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RESUMO GERAL 

_____________________________________________________________________ 

O século XX culminou uma fase de desmatamentos de origem antrópica sem precedentes nas 

florestas tropicais do planeta. Com o desaparecimento de quase a totalidade das florestas 

primárias pelo mundo, houve um grande aumento na importância das florestas secundárias, já 

que estas podem oferecer habitats para imensa biodiversidade, participam do equilíbrio 

climático do planeta e prestam os mais variados serviços ecossistêmicos, incluindo o sequestro 

de carbono. Quando uma floresta passa por um distúrbio, há uma série de fatores que 

influenciam na sua capacidade de regeneração e quão rápido isso irá acontecer, tais como 

características da paisagem, histórico de uso da área, tipo de manejo e fatores edáficos. Neste 

trabalho abordamos os efeitos de diferentes fatores sobre a estruturação de comunidades 

vegetais em áreas sucessionais da Floresta Atlântica, em Antonina, Paraná (25o19’15’’S e 

48o42’24’’W). As áreas florestais foram transformadas em pastagens para búfalos e depois 

abandonadas em diferentes períodos ao longo dos últimos 80 anos. As áreas estão sendo 

restauradas por meio de regeneração natural (isolamento do gado) e de plantio direto de 

mudas de espécies nativas, em um projeto de larga escala (20 mil hectares) desenvolvido pela 

Sociedade de Pesquisa em Vida Selvagem e Educação Ambiental (SPVS). No primeiro 

capítulo desta tese, analisamos a importância relativa dos seguintes fatores: técnicas usadas no 

manejo de pastagem, características do solo e da paisagem, idade e estratégia usada na 

restauração destas áreas. Para tanto, foram estabelecidas 93 parcelas circulares (total de 5,7 

ha) distribuídas ao longo de áreas de restauração, onde foram amostradas todas as árvores e 

arbustos compondo o dossel (diâmetro à altura do peito, DAP> 5,0 cm) e o sub-bosque 

(DAP <5,0 cm e altura> 1,3m). Utilizamos o método de seleção de modelos para descobrir 
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qual combinação de fatores tem maior influência na estrutura e riqueza das florestas em 

restauração. Foram amostrados um total de 7378 indivíduos em 93 parcelas, sendo 5144 

indivíduos de 234 espécies no dossel e 2234 indivíduos de 220 espécies no sub-bosque. Os 

resultados mostraram que idade, distância da área de floresta mais próxima e espécies de pasto 

utilizadas anteriormente à restauração são os fatores que mais fortemente influenciam riqueza, 

abundância, área basal e altura média das comunidades de sub-bosque e dossel. No segundo 

capítulo, utilizamos uma sub-amostra de 45 parcelas, apenas em áreas de regeneração natural, 

de 3 a 80 anos de idade, ocorrendo  em dois tipos de solo (Cambissolo:bem drenado e 

Gleissolo:periodicamente alagado) para testar possíveis efeitos do tipo de solo sobre a 

sucessão. Encontramos um gradiente claro de riqueza, abundância, área basal e altura ao 

longo da sucessão. Áreas de Cambissolo acumularam espécies mais rapidamente que as de 

Gleissolo no dossel, mas este padrão não se repetiu para o sub-bosque, o qual teve curvas de 

acumulação de espécies coincidentes para os dois tipos de solo. Concluiu-se que as 

características do solo desempenham um papel complementar ao forte gradiente de idade para 

explicar as trajetórias sucessionais em florestas tropicais, e também devem ser levadas em 

consideração no planejamento do manejo florestal. No terceiro capítulo, analisamos as 

diversidades taxonômica e funcional neste mesmo gradiente de solo e idade (Capítulo 2) para 

entender como são estruturadas as comunidades ao longo do processo de sucessão em dois 

tipos de solos contrastantes. Compilamos nove atributos funcionais de espécies do dossel do 

sub-bosque e utilizamos técnicas analíticas (correlação de matrizes) que permitem diferenciar 

convergência e divergência de atributos. Encontramos padrões de convergência e divergência 

atuando na estruturação das comunidades em nosso gradiente idade-solo, maximizados por 

diferentes atributos. No dossel, os atributos polinização por vertebrados e abiótica, tolerância 

à sombra, esbelteza da folha e folha do tipo composta foram diferentes entre os tipos de solo, 
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enquanto que no sub-bosque a interação com solo foi encontrada nos atributos tolerância à 

sombra e esbelteza da folha. As diversidades taxonômica e funcional aumentaram com a idade 

da floresta em ambos os estratos, embora apenas algumas destas métricas de diversidade 

tenham se diferenciado entre os tipos de solo (entropia de Rao no dossel; riqueza de espécies 

e redundância funcional no sub-bosque; H’ e riqueza funcional em ambos). Concluímos neste 

capítulo que as comunidades em desenvolvimento no gradiente idade-solo são estruturadas 

por uma combinação de filtros abióticos e interações bióticas. Os resultados dos três capítulos 

permitem concluir que características do solo podem ocasionar diferenças estruturais, 

florísticas e funcionais em áreas florestais em sucessão, e podem fornecer subsídios para 

acelerar o processo de regeneração em florestas tropicais, identificando suas principais 

barreiras.  
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ABSTRACT 

_____________________________________________________________________ 

During the last century, tropical forests on the planet experienced a period of 

unprecedented deforestation of anthropogenic cause. With the disappearance of almost all 

primary forests in the world, secondary forests largely increased in importance, as these can 

provide habitats for vast biodiversity, contribute with the climatic balance of the planet and 

provide a variety of ecosystem services, including carbon sequestration. When a forest 

undergoes disturbance, there are a number of factors that influence its ability to regenerate 

and how fast this will happen, such as landscape features, historical land use, type of land 

management and edaphic factors. In this paper we address the effects of soil characteristics on 

the structure of plant communities in successional areas of the Atlantic Forest in Antonina, 

Paraná (25o19'15'' S and 48o42'24'' W). Over the last 80 years, many forest areas in the 

region have been converted into pasture for buffalos and then abandoned in different periods. 

The areas are now being restored through natural regeneration (isolation of the cattle) or 

direct planting of seedlings of native species, as part of a large-scale project (20,000 hectares) 

developed by the Society for Wildlife Research and Environmental Education (SPVS). In the 

first chapter of this thesis, we analyze the relative importance of different factors (age, pasture 

management techniques, soil and landscape characteristics; and restoration strategy) that 

influence the restoration in this area. We selected 93 circular plots (5.7 ha total) distributed 

along restoration areas and sampled all canopy trees (diameter at breast height, DBH> 5.0 

cm) and all understory individuals (trees and shrubs, DBH<5.0 cm and height> 1.3 m). We 

used a model selection approach to find out which combination of factors have greater 

influence on the structure and richness of forests undergoing restoration. A total of 7378 
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individuals were sampled, with 5144 individuals of 234 species in the canopy, and 2234 

individuals of 220 species in the understory. The results revealed that age, distance from the 

nearest forest area and species of pasture previously used in the restoration are the factors that 

most influence richness, abundance, basal area and mean height of understory and canopy 

communities. In the second chapter, we considered a sub-sample of 45 plots, only of natural 

regeneration areas, with ages varying from 2 to 80 years, occurring in two types of soil 

(Cambisol: well drained and Gleysol: periodically flooded) to test possible effects of soil type 

on the succession. We found a clear gradient of species richness, abundance, basal area and 

height along succession age. Cambisol areas accumulated species faster than Gleysol areasin 

the canopy, but this pattern was not recurrentin the understory, where accumulation curves in 

the two soil types were coincident. We concluded that soil characteristics play a supporting 

role in thestrong age gradient in explaining the successional trajectories in tropical forests, 

and should also be taken into consideration in forest management planning. In the third 

chapter, we analyzed the taxonomic and functional diversity in the same gradient of soil and 

age (Chapter 2) to understand how communities are structured along the succession process 

in two contrasting soil types. We compiled nine functional traits of canopy and understory 

species and used analytic techniques (correlation of matrices) that allow the distinction 

between convergence and divergence of traits along the gradient. We found significant 

patterns of convergence and divergence structuring communities in our soil-age gradient, 

maximized by different traits. In the canopy, the traits abiotic and vertebrate pollination, 

shade tolerance, leaf slenderness and leaf type (composed leaves) revealed interactions with 

soil type, while in the understory, soil type was important for the traits shade tolerance and 

leaf slenderness. Taxonomic and functional diversities increased with age in both forest strata, 

although only some of these metrics were different between types of soil (Rao entropy in the 
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canopy, species richness and functional redundancy in the understory; H' and functional 

richness in both). We conclude in this chapter that plant communities under development 

are structured by a combination of abiotic filters and biotic interactions. The overall results 

show that soil characteristics can cause structural, floristic and functional differences in 

successional forest areas, and should be taken into account in the implementation of 

restoration plans and management actions. 
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1. INTRODUÇÃO GERAL 

_____________________________________________________________________ 

 

A teoria da sucessão tem sido um grande foco da ecologia, desde seus primeiros 

estudos no século XVIII em comunidades de dunas, até os dias de hoje, em todos os tipos de 

ecossistemas e com diferentes abordagens. Originalmente, em comunidades vegetais, a teoria 

da sucessão ecológica era vista como preditiva e direcional por Clements (1904, 1916), que 

descrevia a sucessão como um processo ordenado e determinístico, no qual a comunidade atua 

como uma unidade integrada que ao final chegaria ao clímax. No entanto, Gleason (1926) 

descreveu a sucessão ecológica como um processo estocástico, no qual cada espécie 

individualmente influencia as mudanças na composição da comunidade, ideia que ainda 

permanece dentre as mais atuais (Glenn-Lewin et al. 1992). Ao contrário de Clements, Egler 

(1954) acreditava que a sucessão secundária seria mais fortemente determinada pela 

composição florística inicial de uma área, sendo resultado das histórias de vida dos 

organismos que compõem a comunidade. Whittaker (1953) sugeriu que a vegetação varia 

continuamente ao longo da paisagem, e que a dinâmica de uma comunidade clímax é 

determinada pelas características bióticas e abióticas do ecossistema. Já nos anos 70, ecólogos 

substituíram as ideias de equilíbrio com as teorias alternativas de não‐equilíbrio e começaram 

a enfatizar a base mecanicista dos processos ecológicos (Chazdon 2008), onde eram 

destacadas as mudanças na disponibilidade de recursos durante a sucessão (Odum 1959, 

Drury & Nisbet 1973, Noble & Slatyer 1980). Juntamente com essas ideias, também surgiu a 

teoria do distúrbio intermediário, que prediz que a diversidade atinge um pico durante fases 
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intermediárias da sucessão e decresce a níveis mais baixos numa comunidade tardia, com 

pouco distúrbio (Connell 1978). 

Atualmente, estudos de dinâmica da vegetação durante a sucessão em florestas 

tropicais têm considerado três estruturas conceituais. A primeira examina o papel de fatores 

determinísticos versus fatores estocásticos na dinâmica da vegetação (Chazdon 2008). A 

segunda, baseada no tempo de colonização das espécies durante a sucessão, compara a 

composição florística inicial (espécies de todos os estágios sucessionais colonizam uma área ao 

mesmo tempo, mas chegam a picos de abundância em diferentes épocas) com a substituição 

da composição florística (primeiramente as espécies iniciais da sucessão colonizam a área para 

mais tarde dar espaço para as mais tardias) (Bazzaz & Picket 1980, Chazdon 2008). A 

terceira estrutura foca na importância relativa de atributos da história de vida de cada espécie 

na determinação do balanço entre mecanismos de tolerância, inibição e facilitação durante a 

sucessão, no qual espécies mais tardias poderão se estabelecer somente após uma facilitação 

pelas espécies pioneiras ou por características próprias como taxa de crescimento e 

longevidade (Connell& Slatyer 1977, Rees et al. 2001, Chazdon 2008). 

Nas florestas tropicais em geral, o processo sucessional tende a uma progressão de 

estágios durante os quais florestas apresentam um enriquecimento gradual de espécies e um 

aumento em complexidade estrutural e funcional (Chazdon 2012). No entanto, as mudanças 

que ocorrem na comunidade durante a sucessão florestal podem apresentar inúmeras variações 

e múltiplas trajetórias sucessionais, muitas vezes refletindo diferenças no uso anterior do solo 

(Mesquita et al. 2001). Há uma série de fatores que influenciam a regeneração de uma floresta 

determinando sua capacidade e velocidade de desenvolvimento (Uhl 1987, Aide & Cavelier 

1994; Rodrigues et al. 2009). No início da sucessão, os fatores mais importantes são aqueles 

que determinam a colonização (tipo de substrato, chuva de sementes, banco de sementes, 
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rebrotos), até chegar a etapas mais avançadas onde a habilidade competitiva das espécies e 

suas tolerâncias às condições ambientais determinam os padrões de substituição de espécies 

(Guariguata & Ostertag 2001). A estrutura da vegetação que se estabelece após um distúrbio 

é variada e depende de fatores como a intensidade e o tipo do distúrbio, o período em que a 

área foi perturbada, o tamanho da clareira, características do solo, presença de espécies 

invasoras e a disponibilidade de matriz de recolonização (Swaine & Whitmore 1988; 

Gunderson 2000; Chazdon 2003, Myster 2004, Chazdon 2008). Geralmente, as áreas em 

regeneração natural em estádios iniciais da sucessão secundária são primeiramente 

colonizadas por espécies herbáceas pioneiras e espécies arbóreas de ciclo vital curto e 

crescimento rápido (Budowski 1965). Posteriormente, a vegetação herbácea declina e as 

espécies pioneiras que se estabeleceram irão fornecer melhores condições para o surgimento 

de espécies secundárias iniciais e mais tarde, secundárias tardias, que se estabelecem em 

ambiente sombreado e, crescem quando as condições de luz são favoráveis. O estádio 

avançado de sucessão é caracterizado pela ocorrência de espécies arbóreas secundárias 

(Brokaw 1985, Swaine & Whitmore 1988, Finegan 1996). Com o crescimento das espécies 

secundárias tardias, ocorre o fechamento do dossel, que acaba por suprimir as espécies 

intolerantes à sombra, enquanto espécies tolerantes no continuam a se estabelecer sub-bosque 

(Chazdon 2012). 

O processo de sucessão secundária ocorre naturalmente nos ecossistemas, 

possibilitando sua recuperação após distúrbios (Schulze et al. 2005). Entretanto, há casos 

onde o processo de regeneração é muito lento ou onde o ecossistema não consegue se 

recuperar naturalmente, quando faz-se necessária uma intervenção humana, através de uma 

atividade de restauração (Parrotta et al. 1997,Aide et al. 2000, Martinez-Garza & Howe 

2003). Desta forma, a recuperação de um ecossistema que sofreu distúrbio pode ocorrer por 
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processos naturais (regeneração natural) ou através de outros métodos como plantio direto de 

mudas, semeadura direta, nucleação ou adensamento da vegetação (Rodrigues et al. 2009). A 

opção por um ou outro modelo depende de inúmeros fatores que interferem no grau de 

resiliência do ecossistema.  

A implantação de planos de restauração ecológica, preparados a partir de bases 

ecológicas precisas, é essencial para garantir a funcionalidade das comunidades florestais 

restauradas (Young 2000, Hobbs & Harris 2001). Dados sobre a fenologia, reprodução, 

características da semente (incluindo modo de dispersão e predação), mecanismos de 

regeneração (chuva e banco de sementes, rebrotos), taxas de crescimento (Parrotta et al. 1997, 

Guariguata & Pinard 1998, Holl 1999, Aide et al. 2000, Vieira & Scariot 2006), entre outros, 

são essenciais para estabelecer uma prática de restauração ecológica eficiente. 

O objetivo da restauração é criar um ecossistema auto-suficiente que seja resistente às 

perturbações e não necessite mais de assistência após um certo período (SER 2004). Os 

métodos para mensurar quando esse objetivo é atingido são uma discussão frequente na 

ecologia, mas a maioria dos estudos normalmente utiliza medidas de estrutura da vegetação, 

diversidade de espécies ou processos ecossistêmicos (Ruiz-Jaen & Aide 2005). Paralelamente 

a estes atributos, deve-se também compará-los com ecossistemas de referência sujeitos a 

condições similares às das áreas restauradas, para ter uma estimativa do sucesso da restauração 

(Hobbs & Harris 2001, SER 2004). 

Apesar do aumento no número de estudos abordando a restauração de ecossistemas 

em várias regiões do mundo nas últimas décadas (Sayer et al. 2004, Young et al. 2005), ainda 

existem muitas lacunas no conhecimento acerca dos ecossistemas florestais restaurados. 

Menos de 10% dos estudos que avaliaram a restauração após o plantio de mudas ou 

semeadura direta foram realizados em florestas tropicais, por exemplo (Ruiz-Jaen & Aide 
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2005). Uma maneira de ampliar nosso entendimento sobre os ecossistemas em regeneração é 

aproveitá-los para estudos de regras de montagem (assembly rules) de comunidades. 

Considerando que a sucessão secundária já foi descrita como a “estruturação de comunidades 

em ação” (Lebrija-Trejos et al. 2010), ela pode nos auxiliar a compreender um dos maiores 

desafios da ecologia, que é entender quais processos determinam a distribuição e coexistência 

de espécies em florestas tropicais. Cada espécie dentro de uma comunidade tem seu próprio 

conjunto específico de características ou atributos funcionais, que irão influenciar a forma 

como cada uma delas responderá às condições bióticas e abióticas do meio (Reich et al. 2003, 

Violle et al. 2007). A diversidade de estados de cada atributo funcional presente em uma 

comunidade vai determinar a sua diversidade funcional, a qual permite o entendimento da 

dinâmica de recursos, estabilidade e produção dos ecossistemas (Díaz & Cabido 1997, Mason 

et al. 2005).  

Os atributos podem evoluir em resposta às condições ambientais e interações com 

outras espécies (Reich et al. 2003). Filtros ambientais podem selecionar espécies que ocorrem 

em um determinado lugar, devido às condições limitantes, como a luminosidade, temperatura 

e umidade (Keddy 1992). Assim, apenas as espécies que têm atributos que lhes conferem a 

capacidade de resistir a tais condições serão capazes de sobreviver num determinado local 

(Cavender-Bares et al. 2009). Estas adaptações às condições do ambiente devem levar a uma 

convergência de determinados atributos funcionais dentro da comunidade. Por outro lado, 

espécies que utilizam um recurso de forma semelhante não devem coexistir frequentemente, 

uma vez que a que é competitivamente superior irá excluir a outra quando os recursos do 

ambiente forem limitantes (Weiher et al.1998). Desta forma, a competição implica em uma 

limitação de similaridade no uso de recursos (MacArthur & Levins 1967) e 

consequentemente, a uma divergência nos atributos funcionais entre as espécies. 
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O uso de atributos funcionais na restauração está apenas começando (Temperton et al. 

2004). Nos trópicos, a alta complexidade de espécies impõe uma barreira para modelagem de 

tamanha diversidade, tornando difícil a utilização da diversidade taxonômica. A utilização de 

medidas de diversidade funcional, portanto, pode simplificar e aprimorar nosso entendimento 

sobre os processos de restauração. Os atributos funcionais de plântulas e árvores podem ser 

fortes determinantes de taxas demográficas que governam mudanças na composição de 

espécies durante a regeneração florestal (Chazdon 2014). A escolha das espécies para a 

restauração não deve ser feita apenas através das suas necessidades de luz, mas deve incluir 

atributos em nível de comunidade como fenologia, síndrome de dispersão, habilidade de 

reprodução vegetativa, habilidade de fixar nitrogênio, deciduidade, produção de serapilheira, 

entre outros (Sansevero 2013).   

Diversos projetos de restauração e estudos de sucessão estão sendo desenvolvidos na 

Floresta Atlântica (Floresta Ombrófila Densa). Este bioma é considerado um dos mais 

ameaçados do planeta e encontra-se extremamente fragmentado, restando menos de 12% da 

sua cobertura original (Ribeiro et al.2009). Devido à sua alta riqueza de espécies e 

endemismo, é atualmente um dos hotspots para conservação da biodiversidade (Myers et al. 

2000, Martini et al. 2007). Para plantas, por exemplo, 40% de suas 8000 espécies são 

endêmicas (Metzger 2009) e muitas de suas espécies encontram-se entre as mais ameaçadas 

do planeta (Mittermeier et al. 2005). Assim como outros sistemas taxonomicamente diversos, 

a Floresta Atlântica também possui uma enorme diversidade funcional, relacionada à biologia 

reprodutiva das espécies e aos diversos tipos de interações, o que a torna ainda mais difícil de 

restaurar (Rodrigues et al. 2009). A destruição da Mata Atlântica do Brasil e sua 

biodiversidade começou juntamente com a colonização do Brasil, há mais de 500 anos (Dean 

1996) e chegou em níveis alarmantes ao longo do tempo. Apenas nos últimos 30 anos, o 
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Brasil experimentou um progresso em ações para conservação, junto com a criação de parques 

e áreas protegidas (Mittermeier et al. 2005). Hoje, os principais remanescentes concentram-se 

nas regiões Sul e Sudeste do Brasil, recobrindo parte da Serra do Mar e da Serra da 

Mantiqueira, onde o processo de ocupação foi dificultado pelo relevo acidentado e pouca 

infra-estrutura de transporte (Capobianco 2001). 

Nos remanescentes de Floresta Atlântica do sul do Brasil, encontram-se áreas 

florestais com diferentes níveis de interferência, muitas vezes intercaladas por pastagens 

abandonadas, que estão em processo de regeneração e em diferentes estágios sucessionais, 

constituindo um mosaico ambiental. Desta forma, a região é favorável para o estudo da 

sucessão vegetal e dos padrões funcionais e estruturais das comunidades vegetais, assim como 

dos diversos fatores que podem afetar a restauração florestal. Neste contexto, para este 

trabalho de tese, foram selecionadas diferentes  comunidades vegetaise stabelecidas a partir da 

regeneração natural e do plantio direto de mudas de espécies nativas, com os seguintes 

objetivos: 

(1) Avaliar qual a importância relativa de diferentes fatores sobre a trajetória 

sucessional de áreas de restauração. Os fatores estudados foram as técnicas de manejo de 

pastagem (espécie de pasto utilizada, destocamento, presença de árvores remanescentes), 

características do solo (classe de solo) e da paisagem (distância e área da floresta madura mais 

próxima), idade da área e estratégia de restauração (regeneração natural, plantio de árvores 

nativas) (abordado no Capítulo 1). 

(2) Avaliar se a estrutura florestal (abundância de indivíduos, riqueza de espécies, área 

basal, altura média e composição de espécies) de comunidades vegetais desenvolvendo-se 

sobre diferentes tipos de solo (Cambissolo e Gleissolo) difere ao longo do gradiente 

sucessional (Capítulo 2). 
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(3) Analisar como são estruturadas as florestas tropicais ao longo do processo de 

sucessão em dois tipos de solos contrastantes (Cambissolo e Gleissolo), avaliando padrões de 

convergência (relacionada com filtros ambientais) e divergência (relacionada à competição) de 

atributos, diferenças nas diversidades taxonômica e funcional e mudanças dos padrões em 

atributos funcionais específicos durante a sucessão, nos dois tipos de solo (Capítulo 3). 

 

2. Caracterização da área de estudo 

 

O estado do Paraná conserva em seu litoral alguns dos principais remanescentes da 

Floresta Atlântica, com aproximadamente 500 mil ha, sendo representado por florestas de 

encosta (Floresta Ombrófila Densa Alto-Montana, Montana e Sub-Montana) e de planície 

(Floresta Ombrófila Densa de Terras Baixas e Aluvial), juntamente com os ecossistemas 

associados como manguezais, restingas, campos de altitude, enclaves de campos e cerrados 

(Câmara 2005, IBGE 2012). As florestas são caracterizadas pela riqueza de espécies arbóreas 

perenifólias organizadas em estratos definidos, associadas a outras formas biológicas, 

igualmente diversas (Roderjan & Kuniyoshi 1988, Ravazzani et al. 1995). Desde o início do 

século XVII, a planície litorânea e o início das encostas no estado do Paraná tiveram a sua 

paisagem muito alterada devido à colonização e garimpo, e mais recentemente pelo cultivo da 

banana e da mandioca, extração de palmito e criação de búfalo (Borsatto et al. 2007).  

O estudo foi desenvolvido no litoral norte do estado do Paraná,  localizado dentro da 

Área de Proteção Ambiental (APA) de Guaraqueçaba (entre 48o45’ e 48o00’W; e 24o50’ e 

25o30’S), a qual compreende os municípios de Guaraqueçaba, Morretes e Antonina,  com 

uma área de 313 mil hectares de florestas, estuários, baías, ilhas, mangues e planícies. A 

amostragem foi realizada na Reserva Natural do Rio Cachoeira e na Reserva Natural Morro 
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da Mina, em Antonina, PR (Fig. 1), de propriedade da organização não-governamental 

Sociedade de Pesquisa em Vida Selvagem e Educação Ambiental (SPVS). Nas reservas são 

encontradas diferentes tipologias vegetacionais, de acordo com a classificação de Veloso et al. 

(1991): Floresta Ombrófila Densa nas sub-formações Submontana, de Terras Baixas e 

Aluvial, além Formações Pioneiras de Influência Fluvial. Em cada uma dessas tipologias, 

têm-se ainda florestas em regeneração natural e em diferentes estádios de desenvolvimento 

(Ferretti & Britez 2006). 

O clima predominante na região, segundo a classificação de Köeppen, é o subtropical 

úmido mesotérmico (Cfa) sem estação seca definida e isento de geadas nas regiões serranas; e 

chuvoso tropical sempre úmido (Aft) na planície (Ipardes 2001). Os dados climáticos médios 

para um período de 9 anos mostram uma precipitação anual de 3016 mm e temperatura 

média de 21,2oC (Cardoso et al. 2012). A altitude varia desde o nível do mar até 900m a.s.l. 

Os solos na região pertencem às classes Neossolos, Gleissolos, Argissolos e 

Cambissolos. Os Neossolos são solos constituídos por material mineral ou orgânico, pouco 

espessos, pouco desenvolvidos e não alagados. Os Gleissolos ocupam terraços adjacentes às 

planícies aluviais, sendo, portanto, hidromórficos, minerais, arenosos, de fertilidade variável e 

permanentemente ou periodicamente saturados por água. Normalmente apresentam 

horizonte glei dentro dos primeiros 50 cm da superfície do solo (Embrapa 2006). A gleização 

é causada pelo regime de umidade redutor em meio anaeróbico, com deficiência de oxigênio 

devido ao encharcamento do solo por longo período, o que implica no surgimento de cores 

acinzentadas, azuladas ou esverdeadas, devido a compostos ferrosos resultantes da escassez de 

oxigênio (Embrapa 2006). Os Cambissolos são constituídos por material mineral, com 

características que variam muito de um local para outro, podendo ser desde fortemente até 

imperfeitamente drenados, de rasos a profundos, de cor bruna ou bruno-amarelada até 
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vermelho escuro, e de alta a baixa saturação por bases e atividade química da fração coloidal. 

Possuem horizonte B incipiente subjacente a qualquer tipo de horizonte superficial (Embrapa 

2006). Os Argissolos são solos minerais, não hidromórficos, bem a moderadamente drenados, 

com presença de horizonte B textural, variando de rasos a muito profundos (Embrapa 2006). 

Em 2000, a organização não-governamental SPVS iniciou, juntamente com 

parcerias internacionais, projetos de combate ao aquecimento global (Projeto de Restauração 

da Floresta Atlântica; Projeto de Ação Contra o Aquecimento Global em Guaraqueçaba e 

Projeto Piloto de Reflorestamento em Antonina), onde antigas fazendas de búfalo foram 

adquiridas e convertidas em áreas protegidas. Nessas áreas os búfalos foram lentamente 

removidos, e as áreas restauradas através de regeneração natural e de plantios de mudas de 

espécies nativas (Ferretti & Britez 2006). Nas áreas de plantio,mudas de aproximadamente 15 

espécies de crescimento rápido foram plantadas em grades de 1,5 × 2,5 m, resultando em uma 

densidade de 2666 plântulas por hectare. As sementes foram coletadas localmente nas 

reservas e as mudas foram produzidas em um viveiro local, sendo posteriormente 

transplantadas (com aproximadamente 5 meses de idade). A regeneração natural consistiu 

apenas no abandono e isolamento das pastagens com cercas. Mais informações das 

características da área de estudo e da restauração podem ser encontradas em Ferretti & Britez 

(2006) e Bruel et al. (2010). 

Para este estudo, utilizamos estas áreas em processo de restauração (plantio e 

regeneração natural), juntamente com florestas adjacentes em diferentes estádios sucessionais 

para estabelecer 93 parcelas circulares, com 14m de raio cada, em um total de 5.7ha de área 

amostrada (Fig. 1). As parcelas foram selecionadas com base nas parcelas de monitoramento 

de carbono já existentes na reserva, as quais foram estabelecidas  sobrepondo-se aerofotos, 

mapa de vegetação, mapa de tipo e uso do solo, a fim de otimizar as atividades de restauração 
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e manejo das reservas. Informações adicionais sobre o histórico de perturbação e a idade das 

áreas foram obtidas através de entrevistas com moradores da região. As parcelas demarcadas 

representam, portanto, um gradiente sucessional (Fig. 2) e edáfico da região de estudo. O 

levantamento de dados das parcelas ocorreu entre agosto de 2009 e dezembro de 2011, 

quando as áreas restauradas pelo projeto da SPVS estavam com, no máximo 12 anos.  

 

 

Figura 1 - Mapa da área de estudo mostrando o Brasil, o Paraná e as 93 parcelas utilizadas 

neste estudo, nas Reservas Naturais do Morro da Mina e do Rio Cachoeira, de propriedade 

da Sociedade de Pesquisa em Vida Selvagem e Educação Ambiental (SPVS). 
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Figura 2 – Áreas em diferentes estádios sucessionais na Floresta Atlântica, em Antonina, 

Paraná. A. Área em processo inicial de regeneração com 4 anos de idade, com presença da 

gramínea exótica Urochloa cf humidicola; B. Área intermediária, de 15-25 anos de idade; C. 

Área de floresta avançada com mais de 80 anos de idade. 
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FATORES QUE AFETAM A TRAJETÓRIA SUCESSIONAL EM ÁREAS DE 
RESTAURAÇÃO NA FLORESTA ATLÂNTICA 
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Disentangling factors affecting successional trajectory in restoration areas of 
Atlantic Forest 

Abstract 

There are a variety of factors that influence the restoration of tropical forests, 

determining its capacity to develop, and how fast this is going to happen. A relatively large 

knowledge of which factors potentially affect the quality of restoration areas in the tropics has 

been assessed last years, but the relative importance of multiple factors determining the 

success of restoration is still poorly understood. In this study, we analyzed the structure of 

plant communities under restoration process in the Atlantic Forest in southern Brazil, aiming 

to evaluate the relative importance of pasture management techniques (pasture species used 

previously in the pasture, tree root removal before planting the pasture, presence of remnant 

trees), soil and landscape features (soil type, distance and area of the nearest adjacent forest, 

terrain relief), and restoration age and strategy (natural regeneration, native trees plantation) 

affecting the restoration of a tropical forest in abandoned agricultural areas. We established 

93 circular plots (615.7m2 each, total 5.7 ha) along restoration areas and sampled trees and 

shrubs from the forest canopy (diameter at breast height, DBH > 5.0cm) and understory 

(DBH < 5.0 and height > 1.3m). Plots included areas undergoing restoration with two 

contrasting restoration strategies (natural regeneration and native species plantation), in 

different ages (from 2 to 80 years old), four soil types (Cambisol, Gleysol, Acrisol and 

Fluvisol), four pasture types (Urochloa cf humidicola, U.arrecta, Paspalum sp. and mixed), two 

types of terrain relief (lowlands and hillsides) and at different distances from the nearest 

forest remnant (0 to 460m). We used the model selection approach to find which 

combination of factors had stronger influence in the structure and diversity of successional 

forests. Our results demonstrated that age, nearest-neighbor distance and the species of 
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fodder grass preceding restoration (all selected in 63% of the models) are the strongest factors 

influencing species richness, abundance, basal area and mean height of both canopy and 

understory communities. Other variables such as restoration strategy (38%), soil type (31%) 

and terrain relief (25%) also played a supporting role in explaining these response variables. 

Older plots and closer to forest remnants had, in general, increased richness, abundance, basal 

area and mean height. Restoration areas established in areas previously planted with the 

exotic grass Urochloa spp. limited canopy abundance and species richness. These results 

suggest that important biotic and abiotic factors strongly interact to influence successional 

processes in restoration areas. 

 

Key words: grazing; natural regeneration; restoration; plantation; tropical forest 
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Introduction 

There are a variety of factors that influence regeneration of a forest, determining its 

capacity to develop, and how fast this is going to happen (Uhl 1987, Aide & Cavelier 1994; 

Rodrigues et al. 2009). The vegetation that establishes after a disturbance or in newly 

abandoned areas is well varied and depend on such factors, like type and intensity of the 

disturbance, time since the area has been abandoned, size of the area, propagule availability, 

presence of remnant trees and proximity to forested areas (Guevara et al. 1986, Aide et al. 

1995, Toh et al. 1999, Finegan & Delgado 2000, Steininger 2000, Gunderson 2000, 

Zimmerman et al. 2000, Chazdon 2003, Myster 2004, Kauano et al.2013, Zwiener et al. 

2014). The land use history also brings important implications to the successional trajectories. 

Recovery in abandoned pastures, for example, may take longer than recovery following other 

types of human and natural disturbances, such as hurricanes and plantations (Aide et al. 

1995). 

In abandoned pastures, different pasture species and management techniques can 

potentially affect restoration. Exotic grasses have been intensively used for livestock foraging 

in tropical pastures (Hooper et al. 2005). This grass cover strongly competes with recruiting 

vegetation by reducing light availability (Vieira et al. 1994; Hooper et al. 2002) and limits 

regeneration by competing with tree seedlings for water and nutrients (Nepstad et al. 1996). 

The intensity of competition, however, may depend on the species of grass present in the 

area, since they differ in their growth rates and competitive ability. Other than pasture 

species, root removal, or the process of removing all the roots from the ground prior planting 

the grass for pasture can influence restoration. Resprouting stems can be an important 

contribution to forest recovery (Chazdon 2003, Zanini et al. 2014), and since root removal 

inhibits resprouting, it potentially affects restoration. One more factor to consider in the 
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pasture management is the retaining of some isolated trees and shrubs in the abandoned 

fields. Remnant vegetation plays a critical role in forest recovery, promoting rapid increases in 

species richness, tree density and aboveground biomass (Chazdon 2003). Remnant shrubs 

and trees in pastures attract fauna that use them as perches, bringing propagules and thus, 

enhancing restoration (Slocum & Horvitz 2000, Zwiener et al. 2014). The shade generated 

by the crowns of remnant trees also produces an indirect facilitation effect of reducing 

competition with exotic pasture grasses. 

In addition to pasture techniques, other factors acting in micro-scale, such as soil 

characteristics, may also be important in the plant community regeneration and succession 

(Chapter 2). Soil physical characteristics (texture), nutrient availability and moisture affect 

plant growth in several ways. Soil texture, for example, is one of the most important 

characteristics of the soil, influencing directly and indirectly a cascade of relations between 

organic matter, ions and soil drainage (Fearnside & Leal-Filho 2001, Silver et al. 2000). 

Therefore, it is expected that soil type will also play a role in plant community succession and 

dynamics in tropical forests. 

Going further and considering also the macro-scale factors, such as landscape 

characteristics, we also expect that they will influence forest succession pathways. The lack of 

seeds was described as a major barrier to restoration (Holl et al. 2000), hence, the proximity 

to the propagule source, such as an advanced secondary forest, can be a main determinant of 

the speed of recovery and vegetation diversity in restored areas (Chinea 2002, Kauano et al. 

2013). The area of this forest and the relief of the terrain in which it is inserted are also likely 

to influence seed dispersal, and thus, restoration. 

Considering all the factors cited above, the restoration strategy to be selected to 

recover an area should be extensively planned, depending on the local conditions. The 
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plantation of native species is expected to speed up forest recovery, especially in areas of dense 

exotic grass cover, since planted trees suppresses grasses and ferns that may impede initial tree 

colonization (Otsamo 2000). In addition, planted trees can increase organic matter in the 

soil, prevent erosion, and enhance nutrient cycling (Montagnini & Sancho 1994). However, 

restoration approaches vary widely in cost and intervention and depend on goals and 

expectations of each particular project (Chazdon 2003).  

Since the beginning of the 20th century, the Atlantic Forest in southern Brazil had its 

landscape greatly changed due to colonization and mining activity, and more recently due to 

the cultivation of banana, manioc, palm trees and buffalo farming (Borsatto et al. 2007). 

Along the remnants of the Atlantic Forest, there are areas with different levels of 

interference, often mingled with abandoned pastures. After changes in the local economy, 

many areas were abandoned are now under regeneration process and in different successional 

stages comprising an environmental mosaic. In this biome, plant communities recovering 

after a disturbance can take from 100 to 4000 years to achieve the expected proportions of 

forests traits of a mature forest (Liebsch et al. 2008). These data show that the resilience of 

this system is relative, therefore, measures that preserve old-growth forests and that aim to 

recover part of areas degraded by human activities are essential to ensure the integrity of the 

remnants. Understanding the factors that affect forest regeneration in tropical forests is 

important for improving methodologies for restoring forests and also for contributing to 

knowledge of successional mechanisms and theory (Zimmerman et al. 2000). 

The goal of this study was to assess how different factors affect the restoration of the 

Atlantic Forest in Southern Brazil. We investigated areas undergoing restoration after pasture 

abandonment and asked if the pasture management techniques (pasture species used 

previously in the pasture, tree root removal before planting the pasture, presence of remnant 
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trees), soil (soil type) and landscape features (distance and area of the nearest adjacent forest, 

terrain relief), and restoration age and strategy (natural regeneration, native trees plantation) 

affect the tree abundance, species richness, basal area and height of the canopy and 

understory of plant communities. 

 

Methods 

Study site 

This study was carried out in the Atlantic Forest of Paraná state, southern coast of 

Brazil, in the municipality of Antonina (25o19’15’’S and 48o42’24’’W). The study areas are 

within the Guaraqueçaba Environmental Protection Area, a large region (more than 300,000 

ha) that includes forests, estuaries, bays, islands, mangroves and lowlands, and is part of one 

of the most important remaining areas of Atlantic Forest in Brazil (Ferretti & Britez 2006a). 

We collected data in two reserves within these areas, Rio Cachoeira Nature Reserve and Morro 

da Mina Nature Reserve. Both are property of the non-governmental organization Society of 

Research in Wildlife and Environmental Education (SPVS) and together they comprise nearly 

10,000 ha. 

The climate in the region is humid subtropical (Cfa), according to Köppen’s 

classification (Ferretti & Britez 2006b), with annual precipitation of 3016 mm and mean 

temperature of 21.2°C over the last 25 years (Cardoso et al. 2012). Altitude varies from sea 

level to 900m a.s.l. Four soil types occur in the reserve: Acrisol, Fluvisol, Gleysol, and 

Cambisol (Ferretti & Britez 2006b). Acrisols are mineral soils, non-hydromorphic, 

moderately drained, ranging from shallow to very deep. Fluvisols consist of mineral or 

organic material, usually underdeveloped, shallow and well drained. Gleysols are 

hydromorphic, mineral, sandy, with variable fertility and are permanently or periodically 
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saturated with water. Cambisols comprise non-hydromorphic, mineral soils, with variable 

fertility and high silt content (Embrapa 2006). A general characterization of the physical and 

nutrient contents in these soil types can be found in the supplementary material (Table S1). 

 The Atlantic Forest in the region is characterized by different typologies, including 

Submontane, Lowland, and Alluvial Forests. In the region, 68% of the landscape is 

comprised of forest remnants and 9% of secondary forest areas that are mingled with buffalo 

grazing and agricultural areas (Kauano et al. 2012). With the increasing establishment of 

conservation areas in the region, some of these intensive use sites were abandoned and are 

now in a process of restoration (Ferretti & Britez 2006a), resulting in areas with vegetation in 

different successional stages. Other areas suffered selective logging of native commercial 

species, for example the native palm Euterpe edulis (Ferretti & Britez 2006a, Bruel et al. 2010, 

Borgo et al. 2011). 

In 2000, a large restoration program has started in the reserves and applied passive 

(natural regeneration) and active (plantation of native tree seedlings) restoration strategies 

(Ferretti & Britez 2006a). The first plantation areas, now approximately 15 years old, are well 

established, with most tree species already reproductive and heights up to 15 meters. Old 

growth forests present in the region are an important source of seeds (Leitão et al. 2010) and 

shelter for animals (Zwiener et al. 2012). 

 

Pasture and restoration characterization  

  The restoration program was established in lowlands and low slope areas previously 

used as non-intensive pasture for buffalo ranching for approximately 30 years. The pastures 

were established using local techniques that included slashing the forests and mechanical 

removing of the residuals. In some areas, farmers maintained some large trees in order to 
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promote shading for the cattle. The terrain was prepared by removing tree roots and stumps 

in some areas and seeding different African grass species. Three major grass species 

combinations were used in the pastures: 1) grass cover dominated by Urochloa cf humidicola 

(Rendle) Morrone & Zuloaga and Urochloa arrecta (Hack. ex T. Durand & Schinz) Morrone 

& Zuloaga; 2) the non-invasive and less aggressive fodder grass species Paspalum sp.; 3) a 

mixture of different grasses including Urochloa spp. and Paspalum sp. Urochloa grasses were 

introduced for pasture in Brazil, and are highly adaptable to nutrient-poor and high humidity 

soils.  

Two restoration strategies were used in the reserves: active (seedling plantation) and 

passive (isolation for forest regeneration) restoration. In the active restoration, seedlings of 

approximately 15 fast-growing species were planted in 1.5 × 2.5 m grids, resulting in a 

density of 2,666 seedlings.ha-1. The seeds were collected locally in the reserves and seedlings 

were produced in a local nursery, and were transplanted when they were ~5-months old (~15 

cm in height). Soil preparation included roto-tilling; fertilizers were not used. Seedlings were 

hand-planted in small (~800 ml) hand-made holes. Plot management included hand-weeding 

in the summer of the first year after seedlings were planted. The passive restoration consisted 

only of pasture abandonment and isolation from cattle with fences. Areas of both restoration 

strategies were similar prior to the restoration. Details of the study area and restoration 

characteristics can be found in Ferretti & Britez (2006a) and Bruel et al. (2010). 

 

Methods 

 The study is based on a comparative analysis of the forest restoration in different 

combinations of characteristics. We established a total of 93 circular plots (radius of 14m; 

area of 615.7m2 each) resulting in a total sampled area of 5.7ha. Plots were distributed in the 



	
  

	
   34	
  

two reserves and were selected in a way to account a gradient of all variables of pasture 

management techniques, soil and landscape characteristics, and restoration strategies (Figure 

1). The plots were established in areas with age varying from 2 to 80 years. We determined 

the age of these forests based on aerial photographs and interviews with local people. Acrisol 

accounted for 6 plots, Cambisol 31 plots, Gleysol 50 plots, and Fluvisol 6 plots. A total of 70 

plots were in the lowlands while 23 were in the hillsides. The distance to the closest old-

growth forest remnant (nearest-neighbor distance) varied from 0 to 460m, and the area of 

this remnant varied between 0.09 to 40.203ha. Landscape related variables were obtained 

with GIS techniques from the reserves’ maps and the application Vlate in ArcGIS software 

(see details in Kauano et al. 2013). 24 plots were in areas of active restoration, and 69 plots in 

areas of passive restoration. 21 plots were covered by the grass Urochloa cf humidicola and 

Urochloa arrecta, 17 with Paspalum sp. and 25 were mixed (Urochloa and Paspalum). For the 

remaining number of sites, we did not have information whether exotic grasses were used and 

what kind of pasture management technique was used (root removal / remnant trees), 

therefore, they were analyzed in a different sub-group, explained in more detail below. For 

these sites, we also recorded the presence of remnant trees in the plots and whether or not the 

plots went through root removal during the pasture establishment. 

 

Survey and analysis of vegetation 

 In all 93 plots of 14m in radius we sampled all trees and shrubs with diameter at breast 

height (DBH; 1.3m) > 5cm, to characterize the canopy. In a smaller concentric sub-plot (4m 

in radius, 50.3 m2), we measured all individuals (tree saplings and shrubs, which will be 

referred hereafter as “understory”) with DBH < 5.0cm and height >1.30m (or stem base 

diameter, for shrubs). For all sampled individuals we determined the species name and 
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measured the DBH and total height. We calculated total tree abundance; species richness, 

basal area and mean height for each plot, in each of the two plot sizes (14m and 4m), 

representing the canopy and understory communities, respectively. 

 

Data Analysis 

We analyzed the data in two steps. First, we used a dataset of all the 93 plots 

together, which includes restoration areas (up to 15 years-old) and secondary forests (15-80 

years old). For this analysis, we had five explanatory variables (terrain relief, restoration age, 

distance from the nearest neighbor, area of the nearest neighbor and soil type). Then, we 

analyzed separately the subset of 61 younger restoration plots, excluding the secondary forests 

older than 15 years of age. In this case, we were able to add four more explanatory variables in 

the database of the restoration project (restoration strategy, pasture type, presence of remnant 

trees, use of root removal) and focus in the initial steps of restoration. 

To proceed to analysis we organized the different type of variables to use in our model 

selection. We assigned a rank position to the categorical variables “type of pasture” and 

“restoration strategy”. They were ranked according to a prior analysis of the mean values of 

each variable in our data, and then assigned a rank position. For instance, the pasture type 

“Paspalum sp” received rank position number 3; the type “mixed” (containing both Paspalum 

sp and Urochloa spp.) was determined rank position number 2 and the plots containing any of 

the two species of Urochloa received rank position number 1. In this case, we expected that 

Paspalum sp. plots would have greater tree abundance, species richness, basal area and mean 

height than “mixed”, and these, in turn, would be ahead of the plots with Urochloa spp. For 

restoration strategy, we used 2 for active and 1 for passive restoration. This procedure of 

assigning rank positions to categorical variables was proposed by Padial et al. (2010) and 
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made it possible to include a larger set of variables in model selection analysis. Soil type was 

decomposed in four dummy variables (Legendre & Legendre 1998), representing each soil 

type (Cambisol, Gleysol, Fluvisol and Acrisol). We also had two presence/absence variables 

(root removal and presence of remnant trees). The plots where root removal was performed 

received number 0 and plots that did not have root removal received number 1. The plots 

without remnant trees received number 0 and the plots with the presence of the trees received 

number 1. 

We then analyzed any possible spatial structure among the studied plots using 

Moran’s I test for spatial autocorrelation (Rangel et al. 2006). Since Moran’s I was not 

significant, we assumed no spatial structure in our data. Afterwards, we used a model 

selection approach to analyze the explanatory variables listed above, for the 93-plot dataset 

and the 61-plot subset. The response variables in both cases were tree abundance, species 

richness, basal area and mean height, separately for canopy and understory plots.  

The model selection and multi-model inference approaches (Burnham & Anderson 

2002) allowed us to compare the likelihood of different models. We used an exhaustive 

search of models comprising one explanatory variable or a combination of explanatory 

variables. First, competing models were compared based on Akaike Information Criterion 

(AIC) (Burnham & Anderson 2002). The model with minimal AIC value was selected as the 

best (Johnson & Omland 2004). AIC is based on the principle of parsimony, so there is a 

trade-off between prediction error and parameter uncertainty. Akaike weight (wi) was also 

calculated for each model using the ΔAIC, which is the difference between the AIC of a 

given model and the AIC of the best model. These values were normalized across the set of 

candidate models to sum one, and each one of these values can be interpreted as the 

probability of a certain model to have the best fit (Johnson & Omland 2004). Coefficients of 
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determination (r2) were also calculated to give the amount of variance accounted for each 

model. Secondly, we used multi-model inference values based on model averaging to estimate 

the relative importance of each explanatory variable (Johnson & Omland 2004). These values 

are the sum of the AIC wi over all of the models in which a certain parameter appears 

(Johnson & Omland 2004).  

 After the best models were selected, we gathered the variables of the best selected 

model for abundance, species richness, basal area and height for both canopy and understory 

communities and performed linear regressions, ANOVAs with Tukey post-hoc or t-test for 

the three stronger variables in each model, in order to test relationships and differences. We 

used SAM software version 4.0 (Rangel et al. 2006) for the model selection and spatial 

autocorrelation analyses and R (R Core Team 2012) for all other statistical analyses. 

Figure 1. Map of the study area, showing Brazil, Paraná state and the 93 studied plots in two 

Natural Reserves (Cachoeira and Morro da Mina). 
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Results 

Vegetation assessment 

We sampled a total of 7378 individuals in 93 plots, where 5144 were canopy trees and 

2234 were understory individuals, including saplings and shrubs. A total of 234 species were 

recorded for the canopy community and 220 species for the understory community. The most 

abundant species in the canopy were Myrsine coriacea, Tibouchina pulchra and Pera glabrata. 

The most abundant species in the understory were Vernonanthura beyrichii, Tibouchina 

trichopoda and Myrsine coriacea (Table 1). 

 

Factors that affect restoration 

The best models selected to describe canopy and understory abundance, species 

richness, basal area and height of trees included various combinations of explanatory 

variables. The variables that were most frequently present in our models in the canopy were 

nearest-neighbor distance, restoration age and pasture type, and in the understory they were 

nearest-neighbor distance, age and soil type (Gleysol and Fluvisol) (Table 2). 

The best models were the ones that are more predictive (higher adjusted R2) and with 

more explanatory power (low AIC and high AIC wi). We list below the variables that 

composed the best models for both the whole dataset with 93 plots and the subset with 61 

younger plots. For canopy abundance, four variables were part of the best models: restoration 

age, nearest neighbor distance, restoration strategy and pasture type (Table 2). Canopy tree 

abundance increased significantly with age in the 93-plot dataset (Fig. 2a), and showed a 

negative relation with nearest-neighbor distance, with plots more distant to adjacent forests 

with lower abundance (Fig. 2b). Plots containing the invasive grass Urochloa spp. (alone or 

mixed with the other less invasive grass) had fewer individuals than the plots containing only 
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the non-invasive grass Paspalum sp. (Fig. 2d). The explanatory variable restoration strategy 

was the fourth most important, so it is not represented in the figure, but it was also selected 

in the best model. There were significantly more trees in the canopies of plantation plots than 

of natural regeneration plots. In the understory, age and distance also had similar effects on 

abundance (Figs. 2d and 2e). Area of the nearest neighbor, soil types Fluvisol and Gleysol 

and relief also composed the best models in the understory (Table 2). 

Species richness was explained by five main variables, which composed the best 

models: terrain relief, restoration age, nearest-neighbor distance, soil type (Acrisol) and 

pasture type (Table 2). In the same way as abundance, older areas had more species and 

nearest neighbor distance also had a negative relation with richness, with sites more distant to 

forest patches with a lower richness (Figs. 3a and 3b). Plots containing the invasive grass 

Urochloa spp. had fewer species than the plots containing only the non-invasive Paspalum sp. 

(Fig. 3e). Soil type and terrain relief were also part of the best model, although not between 

the three strongest variables represented in the figures. Different soil types had distinct 

number of species, with Cambisol with more species than Acrisol and than Gleysol. In 

addition, plots that were on the hillsides had significantly more species than the ones on the 

lowlands. In the understory, the same three variables as the canopy were more important to 

the models: restoration age, distance to the nearest neighbor and pasture species (Figs. 3d, 3e 

and 3f). 

The best models for basal area included six variables: terrain relief, restoration age, 

nearest-neighbor distance, soil type (Acrisol), pasture species and restoration strategy (Table 

2). Basal area increased with plot age and decreased with nearest neighbor distance, with sites 

more distant to forest patches with a smaller basal area (Figs. 4a and 4b). Plots with higher 

basal area were the ones with native species plantations (Fig. 4c). The plots on the hillsides 
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are not represented in the figure, but they contributed to the model and had higher basal area 

than the ones on the lowlands. In contrast, basal area of the plots with the three different 

pasture types did not differ (P>0.05), although considered an important variable contributing 

for the best model. In the understory, three variables contributed to the models: restoration 

age, nearest neighbor distance and the restoration technique of root removal. Older plots had 

increased basal area than younger plots (Fig. 4d). The other variables did not have a 

significant relationship with basal area (P>0.05). 
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Table 1. The five most abundant species in the canopy and understory at four different ages; in an area of Atlantic Forest in southern 
Brazil. N: number of individuals. 
 

<15 years 15-25 years 30-50 years >80 years 

Canopy  
Species N (%) Species N (%) Species N (%) Species N (%) 

Myrsine coriacea 565 (21.7) Tibouchina pulchra 178 (16.2) Pera glabrata 95 (9.6) Psychotria nuda 40 (8.7) 

Senna multijuga 230 (8.84) Myrsine coriacea 116 (10.5) Vochysia bifalcata 51 (5.2) Mollinedia schottiana 23 (5.0) 
Mimosa bimucronata 225 (8.6) Pera glabrata 97 (8.8) Euterpe edulis 50 (5.1) Euterpe edulis 22 (4.8) 

Tibouchina trichopoda 215 (8.3) Casearia obliqua 60 (5.5) Calyptranthes grandifolia 40 (4.1) Hyeronima alchorneoides 19 (4.1) 
Tibouchina pulchra 171 (6.6) Casearia sylvestris 52 (4.7) Sloanea guianensis 38 (3.9) Guapira opposita 14 (3.0) 

Total for age 2601  1100  984  460 

Understory 
Vernonanthura beyrichii 198 (18.9) Psychotria nuda 64 (11.9) Miconia cinerascens 44 (9.4) Geonoma sp. 15 (8.1) 
Tibouchina trichopoda 194 (18.5) Marlierea obscura 27 (5.1) Jacaranda puberula 36 (7.7) Rudgea jasminioides 14 (7.6) 

Myrsine coriacea 127 (12.1) Psychotria pubigera 24 (4.5) Euterpe edulis 25 (5.4) Ouratea parviflora 13 (7.0) 
Ossaea amygdaloides 49 (4.7) Vochysia bifalcata 20 (3.7) Psychotria nuda 20 (4.3) Psychotria nuda 12 (6.5) 

Leandra australis 40 (3.8) Ouratea parviflora 18 (3.4) Marlierea obscura 16 (3.4) Mollinedia schottiana 12 (6.5) 
Total for age 1047  534  467  185 

 

 
 



	
  

	
   42	
  

(m)$
0 20 40 60 80

0
20

40
60

80
12
0

Age

In
di
vi
du
al
s

0 100 200 300 400

0
20

40
60

80
12
0

Distance
In
di
vi
du
al
s

Mixed Poaceae

0
20

40
60

80
12
0

Pasture type

In
di
vi
du
al
s

Canopy 
a) b) c) 

$$$$$$$Mixed$$$$Non-invasive$$$Urochloa(spp$

Understory 
d) e) 

0 20 40 60 80

0
20

40
60

80
10
0

Age

In
di
vi
du
al
s

0 100 200 300 400

0
20

40
60

80
10
0

Distance (m)

In
di
vi
du
al
s

N=93;P<0.001; R2=0.22 N=93;P<0.001; R2=0.21 ANOVA; N=61; P=0.004 

a 

a 

b 

N=93; P=0.003; R2=0.12 N=93; P=0.028; R2=0.04 

 

 

Figure 2. Effects of explanatory variables (a: restoration age, b: nearest-neighbor distance and 

c: pasture type, on the canopy and d: restoration age and e: nearest-neighbor distance on the 

understory) on the abundance of areas undergoing restoration, Atlantic Forest region, 

southern Brazil. 
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Figure 3. Effects of explanatory variables (a,d: restoration age; b,e: nearest-neighbor distance, 

and c,f: pasture type), on the species richness, in areas undergoing restoration in the Atlantic 

Forest region, southern Brazil. 
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Table 2: Results of the model selection showing the best model selected to explain 
abundance, species richness, basal area and height of 93 plots and 61 plots of Atlantic Forest 
undergoing restoration in Southern Brazil. Explanatory variables 93 plots: terrain relief, 
restoration age, distance from the nearest neighbor, area of the nearest neighbor, Gleysol, 
Fluvisol, Cambisol, Acrisol. Variables 61 plots: the same eight variables as above, plus 
restoration strategy, root removal, presence of remnant trees and pasture type. AIC= Akaike 
Information Criteria; AIC wi= Akaike weight. 

 

Response variables  Explanatory variables R2 AIC AIC wi 

Canopy      

Abundance 93 plots age, distance 0.32 899.25 0.087 

 61 plots restoration strategy, pasture 0.24 552.9 0.021 

Richness 93 plots relief, age, distance, Acrisol 0.78 593.17 0.194 

 61 plots pasture, distance 0.26 329,55 0.025 

Basal Area 93 plots relief, age, distance, Acrisol 0.67 604.45 0.076 

 61 plots restoration strategy, pasture, distance 0.24 342.72 0.018 

Height 93 plots relief, age, distance 0.48 354.66 0.093 

 61 plots restoration strategy, pasture 0.14 200.65 0.01 

      
Understory      

Abundance 93 plots age, distance, area, Fluvisol 0.21 822.23 0.042 

 61 plots relief, age, Gleysol 0.19 487.14 0.024 

Richness 93 plots age, distance 0.38 609.87 0.09 

 61 plots age, pasture type 0.22 289.82 0.024 

Basal Area 93 plots age, distance 0.07 390.63 0.04 

 61 plots root removal, age, distance 0.20 258.48 0.022 

Height  93 plots age 0.05 218.63 0.056 

 61 plots Gleysol 0.03 160.1 0.014 
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Figure 4. Effects of explanatory variables (a: restoration age, b: nearest-neighbor distance, 

and c: restoration strategy in the canopy, and variable d: restoration age in the understory) on 

the basal area in areas undergoing restoration in the Atlantic Forest region, southern Brazil. 

 

The best models selected for explaining mean height had the same variables as the 

ones with basal area, except for the variable Acrisol. Likewise, tree mean height was higher in 

older plots (Fig. 5a), with shorter distances from the nearest forest (Fig. 5b). Plots with 

mixed pasture species, containing the invasive grass Urochloa spp. and the Paspalum had lower 

mean height (Fig. 5c). In the understory, only variables age and Gleysol composed the 

models. Older plots also had higher mean height than younger plots (Fig. 5d) and mean 

height did not differ between soils, although Gleysol was the only variable selected for the 

model for the 61 younger areas (Table 2). 
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Considering the model averaging procedure (which shows the importance value for 

each variable) (Fig. 6), we found out that in the 93-plots dataset, restoration age was the most 

important (importance value > 0.7) explanatory variable affecting abundance, species richness, 

basal area and mean height in restoration areas in all the possible models (considering canopy 

and understory) (Fig. 6). It was followed by nearest-neighbor distance (importance value > 

0.5 in six of the eight possible models) and by terrain relief and Gleysol (importance values 

ranging between 0.27 and 0.92) (Fig. 6). However, when we used the 61-plot subset, which 

includes only the young restoration areas, restoration age explained understory abundance, 

species richness and basal area (importance values > 0.62), but was not so important to these 

variables in the canopy (importance values very low, around 0.25). For this subset, the 

variable pasture species was the main variable to affect restoration in the canopy (importance 

values ranged between 0.62 to 0.93), followed by restoration strategy (importance values ~ 0.7 

in the canopy, except for species richness, that had comparatively low importance value: 

0.24). Soil type contributed in some cases with importance value above 0.6, for example, in 

canopy species richness (Acrisol) and in understory abundance (Gleysol). The variable root 

removal was important in understory basal area (importance value=0.75) (Fig. 6). High 

importance values do not necessarily mean that variables have a good predictive power, but 

combining this result with the AIC models (Table 2), the cited variables stand out as 

important factors to the restoration success. 
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Figure 5. Effects of explanatory variables (a: restoration age, b: nearest-neighbor distance and 

c: pasture species, on the canopy and variable d: restoration age), on the plant height in areas 

undergoing restoration in the Atlantic forest region, southern Brazil.  
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Figure 6. Diagram of the importance value of each explanatory variable in the canopy and 

understory in restoration areas in Southern Brazil. Importance values lower than 0.4 were 

placed together in the category “others”. 

 

Discussion 

The study of factors that may affect the restoration areas in the southern Atlantic 

Forest indicated that some factors together are mutually responsible for the outcome of 

restored forests. Some factors such as restoration age and distance from the nearest forest 

remnant were fundamental in most of the models constructed here. However, when we 

analyzed the beginning of succession separately (61 plot-subset), restoration age expressively 

decreased in importance. Restoration age was already described as primary factor determining 

forest structural parameters described in many other studies (Chazdon 2003, Howorth & 
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Pendry 2006), but the initial steps of restoration had been not been analyzed in this manner 

before. The strong relation with the distance of the nearest mature forest fragment shows 

that the presence of forests nearby is a key factor when planning restoration actions (Kauano 

et al. 2013). 

 

Effects of soil and landscape features  

All the response variables studied here showed a significant negative relationship with 

nearest neighbor distance. Considering that this study was conducted in an area with a forest 

matrix and where fragment distances vary from only 0 to 460m, we assume that even very 

small distances (under 500m) can have a strong influence in forest structural parameters as 

the ones studied here (abundance, richness, basal area and height). The presence of nearby 

forests and corridors are, thus, crucial for the recovery of Atlantic Forest areas. Small 

distances affecting succession were also reported in another study in the region (Zwiener et al. 

2014), which found out that species composition of seeds and seedlings differed between 

areas distant 10m and 300m from the forest edge. In a study of natural regeneration in Puerto 

Rican tropical forest, distance to mature forests at the time of abandonment was a substantial 

predictor of species richness and diversity, along with site age, emphasizing the importance of 

seed dispersal for colonization (Chinea 2002). Although the area of the nearest forest in our 

plots varied substantially, distance from these forests revealed to be more critical influencing 

succession in this area.  

 Terrain relief was not a central factor affecting the structural parameters plant 

abundance, basal area and height in our study. However, it had a high importance value in 

the models constructed for species richness. Species richness in slope areas is likely to be 

higher than lowland areas due to the contrasting land-use in rugged terrains, where the 
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difficult access has safeguarded mature forests in slopes and close to them, enriching the 

remaining species pool. Conversely, since the slope soils are usually coarser and have a more 

extreme microclimate, they are less easy to colonize and can therefore slowdown the spatial 

spread of species (Temperton et al. 2004). These two hypotheses, acting together, may have 

mitigated the effects of slope in this study. In addition, it is difficult to isolate the effect of 

the slope on the vegetation in our study. This is a constant bias of successional and 

restoration studies (Pascarella et al. 2000, Chazdon 2003), and should be considered carefully 

in future interpretations.  

 The variable soil type had weaker explanatory power than others, such as plot age and 

nearest neighbor distance. Acrisol explained canopy richness and Gleysol explained 

understory abundance. Gleysols tend to be more saturated with water, what may affect plant 

abundance, since many species do not tolerate flood. We did not measure the water table 

levels in this study, but a previous research in the same area indicated that Gleysols can be 

saturated with water during a long time of the year (Cardoso et al. 2012). Likewise, soil 

conditions were the primary factors affecting growth and survival of native tree seedlings in 

the same region (Sobanski & Marques 2014). Low levels of soil nutrients as well as soil 

physical characteristics (compaction, low levels of organic matter) also limit the establishment 

of the seedlings (Fernandes & Sanford 1995). Further studies on the effect of soil on 

restoration areas are necessary, considering soil-related effects more closely and trying to 

isolate them from other important variables, such as plot age. 

 

Effects of pasture species and management  

The variable pasture type was present in all the four best models for the canopy 

community and one model of the understory community. It was evident that the abandoned 
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areas previously colonized by any of the two Urochloa species had a significant negative effect 

on plant abundance and species richness than the areas that had only the non-invasive 

Paspalum sp. For basal area and height, although the difference between the three pasture 

types was not significant, the variable was selected in both models and the pastures with 

Paspalum sp. showed a tendency of having higher basal area and mean height than the ones 

with Urochloa spp. Nevertheless, in the understory, the presence of pasture type in the models 

was not so conspicuous. Pasture type only had a high importance value for understory species 

richness. For the other explanatory variables, there were other factors in this stratum that 

were even more important than pasture type, especially plot age, nearest-neighbor distance 

and soil type. One possible explanation for this result is that when the understory is actually 

present, it means that the first generation of plants (that are now adult trees) had already 

grown and transposed the barrier of the exotic grasses, producing shade and leaving it clear 

for the next generation, which is the current in the understory. Grass competition 

significantly decreased seedling growth in abandoned lands in Panama (Hooper et al. 2005). 

However, in a tropical forest in Puerto Rico, researchers have found that competition with 

grasses was a barrier to seedling establishment only for some species, and that species 

responded differently to pasture removal treatments (Zimmerman et al. 2000). 

 

Effects of the restoration strategies and age 

Restoration age was certainly a fundamental factor influencing mostresponse variables 

in this study, except when the first years of succession were analyzed separately. In many 

other studies on Neotropical forests, structural patterns and species richness (Liebsch et al. 

2008 and Zanini et al. 2014 in Atlantic Forest, Letcher & Chazdon 2009 in Costra Rica) also 

increased with forest age. In southern Brazil, results indicated that forest age overcame other 
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environmental and spatial variables on forest assembly patterns (Zanini et al. 2014). Aide et 

al. (2000) described vegetation recovery in a chronosequence of abandoned pastures and 

found that, after approximately 40 years of recovery, density, basal area, aboveground 

biomass, and species richness were similar to those of old growth forest sites. 

 The restoration strategy explained part of the variability in canopy abundance, basal 

area and mean height. Plots under active restoration by means of seedling plantation had 

more individuals, higher basal area and higher mean height, what is expected since there was 

an external input of individuals in the area. On the other hand, the plantation of these 

individuals was not important for species richness (importance value < 0.3), probably because 

few species were used in the restoration program. Plots of natural regeneration and plantation 

did not differ in number of species, suggesting that although plantation carries more 

individuals to the area, it does not necessarily lead to higher species richness. Our active 

restoration plots in this study are still young (maximum 11 years). Studies on the outcome of 

plantations after longer periods in different areas are needed to infer about the necessity of 

managing restoration areas. However, in areas with no restraints on seed dispersal and minor 

competition with exotic grasses, natural regeneration may be the best cost-benefit for 

restoration.  In small abandoned pastures in Puerto Rico, adjacent to forested areas, results 

indicated that it is possible to make passive restoration, just letting trees naturally invade 

(Zimmerman et al. 2000). 

 The presence of remnant trees was not selected in any of the models and its 

importance value was generally low (<0.4) in this study. The proximity of the plots to 

remnant forests probably turned the remnant trees a secondary factor in attracting fauna and 

bringing propagules. Zwiener et al. (2014) found that isolated remnant trees received fewer 

seeds in the second year of their study in the same area. Over the course of succession, shrubs 
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and trees establish and thus, forest regeneration areas have more options of perching 

structures, decreasing the demand of the use of remnant trees as perches. 

Most of our plots suffered root removal when forests were converted into pastures. 

Even though root removal was selected for the model for basal area in the understory, we 

might have not had a satisfactory number of plots without the root removal procedure to 

make this pattern more robust for the other variables. 

In this study we concluded that abandoned pasture lands in the Atlantic forest in this 

kind of landscape have more favorable results when they are older (> 15 years old), closer to 

forest remnants, in the hillsides and without interference of the invasive grass species 

Urochloa. They also have differential development between different soil types and different 

restoration strategies. We conclude that there are important biotic and abiotic factors that 

interact strongly with the main factor (age since area abandonment) to influence successional 

processes. This study can provide insights into how to accelerate the regeneration process in 

tropical forests by determining its major barriers. The understanding of these limiting factors 

will also contribute to the knowledge of successional theory and mechanisms (Pickett et al. 

1987) and to practical restoration actions. In the study region, for example, areas that are 

close to forest remnants, without invasive fodder grasses can be successfully restored with 

passive restoration techniques (natural regeneration). On the other hand, larger distances to 

forest remnants and the presence of Urochloa grasses may require active restoration strategies. 
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Supplementary Material 
 
Soil analysis 

 A preliminary soil sampling in order to find out main variations in chemical and physical 
soil compositions in the four soil types was carried out in 23random plots (Cambisol: 10; 
Gleysol: 7, Acrisol: 3, Gleysol: 3). Samples were collected at a depth of 0–10 cm, at four 
equidistant points approximately 4m from the center of the plot and also one point in the 
center. Soil samples collected at the five points were then pooled in a container in order to 
make one composite sample per plot. Samples were then taken to the laboratory, air- dried 
and sifted. Standard chemical analyses were performed for pH, P, Al, Ca, Mg, K, Al and C 
(Embrapa 1997). Sum of basic cations (SB), base saturation levels (V%), cation exchange 
capacity (CEC) and Aluminum saturation (m%) were calculated. Soil textural analysis for the 
determination of clay, silt and sand content was performed using the densitometer method 
(Embrapa 1997) (Table S1). Other comparison between Cambisol and Gleysol soil 
parameters in the same study area can also be found at Cardoso et al. 2012. 
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Table. S1. Means (± SE) of the chemical and physical characteristics (depth= 0-10cm) of 
four soil types in Atlantic Forest areas, Southern Brazil.  
 

 Fluvisol Acrisol Cambisol Gleysol 

pH CaCl2 4.03 ± 0.11 3.85 ± 0.14 3.78  ± 0.06 3.96±0.04 

Al (cmolc.dm-3) 1.13 ± 0.36 1.35 ± 0.43 2.36 ± 0.21 2.14± 0.28 

Ca (cmolc.dm-3) 0.96 ± 0.51 0.30 ± 0.63 0.41 ± 0.27 0.50 ± 0.18 

Mg (cmolc.dm-3) 0.58 ± 0.17 0.30 ± 0.21 0.31 ± 0.09 0.43 ± 0.09 

K (cmolc.dm-3) 0.10 ± 0.02 0.11 ± 0.02 0.15 ± 0.01 0.14 ± 0.02 

P Mehlich (mg.dm-3) 6.47 ± 1.57 4.00 ± 1.9 4.64 ±1.03 3.79 ± 0.48 

C (g.dm-3) 34.5 ± 5.5 40.3 ± 6.7 4.47 ± 0.25 7.72 ± 0.43 

Clay (g.kg-1) 179.7 ± 48.9 263 ± 59.9 390.7± 37.59 225.14 ± 47.99 

Silt (g.kg-1) 283.7 ± 88.7 181.5 ± 108.7 143.23 ± 50.47 318.91 ± 51.87 

Sand (g.kg-1) 537.7 ± 124.0 556.5 ± 151.91 463.48 ± 51.19 456.23 ± 94.24 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  

	
   61	
  

Capítulo 2 
________________________________________________________________ 
 

CARACTERÍSTICAS DO SOLO DETERMINAM DIFERENTES 
TRAJETÓRIAS SUCESSIONAIS EM FLORESTAS TROPICAIS 
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Soil characteristics determine different successional trajectories in tropical 
forests 

 
Abstract 

The forest structure and diversity of tropical forests recovering after a disturbance is 
determined by several factors. In areas previously occupied by pasturelands they include the 
impact of grass species, the distance and size of fragments, among others. We hypothesized 
that soil characteristics are an important factor to determine the successional trajectory in 
tropical forests. To test for this hypothesis we investigated the abundance, diversity, species 
composition and species specialization to soil types in the understory and canopy of 
successional forests occurring in two different soil types contrasting in water availability, 
namely, Gleysol (periodically flooded) and Cambisol (well drained) in the southern Atlantic 
Forest in Brazil. We sampled 45 circular plots (615.7m2 each plot, 2.8ha total) of forests 
undergoing restoration (natural regeneration), 25 of them in Cambisol areas with age of 
abandonment varying from 2 to 80 years and 20 in Gleysol areas with age from 2 to 50 years. 
In all plots we sampled all trees with DBH > 5.0cm. In a concentric plot with smaller area 
(50.3m2) we also sampled all understory individuals (shrubs and saplings) with DBH < 5.0 
and height > 1.3m. We sampled a total of 4389 individuals (3032 in the canopy and 1357 in 
the understory) distributed in 215 species of trees in the canopy and 181 species in the 
understory, including sapling and shrubs. We found a clear gradient of the plant 
communities’ species richness, abundance, basal area and tree height along succession. 
Cambisol plots presented canopies with higher abundance, accumulated species, and diversity 
than Gleysol. In the understory, only a difference in abundance was found between soils, with 
Gleysol with more individuals in the younger plots and Cambisol with more individuals in 
the older plots. Despite these structural differences, species composition was similar. We 
found some species that were specialist to one or another soil types. We concluded that soil 
characteristics play an important role in determining the successional trajectories in tropical 
forests, and it should be taken into consideration when planning forest management. 

 
Key words: natural regeneration; succession; soil type; Atlantic Forest 
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Introduction 

The interest in tropical secondary forests dynamics and successional processes 

increased substantially in the past decades, when researchers have identified many of the 

factors that could affect them and their patterns of species diversity, biomass, structure and 

species composition (Hughes et al. 1999, Steininger 2000, De Jong et al. 2001, Guariguata & 

Ostertag 2001, Kennard2002, Chazdon 2003, Letcher & Chazdon 2009). There are a variety 

of factors that influence regeneration of a forest, determining its capacity to recover and how 

fast this is going to happen (Uhl 1987, Aide & Cavelier 1994; Rodrigues et al. 2009). The 

vegetation that establishes after a disturbance or in newly abandoned areas is well varied and 

depends on such factors, like type and intensity of the disturbance, time since the area has 

been abandoned, size of the area and propagule availability (Swaine & Whitmore 1988; 

Gunderson 2000; Moran et al. 2000, Myster 2004, Chapter 1). While these factors allow us 

to understand the general successional pattern, they do not explain divergence between 

communities sharing the same landscape conditions. Other fine adjustments in micro-scale 

factors, such as soil characteristics may also be important in the plant community 

regeneration and succession. Soil texture, for example, is one of the most important 

characteristics of the soil, influencing directly and indirectly a cascade of relations between 

organic matter, ions and soil drainage (Silver et al. 2000, Castilho et al. 2006). Among many 

factors influencing species diversity, for example, soils are perhaps the most important and 

the least understood of them (Dubbin et al. 2006). 

Species of tropical trees are differentially distributed with respect to habitat variables 

at both local and regional scales (Harms et al. 2001), and some of these variables can be 

related to edaphic conditions. It is known that soil characteristics may affect forest structure 

and dynamics (Quesada et al. 2009) and many other aspects of plant communities in tropical 
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forests, e.g. plant growth and phenology, individual density, biomass accumulation and 

species distribution (Laurance et al. 1999, de Toledo et al. 2011, Cardoso et al. 2012). Total 

stem density in neotropical lowland tropical forests, for example, tended to be lower in less 

fertile soils (DeWalt & Chave 2004). In addition, trees growing in a well drained soil, with 

more nutrients, showed higher diameter increment than the ones growing in a nutrient-poor 

and flooded soil in the Atlantic Forest (Cardoso et al. 2012). Laurance et al. (1999) found 

that soil-fertility parameters accounted for a third of the variation in aboveground biomass in 

Amazonia terra-firme forests while Zarin et al. (2001) found that soil texture influenced 

aboveground biomass accumulation in an Amazonian second-growth forest. In addition, 

Castilho et al. (2006) found a relationship between soil and topography with tree and palm 

biomass in central Amazonian Forest, with a tendency of increase in tree biomass in clay-rich 

soils. In a lowland tropical forest in Borneo, basal area and biomass growth had a strong 

positive relationship with soil nutrients, especially phosphorus (Paoli & Curran 2007). 

Regardless of all these findings, studies have not focused in comparing successional 

trajectories in contrasting soil conditions and determining how these trajectories can be 

influenced by soil during tropical forest succession. 

The Atlantic Forest is one of the most threatened biomes on the planet, since it is 

extremely fragmented, with only 5 % of its original cover. Due to its high species richness and 

endemism, it is currently one of the hotspots for biodiversity conservation (Myers et al. 2000). 

Since the beginning of the 20th century, the Atlantic Forest in southern Brazil had its 

landscape greatly changed due to colonization and mining activity, and more recently due to 

the cultivation of banana, manioc, palm trees and buffalo farming (Borsatto et al. 2007). 

Along the remnants of the Atlantic Forest, there are areas with different levels of 

interference, often mingled with abandoned pastures that are now under regeneration process 
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and in different successional stages. The environmental mosaic formed by the combination of 

these areas in different ages creates a perfect scenario for studying succession and the factors 

that affect it. For these kind of studies, some researchers have used the chronosequence 

approach, which, although unrealistic in some cases (Chazdon 2008), is sometimes the only 

viable alternative for investigating temporal change in forest succession.  

Previous studies in the area have already pointed that the presence of a forested 

landscape favors seed arrival (Leitão et al. 2010, Kauano et al. 2013, Zwiener et al. 2014), 

quickly resulting in structured forests (Liebsch et al. 2007, Cheung et al. 2010). However, the 

tree growth is limited by soil characteristics (Sobanski & Marques 2014, Cardoso et al. 2012) 

in some specific areas, which could potentially delay the successional trajectory. 

We investigated how the succession trajectory differs in two different soil types 

contrasting in water and physical composition, namely, Gleysol (periodically flooded) and 

Cambisol (well drained). More specifically, we addressed the following questions: (1) Do 

abundance, species richness; basal area and tree height differ between Cambisol and Gleysol 

along the successional gradient? (2) Does species composition differ between soil types along 

the successional gradient? (3) Are there species that are specialists to a particular soil type? 

 

Methods 

Study site 

This study was carried out in the Atlantic Forest of Paraná state, southern coast of 

Brazil, in the municipality of Antonina (25o19’15’’S and 48o42’24’’W). The study areas are 

within the Guaraqueçaba Environmental Protection Area, a large region (more than 300,000 

ha) that includes forests, estuaries, bays, islands, mangroves and lowlands, and is part of one 

of the most important remaining areas of Atlantic Forest in Brazil (Ferretti & Britez 2006a). 
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We collected data in two reserves within these areas, Rio Cachoeira Nature Reserve and Morro 

da Mina Nature Reserve; both are property of the non-governmental organization Society of 

Research in Wildlife and Environmental Education (SPVS) and together, comprise nearly 

10,000 ha (Fig. S1). 

The climate in the region is humid subtropical (Cfa), according to Köppen’s 

classification (Ferretti & Britez 2006b), with annual precipitation of 3106 mm and mean 

temperature of 21.2°C over the last 25 years (Cardoso et al. 2012). Altitude varies from sea 

level to 900m a.s.l.  

Four soil types occur in the reserve:  Acrisol, Fluvisol, Gleysol, and Cambisol (Ferretti 

& Britez 2006b). We focused this study in Gleysols and Cambisols. Gleysols are 

hydromorphic, mineral, with variable fertility and are permanently or periodically saturated 

with water. Cambisols comprise non-hydromorphic, mineral soils, with variable fertility and 

incipient B horizon, frequently found in slopes(Embrapa 2006).  

Unlike other Atlantic Forest areas in Brazil that are surrounded within an 

anthropogenic matrix, the study area is located on a landscape that comprises 68% of forest 

remnants, including 9% of second growth forests that are mingled with buffalo grazing and 

agricultural areas (Kauano et al. 2012). With the increasing establishment of conservation 

areas in the region, some of these intensive use sites were abandoned and are now in a process 

of natural regeneration (Ferretti & Britez 2006a), resulting in areas with vegetation in 

different successional stages. Old growth forests present in the region are an important source 

of seeds (Leitão et al. 2010) and shelter for animals (Zwiener et al. 2012), which increases the 

speed of recovery. 

The Atlantic Forest in the region is characterized by its high tree species richness, 

organized in defined strata and associated to other diverse biological forms (Roderjan & 
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Kuniyoshi 1988). Plant endemism levels in the Atlantic Forest can reach up to 40% (Thomas 

et al. 1998), which translates to a density of 8.7 endemic species for each 100 km2 (Myers et 

al. 2000). In the study area, there are different forest typologies, resulting from a combination 

of varying altitudes and latitudes(Veloso et al. 1991). The sub-formations include 

Submontane, Lowland, Alluvial Forests and also pioneer areas with fluvial influence. 

 Part of the reserves suffered clear-cutting and later use for agriculture of banana, manioc, 

coffee and sugar cane, followed by pastures for buffalo breeding. Other areas suffered 

selective logging of native commercial species, such as the native palm tree Euterpe edulis 

(Ferreti & Britez 2006a, Bruel et al. 2010, Borgo 2010). 

 

Experimental design 

 The study is based on a comparative analysis of the forest successional trajectory in areas 

with two soil types (Cambisol and Gleysol). Areas of the two soil types were chosen based on 

soil maps of the reserves. We established a total of 45 plots in areas of different ages after the 

abandonment: 2-6; 7-12; 15-25; 30-50 and > 80 years-old. Five plots were selected in each of 

these age groups, except for the last age (>80y), where only Cambisol plots could be found, 

due to the higher deforestation of the areas where Gleysols are predominant. The old-growth 

plots were given the arbitrary age of more than 80 years, considering the analysis of historical 

aerial photos and interviews with the locals. The areas up to 50 years old were previously used 

for cattle pasture (for approximately 30 years) and then abandoned. The older areas (>80 

years old) have not suffered clear-cutting, but they were likely used for selective logging for 

local use in the past century. 
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Soil analysis 

 Soil characterization was carried out by sampling 17 random plots (Cambisol: 10; Gleysol: 

7) for soil physical and chemical analysis. Samples were collected at a depth of 0–10 cm, at 

four equidistant points at 4m from the center of the plot and also one point in the center. Soil 

samples collected at the five points were then pooled in a container in order to make one 

composite sample per plot. Samples were then taken to the laboratory, air-dried and sifted 

(2mm). Standard chemical analyses were performed for pH (CaCl2), P, Al3+, Ca2+, Mg2+, K+ 

(Mehlich) and C (Embrapa 1997). Soil texture analysis for the determination of clay, silt and 

sand content were performed using the densitometer method (Embrapa 1997).  

 

Vegetation survey 

 All plots (total: 25 in Cambisol and 20 in Gleysol) were circular (radius of 14m; area of 

615.7m2 each), resulting in a total sampled area of 2.77ha (1.54ha in Cambisol and 1.23ha in 

Gleysol). Plots were distributed in the reserves and were selected in a way to account 

successional areas of lowland and mountain slope areas (Lowland and Submontane Atlantic 

Forest) (Fig. S1).  

 We recorded diameter at breast height (DBH, at 1.30m), total height (measured with a 

telescopic pole), and species identification for all tree individuals with DBH > 5.0cm within 

the 14m-radius circular plot, referred hereafter as canopy. Individuals with multiple basal 

stems were included when at least one of the stems had DBH > 5.0cm. In a smaller 

concentric radius (4m, area=50.3 m2), we measured all individuals (saplings and shrubs, 

referred hereafter as “understory”) with DBH < 5.0cm (or stem base diameter, for shrubs)and 

height >1.30m. We calculated total tree abundance, species richness, basal area and mean 

height for each plot, for the 14m radius representing the canopy community; and total tree 
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abundance and species richness for the 4m radius, representing the understory community. 

Basal area and height were not calculated for the understory community because only 

individuals < 5.0cm of DBH were included, hence, this variables are limited in this stratum. 

 

Data analysis 

 Analyses for differences in textural and chemical characteristics of two soil types were 

performed with t-test (C, pH, Al, K, clay) or Wilcoxon test (Ca, Mg, P, sand, silt). 

Wilcoxon test was used for the variables that were not distributed normally by the Shapiro-

Wilk test (Zar 1999). 

 The data of canopy and understory were organized to test for effects of soil and forest 

age (used as co-factors) on the structural characteristics (species richness, abundance, basal 

area and tree height) of forests undergoing regeneration (explanatory variables). We 

performed an analysis of covariance (ANCOVA, Zar 1999) to test for differences in the 

slopes of the two soil types in relation to the age gradient. For this analysis we used the exact 

age of the plots up to 15 years; and for the other age-groups, which we do not know the exact 

age, we used the mean of the age interval between them, for example, the 15-25 year-old 

plots were given 20years; the 30-50 years-old plots were given 40 years and finally, the plots 

with 80 years or more were given the approximate age of 80 years. 

 The number of species between soil types was also compared using rarefaction curves, so 

we could standardize the accumulation of species per number of individuals sampled. 

Rarefaction curves are indicated for species richness comparisons in cases where there may be 

differences in the mean number of individuals per sample (Gotelli & Colwell 2001), which is 

the case of many succession studies (Aide et al. 2000, Kennard 2002, Piotto et al. 2009, 

Zanini et al. 2014). For this analysis, the five plots representing the old-growth forest in the 
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Cambisol (>80 years) were not considered, so that the number of plots and ages is even 

between soils.  

 Species composition was evaluated comparatively between soil types and forest ages with a 

NMDS analysis (using Chao dissimilarity index, Chao et al. 2005). Chao is an abundance-

based index that takes into account the number of unseen species pairs. In tropical forests, 

where rare species are frequent and the sampling is incomplete, this index is less biased by 

sample size and is, therefore, more appropriate than other similarity indices commonly used 

(Norden et al. 2009). In order to understand species affinities with the two soil types, species 

were categorized using the multinomial classification model proposed by Chazdon et al. 

(2011) that classifies the species in Generalists, Group 1 (Cambisol) specialists, Group 2 

(Gleysol) specialists and rare (too rare to classify). The model uses species abundances in two 

distinguishable habitat types (Gleysol and Cambisol in this case) to estimate relative 

abundances, corrects for the fact that sampling tends to overestimate common species and 

underestimate rare species, and minimizes bias due to uneven sampling intensities (Chazdon 

et al. 2011). 

 The six more abundant species in the plots were also evaluated individually in order to 

detect patterns from their occurrence in the two soil types along successional ages. For these, 

proportions of the species in each age and each soil type were calculated individually based on 

the total abundance (n) of the species in the plots between 2 and 50 years old. Species present 

in the 80 year-old plots, although shown in the figures, were not used in the calculations, 

since we had uneven number of plots representing this age. 
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Results 

Soil characteristics 

Cambisol and Gleysol did not differ in nutrients, but differed for pH and texture (clay 

and silt) (Table 1). Cambisol samples were more acidic, had higher clay content and lower 

silt content than Gleysol ones. In addition to these differences, groundwater level in 

Cambisol is lower (deeper) during most of the year when compared to Gleysol, varying from 

45 cm to 130 cm in Cambisol and from 20 cm to 90 cm in Gleysol (Supplementary Material, 

Fig. S2). 

 

Table. 1. Means (± SE) of the nutritional and physical characteristics of two soil types in 

Atlantic Forest areas, Southern Brazil. ns= non significant 

Soil parameter Cambisol Gleysol t or Z test 

pH (CaCl2) 3.78  ± 0.06 3.96±0.04 t=2.24; P=0.04 

Al (cmolc.dm-3) 2.36 ± 0.21 2.14± 0.28 ns 

Ca (cmolc.dm-3) 0.41 ± 0.27 0.50 ± 0.18 ns 

Mg (cmolc.dm-3) 0.31 ± 0.09 0.43 ± 0.09 ns 

K (cmolc.dm-3) 0.15 ± 0.01 0.14 ± 0.02 ns 

P (mg.dm-3) 4.64 ±1.03 3.79 ± 0.48 ns 

C (g.dm-3) 4.47 ± 0.25 7.72 ± 0.43 ns 

Clay (g.kg-1) 390.7± 37.59 225.14 ± 47.99 t=2.5; P=0.03  

Silt (g.kg-1) 143.23 ± 50.47 318.91 ± 51.87 Z=2.64; P=0.008  

Sand (g.kg-1) 463.48 ± 51.19 456.23 ± 94.24 ns 

 

Species richness and individual abundances 

 We sampled a total of 4389 individuals in 45 plots, where 3031 were canopy trees 

and 1358 were understory individuals, including saplings and shrubs (Table S1). A total of 
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215 species of canopy trees (Cambisol: 185 species; Gleysol: 113 species) and 182 species of 

understory (Cambisol:  134 species; Gleysol: 116 species) were recorded. General 

characteristics of the plots showed successional changes along the chronosequence, with 

mean number of individuals and species, species diversity, basal area and mean height 

increasing with age in both soil types(Table 2). 

Rarefaction curves showed the increase of species richness as individuals were added. 

For canopy trees, this increase was faster in the Cambisol plots when compared to Gleysol 

(Fig. 1a). For example, when the same number of individuals was considered, Cambisol 

presented more species than Gleysol. In contrast, this was not the pattern for the understory 

(saplings and shrubs), in which no clear difference was detected in the rarefaction curves of 

Gleysol and Cambisol (Fig 1b).  
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Figure 1. Individual-based rarefaction curves comparing two soil types (Cambisol and 
Gleysol) for canopy (a) and understory (b) along the successional trajectory of the Atlantic 
Forest in southern Brazil. Error bars indicate 95% confidence intervals for the number of 
species. N=20 in Cambisol and N=20 in Gleysol. 
 
Comparison of forest structure along forest ages and soil types 

In the canopy, the covariance analysis showed a significant effect of age on all four 

measured variables. Plant abundance in the canopy also had a significant interaction between 
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age and soil, with Gleysol plots reaching higher abundances earlier in the succession (Fig. 

2a). Soil type was not a significant factor for the other variables (richness, basal area and 

height), where only an effect of the age gradient was found (Fig. 2c, 2e and 2g). In the 

understory abundance, the interaction was not significant as it was in the canopy, but, in 

addition to age, there was also an effect of the variable soil type (Fig. 2b). Species richness 

also had an effect of age, but not soil (Fig. 2d).  

  

Species composition 

The NMDS scatterplot (Stress= 0.159) showed some floristic patterns along 

succession (Fig. 3). The axis 1 separated plots according to forest age, and younger plots (in 

the two first age classes) were positioned in the right and older plots (> 40 years of age) in the 

left of the axis. The axis 2 did not show clear patterns for strata (canopy and understory) and 

soil types (Cambisol and Gleysol) (Fig. 3). 

 

Soil specialization 

 We found that some species are specialists to one or another soil type, or are 

generalists (abundant in both soil types) (Table S1). For the canopy, 24 species were classified 

as generalists, 24 as Cambisol specialists, 13 Gleysol specialists and the remaining species 

(154) were considered too rare to classify (Table S1). For the understory, generalists 

accounted for 13 species, Cambisol specialists included 15 species, Gleysol specialists 12 and 

the remaining species (142) were considered too rare to classify (Table S1). 

 Considering the six more abundant species, Tibouchina trichopoda was the most 

abundant species sampled in the study (311 individuals) and it was considered a Gleysol 

specialist. We noticed a higher proportion of this species in the Gleysol plots along all ages, 
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reaching 45% of all individuals present in the Gleysol 7-11 year-old plots, compared to 

approximately 35% in the Cambisol plots of the same age. The occurrence of this species fell 

drastically in the 15-25 year-old and 30-50 year-old plots in both soil types (Fig. 4a). Myrsine 

coriacea, a generalist, was the second most abundant species, and its occurrence was 

considerably different between soils and along succession. In the younger ages of succession it 

was more frequent in the Gleysol plots and as succession proceeded, it became more frequent 

in the Cambisol plots. Its frequency reduced to zero in the 30-50 year-old plots in both soil 

types (Fig. 4b). Tibouchina pulchra and Pera glabrata were both Gleysol specialists for the 

canopy, but T. pulchra was too rare to classify in the understory while P. glabrata was a 

Cambisol specialist in the understory. They had similar pattern and also had distinct 

distributions between soils, both reaching higher proportions (35 to 50%) in Gleysol plots 

(Fig. 4c, 4d). Casearia obliqua, aCambisol specialist, was remarkably more abundant in 

Cambisol plots along succession (Fig. 4e). Miconia cinerascens had its occurrence varying 

along age, but not as much between soils. It was a generalist in the canopy and a Gleysol 

specialist in the understory (Fig. 4f). 
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Table 2. Means (±SE) of abundance, species richness, tree height and Shannon-Weiner Diversity Index (H’) and basal area (total) of canopy and 
understory communities, in two soil types (Cambisol and Gleysol) along the successional trajectory of the Atlantic Forest in southern Brazil. 

  
Forest age and soil type  
 

 
2-6y   7-11y   15-25y   30-50y   >80y 

 
Cambisol Gleysol   Cambisol Gleysol   Cambisol Gleysol   Cambisol Gleysol   Cambisol 

Canopy 
             Individuals 35.0 ± 18.4 21.8 ± 5 

 
34.4 ± 10.5 45.5 ± 8.4 

 
106.6 ± 7.8 98.0 ± 10.3 

 
83.0 ± 3.1 90.2 ± 17.0 

 
92.0 ± 5.0 

Species 7.8 ± 3.1 5.2 ± 1.0 
 

7.2 ± 2.1 8.4 ± 0.7 
 

26.2 ± 3.1 19.4 ± 2.9 
 

34.2± 2.4 28.0 ± 2.3 
 

42.6 ± 2.5 
Basal area (m2.ha-1) 28.8 16.8 

 
21.7 21.1 

 
117.0 103.6 

 
130.0 105.8 

 
175.2 

Height (m) 6.3 ± 0.7 6.1 ± 0.5   5.7 ± 0.5 6.2 ± 0.3   10.3 ± 0.2 10.1 ± 0.6   11.8 ± 0.1 9.2 ± 0.6   10.1 ± 0.5 
H’ 1.18 ±0.3 1.02 ± 0.3  1.17 ± 0.4 1.28 ± 0.2  2.49 ± 0.2 2.14 ± 0.4  3.21 ± 0.1 2.79 ± 0.1  3.40 ± 0.1 
 
Understory              
Abundance 9.8 ±3.8 17.2 ± 5.9  20.6 ± 8.2 21 ± 7.2  35.2 ± 4.2 50.4 ± 12.2  32.6 ± 4.6 47.6 ± 13.8  37.0 ± 2.8 
Species richness 3.8 ± 1.6 5.4 ± 1.0  6.2 ± 0.9 5.4 ± 0.7  17.2 ± 2.2 21.2 ± 4.4  17 ± 2.4 17 ± 4.6  19.6 ± 0.9 
Basal area (m2.ha-1) 3.4 12.5  18.8 17.8  11.8 15.3  12.0 13.8  16.8 
Height (m) 1.8 ± 0.5 2.4 ± 0.1  2.8 ± 0.5 3.1 ± 0.4  2.8 ± 0.1 2.9 ± 0.3  2.8 ± 0.1 2.6 ± 0.1  3.2 ± 0.1 
H’  0.96 ± 0.4 1.18 ± 0.3  1.39 ± 0.2 1.34 ± 0.2  2.51 ± 0.1 2.65 ± 0.2  2.5 ± 0.2 2.28 ± 0.3  2.72 ± 0.1 
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Figure 2. Number of individuals (a, b), species richness (c, d) of the canopy and 
understory communities andbasal area (e) and mean height (f) of canopy the community 
in two soil types (Cambisol and Gleysol) along the successional trajectory of the 
Atlantic Forest in southern Brazil. Gleysol (n=20) and Cambisol (n=25). ANCOVA 
results are over each figure; ns=non-significant. 
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Figure 3. Scatterplot of the non-metric multidimensional scaling (NMDS) for canopy 
and understory plant communities in two soil types (Cambisol and Gleysol) along the 
successional trajectory of the Atlantic Forest in southern Brazil. Numbers refer to the 
mean age of plots (4: 2-6 years, 9: 7-15 years, 20: 15-25 years, 40:30-50 years and 80:> 
80 years). 
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Figure 4. Proportion of the six most abundant species occurring in two soil types 
(Cambisol and Gleysol) along the successional trajectory of the Atlantic Forest in 
southern Brazil. Individuals occurring in the >80 year-old plots are represented in the 
figures, although they were not used in the calculations. 
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Discussion 

Our study comparing the chronosequence of second growth forests in two 

different soil types suggests differences in successional trajectories according to soil 

characteristics. Soil differences were related to higher individual density and faster 

species accumulation in Cambisol compared to Gleysol, which is apparently associated 

to a specialization of some species to one or another soil type. These results suggest that 

soil is an important factor explaining successional changesin tropical forests. Other 

studies in neotropical lowland forestsalso showed some effects of soil characteristics on 

the general forest structure (DeWalt & Chave 2004, Martins 2012).  

We found some differences in the pH and in the physical characteristics of the 

two soil types, but not a difference in the nutrient composition. Since both soils had 

relatively low nutrient availability, fertility might not be a factor that distinguishes them. 

In fact, the soil water conditions are probably what contribute more to the differences 

between the two soil types. Previous analysis in the same region indicated that the water 

level is more superficial in Gleysols compared to Cambisols (Cardoso et al.2012). High 

moisture levels in the soilmay result in weak aeration, with most of the pore space filled 

with water (Korning et al. 1994). Given that Gleysols can be periodically saturated with 

water, this can reduce the amount of air and dissolved oxygen in the soil, affecting 

metabolic activities, plant growth and causing tree mortality (Pimenta et al. 1996; Gale 

& Barford 1999), once very few species can cope with anoxic conditions (Quesada et al. 

2009). Cambisol, on the other hand, with better water drainage may offer fewer 

limitations to seedling development.  
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Richness and diversity across soil types and forest ages 

In the canopy community, the rarefaction curves showed that the species 

accumulation rate was faster in Cambisol compared to Gleysol, but for the understory, 

this distinct pattern between soils was not observed. Cambisol may offer better 

conditions for the establishment of a wider range of canopy species, while Gleysol 

excess of water may act as a filter in which less species are able to transpose. The 

differences between the understory and canopy may be due to the depth in which plants 

from each stratum reach the soil. Understory plants (juveniles and shrubs) have shorter 

roots that acquire water and nutrients in the upper layer of the soil, while canopy 

individuals, with their longer roots, will reach for resources deeper in the soil, where the 

differences between the two studied soils may be sharper. 

Diversity (as measured with the H’) also tended to increase with age in all 

community levels (understory and canopy), which was also reported in other studies 

(Ruiz et al. 2005, Borgo 2010). We also found some small distinctions of diversity 

between soil types in the canopy community. Except for the 2-6 year-old plots, all other 

ages (7-11y, 5-25y and 30-50y) had approximately 10% higher H’ in Cambisol 

compared to Gleysol.  

The ANCOVA revealed a steep increase in species richness along succession, as 

also reported in other studies in the Atlantic Forest (Zanini et al. 2014, Liebsch et al. 

2008). However, this increase in species richness was similar between soil types, 

indicating that despite the contrasting species richness and diversity explained above, 

the rate of change in the number of species during the successional trajectory is the 

same. Likewise, in successional forests in Malaysia, although poor soils sustain forests 

with high diversity, no relationship between soil and species richness were found 
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(Proctor et al. 1983). At the beginning of succession the species richness in these 

communities are limited by invasive grass species used in the pastures (Chapter 1). 

Studies have suggested that the presence of grasses is the leading limiting factor 

affecting the survival and growth of tree seedlings (Holl et al. 2000; Sun & Dickinson 

1996). Hence, it is possible that in the beginning of succession (~10 first years), the 

effects of the competition with grasses exceed the soil limitations for seedling 

establishment. As succession continues, most of the invasive grasses disappear and that 

is when soil may become a more important factor influencing species richness. In fact, it 

is the interaction of soil and grass in the first years of succession in abandoned pastures 

that may potentially be more limiting to species establishment. For example, the 

invasive grass Urochloahumidicola, is better adapted to the water saturated soils (Miles et 

al. 1996), so, it grows more and might also have a longer life span in this type of soil, 

influencing the seedling establishment for an extended period in studied Gleysol areas.  

 

Abundance, basal area and height 

The number of individuals in the canopy communities was positively affected by 

forest age and the relationship differed among soil types; however, in the understory 

there was an independent positive effect of forest age and of soil type. In a 

chronosequence study in a tropical forest in Colombia, theyfound that tree abundance 

reached its peak between 30 and 50 years of age (Ruiz & Fandiño 2005), while in our 

study abundance values reached its peak a little earlier (around 15-25 years).  With the 

increase of abundance, we also expected a differential increase in basal area between 

soils, but both soils seem to increase basal area similarly along successional age. 

Although it has been reported in the same study area that trees growing in Cambisol 
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had increased diameter growth than the ones growing in Gleysol (Cardoso et al. 2012), 

this did not correspond to basal area in our study. Likewise, Clark et al. (1998, 1999) 

showed that many species had significant associations with soil type in a tropical forest 

in Costa Rica, although they did not find relation of soil and diameter growth. One 

factor that may hide possible differences in the basal area between soils is that the 

abundance of individuals was higher in Gleysol while mean DBH was higher in 

Cambisol. It is possible that the individuals with higher DBH in Cambisol did not 

compensate for total basal area in the Gleysol areas.  

Canopy trees height increased with age, but it did not differ between soils. In 

situations where soils contrasts are more pronounced, tree height growth rate can be 

limited by soil fertility (Moran et al. 2000). However, for the study region, fertility 

differences between Cambisols and Gleysols probably were not sufficient for causing 

tree height growth limitations. In a tropical forest in southeastern Brazil, canopy species 

also had higher and more variable growth rates (height and diameter) than understory 

species, attributed to greater access to light at the canopy level (van den Berg et al. 

2012). 

The similarity in the basal area and in the mean height between soils in our 

study may also be attributed to the scale of the study. Some studies have found 

interaction between soil fertility and above ground biomass in Amazonia (Laurance et 

al. 1999, Roggy et al. 1999), but many other studies have found no relationship of 

biomass with soil fertility (Proctor et al. 1983, Chave et al. 2001, DeWalt & Chave 

2004). These are mostly large-scale studies and climate was considered a strong factor 

affecting aboveground biomass. In a local scale and in successional forests, such as our 
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study area, the community biomass production might also be controlled only by forest 

age (Shimamoto et al. 2014). 

 

Species composition and specialization 

Although differences in species composition were not very clear between soils 

and between strata, we could find some tendencies of site groupings. In addition, we 

also found a clear age gradient in species composition. In other tropical forests, such as 

one studied in Belize, soil was described as the main determinant of forest composition, 

more specifically water holding capacity and nutrient availability (Dubbin et al. 2006). It 

is likely that species composition could be indirectly affected by soil physical conditions, 

since adverse soil conditions could favor the dominance of pioneer species with short 

lifetimes (Quesada et al. 2009). The extremely high number of rare species in the 

samples, many of them sampled only once or twice, could be a reason why the analyses 

could not separate the species pool of the two soil types more clearly.  

Although most of the species in our study were considered too rare to classify, 

there were some that had a much higher abundance (or even exclusivity) in one of the 

soil types. This suggests that species respond differently to edaphic conditions and some 

are probably more sensitive to soil than others. Gleysol specialists, for example must 

tolerate poor nutrient conditions and excess of water, while Cambisol specialists might 

need a deeper and better drained soils. Species-specific differences between different 

climate, microclimate and soil characteristics were also detected in the growth of 

tropical species (Worbes 1999; Yáñez- Espinosa et al. 2006; Couralet et al. 2010). In a 

study of nine tropical species in Costa Rica, the majority of them also showed highly 

significant associations with different soil types, such as old alluvial soils, residual soils 
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and stream valley soils (Clark et al. 1998).  In the same two soils studied here (Cambisol 

and Gleysol), two species presented contrasting response to soil type, one of them 

noticeably differing in diameter growth between soils while the other showed equivalent 

growth rates between soils (Cardoso et al. 2012). Species associations with soil types 

were also reported in the landscape scale, where 33 species showed non-random spatial 

distribution in relation to edaphic factors in Costa Rica (Clark et al. 1999).  

The importance of secondary forests is increasing substantially in the past 

decades (Chazdon 2014), and also is the need of accurate ecological bases to manage 

and maintain them. Considering the dynamism and diversity of tropical forests, the 

understanding of all the factors that govern their ecological processes is a difficult, but 

important task. Although age is the main driver to determine structure and diversity of 

secondary forests (Zanini et al. 2014), we found that soil characteristics is an additional 

factor determining successional trajectory of tropical forests, and should also be taken 

into consideration when analyzing and implementing ecological restoration plans. The 

influence of soil type is a novelty that will contribute with the knowledge of succession 

in tropical forests, explaining part of the stochasticity of the process. 
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Supplementary material 
 
Methods 

 

 
 
Figure S1. Location of the study area in the state of Paraná, southern Brazil and of the 
45 studied plots (20 Gleysol and 25 Cambisol plots). 
 
Groundwater level 

In order to assess the groundwater available in both soil types, 12 piezometers 

were placedin Gleysol areas 17 Cambisol areas. Piezometers were made of perforated 

PVC pipes, 10 cm in diameter, and were installed as much as 100 to 150 cm below 

ground level (Walthall and Ingram 1984). Variation in groundwater level along the year 

was similar in the two sites; however, groundwater level in Cambisol was lower in most 

of the year in relation to Gleysol (Fig. S2). Groundwater was deeper (less water 
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available to plants) in July and September (months with lower precipitation), when 

water was more than 130 cm deep in Cambisol and approximately 90 cm deep in 

Gleysol. The lower depth (water closer to surface) occurred in March (end of the 

wettest period) when it was only around 50 cm below surface in Cambisol and around 

20 cm in Gleysol. 
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Figure S2. Mean groundwater level throughout the year measured with 17 piezometers 
in Cambisol areas and 13 in Gleysol areas, in the Atlantic Forest, Southern Brazil 
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Table S1: Canopy and understory species and their abundances by soil type in 45 plots 
in the Atlantic Forest, Southern Brazil. CAM=Cambisol; GLE=Gleysol 1: Families 
according APG III; 2: species names and authors according to Specieslink 

(www.splink.cria.org.br/). cat.=category of soil specialization: gen=generalist, 
cam=Cambisol specialist, gle=Gleysol specialist, r=rare 
 
FAMILY/ Species Canopy   Understory 

 
CAM GLE cat. 

 
CAM GLE cat. 

ANACARDIACEAE        

Tapirira guianensis Aubl. 5 8 gen   1 4 r 

ANNONACEAE        

Annona neosericea H.Rainer 1 - r   - - r 

Rollinia sericea  (R.E. Fries) R.E. Fries 14 5 cam   1 2 r 

Rollinia sp1 - 1 r   - - r 

Rollinia sylvatica (A. St.-Hil.) Mart. 4 2 r   - 2 r 

Xylopia brasiliensis Spreng. 1 1 r   - - r 

APOCYNACEAE        

Malouetia cestroides (Nees ex Mart.) Mu ̈ll. Arg. 1 - r   - - r 

Tabernaemontana catharinensis A. DC. - 1 r   - - r 

AQUIFOLIACEAE        

Ilex dumosa Reissek 4 3 r   1 - r 

Ilex integerrima Reissek 6 21 gle   5 12 gen 

Ilex sp - - r   - 1 r 

ARALIACEAE        

Dendropanax australis Fiaschi & Jung-Mend. - - r   - 6 r 

Schefflera angustissima (Marchal) Frodin - 1 r   - - r 

Schefflera sp 1 - r   - - r 

ARECACEAE        

Astrocaryum aculeatissimum (Schott) Burret 8 - r   - - r 

Attalea dubia (Mart.) Burret 2 - r   3 1 r 

Bactris setosa Mart. - 2 r   3 6 r 

Euterpe edulis Mart. 40 32 gen   5 16 gle 

Geonoma schottiana Mart. 1 - r   1 - r 

Geonoma sp - - r   17 - cam 

Syagrus romanzoffiana Cham. 1 12 gle   - - r 

ASTERACEAE 

Asteraceae sp1 - - r   2 - r 
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CAM GLE cat. 

 
CAM GLE cat. 

Eupatorium sp1 1 - r   1 3 r 

Eupatorium sp2 - 1 r   - - r 

Vernonanthura beyrichii (Less.) H.Rob. - - r   11 18 gen 

Vernonanthura puberula (Less.) H. Rob. 1 2 r   1 - r 

Vernonia sp1 - 2 r   - 3 r 

APOCYNACEAE        

Cybistax antisyphilitica (Mart.) Mart. - 3 r   - 1 r 

Jacaranda puberula Cham. 8 59 gle   9 30 gle 

Tabebuia serratifolia (Vahl) G. Nicholson 2 2 r   - - r 

Tabebuia umbellata (Sond.) Sandwich - - r   - 1 r 

BORAGINACEAE        

Cordia sellowiana Cham. - 2 r   - 2 r 

Cordia silvestris Fresen. 3 2 r   - - r 

BURSERACEAE        

Protium kleinii Cuatr. 4 1 r   - - r 

CANELACEAE        

Cinnamodendron dinisii Schwacke  1 - r   - - r 

CANNABACEAE        

Trema micrantha (L.) Blume 1 - r   - - r 

CELASTRACEAE        

Maytenus alaternoides Reissek - - r   1 - cam 

Maytenus schumanniana Loes.  4 - r   10 1 r 

CHYSOBALANACEAE        

Hirtella hebeclada Moric. ex A.P. DC. 6 - r   1 - r 

CLETHRACEAE        

Clethra scabra Pers. - 6 r   - 3 r 

CLUSIACEAE        

Calophyllum brasiliense Cambess. - - r   - 2 r 

Clusia criuva Cambess. 1 - r   - - r 

Garcinia gardneriana (Planch. & Triana) Zappi 10 - cam   8 - cam 

COMBRETACEAE        

Buchenavia kleinii Exell - - r   1 - r 

CYATHEACEAE        

Cyathea atrovirens (Langsd. & Fisch.) Domin  4 1 r   - - r 

Cyathea corcovadensis (Raddi) Domin 3 - r   - - r 

Cyathea sp1 3 7 gen   - - r 

Cyathea sp2 2 1 r   - - r 
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CAM GLE cat. 

 
CAM GLE cat. 

ELAEOCARPACEAE        

Sloanea guianensis (Aubl.) Benth. 32 30 gen   5 7 gen 

ERYTHROXYLACEAE        

Erythroxylum sp1 - - r   1 1 r 

Erythroxylum sp2 - - r   1 - r 

EUPHORBIACEAE        

Actinostemon concolor (Spreng.) Müll.Arg. 3 - r   4 - r 

Alchornea glandulosa Poepp. 42 6 cam   8 3 gen 

Alchornea triplinervia (Spreng.) Mu ̈ll.Arg. 17 5 cam   2 - r 

Maprounea brasiliensis A. St.-Hil. 1 - r   - - r 

Pachystroma longifolium I.M. Johnst. 4 - r   1 - r 

Pausandra morisiana (Casar.) Radlk. 8 - r   2 - r 

Pera glabrata (Schott) Baill. 51 141 gle   10 9 gen 

Sapium glandulatum  (Vell.) Pax 15 7 gen   1 2 r 

Tetrorchidium rubrivenium Poepp. & Endl. 4 7 gen   - - r 

FABACEAE        

Andira anthelmia (Vell.) J.F.Macbr. 10 50 gle   3 3 r 

Bauhinia forficata Link. - 3 r   - - r 

Copaifera trapezifolia Hayne - - r   1 - r 

Dahlstedia pentaphylla (Taub.) Burkart 1 - r   - - r 

Dalbergia brasiliensis Vogel - 1 r   - - r 

Dalbergia frutescens (Vell.) Britton - - r   1 - r 

Inga edulis Mart. 4 34 gle   1 8 gle 

Inga marginata Willd. - 1 r   - - r 

Inga sellowiana Benth. 1 - r   - - r 

Inga sessilis DC. 3 1 r   3 1 r 

Inga striata Benth. 1 - r   - - r 

Luetzelburgia guaissara Toledo 1 - r   - - r 

Machaerium hatschbachii Rudd 2 1 r   - - r 

Machaerium nyctitans (Vell.) Benth. 2 - r   - - r 

Mimosa bimucronata (DC.) Kuntze 9 1 cam   3 - r 

Myrocarpus frondosus Allemafio 1 - r   - - r 

Piptadenia paniculata Benth. 2 - r   - - r 

Platymiscium floribundum Vogel - 2 r   - - r 

Pseudopiptadenia warmingii Benth. 4 - r   - - r 

Pterocarpus violaceus Vogel 2 2 r   1 1 r 

Schizolobium parahyba (Vell.) S.F.Blake  3 2 r   - - r 
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CAM GLE cat. 

 
CAM GLE cat. 

Senna multijuga (L.C.Richard)H.S. Irwin & Barneby 7 19 gle   - 1 r 

Senna sp 1 - r   - - r 

Senna sylvestris  (Vell.) H.S.Irwin & Barneby - 1 r   - - r 

Zollernia latifolia Smith - - r   - 1 r 

SALICACEAE        

Casearia decandra Jacq. 11 2 cam   1 - r 

Casearia obliqua Spreng. 119 12 cam   11 - cam 

Casearia sylvestris Sw. 63 10 cam   7 - r 

LAMIACEAE        

Aegiphila sellowiana Cham. 1 - r   - - r 

Vitex polygama Cham. 1 - r   - - r 

LAURACEAE        

Aniba firmula (Nees) Mez - - r   - 1 r 

Cryptocarya mandioccana Meisn. 4 - r   1 - r 

Endlicheria paniculata (Spreng.) Macbr. 3 - r   3 2 r 

Nectandra leucantha Nees 4 3 r   - 1 r 

Nectandra megapotamica (Spreng.) Mez 2 - r   - - r 

Nectandra membranacea Griseb. 19 6 cam   3 3 r 

Nectandra oppositifolia Nees 9 11 gen   1 5 r 

Ocotea sp 1 - r   - - r 

MYRISTICACEAE        

Virola bicuhyba (Schott ex Spreng.) Warb. 18 2 cam   3 1 r 

Ocotea catharinensis Mez 5 - r   - - r 

Ocotea dispersa (Nees & Mart.) Mez - 1 r   - 1 r 

Ocotea nunesiana (Vattimo-Gil) Baitello  2 - r   - - r 

Ocotea odorifera (Vell.) Howher - 3 r   - 1 r 

Ocotea puberula Nees 1 - r   - - r 

Ocotea pulchella (Nees & Mart.) Mez  3 1 r   - 1 r 

Ocotea teleiandra (Meisn.) Mez 3 16 gle   2 6 r 

LECYTHIDACEAE        

Cariniana estrellensis (Raddi) Kuntze 8 3 gen   1 1 r 

LEGUMINOSAE        

Albizia edwallii (Hoehne) Barneby & J.W.Grimes - 1 r   - - r 

Erythrina speciosa Andrews 1 - r   - 3 r 

MAGNOLIACEAE        

Magnolia ovata  P.Parm. 3 - r   - - r 

MALPIGHIACEAE        
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CAM GLE cat. 

 
CAM GLE cat. 

Bunchosia pallescens Skottsb. - - r   - 1 r 

MALVACEAE        

Malvaceae sp1 - - r   1 - r 

Malvaceae sp2 - - r   - 2 r 

Pseudobombax grandiflorum (Cav.) A.Robyns 4 - r   - - r 

Triumfetta semitriloba Jacq. - - r   4 1 r 

MELASTOMATACEAE        

Clidemia biserrata  DC. - - r   14 - cam 

Clidemia hirta (L.) D. Don  - - r   3 - r 

Clidemia urceolata DC. - - r   1 11 gle 

Leandra melastomoides Raddi  - - r   2 8 r 

Miconia cabucu Hoehne 12 11 gen   2 - r 

Miconia cinerascens Miq. 39 35 gen   18 40 gle 

Miconia cinnamomifolia (DC.) Naud. 14 - cam   - - r 

Miconia cubatanensis Hoehne - - r   - 1 r 

Miconia latecrenata (DC.) Naudin - - r   4 3 r 

Miconia tristis  Spring - - r   2 1 r 

Ossaea amygdaloides Triana - - r   2 2 r 

Tibouchina pulchra (Cham.) Cogn. 100 177 gle   5 3 r 

Tibouchina trichopoda Baill. 60 107 gle   56 88 gle 

MELIACEAE        

Cabralea canjerana  (Vell.) Mart. 6 4 gen   4 - r 

Cedrela fissilis Vell. 9 - cam   - - r 

Guarea macrophylla Vahl 6 8 gen   8 10 gen 

Trichilia lepidota  Mart. 12 - cam   2 - r 

Trichilia pallens C.DC. 3 - r   1 - r 

MONIMIACEAE        

Mollinedia schottiana Perkins 30 4 cam   24 10 cam 

Mollinedia uleana Perkins - 1 r   - 1 r 

MORACEAE        

Brosimum lactescens (S. Moore) C.C. Berg 9 - cam   1 - r 

Ficus adhatodifolia Schott ex Spreng. 1 - r   - - r 

Ficus insipida Willd. 2 - r   - - r 

Sorocea bonplandii (Baill.) W.C.Burger, Lanj. & Boer 2 - r   2 - r 

MYRTACEAE        

Calycorectes australis D.Legrand 2 1 r   - 1 r 

Calyptranthes grandifolia O.Berg 32 18 gen   7 14 gen 
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CAM GLE cat. 

 
CAM GLE cat. 

Calyptranthes lucida Mart.ex DC. 5 1 r   4 - r 

Calyptranthes strigipes O.Berg 29 - cam   8 - cam 

Campomanesia neriifolia (O.Berg) Nied. 1 3 r   - - r 

Campomanesia sp 6 1 r   2 - r 

Eugenia beaurepairiana (Kiaersk.) D.Legrand 2 - r   - - r 

Eugenia brevistyla D.Legrand 4 - r   - - r 

Eugenia brunneopubescens Mazine - - r   - 1 r 

Eugenia burkartiana (D.Legrand) D.Legrand 18 - cam   4 1 r 

Eugenia candolleana DC. 2 - r   - - r 

Eugenia cerasiflora Miq. 3 - r   - - r 

Eugenia cereja D.Legrand 1 - r   2 - r 

Eugenia magnibracteolata Mattos & D. Legrand - - r   1 - r 

Eugenia melanogyna D.Legrand) Sobral - - r   1 - r 

Eugenia mosenii (Kausel) Sobral 2 - r   - - r 

Eugenia multicostata D.Legrand 4 - r   - - r 

Eugenia neoglomerata Sobral - - r   1 - r 

Eugenia obovata O.Berg - - r   3 - r 

Eugenia platysema O.Berg  - 1 r   - 3 r 

Eugenia sp1 12 - r   - - r 

Eugenia stigmatosa DC. 5 - r   1 4 r 

Eugenia subavenia O.Berg 1 - r   - - r 

Eugenia uniflora  L. 1 - r   - - r 

Eugenia verticillata (Vell.) Angely 2 2 r   - - r 

Gomidesia flagellaris D.Legrand 5 - r   12 - cam 

Gomidesia schaueriana  O.Berg 3 - r   - - r 

Gomidesia sp1 - - r   - 3 r 

Gomidesia spectabilis (DC.) O.Berg 14 12 gen   8 1 cam 

Myrtaceae sp1 1 - r   6 1 r 

Myrtaceae sp2 - 7 gle   - - r 

Myrtaceae sp3 - 4 r   - - r 

Myrtaceae sp4 - 1 r   - - r 

Myrtaceae sp5 - 3 r   - - r 

Marlierea obscura O.Berg 19 15 gen   5 28 gle 

Marlierea sylvatica (O.Berg) Kiaersk. 5 5 gen   - 2 r 

Marlierea tomentosa Cambess. 13 17 gen   6 9 gen 

Myrceugenia myrcioides (Cambess.) O.Berg - - r   - 1 r 

Myrcia bicarinata (O.Berg) D.Legrand 2 - r   - - r 
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CAM GLE cat. 

 
CAM GLE cat. 

Myrcia glabra (O.Berg) D.Legrand - - r   - 7 r 

Myrcia multiflora (Lam.) DC. - - r   1 2 r 

Myrcia pubipetala Miq. 17 21 gen   2 10 gle 

Myrcia racemosa (O.Berg) Kiaersk. - 2 r   - 9 gle 

Myrcia richardiana (O.Berg) Kiaersk. - - r   1 - r 

Myrcia splendens (Sw.) DC. 3 3 r   2 7 r 

Myrciaria floribunda (H.West ex Willd.) O.Berg 2 - r   2 - r 

Neomitranthes glomerata (D. Legrand) D. Legrand 2 - r   - - r 

Plinia edulis (Vell.) Sobral 1 - r   - - r 

Plinia trunciflora (O.Berg) Kausel 1 - r   - - r 

Psidium cattleianum Sabine 1 5 r   1 6 r 

Psidium guajava L. 15 18 gen   1 4 r 

Syzygium jambos (L.) Alston - - r   - 1 r 

NYCTAGINACEAE        

Guapira asperula (Standl.) Lundell - - r   - 3 r 

Guapira opposita (Vell.) Reitz 21 2 cam   12 13 gen 

Pisonia ambigua Heimerl  1 - r   - - r 

OCHNACEAE        

Ouratea parviflora (DC.) Baill. 5 1 r   22 9 cam 

Heisteria silvianii Schwacke 6 - r   3 - r 

Tetrastylidium grandifolium  (Baill.) Sleum. 6 1 r   6 1 r 

Hieronyma alchorneoides Allemafio 57 25 gen   2 5 r 

Margaritaria nobilis L.f. - 1 r   - - r 

Gallesia integrifolia (Spreng.) Harms 1 - r   - - r 

Phytolacca dioica L. 1 - r   - - r 

PIPERACEAE        

Piper arboreum Aubl. - - r   10 - cam 

Piper cernuum Vell. - - r   4 - r 

Piper dilatatum Rich. - - r   6 2 r 

Piper gaudichanianum Kunth - - r   6 15 gen 

Piper sp1 - - r   - 2 r 

Piper sp2 1 - r   - - r 

Piper sp3 - - r   - 1 r 

Coccoloba warmingii Meisn. 1 - r   - - r 

PRIMULACEAE        

Myrsine coriacea R. Br. 157 99 gen   14 24 r 
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CAM GLE cat. 

 
CAM GLE cat. 

Myrsine gardneriana A. DC.  3 1 r   - 2 r 

Rapanea hermogenesiiJung-Mend. & L.C.Bernacci - - r   1 - r 

PROTEACEAE        

Roupala brasiliensis Klotzsch 1 - r   - - r 

OCHNACEAE        

Quiina glaziovii Engl. 12 1 cam   1 - r 

RUBIACEAE        

Amaioua guianensis Aubl. 5 6 r   2 - r 

Bathysa australis (A.St.-Hil.) K.Schum. 20 - cam   6 - r 

Chomelia brasiliana A.Rich. - - r   2 - r 

Cordiera concolor (Cham.) Kuntze 6 - r   - - r 

Coussarea contracta Benth. & Hook f. 1 - r   - - r 

Posoqueria latifolia Roem. & Schult. 4 - r   - - r 

Psychotria brachypoda (Müll.Arg.) Britton - - r   - 1 r 

Psychotria carthagenensis Jacq. - - r   5 - r 

Psychotria dusenii Standl 2 - r   1 - r 

Psychotria cf. hastisepala Müll.Arg. - - r   - 3 r 

Psychotria leiocarpa Cham. & Schltdl. - - r   1 2 r 

Psychotria mapourioides DC. 22 - cam   2 - r 

Psychotria nuda (Cham. & Schltdl.) Wawra 77 3 cam   51 26 cam 

Psychotria pubigera Schltdl. - 1 r   3 19 gle 

Psychotria stenocalix Mu ̈ll. Arg. 7 - r   10 4 gen 

Psychotria suterella Mu ̈ll. Arg. 12 3 gen   18 2 cam 

Psychotria vellosiana Benth. - - r   - 2 r 

Rubiaceae sp1 - - r   - 1 r 

Rubiaceae sp2 - - r   1 4 r 

Rubiaceae sp3 - - r   - 10 gle 

Rubiaceae sp4 2 - r   - 3 r 

Rudgea jasminioides (Cham.) Mu ̈ll.Arg. 14 - cam   27 - cam 

Rudgea recurva Mu ̈ll. Arg. 1 - r   4 6 gen 

RUTACEAE        

Zanthoxylum rhoifolium Lam. 2 1 r   - - r 

SABIACEAE        

Meliosma sellowii Urb. 4 - r   1 - r 

SAPINDACEAE        

Allophylus edulis Radlk. ex Warm. - - r   2 1 r 

Allophylus petiolatus Radlk. ex Wihl.Muller. 1 - r   4 5 r 
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CAM GLE cat. 

 
CAM GLE cat. 

Cupania oblongifolia Mart. 24 4 cam   7 - r 

Matayba guianensis Aubl. 10 10 gen   12 1 cam 

Matayba juglandifolia Radlk. 6 - r   1 2 r 

SAPOTACEAE        

Chrysophyllum inornatum Mart. 4 4 r   7 - r 

Manilkara subsericea (Mart.) Dubard 1 - r   - - r 

Pouteria venosa (Mart.) Baehni 2 - r   1 - r 

SOLANACEAE        

Acnistus arborescens (L.) Schltdl. 3 - r   - - r 

Cestrum amictum Schltdl. 1 - r   - 1 r 

Solanum rufescens Sendtn. - - r   4 - r 

SYMPLOCACEAE        

Symplocos celastrinea Mart. ex Miq. 1 - r   - - r 

Symplocos laxiflora Benth. 6 1 r   2 6 r 

THEACEAE        

Gordonia fruticosa (Schrad.) H.Keng - 14 gle   - 4 r 

THYMELAEACEAE        

Daphnopsis fasciculata (Meisn.) Nevling - - r   - 1 r 

URTICACEAE        

Cecropia glaziovii Snethl. 8 2 gen   - - r 

Cecropia pachystachya TreÏcul 3 5 r   - - r 

Coussapoa microcarpa (Schott) Rizzini 3 3 r   1 - r 

Pourouma guianensis Aubl. 3 1 r   - - r 

Urera nitida (Vell.) P.Brack - - r   - 2 r 

VERBENACEAE        

Citharexylum myrianthum Cham. 3 4 r   - - r 

Stachytarpheta maximiliani Schauer - - r   2 - r 

Verbena lobata Vell.  - - r   - 3 r 

VOCHYSIACEAE        

Vochysia bifalcata Warm. 12 30 gle   4 19 gle 

UNDETERMINED        

Undetermined 1 1 - r   1 - r 

Undetermined 2 1 - r   1 - r 

Undetermined 3 - - r   1 - r 

Undetermined 4 1 - r   - - r 

Undetermined 5 - - r   - 1 r 

Undetermined 6 - - r   4 - r 
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CAM GLE cat. 

 
CAM GLE cat. 

Undetermined 7 3 - r   - - r 

Undetermined 8 - 1 r   - - r 

Undetermined 9 1 - r   - - r 

Undetermined 10 - - r   1 - r 

Undetermined 11 - - r   - 1 r 

Undetermined 12 - 1 r   - - r 

Undetermined 13 1 - r   - - r 

Undetermined 14 - - r   - 1 r 

Undetermined 15 1 - r   - - r 

Undetermined 16 1 - r   - - r 
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Capítulo 3 
___________________________________________________________ 

PADRÕES FUNCIONAIS DAS COMUNIDADES VEGETAIS EM 
DOIS TIPOS DE SOLO AO LONGO DA TRAJETÓRIA 

SUCESSIONAL DE UMA FLORESTA TROPICAL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  

	
   105	
  

 
Plant functional patterns of plant communities in two different soil types along tropical 

forest succession 

 

Abstract 
Each species within a community has its own set of functional traits that will 

influence the way each of them respond to the environmental conditions. The abiotic 
factors, such as soil conditions, may play an important role in structuring communities 
and might directthem to functional convergence, due to theenvironmental filters. On 
the other hand,interspecific interactions, such as competition, may also explain 
community assembly, directing communities to functional divergence of traits. In this 
study we aimed to test if tropical forests undergoing the successionalprocess are 
structured differently in two contrasting soil types. We considered a chronosequence of 
secondary forests, varying from 2 to 80 years in two soil types in southern Brazil: 
Gleysol (seasonally flooded soil) and Cambisol (well drained soil). In this age-soil 
gradient we established a total of 45 circular plots (2.8ha total) where canopy (trees with 
DBH > 5cm) and understory (shrubs and saplingswith DBH <5 and height > 1.3m) 
were sampled. A dataset of plant functional traits was assembled by collecting them 
from literature and herbarium samples. We used a method of multiplication of matrices 
to analyze functional patterns of convergence and divergence in the community. We 
also calculated diversity indices (taxonomic and functional) and community-weighted 
means of each trait to evaluate how they change with time and soil type. We sampled a 
total of 4389 individuals (3032 in the canopy and 1357 in the understory) distributed in 
215 plant species in the canopy and 181 species in the understory. We found both 
convergence and divergence patterns acting in the community assembly in our age-soil 
gradient, maximized by different sets of traits. The frequency of selected traits in 
thecanopy (pollination by vertebrates, shade-tolerance and leaf compoundness) and in 
the understory (leaf slenderness and shade tolerance) increased in the successional 
gradient and was markedly more intense in areas of Gleysol. The frequency of other 
traits (leaf area, leaf margin, pollination by bees, maximum DBH and maximum height) 
was either affected only by forest age or did not significantly change in the age-soil 
gradient. All metrics of taxonomic and functional diversity increased with age in both 
strata. In the canopy, Shannon diversity, functional richness and Rao quadratic entropy 
also varied with soil type. In the understory, all variables, except for Rao quadratic 
entropy had influence of soil type. We conclude that both abiotic filters and biotic 
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interactions structure communities developing in the age-soil gradient. In addition, 
contrasting limitations imposed by soil characteristics lead communities to differences 
in functional patterns along succession, affecting ecosystem processes.  

 
Key words: assembly patterns, succession, soil gradient, Atlantic Forest, forest 
regeneration 
 

Introduction 

One of the most important challenges in plant ecology is to understand what 

processes determine the distribution of species in tropical forests (Wright 2002).Each 

species within a community has its own particular set of traits that will influence the 

way each of them respond to the environmental conditions (Reich et al. 2003, Violle et 

al. 2007). The diversity of states of each functional traitpresent in a community will 

determine its functional diversity, an important feature of biological assemblagesthat 

enables prediction of the rate and reliability of ecosystem processes and that indicates 

ecosystem resource dynamics, stability and production (Mason et al. 2005, Tilman 2000, 

Díaz & Cabido 2001). The variation of functional traits, whichallowsthe coexistence of 

plant species,may be explained by niche or neutral processes (McGill et al. 2006; Kraft et 

al.2008; Hubbell 2001). The first considers that species have particular characteristics 

that determine their capacity to use certain resources (Hutchinson 1957) while the latter 

considers that all species have the same capacity of using resources, so that the 

occurrence of species in an area depends on stochastic processes (Hubbell 2001). 

Plant traits evolve in response to environmental conditions and interactions with 

other species (Reichet al.2003). Environmental filters may select species that will occur 

in a given place due to limiting conditions such as luminosity, temperature and 

humidity (Keddy 1992). Hence, only species that have attributes that give them ability 
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to withstand such conditions will be able to survive in a particular location (Cavender-

Bareset al. 2009). These adaptations to the conditions of the environment should lead to 

a convergence of certain functional traits within the community. On the other hand, 

species that use a resource in a similar manner should not co-exist very often, since the 

one that is competitively superior will exclude the other when resources are limited in 

the environment (Weiher et al. 1998, Grime 2006). Thus, competition implies a 

limitation of similarity in the use of resources by co-occurring species (MacArthur & 

Levins 1967). As a result, a divergence in functional traits among species in a 

community is expected in environments with limiting resources. 

Given the importance of community composition to ecosystem function, it is 

essential to understand how the ecological rules that govern species composition vary 

along forest succession. Patterns of trait convergence and divergence along 

environmental gradients may vary according to successional stage and perturbations 

(Ding et al. 2011; Helsen et al. 2012), sincechanges in forest structure and composition 

imply changes also on functional diversity and ecosystem functioning (Lohbeck et 

al.2011). Young forest areas are known to be less structurally complex and to contain a 

lowerproportion of animal dispersed, non-pioneer and understory species (Liebsch et al. 

2008). Consequently, it also may contain different reproductive and vegetative trait 

states than mature forests, possibly altering functional diversity. Functional traits of 

seedlings, saplings and trees can be strong determinants of demographic rates during 

forest regeneration (Chazdon 2014). 

Not only successional age may shift plant functional trait distribution in tropical 

forests. Plants communities establishing in contrasting edaphic conditions show 

differences in diversity, individual density and species composition (Chapter 2), 
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probably resulted from distinct soil water and nutrient availability among contrasting 

soil types. Thus, if soil does affect forest structure and species composition, it potentially 

changes the distribution of functional traits and thus, functional diversity. 

Disentangling the role of processes that lead to trait convergence and divergence in 

these emergent environments is fundamental to the understanding of how plant 

communities are structured. 

In this work we compared forest chronosequences (second growth forests 

varying from 2 to 80 years after disturbance) occurring in two contrasting soil 

characteristics (Gleysol,seasonally flooded soil, and Cambisol, well drained soil), in areas 

of Atlantic Forest, southern Brazil. We aimed to test if tropical forests undergoing 

succession process are structured differently in two contrasting soil types.  We asked 

if(1) there is trait convergence (related to environmental filters) or trait divergence 

(related to competition) along the age and soil gradient; (2)there are differences in 

taxonomic and functional diversities between soil types;  (3) there are differences in 

changes of specific functional traits during the succession in the two soil types. 

 

Methods 

Study site 

This study was carried out in the Atlantic Forest of Paraná state, southern coast 

of Brazil, in the municipality of Antonina (25o19’15’’S and 48o42’24’’W). The study 

areas are within the Guaraqueçaba Environmental Protection Area, a large region (more 

than 300,000 ha) that includes forests, estuaries, bays, islands, mangroves and lowlands, 

and is part of one of the most important remaining areas of Atlantic Forest in Brazil 

(Ferretti & Britez 2006a). We collected data in two reserves within these areas, Rio 
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Cachoeira Nature Reserve and Morro da Mina Nature Reserve, both are property of the 

non-governmental organization Society of Research in Wildlife and Environmental 

Education (SPVS) and together, they comprise nearly 10,000 ha. 

The climate in the region is humid subtropical (Cfa), according to Köppen’s 

classification (Ferretti & Britez 2006a), with annual precipitation of 3106 mm and 

mean temperature of 21.2°C over the last 25 years (Cardoso et al. 2012). Altitude varies 

from sea level to 900m a.s.l. Four soil types occur in the reserve: Acrisols, Fluvisols, 

Gleysols, and Cambisols (Ferretti & Britez 2006b), being the last two predominant in 

the area and the ones where the plots of this study are located. Gleysols are 

hydromorphic, mineral, sandy, with variable fertility and are periodically saturated with 

water. Cambisols comprise non-hydromorphic, mineral soils, with variable fertility and 

incipient B horizon, frequently found in slopes (Embrapa 2006). 

The Atlantic Forest in the region is characterized by different typologies, 

including Submontane, Lowland, and Alluvial Forests. Regarding the landscape, 68% is 

comprised of forest remnants and 9% of secondary forest areas that are mingled with 

buffalo grazing and agricultural areas (Kauano et al. 2012). With the increasing 

establishment of conservation areas in the region, some of these intensive use sites were 

abandoned and are now in a process of restoration (natural regeneration or planted 

forest) (Ferretti & Britez 2006a), resulting in areas with vegetation in different 

successional stages.  

 Most areas suffered some degree of interference in the past, including clear-cutting 

and later use for agriculture (mainly plantations of manioc, sugar cane, banana and 

corn), pasture for buffalo farming, or selective logging of native commercial species, for 

example the native palm Euterpe edulis  (Ferreti&Britez 2006b, Bruelet al. 2010, Borgo 
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et al. 2011). Old growth forests present in the region are an important source of seeds 

(Leitão et al. 2010) and shelter for animals (Zwiener et al. 2012). 

 

Soil analysis 

 Soil characterization was carried out by sampling 17 random plots (Cambisol: 

10; Gleysol: 7) for soil physical and chemical analysis. Samples were collected at a depth 

of 0–10 cm, at four equidistant points at 4m from the center of the plot and also one 

point in the center. Soil samples collected at the five points were then pooled in a 

container in order to make one single sample per plot. Samples were then taken to the 

laboratory, air-dried and sifted (2mm). Standard chemical analyses were performed for 

pH (CaCl2), P, Al3+, Ca2+, Mg2+, K+ (Mehlich) and C (Embrapa 1997). Physical analysis 

(soil texture) for the determination of clay, silt and sand content were performed using 

the densitometer method (Embrapa 1997).  

 

Survey and analysis of vegetation 

 The study is based on a comparative analysis of the sucessional trajectory in two soil 

types (Cambisol and Gleysol) in lowland and mountain slope areas (Atlantic Forest of 

Submontane and Lowland sub-formations). We established a total of 45 plots in forests 

in different sucessional stages, defined by the age after pasture abandonment: 2-6; 7-12; 

15-25; 30-50 and > 80 years-old. Five plots were selected in each of these age groups, 

except for the last age (>80y), where only Cambisol plots could be found, due to the 

higher deforestation of the lowlands, where Gleysols are more frequent. All these areas 

were previously used for pasture and abandoned and were under natural regeneration, 

except area >80 years that passed for some selective logging in the past.  
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 Plots were circular (radius of 14m; area of 615.7m2 each), resulting in a total sampled 

area of 2.77ha. They were randomly distributed in the reserves. In each plot (14m in 

radius), we sampled all trees with diameter at breast height (DBH) > 5cm, to 

characterize the canopy. In a smaller concentric sub-plot (4m in radius, 50.3 m2), we 

measured all individuals (saplings and shrubs, which were referred hereafter as 

“understory”) with DBH < 5.0cm and height >1.30m. For all sampled individuals we 

determined the species and measured the DBH (or stem base diameter, for shrubs) and 

total height. Individuals that we were not able to identify on site were collected and 

identified in the laboratory using reference collections and consulting specialists.  

 

Trait collection 

We selected nine reproductive and vegetative traits related to plant competitive 

ability, reproductive success and photosynthesis, as suggested by Cornelissen et al. 

(2003), Weiher et al. (1999), Pérez-Harguindeguyet al. (2013) and Rosado et al. (2013) 

(Table 1). All the identified species in each plot, in the canopy and in the understory, 

had their traits collected from the field, herbarium material or references. Height and 

DBH were measured in the field for all individuals and the maximum height and 

maximum DBH for each species among all sampled individuals were used to 

characterize each species. Leaf traits were gathered from the literature (Reitz 1975; 

Carvalho 2003, 2006, 2008; Borgo et al. 2011) or collected from herbarium material. 

We used the formula of an ellipse to calculate leaf area; and ratio between length and 

width to calculate leaf slenderness. Pollination, dispersal modes and shade tolerance 

were gathered in the literature (Reitz 1975, Carvalho 2003, 2006, 2008; Borgo et 

al.2011). 
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Table 1. Functional traits sampled and their functions that can possibly cause effects on 

the community, in the Atlantic Rainforest, southern Brazil. *traits transformed to 

dummy variables 

Trait State Function 

Vegetative traits   
Leaf area (cm2) - thermal balance, light interception 
Leaf slenderness - thermal balance, light interception 
Leaf margin entire (1) herbivore defense, light interception 
 non-entire (0)  
Leaf compoundness simple (1) leaf cooling, light interception 
 compound (0)  
Maximum height (m) - competition for light 
Maximum DBH (cm) - competitive ability, carbon storage 
Shade tolerance tolerant (1) competitive ability 
 intolerant (0)  
 
Reproductive traits 

  

Pollination mode bees* reproduction 
 other insects*  
 vertebrates*  
 abiotic*  
Seed dispersal mode animal reproduction, dispersal distance 

 abiotic 

 

For the analysis, categorical attributes were expanded to dummy variables, that 

is, presence or absence of a certain characteristic (Legendre & Legendre 1998) (Table 

1).For 27 species (15% of total) we did not complete the trait list, either because they 

are rare species and no information was found in literature or because they could not be 
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identified to species level. These species were not considered in the following functional 

analysis. 

 

Data analysis 

 Analyses for differences in physical and chemical characteristics of two soil types 

were performed with t-test (C, pH, Al, K, clay) or Wilcoxon test (Ca, Mg, P, sand, 

silt). Wilcoxon test was used for the variables that were not distributed normally by the 

Shapiro-Wilk test (Zar 1999). 

The analysis of functional patterns of the community, convergence and 

divergence of attributes was performed with the methodology described in Pillar et al. 

(2009). The method consists of analyses of multiplications and correlations between 

three different matrices (W, B and E), thus, scaling up the information of the traits in 

species level to the community level (Table S1). The first matrix (W) is composed by 

species abundances in each plot, where species are represented by lines and plots by 

columns. The second matrix (B) holds the traits and consists of species in the lines and 

mean trait values by species in the columns. The third matrix (E) is the environmental 

matrix and in this study, included plots in the lines and two environmental variables 

(forest age and soil type) in the columns. Convergencepatterns are obtained by 

multiplying the matrix B’ (Btransposed) and W, resulting in the matrix T (T = B’W). 

The elements of T are the weighted mean values of the community, and allow the 

identification of convergence patterns (TCAP, trait-convergence assembly patterns). To 

obtain patterns of divergence, the B matrix is used to obtainspeciessimilarity based on 

the characterization of the species by traits in a 0 to 1 interval, resulting in a similarity 

matrix (matrix U), calculated with Gower distance (Legendre & Legendre 1998). 
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MatrixU' (Utransposed) and Ware then multiplied, resulting in matrix X (X = U'W), 

which represents the performance of species, weighted (fuzzy) by the traits in the 

studied communities. Subsequently, relationship of the matrices T and X is evaluatedin 

relation to the environmental variables (matrix E). This evaluatesin what extent the 

patterns observed in the matrices T and X are related to environmental variations 

considered in this study. For this, community distance matrices are calculated from T 

(DT), X (DX) and E (DE) and matrix correlations (ρ) can then be estimatedamong the 

datasets [ρ (TE) = ρ(DT; DE), ρ(XE) = ρ(DX; DE)], revealingthe level of congruence 

between the variations between them. Thus, ρ (TE) measures the trait convergence 

assembly pattern (TCAP) along the ecological gradient. On the other hand, high values 

of ρ (XE) may indicate that both TCAP and trait divergence (TDAP, trait-divergence 

assembly patterns) (one or both of them) are related to the environmental gradient. 

Hence, it is necessary to remove the convergence component (TCAP) from the ρ(XE), 

resulting inρ(XE.T), which finally represents the effect of TDAP on theρ(XE), or its 

relationship along the environmental gradient. The method allows the selection of a 

subset of optimal attributes that maximize convergence (TCAP) and /or divergence 

(TDAP) along the studied gradient. The significance of the correlations is tested by 

permutation compared to a null model with 999 repetitions (Pillar et al. 2009). 

We calculated two taxonomic measures (species richness and Shannon’s diversity 

index, H’) and five functional measures (Rao entropy and functional richness, 

redundancy, evenness and divergence) for each plot. The use of multiple functional 

diversity measures prevent loss of some ecological information of individual measures 

(Mouillot et al. 2005, Villéger et al.2008). Rao quadratic entropy (Rao 1982) combines 

species relative abundance and functional differences between pairs of species (Zoltán 
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2005). Functional richness is independent of abundance and characterizes the volume of 

the functional space occupied by the community (Mason et al. 2005). Low functional 

richness indicates that some of the resources potentially available to the community are 

unused. Functional evenness is the regularity of the distribution of abundances in niche 

space; and functional divergence stands for the divergence in the distribution of 

abundance in the volume (Mason et al. 2005, Villéger et al.2008). Functional 

redundancy is defined purely as the difference between species diversity and Rao’s 

quadratic entropy based on their functional dissimilarity (Bello et al. 2007). We also 

calculated the community weighted mean for each trait, defined as the mean of values 

present in the community weighted by the relative abundance of taxa bearing each value 

(Lavorel et al. 2008). The analyses were performed using the packages SYNCSA 

(Debastiani & Pillar 2012) and FD (Laliberté & Shipley 2013) in R software (R Core 

Team 2012). 

After that, we tested the relationship between each calculated variable 

(functional and taxonomic measures) with plot age, separately for the two soil types 

(Cambisol and Gleysol). An analysis of covariance (ANCOVA, Zar 1999) was 

performed in order to compare the slopes obtained for the two soil types. We followed 

the same procedure for comparing the community-weighted means of each trait 

between soil types. These analyses were carried with JMP (SAS Institute) and R 

softwares (R Core Team 2012). 
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Results 

Soil characteristics 

Cambisol and Gleysol did not differ in nutrients, but differed for pH and texture 

(clay and silt) (Table 2). Cambisol samples were more acidic, had higher clay percentage 

and lower silt percentage than Gleysol ones. In addition to these differences, 

groundwater level in Cambisol is lower (deeper) during most of the year when 

compared to Gleysol, varying from 45 cm to 130 cm in Cambisol and from 20 cm to 90 

cm in Gleysol (Supplementary Material Chapter 2, Fig. S2). 

 

Table. 2. Means (± SE) of the nutritional and physical characteristics of two soil types in 

Atlantic Forest areas, Southern Brazil.  

Soil parameter Cambisol Gleysol t /Z test 

pH (CaCl2) 3.78  ± 0.06 3.96±0.04 t=2.24, P=0.04 

Al (cmolc.dm3) 2.36 ± 0.21 2.14± 0.28 ns 

Ca (cmolc/dm3) 0.41 ± 0.27 0.50 ± 0.18 ns 

Mg (cmolc/dm3) 0.31 ± 0.09 0.43 ± 0.09 ns 

K (cmolc/dm3) 0.15 ± 0.01 0.14 ± 0.02 ns 

P Mehlich (mg.dm-3) 4.64 ± 1.03 3.79 ± 0.48 ns 

C (g/dm3) 4.47 ± 0.25 7.72 ± 0.43 ns 

Clay (g.kg-1) 390.7± 37.59 225.14 ± 47.99 t=2.5 P=0.03; 

Silt (g.kg-1) 143.23 ± 50.47 318.91 ± 51.87 Z=2.64; P=0.008,  

Sand (g.kg-1) 463.48 ± 51.19 456.23 ± 94.24 ns 

 
Species richness and individual abundances 

We sampled a total of 4389 individuals in 45 plots, where 3031 were canopy 

trees and 1358 were understory individuals, including saplings and shrubs. A total of 
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215 species of canopy trees (Cambisol: 185 species; Gleysol 113 species) and 182 species 

of understory (Cambisol:  134 species; Gleysol 116 species) were recorded (Table S1, 

Chapter 2).  

 

Trait convergence and divergence 

The traits that maximized trait convergence (TCAP) for the canopy community 

were leaf area, pollination by vertebrates, shade tolerance, and leaf slenderness. For the 

understory, the selected traits were shade tolerance, leaf area and leaf slenderness (Table 

2). The traits maximizing divergence patterns (TDAP) for the canopy community were 

pollination by bees, abiotic pollination, shade tolerance, maximum DBH, leaf margin, 

maximum height, leaf compoundness and zoochoric seed dispersal. For the understory 

the traits that maximized TDAP were pollination by vertebrates, abiotic pollination, 

shade tolerance, maximum DBH, maximum height and leaf compoundness (Table 2). 

Most of the traits that maximized divergence appeared in both strata, except for 

pollination by bees, entire leaf margin and zoochoric seed dispersal, which were selected 

only in the canopy; and pollination by vertebrates, which was selected only in the 

understory (Table 2). Some traits maximized convergence in both strata (canopy and 

understory), such as shade tolerance and leaf slenderness, while the others were selected 

only in one stratum. Shade-tolerance maximized both convergence and divergence in 

both strata (canopy and understory). With the trait subset selected above, we found 

some significant assembly patterns (P<0.05) associated with the environmental gradient 

assessed in this study (plot age and soil type) for both canopy and understory 

communities (Table 2). Trait convergence (TCAP) patterns were significant for the 

subset of traits that maximized convergence in the canopy and in the understory. For 
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the subset of traits that maximize divergence, we did find significant divergence 

assembly patterns (TDAP) in the canopy and in the understory (Table 2). 

 
Table 3. Canopy and understory subset of traits that maximize convergence and 
divergence and significance of the assembly patterns (ρ and P) associated to the 
successional and edaphic gradient, in the Atlantic Forest in southern Brazil. Bold results 
indicatestatistical significance (P<0.05) 
 

 Maximizing Convergence  Maximizing Divergence  

Canopy Leaf area, pollination by 
vertebrates, shade 

tolerance, leaf slenderness 

Pollination by bees, abiotic 
pollination, shade tolerance, 
maximum DBH, entire leaf 
margin, maximum height, 

compound leaves, zoochoric seed 
dispersal 

   
TCAP 
[ρ(TE)] 

0.276 (0.016)  0.133 (0.17)  

TDAP 
[ρ(XE.T)]  

0.063 (0.059)  0.191 (0.012)  

     
Understory Shade tolerance, leaf area,  

leaf slenderness 
Pollination by vertebrates, 
abiotic pollination, shade 

tolerance, maximum height, 
maximum DBH, compound 

leaves 
   
TCAP 
[ρ(TE)] 

0.257 (0.003)  0.095 (0.182)  

TDAP 
[ρ(XE.T)]  

0.068 (0.052)  0.253 (0.004)  
 

 
Taxonomic and Functional Diversities 

In general, taxonomic diversity (species richness and Shannon Diversity Index -

H’) and functional diversity (functional richness, functional redundancy and Rao 

quadratic entropy) measured in this study increased with forest age in the canopy and in 

the understory (Figs. 1 and 2). In the canopy, the covariance analysis revealed an 
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interaction of the variables age and soil type, that affected the variables H’, functional 

richness and functional diversity (as measured by the Rao quadratic entropy). On the 

other hand, species richness and functional redundancy only responded to plot age (and 

not to soil type) (Fig. 1). In the understory, four of five variables were influenced by an 

interaction of age and soil type: species richness, H’, functional richness and functional 

redundancy. The only exception was Rao quadratic entropy, which was only weakly 

influenced by age (Fig. 1). 

Traits 

 Most of the selected traits in the canopy responded to the age gradient, in one or 

both of the soil types. For the traits that maximize convergence (TCAP), leaf area, 

pollination by vertebrates and leaf slenderness increased with forest age (Fig. 3). For 

traits that maximize divergence (TDAP), abiotic pollination decreased with forest age; 

and the means (community weighted means) of individuals with entire leaves, animal-

dispersed and with compound leaves increased (Fig. 3). Shade-tolerance, that 

maximized both TCAP and TDAP also increased with forest age (Fig. 3d). Four traits 

responded not only to forest age, but also to soil type: seed dispersal by vertebrates, 

abiotic pollination, shade-tolerance, and leaf compoundness (Fig. 3). The community 

means of plants pollinated by vertebrates had a weak interaction with age and soil and; 

although Cambisol had a slighter higher proportion of vertebrate seed-dispersal, this 

pattern was not very clear (Fig. 3b). Abiotic pollination declineddrastically with forest 

age for both soil types, but the decrease was steeper in Cambisol (Fig. 3c). The means 

of shade-tolerant species had its peak at around 40 years of age in both soils, and the 

rate of increase in shade-tolerance mean slowed down in the 80-year-old Cambisol 

plots (Fig. 3d). Finally, Gleysol plots seemed to have higher means of compound leaves 
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along succession compared to Cambisol plots (Fig. 3g).  

 In the understory, the traits had similar patterns to the ones in the canopy. 

However, only shade-tolerance had a significant interaction between age and soil type. 

The community means of shade-tolerant species increased with age in both soil types, 

but more sharply in the Gleysol (Fig. 4d). Leaf slenderness had a different pattern from 

all other traits, being affected only by soil type. The values were consistent along 

succession, but leaves in the Gleysol were more slender than the ones in Cambisol (Fig. 

4e). Maximum height and maximum DBH were important in maximizing divergence 

in both strata, but the community means for these traits were not related to the age or 

soil, hence, they are not shown in the figures. 
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Figure 1.  Species richness (a), Shannon’s Diversity Index (b), Functional Richness (c), 

Functional Redundancy (d) and Rao Quadratic Entropy (e) in the canopy community 

growing in two soil types in the Atlantic Forest, southern Brazil. 
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Figure 2. Species richness (a), Shannon Diversity Index (b), Functional Richness (c), 

Functional Redundancy (d) and Rao Quadratic Entropy (e) in the understory 

community growing in two soil types in the Atlantic Forest, southern Brazil. 
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Figure 3.  Community weighted means (CWM) of the traits: leaf area (a), pollination 
by vertebrates (b), abiotic pollination (c), shade-tolerance (d), zoochoric seed dispersal 
(e) leaf slenderness (f), leaf compoundness (g) and leaf margin (h) in the canopy 
community growing in two soil types in the Atlantic Forest, southern Brazil. 
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Figure 4.  Community weighted means (CWM) of the traits: leaf area (a), pollination 

by vertebrates (b), abiotic pollination (c), shade-tolerance (d) and leaf slenderness (e), in 

the understory community growing in two soil types in the Atlantic Forest, southern 

Brazil. 
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Discussion 

The dynamics of functional traits of canopy and understory species during 

succession of the Atlantic Forest in southern Brazil revealed some directional patterns 

of functional changes in communities over time and some distinctions of these patterns 

according to the type of soil in which the communities are growing. 

With the finding of convergence and divergence patterns of functional traits in 

this study, we agree with the idea that functional similarities and differences are 

important in determining the coexistence patterns of species in communities in 

environmental gradients (Tilman & Pacala 1993). The expression of convergence 

patterns (TCAP) is usually related to environmental filters, which can lead species 

present in a same community to express a greater similarity of traits than what would be 

expected by chance (Keddy 1992, Weiher et al. 1998, Pillar & Duarte 2010). The 

expression of patterns of convergence in both strata (canopy and understory) suggests 

that both are subject to transposing environmental or biotic filters, resulting in 

ecological similarity along succession, with higher redundancy in the older stages. On 

the other hand, the expression of divergence patterns (TDAP) may indicate the limiting 

similarity among coexisting species (MacArthur & Levins 1967), due to competition for 

limiting resources. In general, patterns of convergence and divergence in the canopy and 

in the understory were associated with distinct traits, suggesting that the temporal 

gradient associated with successional changes results in different pressures for these two 

strata. 

The two measures of taxonomic diversity (number of species and Shannon 

diversity index) increased with age in both soil types, as we expected. The number of 

species, however, had a similar increase in both soil types, reaching its maximum in 
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more advanced stages of succession, whereas the Shannon diversity index increased in a 

different rhythm in each soil type. The use of number of species alone may not be 

sufficient to indicate differences in soil types, since species in this study largely varied in 

their abundances. But when we used a measure that simultaneously considers species 

abundances (diversity indices) we could detect a difference between soil types. 

All functional diversity measures calculated for the canopy increased with forest 

age, and two of them also had an influence of soil type: functional richness and Rao 

diversity. In both cases, they had lower values in the Gleysol in the very young stages of 

succession (0-15 years), reaching the same values as Cambisol around the 20-year-old 

plots. Species richness increased uniformly with plot age, while the three functional 

diversity measures seemed to have a steeper growth in the first years of succession and 

the increase rate declined later, with the middle-aged plots functionally more similar to 

the old-growth forests, although with less species. This is explained by functional 

redundancy, since there is a point in succession when functional diversity stabilizes, even 

with the increasing number of species. In the beginning of succession, as communities 

accumulate species, traits do not overlap with those of existing species, but as the forest 

gets more developed, their functional traits start overlapping and functional redundancy 

increases (Chazdon 2014). Similar to the canopy, all variables in the understory also 

increased with forest age and all of them, except for Rao diversity, also had an influence 

of the soil type, with the variables in the Gleysol plots increasing more steeply than in 

the Cambisol plots. In successional areas in the Araucaria Forest, Silva (2010) also 

found an increase in the Rao diversity with age and a decrease in the variability of this 

measure in the older plots for both the upper and lower strata. 

Mean functional trait values of a plant community change along environmental 
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gradients (Temperton et al. 2004). All the four measured leaf traits were selected for 

maximizing either convergence or divergence of traits. Leaf traits, in general, are related 

to the fitness of the species and can provide competitive advantage for them 

(Cornelissen et al. 2003). Leaf area, for example, although selected for the set of traits 

maximizing convergence, was only significantly influenced by age in both strata. The 

leaf area increased during succession, which maximizes the leaf light capture in the 

shaded areas of late-successional areas. Leaf area was also reported to increase with age 

in other tropical forests (Kalascka et al. 2005, Sansevero 2013) and in tropical dry forests 

(Lebrija-Trejos et al. 2011), which had species with large leaves and long petioles that 

maximize light interception per leaf area in the advanced stages of succession. The 

increase in leaf area along succession may be due to the microclimate in the beginning 

of succession, since direct exposure to sunlight can considerably raise the temperature. 

Therefore, plants need to control thermal balance, resulting in smaller leaves in the 

beginning of succession.  

Regarding the soil characteristics, it was reported that leaf economic traits 

related to resource acquisition, such as leaf area, were more correlated with soil nutrient 

content than other gradients, such as climate (Ordonez et al. 2009). In our study we did 

not find a significant relation of the community weighted means of leaf area with soil 

type. One of the reasons could be that even though we had two soils contrasting in 

water availability and physical characteristics, they did not differ in nutrient 

content,which seems to affect the leaf area more strongly. On the other hand, in a study 

in tropical forests in Panama, only two traits (leaf area and wood density) were related 

to the variation in soil nutrients, not supporting most of their predictions that trait 

variation would be explained by local-scale soil fertility and acidity gradients (Liu et al. 
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2012).  

We found that leaf related traits can be very variable. In an analysis considering 

nine different leaf-traits in a global database, it was found that leaf traits were usually 

related to the species’ life form, and the trees and shrubs leaf traits were the most 

variable ones, covering almost the entire observed range of each trait (Wright et al. 

2004). Leaf compoundness increased with age in the canopy. The entire leaves were 

generally more frequent in the Gleysol compared to Cambisol. One of the 40-year old 

sites had more than 50% of entire leaves, while in the Cambisol the values were all low 

along all ages. Leaf slenderness had only a slight increase with forest age in both strata 

(canopy and understory), but the soil had an independent effect on it (independent of 

age). This difference between soils has probably emerged in the younger ages of 

succession (up to 20 years of age) where the leaves of the Gleysol sites seemed to be 

wider than the ones in the Cambisol sites. The last leaf-related trait was leaf margin. 

The community means of entire leaf margin increased with age, but this increase did 

not have any relation with soil. In the beginning of succession the variance on the leaf 

margin values was very high, with values in the wide range of 0 to 1. However, in the 

older phases (40 to 80 years), sites had clearly increased in the amount of species with 

entire leaf margin, with more than 70% of the community presenting this trait. 

Shade tolerant species also had very similar community means between canopy 

and understory, a pattern also found for some other traits. Changes in functional 

characteristics in the forest understory, observed in early successional stages, predict 

subsequent changes in the canopy that occur decades later (Chazdon 2008). The 

community means of shade tolerant species reached high levels in both soil types already 

in the 40 years of forest age. In the 80-year-old Cambisol sites we had our highest 
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values, with more than 90% of the community being shade-tolerant. Similar to leaf 

margin and other traits the variance of shade tolerance among plots was also much 

higher in the first two decades of succession. This is explained by the stronger 

environmental filtering for pioneer species establishing in shaded areas than to non-

pioneer species establishing early in the succession (Chazdon 2014). 

Shifts in functional traits during succession reflect dramatic changes in resource 

availability and species interactions (Chazdon 2014), especially regarding the 

reproduction-related traits. Pollination by vertebrates increased along the successional 

gradient, but in the Gleysol this increase was slightly steeper than in the Cambisol. This 

may be a result of the presence of one of the older plots (>80y) in the Cambisol, which 

unexpectedly had much more species pollinated by bees and other insects than by 

vertebrates, pulling the slope down in the Cambisol. In the understory, a similar trend 

occurred for pollination by vertebrates in the Cambisol 80-year old plots, where two 

plots had considerably lower pollination by vertebrates probably caused by other local 

reasons rather than soil type. It is important to note that in the 40 year-old plots where 

both soils types were sampled, we had very high community weighted means of 

vertebrate pollination in the Cambisol. The other pollination mode that maximized 

divergence in both strata was abiotic pollination. This trait decreased drastically with 

age in both soil types. In the 40 year-old plots both soils had very low community 

means of abiotic pollination. When forest age achieved 80 years old, one of the plots 

had CWM marginally higher than 0.1, slightly changing the slope in Cambisol in 

relation to Gleysol. Two Gleysol sites had abiotic pollination 20% higher than the 

Cambisol sites of the same age (young areas). Similar trends occurred in the understory, 

with Gleysol showing a steeper decline in abiotic pollination means than Cambisol. 
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Zoochoric seed dispersal increased along succession and, around the 40 years of 

age, the means of zoochoric dispersal were already similar to the ones of 80-year old 

forests. Changes in dispersal mode are predictable in tropical forests, with abiotic 

dispersal mode prevailing in environments with higher levels of disturbance, thus, 

decreasing along succession (Opler et al. 1980, Tabarelli & Peres 2002, Piotto et al. 

2009). However, there were no differences in the means of zoochoric dispersal between 

two soil types, which suggest this trait is not filtered by soil limitations. 

With this study, we can gain insights into the ecological processes that drive 

community assembly during succession in environments with contrasting edaphic 

characteristics. The patterns of convergence and divergence of traits in the Atlantic 

forest allow species to coexist and to colonize areas with different age and soil 

characteristics. Canopy and understory communities are subject to abiotic filters and to 

biotic interactions, which are revealed by different traits. Trait composition in the plant 

communities may have different trajectories depending on the characteristics of the soils 

in which they are growing. Plants with different attributes, in turn, will develop 

communities with varied structures, hence, they are expected to play different roles in 

the ecosystems and strongly influence ecosystem functions. 
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Figure S1 – Scaling up of trait-based data to the community level to reveal trait-
convergence and trait-divergence assembly patterns related to ecological gradients. The 
three data matrices needed for the analysis are in (a), where B describes species by traits, 
W the communities by abundances, and E the community sites by ecological variables. 
The procedure in (b) finds trait-convergence assembly patterns (TCAP) related to E, 
via the computation of ρ (TE), the matrix correlation between dissimilarity matrices DT 
and DE computed after T and E, where T=B’W. The procedure in (c) finds trait-
divergence and trait-convergence assembly patterns related to E, via the computation of 
ρ(XE), the matrix correlation between DX and DE computed after X and E, where 
X=U’W.Adapted from Pillar et al. (2009). 
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CONSIDERAÇÕES FINAIS 

________________________________________________________________ 

 
O presente trabalho contribuiu com o entendimento dos mecanismos que 

estruturam as comunidades vegetais durante a sucessão, o que poderá subsidiar futuros 

projetos de restauração e otimizar o manejo de florestas tropicais secundárias, 

especialmente na região da Floresta Atlântica. 

Antigas áreas de pastagem em processo de sucessão na Floresta Atlântica, por 

meio de regeneração natural ou plantio de mudas de espécies nativas, são gradualmente 

estruturadas após o abandono das áreas. Após aproximadamente 50 anos, a abundância 

e a diversidade taxonômica das comunidades vegetais atingem valores semelhantes aos 

encontrados em comunidades estabelecidas há mais tempo (>80 anos). Um fator que 

contribuiu positivamente para o sucesso das ações de restauração na região é a 

proximidade das florestas maduras adjacentes de onde chegam propágulos, aumentando 

a riqueza de espéciesnas áreas em restauração. As áreas com a presença da gramínea 

invasora Urochloa spp., utilizada para alimentação do gado nas antigas pastagens, 

limitam a riqueza de espécies e densidade de indivíduos nos primeiros anos de 

implantação da restauração. Outros fatores estudados (tipo de solo, técnicas de manejo, 

área da floresta madura mais próxima, relevo) tiveram efeitos menos importantes  nas 

comunidades, embora possam ser relevantes em outras escalas temporais e espaciais não 

tratadas no presente estudo. 

As diferenças entre os tipos de solos predominantes na região de estudo 

(Cambissolo e Gleissolo), mostraram que características do solo podem ocasionar 

diferenças estruturais, florísticas e funcionais em áreas florestais em sucessão. Desta 

forma, características do solo devem ser levadas em consideração na implementação de 
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planos de restauração, auxiliando na escolha de métodos de restauração e espécies para 

plantios. As diferenças no solo também determinam estruturações distintas das 

comunidades no gradiente solo-idade. Aparentemente, não apenas filtros abióticos 

(determinados, por exemplo, pelas diferentes limitações impostas por Gleissolo e 

Cambissolo), mas também por interações bióticas, que promovem a convergência e 

divergência de conjuntos de atributos. De maneira geral, os atributos vegetativos 

relacionados às folhas (área foliar, divisão da lâmina foliar e esbelteza da folha), 

tolerância à sombra e atributos reprodutivos (síndromes de polinização e dispersão) 

diferiram de maneira significativa entre os tipos de solo ao longo do gradiente de idade. 

As relações da idade com a estrutura e diversidade da floresta e com os atributos 

corroboraram outros estudos já realizados sobre o tema e ajudaram a confirmar 

tendências. No entanto, as diferenças estruturais e funcionais aqui demonstradas em 

solos com características contrastantes são novidades em estudos sucessionais o que 

poderá trazer contribuições teóricas e práticas para a sucessão e restauração. 

 


