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ABSTRACT 

 

Amylolytic enzymes catalyze the hydrolysis or the modification of starch 

structure. Many organisms are able to produce these enzymes, but only a few of 

them exhibit satisfactory characteristics for industrial application. The most 

common commercial α-amylases with desirable industrial characteristics are 

produced by bacteria from the genus Bacillus. Although the yield of α-amylase 

produced by these bacterial strains can be increased with culture optimization, 

the recombinant production of the enzyme could offer some advantages such as 

easier genetic manipulation/mutation, inducible expression, faster production, 

higher yields and easier purification steps. The present work proposes the 

production of a recombinant α-amylase in Kluyveromyces lactis. A Bacillus 

subtilis NRRL B-4212 strain provided the α-amylase gene, which was amplified 

and inserted in a pKLAC2 vector in four different ways: (i) with both the B. subtilis 

signal sequence and K. lactis leader sequence; (ii) with only the yeast leader or 

(iii) only the B. subtilis signal, and (iv) without any signal or leader sequence. The 

final constructs were linearized and the cassettes were used for K. lactis CBS 

2359 cells transformation. After growth in a selective medium, the positive yeast 

colonies were assayed for enzymatic activity on agar plates and liquid medium. 

It was expected that cells with construct (i) and cells with construct (ii) would 

present extracellular enzymatic activity. On the other way, transformants with 

constructs (iii) and transformants with construct (iv) should present an 

intracellular activity. However, only constructs (ii) and (iv) behaved as expected. 

Construct (i) could not secrete the enzyme, indicating that the presence of both 

signals might interfere in the secretion machinery, and construct (iii) presented a 

high extracellular activity (1200 U/L), even though it did not have the yeast leader 

sequence, indicating that the yeast cell probably can also recognize the bacterial 

signal peptide. One sample from each construct was selected to determinate the 

enzyme’s optimal temperature and pH, obtaining results between 50 an 55 °C, 

which is consistent with other observed values for Bacillus amylases. 

Transformant LAC-EXAMY 4 was also cultured in different carbon sources to 

observe cellular growth and enzyme production. The recombinant yeast was able 

to quickly grow in the presence of glucose, sucrose and lactose. Even without the 

induction with lactose or galactose the enzyme was produced with a basal level 
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(0.44 U/mL). However, the presence of these carbon inducers greatly enhances 

the production yield, achieving 2.21 U/mL with lactose and 2.55 U/mL with 

galactose as the carbon source 

 

Keywords: recombinant expression, alpha-amylase, signal sequence, 

Kluyveromyces lactis. 

 

 

 



vi 
 

TABLE OF CONTENTS 

 

1 INTRODUCTION ......................................................................................... 1 

2 PRACTICAL OBJECTIVES ........................................................................ 2 

2.1 GENERAL OBJECTIVE ........................................................................ 2 

2.2 SPECIFIC OBJECTIVES ...................................................................... 2 

3 BIBLIOGRAPHIC REVIEW ........................................................................ 3 

3.1 AMYLOLYTIC ENZYMES ..................................................................... 3 

3.1.1 α-Amylase...................................................................................... 5 

3.2 AMYLASE PRODUCTION .................................................................... 7 

3.2.1 Sources of α-amylases ................................................................. 7 

3.2.1.1 Bacillus subtilis ......................................................................... 9 

3.2.2 Heterologous expression of α-amylases .................................. 11 

3.2.2.1 Yeast as an heterologous host ............................................... 13 

3.2.2.2 Kluyveromyces lactis .............................................................. 18 

3.3 APPLICATIONS OF α-AMYLASES ..................................................... 21 

3.4 AMYLOLYTIC ENZYMES MARKET ................................................... 23 

4 MATERIALS AND METHODS .................................................................. 26 

4.1 MICROORGANISM STRAINS ............................................................ 26 

4.2 CULTURE MEDIA ............................................................................... 26 

4.3 CASSETTE CONSTRUCTION ............................................................ 27 

4.3.1 Basic molecular biology procedures ........................................ 27 

4.3.2 Primers design, PCR amplification and vector construction .. 27 

4.3.3 Yeast transformation and transformant screening .................. 31 

4.4 FLASK CULTIVATION OF CELLS AND ENZYME PRODUCTION ..... 31 

4.4.1 Shake flask cultivation ............................................................... 31 

4.4.2 Determination of biomass production ...................................... 32 

4.4.3 Determination of carbohydrates consumption and proteins 

production ............................................................................................... 32 

4.4.4 Enzymatic activity determination .............................................. 33 

4.4.5 Enzyme production with different carbon sources ................. 33 

4.5 PARTIAL CHARACTERIZATION OF THE ENZYME .......................... 34 

4.5.1 Determination of optimal pH and temperature ......................... 34 

4.6 STATISTICAL ANALYSIS ................................................................... 35 



vii 
 

5 RESULTS AND DISCUSSION ................................................................. 36 

5.1 GENE AMPLIFICATION ...................................................................... 36 

5.2 CASSETTE CONSTRUCTION ............................................................ 36 

5.3 GENE SEQUENCING ......................................................................... 37 

5.4 YEAST TRANSFORMATION .............................................................. 38 

5.5 SCREENING OF TRANSFORMED CELLS ........................................ 39 

5.6 SHAKE FLASK CULTIVATION ........................................................... 43 

5.6.1 Biomass production ................................................................... 44 

5.6.2 Protein content ........................................................................... 44 

5.6.3 Enzymatic activity ....................................................................... 47 

5.6.4 Enzyme production in different carbon sources ..................... 51 

5.7 PARTIAL CHARACTERIZATION OF THE ENZYME .......................... 57 

5.7.1 Determination of optimal pH and temperature ......................... 57 

6 CONCLUSIONS AND PERSPECTIVES ................................................... 64 

7 REFERENCES .......................................................................................... 66 

8 APPENDIX ................................................................................................ 74 

 

 

 



viii 
 

LIST OF FIGURES 

 

Figure 1 - Starch-degrading enzymes classification based on the type of bond 

they hydrolyze and site of action. Adapted from NIGAM & SINGH, 1995........... 4 

Figure 2 - Enzymatic degradation of starch. The black circle indicates the 

reducing sugar. Adapted from BERTOLDO & ANTRANIKIAN, 2002. ................ 5 

Figure 3 - Bacillus subtilis α-amylase structure showing domains A, B and C, 

three Ca2+ ions and the maltopentose used as substrate (molecule numbered 

from 1 to 5). Adapted from FUJIMOTO et al., 1998. ........................................... 6 

Figure 4 - Bacillus subtilis cells after Gram staining at 1000x magnification 

(Source: the author)............................................................................................ 9 

Figure 5 - Consensus sequence for signal peptides of Sec-type secretion. 

Adapted from TJALSMA et al., 2004. ............................................................... 11 

Figure 6 - Kluyveromyces lactis cells after methylene blue staining (dead cells 

appear as dark blue) at 1000x magnification (Source: the author). .................. 19 

Figure 7 - Industrial uses of corn produced in the United States between 

September/2010 and August/2011 according to United States Department of 

Agriculture (USDA). .......................................................................................... 22 

Figure 8 - Annual value and weight of imported and exported amylases in Brazil 

according to Ministério do Desenvolvimento, Indústria e Comércio Exterior. ... 24 

Figure 9 - N-terminal of the protein coded by the amyE gene, highlighting in gray 

the probable signal peptide. ............................................................................. 28 

Figure 10 - Sequence scheme of the amyE gene (green arrow), highlighting the 

signal sequence (gray box), the restriction sites (in blue) and the designed 

primers (in pink). ............................................................................................... 28 

Figure 11 - Plasmidial vector pKLAC2 used for K. lactis cassette construction.29 

Figure 12 - Final cassettes used for yeast transformation. ............................... 30 

Figure 13 - Agarose gel electrophoresis of B. subtilis genomic DNA amplification 

with the designed primers EXSIG, INTSIG, EXAMY and INTAMY. .................. 36 

Figure 14 - Agarose electrophoresis of pKLAC-INTAMY digested with different 

restriction enzymes to confirm the correct insertion of the gene. ...................... 37 

Figure 15 - Example of PCR performed with genomic DNA extracted from 

transformed cells and primers INTSIG For and AMY Rev. Colonies 25, 26, 27, 



ix 
 

37, 39, 40 are from transformed K. lactis LAC-INTSIG and K. lactis WT is the 

negative control (strain CBS 2359). .................................................................. 38 

Figure 16 – Schematic representation of the expected proteins to be expressed 

with each construct. .......................................................................................... 39 

Figure 17 - YPLS plate after iodine staining with K. lactis cells transformed with: 

(A) LAC-EXAMY, (B) LAC-INTAMY, (C) LAC-EXSIG, (D) LAC-INTSIG. K. lactis 

WT was used as a negative control. ................................................................. 40 

Figure 18 – Protein concentration on Bradford assay of the fermented 

extracellular broth of transformants LAC-EXAMY and LAC-EXSIG, the WT strain 

and the non-fermented YPL broth. Bars represent ±1 standard deviation. ....... 45 

Figure 19 – Protein concentration on Bradford assay of the fermented 

extracellular broth and intracellular extract of transformants LAC-INTAMY and 

LAC-INTSIG, the WT strain and the non-fermented YPL broth. Bars represent ±1 

standard deviation. ........................................................................................... 46 

Figure 20 - Enzymatic activity of the fermented extracellular broth of 

transformants LAC-EXAMY and LAC-EXSIG, the WT strain and the non-

fermented YPL broth. Bars represent ±1 standard deviation.. .......................... 48 

Figure 21 - Enzymatic activity of the fermented extracellular broth and intracellular 

extract of transformants LAC-INTSIG, the WT strain and the non-fermented YPL 

broth. Bars represent ±1 standard deviation. .................................................... 49 

Figure 22 - Enzymatic activity of the fermented extracellular broth and intracellular 

extract of transformants LAC-INTAMY, the WT strain and the non-fermented YPL 

broth. Bars represent ±1 standard deviation. .................................................... 50 

Figure 23 - Biomass production (OD600) of K. lactis LAC-EXAMY 4 when grown 

on glucose, sucrose, lactose or galactose as the only carbon source. ............. 52 

Figure 24 - Carbon source consumption by K. lactis LAC-EXAMY 4 when grown 

on glucose, sucrose, lactose or galactose as the only carbon source. Bars 

represent ± 1 standard deviation. ..................................................................... 52 

Figure 25 - pH profile during K. lactis LAC-EXAMY 4 growth on glucose, sucrose, 

lactose or galactose as the only carbon source. ............................................... 53 

Figure 26 - Protein production of K. lactis LAC-EXAMY 4 when grown on glucose, 

sucrose, starch, lactose or galactose as the only carbon source. Bars represent 

± 1 standard deviation. ..................................................................................... 54 



x 
 

Figure 27 - Enzyme production of K. lactis LAC-EXAMY 4 when grown on 

glucose, sucrose, starch, lactose or galactose as the only carbon source. Bars 

represent ± 1 standard deviation. ..................................................................... 55 

Figure 28 - Response surface and contour plot of LAC-EXAMY 4 relative 

enzymatic activity as function of pH and temperature. ..................................... 58 

Figure 29 - Response surface and contour plot of LAC-EXSIG 2 relative 

enzymatic activity as function of pH and temperature. ..................................... 58 

Figure 30 - Response surface and contour plot of LAC-INTAMY 1 relative 

enzymatic activity as function of pH and temperature. ..................................... 59 

Figure 31 - Response surface and contour plot of LAC-INTSIG 24 relative 

enzymatic activity as function of pH and temperature. ..................................... 59 

Figure 32 - Response surface and contour plot of B. subtilis α-amylase relative 

enzymatic activity as function of pH and temperature. ..................................... 60 

 

 

 



xi 
 

LIST OF TABLES 

 

Table 1 - Examples of recombinant α-amylases produced in bacterial hosts. .. 13 

Table 2 - Main promoters used for recombinant gene expression in yeasts. 

Adapted from PORRO et al., 2005 ................................................................... 14 

Table 3 - Examples of recombinant α-amylases produced in yeast. ................ 18 

Table 4 - Primer sequences indicating the position of the restriction sites and the 

codons coding for Kex protease site. ............................................................... 29 

Table 5 - Experimental design used in the determination of the optimal 

temperature and pH. ........................................................................................ 34 

Table 6 - Mean results for biomass determination (OD600  or dry weight ± standard 

deviation) of the transformants and WT strain. ................................................. 44 

Table 7 – Kinetic parameters and yield on different carbon sources after 70h 

culture............................................................................................................... 56 

Table 8 – Estimated optimal temperature and pH for the α-amylases produced.

 ......................................................................................................................... 61 

Table 9 - B. subtilis α-amylase characteristics from different studies. .............. 62 

 

 

 



xii 
 

SYMBOLS AND ABBREVIATIONS 

 

A Adenine 

aa Amino acid 

Arg Arginine 

Asp Aspartate 

BAP B. subtilis α-amylase production broth 

C Cytosine 

DNA Deoxyribonucleic acid 

EC Enzyme Commission number 

G Guanine 

Glu Glutamic acid 

GRAS Generally recognized as safe 

INTAMY, INTSIG Amplified α-amylase genes to be cloned without the yeast 

secretion leader 

EXAMY, EXSIG Amplified α-amylase genes to be cloned with the yeast 

secretion leader 

kg, g, mg, µg, ng Kilogram, gram, milligram, microgram, nanogram 

Km Michaelis-Menten constant 

L, mL, µL Liter, milliliter, microliter 

LAC-INTAMY Cassette integrated in Kluyveromyces lactis genome 

containing only the mature α-amylase gene 

LAC-INTSIG Cassette integrated in Kluyveromyces lactis genome 

containing only the α-amylase with the bacterial signal peptide 

LAC-EXAMY Cassette integrated in Kluyveromyces lactis genome 

containing the mature α-amylase gene and the yeast secretion 

leader 

LAC-EXSIG Cassette integrated in Kluyveromyces lactis genome 

containing the α-amylase with the bacterial signal peptide and 

the yeast secretion leader 

LB Luria-Bertani broth 

M Molarity (mol/L) 

N Asparagine 



xiii 
 

NCM Nomenclatura comum do Mercosul 

ºC Celsius degree 

OD600 Optical density at 600nm 

PCR Polymerase Chain Reaction 

pka Logarithmic acid dissociation constant 

pKLAC2 Kluyveromyces lactis expression vector 

pKLAC-INTAMY pKLAC2 vector containing the amplified gene INTAMY 

pKLAC-INTSIG pKLAC2 vector containing the amplified gene INTSIG 

pKLAC-EXAMY pKLAC2 vector containing the amplified gene EXAMY 

pKLAC-EXSIG pKLAC2 vector containing the amplified gene EXSIG 

Rm Maximum productivity 

S Serine 

s, min, h Second, minute, hour 

sp. Species 

T Thymine 

TGY Tryptone, glucose, yeast extract broth 

Trp Tryptophan 

Tyr Tyrosine 

U Units of enzyme activity 

US$ United States dollar 

vmax Michaelis-Menten maximum rate 

WT Wild type (strain K. lactis CBS2359) 

x g Relative centrifugal force 

YCB Yeast carbon base broth 

YNB Yeast nitrogen base broth 

YP/S Product yield 

YPD Yeast extract, peptone, dextrose broth 

YPL Yeast extract, peptone, lactose broth 

YPLS Yeast extract, peptone, lactose, starch medium 

YPX Yeast extract and peptone medium, where X could stand for 

glucose, sucrose, starch, lactose or galactose 

YX/S Biomass yield 

α Alpha 



xiv 
 

α-MF α-mating factor 

β Beta 

µmax Maximum specific growth rate 

 

 

 

 



1 
 

1 INTRODUCTION 

 

Amylolytic enzymes catalyze the hydrolysis or the modification of starch 

structure. Among them is included the α-amylase, an enzyme responsible for the 

hydrolysis of α-1,4-glycosidic bonds in starch or its degradation products, acting 

internally in the polysaccharidic chain. The α-amylase has a broad application in 

industrial processes. They are vastly used in the textile and paper industries 

(starch removal from fibers), food processing (for beverages and bakery), 

detergents formulation (enhancing stain removal efficiency), pharmaceutical 

studies (diagnostic tests) and ethanol production (GUPTA et al., 2003; SOUZA & 

MAGALHÃES, 2010). 

Many organisms are able to produce this enzyme, but only a few of them 

exhibit satisfactory characteristics for industrial application, such as optimal range 

of temperature and pH compatible with those found in industrial processes 

(GUPTA et al., 2003). The most common commercial α-amylases with desirable 

biochemical characteristics are produced by bacteria from the genus Bacillus (B. 

subtilis, B. stearothermophilus, B. licheniformis e B. amyloliquefaciens) 

(SATYANARAYANA et al., 2006; PRAKASH & JAISWAL, 2010). 

Although the yield of α-amylase produced by these bacterial strains can 

be increased with culture optimization and strain screening, the recombinant 

production of the enzyme could offer some advantages such as easier genetic 

manipulation/mutation, inducible expression, faster production, higher yields and 

easier purification steps. 

Kluyveromyces lactis is a non-conventional yeast used as host for 

heterologous protein production. It is able to consume a great variety of carbon 

sources with a high growth rate and without producing ethanol under oxygen-

limited conditions (Crabtree-negative). Its genome has already been sequenced 

and the cells can be easily manipulated for genetic transformation (VAN OOYEN 

et al., 2006). 

Based on these insights, the present work proposes the production of a 

recombinant α-amylase from Bacillus subtilis in Kluyveromyces lactis cells for 

industrial purposes, such as starch degradation for ethanol production. 
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2 PRACTICAL OBJECTIVES 

 

2.1 GENERAL OBJECTIVE 

 

The present study intends to produce a recombinant α-amylase from 

Bacillus subtilis by transforming Kluyveromyces lactis cells with the exogenous 

gene. 

 

2.2 SPECIFIC OBJECTIVES 

 

 Construct an expression vector of Kluyveromyces lactis containing the 

gene of α-amylase from Bacillus subtilis with different signal sequences. 

 Obtain recombinant K. lactis cells producing intracellular and extracellular 

α-amylase. 

 Perform shake flasks cultivations for the production of the enzyme on 

bench scale. 

 Partially characterize the enzymatic activity of the recombinant enzyme. 
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3 BIBLIOGRAPHIC REVIEW 

 

3.1 AMYLOLYTIC ENZYMES 

 

Amylolytic enzymes catalyze the hydrolysis or the modification of starch 

structure. Among them is the α-amylase, which is responsible for the hydrolysis 

of α-1,4-glycosidic bonds in starch or its degradation products, acting internally 

in the polysaccharidic chain. 

Starch is a common constituent of higher plants, where it plays a role of 

carbohydrate storage. The metabolites arising from starch degradation are both 

source of carbon and energy for the plant. Some plants accumulate a great 

amount of starch granules in their tissues. As an example, the starch content in 

potato tuber, maize endosperm, sweet potato, and roots of cassava and yam 

varies between 65% and 90% of total dry weight (BEMILLER & WHISTLER, 

2009). 

The starch granules are made of two types of polymer: amylose and 

amylopectin. The ratio between these two components varies depending on the 

plant species, with an average of 15-25% of amylose and 75-85% of amylopectin 

(BERTOLDO & ANTRANIKIAN, 2002). The amylose consists of unbranched 

chains of D-glucose connected by α-1,4 linkages. Amylopectin consists of a chain 

with α-1,4 linked glucoses branched at every 24-30 residues by α-1,6 linkages 

(LEHNINGER et al., 2006; BEMILLER & WHISTLER, 2009). 

The starch molecule is important in many manufacturing processes, not 

only in food industry, but also in detergents, textile, paper, fuels and 

pharmaceutical industries. One of the main modifications performed industrially 

is the hydrolysis of the polymer to produce syrups, which is mainly accomplished 

by enzymatic catalysis. 

Starch can be hydrolyzed either by chemical treatment with inorganic acids 

or by enzymatic treatment with hydrolytic enzymes. The second option is favored 

because it allows better control of hydrolysis reaction, more specific catalysis, 

more stable products, and milder reaction conditions (with lower temperatures 

and pH near neutrality). These characteristics reduce the occurrence of 

undesired reactions, the energetic need for the process and eliminate 

neutralization steps (SATYANARAYANA et al., 2006). 
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The first starch degrading enzyme was observed in 1811 by Kirchhoff, but 

only after 1930 it was suggested the classification in α- and β-amylases, 

according to the anomeric form of the sugars produced by the enzymatic reaction 

(GUPTA et al., 2003; SATYANARAYANA et al., 2006). 

Starch degrading enzymes can be classified according to their properties, 

type of action, type of substrate, or similarity of sequences. The classification by 

the type of bonds they break results in two groups: (i) those which act on α-1,4-

glycosidic bonds and (ii) those which act on α-1,6-glicosidic bonds. It is also 

possible to distinct them by the site of hydrolysis: endo-hydrolases, which act on 

the interior of the starch polymer, and exo-hydrolases, which act on the substrate 

from the non-reducing end (Figure 1). 

 

Figure 1 - Starch-degrading enzymes classification based on the type of bond 

they hydrolyze and site of action. Adapted from NIGAM & SINGH, 1995. 

 

Endo-hydrolases (such as α-amylase) act in the interior of the starch chain. 

They are able to hydrolyze in a random way at many positions of the polymeric 

chain, producing a variety of dextrins and oligomers. Exo-hydrolases (such as β-

amylase, glucoamylase and α-glucosidades) attack the chain from the non-

reducing end, producing well defined oligosaccharides, such as maltose for β-

amylase and glucose for glucoamylase (Figure 2) (GUPTA et al., 2003; 

BEMILLER & WHISTLER, 2009). 

Starch-degrading 
enzymes

α-1,4-glucanases

Endo-α-1,4-glucanase α-amylase

Exo-α-1,4-glucanases

Exomaltohexahydrolase

Exomaltopentahydrolase

Exomaltotetrahydrolase

β-amylase

Glucoamylase

Isopululanase

α-1,6-glucanases

Endo-α-1,6-glucanases
Pululanase

Isoamilase

Exo-α-1,6-glucanase Exopululanase
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Figure 2 - Enzymatic degradation of starch. The black circle indicates the 

reducing sugar. Adapted from BERTOLDO & ANTRANIKIAN, 2002. 

 

3.1.1 α-Amylase 

 

The α-amylases are α-1,4-glucan-4-glucohydrolases that catalyze the 

hydrolysis of α-1,4-glicosydic bonds in starch molecules or its products of 

degradation. They act internally at random sites of the polysaccharidic chain, 

producing diverse degradation products. The specificity for the substrate and the 

range of products formed depends on the source of each α-amylase. They are 

classified as EC (Enzyme Commission number) 3.2.1.1 based on substrate 

specificity and the molecular mechanism of catalysis (SATYANARAYANA et al., 

2006). 

The X-ray analysis of α-amylase structures reveals that it contains three 

principal domains denominated A, B and C. In Figure 3 it is shown an example of 

a bacterial α-amylase structure. Domain A consists of a (β/α)8 barrel containing 

the three catalytic residues (Asp, Glu, Asp). Domain C corresponds to the C-

terminal portion of the protein and domain B corresponds to a protrusion between 

the third β-sheet and the third α-helix of the barrel in domain A (HORVÁTHOVÁ 

et al., 2001; ALIKHAJEH et al., 2007). 

The catalytic mechanism of the α-amylase is performed by three main 

residues: an aspartate (Asp) acting as a nucleophile, a glutamic acid (Glu) acting 
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as a hydrogen donor in the reaction, and another aspartate (Asp), which is 

believed to help in the catalysis by doing a hydrogen bond with the substrate and 

increasing the pKa value of the Glu residue (SATYANARAYANA et al., 2006; 

PRAKASH & JAISWAL, 2010). 

 

 

Figure 3 - Bacillus subtilis α-amylase structure showing domains A, B and C, 

three Ca2+ ions and the maltopentose used as substrate (molecule numbered 

from 1 to 5). Adapted from FUJIMOTO et al., 1998. 

 

One of the most advantageous characteristic of α-amylases that permits 

their industrial application is their thermostability. This term refers to the 

preservation of the chemical and spatial structure under high temperature 

conditions. The molecular mechanisms of thermostability depends on the 

enzyme, but some factors in common are considered to contribute to stability, 

such as: higher number of hydrogen bonds, ionic interactions and disulfide bonds, 

higher core hydrophobicity, decreased length of surface loops, presence of metal 

binding sites, and increased packing density (which leads to a lower level of 

thermal motion and less flexibility) (PRAKASH & JAISWAL, 2010). 

For α-amylases, the most important factor is the presence of calcium ions, 

substrate or other stabilizing agents. The stabilizing effect of calcium ion on the 

enzyme’s thermostability can be explained by the salting out of hydrophobic 

residues occurred in the presence of calcium ions, causing the adoption of a 

compact structure (PRAKASH & JAISWAL, 2010). Most α-amylases are 

metalloenzymes containing at least one Ca2+ ion, and the amount of Ca2+ ions 
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interacting with the protein can vary from 1 to 10 (SATYANARAYANA et al., 

2006). 

The use of thermostable amylases in an industrial process has some 

advantages, such as: lower cooling costs, better solubility of the substrate, lower 

viscosity (allowing a better mixture and pumping of the solution), and reduced risk 

of microbial contamination (ASGHER et al., 2007). 

Nevertheless, many other metallic cations, especially heavy metals ions, 

sulphydryl group reagents, N-bromosuccinimide, p-hydrohyl mercuribenzoic acid, 

iodoacetate, BSA, EDTA and EGTA may inhibit the α-amylase (GUPTA et al., 

2003). Some animal and Streptomyces amylases have inhibition by 

proteinaceous compounds or substrate analogues. The inhibition by 

proteinaceous compounds occurs due to the presence of Trp-Arg-Tyr residues in 

these molecules. Amylases from plants and other microorganisms do not present 

this kind of inhibition (SUMITANI et al., 1998). 

 

 

3.2 AMYLASE PRODUCTION 

 

3.2.1 Sources of α-amylases 

 

Amylases are ubiquitous enzymes in distribution, being easily found in 

plants, animals and microorganisms. However, fungal and bacterial enzymes 

have more commercial and industrial application due to its easier bulk production, 

better catalytic properties and stability. Furthermore, microorganisms can be 

easily manipulated to enhance production yield and protein characteristics 

(SOUZA & MAGALHÃES, 2010). 

The production of microbial α-amylases in bioreactors can occur either by 

submerged fermentation or solid state fermentation, depending on the 

characteristics of the producing strain. The physicochemical factors during 

fermentation will also affect the production of the enzyme, such as medium 

composition, pH, temperature, aeration, inoculum level and age, carbon/nitrogen 

ratio, and presence of inducer (PANDEY et al., 2000; SATYANARAYANA et al., 

2006). 
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Industrial amylases typically need little purification during the downstream 

process, because most of their commercial uses do not need a high degree of 

purity. Only some pharmaceutical applications and structural studies need highly 

purified α-amylases (SOUZA & MAGALHÃES, 2010). 

The bench scale purification of the protein usually includes an initial 

separation of the cells from the supernatant, followed by an enzyme 

concentration by chromatography (ion exchange, gel filtration, hydrophobic 

interaction, reverse phase), extraction by solvents (ethanol, acetone), 

precipitation (ammonium sulfate) or ultrafiltration. Some of these steps are 

expensive, laborious and may result in great loss of product, not being applicable 

to the industrial environment (PANDEY et al., 2000; GUPTA et al., 2003; SOUZA 

& MAGALHÃES, 2010). 

Many organisms are able to produce these enzymes, but only a few of 

them exhibit satisfactory characteristics for industrial application, especially the 

microbial α-amylases. Among the fungal species, the most representative 

producers of α-amylase are from mesophilic species, such as those in the 

Aspergillus genus (GUPTA et al., 2003). Some yeast also exhibit amylolytic 

activity, especially Saccharomyces diastaticus, Endomycopsis capsularis 

(VERMA et al., 2000), and Cryptococcus flavus (GALDINO et al., 2008). 

Extremophiles belonging to the Bacteria and Archaea domains can produce α-

amylases with remarkable industrial characteristics (PRAKASH & JAISWAL, 

2010). The most noteworthy producing species are Pyrococcus furiosus, P. 

woesei, Thermococcus profundus and T. hydrothermalis (BERTOLDO & 

ANTRANIKIAN, 2002). 

The most common commercial α-amylases are those produced by 

bacteria from the genus Bacillus, especially B. subtilis, B. stearothermophilus, B. 

licheniformis and B. amyloliquefaciens (SATYANARAYANA et al., 2006; 

PRAKASH & JAISWAL, 2010). As this work focus in the production of a bacterial 

α-amylase, greater details on the subject will be given separately in the next topic. 
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3.2.1.1 Bacillus subtilis 

 

Bacillus subtilis is an α-amylase producer commonly found in soil. It is a 

gram-positive non-pathogenic eubacterium (Figure 4), which is generally 

regarded as safe for industrial processes. This species is also known for its usage 

as a host for production of heterologous proteins, being considered as the gram-

positive equivalent of Escherichia coli in molecular biology (BOLHUIS et al., 1999; 

RAJAGOPALAN & KRISHNAN, 2008). 

 

 

Figure 4 - Bacillus subtilis cells after Gram staining at 1000x magnification 

(Source: the author). 

 

The production of α-amylase by B. subtilis is frequently done by 

submerged fermentation. ROY et al. (2012) performed broth optimization for B. 

subtilis AS-S01a cultivation and amylase production in a 5 L bioreactor. They 

reached a maximum productivity of 799 U (specific activity of 210.2 U/mg) at 72 h 

in a broth composed of beef extract and starch. The enzyme had a molecular size 

of 21 kDa and an optimal activity at 55 ºC and pH 9.0. ASGHER et al. (2007) 

produced the enzyme in shake flasks with B. subtilis strain JS-2004 and observed 

that the enzyme synthesis was growth associated. The amylase production 

peaked at 48 h with approximately 60 U/mL, when the cell population also 

reached its maximum (4 g/L of cell dry weight). During medium optimization, it 

was detected that yeast extract and calcium favor growth and expression, while 
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glucose reduces amylase production. The enzyme had optimal activity at 70 ºC 

and pH 8.0.  

Not only can bacterial cells be cultivated by submerged fermentation, but 

also by solid state fermentation. BAYSAL et al. (2003) isolated a Bacillus subtilis 

strain from hot-spring water and cultivated it in solid state using wheat bran and 

rice husk as substrates. The first one presented better results, with higher 

enzyme concentration at 48 h (159,520 U per gram of substrate). 

 MUKHERJEE et al. (2009) isolated the B. subtilis strain DM-03 from 

fermented food and performed a solid state fermentation on trays with different 

agro-industrial wastes (potato peel, wheat bran, oil cake, rice bran, Imperata 

cylindrica grass, banana leaves and tea leaves). Potato peel and wheat bran had 

the best enzyme yields (532 U per gram of dry substrate) because they have 

higher starch content and lower free sugar concentration. Glucose and readily 

metabolized sugars in the medium have a negative effect on protein production 

due to possible catabolic repression. ASGHER et al. (2007) also observed 

glucose repression during α-amylase production. However, B. subtilis strain 

KCC103 cultivated by RAJAGOPALAN & KRISHNAN (2008) showed no 

repression in the presence of glucose, permitting the use of sugarcane bagasse 

hydrolysate as substrate to produce up to 144.5 U/mL of enzyme. NAJAFI et al. 

(2005) were also able to produce 38 U/mL of α-amylase by strain AX20 without 

the repression effect in the presence of high amounts of glucose and maltose. 

Their enzyme had a higher molecular size (139-149 kDa), presented itself as an 

homodimer, had an optimal activity at pH 6.0 and 55 ºC, and exhibited no 

inhibition by EDTA or EGTA, suggesting that it does not require metal ions for 

activity. 

The α-amylase from B. subtilis can also be immobilized in a solid matrix. 

Immobilization of enzymes has become a subject of interest because it offers the 

possibility of enzyme recovering and re-utilization, enhancing stability, simplifying 

the separation from reaction mixture and facilitating the application to an 

automated continuous process. ABDEL-NABY et al. (1998) tried to immobilize an 

amylase produced by Bacillus subtilis using different methods, such as 

adsorption on aminoalkaylsilano-alumina, ionic binding onto DEAE-cellulose, 

covalent binding on chitin, and entrapment in polyacrylamide and calcium-

alginate. Though the immobilization of the amylase reduced the enzyme activity 
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and shifted the optimal pH to lower values, the enzyme became more 

thermostable, with an increase of optimal temperature from 45 ºC to 60-65 ºC. 

KONSOULA & LIAKOPOULOU-KYRIAKIDES (2006a) immobilized an α-

amylase by calcium alginate entrapment and were able to reuse the capsules up 

to 20 times. Nevertheless, the entrapped enzyme showed lower hydrolysis rates 

compared to free enzyme due to the interference of gel matrix in the diffusion of 

molecules to the active site of the enzyme. 

Not only is it possible to immobilize the enzyme, it is also possible to 

immobilize the Bacillus cells. KONSOULA & LIAKOPOULOU-KYRIAKIDES 

(2006b) accomplished the entrapment of B. subtilis cells in calcium-alginate 

capsules. The immobilized cells were able to sustain 90% of productivity over 5 

sequential batches. 

Regarding the secretory pathway of amylase production, protein secretion 

by B. subtilis can happen through different ways. One of them is denominated 

Sec-type secretion (Figure 5), which is mediated by a signal peptide consisting 

of: a N-region with three positively charged residues of lysine or arginine, a 

hydrophobic region of approximately 19 residues and a C-region comprising a 

type I SPase cleavage site with a consensus A-S-A sequence (TJALSMA et al., 

2004). 

 

 

Figure 5 - Consensus sequence for signal peptides of Sec-type secretion. 

Adapted from TJALSMA et al., 2004. 

 

 

3.2.2 Heterologous expression of α-amylases 

 

Although the yield of α-amylase produced by natural microbial strains can 

be increased with culture optimization, the recombinant production of the enzyme 

could offer some advantages such as easier genetic manipulation/mutation, 



12 
 

inducible expression, faster production, higher yields and easier purification 

steps. 

The development of new genetic engineering tools permitted the 

introduction of novel genes into an organism and the production of heterologous 

proteins. These proteins can be expressed in many cell cultures of bacteria, 

yeasts, fungus, mammals, plants and insects or in transgenic animals and plants. 

The quality, functionality, rate of production and yield of the final protein depends 

on the characteristics of each of these hosts (DEMAIN & VAISHNAV, 2009). 

One of the most widely used hosts for heterologous expression is the 

Escherichia coli, especially for those proteins which do not need glycosylation. 

They have as an advantage the rapid growth and expression, and the simplicity 

in genetic manipulation with many molecular tools available. However, bacterial 

cells are not able to perform post-translation modifications, such as disulfide 

bonds and glycosylation (DEMAIN & VAISHNAV, 2009). 

Generally the overexpression of recombinant proteins in E. coli produces 

intracellular insoluble aggregates which are denominated inclusion bodies. The 

resolubilization of such aggregates requires the use of denaturing agents 

followed by a renaturation of the protein molecular structure. This process may 

have great loss of activity due to the difficulty of the protein to regain its original 

conformation (LINDEN et al., 2000). Reports of successful solubilization without 

using denaturing conditions are scarce, but some of them include heating of 

insoluble aggregates or glycerol extraction. RASHID et al. (2010) were able to 

resolubilize a recombinant α-amylase produced as aggregates in E. coli with a 

glycerol extraction combined with incubation at 40 ºC. 

Other useful and well document bacterial systems are from the Bacillus 

genus, notably the B. subtilis and B. licheniformis strains. They easily secrete 

proteins (with no production of intracellular inclusion bodies), are genetically well 

characterized and are generally recognized as safe (GRAS) by the US FDA 

(DEMAIN & VAISHNAV, 2009). 

The α-amylase was one of the first proteins adopted for molecular biology 

studies because of the easiness in screening assays, the availability of amylase 

negative strains and the great knowledge in B. subtilis genetics and fermentation 

technology (SATYANARAYANA et al., 2006). Table 1 shows some examples of 

α-amylase production in recombinant bacterial hosts. 
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Table 1 - Examples of recombinant α-amylases produced in bacterial hosts. 

Reference Gene from Cloned in Production 

AIBA et al., 1983 
B. stearothermophilus B. stearothermophilus 3.9 U/mL 

B. stearothermophilus Bacillus subtilis 1.6 U/mL 

* TAKKINEN et al., 1983 B. amyloliquecafiens Bacillus subtilis - 

* YANG et al., 1983 Bacillus subtilis Escherichia coli - 

* GRAY et al., 1986 
B. stearothermophilus Escherichia coli - 

B. stearothermophilus Bacillus subtilis - 

* GOBIUS & PEMBERTON, 1988 Aeromonas hydrophila Escherichia coli - 

* TSUKAMOTO et al., 1988 
Bacillus sp. Escherichia coli - 

Bacillus sp. Bacillus subtilis - 

DONG et al., 1997 Pyrococcus furiosus Escherichia coli 109 U/mL 

JORGENSEN et al., 1997 
Pyrococcus furiosus Escherichia coli - 

Pyrococcus furiosus Bacillus subtilis - 

SIDHU et al., 1997 
Bacillus sp. Escherichia coli 3100 U/mL 

Bacillus sp. Bacillus subtilis 13900 U/mL 

KIM et al., 1997 Streptomyces albus Bacillus subtilis 136 U/mL 

LINDEN et al., 2000 Pyrococcus woesei Escherichia coli 13.851 U/mL 

ALI et al., 2006 B. stearothermophilus Escherichia coli - 

NIU et al., 2009 B. licheniformis Bacillus licheniformis 17600 mg/L 

* Cited by SATYANARAYANA et al., 2006 

 

3.2.2.1 Yeast as an heterologous host 

 

Whenever a recombinant protein is not produced correctly in a bacterial 

host because of folding problems or other post-translational processing, yeasts 

can be used for hosting the heterologous gene. Some yeast strains are 

genetically well characterized and can easily adapt to the industrial fermentation 

process. Yeast hosts have as advantages the rapid growth with high cell density, 

the ability to grow on common substrates and the capacity to perform post-

translational modification, such as assisting in folding and performing 

glycosylation. They are also safe to work because they do not harbor pathogens, 

viral inclusions or pyrogens (BÖER et al., 2007; DEMAIN & VAISHNAV, 2009). 

The glycosylation pattern differs among each cell strain and at each culture 

condition. Protein glycosylation might enhance its thermostability and protect the 

enzyme from proteases. Nevertheless, yeasts usually hyperglycosylate N-linked 

sites, causing the reduction of protein activity, solubility, stability and alter 
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immunogenicity (DEMAIN & VAISHNAV, 2009). TULL et al. (2001) observed that 

N-glycosylation reduced the thermostability of a recombinant α-amylase from 

Bacillus produced by Pichia pastoris. The recombinant enzyme lost 50% of 

activity at the temperature of 76 ºC, while the natural one produced by the Bacillus 

lost 50% of activity only at 89 ºC. The removal of glycosylation by 

endoglycosydase H treatment did not enhance the thermostability of the 

recombinant protein. 

The heterologous production in yeasts could be enhanced by optimizing 

some parameters, such as: culture physical conditions (pH, temperature), culture 

chemical composition (richer broths usually present higher productivity), the type 

of gene promoter and signal sequence used (Table 2), the codon bias, and the 

superexpression of chaperones (WONG et al., 2002). Furthermore, systems 

biology and proteomics analysis during the recombinant protein expression could 

help to identify the different types of stresses caused to the cell by the exogenous 

gene. There is still a reduced amount of information regarding the proteomics of 

yeast cells during heterologous gene expression. Besides that, lab scale analysis 

may not correspond to the conditions faced by the microorganism in an industrial 

plant, where external conditions (temperature, osmolarity and nutrient limitation) 

can also be stressful (GRAF et al., 2009). 

 

Table 2 - Main promoters used for recombinant gene expression in yeasts. 

Adapted from PORRO et al., 2005 

 Constitutive Promoter induced by 

Species Promoter Galactose Lactose Ethanol Starch Xylose Methanol 

S. cerevisiae GAPDH, 

PGK, TPI, 

ENO, α-MP 

GAL1-10, 

GAL7 

 ADH2    

K. lactis PGK  LAC4 ADH4    

S. occidentalis GAM1    AMY1, 

GAM1 

  

Y. lipolytica TEF, RPS7       

Z. rouxii GAPDH       

Z. bailii TPI       

P. stipitis      XYL1  

P. pastoris GAP      AOX1, 

FLD1 

H. polymorpha       MOX 

C. boidinii       AOD1 

P. methanolica       AUG1 
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The classical yeast in molecular biology is Saccharomyces cerevisiae. The 

recombinant protein secreted by this microorganism frequently presents a high 

fidelity in translation, an adequate N-terminal processing and a correct disulfide 

bond formation. Only 0.5-1% of intracellular proteins leak out of the cell, which 

simplifies the purification of extracellular proteins. Furthermore, protein secretion 

to the extracellular medium avoids prolonged exposure to proteases, which may 

reduce their half-life and stability (WONG et al., 2002). 

There are also other yeast strains used in protein production as alternative 

hosting systems. One of them is Pichia pastoris, a methylotrophic yeast which 

can grow in medium containing methanol as the only carbon source. In a 

bioreactor it is possible to achieve high cell concentrations (>100 g dry biomass/L; 

>400 g wet biomass/L; >500 OD600/mL) and high concentrations of secreted 

proteins (CEREGHINO et al., 2002). 

The majority of research projects about the production of recombinant α-

amylases in yeasts deal with the production in Saccharomyces cerevisiae and 

Pichia pastoris. Some of them are only aiming to produce the heterologous 

enzyme to perform structural and glycosylation studies, such as JUGE et al. 

(1996), MONTESINO et al. (1998), and RYDBERG et al. (1999). The present 

work focuses on the production of a recombinant α-amylase for industrial 

purposes. Therefore, in this bibliographic review it will be emphasized those 

articles that give more attention to the industrial application of recombinant yeast 

expression.  

Many works dealing with the production in Saccharomyces cerevisiae 

usually aim the expression of the enzyme and the production of ethanol at the 

same time. BIROL et al. (1998) performed experiments using three different 

recombinant S. cerevisiae: one harboring a fusion gene of B. subtilis α-amylase 

and A. awamori glucoamylase; one producing the B. subtilis α-amylase and A. 

awamori glucoamylase as separate enzymes; and one producing the A. awamori 

glucoamylase and a mouse α-amylase as separate enzymes. The construct with 

the mouse gene showed low yields in protein production. The others were able 

to degrade starch and also produce ethanol. The enzymes expressed separately 

had higher ethanol productivity than the fused ones, obtaining 43.8 g/L of ethanol. 

ALTINTAŞ et al. (2002) used the same yeast strain harboring the fused gene as 

the previous work and performed fed-batch experiments by adding starch in 
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pulses when it dropped to low values. They detected a good plasmid stability 

(74% of cells retained their plasmids), and high ethanol yield and productivity 

(0.233 g ethanol/L/h). 

SHIBUYA et al. (1992) also made a fusion gene of α-amylase and 

glucoamylase for S. cerevisiae transformation, but this time the genes came from 

Aspergillus shirousamii. The fusion protein had almost the same specific activity 

for soluble starch as those of individual enzymes, with both active sites fully 

functional without interfering with each other. However, the fused protein was 

only secreted in small amounts. 

The use of SUC2 promoter (which is repressed at high glucose 

concentration and derepressed at low glucose concentration) in S. cerevisiae 

was attempted by ZHANG et al. (2001). The fermentation was performed in two 

stages: the first stage aimed to achieve high cell density in the presence of both 

glucose and lactic acid; and the second stage started when most of the glucose 

was consumed and only yeast extract and lactic acid was fed to the cells (initiating 

the inducing phase). The feed of a carbon source other than glucose during 

induction phase provided the energy needed for synthesizing the protein and 

achieving higher protein concentrations. 

GALDINO et al. (2008) expressed a Cryptococcus flavus in S. cerevisiae 

under the control of the constitutive PGK1 promoter. A maximum of 3.93 U/mL 

was achieved at 60 h fermentation and the protein production did not impair cell 

growth. 

Barley’s α-amylases produced by yeasts have also been much studied 

because the optimal pH of barley’s enzyme is low, which is compatible with the 

conditions found during alcoholic fermentation (pH 4.0-5.0) (LIAO et al., 2010). 

WONG et al. (2002) produced a barley α-amylase in S. cerevisiae under the 

control of a PGK1 promoter and observed that when glycerol was used as carbon 

source the enzyme synthesis and secretion was enhanced while the cell growth 

was suppressed, with a pronounced enhancement in enzymatic activity after 48 

h culture. 

LIAO et al. (2010) produced barley isoenzyme 1 in S. cerevisiae either 

anchored on the cell surface or secreted to the medium. The researchers 

attempted to anchor the enzyme to improve its stability. However, the secreted 

form of the enzyme had higher starch consumption rate than the anchored one 
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and also higher ethanol yield, with 16.7 g/L of ethanol when cultivated for 70 h in 

50 g/L starch broth. 

In Pichia pastoris, the production of barley isoenzymes was attempted by 

JUGE et al. (1996) under the control of a AOX1 promoter. The enzymes could be 

efficiently secreted to broth by their own signal sequence and they did not present 

N-glycosylation. However, they appeared in different molecular sizes due to C-

terminal sequence processing. 

CHOI & PARK (2006) attempted to produce a mouse α-amylase in P. 

pastoris. They optimized some environmental factors, such as temperature, pH 

and carbon and nitrogen sources and observed that in batch fermentations the 

combination of methanol and glycerol as carbon sources enhance 1.6-fold the 

enzyme and biomass yields. In fed-batch experiments, the feeding of a nitrogen 

mixture (peptone and yeast extract) and a carbon mixture (methanol and glycerol) 

enabled high biomass concentration (OD600=179) and enzymatic activity (2.4 

kU/mL). 

KARAKAŞ et al. (2010) produced a B. subtilis amylase in P. pastoris with 

methanol induction. In shaken flasks fermentations, the maximum activity was 

achieved at 72 h (44.34 U/mL) and the recombinant enzyme had an optimum 

activity at 60 ºC and pH 7.0. The presence of calcium ions increased the 

enzymatic activity in 41%. 

LI et al. (2011b) produced in Pichia a recombinant α-amylase from 

Rhizopus oryzae. Both a constitutive promoter (GAP) and an inducible promoter 

(AOX1) were tested. The enzyme production with the former was only one 

fifteenth of that obtained with AOX1 promoter. They also tested the signal peptide 

for enzyme secretion, observing that the Rhizopus native sequence could 

efficiently direct the secretion of recombinant enzyme to the broth. At last, the 

best construct obtained (the one induced by methanol and with native signal) was 

tested in a 7L fed-batch fermentation, achieving 400 mg/L of secreted protein. 

Table 3 gives more examples of recombinant α-amylase produced by 

yeasts, showing the enzymatic production when this data was available.  
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Table 3 - Examples of recombinant α-amylases produced in yeast. 

Reference Gene from Cloned in Production 

STRASSER et al., 1989 

Schwanniomyces 

occidentalis 

Saccharomyces 

cerevisiae 0.02 U/mL 

S. occidentalis Kluyveromyces lactis 0.03 U/mL 

S. occidentalis Saccharomyces pombe 0.01 U/mL 

SHIBUYA et al., 1992 

Aspergillus 

shirousamii 

Saccharomyces 

cerevisiae - 

PAIFER et al., 1994 
Bacteria S. cerevisiae 0.9 g/L 

Bacteria Pichia pastoris 2.5 g/L 

JUGE et al., 1996 
Barley isoenzyme 1 Pichia pastoris - 

Barley isoenzyme 2 Pichia pastoris - 

TOKUNAGA et al., 1997 Mouse Kluyveromyces lactis 0.527 U/mL 

BIROL et al., 1998 
Bacillus subtilis S. cerevisiae 4000 U/mL 

Mouse S. cerevisiae 1500 U/mL 

RYDBERG et al., 1999 Human Pichia pastoris - 

TULL et al., 2001 Bacillus sp. Pichia pastoris 311.5 U/mL 

KATO et al., 2001 Mouse Pichia pastoris 240 mg/L 

ALTINTAŞ et al., 2002 Bacillus subtilis S. cerevisiae - 

CHOI & PARK, 2006 Mouse Pichia pastoris 2400U/mL 

NAKANO et al., 2006 Rice isoenzymes Pichia pastoris 173 mg/L 

ARRUDA, 2008 Bacillus subtilis Pichia pastoris 250 U/mL 

GALDINO et al., 2008 Cryptococcus flavus S. cerevisiae 3.93 U/mL 

KARAKAŞ et al., 2010 Bacillus subtilis Pichia pastoris 44.34 U/mL 

LIAO et al., 2010 Barley isoenzyme 1 S. cerevisiae - 

MONTAÑO, 2010 Bacillus subtilis Pichia pastoris 218 U/mL 

LI et al., 2011a Rhizopus oryzae Kluyveromyces lactis 22.4 U/mL 

LI et al., 2011b Rhizopus oryzae Pichia pastoris 450 U/mL 

 

3.2.2.2 Kluyveromyces lactis 

 

Kluyveromyces lactis (Figure 6) is a non-conventional yeast used as host 

for heterologous protein production. It has also been used for a long time in the 

food industry for the production of β-galactosidase (lactase), being considered a 

GRAS (generally recognized as safe) microorganism for this application. Thus, 

its culture in large scale is well known and studied. Their ability to grow in cheap 

substrates such as lactose and cheese whey makes them interesting hosts for 

industrial production (VAN OOYEN et al., 2006). 
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Figure 6 - Kluyveromyces lactis cells after methylene blue staining (dead cells 

appear as dark blue) at 1000x magnification (Source: the author). 

 

An interesting characteristic of this yeast for the heterologous production 

is the absence of a Crabtree effect. Crabtree-positive yeasts such as 

Saccharomyces cerevisiae produce ethanol under oxygen limitation, reducing 

yield in ATP and biomass production. Therefore, with Crabtree-negative strains 

such as K. lactis it is possible to achieve high biomass concentration without 

metabolic deviations to other secondary products other than the desired protein 

(SCHAFFRATH & BREUNIG, 2000). 

A great variety of K. lactis strains have been deposited in culture 

collections. One of the most used in research is CBS 2359, which is well 

characterized and whose genome has already been sequenced (VAN OOYEN et 

al., 2006). 

Both episomal and integrative vectors are available for K. lactis cell 

transformation. Episomal vectors (e. g., pKD1) may be present in many copies 

inside the yeast cell. However, they might be very unstable without the presence 

of a selecting agent. On the other hand, integrative vectors (e. g., pKLAC) are 

genetically more stable, but may be present in a low number of copies (VAN 

OOYEN et al., 2006). 

A few promoters are used in K. lactis expression vectors. The most 

characterized is the LAC4 gene promoter, which is induced 100-fold in the 

presence of lactose or galactose and is usually not repressed by glucose. Other 



20 
 

promoters from S. cerevisiae are recognized by K. lactis and can also be used 

for the expression of foreign genes, such as PGK1 and PHO5 promoters (VAN 

OOYEN et al., 2006). 

There are few reports regarding the production of recombinant α-amylase 

in Kluyveromyces lactis. One of the first attempts was performed by STRASSER 

et al. (1989), when they compared the productivity of a Schwanniomyces 

occidentalis α-amylase produced by Saccharomyces cerevisiae, S. pombe and 

K. lactis. The K. lactis cells had the highest extracellular production, achieving an 

enzymatic activity of 30.5 U/L. 

 TOKUNAGA et al. (1997) transformed K. lactis cells to produce α-amylase 

from mice. They tested gene constructs containing different promoters (PHO5 

and PGK1) and observed that both had similar efficiency in inducing protein 

production. The yeast secreted both the glycosylated and the non-glycosylated 

forms of the protein. By non-denaturing PAGE electrophoresis and iodine staining 

they were able prove that both forms of the protein are enzymatically active. The 

recombinant cells efficiently secreted the enzyme when cultivated in glucose, 

lactose or galactose as a carbon source, with the highest productivity of 0.527 

U/mL. The production of the amylolytic enzyme also enabled the yeast to grow 

on starch as the only carbon source. 

The α-amylase gene has also been used as a reporter gene in K. lactis 

basic research. BARTKEVICIUTE & SASNAUSKAS (2003) wanted to screen for 

K. lactis mutants with super-secretion phenotype after UV mutagenesis. They 

used a Bacillus amyloliquefaciens α-amylase as a reporter gene for protein 

secretion because they could be easily detected by iodine staining. 

 LI et al. (2011a) attempted to produce an α-amylase from Rhizopus oryzae 

in Kluyveromyces lactis using the LAC4 gene promoter to induce protein 

expression. A number of carbon sources were tested for the expression of the 

enzyme, and the culture in galactose medium had a slightly higher productivity, 

achieving 22.4 U/mL. However, in lactose broth the secretion of the enzyme was 

not induced as expected, having similar yield to those cultures in glucose, 

glycerol, starch and maltose medium. The strain was also able to grow on starch 

as the only carbon source, with a yield of 12.25 g/L in biomass and 11 U/mL in 

secreted enzyme (present both in a glycosylated and non-glycosylated form). 
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3.3 APPLICATIONS OF α-AMYLASES 

 

Amylolytic enzymes have a broad application in industrial processes, 

including in the textile, paper, food, detergent and pharmaceutical fields. 

Currently, almost 90% of liquid detergents contain α-amylase. The use of 

enzymes during the washing procedure enhances the ability of the detergent to 

remove stains, making the product environmentally friendly and avoiding the use 

of other aggressive chemical compounds which might damage the laundry and 

dishware (GUPTA et al., 2003; SOUZA & MAGALHÃES, 2010).  The α-amylases 

used for this application need to have a good activity and stability at the 

physicochemical conditions achieved during the washing procedure, such as 

alkaline pH, the presence of metal ion biding agents (polyphosphates, 

nitrilotriacetics acid and zeolites), anionic surfactants, and bleaching agents. As 

an example, MUKHERJEE et al. (2009) produced an α-amylase from B. subtilis 

and tested its compatibility with compounds present in detergents formulation. 

After simulating a washing process at 37 and 45 ºC, they observed that the 

enzyme was able to maintain a good activity. ROY et al., (2012) also tested their 

α-amylase for this application, and discovered that it was stable in the presence 

of laundry detergents components and improved stain removal. 

At the food processing industry this enzyme is used for the production of 

bread, cakes and beverages. In bakery, α-amylase is used to break starch into 

smaller dextrins, accelerating the fermentation performed by the yeast and 

reducing the viscosity of the dough. The application of the enzyme enhances the 

texture and volume of the final bread and helps in developing the flavor and color. 

In beverages production, amylolytic enzymes are mainly used for beer and juice 

clarification (GUPTA et al., 2003; SOUZA & MAGALHÃES, 2010). 

Another application is the treatment of animal feed with α-amylase to 

enhance digestibility and nutrient absorption (SOUZA & MAGALHÃES, 2010). 

Exogenous enzymes complement the enzymes insufficiently produced by the 

animal, improving their digestive capacity and stabilizing the gut flora. As an 

example, the product AVIZYME 1500 produced by Danisco comprises a mixture 

of xylanase, amylase and protease. The amylase acts in the initial part of the 

animal’s gastrointestinal tract, enhancing the incomplete digestion of starch 

present in the endosperm of cereals used as feed (POLITZER & BON, 2006). 
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Starch is used during weaving in the textile manufacturing process to 

increase fiber’s resistance. Afterwards it is removed from the fabric with the 

application of amylolytic enzymes. They degrade starch into smaller dextrins 

more soluble in water that can be washed away (GUPTA et al., 2003; SOUZA & 

MAGALHÃES, 2010). 

Although in Brazil the main raw material used for ethanol production is 

sugarcane, in other countries starch is predominantly used for this purpose. In 

the United States most of their corn crops are destined to the production of 

alcohol for fuel (Figure 7). The starch from maize must be treated with α-amylases 

and glucoamylases to produce a mixture of fermentable sugars which can be 

consumed by yeasts (Saccharomyces cerevisiae) to produce ethanol.  On 

average, 9.5 L of ethanol are produced from 14.5 kg of starch (BEMILLER & 

WHISTLER, 2009). 

 

 

Figure 7 - Industrial uses of corn produced in the United States between 

September/2010 and August/2011 according to United States Department of 

Agriculture (USDA). 

 

The hydrolysis of starch initially needs a cooking step to gelatinize the 

starch granules. This procedure is called gelatinization and is achieved by heating 

up the granules in an aqueous solution (pH 5.8-6.5) to 105-110 ºC for 5 minutes. 

If the gelatinization temperature is kept under 105 ºC there will be only a partial 

solubilization of the material, which may cause pumping and filtration problems 
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in the subsequent steps. Subsequently the solution is cooled down to 95 ºC to 

perform the starch liquefaction: a partial hydrolysis with α-amylases for 2 to 3 

hours. During this step occurs the breakdown of starch polysaccharidic chains in 

dextrins, which causes the reduction of solution viscosity. Afterwards the solution 

is cooled to 55-60 ºC and the pH is adjusted to 4.2-4.5 to perform the 

saccharification of the material. This step comprises the final enzymatic 

hydrolysis with glucoamylase for 24 to 72 h to produce fermentable sugars such 

as glucose and maltose (VIEILLE & ZEIKUS, 2001; PRAKASH & JAISWAL, 

2010). 

As it can observed, this process involves many heating, cooling and pH 

adjusting steps, creating massive costs with energy and reagents (VIEILLE & 

ZEIKUS, 2001). The use of enzymes with optimal pH and temperatures near each 

other would assist the decrease in costs. Moreover, the use of raw starch 

degrading enzymes could cut out the gelatinization cooking step, having a 

simplification of the process and reducing the energy consumption (SUN et al., 

2010). 

 

3.4 AMYLOLYTIC ENZYMES MARKET 

 

The need for new sustainable and environmentally friendly processes to 

substitute chemical processes based in non-renewable sources has increased 

the requirement for new biotechnology tools. Processes involving the use of 

enzymatic technology are included in these cleaner biotechnologies, having a 

huge demand in the worldwide market. The global industrial enzyme market is 

expected to reach $4.4 billion by 2015 (SARROUH et al., 2012). Amylolytic 

enzymes corresponded in 2005 to 13% of all the enzymes exported in Brazil, and 

to 14% of all imported enzymes. Some of the main producers of industrial 

amylolytic enzymes in Brazil are Novozymes Latin America Ltda., Danisco (now 

acquired by DuPont), and DSM (POLITZER & BON, 2006). 

According to the Brazilian Ministry of Development, Industry and 

International Trade (Ministério do Desenvolvimento, Indústria e Comércio 

Exterior - http://aliceweb2.mdic.gov.br/), the amylase’s data are divided in two 

groups of NCM (nomenclatura comum do Mercosul): NCM 3507.90.11 for α-

amylase (Aspergillus oryzae) and NCM 3507.90.19 for other amylases and their 

http://aliceweb2.mdic.gov.br/
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concentrate. In 2011 Brazil imported 459 tons of α-amylase (Aspergillus oryzae) 

and exported 14 tons. During the same period, the importations accounted for 

US$ 3 million in expenses, while the income with exportations was only of US$ 

113 thousand. For other amylases and their concentrate, data show that 848 tons 

were imported in 2011 and 60 tons were exported. This indicates a technological 

disadvantage in Brazil in terms of production and use of these catalysts. The 

mean price of the imported α-amylase (A. oryzae) was US$ 6.72/kg and for other 

amylases and their concentrate US$ 7.98/kg. Analyzing throughout a period of 

12 years, it can be observed that importation prevailed most of the time for both 

α-amylase (A. oryzae) and other amylases (Figure 8). Because of the present 

need and tendency of the market it is expected a significant increase in enzyme 

consumption in the next years. 

 

(a) Alpha-amylase (Aspergillus oryzae) (NCM 3507.90.11) 

 

(b) Other amylases and their concentrate (NCM 3507.90.19) 

 

Figure 8 - Annual value and weight of imported and exported amylases in Brazil 

according to Ministério do Desenvolvimento, Indústria e Comércio Exterior. 
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In starch’s hydrolysis process, the costs with enzymes are US$ 17.00 per 

ton of starch, and the total cost for the production of hydrolyzed syrup is from 

US$165.00 to US$250.00. Therefore, the enzymes account for 11 to 7% in the 

total cost for starch hydrolysis (POLITZER & BON, 2006). For that reason, it is 

crucial to develop more economic processes for producing the enzyme and 

reducing the final product price, which will eventually strengthen even more the 

use of enzymes in the industry. 
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4 MATERIALS AND METHODS 

 

4.1 MICROORGANISM STRAINS 

 

The Bacillus subtilis subspecies subtilis NRRL B-4212 strain supplied by 

ARS Culture Collection was used as a donor of the α-amylase gene. The 

Escherichia coli XLI-Blue strain was used during the vector construction and 

cloning steps in bacteria. The Kluyveromyces lactis CBS 2359 strain was used 

for yeast transformation and protein expression. 

 

4.2 CULTURE MEDIA 

 

 Luria-Bertani (LB) was used for strain propagation and preservation of 

Escherichia coli cells during molecular biology procedures (ZIMBRO et al., 

2009). It consisted in 1 g/L of glucose, 10 g/L of tryptone, 5 g/L of yeast 

extract, 5 g/L of NaCl, and, in the case of solid medium, it was added 18 g/L 

of agar. Whenever the cells where transformed with the plasmids, ampicillin 

was added to the cooled medium to a final concentration of 100 mg/L for cell 

selection. 

 Tryptone, Glucose, Yeast Extract (TGY) was used for Bacillus subtilis 

cultivation. It consists of 5 g/L tryptone, 2.5 g/L yeast extract, 1 g/L glucose 

and 15 g/L agar. 

 B. subtilis production broth (BAP) was used for the production of α-amylase 

by B. subtilis. It consists of 5 g/L yeast extract, 10 g/L soluble starch, 20 g/L 

tryptone, 25 g/L NaCl, 0.02 g/L MgSO4.7H2O, 0.026 g/L CaCl2.2H2O, pH 7.0.  

 Yeast carbon base (YCB) with acetamide 5 mM (New England Biolabs® 

#B9017S) was used to select recombinant yeast cells right after 

transformation, because only those cells with proper cassette integration are 

able to metabolize acetamide as the only nitrogen source. 

 Yeast extract, peptone, dextrose (YPD) was used for K. lactis cultivation 

(ZIMBRO et al., 2009). It consists of 20 g/L peptone, 10 g/L yeast extract and 

20 g/L glucose. 
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 Yeast extract, peptone, lactose, starch (YPLS) was used for the screening of 

the strains producing the recombinant enzyme in Petri dishes. It has the same 

composition of YPD, except for the replacement of glucose by lactose (20 

g/L) and the addition of starch (10 g/L) and agarose (15 g/L). 

 Yeast extract, peptone, lactose (YPL) was used for the production of the 

recombinant enzyme by K. lactis containing the cassette induced by lactose. 

It has the same composition of YPD, except that glucose was replaced by 

lactose. 

 Yeast extract, peptone, carbon source (YPX) was used for the production of 

the recombinant enzyme by K. lactis in different carbon sources. It consists 

of 20 g/L peptone, 10 g/L yeast extract and 20 g/L of the carbon source (X = 

glucose, sucrose, starch, lactose or galactose). 

 

4.3 CASSETTE CONSTRUCTION 

 

4.3.1 Basic molecular biology procedures  

 

Bacterial competent cells of E. coli XLI-Blue were prepared and 

transformed according to SAMBROOK & RUSSELL (2001). Plasmid extraction 

(miniprep) was performed using the commercial kit Invisorb® Spin Plasmid Mini 

Two from Invitek. DNA digestion with restriction enzymes and DNA ligation 

procedures were done according to the manufacturer recommendations 

(Invitrogen, New England Biolabs). Horizontal DNA electrophoresis in agarose 

gel was performed according to SAMBROOK & RUSSELL (2001). Yeast genomic 

DNA was extracted according to AUSUBEL et al. (2003). 

 

4.3.2 Primers design, PCR amplification and vector construction 

 

Primers were designed based on the amyE gene from Bacillus subtilis 

OI1085 (GenBank: FJ643607.1). Observing the N-terminal portion of the protein 

coded by this sequence, it can be noted that it probably contains a signal peptide 

of the Sec-type (Figure 9). 
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    ++ +        G           P  ASA 

 MFAKRFKTSLLPLFAGFLLLFHLVLAGPAAASAETANKSNELTAPSIKSGTILHAWN 

 

Figure 9 - N-terminal of the protein coded by the amyE gene, highlighting in gray 

the probable signal peptide. 

 

Therefore, five primers were designed for gene amplification (Figure 10): 

EXSIG For and INTSIG For, which are the forward primers that anneal at the 

beginning of the signal sequence; EXAMY For and INTAMY For, which anneal 

right after the signal sequence; and AMY Rev, which is the reverse primer used 

in combination with all the forward primers. This procedure was carried out to 

compare if the presence of this bacterial signal sequence would interfere in 

protein production at the yeast host. 

 

Figure 10 - Sequence scheme of the amyE gene (green arrow), highlighting the 

signal sequence (gray box), the restriction sites (in blue) and the designed 

primers (in pink). 

 

 The amplified gene must be inserted in the pKLAC2 vector ( 
 

Figure 11). Therefore, it was necessary to add to the amplification product 

restriction sites compatible with those present at the vector. This plasmid permits 

the expression of proteins in K. lactis extracellularly or intracellularly. The protein 

secretion occurs when the desired gene is placed in frame with the α-mating 

factor (α-MF) present in the plasmid, which directs the protein to the secretory 
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pathway and is removed by the presence of a Kex protease cleaving site. Thus, 

primers EXSIG For and EXAMY For contain a XhoI site (located right after the α-

MF in pKLAC2) and a coding sequence recognizable by Kex protease (Table 4). 

For the intracellular production in yeast, primers INTSIG For e INTAMY For were 

used. They contain a HindIII site, which is located in pKLAC2 right after the 

promoter and before the α-MF. The reverse primer (AMY Rev) anneals at the end 

of the gene and contains a BamHI site, which is also present in the pKLAC2 

polylinker. 

 

 

Figure 11 - Plasmidial vector pKLAC2 used for K. lactis cassette construction. 

 

Table 4 - Primer sequences indicating the position of the restriction sites and the 

codons coding for Kex protease site. 

Primer Sequence 

EXSIG For 5’-AGACTCGAGAAAAGAATGTTTGCAAAACGATTCAAA 
             XhoI           Kex↑ 

INTSIG For 5’-ACGGCAAAGCTTATGTTTGCAAAACGATTCAAA 
                   HindIII 

EXAMY For 5’-GCAGACTCGAGAAAAGAGAAACGGCGAACAAATCGAAT 
                  XhoI           Kex↑ 

INTAMY For 5’-CAGGCAAAGCTTATGGAAACGGCGAACAAATCGAAT 
                   HindIII 

AMY Rev 5’-ACTGAGGATCCTCAATGGGGAAGAGAACCGCT 
                BamHI 

PLAC4-PBI3’ 3’ end of LAC4 gene 
promoter 

a-MF Leader sequence of 
alpha-mating factor 
from K. lactis 

TTLAC4 Transcription 
terminator of LAC4 
gene 

PADH1 Alcohol 
dehydrogenase 
promoter from S. 
cerevisiae 

amdS Acetamidase gene for 
acetamide 
transformant selection 

PLAC4-PBI5’ 5’end of LAC4 gene 
promoter 

ori Replication origin of 
pMB1 

Ap R bla gene conferring 
ampicillin resistance in 
E. coli 
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Bacillus subtilis genomic DNA was extracted with the method described by 

SHARMA & SINGH (2005) and the sample was used as template for the PCR 

reaction. The amplification reaction consisted of 100 ng of Bacillus genomic DNA, 

3 mM of MgCl2, 150 µM of each dNTP, 0.5 µM of forward primer, 0.5 µM of 

reverse primer, Taq DNA polymerase buffer and 0.05 U/µL of Taq DNA 

polymerase (Invitrogen), completing the final volume to 100 µL with ultrapure 

water. The cycling parameters were: 6 min at 95 ºC (hot start); followed by 35 

cycles of denaturation (30 s at 95 ºC), annealing (45 s at 65 ºC), and extension 

(60 s at 72 ºC); and a final extension for 10 min at 72ºC. 

The four amplification products obtained with the primers were digested with the 

appropriate enzymes and inserted in the pKLAC2 vector ( 
 

Figure 11), generating four constructs: (i) pKLAC-EXSIG; (ii) pKLAC-

EXAMY; (iii) pKLAC-INTSIG; and (iv) pKLAC-INTAMY. Prior to yeast 

transformation, these vectors were linearized with SacII, creating the final 

cassettes presented in Figure 12. 

 

 

Figure 12 - Final cassettes used for yeast transformation. 
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These four constructs were also sequenced to confirm its codon 

sequence. The α-amylase gene was divided in fragments and inserted in an 

appropriate vector for amplification and labeling with BigDyeTM reagent. The 

samples were purified, resuspended in 10 µL of Hi-Di formamide and denatured 

at 95 ºC for 5 min. Applied Biosystems 3130 Genetic Analyzer was used for 

separation and detection of the labeled DNA fragments. 

 

4.3.3 Yeast transformation and transformant screening 

 

K. lactis CBS2359 cells were transformed by the lithium acetate method 

described by ITO et al. (1983). After transformation cells were plated in YCB with 

acetamide for selection of the transformed colonies able to grow with acetamide 

as the only nitrogen source. The positive ones were isolated and had the 

integration of the cassette checked by PCR. 

For screening the cells based on their enzymatic activity on agar plates, 

each positive transformant was resuspended in sterile medium to achieve the 

same cell concentration and was plated on a YPLS medium (which contains 1% 

soluble starch) and grown for 2 days at 30 ºC. After incubation, these plates were 

stained with an iodine solution (5 mM I2 and 50 mM KI), which interacts with the 

starch molecule giving a purple color. Those strains capable of secreting the α-

amylase may present a colorless halo around the colony, indicating enzymatic 

activity. 

 

4.4 FLASK CULTIVATION OF CELLS AND ENZYME PRODUCTION 

 

4.4.1 Shake flask cultivation 

 

The cells which presented amylolytic activity in the YPLS test were 

selected and further tested in Erlenmeyer liquid cultivations. A pre-inoculum was 

prepared by inoculating each yeast strain in a sterile vial containing 3 mL of YPL 

that was incubated at 30 ºC and 150 rpm overnight. On the following day, the 

optical density of each vial was measured at 600 nm and they were used to 

inoculate a 50 mL YPL broth in a 125 mL Erlenmeyer flask. The appropriate 

volume of the pre-inoculum was used to achieve an initial optical density of 0.200 
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in the Erlenmeyer flasks, which were then incubated at 30 ºC and 150 rpm for 48 

h. Cell cultivation was performed in duplicate and the following analysis of 

biomass, sugar consumption, protein production and enzymatic activity were 

performed in triplicate. 

 

4.4.2 Determination of biomass production 

 

Yeast growth was followed by measuring optical density at 600 nm and 

dry cell mass determination. Samples from the culture supernatant were 

appropriately diluted to achieve OD600 lower than 0.600 and measured in a 

spectrophotometer. For dry mass determination, a known volume of the culture 

was filtered and the retained biomass was washed and dried until constant weight 

for measurement in an analytical balance. After biomass determination samples 

were centrifuged at 4000 xg for 10 min. The supernatant and the pellet were 

separated for further analysis. 

 

4.4.3 Determination of carbohydrates consumption and proteins 

production 

 

Reducing sugars in the supernatant were measured by the dinitrosalicylic 

acid (DNS) assay (MILLER, 1959). Total sugars were measured by the phenol-

sulfuric acid method for microplate (MASUKO et al., 2005). 

Protein quantification was carried out by the Bradford method (BURGESS 

& DEUTSCHER, 2009). The protein content was measured in the supernatant 

and in the lysed cells. To perform cell lysis, the pellet obtained after culture 

centrifugation was resuspended in 100 mM pH 7 phosphate buffer and 5% 

protease inhibitor cocktail (nº P8215, Sigma-Aldrich). Glass beads (425-600 µm) 

were added and the mixture was vortexed for 5 periods of 1 minute, intercalating 

between each period a 1 min incubation on ice. The cellular debris were 

separated by centrifugation at 4000 xg for 10 min and this supernatant 

corresponded to the intracellular fraction. 

 

 

 



33 
 

4.4.4 Enzymatic activity determination 

 

The dextrinizing activity of the α-amylase was assayed by the starch-iodine 

method. It was originally described by FUWA (1954) and has been adapted by 

many authors. In the present work, the modified protocol from XIAO et al. (2006) 

was used combined with the one from MANONMANI & KUNHI (1999). The 

combination of both protocols was necessary because in initial trials a loss of 

iodine color was observed due to interference of thiol-compounds, which are 

present in peptones and yeast extracts (both used as substrates in the 

experiments on this dissertation). The addition of copper sulfate and hydrogen 

peroxide suggested by MANONMANI & KUNHI (1999) protects the starch-iodine 

complex and prevents the loss of color in the presence of thiol-compounds. 

One enzymatic unit (U) was defined as the amount of enzyme necessary 

to hydrolyze 0.1 mg of soluble starch per minute at the reaction conditions (50 ºC, 

0.1 M phosphate buffer pH 7.0, 2% soluble starch). 

It is difficult to compare results from different references because each 

author may adopt different quantification methods, reaction conditions, and 

enzymatic unit definition. Furthermore, the type of starch used in the assay and 

its origin (maize, potato, cassava) may influence the results due to different 

proportion of amylose and amylopectin. 

 

4.4.5 Enzyme production with different carbon sources 

 

One of the strains (K. lactis LAC-EXAMY 4) was selected to be cultivated 

in different carbons sources to observe the protein induction. The growth media 

YPX consisted on 10 g/L of yeast extract, 20 g/L of bacteriological peptone and 

20 g/L of a selected carbon source (glucose, sucrose, starch, lactose or 

galactose). The strain was cultivated in 200 mL of the media in a 500 mL 

Erlenmeyer flask and incubated at 150 rpm and 30 ºC. The inoculum was 

standardized to achieve an initial OD600=0.200. Samples were taken throughout 

time until 70 h for measurement of: 1) biomass formation; 2) carbohydrate 

consumption; 3) pH variation; 4) protein production; and 5) enzymatic activity. 
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4.5 PARTIAL CHARACTERIZATION OF THE ENZYME 

 

4.5.1 Determination of optimal pH and temperature 

 

The supernatant of K. lactis LAC-EXAMY 4 and LAC-INTSIG 24 cultures 

in YPL, and the cellular lysate of LAC-EXSIG 2 and LAC-INTAMY 1 containing 

the produced α-amylases were also used to determine an optimal pH and 

temperature range. It was done by a rotatable central composite design 22 with 4 

axial points and 4 central points (Table 5). This analysis was employed because 

it offers an adequate amount of information with the points tested. It also allows 

to observe the interaction between pH and temperature variation at the same 

time. This kind of information is important for process instrumentation and control, 

making it possible to establish a range where pH and temperature can vary 

without significant loss of activity (RODRIGUES & IEMMA, 2005). 

The pH was adjusted in each experiment with the addition of glycine-HCl 

0.1 M buffer for pH 2.75 and 4; phosphate 0.1 M buffer for pH 7; and glycine 0.1 M 

buffer for pH 10 and 11.24. 

 

Table 5 - Experimental design used in the determination of the optimal 

temperature and pH. 

Experiment 
Temperature pH 

Level ºC Level Value 

1 -1 30 -1 4 
2 -1 30 +1 10 
3 +1 80 -1 4 
4 +1 80 +1 10 
5 -1.41421 19.6 0 7 
6 +1.41421 90.4 0 7 
7 0 55 -1.41421 2.75 
8 0 55 +1.41421 11.24 

9 (C) 0 55 0 7 
10 (C) 0 55 0 7 
11 (C) 0 55 0 7 
12 (C) 0 55 0 7 

(C): Central point 
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4.6 STATISTICAL ANALYSIS 

 

All the statistical data was analyzed by the software STATISTICA 10 

(StatSoft, Inc.) according to the recommendations from CALADO & 

MONTGOMERY (2003) and RODRIGUES & IEMMA (2005). 
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5 RESULTS AND DISCUSSION 

 

5.1 GENE AMPLIFICATION 

 

The genomic DNA of Bacillus subtilis was extracted and used as template 

for amplification with each of the designed primers. The gel electrophoresis of the 

amplification products (Figure 13) corresponds to the expected fragment sizes, 

with the constructs containing the native signal (EXSIG and INTSIG) having a 

slightly higher molecular size than the others without it (EXAMY and INTAMY). 

The expected sizes are: 2004 bp for EXSIG, 2003 bp for INTSIG, 1909 bp for 

EXAMY, and 1907 bp for INTAMY. 

 

Figure 13 - Agarose gel electrophoresis of B. subtilis genomic DNA amplification 

with the designed primers EXSIG, INTSIG, EXAMY and INTAMY. 

 

5.2 CASSETTE CONSTRUCTION 

 

Each amplified fragment contains restrictions sites at both ends to permit 

its insertion in a pKLAC2 vector. The PCR products and the pKLAC2 were 

double-digested with XhoI-BamHI or HindIII-BamHI and the digested DNA was 

purified. The DNA fragments were ligated, transformed in competent E. coli and 

the colonies capable of growing in selective media had their plasmidial DNA 

extracted. To confirm the proper insertion of the amplified gene, the plasmids 

were checked by digestion with different restriction enzymes. Figure 14 shows an 

example of a restriction analysis of construct pKLAC-INTAMY. All the four genes 
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were correctly inserted in a pKLAC2 vector and presented the expected fragment 

sizes in agarose electrophoresis  

 

 

Figure 14 - Agarose electrophoresis of pKLAC-INTAMY digested with different 

restriction enzymes to confirm the correct insertion of the gene. 

 

5.3 GENE SEQUENCING 

 

The confirmation of the constructs was also performed by DNA 

sequencing. The sequences obtained after electrophoretograms analysis and 

reading alignments are shown at Appendix 1. The DNA sequencing of the 

constructs revealed that the EXAMY and EXSIG genes have the same sequence 

as the amyE gene from Bacillus subtilis OI1085 (GenBank: FJ643607.1). 

However, the INTSIG gene presented two silent point mutations (without changes 

in the amino acid sequence): one at position 165 (replacing an A for a G) and one 

at position 450 (replacing a G for an A). The INTAMY gene exhibited a non-

synonymous point mutation at position 458, replacing an A for G. This resulted in 

a change of the amino acid, replacing the uncharged polar asparagine (N) for an 

uncharged polar serine (S). However, this mutation is not near the active site and 

the (β/α)8 barrel structure. These mutations might have occurred due to an error 

of the Taq polymerase used during the initial amplification or during cloning steps 

in E. coli. The protein sequence alignment is shown at Appendix 2. 
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5.4 YEAST TRANSFORMATION 

 

The pKLAC-EXAMY, pKLAC-INTAMY, pKLAC-EXSIG and pKLAC-

INTSIG vectors obtained were linearized with SacII and used for Kluyveromyces 

lactis transformation by the lithium acetate method. The transformed cells were 

plated in YCB medium containing acetamide as the only nitrogen source and after 

3 to 4 days incubation at 30ºC the colonies started to appear. Those colonies 

were isolated in a new YCB with acetamide and had their genomic DNA extracted 

for confirmation of proper integration of the cassette. The extracted yeast DNA 

was used as template on a PCR reaction with the designed primers on Table 4 

and the product was run on agarose gel. 

Many colonies appeared in YCB medium, but only some of them contained 

the cassette properly integrated, presenting the expected fragment size on the 

agarose gel. Figure 15 shows an example of the PCR results for K. lactis 

transformants with LAC-INTSIG. As it can be seen, only colonies 25, 37 and 40 

contain the INTSIG gene (2003 bp). As a negative control, genomic DNA of K. 

lactis CBS2359 (denominated WT – wild type) was used. 

 

Figure 15 - Example of PCR performed with genomic DNA extracted from 

transformed cells and primers INTSIG For and AMY Rev. Colonies 25, 26, 27, 

37, 39, 40 are from transformed K. lactis LAC-INTSIG and K. lactis WT is the 

negative control (strain CBS 2359). 

 

 



39 
 

5.5 SCREENING OF TRANSFORMED CELLS 

 

Some of the colonies on the PCR reaction were selected for a screening 

based on the enzymatic activity. Each yeast liquid culture had its optical density 

corrected to 0.200 and 5µL of this cell suspension was inoculated on an YPLS 

plate. After 48h growth at 30ºC, the plates were stained with iodine solution and 

photographed. Clear zones around the colonies indicate the consumption of 

starch and, therefore, the production of the enzyme. The K. lactis CBS2359 (WT) 

was also inoculated as a negative control. 

Based on the predicted protein configuration of the constructs (Figure 16), 

it is expected that the LAC-EXSIG and LAC-EXAMY strains, which contain the α-

mating factor leader sequence recognizable by the yeast cell, would secrete the 

α-amylase; while the LAC-INTSIG and LAC-INTAMY strains, which do not 

possess the secretion leader, would retain the protein intracellularly. 

 

 

Figure 16 – Schematic representation of the expected proteins to be expressed 

with each construct. 

 

The K. lactis LAC-EXAMY cells presented clear halos around some 

colonies after iodine staining, indicating the production of the enzyme (Figure 17 

A). As expected, the WT strain used as a negative control did not present a halo. 

Even though colonies 23A, 16 and 17 were able to grow in acetamide, they were 

not positive on the PCR reaction. They also did not present a halo of enzymatic 

activity on the agar plate assay. 
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(A)      (B) 

 

(C)      (D) 

 

Figure 17 - YPLS plate after iodine staining with K. lactis cells transformed with: 

(A) LAC-EXAMY, (B) LAC-INTAMY, (C) LAC-EXSIG, (D) LAC-INTSIG. K. lactis 

WT was used as a negative control. 

 

 

The K. lactis LAC-INTAMY transformants did not produce clear halos on 

starch plates (Figure 17 B). As these cells are expected to produce and retain the 

enzyme intracellularly, their enzymatic activity will only be confirmed on liquid 

fermentation tests, when it is possible to execute a cell disruption. 

On the other hand, the K. lactis LAC-EXSIG cells, which were supposed 

to secrete the enzyme because they contain the α-mating factor leader, could not 
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export the enzyme and none of the isolated colonies presented clear halos after 

iodine staining (Figure 17 C). The presence of both the leader sequence and the 

native signal peptide on this construct might be interfering with protein secretion 

and proper processing. 

Furthermore, the K. lactis LAC-INTSIG transformants (Figure 17 D), which 

were supposed to keep the enzyme intracellular, were able to secrete the 

enzyme. This indicates that these Kluyveromyces lactis cells are able to 

recognize the bacterial signal peptide present at the B. subtilis α-amylase gene. 

Signal sequences are usually recognized with low specificity in yeast 

species. For that reason, foreign signals might also have the possibility of being 

recognized and processed by the cell. Some foreign proteins have already been 

successfully secreted by yeast using their own signal peptide or other foreign 

signals (ROMANOS et al., 1992). 

Nevertheless, it is preferred to use a yeast signal sequence because it is 

difficult to predict if a particular foreign sequence will work. The most widely used 

yeast signal peptides (also called presequences) are those from acid 

phosphatase (PHO5) and invertase (SUC2). For some heterologous proteins, the 

use of a signal peptide alone is sufficient to have good secretion of the product. 

However, for others the signal peptides are not sufficient to secrete the 

heterologous protein and they tend to accumulate in the endoplasmatic reticulum 

or be degraded. In those cases it is necessary the addition of a pro sequence to 

correctly direct the protein through the secretory pathway. Secretion leaders 

(preprosequences) are responsible for this guidance through the secretory 

machinery. The most used secretion leader is the prepro region of the α-mating 

factor, which contains a signal peptide (19aa) that is initially cleaved at the 

endoplasmatic reticulum and a prosequence which is processed by Kex2 and 

STE13 proteases at late Golgi (CAREY, 1996). 

The Kluyveromyces lactis cells have a very flexible secretion mechanism, 

and usually the native signal of the heterologous protein is functional in driving 

the polypeptide through the secretion pathway (MICOLONGHI et al., 2007). 

STRASSER et al. (1989) used a Schwanniomyces occidentalis AMY1 

promoter and secretion signal for heterologous production of α-amylase in 

different yeast species, including K. lactis. The AMY1 native signal could be 
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recognized by K. lactis cell and the gene product was readily secreted to the 

broth. 

 BARTKEVICIUTE & SASNAUSKAS (2003) used an α-amylase gene from 

Bacillus amyloliquefaciens as a marker gene for the screening of super secreting 

mutants of K. lactis. The initial strain, which had not gone through mutation to 

enhance secretion, was transformed with a construct containing the Bacillus own 

promoter and signal. The amylase was not expressed sufficiently for halo 

formation on starch agar plates. However, after random mutation with UV light, 

some isolated mutants started to produce α-amylase with detectable halos. 

The initial strain used in the present dissertation (K. lactis CBS2359) with 

construct LAC-INTSIG could secrete the B. subtilis α-amylase with its own signal 

sequence without going through any mutational procedure to enhance 

production. 

Other authors preferred to express the α-amylase without its original signal 

peptide. TOKUNAGA et al. (1997) expressed a mouse α-amylase in K. lactis 

without its own signal sequence, using instead a 128kDa killer precursor protein. 

For the expression of a Rhizopus oryzae α-amylase in Kluyveromyces lactis, LI 

et al. (2011a) constructed a vector containing the yeast α-mating factor leader 

and only the coding sequence of the mature amylase. However, none of these 

authors attempted to compare the production with or without the signal peptide. 

In a different way, LI et al. (2011b) compared the production of a 

recombinant Rhizopus oryzae α-amylase in Pichia pastoris with its native signal 

sequence or with an α-mating factor leader followed by the mature protein 

sequence. Like other yeast species, P. pastoris has a low-specificity requirement 

for a signal sequence, and the native signal could correctly direct folding, 

processing and secretion of the protein. Moreover, cells secreting with the native 

signal had 10% higher productivity than cells with α-factor signal. 

 PAIFER et al. (1994) also compared the production with different signals. 

They cloned and expressed a bacterial α-amylase gene in P. pastoris using two 

integrative vectors with two different secretion signals: one vector contains the 

structural gene encoding the mature α-amylase fused to the SUC2 signal and the 

other contains the α-amylase with its own signal sequence. In both cases, the α-

amylases were secreted into the culture medium with high efficiency, around 2.5 

and 0.9 g/l respectively. 
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In relation to the α-amylase from Bacillus strains, their signal peptide, like 

many other proteins secreted by this genus, is unusually long (approximately 31 

aa) when compared to those signals typically found in eukaryotes, which are 

around 20 aa long (RUOHONEN et al., 1987). 

The B. amyloliquefaciens α-amylase gene with its own secretion signal 

was transformed in a Saccharomyces cerevisiae strain by RUOHONEN et al. 

(1987). The prokaryotic signal sequence could direct the protein to secretion and 

the signal peptide was correctly cleaved. 

 Unlike what happened with construct LAC-EXSIG, where the native signal 

interfered with protein secretion, KARAKAŞ et al. (2010) expressed a Bacillus 

subtilis α-amylase in Pichia pastoris in a construct containing both the α-mating 

factor leader and the α-amylase native signal. The protein was correctly secreted 

to the broth (22mg/L) and presented visible halos on agar starch plates after 

iodine staining. 

 

 

5.6 SHAKE FLASK CULTIVATION 

 

The initial shake flask cultivations were performed in Erlenmeyers flasks 

containing 50 mL of YPL broth. At first the inoculum of each strain was prepared 

in a 3mL vial containing YPL broth, which was incubated overnight at 30ºC and 

150rpm. On the following day, each flask had its optical density measured at 

600nm and the right amount of inoculum was calculated to achieve an initial 

OD600 of 0.200 for all strains in the 50mL flasks with YPL. Each yeast culture was 

incubated at 150 rpm and 30ºC for 48h. Afterwards the cultures had their 

biomass, protein content and enzymatic activity assayed. Tests were performed 

with the same strains used in the agar plate screening: K. lactis LAC-EXSIG 

(colonies 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16), LAC-EXAMY (colonies 3A, 23A, 

2, 3, 4, 5, 7, 15, 16, 17, 18, 25, 29), LAC-INTSIG (colonies 1, 2, 3, 4, 5, 6, 7, 8, 

13, 14, 24, 25, 37, 40) and LAC-INTAMY (colonies 1, 2, 5, 16, 21, 22). Strain K. 

lactis CBS 2359 was used as a negative control for enzymatic activity and was 

denominated WT (wild type). 
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5.6.1 Biomass production 

 

After 48h cultivation in YPL broth all strains presented a similar biomass 

concentration, with approximately 5 g/L of dry weight and OD600≈14. Table 6 

presents only the mean values of the selected strains of each transformant and 

the wild type. Apparently the heterologous enzyme production did not interfere in 

biomass formation, considering that the wild strain presented equivalent biomass 

results as the transformants. 

 

Table 6 - Mean results for biomass determination (OD600  or dry weight ± standard 

deviation) of the transformants and WT strain. 

 
OD600±SD 

Dry weight 
(g/L)±SD 

LAC-EXAMY 13.06±0.677 4.910±0.254 

LAC-EXSIG 14.16±0.710 5.546±0.278 

LAC-INTAMY 13.74±0.855 5.341±0.332 

LAC-INTSIG 13.12±0.615 5.141±0.241 

WT 13.65±0.605 5.286±0.308 

 

 

5.6.2 Protein content 

 

After performing the biomass measurements, the fermented broth free of 

cells was analyzed for extracellular protein content. The cell pellet was also 

collected and those strains which were expected to produce the enzyme 

intracellularly (LAC-INTAMY and LAC-INTSIG) were lysed and their intracellular 

protein content measured. Figure 18 and Figure 19 show the protein content of 

each transformant, the wild strain and of the initial YPL broth. Each bar represents 

the mean value of a triplicate and the error bars represent ±1 standard deviation. 

The protein concentration of the intracellular extract is expressed in the graphics 

as mg of protein per liter of broth and calculation was performed according to the 

calculation report in Appendix 3. 
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LAC-EXAMY (Extracellular) 

 

LAC-EXSIG (Extracellular) 

 

Figure 18 – Protein concentration on Bradford assay of the fermented 

extracellular broth of transformants LAC-EXAMY and LAC-EXSIG, the WT strain 

and the non-fermented YPL broth. Bars represent ±1 standard deviation. 

 

The extracellular protein concentration had only a pronounced difference 

in some LAC-EXAMY colonies. The LAC-EXAMY 2, 3, 4, 5 and 3A were the only 

ones significantly different from WT and YPL on a Tukey statistical test. The other 

transformants had a protein content slightly higher or similar to the initial YPL 

broth and the WT fermentation. It is difficult to follow the enzyme expression 

based on protein content because the initial fermentation broth contains peptides 

and proteins. It is problematic to distinguish between proteins from the initial 

broth, proteins normally secreted by K. lactis and the induced α-amylase. 

Therefore the analysis of enzymatic activity was also performed. 

The LAC-INTAMY and LAC-INTSIG transformants had also their 

intracellular protein measured. Only LAC-INTAMY 1 and 5 were statistically 

significant when compared to the WT intracellular content. 
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LAC-INTAMY (Extracellular) 

 
LAC-INTAMY (Intracellular) 

 
LAC-INTSIG (Extracellular) 

 
LAC-INTSIG (Intracellular) 

 
Figure 19 – Protein concentration on Bradford assay of the fermented 

extracellular broth and intracellular extract of transformants LAC-INTAMY and 

LAC-INTSIG, the WT strain and the non-fermented YPL broth. Bars represent ±1 

standard deviation. 
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5.6.3 Enzymatic activity 

 

The amylolytic activity can be determined by different methods, such as: 

quantifying the starch breakage (dextrinizing power), the increase in reducing 

sugars (saccharifying power), the decrease in viscosity (liquefying power), or the 

change in optical rotatory power. It is difficult to compare results from different 

references because each author may adopt different quantification methods, 

reaction conditions, and enzymatic unit definition. Furthermore, the type of starch 

used in the assay and its origin (maize, potato, cassava) may influence the results 

due to different proportion of amylose and amylopectin. As an example, the 

enzymatic activity from the iodine method is circa 4-6 times higher than those 

obtained by quantifying the reducing sugar. This happens because endo-acting 

α-amylases reduce the concentration of starch polymers that are able to bind 

iodine much more quickly than they produce reducing sugar ends (XIAO et al., 

2006). Therefore, care should be taken when comparing the enzymatic activity 

from each referenced author. 

The recombinant α-amylase was correctly secreted by some 

transformants. The LAC-EXAMY strains presented a high enzymatic activity 

(approximately 1200 U/L) and most transformants presented a similar activity 

(Figure 20), except for strains 23A, 16 and 17, which presented no activity. 

Transformant 4 was selected for shake flask cultivations because it presented a 

high activity and the highest extracellular protein concentration. 

In the liquid cultivation of LAC-EXSIG transformants it could be observed 

and quantified a low extracellular activity (Figure 20), although they did not 

present extracellular activity during the agar plate tests. This low enzymatic 

activity might not have been sufficient to produce a visual observation of a clear 

halo in the agar plates experiments. As stated before, the B. subtilis signal 

peptide present in this construct might be interfering with protein secretion. This 

interference in protein secretion can only be confirmed by performing further 

analyses in other fields of study, such as transcriptomics and proteomics. 
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LAC-EXAMY (Extracellular) 

 

LAC-EXSIG (Extracellular) 

 

Figure 20 - Enzymatic activity of the fermented extracellular broth of 

transformants LAC-EXAMY and LAC-EXSIG, the WT strain and the non-

fermented YPL broth. Bars represent ±1 standard deviation. 

 

The LAC-INTSIG strains presented a high extracellular activity (Figure 21), 

comparable to the levels achieved with the LAC-EXAMY transformants, even 

though they did not have the preprosequence. As stated before, the K. lactis cells 

are able to recognize the bacterial signal peptide and export the α-amylase to the 

broth with high efficiency. 

The isolated transformants containing the LAC-INTAMY construct 

presented extremely low extracellular and intracellular activities (Figure 21). This 

strain was intended to produce the intracellular enzyme, permitting the 

comparison between the strains producing the enzyme intracellularly with those 

producing extracellularly. The comparison of the results from these different 

constructs was achieved by calculating the intracellular activity in terms of units 

of enzyme per liter of fermented broth (calculation report presented in Appendix 

3). 
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The intracellular production of the protein has the advantage of easier 

concentration, because the initial centrifugation step concentrates cells, and 

consequently, the desired intracellular protein. However, as it can be seen on the 

intracellular graphics of Figure 21 andFigure 22, the productivity per litter of broth 

is not as high as those obtained by the extracellular producers LAC-EXAMY and 

LAC-INTSIG. Therefore, with the present isolated strains, the best choice for 

producing the α-amylase is the extracellular production with LAC-EXAMY or LAC-

INTSIG transformants. 

 

LAC-INTSIG (Extracellular) 

 

LAC-INTSIG (Intracellular) 

 

Figure 21 - Enzymatic activity of the fermented extracellular broth and intracellular 

extract of transformants LAC-INTSIG, the WT strain and the non-fermented YPL 

broth. Bars represent ±1 standard deviation. 
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LAC-INTAMY (Extracellular) 

 

LAC-INTAMY (Intracellular) 

 

Figure 22 - Enzymatic activity of the fermented extracellular broth and intracellular 

extract of transformants LAC-INTAMY, the WT strain and the non-fermented YPL 

broth. Bars represent ±1 standard deviation. 

 

The yeast Kluyveromyces lactis has already been used for the production 

of some recombinant α-amylases. One of the first reports is from STRASSER et 

al. (1989), who produced  a recombinant S. occidentalis α-amylase in K lactis. 

They used a mineral medium (YNB) and achieved an enzymatic activity of 

30.5 U/L. It has been observed in previous tests in our laboratory that the K. lactis 

strain CBS2359 does not grow well and does not express the enzyme in a mineral 

medium such as YNB (data not shown), therefore cultivations in mineral media 

were not performed in this work. 

 TOKUNAGA et al. (1997) attempted to produce a mouse α-amylase in K. 

lactis using a complex medium (similar to YPX) containing galactose as the 

inducer, and obtained a maximum activity of 0.527 U/mL. LI et al. (2011a) 

produced a R. oryzae α-amylase in K. lactis in the same medium and obtained 

22.4 U/mL (approximately 20 mg/L of extracellular protein). LI et al. (2011b) also 
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attempted to produce the same R. oryzae enzyme in another microorganism 

(Pichia pastoris) and obtained 46.2 U/mL (41.1 mg/L of extracellular protein). 

The B. subtilis α-amylase gene was used by KARAKAŞ et al. (2010) to 

produce the enzyme in P. pastoris. They achieved 22 mg/L of extracellular protein 

(44.34 U/mL of enzymatic activity) in a complex medium. MORAES et al. (1995) 

also introduced a B. subtilis α-amylase in S. cerevisiae and produced 38 U/mL in 

YNB medium. 

In the present dissertation, the maximum enzymatic activity obtained by 

the transformed cells in shake flasks (circa 1200 U/L) is far below the ones 

reported in the literature. One of the reasons for this difference might be due to 

the diversity of activity determination assays and unit definitions. Moreover, the 

present work did not use a selected strain with good secretory capabilities, such 

as the commercial strain GG799, or an engineered strain with lower protease 

activity. Therefore, further improvements can be achieved with the isolated 

transformants by improving its genetic characteristics and secretion capability 

(decreasing protease levels and increasing folding-helper chaperones), and 

adjusting its fermentation conditions (physicochemical parameters and 

fermentation operation mode).  

 

5.6.4 Enzyme production in different carbon sources 

 

In order to observe the behavior of enzymatic expression in the presence 

of different carbon sources, strain LAC-EXAMY 4 was cultivated in YPX medium 

(where X stands for glucose, sucrose, starch, lactose or galactose). Samples 

were taken periodically to analyze biomass, sugar, and protein concentration, as 

well as pH variation and enzymatic activity. 

Glucose, sucrose and lactose were quickly consumed by the cells, and 

biomass rapidly increased in these cultures (Figure 23 and Figure 24). When 

cultured in galactose as the only carbon source, the strain presented a slower 

growth rate. Growth on glucose tends to be faster than growth on galactose 

because the conversion of galactose into a glycolytic intermediate needs 

additional energy and catabolic steps (known as the Leloir pathway). The 

doubling time observed in the literature for K. lactis CBS2359 in YPX medium is 
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78 min for lactose, 84 min for glucose and 108 min for galactose (RUBIO-

TEXEIRA, 2005). 

 

Figure 23 - Biomass production (OD600) of K. lactis LAC-EXAMY 4 when grown 

on glucose, sucrose, lactose or galactose as the only carbon source. 

 

Figure 24 - Carbon source consumption by K. lactis LAC-EXAMY 4 when grown 

on glucose, sucrose, lactose or galactose as the only carbon source. Bars 

represent ± 1 standard deviation. 
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This transformant was also able to grow on starch as the only carbon 

source. K. lactis cells do not naturally produce α-amylase, however, as will be 

discussed subsequently, the expression of the recombinant protein is not totally 

repressed and a basal expression (leakage) of the enzyme allows the cells to 

break up the starch molecule and use it as the carbon source. 

During carbon consumption it was observed in all cultures, except for 

starch, a decrease in pH to values around 5.8 (Figure 25). Subsequently, the pH 

increased until it reached approximately 7.5. 

 

 

Figure 25 - pH profile during K. lactis LAC-EXAMY 4 growth on glucose, sucrose, 

lactose or galactose as the only carbon source. 

 

Extracellular protein production was accompanied in all flasks by the 

Bradford assay and enzymatic activity by the iodine-starch method. Both results 

presented a similar profile (Figure 26 and Figure 27), with cultures containing 

galactose and lactose producing more extracellular protein and presenting higher 

enzymatic activity. Nevertheless, the cultures without induction also presented a 

basal expression of the enzyme. The LAC4 promoter is induced in the presence 

of galactose or lactose in the growth medium, but it is not totally repressed in the 

absence of the inducers (VAN OOYEN et al., 2006). Glucose might repress 

expression of the LAC regulon in some, but not all, K. lactis strains, but this 

repression is less pronounced than it is observed in other species, such as S. 

cerevisiae (RUBIO-TEXEIRA, 2005). 

4

4,5

5

5,5

6

6,5

7

7,5

8

8,5

0 10 20 30 40 50 60 70 80

p
H

Time (h)

glucose sucrose starch lactose galactose



54 
 

 LI et al., (2011a) also attempted to cultivate a recombinant K. lactis in 

different carbon sources. The galactose medium presented a high enzymatic 

production due to its induction of the LAC4 promoter. However, their lactose 

medium presented no induction at all, presenting only a basal expression similar 

to other carbon sources (glucose, starch, maltose and glycerol). It was not 

explained why this happened. 

In the present work the lactose substrate could successfully induce 

enzyme production, allowing its use as a carbon source in further studies 

because it is cheaper than galactose and can be obtained from industrial waste 

such as cheese way. Cheese way is the byproduct obtained during cheese 

making, where 1 kg of cheese generates nearly 9 kg of whey. Annually 145 million 

tons of liquid whey are produced, but only about 50% of it is treated and 

transformed in other food products (SISO, 1996). 

 

Figure 26 - Protein production of K. lactis LAC-EXAMY 4 when grown on glucose, 

sucrose, starch, lactose or galactose as the only carbon source. Bars represent 

± 1 standard deviation. 
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Figure 27 - Enzyme production of K. lactis LAC-EXAMY 4 when grown on 

glucose, sucrose, starch, lactose or galactose as the only carbon source. Bars 

represent ± 1 standard deviation. 

 

Some kinetic parameters of each culture were summarized in Table 7. As 

already seen on the graphics presented before, the glucose has the highest 

maximum specific growth rate (0.3827 h-1). Growth rates on sucrose and lactose 

are also good, indicating that the strain could be cultured in substrates such as 

sugar cane molasses (rich in sucrose) and cheese whey (rich in lactose). The 

potential use of these low cost substrates stimulates its scale up and industrial 

application. BARBA et al. (2001) cultivated K. lactis in cheese whey and 

presented a specific growth rate (µmax) of 0.29-0.43 h-1, which is in the same range 

of those obtained here. 

The biomass yield (YX/S) was high, ranging between 0.38 and 0.73. 

Crabtree positive yeasts usually have low biomass yield (0.1-0.2 g/g) because 

they also produce some byproducts (mainly ethanol) (PORRO et al., 2005). As 

K. lactis is a Crabtree negative yeast, with a prevalence of an oxidative 

metabolism, the biomass yield obtained is higher (RUBIO-TEXEIRA, 2005). 

Lactose and galactose had the highest product yield (127.35 and 

145.39 U/g, respectively), which is five times greater than the yield without 
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induction. When LI et al. (2011a) cultured the recombinant K. lactis in different 

carbons sources, the induced enzymatic activity in galactose broth was only two 

times higher than in those without induction. 

 

Table 7 – Kinetic parameters and yield on different carbon sources after 70h 

culture. 

 Glucose Sucrose Starch Lactose Galactose 

Maximum Specific Growth 
Rate (µmax)a 

0.3827 0.3714 0.2784 0.3212 0.2564 

Product Yield (YP/S)b 24.52 25.33 35.63 127.35 145.39 
Biomass Yield (YX/S)c 0.3802 0.3829 0.7267 0.4479 0.4714 
Maximum Productivity (Rm)d 17.20 16.24 11.11 57.40 47.70 
a h-1 
b Units of enzyme per grams of carbon source 
c grams of dry biomass per grams of carbon source 
d U/L/h 

 

In conclusion, the monitoring of fermentation in different carbon sources 

permitted visualizing that even without the presence of an inducer the cells are 

able to produce the α-amylase. However, the presence of lactose and galactose 

greatly enhances product yield. 

The versatility of substrates and the GRAS status of K. lactis cells and 

some of their enzymes permits their use in various pharmaceutical and food 

applications and stimulates the scale up of the process. Not only are natural K. 

lactis enzymes considered GRAS (such as lactase), but also some recombinant 

enzymes, such as the heterologous bovine prochymosin produced in industrial-

scale at DSM Food Specialties (VAN OOYEN et al., 2006). 

It was observed that during fermentation the pH varies from 5.8 to 7.5. 

Maybe the use of a buffered medium or the control of pH in a bioreactor might 

affect protein production, increase enzyme stability, and inhibit the attack of 

proteases. 

It was also observed that the fermentation is limited by carbon after circa 

10 h. The use of a fed-batch fermentation could improve both the biomass and 

the product yield. Fed-batch is the most common fermentation strategy for 

recombinant microorganisms because it allows obtaining at first a high biomass 

concentration and then a high product formation during the induction phase 

(PORRO et al., 2005). 
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5.7 PARTIAL CHARACTERIZATION OF THE ENZYME 

 

5.7.1 Determination of optimal pH and temperature 

 

Cells of LAC-EXAMY 4 and LAC-INTSIG 24 were cultivated in YPL and 

the fermented supernatant free of cells was used for enzymatic determination. 

LAC-EXSIG 2 and LAC-INTAMY 1 were also cultivated in YPL, but in this case 

the cells pellet was collected and lysed to obtain the intracellular enzyme. B 

subtilis was cultivated in BAP broth and the fermented supernatant was used to 

determine the optimal pH and temperature of the natural enzyme. 

The extracts containing the enzymes had their activity assayed in different 

conditions and response surfaces were fitted to data to obtain optimum values of 

temperatures and pH. This analysis was employed because it permits to observe 

the interaction between pH and temperature variation at the same time. This kind 

of information is important for process instrumentation and control, making it 

possible to establish a range where pH and temperature can vary without 

significant loss of activity (RODRIGUES & IEMMA, 2005). The response surfaces 

and contour plots obtained are presented in Figure 28 to Figure 32. The 

enzymatic activity was plotted as a relative activity: the highest activity value 

obtained was set as 100% and the other values were calculated based on this 

assumption. 
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Figure 28 - Response surface and contour plot of LAC-EXAMY 4 relative 

enzymatic activity as function of pH and temperature. 

 

 

Figure 29 - Response surface and contour plot of LAC-EXSIG 2 relative 

enzymatic activity as function of pH and temperature. 
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Figure 30 - Response surface and contour plot of LAC-INTAMY 1 relative 

enzymatic activity as function of pH and temperature. 

 

 

 

Figure 31 - Response surface and contour plot of LAC-INTSIG 24 relative 

enzymatic activity as function of pH and temperature. 
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Figure 32 - Response surface and contour plot of B. subtilis α-amylase relative 

enzymatic activity as function of pH and temperature. 

 

As showed in Figure 29 and Figure 30, it was later observed in the 

experiments with the intracellular extract of LAC-EXSIG and LAC-INTAMY that 

the buffer used to adjust the pH was not strong enough to correct the pH value to 

those presented in Table 5 of Materials and Methods. The (-1) point had a pH of 

5.2 instead of 4.0; the (+1) point had a pH of 9.2 instead of 10.0; the (-1.41421) 

point had a pH of 4.1 instead of 2.75; and the (+1.41421) point had a pH of 9.9 

instead of 11.24. 

Based on the obtained surface equations of each enzyme, the critical 

points with highest activity were calculated and the values of optimal 

temperatures and pH are summarized in Table 8. The optimal temperature for 

the recombinant α-amylases was slightly lower than the one for the natural B. 

subtilis α-amylase. In another way, the optimal pH of the recombinant enzymes 

was somewhat higher. 
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Table 8 – Estimated optimal temperature and pH for the α-amylases produced. 

 

Optimal 

Temperature (ºC) Optimal pH 

LAC-EXAMY 4 50.92 6.75 

LAC- EXSIG 2 52.93 7.24 

LAC-INTAMY 1 50.84 7.13 

LAC-INTSIG 24 52.77 7.21 

B. subtilis 55.14 6.43 

 

 This initial characterization of the enzyme is not ideal, because it uses the 

crude extract of the fermented broth or the intracellular extract to measure the 

enzymatic activity. To improve these results it is suggested that the enzymes are 

purified in a future study and then retested for the optimal pH and temperature. 

Also, the pH variation that occurred with the intracellular buffer in LAC-INTAMY 

and LAC-EXSIG could have interfered in the estimated values of these two 

experiments. It would also be interesting to perform a validation of the estimated 

optimal points by performing a test in these optimal conditions and comparing to 

the projected values. 

The values reported in the literature for the optimal temperature and pH of 

other α-amylases from Bacillus subtilis (Table 9) vary depending on the source. 

However, they tend to fluctuate in a certain common range (the mean observed 

temperature was 60 ºC and the pH was 6.5). 

Many of these authors used bacterial strains isolated from the 

environment. These isolated strains might contain mutated forms of the amylolytic 

enzyme, which could cause these differences in enzymatic properties. 

Furthermore, in the case of the recombinant producers, differences in signal 

peptide processing, gene construction (protein truncation of C-terminal) and post-

translational glycosylation might alter protein molecular size and activity. 
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Table 9 - B. subtilis α-amylase characteristics from different studies. 

Producing 
strain 

Strain 
isolated 

from 

Gene 
from 

Optimal 
Temperature 

(ºC) 

Opti-
mal 
pH 

Molecular 
Weight 
(kDa) 

Reference 

B. subtilis 
US116 

soil - 65 6.0 60 MESSAOUD 
et al., 2004 

B. subtilis - - 65-70 6.0 46 MITSUIKI et 
al., 2005 

B. subtilis canned 
sausages 

- 55 6.5 - MITRICA & 
GRANUM, 
1979 * 

B. subtilis - - 60-65 6.8 55 YAMANE et 
al., 1973 * 

B. subtilis 
65 

soil - 60-65 6.0 68 HAYASHIDA 
et al., 1988 * 

B. subtilis 
JS-2004 

- - 70 8.0 - ASGHER et 
al., 2007 

B. subtilis  
AX20 

soil - 55 6.0 139-149 
(78kDa ho-
modimer) 

NAJAFI et al., 
2005 

Bacillus 
subtilis 1 

soil - 45.0 6.0 - ABDEL-NABY 
et al., 1998 

B. subtilis 
PY22 

- - 50 - - KARAKAŞ et 
al., 2010 

P. pastoris - B. subtilis 
PY22 

60 7.0 50-64 
(degly-
cosylated) 

KARAKAŞ et 
al., 2010 

E. coli - B. subtilis 
(truncated 
gene) 

50 6.5 48 MARCO et al., 
1996 ** 

B. subtilis 
Ba-04 

- - 50 5.4-
6.4 

- SALVA & 
MORAES, 
1995 *** 

B. subtilis flour mill 
waste 

- 80 5.6 54.78 UGURU et al., 
1998 *** 

* Cited by SATYANARAYANA et al., 2006 

** Cited by GUPTA et al., 2003 

*** Cited by PANDEY et al., 2000 

 

Another great difference observed among studies is the molecular size. 

Usually multiple forms of bacterial α-amylases and fungal glucoamylases are 

present in the culture supernatant free of cells. Specifically in B. subtilis, the α-

amylase may present different molecular sizes due to the action of proteases 

which act at the C terminal of the protein and cause a truncation of 186aa 

(MITSUIKI et al., 2005). Estimating the molecular size of the recombinant proteins 

produced in this dissertation based on their nucleotide sequence, the predicted 

non-glycosylated α-amylase should have around 72.39 kDa (with signal peptide) 

or 68.89 kDa (mature protein). 

Among these reviewed articles, the α-amylase most similar to the ones 

presented in this work is the enzyme produced with B. subtilis PY22 by KARAKAŞ 
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et al. (2010). It presented an optimal temperature of 50 ºC and had a gene 

sequence 99% identical to the sequence from strain 168 (which is also called 

strain OI1085, whose sequence is identical to the ones from EXAMY and EXSIG). 

These researchers also cloned the B. subtilis PY22 amyE gene to produce the 

enzyme in Pichia pastoris. This recombinant enzyme had optimal activity at 60 

ºC and pH 7.0 and presented a molecular weight of 50-64 kDa after 

deglycosylation. 
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6 CONCLUSIONS AND PERSPECTIVES 

 

The present work achieved its main objective which was to produce a 

Bacillus subtilis α-amylase in Kluyveromyces lactis. The vectors were correctly 

constructed, except for INTAMY, which presented a non-synonymous point 

mutation verified by sequencing. Yeast cells were successfully transformed and 

positive colonies were detected by PCR and enzymatic activity on agar plates. At 

this point it could be observed that the bacterial signal sequence was recognized 

by the yeast cell and that the presence of both the leader sequence and the signal 

sequence interfered with proper protein secretion. Shake flask cultivations were 

also performed to see their performance in submerged fermentation. One of the 

strains was also selected to be cultivated in different carbon sources. It presented 

a faster growth in glucose (µmax=0.3827 h-1), but also presented good growth in 

sucrose and lactose, enabling its cultivation in substrates such as sugarcane 

molasses and cheese whey. Higher enzyme production was achieved with 

lactose (2207 U/L) and galactose (2552 U/L) as the carbon source. A basal 

expression of approximately 438 U/L was observed even without induction. The 

recombinant enzymes were partially characterized to determine their optimum pH 

and temperature. They ranged between 50.84-52.93 ºC and pH 6.75-7.24, which 

are comparable to other B. subtilis α-amylases reported in the literature. In this 

range of temperature the α-amylase would still not be suitable for ethanol 

production, but it could be used in other industrial procedures such as food 

processing and textile treatment. 

The insights obtained in this project incite further investigations to continue 

this work, which can be divided in three main branches: 

 

Molecular Biology 

- Perform a codon optimization of the α-amylase gene, altering rare codons 

to better reflect the codon usage of K. lactis, thus, facilitating the 

translational step and possibly enhancing expression. 

- Do a protein design, changing amino acids to enhance protein activity and 

stability. 

- Investigate why the LAC-EXSIG strains could not secrete the enzyme by 

performing proteomic and transcriptomic analysis. Also, proteomic and 
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transcriptomic experiments might be useful to identify stressful conditions 

suffered by the cells during fermentation. 

- The α-amylase signal sequence, as observed in the LAC-INTSIG 

transformants, can be recognized by the yeast and used as a novel tool 

for signaling heterologous protein secretion in K. lactis. Its usefulness can 

be tested at first with a reporter gene, such as GFP or luciferase, and then 

with another exogenous gene for the production of the desired 

recombinant protein. 

- Engineer a K. lactis strain with reduced level of proteases and enhanced 

number of chaperones, to confer a super-secreting phenotype. 

 

Fermentation 

- Study a better broth composition for optimal growth and enzyme 

production. Also, study the use of byproducts such as cheese way and 

sugar cane molasses as substrate. 

- Scale-up fermentation to a bioreactor. 

- Optimize culture operation in a fed-batch mode with a two-step 

fermentation: at first a growth phase to accumulate biomass and then and 

induction phase for enzyme production. 

- Use other strains of K. lactis as host for enzyme production and even other 

yeasts, such as Pichia pastoris and Saccharomyces cerevisiae. 

- Perform sequential fermentations reusing the same biomass. After an 

induction phase, the fermented broth is separated from cells and they are 

used again for another cycle of induction. 

 

Biochemistry 

- Establish a series of purification steps to obtain the protein with the desired 

purity for industrial application and for biochemical characterization. 

- Perform a better characterization of the enzyme, determining its molecular 

weight (analyzing if occurs correct processing of signal peptide and if the 

protein is glycosylated), temperature and pH stability (thus, determining 

the best storage conditions), kinetic parameters (Km and vmax), calcium 

ions dependency, inhibition by other molecules, among others properties. 

- Immobilization of the enzyme for re-utilization in subsequent cycles. 
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8 APPENDIX 

 

Appendix 1 – DNA sequence alignment 
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Appendix 2 – Protein sequence alignment, with alpha-mating factor signal for 

EXSIG and EXAMY. 

  alpha-mating factor signal  α-amylase native signal 
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Appendix 3 – Calculation report. 

 

Intracellular protein concentration or intracellular enzymatic activity: 

 

The intracellular protein concentration was obtained as described below. 

The absorbance reading of the Bradford assay was used in the standard curve 

to calculate a concentration in mg of protein per L of intracellular extract. This 

result was multiplied by the dilution factor of the sample, the volume of 

intracellular extract, the cell concentration in the broth (in g of cell per L of broth) 

and divided by the amount of cells used for extraction (g of cell): 

 

𝐶𝑢𝑟𝑣𝑒
𝑅𝑒𝑠𝑢𝑙𝑡

 (
𝑚𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝐿 𝑖𝑛𝑡𝑟𝑎𝑐𝑒𝑙𝑙.
) ×

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛
𝐹𝑎𝑐𝑡𝑜𝑟

×
𝑉𝑜𝑙𝑢𝑚𝑒

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
 (𝐿 𝑖𝑛𝑡𝑟𝑎𝑐𝑒𝑙𝑙. ) ×

1

𝑔 𝑐𝑒𝑙𝑙𝑠
×

𝑔 𝑐𝑒𝑙𝑙𝑠

𝐿 𝑏𝑟𝑜𝑡ℎ
 

 

 

The enzymatic activity was obtained in a similar way. The absorbance 

reading of the iodine assay was used to calculate the starch concentration based 

on a standard curve and this value was used to calculate the enzymatic activity 

in U per L of intracellular extract. One enzymatic unit (U) was defined as the 

amount of enzyme necessary to hydrolyze 0.1 mg of soluble starch per minute at 

the reaction conditions (50ºC, 0.1M phosphate buffer pH 7.0, 2% soluble starch). 

Therefore: 

 

1𝑈 =
0.1 𝑚𝑔 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑒𝑑 𝑠𝑡𝑎𝑟𝑐ℎ

1𝑚𝑖𝑛
 

𝑈

𝐿
=

{[𝑆𝑡𝑎𝑟𝑐ℎ20𝑔/𝐿] − [𝑆𝑎𝑚𝑝𝑙𝑒]}(𝑚𝑔
𝐿

) × 𝑉𝑜𝑙𝑠𝑡𝑎𝑟𝑐ℎ(µ𝐿)

𝑡𝑖𝑚𝑒 (min) × 𝑉𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒(µ𝐿)
 

Where: [Starch20g/L] is the absorbance of the tube without enzymatic reaction; 

[Sample] is the starch concentration of the tube where the enzymatic reaction 

occurs; Volstarch is the volume of starch solution used for reaction; time is the 

amount of time the reaction occurred; and Volsample is the sample volume used in 

reaction. 
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This result was multiplied by the dilution factor of the sample, the volume 

of intracellular extract, the cell concentration in the broth (in g of cell per L of 

broth) and divided by the amount of cells used for extraction (g of cell): 

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝑅𝑒𝑠𝑢𝑙𝑡

 (
𝑈

𝐿 𝑖𝑛𝑡𝑟𝑎𝑐𝑒𝑙𝑙.
) ×

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛
𝐹𝑎𝑐𝑡𝑜𝑟

×
𝑉𝑜𝑙𝑢𝑚𝑒

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑
 (𝐿 𝑖𝑛𝑡𝑟𝑎𝑐𝑒𝑙𝑙. ) ×

1

𝑔 𝑐𝑒𝑙𝑙𝑠
×

𝑔 𝑐𝑒𝑙𝑙𝑠

𝐿 𝑏𝑟𝑜𝑡ℎ
 

 


