), at 3315 (broad band for hydrazone NH and alcohol, OH), 

1720 (ester carbonyl), 1618 (aromatic ring, C=C), 1517 (aromatic-NO2), 1334 

(nitrogen oxygen N-O), 1143 (ether C-O), 754, 697 (aromatic C-H). 

The 1H NMR (Figure 197, page 327) spectral data found in Table 29, page 

159 revealed the resonance at δ 0.66, and δ 1.22, corresponds to 2CH3 at H20, 

H18. The multiplet at δ 2.1 (J 17.20 and 2.76 Hz), was assigned to H15 and the 

doublet of doublet observed at δ 3.73 (J 18.20 and 11.40 Hz), was attributed to 

H17. The singlet at δ 5.12 corresponds to the methylene 2H at H7′′, of benzyl 

group. A singlet was observed at δ 7.37 (H2′′ to H6'′), corresponding to the 

aromatic 5H protons of the benzoate. The signals relative to 2, 4-dinitro phenyl 

hydrazone moiety were evident at δ 7.78 (d, J 9.54 Hz, H6′), at δ 8.31 (J 9.68 and 
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2.51 Hz, H5′), and δ 9.14 (J 2.58 Hz, H3′). The singlet at δ 10.8 is characteristic 

resonance of hydrazone proton (–NH). 

The 13C NMR (Figure 198, page 328) spectral data reported in Table 33, 

page 163 showed thirty one carbons signals. The signals at δ 128.6 (C2′′, C6’′), 

and δ 128.5 (C3'′, C5’′), corresponds to two carbons each, totaling 33 carbons. 

The thirty three carbons multiplicities were derived from the DEPT135 spectrum 

(Figure 199, page 329) as eight quaternary carbons, ten methine carbons, eleven 

methylene carbons, two methyl carbons, one hydrazone and one carboxylic 

carbon. The signal at δ 176.8 and δ 65.5 were attributed to the carbomethoxy and 

primary alcoholic functionalities at C19 and C17, respectively. The signals at δ 

28.9 and δ 12.9 correspond to 2CH3 at C20, and C18. The benzyl group was 

confirmed by the presence of aromatic carbon at δ 135.9 (C1′′), δ 128.6 (C2′′, 

C6′′), δ 129.5 (C3′′, C5′′), δ 128.2 (C4′′), and methylene carbon (C7′′), resonance 

observed at δ 66.1. The 2, 4-dinitro phenyl hydrazone group was evidenced by the 

presence of aromatic carbon at δ 144.7 (C1′), δ 137.9 (C2′), δ 130.1 (C3′), δ 129.2 

(C4′), δ 123.5 (C5′), δ 115.9 (C6′). 

 

4.36 4-NITRO PHENYL HYDRAZONE 17-HYDROXY OF ISOSTEVIOL (6m) 

 

The product 6m (69 mg) a new derivative was recovered as a yellow 

crystalline solid in 49%, yield (Scheme 6, page 149). The molecular formula 

C26H35N3O5 derived from the ESI-MS (Figure 200, page 330) data, [M-H]+ 468.39, 

which corresponds to the calculated mass of the compound. The IR spectrum 

(Figure 201, page 331) showed characteristic absorption bands (cm-1), at 3527 

(primary hydroxyl), 3341 (hydrazone, N-H), 1696 (carboxylic carbonyl), 1600 

(aromatic ring). 

The 1H NMR spectral (Figure 202, page 332) data reported in Table 26, 

page 156 revealed the resonance at δ 0.87, δ 1.21 is related to 2CH3 at H20, and 

H18 respectively. Multiplet at δ 2.97 (J 18.23 and 2.86 Hz), corresponds to 1H at 
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H15 and the doublet visible at δ 3.66 (J 7.36 Hz), was assigned to 1H at H17. The 

4-nitro phenyl hydrazone moiety was characterized by the doublet at δ 7.18 (J 

9.29 Hz, 2H), relative to H2′ and H6′. Another doublet visible at δ 8.11 (J 9.34 Hz, 

2H), was assigned to 2H at H3′ and H5′. 

The 13C NMR (Figure 203, page 333) spectral data found in Table 32, page 

162 showed twenty six signals. The hydrazone functionality resonance was 

observed at δ 162.7 (C16). The rest of carbons multiplicities were derived from the 

DEPT135 spectrum (Figure 204, page 334) as a six quaternary, six methine, ten 

methylene, two methyl carbons, one hydrazone, and one carboxylic carbon. The 

signals at δ 178.1 and δ 66.1 show the presence of carbomethoxy and primary 

alcoholic functionalities at C20 and C17. The resonance at δ 28.8 and δ 12.9 

corresponds to 2CH3 at C20 and C18. The 4-nitro phenyl hydrazone group was 

confirmed by the presence of aromatic carbons at δ 138.8 (C1′), δ 111.1 (C2′, 

C6′), δ 125.6 (C3′, C5′), δ 151.5 (C4′). 

 

4.37 4-NITRO PHENYL HYDRAZONE BENZYL ESTER 17-HYDROXY 

ISOSTEVIOL (8m) 

 

The product 8m (87 mg) a new derivative was obtained as yellow crystalline 

solid in 51%, yield (Scheme 6, page 149). The molecular formula C33H41N3O5 

derived from the ESI-MS (Figure 205, page 335) data, [M]+ 559.29, which 

corresponds to the calculated mass of the compound. The IR spectrum (Figure 

206, page 336) showed the interested absorption bands (cm-1), at 3472 (broad 

band for hydroxyl OH, and hydrazone NH), 1727 (ester carbonyl), 1458 

(methylene C-H), 1320 (hydroxyl), 1147 (ether C-O), 753, 697 (aromatic ether C-

H). 

The 1H NMR (Figure 207, page 337) spectral data outlined in Table 29, 

page 159 showed the resonance at δ 0.69, δ 1.23 was assigned to 2CH3 at H20, 

H18 respectively. Multiplet visible at δ 2.73 (J 17.5 and 2.35 Hz), corresponds to 

1H at H15 and singlet at δ 3.69 was assigned to H17. Two doublets visible at δ 5.0 
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and δ 5.2 (J 12.6 Hz) correspond to 2H at (H7′′), of benzyl group. The 4-nitro 

phenyl hydrazone moiety was characterized by the doublet at δ 6.95 (J 9.1 Hz, 

2H), relative to 2H at H2′ and H6′. A singlet was observed at δ 7.37 (H2′′ to H6'′), 

corresponding to the aromatic 5H protons of the benzoate. Another doublet 

detected at δ 8.14 (J 9.1 Hz, 2H), was assigned 2H at to H3′ and H5′. 

The 13C NMR (Figure 208, page 338) spectral data found in Table 33, page 

163 showed twenty nine carbons signals. The hydrazone functionality resonance 

was observed at δ 163.6 (C16). The signals at δ 128.5 (C2′′, C6'′), and δ 128.0 

(C3'′, C5'′), and δ 111.5 (C2′, C6′), δ 126.2 (C3′, C5′), corresponds to two carbons 

each, totaling 33 carbons. The rest of carbons multiplicities were derived from the 

DEPT135 spectrum, (Figure 209, page 339) as seven quaternary, eleven methine, 

eleven methylene two methyl one carboxyl, and one hydrazone carbons. The 

signals at δ 176.9 and δ 67.2 showed the presence of carbomethoxy and primary 

alcoholic functionalities at C20 and C17. The signals observed at δ 28.9, and δ 

13.6 corresponds to 2CH3 at C20 and C18. The 4-nitro phenyl hydrazone group 

was confirmed by the presence of aromatic carbon at δ 140.1 (C1′), δ 111.5 (C2′, 

C6′), δ 126.2 (C3′, C5′), δ 149.8 (C4′). The benzyl group was confirmed by the 

presence of aromatic carbon at δ 136.2 (C1′′), δ 128.5 (C2′′, C6′′), δ 128.0 (C3′′, 

C5′′), δ 128.0 (C4′′), and methylene carbon (C7′′), resonance observed at δ 65.9. 
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4.38 BIOASSAYS 

 

4.38.1 ANTIMALARIAL ACTIVITY 

 
In an initial screening, steviol and isosteviol along with twenty derivatives 

were tested against Plasmodium falciparum W2 (chloroquine-resistant), at two 

different concentrations, 25 and 50 µg/mL. The percentage of growth reduction 

was determined and the IC50 values were calculated. Eighteen out of the twenty 

two samples were found inactive. Compounds 2g (IC50 = 21.06 µg / mL), 3g, 

(IC50 = 17.50 µg / mL), 5m (IC50 = 18.80 µg / mL), and 6m, (IC50 = 22.58 µg/mL), 

were considered moderately active. Dose-response curves of samples tested 

against blood parasites cycle of P. falciparum (W2 strain), showing the values of 

the inhibitory concentration of 50% of growth (IC50). Interestingly, the results 

shown in Table 16 (page 119), chemical modification made at C16, in primary 

skeleton of isosteviol and 17-hydroxy isosteviol lead to increase anti-malarial 

activities. The isosteviol skeleton having one molecule of 2, 4-dinitro phenyl 

hydrazone or 4-nitro phenyl hydrazone at C16 with free carboxylic acid shows 

moderate anti-plasmodic activity against P. falciparum W2 (chloroquine-

resistant). Anti-plasmodial activity seemed to be influenced by the introduction of 

hydrazone functionality in the parent structure of isosteviol or 17-hydroxy 

isosteviol. Analogues having hydrazone substituent in the D-ring display better 

anti-malarial activity, while presence of other functional groups such as hydroxyl, 

oxime, lactone, at C16, C15 and ester 19-O (carboxylic acid ) shows reduced 

activities having IC50, greater than 50 µg/mL, and hence are consider to be 

inactive. 
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Table 16: Anti-malarial activity of the tested samples (IC50, µg/mL, mean±SD). 

 

S IC50 Classification S IC50 Classification 

2g 21.06±3.15 Moderately 

active 

3c >50 Inactive 

3g 17.50±4.83 Moderately 

active 

5i >50 Inactive  

5m 18.80±6.00 Moderately 

active 

1d >50 Inactive 

6m 22.58±4.92 Moderately 

active 

4h >50 Inactive 

1a >50 Inactive 5j >50 Inactive 

2h >50 Inactive 1e >50 Inactive 

1b >50 Inactive 2a >50 inactive 

3h >50 Inactive 5h >50 Inactive 

3a >50 Inactive 2f >50 Inactive  

3b >50 Inactive 1f >50 Inactive 

1c >50 Inactive 5l >50 Inactive 

Chloroquine     0,145 ±0,00            very active 
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4.38.2 ANTI-TUMOR ACTIVITY 

 

Compounds 1c, 1f, 2g, 2f, 3g, 5m 6m, 5k, and 5i were evaluated in three 

human cell lines; lung carcinoma (A549), human brain glioma cell lines (T98MG), 

human glioblastoma-astrocytoma, and epithelial-like cell line (U87MG). The cells 

were exposed to different concentrations of compounds (10–50 µmol.L-1), and 

then cellular viability was determined by MTT. The modifications made at C16 

and C19 were designed to evaluate the influence of oxime, hydrazone, 

functionality and presence of polar or lipophilic groups (such as carboxylic acids, 

aromatic rings) on activity. The experimental results showed that compounds 

having oxime, hydrazone, functionality show improved antiproliferative activity 

then the parent molecule. 

It was observed that the presence of hydrazone and oxime fragments at 

C16 potentiate the antiproliferative activities of the molecules, the compound 1c, 

1f and 2f demonstrate much similar inhibition at 10 µM, 25 µM and 50 µM 

concentration in human cancer cell line glioblastoma-astrocytoma, epithelial 

(U87MG), while compound 2g, 3g, and 5m display favorable cytotoxicity in 

(U87MG), cell line. The compound 6m 5k and 5j show limited cytotoxicity in 

(U87MG), cell line. These finding suggest that oxime and hydrazone moiety at 

C16 demonstrate impactful cytotoxicity from their parent molecule (Figure 29, 

page 121). 

Bioscreening results of compound 1c, 5j, and 1f, 2f, 5m as shown in 

(Figure 30, page 121), having oxime and hydrazone fragments respectively 

demonstrate inhibitory activities against human brain glioma cell lines (T98G). 

The compounds 2g, 1f and 5m having hydrazone display favorable cytotoxicity 

at higher concentration then the other analogues. The compounds 6m and 5k 

display weak inhibitory activities in T98G cell line but the results demonstrate 

that these molecules are much better cytotoxic then the parent molecules. 
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Figure 29: In vitro antitumor activities of isosteviol derivatives in human 

glioblastoma-astrocytoma, epithelial-like cell line (U87MG). 
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Figure 30: In vitro antitumor activities of isosteviol derivatives human brain glioma 

cell lines (T98MG). 
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Figure 31: In vitro antitumor activities of isosteviol derivatives human lung 

carcinoma (A549). 

The in vitro bioscreening results of nine derivatives shown in Figure 31. 

Nearly all derivatives showed higher cytotoxicity than the parent compound 

isosteviol in human lung carcinoma (A549). The results in the Figure 31 

demonstrate that compound 2g, 1f, and 2f display better cytotoxicity at higher 

concentration in A549 cell line, while compounds 6m, 5k and 5j display nearly 

same cytotoxicity. The compound 1c, 3g and 5m showed limited cytotoxicity and 

are consider to be inactive. 

 



RESULTS AND DISCUSSION 

 

 

123 

4.38.3 ANTI-TRYPANOSOMA CRUZI ACTIVITY 

 

The present study report the biological potential of ten (10) semi synthetic 

derivatives of steviol, isosteviol and is aimed at the evaluation of the anti-

Trypanosoma cruzi. The results are shown in Table 17. Only compound 1c 

showed moderate activity, against the epimastigotes form (IC50 167.9 µ), but the 

compound 1c was found highly cytotoxic when evaluated in Vero cells (selectivity 

index SI = 0.81). The compound was further evaluated against cell-derived 

trypomastigote forms, but the results in Table 17 shows weak activity of 1c against 

the developmental form of the parasite (IC50/24h of 106.08 µM, SI = 1.27). 

 

Table 17: In vitro biological activity of isosteviol derivatives on T. cruzi. 

 

 IC50/24h  SI 

A) Epimastigotes    

1c 167.9 135.32 0.81 

2g >400 NT  

3g >400 NT  

2f >500 NT  

1f >600 NT  

5m >700 NT  

6m >700 NT  

5k >1400 NT  

5j >2300 NT  

1b >18,000 NT  

Benznidazole 45 3954.3 87.87 

B) Trypomastigotes    

1c 106.08 135.32 1.27 

Benznidazole  3954.3  

        SI: (selectivity index), NT: (Not tested) 
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All other derivatives having hydrazone, hydroxyl fragments at C15 and C16 with 

free carboxylic acid and the ester derivatives at C19 were active at their highest 

concentration but fail to inhibit of T. cruzi at lower concentration. The results show 

that only isosteviol with oxime moiety at C16 show moderate activity in both form 

of T. cruzi, while other functional groups either at C15, C16, and C19 was inactive. 

 

4.38.4 ANTI-LEISHMANIASIS ACTIVITY 

 

This study considers the biological potential of the steviol and isosteviol 

derivatives, and is aimed at the evaluation of the anti-Leishmaniasis activity of 

seven semi synthetic derivatives with hydrazone moiety were assayed in vitro 

against two species such as L. braziliensis and L. amazonensis.  

 

Table 18: In vitro activity of isosteviol and 17-hydroxy isosteviol derivatives in 

Leishmaniasis species (IC50, µg/mL). 

 

 
 

L. amazonensis L. braziliensis 

24 hr. 48hr 24 hr. 48 hr. 

2g 1824 1044 2979 1861 

3g 1151 543 1617 1208 

2f 77939 9078 870860 3.46 e+006 

1f 9263 4232 19749 2406 

5m 602.4 275.8 942.1 354 

6m 548 302.2 926 432 

5k 938.8 632.0 17838 2539 
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The results are listed in Table 18, page 124. It highest concentration the 

compound 5m and 6m show inhibition against both strains, The results show that 

modification made at C16 has positive impact on the Leishmaniasis activity. While 

the other five compound don’t show inhibition against both strains. These results 

showed that derivatives having hydrazone functionality at C16 with free carboxylic 

acid at C19 and its ester derivatives were inactive in both strains of Leishmaniasis 

showing high IC50 value. 

 

4.38.5 DOCKING ANALYSIS WITH Corynebacterium diphtheriae SORTASES 

PROTEINS 

 

A recent trend in the search for new drugs is it the in silico determination of 

proteins–ligand docking. Computer software may be able to determine which 

ligand molecules provide the best fit to the active site near proteins surface by 

adjusting some algorithm’s function. The best docking is involves lower energy 

(¨Ord¨og & Grolmusz., 2008). 

Corynebacterium diphtheriae is the causative agent of pharyngeal 

diphtheriae. They possess very important transpeptidases; e.g. sortase proteins, 

which help a majority of the Gram +ve bacteria in decorating the surface with a 

diverse array of proteins that enable the microbe to effectively interact with its 

environment (Scott & Zahner., 2006). These enzymes help to polymerize and 

assemble pili proteins to construct multi-subunit hair-like fibers that extend from 

the cell surface to promote bacterial adhesion and subsequent colonization. 

Sortases helps in the polymerization of very important virulence factors by 

deploying them as surface proteins that mediates bacterial adhesion to host 

tissues, host cell entry, evasion, and suppression of the immune response as well 

as acquisition of essential nutrients (Spirig et al., 2011). The presence of different 

type of sortases proteins in the C. diphtheriae motivated a search for the treatment 
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of pharyngeal diphtheriae by considering these transpeptidases as potential drug 

targets. 

Twenty eight isosteviol derivatives were used for the docking analysis to 

check their binding affinity to those proteins. The docking protocol was used in 

order to find the binding modes of the selected compounds against the sortases 

proteins. The results showed that eight compounds (1e, 2g, 3g, 4g, 5g, 5m, 5i, 

5j), have good in silico protein-ligand interaction with all target sortase proteins 

(Table 19, page 127). They were considered to be used as potential therapeutic 

candidates for the treatment of pharyngeal diphtheriae.  

The selected analogues were tested at various concentrations, ranging 

from 1, 25, 50 and 100 µM. All the semi-synthetic analogues showed activity to 

some extent against C. diphtheriae at their highest concentration (Figure 33, page 

129), while compound 3g show better inhibition then other derivatives. The results 

show that isosteviol with hydrazone moiety show inhibition against C. diphtheriae 

while the derivative having hydroxy, oxime and ester fragments at C16, and C19 

were found inactive at lower concentration. 
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Table 19: Docking results of isosteviol derivatives with sortase (Srt) proteins of the C. diphtheria. 

 

Compounds 

Docking Results: Moldock scores and the number of hydrogen bonds 

SrtA SrtB SrtC SrtD SrtE SrtF 
MolDock 
score 

H-bonds MolDock 
score 

H-bonds MolDock 
score 

H-bonds MolDock 
score 

H-bonds MolDock 
score 

H-bonds MolDock 
score 

H-
bonds 

1a -109.644 1 -95.8812 1 -108.296 1 -94.113 X -108.271 1 -106.213 3 

1d -93.3209 1 -86.14 1 -103.333 3 -85.1104 3 -112.984 1 -93.3558 1 

2g -129.045 5 -139.508 3 -118.333 1 -135.498 2 -158.577 1 -140.176 3 

3a -141.097 2 -136.902 2 -118.325 X -113.063 X -151.086 1 -145.005 2 

3c -117.05 1 -118.275 X -103.65 1 -108.911 1 -112.294 1 -114.087 1 

1e -101.072 4 -92.8812 4 -100.606 4 -82.283 4 -109.978 3 -97.5614 3 

1f -101.819 3 -100.893 1 -97.669 1 -92.5786 1 -99.9926 4 -94.3074 1 

2f -99.9629 2 -115.433 1 -88.0048 1 -101.899 X -99.6108 3 -111.599 X 

3g -112.242 3 -148.841 3 -130.111 2 -118.547 1 -135.274 4 -126.458 3 

5m -133.706 5 -145.339 1 -122.861 6 -119.362 3 -141.599 3 -143.337 3 

6m -121.698 2 -123.584 4 -98.9196 1 -128.983 X -126.02 3 -124.036 3 

5k -92.7654 1 -97.0916 7 -94.5068 4 -85.8314 X -91.3941 3 -122.946 4 

4h -96.1753 4 -91.5551 3 -96.3454 3 -72.373 X -86.0154 2 -88.2836 5 

5i -90.0133 3 -103.929 2 -75.5317 4 -96.745 4 -104.289 2 -88.9098 1 

5j -91.0568 2 -98.8959 4 -78.3456 2 -88.267 2 -105.816 3 -
92.75.37 

4 

2d -103.661 1 -111.787 1 -127.241 1 -130.015 X -125.387 X -122.086 X 

3f -111.75 1 -120.905 1 -126.79 4 -119.886 1 -131.845 1 -134.108 1 

5g -146.347 3 -147.027 1 -168.48 3 -166.435 2 -151.747 3 -165.615 1 

4g -163.785 4 -161.075 5 -155.417 3 -156.698 3 -157.93 2 -159.385 3 
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Figure 32: 3D cartoon representation of the docking analyses of compound 3g 

with C. diphtheriae sortase proteins where figure A): sortase (Srt) proteins B, while 

figure B) represent sortase (Srt) proteins A. 
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Figure 33: Evaluation of anti Corynebacterium diphtheriae activity of isosteviol 

derivatives by disk diffusion test. 1) Disk A: correspond to compound 4g, 2) Disk 

B: correspond to compound 5m, 3) Disk C: correspond to 5j, 4) Disk D: 

correspond to 3g, 5) Disk E correspond to 5g, 6) Disk F correspond 5i, 7) Disk G, 

correspond to 1e, 8) Disk H correspond to 2g (1e, 2g, 3g, 4g, 5g, 5m, 5i, 5j) the 

disk I, correspond to the antibiotic used as positive controle. 
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5 CONCLUSION 

 

In this work, 37 derivatives of isosteviol and steviol having hydroxyl, oxime, 

hydrazone, lactone, benzyl ester and p-methoxyacetophenone ester fragments 

were synthesize in good yields and 25 of them are described here for the first time 

(2a, 2b, 2c, 2d, 2f, 3a, 3b, 3c, 3f, 3g, 3h, 4f, 4g, 5g, 5k, 5l, 5m, 5n, 6i, 6j, 6k, 6m, 

7k, 7m, 8m), with the purpose of investigating the importance of substituents at 

C15, C16 and C19 for anti-malarial activity against Plasmodium falciparum, 

antitumor, anti-Trypanosoma cruzi, anti-Leishmaniasis and anti- Corynebacterium 

diphtheriae bioassays 

The results revealed that introduction of hydrazone moiety in isosteviol or 

17-hydroxy isosteviol has beneficial inhibition activity against P. falciparum then 

the parent skeleton. 

Nine derivatives, seven containing hydrazone and two with oxime moiety, 

were selected for bioassays against tumor cells. All nine derivatives showed 

cytotoxicity against three cancer cell lines, and the most actives were 2g and 5m. 

The results specify that the introduction of hydrazone and oxime fragments in 

isosteviol increases the cytotoxicity potency of the parent molecule. 

Semi synthetic steviol/isosteviol derivatives showed weak activity against T. 

cruzi epimastigotes forms. Only compound 1c was moderately active, but was 

highly cytotoxic against Vero cells.  

Isosteviol, 17-hydroxyisoteviol and their hydrazone derivatives were inactive 

in vitro against L. braziliensis and L. amazonensis. 

All the tested 8 derivatives of isosteviol showed weak inhibition in C. 

diphtheriae while only compound 3g with hydrazone moiety show good inhibition. 

All these evidence make these compounds promising molecules to be considered 

in the search of new strategies and structure modification for the development of 

new drugs as an antiplasmodial, antitumor, anti-Trypanosoma cruzi and anti-C. 

Diphtheriae. 
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7 ANNEXES 

7.1 SCHEMES 

 

 

Scheme 1 i) 5% HCl, 1h reflux, 33%; ii) NaBH4, C2H5OH, 0 0C, 1h, 88%; iii), vii), 

viii) 2-bromo-4′-methoxyacetophenone, (CH3CH2)3N, CH3COCH3, microwave, 4 

min, 81%; iv), vi), ix) PhCH2Cl, K2CO3, CH3COCH3, 2h reflux, 82%; v) 

HONH2Cl, CH3COONa, C2H5OH 12h, 78%. 
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Scheme 2: x) H2CO 37%, C2H5OH, NaOH; xi) H2O2 (30%), CH3COOH, 72h, 25 

0C 39%; xii) PhCH2Cl, K2CO3, CH3COCH3, 2h reflux, 76%; xiii) NH2NH2.H2O, 

CH3OH, reflux, 6h, 83%; xiv) CH2N2, CH3OH, and CH3COCH3, reflux, 1h, 84%; 

xv) 4-NPH, H2SO4, H2O, C2H5OH 12h, 51%; xvi) 2, 4 DNPH, H2SO4, H2O, 

C2H5OH, 12h, 70%. 
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Scheme 3: xvii) NH2NH2.H2O, CH3OH, reflux, 6h, 84%; xviii) CH3COCH3, reflux, 

1h, 75%; xix) 2, 4 DNPH, H2SO4, H2O, C2H5OH 12h, 45%; xx) 4-NPH, H2SO4, 

H2O, C2H5OH 12h, 46%; 
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Scheme 4: xxi) NaIO4, NaOH, reflux 1h, 13%; xxii) 2-bromo-4′-

methoxyacetophenone, (CH3CH2)3N, CH3COCH3, microwave, 4 min, 78%; xxiii) 

m-chloro per-benzoic acid, DCM; 24h stirring 25 0C, 60%; xxiv) 0.5% HCl, 

CH3COCH3, 58 0C, 30 min, 64%. 
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Scheme 5: xxv) NaBH4, C2H5OH, 00C, 1h, 73%; xxvi), xxviii), xxxi) PhCH2Cl, 

K2CO3, CH3COCH3, 2h reflux, 77%, 66%, 69%; xxx), xxxii), NH2NH2.H2O, 

CH3OH, 6h reflux 86%, 73%; xxvii) HONH2Cl, CH3COONa, C2H5OH, 68%; xxix) 

H2CO 37%, C2H5OH, NaOH, 71%; xxxiii) CH3COCH3, reflux, 1h, 65%/ 
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Scheme 6: xxxv), xxxvii) 2, 4 DNPH, H2SO4, H2O, C2H5OH, 12 h, 57%, 40% 

xxiv) xxxvi) 4-NPH, H2SO4, H2O, C2H5OH, 12 h, 49%, 51%. 
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7.2 1H NMR Table 

 

Table 20: 1H NMR chemical shifts (δ, ppm), for compounds 1a-1d: multiplicity 

and coupling constants (Hz) 

1H 1a 1b 1c 1d 

12 2.17 (1H, br, d, 

J = 12.50 Hz) 

2.17 (1H, br, d,  

J = 12.40 Hz ) 

2.19 (1H, br, d,  

J = 12.67 Hz) 

2.18 (1H, br, d, 

J = 12.90 Hz) 

13     

14 1.55 ( 1H, dd, J 

= 11.30, 2.2 Hz) 

 1.34 (1H,dd, J  

= 17.5 ,3.9 Hz) 

 

15 2.63 (1H, dd, J  

= 18.6, 3.6 Hz) 

 2.98 (1H, dd, J  

= 18.3, 2.9 Hz), 

2.19 (1H, d, J  

= 13.14 Hz) 

3.89 (1H, dd, J 

= 18.7,2.6 Hz) 

16  3.85 (1H, dd, J 

= 10.2, 5.4 Hz) 

  

17 0.98 (3H, s) 1.16 (3H,s) 1.11 (3H,s) 1.17 (3H,s) 

18 1.19 (3H,s) 0.90 (3H.s) 1.2 (3H,s) 1.34 (3H.s) 

19     

20 0.68 (3H, s) 0.71 (3H, s) 0.76 (3H, s) 0.75 (3H, s) 

OMe 3.64 (3H, s) 3.62 (3H, s) 3.62 (3H, s) 3.62 (3H, s) 

 

 

 

 

 

 



ANNEXES 

 

 

151 

Table 21: 1H NMR chemical shifts (δ, ppm), for compounds 1e–2h: multiplicity 

and coupling constants (Hz). 

 

 

 

 

 

 

 

 

 

 

 

 

1H 1e 1f 1h 2h 

12  2.17 (1H, d, J  

= 12.9 Hz) 

 2.20 (1H, d, J  

= 10.9 Hz) 

13     

14   1.87 (1H, dd, J  

 = 10.8, 2.5 Hz) 

 

15 3.99 (1H, dd, J 

= 9.9, 4.9 Hz) 

2.6 (2H, dd, J  

= 17.5, 2.0 Hz) 

  

16     

17 1.15 (3H,s) 1.26 (3H ,s) 4.9 (1H, br, s) 

4.8 (1H, br, s) 

2.9 (1H, d, J = 

4.4 Hz), 2.8 (1H, 

d, J = 4.4 Hz) 

18 0.93 (3H,s) 1.08 (3H ,s) 1.19 (3H,s) 1.19 (3H,s) 

19     

20 0.74 (3H,s) 0.87 (3H ,s) 0.84 (3H,s) 0.86 (3H,s) 

OMe 3.62 (3H,s)  3.66 (3H,s) 3.64 (3H,s) 

1′ 3.46 (2H, t, J  

= 10.3 Hz) 
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Table 22: 1H NMR chemical shifts (δ, ppm), for compounds 4h–5j: multiplicity 

and coupling constants (Hz) 

1H 4h 5i 5n 5j 

12 2.20 (1H, d, J  

= 12.9 Hz) 

2.12 (2H, br, s)  2.13 (2H, br, s) 

13     

14     

15 2.68 (1H, dd, J  

= 18.9, 3.7Hz) 

 2.9 (2H, s) 2.99 (1H, dd, J 

= 18.4, 3.0 Hz ) 

16  4.2 (1H, dd, J  

= 10.5, 5.1 Hz) 

  

17 3.5 (1H, d, J  

= 10.9 Hz) 

3.45 (1H, d,  

J = 10.15 Hz), 

3.56 (1H, d,  

J = 10.15 Hz) 

3.62 (2H, s) 3.54 (1H, dd, J 

= 16.7, 10.9 Hz) 

18 1.21 (3H,s) 1.20 (3H,s) 1.16 (3H, s) 1.22 (3H,s) 

19     

20 0.71 (3H,s) 0.77 (3H,s) 0.79 (3H, s) 0.90 (3H,s) 

OMe 3.65 (3H, s) 3.66 (3H, s)   

1′   3.34 (1H, br, d, 

J = 5.6 Hz) 

 

 

 

 

 

 

 

 

 

 

 

 



ANNEXES 

 

 

153 

Table 23: 1H NMR chemical shifts (δ, ppm), for compounds 5k–2b: multiplicity 

and coupling constants (Hz). 

 

* 

 

 

 

 

 

 

 

1H 5k 2f 2a 2b 

15 2.88 (1H, br, d, 

J = 17.9 Hz) 

2.7 (1H, dd, J  

= 18.5, 3.2 Hz) 

2.55 (1H, dd, J 

= 18.7, 3.6 Hz) 

 

16    3.86 (1H, dd, J 

= 9.6, 5.6 Hz) 

17 3.57 (2H, br, s) 1.84 (3H, s) 1.21 (3H, s) 1.21 (3H, s) 

18 1.18 (3H, s) 1.13 (3H, s) 0.97 (3H, s) 0.93 (3H, s) 

19     

20 0.94 (3H, s) 0.69 (3H, s) 0.60 (3H, s) 0.70 (3H, s) 

1′  1.83 (3H,s)   

2′     

3′  2.01 (3H, s)   

OMe  3.64 (3H, s)   

Aromatic 

H2′′-H6′′ 

  7.3 (5H, s) 7.3 (5H, s) 

-CH2- 

(H7′′) 

  5.1 (1H, dd,  

J = 17.6, 12.5 

Hz) 

5.1 (1H, d, J  

= 12.4 Hz), 5.0 

(1H, d, J = 12.4 

Hz) 
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Table 24: 1H NMR chemical shifts (δ, ppm), for compounds 2c-3f: multiplicity 

and coupling constants (Hz). 

1H 2c 2d 3f 

12 2.24 (1H, d, J  

= 11.6 Hz) 

2.22 (1H, d, J  

= 13.7 Hz) 

 

14    

15 2.94 (1H, dd, J  

= 18.6, 3.0 Hz) 

3.01 (1H, dd, J  

= 18.8, 2.4 Hz) 

2.55 (1H, dd, J  

= 17.5, 2.8 Hz) 

16    

17 1.24 (3H,s) 1.35 (3H,s) 1.22 (3H ,s) 

18 1.13 (3H,s) 1.22 (3H.s) 1.06 (3H ,s) 

19    

20 0.73 (3H, s) 0.70 (3H.s) 0.66 (3H ,s,) 

Aromatic- 

H2′′-H6′′ 

7.4 (5H, s) 7.3 (5H, s) 7.4 (5H, s) 

-CH2- (H7′′) 5.0 (1H, d, J  

= 12.5 Hz), 5.2 

(1H, d, J = 12.5 

Hz) 

5.0 (1H, d, J  

= 12.3 Hz), 5.2 

(1H, d, J = 12.3 

Hz) 

5.1 (1H, d, J = 

12.4 Hz), 5.2 (1H, 

d, J = 12.4 Hz) 

 

 

 

 

 

 

 

 



ANNEXES 

 

 

155 

Table 25: 1H NMR chemical shifts (δ, ppm), for compounds 6j-6i: multiplicity 

and coupling constants (Hz). 

1H 6j 5l 6i 

12 2.20 (1H, br, d, J  

= 13.6 Hz) 

2.24 (1H, br, d, J  

= 13.5 Hz) 

 2.16 (1H, br, J  

= 12.7 Hz) 

13    

14    

15 2.92 (1H, br, d, J  

= 18.4 Hz ) 

2.61 (1H, dd, J  

= 18.9, 3.8 Hz) 

 

16   4.11 (1H, dd, J  

= 11.3, 4.1 Hz) 

17 3.6 (2H, s) 3.5 (1H, d, J =  

11.4 Hz), 3.6 (1H, 

d, J = 11.4 Hz) 

3.33 (1H, dd, J  

= 16.9, 10.6 Hz) 

18 1.20 (3H, s) 1.24 (3H,s) 1.18 (3H, s) 

19    

20 0.69 (3H, s) 0.63 (3H,s) 0.72 (3H, s) 

Aromatic  

H2′′-H6′′ 

7.3 (5H, s ) 7.4 (5H, s)  7.4 (5H, s) 

-CH2- 

H7′′ 

5.0 (1H, d, J = 12.4 

Hz), 5.2 (1H, d, J 

 = 12.4 Hz 

5.0 (1H, d, J = 12.3  

Hz), 5.1 (1H, d, J 

 = 12.3 Hz) 

5.0 (1H, d, J = 12.4 

Hz), 5.1 (1H, d, J  

= 12.4 Hz) 
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Table 26: 1H NMR chemical shifts (δ, ppm), for compounds 2g-6m: multiplicity 

and coupling constants (Hz). 

1H 2g 3g 5m 6m 

12 2.18 (1H, br, d, 

J = 12.9 Hz) 

2.22 (1H, br, d, 

J = 12.16) 

2.20 (2H, br, s)  

15 2.6 (1H, dd, J  

= 18.7, 3.6 Hz) 

2.8 (1H, d, J  

= 16.9 Hz) 

2.98 (1H, dd, J 

= 18.3, 2.5 Hz) 

2.97 (1H, dd, J 

= 18.2, 2.8 Hz) 

16     

17 1.28 (3H,s) 1.3 (3H,s) 3.8 (1H, d, J  

= 11.4 Hz),  

3.7 (1H, d, J  

= 11.3 Hz) 

3.7 (1H, d, J  

= 10.9 Hz), 3.6 

(1H, d, J  

= 10.9 Hz) 

18 1.19 (3H, s) 1.2 (3H, s) 1.30 (3H, s) 1.21 (3H, s) 

19     

20 0.92 (3H, s) 0.90 (3H, s) 0.94 (3H, s) 0.87 (3H, s) 

1′     

2′  7.07 (1H, d, J  

= 9.1 Hz) 

 7.18 (1H, d, J  

= 9.3 Hz) 

3′ 8.9 (1H, d, J  

= 2.5 Hz) 

8.15 (1H, d, J  

= 9.1 Hz) 

9.00 (1H, d, J  

= 2.5 Hz) 

8.11 (1H, d, J  

= 9.3 Hz) 

4′     

5′ 8.1 (1H, dd, J  

= 9.6, 2.5 Hz) 

8.15 (1H, d, J  

= 9.1 Hz) 

8.2 (1H, dd, J  

= 9.6, 2.5 Hz) 

8.11 (1H, d, J  

= 9.3 Hz) 

6′ 7.80 (1H, d, J  

= 9.6 Hz) 

7.07 (1H, d, J  

= 9.1 Hz) 

7.7 (1H, d, J  

= 9.6 Hz) 

7.18 (1H, d, J  

= 9.3 Hz) 

NH 10.6 (1H,s,)  10.7 (1H, s) 9.13 (1H, s) 
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Table 27: 1H NMR chemical shifts (δ, ppm), for compounds 7k-6k: multiplicity 

and coupling constants (Hz). 

1H 7k 4f 6K 

12 2.19 (2H, s) 2.20 (1H, d, J  

= 14.8 Hz) 

2.20 (1H, br, d, J  

= 12.9 Hz) 

13    

14    

15 2.8 (1H, dd, J  

= 18.8, 3.0 Hz) 

2.63 (1H, dd, J  

= 18.5, 3.1 Hz) 

2.56 (1H, dd, J  

= 17.3, 2.4 Hz) 

16    

17 3.76 (1H, d, J  

= 10.9 Hz),  

3.55 (1H, d, J  

= 10.7, Hz) 

1.2 (3H ,s) 3.5 (1H, d, J  

= 11.0 Hz),  

3.6 (1H, d, J  

= 11.0 Hz) 

18 1.22 (3H, s) 1.12 (3H ,s) 1.20 (3H, s) 

19    

20 0.66 (3H, s) 0.63 (3H ,s,) 0.65 (3H, s) 

Aromatic 

H2′′-H6′′ 

7.4 (5H, s) 7.3 (5H, s) 7.3 (5H, s) 

-CH2- 

(H7′′) 

5.2 (1H, d, J = 

12.4 Hz), 5.1 (1H, 

d, J = 12.42 Hz) 

5.1 (1H, dd, J  

= 18.3, 12.4 Hz) 

5.0 (1H, d, J = 

12.3 Hz), 5.1 (1H, 

d, J = 12.30 Hz) 

1′ 1.9 (3H, s) 1.8 (3H,s)  

2′    

3′ 2.1 ( 3H, s) 2.0 (3H,s)  
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Table 28: 1H NMR chemical shifts (δ, ppm), for compounds 3a-3h: multiplicity 

and coupling constants (Hz). 

1H 3a 3b 3c 3h 

12 2.29 (1H, d, J 

= 13.2 Hz) 

2.17 (2H, s) 2.20 (2H,s) 2.28 (1H, d, J 

= 12.1 Hz) 

14    2.13 (1H, d, J 

= 10.6 Hz) 

15 2.65 (1H, dd, J 

= 18.7, 3.6 Hz) 

 3.9 (1H, dd, J  

= 18.5, 2.6 Hz) 

 

16     

17 1.33 (3H, s) 1.31 (3H, s) 1.36 (3H, s) 4.8 (1H, br, s), 

4.9 (1H, br, s) 

18 0.97 (3H, s) 0.91 (3H. s) 1.13 (3H, s) 1.32 (3H,s) 

19     

20 0.77 (3H ,s) 0.80 (3H.s) 0.86 (3H, s) 0.90 (3H,s) 

1′     

H2′, H6′ 7.89 (2H, d,  

J = 8.9 Hz) 

7.90 (2H, d,  

J = 8.9 Hz) 

7.93 (2H, d,  

J = 8.9 Hz) 

7.90 (2H, d,  

J = 8.9 Hz) 

H3′, H5′ 6.94 (2H, d,  

J = 9.0 Hz) 

6.95 (2H, d,  

J = 8.9 Hz) 

6.99 (2H, d,  

J = 8.8 Hz) 

6.95 (2H, d,  

J = 8.9 Hz 

8′ 5.2 (1H, d,  

J = 16.1 Hz), 

5.3 (1H, d,  

J = 16.1 Hz) 

5.2 (1H, d,  

J = 16.0 Hz),  

5.3 (1H, d,  

J = 16.0 Hz) 

5.1 (1H, d,  

J = 16.0 Hz),  

5.4 (1H, d,  

J = 16.0 Hz) 

5.2 (1H, d,  

J = 16.1 Hz),  

5.4 (1H, d,  

J = 16.1 Hz) 

9′ (OMe) 3.87 (3H, s) 3.87 (3H, s) 3.87 (3H, s) 3.87 (3H, s,) 
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Table 29: 1H NMR chemical shifts (δ, ppm), for compounds 4g-8m: multiplicity 

and coupling constants (Hz). 

1H 4g 5g 7m 8m 

12 2.2 (1H, br, d, 

J = 13.2 Hz) 

2.3 (1H, br, d, 

J = 13.2 Hz) 

2.2 (1H, br, d, 

J = 13.3 Hz) 

2.2 (1H, br, d, 

J = 12.8 Hz) 

15 2.88 (1H, d , J 

= 16.9 Hz) 

2.66 (1H, dd, J 

= 17.4, 2.5Hz) 

2.86 (1H, dd, J 

= 17.9, 2.6 Hz) 

2.73 (1H, dd, J 

= 17.5, 2.4 Hz) 

16     

17 1.22 (3H, s) 1.23 (3H, s) 3.73 (1H, dd,  

J = 17.9, 11.4 

Hz) 

3.69 (2H, s) 

18 1.19 (3H, s) 1.1 (3H, s) 1.23 (3H, s) 1.23 (3H, s) 

19     

Aromatic 7.4 (5H, s) 7.4 (5H, s) 7.4 (5H, s) 7.4 (5H, s) 

-CH2-(7′′) 5.1 (2H, s) 5.0 (1H, d,  

J = 12.6 Hz),  

5.2 (1H, d,  

J = 12.6 Hz) 

5.1 (2H, s) 5.0 (1H, d,  

J = 12.5 Hz), 

5.2 (1H, d,  

J = 12.6 Hz) 

2′  7.03 (1H, d,  

J = 9.2 Hz) 

 6.95 (1H, d,  

J = 9.2 Hz 

3′ 9.13 (1H, d,  

J = 2.5 Hz ) 

8.14 (1H, d,  

J = 9.3 Hz) 

9.1 (1H, d,  

J = 2.5 Hz) 

8.1 (1H, d,  

J = 9.2 Hz 

4′     

5′ 8.29 (1H, dd, J 

= 9.7, 2.5 Hz ) 

8.1 (1H, d, J  

= 9.3 Hz) 

8.3 (1H, dd, J 

= 9.6, 2.5 Hz) 

8.1 (1H, d, 

 J = 9.2 Hz 

6′ 7.96 (1H, d, J 

= 9.6 Hz) 

7.03 (1H, d, J 

= 9.2 Hz) 

7.8 (1H, d, J = 

9.6 Hz) 

6.9 (1H, d,  

J = 9.2 Hz 

NH 10.7 (1H, s)  10.79 (1H, s)  
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7.3 13C NMR Table 

 

Table 30: 13C NMR chemical shifts (δ, ppm) for compounds 1a—5n. 

 

13C 1a 1b 1c 1d 1e 1f 1h 2h 4h 5i 5n 

1 39.8 39.9 40.8 39.9 39.6 39.9 40.6 40.7 39.8 39.9 39.6 

2 18.8 18.9 18.8 18.8 18.9 18.9 19.1 19.0 18.9 18.9 18.8 

3 37.2 37.9 38.0 38.4 37.9 37.9 38.1 37.9 37.9 38.0 37.8 

4 43.7 43.7 43.7 43.7 43.7 43.6 43.7 43.7 43.7 43.7 43.4 

5 57.0 57.1 57.1 57.2 57.7 57.1 56.9 56.8 56.9 57.1 58.5 

6 21.6 21.7 21.7 19.5 22.1 21.7 21.8 21.8 21.7 21.7 22.1 

7 41.4 41.7 39.9 37.8 34.7 39.3 41.3 41.2 41.3 41.6 37.8 

8 39.3 41.9 40.6 34.8 40.8 40.8 41.6 41.5 39.6 42.5 42.6 

9 54.7 55.8 54.8 55.7 57.1 54.9 53.7 53.8 55.4 56.5 57.O 

10 37.9 37.9 37.9 37.5 38.1 38.2 39.2 39.2 38.0 38.0 38.1 

11 20.3 20.4 20.4 18.5 19.5 20.5 20.4 19.5 19.8 19.9 19.0 

12 37.8 33.7 36.7 38.6 33.1 36.3 39.2 34.7 32.1 29.3 34.9 

13 48.6 42.0 43.7 80.2 42.5 44.1 80.2 74.7 54.1 46.5 45.6 

14 54.2 55.2 56.2 47.7 54.2 56.3 47.4 45.7 48.9 50.0 49.1 

15 48.4 42.8 39.4 43.6 50.3 41.2 46.9 46.5 48.9 42.1 50.2 

16 --- 80.5 170.2 172.5 86.7 165.5 156.1 65.2 ---- 78.5 80.7 

17 19.8 24.8 22.1 28.2 24.9 22.1 102.9 48.6 65.1 71.2 68.3 

18 28.8 28.8 28.7 28.5 28.8 29.1 28.7 28.6 28.8 28.8 28.1 

19 177.7 178.1 178.0 177.5 177.9 182.4 177.9 177.8 177.7 178.0 177.1 

20 13.1 13.1 13.1 13.3 13.0 13.5 15.3 15.5 13.1 13.1 12.6 

OMe 51.2 51.1 51.1 51.2 51.2  51.1 51.1    

1′ ---- --- --- --- 64.9      63.1 
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Table 31: 13C NMR chemical shifts (δ, ppm) for compounds 5j—6j. 

 

13C 5j 5k 2f 2a 2b 2c 2d 3f 6i 6j 

1 39.8 40.2 39.9 39.8 39.9 39.8 39.8 39.8 39.8 39.8 

2 18.9 19.2 18.9 18.9 18.9 18.9 18.8 18.9 18.8 18.9 

3 37.8 38.6 37.9 37.3 38.0 38.0 37.8 37.9 37.9 37.9 

4 43.2 44.1 43.8 43.8 43.8 43.7 43.8 43.8 43.6 43.9 

5 56.7 57.4 57.2 57.2 57.3 57.2 57.3 57.3 57.1 57.2 

6 21.7 21.9 21.7 21.7 21.7 21.7 19.5 21.7 21.8 21.6 

7 36.9 36.8 39.4 41.5 41.7 40.8 38.4 39.3 41.8 37.0 

8 40.7 40.8 40.6 39.4 42.0 40.6 34.8 40.7 42.0 40.9 

9 55.4 55.6 55.0 54.6 55.7 54.8 55.7 54.9 56.5 55.6 

10 38.1 38.0 37.9 37.9 38.0 38.0 37.8 38.0 37.9 38.1 

11 19.8 19.6 20.5 20.3 20.4 20.4 18.5 20.5 19.8 19.9 

12 34.9 34.2 39.0 37.9 33.7 36.7 38.5 35.8 29.3 34.1 

13 48.9 49.1 44.2 48.6 42.0 43.8 80.2 43.9 46.9 49.4 

14 51.3 51.0 56.0 54.2 55.2 56.3 47.7 56.3 50.1 51.0 

15 40.7 41.2 41.1 48.3 42.7 39.4 43.6 41.2 42.4 40.8 

16 167.5 165.4 174.3 --- 80.5 170.2 172.5 164.4 75.5 169.2 

17 66.4 66.1 24.9 19.8 24.9 22.1 28.2 22.2 68.2 66.67 

18 28.5 28.8 28.8 28.9 28.9 28.9 28.7 28.9 28.2 28.9 

19 178.7 182.9 177.9 176.9 177.3 177.1 176.7 177.0 176.5 177.1 

20 13.0 12.9 13.2 13.3 13.3 13.2 13.5 13.4 13.1 13.3 

1′′   22.2 135.9 136.1 136.1 135.8 136.1 136.5 136.1 

2′′   159.1 128.3 128.2 128.1 128.3 128.2 128.2 128.2 

3′′   17.6 128.4 128.4 128.5 128.5 128.4 128.4 128.5 

4′    128.1 128.0 128.0 128.2 128.0 127.9 128.1 

5′′    128.4 128.4 128.5 128.5 128.4 128.4 128.5 

6′′    128.3 128.2 128.1 128.3 128.2 128.2 128.2 

7′′    65.1 65.9 65.9 66.1 65.9 65.5 65.9 
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Table 32: 13C NMR chemical shifts (δ, ppm) for compounds 5l—4f. 

 

13
C 5l 6k 2g 3g 5m 6m 7k 4f 

1 39.7 39.8 39.5 39.8 39.6 39.8 39.8 39.8 

2 18.9 18.9 18.7 18.8 18.7 18.9 18.9 18.9 

3 37.9 37.8 37.6 37.6 37.9 37.9 37.9 37.9 

4 43.9 43.9 43.6 43.7 43.6 43.2 43.8 43.9 

5 57.1 57.2 56.8 56.9 56.8 56.7 57.2 57.3 

6 21.7 21.7 21.5 21.6 21.5 21.7 21.7 21.7 

7 41.3 36.2 40.7 39.4 37.6 37.8 39.5 39.3 

8 39.6 41.4 41.4 41.4 41.5 41.1 41.3 40.6 

9 55.3 55.6 54.8 54.8 55.4 55.3 55.7 54.9 

10 38.1 38.1 38.3 38.3 38.3 38.0 38.1 38.0 

11 19.8 20.0 20.3 20.6 19.7 19.8 20.0 20.5 

12 32.1 33.9 37.4 36.6 34.3 34.5 33.9 38.9 

13 54.1 48.7 45.2 44.7 50.6 50.0 48.9 44.2 

14 48.9 51.1 55.8 55.9 50.5 50.8 50.9 55.9 

15 48.9 41.1 39.5 41.1 40.6 40.9 40.9 41.1 

16  164.7 171.7 163.5 170.9 162.7 162.2 174.1 

17 65.0 67.9 22.1 22.2 66.4 65.9 68.0 24.9 

18 28.9 28.9 28.9 29.0 28.9 28.5 28.9 28.9 

19 176.9 177.0 184.4 184.0 183.7 178.1 177.9 177.1 

20 13.2 13.5 12.8 13.6 12.9 13.1 13.4 13.4 

1′ 135.9 136.1 128.8 139.6 128.8 138.8 136.1 136.1 

2′ 128.3 128.2 137.2 111.4 137.7 111.1 128.2 128.2 

3′ 128.5 128.4 129.5 126.1 129.9 125.6 128.4 128.4 

4′ 128.1 128.0 144.9 150.6 144.5 151.5 128.0 127.9 

5′ 128.5 128.4 123.4 126.1 123.4 125.6 128.4 128.4 

6′ 128.3 128.2 116.2 111.4 115.8 111.1 128.2 128.2 

7′′ 66.1 65.9     65.9 65.9 

1       25.2 22.2 

2       177.0 158.7 

3       18.0 17.6 
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Table 33: 13C NMR chemical shifts (δ, ppm) for compounds 3a—8m. 

 

13
C 3a 3b 3c 3h 

13
C 4g 5g 7m 8m 

1 39.8 39.9 39.9 40.6 1 39.8 39.7 39.8 39.7 

2 18.9 18.9 18.9 19.1 2 18.9 18.9 18.8 18.9 

3 37.3 38.1 38.1 38.1 3 37.9 37.8 37.9 37.8 

4 44.1 44.0 43.7 44.1 4 43.8 43.9 43.8 43.9 

5 57.1 57.2 57.1 56.9 5 57.1 57.2 57.0 57.1 

6 21.6 21.7 21.7 21.9 6 21.6 21.7 21.6 21.7 

7 41.5 41.7 39.5 41.3 7 40.9 39.4 37.9 37.0 

8 39.5 41.9 40.6 41.6 8 41.4 41.4 41.5 41.7 

9 54.7 55.8 54.9 53.7 9 54.8 54.7 55.4 55.4 

10 38.1 38.1 38.1 39.4 10 38.1 38.1 38.1 38.2 

11 20.3 20.4 20.4 20.4 11 20.4 20.5 19.9 20.0 

12 38.0 33.7 36.7 39.2 12 37.4 36.4 34.2 34.1 

13 48.7 42.1 44.0 80.3 13 45.2 44.7 50.6 49.8 

14 54.3 55.3 56.3 47.4 14 55.9 55.9 50.6 50.7 

15 48.5 42.8 40.9 46.9 15 39.4 41.1 40.8 40.9 

16  80.5 170.4 156.2 16 171.1 163.5 170.6 163.6 

17 19.8 24.9 22.1 102.9 17 22.1 22.2 66.5 65.9 

18 29.1 29.1 29.0 28.9 18 28.9 28.9 28.9 28.9 

19 176.8 177.0 176.9 176.9 19 176.9 177.0 176.8 176.9 

20 13.5 13.5 13.5 15.7 20 13.3 13.6 13.3 13.6 

1′ 127.4 127.5 127.0 127.5 1′ 145.2 139.6 144.7 140.1 

2′ 130.0 130.0 130.1 130.1 2′ 137.5 111.4 137.9 111.5 

3′ 114.0 113.9 113.9 113.9 3′ 129.8 126.2 130.1 126.2 

4′ 163.9 163.9 163.9 163.9 4′ 128.9 150.5 129.2 149.8 

5′ 114.0 113.9 113.9 113.9 5′ 123.5 126.2 123.5 126.2 

6′ 130.0 130.0 130.1 130.1 6′ 116.4 111.4 115.9 111.5 

7′ 190.9 191.1 191.0 191.0 1′′ 135.9 136.2 135.9 136.2 

8′ 65.2 65.2 65.2 65.2 2′′ 128.5 128.0 128.5 128.5 

9′ 55.5 55.5 55.5 55.5 3′′ 128.5 128.5 128.6 128.0 

     4′′ 128.2 128.0 128.2 128.0 

     5′′ 128.5 128.5 128.6 128.0 

     6′′ 128.5 128.0 128.5 128.5 

     7′′ 66.2 65.9 66.5 67.2 
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7.4 SPECTRA 

 

Figure 34: IR spectrum of compound 1a. 
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Figure 35: 1H-NMR (200 MHz, CDCl3) spectrum of compound 1a. 
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Figure 36: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 1a. 
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Figure 37: 13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 1a. 
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Figure 38: IR spectrum of compound 1b. 
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Figure 39: 1H-NMR (200 MHz, CDCl3) spectrum of compound 1b. 
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Figure 40 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 1b. 
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Figure 41: 13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 1b. 
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Figure 42: IR spectrum of compound 1c. 
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Figure 43: 1H-NMR (200 MHz, CDCl3) spectrum of compound 1c. 
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Figure 44: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 1c. 
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Figure 45: 13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 1c. 
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Figure 46: ESI-MS spectrum of compound 1d. 
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Figure 47: IR spectrum of compound 1d. 
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Figure 48: 1H-NMR (200 MHz, CDCl3) spectrum of compound 1d. 
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Figure 49: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 1d. 
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Figure 50: 
13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 1d. 
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Figure 51: ESI-MS spectrum of compound 1e. 
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Figure 52: IR spectrum of compound 1e. 
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Figure 53: 1H-NMR (200 MHz, CDCl3) spectrum of compound 1e. 
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Figure 54: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 1e. 
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Figure 55: 13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 1e. 
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Figure 56: ESI-MS spectrum of compound 1f. 
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Figure 57: IR spectrum of compound 1f. 
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Figure 58: 1H-NMR (200 MHz, CDCl3) spectrum of compound 1f. 
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Figure 59: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 1f. 
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Figure 60: 13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 1f. 
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Figure 61: IR spectrum of compound 1h. 
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Figure 62: 1H-NMR (200 MHz, CDCl3) spectrum of compound 1h. 
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Figure 63: 13C {1H}  NMR (50 MHz, CDCl3) spectrum of compound 1h. 
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Figure 64: 13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 1h. 
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Figure 65: IR spectrum of compound 2h. 
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Figure 66: 1H-NMR (200 MHz, CDCl3) spectrum of compound 2h. 
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Figure 67: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 2h. 
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Figure 68: 13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 2h. 
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Figure 69: IR spectrum of compound 4h. 
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Figure 70: 1H-NMR (200 MHz, CDCl3) spectrum of compound 4h. 
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Figure 71: 13C {1H}  NMR (50 MHz, CDCl3) spectrum of compound 4h. 
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Figure 72: 13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 4h. 
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Figure 73: IR spectrum of compound 5i. 
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Figure 74: 1H-NMR (200 MHz, CDCl3) spectrum of compound 5i. 
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Figure 75: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 5i. 
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Figure 76: 13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 5i. 
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Figure 77: ESI-MS spectrum of compound 5n. 
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Figure 78: IR spectrum of copound 5n. 
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Figure 79: 1H-NMR (200 MHz, CD3OD) spectrum of compound 5n. 
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Figure 80: 13C {1H} NMR (50 MHz, CD3OD) spectrum of compound 5n. 
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Figure 81: 13C {1H} DEPT-NMR (50 MHz, CD3OD) spectrum of compound 5n. 
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Figure 82: IR spectrum of compound 5j. 
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Figure 83: 1H-NMR (200 MHz, Acetone-d6) spectrum of compound 5j. 



ANNEXES 

 

 

214 

 

Figure 84: 13C {1H} NMR (50 MHz, Acetone-d6) spectrum of compound 5j. 
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Figure 85: 13C {1H} DEPT-NMR (50 MHz, Acetone-d6) spectrum of compound 5j. 
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Figure 86: ESI-MS spectrum of compound 5k. 
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Figure 87: IR spectrum of compound 5k. 
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Figure 88: 1H-NMR (200 MHz, Methanol-d4) spectrum of compound 5k. 
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Figure 89: 13C {1H} NMR (50 MHz, Methanol-d4) spectrum of compound 5k. 
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Figure 90: 13C {1H} DEPT-NMR (50 MHz, Methanol-d4) spectrum of compound 5k. 
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Figure 91: ESI-MS spectrum of compound 2f. 

169-ASADI-ISONH_131011180217 #3638 RT: 12.83 AV: 1 NL: 3.73E2
T: ITMS + c ESI Full ms2 386.00@cid0.00 [105.00-500.00]

120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

386.29

404.15360.19



ANNEXES 

 

 

222 

 

Figure 92: IR spectrum of compound 2f. 
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Figure 93: 1H-NMR (200 MHz, CDCl3) spectrum of compound 2f. 
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Figure 94: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 2f 
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Figure 95: 13C {1H} DEPT NMR (50 MHz, CDCl3) spectrum of compound 2f. 
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Figure 96: ESI-MS spectrum of compound 2a. 
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Figure 97: IR spectrum of compound 2a. 
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Figure 98: 1H NMR (200 MHz, CDCl3) spectrum of compound 2a. 
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Figure 99: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 2a. 
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Figure 100: ESI-MS spectrum of compound 2b. 

 

194-ASADI-HBE_131125163213 #909 RT: 2.51 AV: 1 NL: 3.00E3
T: ITMS - c ESI Full ms2 409.40@cid0.00 [110.00-500.00]

150 200 250 300 350 400 450 500

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
e

la
tiv

e
 A

b
u

n
d

a
n

ce

409.39

427.04
395.09



ANNEXES 

 

 

231 

 

Figure 101: IR spectrum of compound 2b. 
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Figure 102: 1H-NMR (200 MHz, CDCl3) spectrum of compound 2b. 



ANNEXES 

 

 

233 

 

Figure 103: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 2b. 
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Figure 104: 13C {1H}  DEPT-NMR (50 MHz, CDCl3) spectrum of compound 2b. 
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Figure 105: ESI-MS spectrum of compound 2c. 
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Figure 106: IR spectrum of compound 2c. 

 



ANNEXES 

 

 

237 

 

Figure 107: 1H-NMR (200 MHz, CDCl3) spectrum of compound 2c. 
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Figure 108: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 2c. 
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Figure 109: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 2c. 
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Figure 110: ESI-MS spectrum of compound 2d. 
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Figure 111: IR spectrum of compound 2d. 
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Figure 112: 1H-NMR (200 MHz, CDCl3) spectrum of compound 2d. 
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Figure 113: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 2d. 
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Figure 114: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 2d. 
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Figure 115: ESI-MS spectrum of compound 3f. 
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Figure 116: IR spectrum of compound 3f. 
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Figure 117: 1H-NMR (200 MHz, CDCl3) spectrum of compound 3f. 
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Figure 118: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 3f. 
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Figure 119: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 3f. 
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Figure 120: ESI-MS spectrum of compound 5l. 
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Figure 121: IR spectrum of compound 5l. 
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Figure 122: 1H-NMR (200 MHz, CDCl3) spectrum of compound 5l. 
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Figure 123: 13C{1H} NMR (50 MHz, CDCl3) spectrum of compound 5l. 
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Figure 124: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 5l. 
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Figure 125: ESI MS spectrum of compound 6i. 
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Figure 126: IR spectrum of compound 6i. 
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Figure 127: 1H-NMR (200 MHz, CDCl3) spectrum of compound 6i. 
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Figure 128: 13C {1H} -NMR (50 MHz, CDCl3) spectrum of compound 6i. 
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Figure 129: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 6i. 
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Figure 130: ESI-MS spectrum of compound 6j. 
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Figure 131: IR spectrum of compound 6j. 
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Figure 132: 1H-NMR (200 MHz, CDCl3) spectrum of compound 6j. 
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Figure 133: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 6j. 
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Figure 134: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 6j. 
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Figure 135: ESI-MS spectrum of compound 3a. 
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Figure 136: IR spectrum of compound 3a. 
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Figure 137: 1H-NMR (200 MHz, CDCl3) spectrum of compound 3a. 
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Figure 138: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 3a. 
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Figure 139: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 3a. 
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Figure 140: ESI-MS spectrum of compound 3b. 
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Figure 141: IR spectrum of compound 3b. 
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Figure 142: 1H-NMR (200 MHz, CDCl3) spectrum of compound 3b. 
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Figure 143: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 3b. 
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Figure 144: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 3b. 
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Figure 145: ESI-MS spectrum of compound 3c. 
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Figure 146: IR spectrum of compound 3c. 
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Figure 147: 1H-NMR (200 MHz, CDCl3) spectrum of compound 3c. 



ANNEXES 

 

 

278 

 

Figure 148: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 3c. 
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Figure 149: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 3c. 
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Figure 150: ESI-MS spectrum of compound 3h. 
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Figure 151: IR spectrum of compound 3h. 
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Figure 152: 1H-NMR (200 MHz, CDCl3) spectrum of compound 3h. 
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Figure 153: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 3h. 
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Figure 154: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 3h. 
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Figure 155: ESI-MS spectrum of compound 6k. 
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Figure 156: IR spectrum of compound 6k. 
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Figure 157: 1H-NMR (200 MHz, CDCl3) spectrum of compound 6k. 
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Figure 158: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 6k. 
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Figure 159: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 6k. 
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Figure 160: ESI-MS spectrum of compound 4f. 
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Figure 161: IR spectrum of compound 4f. 
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Figure 162: 1H-NMR (200 MHz, CDCl3) spectrum of compound 4f. 
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Figure 163: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 4f. 
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Figure 164: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 4f. 
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Figure 165: ESI-MS spectrum of compound 7k. 
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Figure 166: IR spectrum of compound 7k. 
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Figure 167: 1H-NMR (200 MHz, CDCl3) spectrum of compound 7k. 
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Figure 168: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 7k. 
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Figure 169: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 7k. 
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Figure 170: ESI-MS spectrum of compound 2g. 
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Figure 171: IR spectrum of compound 2g. 
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Figure 172: 1H-NMR (200 MHz, CDCl3) spectrum of compound 2g. 
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Figure 173: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 2g. 
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Figure 174: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 2g. 
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Figure 175: ESI-MS spectrum of compound 3g. 
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Figure 176: IR spectrum of compound 3g. 
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Figure 177: 1H-NMR (200 MHz, CDCl3) spectrum of compound 3g. 
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Figure 178: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 3g. 
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Figure 179: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 3g. 
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Figure 180: ESI-MS spectrum of compound 4g. 
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Figure 181: IR spectrum of compound 4g. 

 



ANNEXES 

 

 

312 

 

Figure 182: 13C {1H} DEPT-NMR (200 MHz, CDCl3) spectrum of compound 4g. 
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Figure 183: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 4g. 
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Figure 184: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 4g. 
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Figure 185: ESI-MS spectrum of compound 5g. 
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Figure 186: IR spectrum of compound 5g. 
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Figure 187: 1H-NMR (200 MHz, CDCl3) spectrum of compound 5g. 
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Figure 188: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 5g. 
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Figure 189: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 5g. 
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Figure 190: ESI-MS spectrum of compound 5m. 
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Figure 191: IR spectrum of compound 5m. 
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Figure 192: 1H-NMR (200 MHz, CDCl3) spectrum of compound 5m. 
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Figure 193: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 5m. 
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Figure 194: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 5m. 
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Figure 195: ESI-MS spectrum of compound 7m. 
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Figure 196: IR sppectrum of compound 7m. 
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Figure 197: 1H-NMR (200 MHz, CDCl3) spectrum of compound 7m. 
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Figure 198: 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 7m. 
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Figure 199: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 7m. 
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Figure 200: ESI-MS spectrum of compound 6m. 
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Figure 201: IR spectrum of compound 6m. 



ANNEXES 

 

 

332 

 

Figure 202: 1H- NMR (200 MHz, Acetone-d6) spectrum of compound 6m. 
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Figure 203: 13C {1H} NMR (50 MHz, Acetone-d6) spectrum of compound 6m. 
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Figure 204: 13C {1H} DEPT-NMR (50 MHz, Acetone-d6) spectrum of compound 6m. 
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Figure 205: ESI-MS spectrum of compound 8m. 

 

 

323-ASADI-ID8B_141120114247 #399 RT: 0.94 AV: 1 NL: 1.53E6
T: ITMS - c ESI Full ms [500.00-620.00]

500 510 520 530 540 550 560 570 580 590 600 610 620

m/z

0

10

20

30

40

50

60

70

80

90

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

558.41

559.29

560.29

594.12

596.12

561.33
598.18562.31556.43 571.11528.68 533.09 590.47541.03 612.86516.59501.22 579.38



ANNEXES 

 

 

336 

 

Figure 206: IR spectrum of compound 8m. 
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Figure 207: 1H-NMR (200 MHz, CDCl3) spectrum of compound 8m. 
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Figure 208:
 13C {1H} NMR (50 MHz, CDCl3) spectrum of compound 8m. 
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Figure 209: 13C {1H} DEPT-NMR (50 MHz, CDCl3) spectrum of compound 8m. 


