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RESUMO 

 

A teoria de seleção natural prevê que o tamanho de ninhada mais comum em uma 

população deve ser também o mais produtivo (ótimo). Além disso, restrições de energia e 

tempo geram um trade-off entre reprodução atual e futura dos indivíduos. Assim, a quantidade 

de energia investida em uma ninhada (determinada, por exemplo, pelo número de filhotes) 

deve ser resultado das chances de sucesso reprodutivo futuro de um adulto e das chances de 

sobrevivência da prole. Aqui, investigamos se o tamanho das ninhadas da andorinha-de-sobre-

branco (Tachycineta leucorrhoa, Aves) é ótimo. Uma vez que sua distribuição abrange desde 

áreas tropicais até temperadas do hemisfério sul, a espécie deve ser, em geral, mais longeva e 

ter maior dificuldade em coletar alimento durante a estação reprodutiva do que aves do 

hemisfério norte temperado. Logo, o esforço em criar ninhadas maiores é alto e os adultos 

devem privilegiar sua própria sobrevivência frente à de seus filhotes. Para testar essa 

predição, manipulamos tamanhos de ninhada de casais reproduzindo em caixas-ninho às 

margens de duas represas no Paraná. Medimos o crescimento dos ninhegos até a idade de 12 

dias e a taxa de visitação pelos pais, como forma de avaliar o benefício para os filhotes e os 

custos para os pais do cuidado parental, respectivamente. No ano seguinte, avaliamos a taxa 

de retorno, a condição corporal e a fecundidade dos jovens e dos adultos, para verificar se 

deficiências de crescimento dos ninhegos e se o esforço parental resultaram em custos para 

sobrevivência e reprodução futura, como previsto pela teoria. Verificamos que filhotes de 

ninhadas aumentadas e controle cresceram igualmente; e que adultos intensificaram o cuidado 

a proles aumentadas, mantendo a taxa de alimentação por ninhego igual à natural. 

Descrevemos também um comportamento de visitação dos pais a ninhadas alheias, que 

provavelmente tem o objetivo de explorar locais futuros para ninhos e que é exibido 

principalmente por adultos com ninhadas reduzidas e controle. Não observamos nenhum 

efeito residual dos tamanhos de ninhada à fecundidade, condição corporal e taxa de retorno 

dos filhotes ou adultos. Em conjunto, esses resultados indicam que a) o esforço empregado 

durante a criação dos filhotes não gera custos reprodutivos, b) adultos conseguem criar 

ninhadas maiores que as naturais, logo, ninhadas não tem tamanho ótimo. Nesse caso, discute-

se que talvez outras fases do ciclo reprodutivo restrinjam os tamanhos de ninhada naturais 

(por exemplo, a fase de postura e incubação dos ovos), ou a restrição é temporal e não 

energética. Ainda, deve-se avaliar o impacto da seleção de lugares para ninho para o sucesso 

reprodutivo futuro e de inconstâncias climáticas no sucesso ao longo da vida dos indivíduos. 



 

 

ABSTRACT 

 

The theory of natural selection predicts that the most common clutch size in a 

population is the most productive (optimum). In addition, time and energy restrictions cause a 

trade-off between current and future reproduction. Hence, the amount of energy invested in a 

clutch (determined, for example, by clutch size) should be a result of the chances of future 

breeding success of an adult and the chances of recruitment of its offspring. Here, we 

investigated if clutch sizes from the White-rumped Swallow (Tachycineta leucorrhoa) are 

optimal. Since its distribution ranges from tropical to temperate areas in the southern 

hemisphere, we predict that its lifespan is longer and it has more difficulty gathering food 

during the breeding season than birds from the temperate northern hemisphere. Therefore, the 

effort in rearing greater clutches is greater and adults should privilege their own survival, not 

that of their offspring. To test this prediction, we manipulated brood sizes from pairs breeding 

in nest boxes in two reservoirs in the state of Paraná. We measured nestling growth until 12 

days of age and parental visiting rate, in order to evaluate offspring benefit and costs to adults 

of parental care. In the following year, we evaluated return rate, body condition and fecundity 

of first-year breeders and adults to assess if nestling growth deficiencies and parental effort 

resulted in costs to survival and reproduction, as predicted by theory. We verified that 

nestlings from enlarged and control broods grew similarly, and that adults increased parental 

care to enlarged broods, keeping nestling feeding rate similar to control broods. We described 

a visiting behavior by parents to nests of other pairs, which probably is to prospect for future 

breeding locations and is exhibited specially by adults with control and reduced broods. We 

observed no residual effect of brood size in survival, body condition, and fecundity of 

offspring and parents. Together, these results suggest that: a) the effort in rearing nestlings 

results in no reproductive costs; b) adults can rear broods greater than natural, and so, clutch 

size is not optimal. Therefore, we argue that perhaps other periods from the nestling cycle are 

the constraint to clutch sizes (e.g., laying and incubation), or the constraint is temporal rather 

than energetic. Additionally, future studies should evaluate the impact of nest site prospection 

in future reproductive success of birds breeding in natural cavities and the influence of 

climatic unpredictability in the success of an individual. 
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1 INTRODUÇÃO GERAL 

 

 Tamanho de ninhada é uma característica de interesse central na compreensão da 

variabilidade em histórias de vida, e é especialmente estudada em aves. Em meados da década 

de 1940, estudos sobre a correlação entre tamanho de ninhada e latitude levaram à proposição 

de hipóteses que pretendiam explicar evolutivamente os tamanhos de ninhada baseando-se em 

componentes extrínsecos (ambientais) e intrínsecos aos organismos e populações (LACK, 

1947; STEARNS, 2000). 

 Se o tamanho de ninhada é adaptativo, ele deve maximizar a aptidão de um 

organismo (WILLIAMS, 1966). Essa teoria foi amplamente testada experimentalmente e 

parece se adequar a alguns organismos, mas não a outros (revisão em LINDÉN; MØLLER, 

1989). Uma das exceções é a andorinha norte-americana Tachycineta bicolor, cujo aumento 

experimental de esforço reprodutivo não parece gerar prejuízos à sobrevivência dos filhotes 

ou dos pais, ou seja, não há compensação (trade-off) aparente entre quantidade e qualidade de 

filhotes ou entre reprodução atual e futura, o que seria esperado conforme o princípio de 

alocação (CODY, 1966; SHUTLER et al., 2006). 

 Replicar esses estudos em uma espécie filogeneticamente próxima à andorinha 

norte-americana, porém em um contexto com diferentes pressões ambientais, permite 

compreender melhor as forças evolutivas agindo sobre os tamanhos de ninhada desse grupo 

de espécies. Adicionalmente, estudos experimentais avaliando a otimização de características 

reprodutivas ainda são incipientes na América do Sul (MARTIN, 1996; SOUZA; MARINI, 

2012). 

 Dessa maneira, o objetivo deste trabalho é investigar a resposta da andorinha-de-

sobre-branco Tachycineta leucorrhoa quando submetida a diferentes tamanhos de ninhada, de 

modo a avaliar se ninhadas são ótimas. Especificamente, serão avaliados o crescimento dos 

ninhegos e a taxa de cuidado parental resultantes de tamanhos de ninhada experimentalmente 

alterados, a fim de verificar se os custos reprodutivos são transferidos entre gerações (dos pais 

aos filhotes) ou absorvidos pelos pais (capítulo 2). Além disso, será descrito um 

comportamento de visitação de ninhadas alheias pela espécie, com suas possíveis motivações 

(capítulo 3). Por último, serão investigados os efeitos residuais dos tamanhos de ninhada 

modificados na taxa de retorno, condição corporal e desempenho reprodutivo dos adultos e 

filhotes na temporada reprodutiva seguinte (capítulo 4). O último capítulo discute brevemente 

os resultados dos capítulos precedentes diante da pergunta central do trabalho (capítulo 5). 

Ainda neste capítulo há uma breve revisão dos temas relevantes ao trabalho e uma descrição 
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da área e espécie de estudo. 

 

1.1 Revisão de literatura 

 

1.1.1 Teorias que explicam tamanhos de ninhada 

 

 Derivando a ideia de seleção natural, que prevê que genótipos capazes de produzir 

um maior número de descendentes logo se tornam mais frequentes numa população, Lack 

propôs a primeira hipótese de otimização de ninhada. Segundo o autor, os tamanhos de 

ninhada observados na natureza seriam aqueles que produziriam um maior número de jovens 

deixando os ninhos (fledglings; LACK, 1947). Contudo, ele deixou de considerar filtros 

posteriores à sobrevivência e reprodução de tais filhotes e seus pais, que poderiam diminuir a 

frequência de seus genótipos na população. De fato, testes experimentais da hipótese de Lack 

demonstraram que ninhos contendo mais filhotes que o natural eram mais produtivos, ou seja, 

ninhadas naturais eram sub-ótimas (revisão em ROFF, 1992). Contudo, ao avaliar o tamanho 

corporal e a sobrevivência desses filhotes “extras”, percebeu-se que eles eram menores e 

tinham menor probabilidade de sobreviver para reproduzir no futuro (recrutamento), levando 

à proposta de uma nova hipótese de otimização baseada na chance de recrutamento dos 

filhotes de uma ninhada (PERRINS; MOSS, 1975). Ainda, em outras espécies o recrutamento 

em ninhadas aumentadas é maior que em ninhadas naturais, um resultado incoerente com as 

duas ideias de otimização expostas até agora (LINDÉN; MØLLER, 1989; ROFF, 1992). Com 

base nisso, propôs-se que o gargalo reprodutivo deveria estar nos adultos. Assim, aumentar o 

esforço empregado em uma determinada tentativa reprodutiva, diminui o valor reprodutivo 

residual, ou seja, as chances de sucesso reprodutivo futuro de um indivíduo. Dessa maneira, 

os tamanhos de ninhada naturais seriam os que produziriam maior número de recrutas ao 

longo de toda a vida dos adultos (CHARNOV; KREBS, 1974; WILLIAMS, 1966). 

 Apesar de a hipótese de otimização ser suprema na teoria de história de vida, já há 

muito tempo uma concessão é feita à ideia de bet-hedging, ou seja, de diluição de risco. Em 

situações de imprevisibilidade ambiental, quando o organismo não consegue antever como as 

condições ambientais serão durante o resto do período reprodutivo, ele deve sempre decidir 

por um tamanho de ninhada menor do que o ótimo e estocar energia para uma nova tentativa 

reprodutiva, em caso de falha da primeira (BOER, 1968). 

 Atualmente, tem-se ainda tentado incorporar à teoria alguns fatores 

tradicionalmente ignorados, como seleção dependente de frequência ou densidade. Uma vez 
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que esses modos de seleção são modulados por características da população que flutuam 

temporalmente, questiona-se a existência de apenas um tamanho ótimo de ninhada por 

população. Por exemplo, demonstrou-se que duas guildas de fêmeas de lagartos co-ocorrem 

em uma população, uma delas K-estrategista (com poucos filhotes de alta qualidade) e a outra 

r-estrategista (com muitos filhotes de baixa qualidade; SINERVO; SVENSSON; 

COMENDANT, 2000). A frequência das fêmeas na população determina qual a estratégia 

mais vantajosa em um dado instante, sendo que à medida que a frequência de uma guilda 

aumenta, mais desvantajosa ela se torna. Paralelamente, a sobrevivência dos filhotes é 

mediada pela densidade desses. Filhotes de alta qualidade aumentam rapidamente em número 

em situações de alta densidade de filhotes, pois eles são bons competidores, enquanto filhotes 

de baixa qualidade são favorecidos em um ambiente menos denso. Esse exemplo demonstra 

claramente que o tamanho de ninhada ótimo varia ao longo do tempo de acordo com 

características populacionais, como densidade de indivíduos e frequência de uso de estratégias 

reprodutivas. 

 

1.1.2 Fatores ambientais que influenciam os tamanhos ótimos de ninhada 

 

 Apesar de existir um componente herdável nos tamanhos de ninhada, há também 

plasticidade. Por um lado, temos algumas famílias de aves com postura fixa (e.g., Columbidae 

com dois ovos; LACK, 1947), por outro, temos aves cujos tamanhos de ninhada se baseiam 

em suas condições físicas ou no quão favorável o ambiente se apresenta no momento da 

reprodução (LLOYD, 1999). Por conseguinte, como todo genótipo, essa característica 

geralmente tem uma norma de reação, que dita os valores ótimos sob diferentes combinações 

ambientais (STEARNS, 2000). Abaixo, alguns fatores ambientais que, por variarem temporal 

ou espacialmente, são amplamente reconhecidos por influenciarem tamanhos de ninhada em 

aves. 

 

Alimento 

 

 Inicialmente, imaginou-se que os tamanhos de ninhada seriam limitados pela 

quantidade de alimento que os pais eram capazes de suprir aos seus filhotes, também chamada 

de disponibilidade alimentar, dependente tanto da quantidade de alimento bruta no ambiente 

quanto da capacidade dos adultos em explorar esses recursos (LACK, 1947). A quantidade de 

alimento pode variar com a qualidade do território reprodutivo ou variar temporalmente, por 
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exemplo, em ambientes sazonais (HÖGSTEDT, 1980; KLOMP, 1970). A capacidade de 

forrageamento dos pais é afetada pelo número de horas disponíveis para a coleta de alimento 

(horas de luz) durante a temporada reprodutiva (LACK, 1947; ROSE; LYON, 2013) e já foi 

demonstrado que fêmeas com capacidade de forrageamento experimentalmente prejudicada 

(com asas aparadas) ou fêmeas muito jovens têm ninhadas menores (KLOMP, 1970; 

STUTCHBURY; ROBERTSON, 1988; WINKLER; ALLEN, 1995). Alternativamente, em 

áreas de clima mais ameno e menos sazonal, os tamanhos populacionais são mais estáveis, 

próximos à capacidade suporte do ambiente, e consequentemente, a competição por alimento 

é alta tornando-o menos disponível para cada indivíduo (ASHMOLE, 1963; SAMAŠ et al., 

2013). Também julga-se que em ambientes de alta diversidade de presas os adultos teriam 

maior dificuldade em localizá-las, devido à menor eficiência de imagens de procura 

(THIOLLAY, 1988). 

 

Taxa de predação de ninhos 

 

 A predação de ninhos foi o segundo mecanismo proposto para explicar variações 

nos tamanhos de ninhada. Com base na baixa taxa de cuidado parental observada nos trópicos 

e na baixa sobrevivência de ninhos, propôs-se que pais visitariam pouco os ninhos, para 

fornecer menos pistas de sua localização aos predadores (SKUTCH, 1949). Logo, a 

quantidade de alimento que eles poderiam prover aos filhotes seria restrita, limitando os 

tamanhos de ninhada. Um segundo mecanismo pelo qual a predação poderia agir está 

relacionado a tentativas reprodutivas repetidas. Animais com longas temporadas reprodutivas, 

geralmente os mesmos que sofrem com alta predação de ninhos, têm a oportunidade de 

espalhar seus ovos em várias ninhadas pequenas ao longo da temporada, desse modo, um 

ninho malsucedido traz menos prejuízo (ROPER, 2005; ROPER; SULLIVAN; RICKLEFS, 

2010). Confirmando a ideia de que taxas de predação influenciam tamanhos de ninhada, 

temos que aves nidificando em cavidades, especialmente as artificiais, possuem taxa menor de 

predação e maiores tamanhos de ninhada que aves de ninhos abertos da mesma comunidade 

(MARTIN; LI, 1992; MØLLER, 1989). Além disso, em aves de ninho aberto, a predação 

potencial poderia induzir a construção de ninhos menores e menos conspícuos, restringindo o 

número de ovos que poderiam conter (MØLLER, 1990). 
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Longevidade dos adultos 

 

 O ambiente pode influenciar a longevidade dos indivíduos devido à severidade do 

clima, escassez de recursos alimentares e à intensidade de predação e doenças (MCNAMARA 

et al., 2004). Merece destaque a concepção de que adultos sejam menos longevos em 

ambientes temperados, pois a sazonalidade climática e de recursos alimentares levaria muitos 

indivíduos à morte durante o inverno (ASHMOLE, 1963; MARTIN, 2004). Ainda que 

algumas espécies partam desses ambientes quando eles se tornam muito desfavoráveis, a 

migração é uma jornada árdua com altos riscos de mortalidade para os indivíduos (SILLETT; 

HOLMES, 2002). 

 Uma vez que a longevidade dos indivíduos pode ser vista como a chance que eles 

têm de sobreviver até a próxima temporada reprodutiva, indivíduos menos longevos devem 

investir mais energia na reprodução atual, de modo a garantir sua descendência. Logo, tais 

indivíduos devem ter ninhadas maiores e empregar mais energia na alimentação e proteção de 

seus filhotes (ver abaixo), mesmo que isso signifique prejudicar seu valor reprodutivo residual 

(CHARNOV; KREBS, 1974; GHALAMBOR; MARTIN, 2001). 

 

1.1.3 Cuidado parental 

 

 Cuidado parental é um comportamento adaptativo, presente em 99% das aves 

(COCKBURN, 2006). Esse comportamento engloba desde atividades indiretas, como defesa 

de território, construção do ninho e alimentação da fêmea durante corte ou incubação, até 

atividades mais imediatas, como incubação de ovos e ninhegos, alimentação e proteção dos 

filhotes e acompanhamento de filhotes a locais de forrageamento (SILVER; ANDREWS; 

BALL, 1985). 

 O cuidado parental melhora os prospectos de recrutamento de filhotes, embora 

possa gerar custos para os pais (WILLIAMS, 1966). Cabe ressaltar que o termo custos 

reprodutivos é limitado a situações em que o esforço reprodutivo, i.e. o direcionamento de 

recursos à reprodução, resulta em diminuição da longevidade e capacidade de reprodução 

futura dos pais (MARTIN, 1987). 

 O mecanismo por trás da redução de longevidade dos adultos pode estar 

simplesmente associado à maior exposição a situações de risco (predação, acidentes, 

combates), como também ao consumo de recursos do metabolismo somático do organismo. 

Esse consumo pode comprometer o sistema imune, esgotar reservas energéticas a ponto de 
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deteriorar tecidos vitais, como a musculatura de voo, e por último, levar à senescência 

acelerada, ao reduzir a taxa em que células e moléculas são renovadas (ARDIA, 2005; 

CALOW, 1979). 

 Durante o período de ninhego, o cuidado parental inclui a proteção do ninho, a 

incubação dos filhotes e a alimentação desses. Esse último comportamento é medido 

tradicionalmente em taxa de alimentação total à ninhada, representando o esforço do adulto, e 

em taxa de alimentação média por ninhego, indicando o benefício para o filhote. Adultos 

podem ajustar seu cuidado parental de diferentes formas quando expostos experimentalmente 

a diferentes tamanhos de ninhada (TABELA 1) e esse ajustamento pode ainda variar com a 

área de estudo, o ano, o sexo do adulto e a idade da ninhada (KLOMP, 1970; SANZ; 

TINBERGEN, 1999). A taxa de visitação à ninhada pode simplesmente aumentar linearmente 

com o número de ninhegos; pode acelerar, caso pais empreguem a mesma energia no cuidado 

de ninhadas reduzidas que já haviam previsto para suas ninhadas originais; ou pode 

desacelerar, caso exista um teto energético que os pais não conseguem ou escolhem não 

ultrapassar. Diversos padrões foram observados para a taxa de visitação por ninhego, e a 

relação dessa com a qualidade dos filhotes pode não ser linear, pois é modulada pela 

insulação do ninho (que aumenta com o número de filhotes, reduzindo o gasto metabólico 

desses) e pelo tamanho dos alimentos fornecidos pelos pais (que podem ter tamanho reduzido 

quando a taxa de visitação é elevada; NUR, 1984; ROYAMA, 1966). 

 

1.2 A área de estudo 

 

 O trabalho foi realizado às margens de duas represas na cidade de Piraquara, 

Paraná (25°30’24”S 49°01’37”W, 908 m de altitude; e 25°30’22”S 49°04’42”W, 897 m de 

altitude; FIGURA 1). As áreas distam entre si em cerca de 5 km e ficam a 20 km da capital do 

estado, Curitiba.  

 O clima da região é temperado, com verões mornos e sem estação seca definida 

(FIGURA 2; PEEL; FINLAYSON; MCMAHON, 2007). Durante a estação reprodutiva (Out. 

– Jan.) de 2012, as médias de temperatura mínima e máxima diárias foram respectivamente 

16.5°C (DP = 2.6, n = 122) e 26.1°C (DP = 4.0, n =122), e a precipitação mensal variou de 

69.4 mm a 254.6 mm (dados meteorológicos para Curitiba; INMET, 2013). 

Apesar de as áreas estarem inseridas na Mata Atlântica, a vegetação é atípica, 

consistindo de gramados, brejos e bosques, com espécies nativas e exóticas, e é manejada pela 

companhia de saneamento de água responsável pelas represas, a SANEPAR. Por isso mesmo, 
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o habitat é ideal para a reprodução da espécie de ave estudada, já que ela prefere hábitats 

aquáticos associados a áreas abertas (RIDGELY; TUDOR, 1989; SIGRIST, 2009). 

 

 

TABELA 1 - Exemplos não-exaustivos de como o cuidado parental pode ser 

alterado frente a tamanhos de ninhada em aves e das consequências do cuidado 

para a qualidade dos filhotes (estimada através do tamanho ou da sobrevivência 

desses). Tamanhos de ninhada podem ser modificados para serem menores 

(reduzidos, R), iguais (controles, C) ou maiores do que os naturais (aumentados, 

A). No caso de estudos não experimentais, esses mesmos códigos representam 

tamanhos de ninhada pequenos (R), médios (C) ou grandes na população (A). 

Taxa de 

alimentação 

total 

Taxa de 

alimentação 

por ninhego 

Qualidade 

dos ninhegos 

Nome da hipótese, se houver 

(Referência) 

R < C < A R = C = A R = C = A (KLOMP, 1970; SKUTCH, 1949) 

R > C > A R > C > A (KLOMP, 1970; SHUTLER et 

al., 2006) 

R > C = A R > C > A
a
 (NUR, 1984) 

R < C = A R = C > A R = C > A Gibb-Lack hypothesis (NUR, 

1984) 

R = C = A
a
 Royama’s hypothesis (NUR, 

1984; ROYAMA, 1966) 

R = C =A R = C > A
b
 (SOUZA; MARINI, 2012) 

R > C > A R > C > A (MURPHY et al., 2000) 

R = C < A R = C = A R = C > A
c
 (SANZ; TINBERGEN, 1999) 

Relação não linear entre taxa de alimentação por ninhego e qualidade de ninhegos 

é atribuída a: 
a
variação do metabolismo basal dos ninhegos de acordo com 

tamanho da ninhada, sendo mais elevado em ninhadas pequenas; 
b
variação do 

tamanho das presas com taxa de alimentação total; 
c
nenhuma explicação 

disponível. 
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1.3 A andorinha-de-sobre-branco 

 

 A andorinha-de-sobre-branco (Tachycineta leucorrhoa, Hirundinidae, Aves) é 

uma espécie comum e localmente migratória, cuja distribuição restringe-se ao centro da 

FIGURA 1 - Localização da área de estudo (datum WGS-84). O Painel A situa as represas no 

mapa político do Brasil, enquanto o painel B mostra a distância dessas à capital do estado do 

Paraná, Curitiba, e aos demais corpos d’água da região. 

 

FIGURA 2 - Gráfico climatológico da área de estudo. A linha 

representa a temperatura mensal média e as barras representam a 

precipitação mensal média. Dados foram coletados de 2000 a 2013 

na cidade de Curitiba, cerca de 20 km das áreas de estudo (INMET, 

2013). 
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América do Sul em altitudes de 0 a 1.100 m (FIGURA 3; SIGRIST, 2009; STOTZ et al., 

1996). Ocorre em áreas abertas, campos alagados, bordas de mata e áreas antropizadas como 

pastagens ou plantações, sempre associada a habitats aquáticos, tanto marinhos quanto 

continentais (RIDGELY; TUDOR, 1989; SIGRIST, 2009; STOTZ et al., 1996). Assim como 

as demais andorinhas, alimenta-se de plâncton aéreo e fornece bolas de insetos colados com 

saliva aos seus filhotes (SICK, 1997). 

 

 Na área de estudo, o período reprodutivo da espécie (i.e. o período em que 

existem ninhos ativos) se estende de outubro a janeiro, e consiste em apenas um sucesso 

reprodutivo por casal (J. J. ROPER comunicação pessoal). Há formação de casais 

monogâmicos, porém paternidades extrapar são comuns (FERRETI et al., 2011). Apenas a 

FIGURA 3 - Distribuição da andorinha-de-sobre-branco (Tachycineta 

leucorrhoa) na América do Sul (datum WGS-84). São destacados no mapa a 

área de estudo e a abrangência dos locais reprodutivos da espécie (RIDGELY et 

al., 2007). 
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fêmea incuba os ovos, mas ambos os sexos cuidam dos filhotes (BULIT; PALMERIO; 

MASSONI, 2008). A espécie nidifica em cavidades secundárias (ou seja, ela não é 

escavadora) e constrói seus ninhos predominantemente com fibra vegetal e penas, mas 

também com outros materiais incomuns (lã de carneiro, fezes desidratadas de capivara, 

barbante, crina de cavalo, amora, escama de peixe; observação pessoal). Na Argentina, o 

tamanho de ninhada varia de 4 a 6, com incubação de 14 a 16 dias, eclosão assincrônica em 

42% dos casos e período de ninhego de 21 a 27 dias (MASSONI; BULIT; REBOREDA, 

2007). Motivos de fracasso de ninho relatados são competição pelas caixas de ninho com 

outras espécies e condições meteorológicas desfavoráveis (MASSONI; BULIT; REBOREDA, 

2007). 

 Estudos com o gênero Tachycineta têm se tornado bastante comuns nas últimas 

décadas, o que pode ser explicado pela facilidade de estudo com essas espécies, que nidificam 

em caixas-ninho convenientemente dispostas pelos pesquisadores e que são facilmente 

observáveis e capturáveis (JONES, 2003). Além disso, o gênero ocorre em uma variedade de 

latitudes (do Alaska à Terra do Fogo; BIRDLIFE INTERNATIONAL, 2014), altitudes (de 0 a 

3.200 m acima do nível do mar; DEL HOYO; ELLIOTT; CHRISTIE, 2004; STOTZ et al., 

1996) e climas (tropicais, áridos, temperados, frio e polares; PEEL; FINLAYSON; 

MCMAHON, 2007) que privilegiam estudos comparativos de histórias de vida. 
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2 ARE REPRODUCTIVE COSTS SHARED BY PARENTS AND OFFSPRING IN 

THE WHITE-RUMPED SWALLOW? 

 

Capítulo elaborado de acordo com normas do periódico The Auk: Ornithological Advances. 

 

 

 

Aves são capazes de estimar tamanhos de ninhada ótimos? Na população estudada de 

andorinha-de-sobre-branco (Tachycineta leucorrhoa), a moda de ovos é cinco (A). 

Comumente, todos os ovos eclodem, dando origem a cinco ninhegos que demandam 

cuidado contínuo dos pais (B). Na imagem, os ninhegos possuem 3 dias de idade. 
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ABSTRACT 

Clutch size in birds should be the result of a trade-off between current and future 

reproduction, but evidence is equivocal. For example, artificially increasing brood size in the 

Tree Swallow (Tachycineta bicolor) does not seem to incur a cost for offspring or breeding 

adults. To investigate this enigma, we manipulated brood size and compared nestling 

development and parental care among brood size treatments in the related species White-

rumped Swallow (T. leucorrhoa), in subtropical Brazil. At this latitude, environmental 

conditions should result in greater between-season survival, smaller clutch size, and less 

available food, in comparison with more temperate latitudes. Thus, we predicted that parents 

faced with larger broods would increase care to a maximum, insufficient to cope with 

additional nestling demand. We found that parents were investing, with their natural clutch 

sizes, in quantity and not quality of offspring, as nestlings from reduced broods were larger. 

Also, nestling size was similar in control and enlarged broods and adults took on the 

additional foraging load required by a greater number of young. These results indicate that 
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these subtropical swallows adopt a mixed strategy. They transfer reproductive costs to their 

offspring even in broods of natural size, indicating that more nestlings of lower quality result 

in more recruits than less nestlings of better quality. At the same time, they lay fewer eggs 

than they are capable of rearing perhaps to bet-hedge for environmental unpredictibility or to 

avoid costs to their future reproduction. 

Keywords: brood size manipulation, nestling growth, optimum clutch size, PIT-tag, parental 

care, reproductive costs, South America, Tachycineta leucorrhoa 

 

RESUMO 

Tamanhos de ninhada em aves são, em teoria, resultado de uma compensação entre 

reprodução atual e futura, embora evidências disso sejam controversas. Por exemplo, 

aumentos nos tamanhos de ninhada da Tachycineta bicolor não geram custos aparentes à 

prole ou aos adultos. Para investigar esse enigma, manipulamos tamanho de ninhada e 

comparamos o desenvolvimento dos ninhegos e o cuidado parental entre tamanhos de ninhada 

da espécie aparentada T. leucorrhoa no Brasil subtropical. Nessa latitude, condições 

ambientais devem resultar em maior longevidade, tamanhos de ninhada menores e menor 

disponibilidade de alimento, em comparação com latitudes mais altas. Logo, previmos que 

adultos com tamanhos de ninhada maiores que o natural deveriam aumentar o cuidado com a 

prole até um máximo, que seria insuficiente para garantir o desenvolvimento normal dos 

ninhegos. Foi observado que adultos investem em quantidade, e não qualidade de filhotes, já 

que ninhegos em ninhadas reduzidas foram maiores. Além disso, ninhegos tiveram tamanho 

similar entre ninhadas controle e aumentadas, devido a um aumento do cuidado parental 

congruente com o número de ninhegos. Esses resultados indicam que essas andorinhas 

subtropicais adotam uma estratégia mista. Elas transferem custos reprodutivos à prole mesmo 

em ninhadas de tamanho natural, indicando que mais filhotes de pior qualidade resultam em 
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mais recrutas que menos filhotes de melhor qualidade. Ao mesmo tempo, os tamanhos de 

ninhada estão aquém de sua capacidade de criar filhotes e talvez elas estejam adotando uma 

estratégia de diluição de risco quando há imprevisibilidade ambiental ou evitando custos à 

própria reprodução futura. 

 

INTRODUCTION 

Clutch size in birds was thought to be a consequence of natural selection favoring the 

maximum number of offspring that parents are able to rear to fledging (optimum clutch size 

hypothesis, Lack 1947). Today, hypotheses of the evolution of clutch size include long term 

reproductive costs and optimal clutch size should be that which maximizes parental fitness 

and takes into account lifetime reproductive success of adults and their offspring (Charnov 

and Krebs 1974, Williams 1966). Thus, optimal clutch size should be a trade-off between 

current and future breeding opportunities based on individual traits (e.g., female age and 

provisioning capability, Perrins and Moss 1975, Slagsvold and Lifjeld 1988, Winkler and 

Allen 1995) and environmental characteristics (e. g., territory quality and food abundance, 

Perrins and Moss 1975, Högstedt 1980). 

In higher latitudes, annual adult survival probabilities are relatively low due to harsh 

climate during winter for resident birds and long-distance migration for others (Martin 2004, 

Sillett and Holmes 2002). Moreover, in seasonal environments with a narrow window of 

favorable conditions for breeding, often only one brood per year is possible. As a result, birds 

at higher latitudes should favor current over future breeding opportunities (Charnov and 

Krebs 1974, Martin 2004). Thus, when challenged with artificially enlarged broods, birds 

should simply increase effort to meet the increased nestling demand for food, thereby 

maintaining offspring quality. At lower latitudes, on the other hand, where food is limiting 

during the breeding season and adult survival is greater, parents should favor their own 
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survival and not increase current reproductive effort when brood size is experimentally 

enlarged (Ashmole 1963, Martin 2004). 

Trade-offs between offspring quantity and quality and between current and future 

reproduction have been observed (review in Lindén and Møller 1989), yet results are 

equivocal. For example, the short-lived, temperate, migratory, single-brooded Tree Swallow 

(Tachycineta bicolor) when faced with enlarged broods, increases effort and maintains 

constant offspring quality as well as adult survival (De Steven 1980, Wheelwright et al. 

1991). Apparently, clutch size and parental care in the Tree Swallow are not food limited in 

these studies. 

The South American White-rumped Swallow (Tachycineta leucorrhoa) is similar to 

northern temperate swallows due to its relatively short lifespan and large clutch size in the 

area and most breeding pairs raise only one successful brood during each breeding season 

(Bulit and Massoni 2011, Massoni et al. 2007). Hence, as with many temperate species, adults 

should accept greater reproductive costs and work harder with larger clutches (Nur 1984). On 

the other hand, the White-rumped Swallow migrates over smaller distances and breeds in the 

seasonally moderate tropics and subtropics (BirdLife International 2014). Thus, relative to 

northern temperate swallows, this species should have a lower mortality rate and food 

limitation should be more intense during breeding, so food gathering would require more 

effort (Ashmole 1963). The White-rumped Swallow, when faced with greater food demand by 

offspring, should increase effort up to some maximum that does not incur a survival cost for 

the adult and, if clutch size requires energy expenditure greater than that limit, parental care 

per offspring should decline, resulting in reduced offspring quality (Sanz and Tinbergen 

1999). In other words, the trade-off should favor adult survival rather than reproductive 

success when costs are greater. 

To test for this trade-off, we experimentally investigate how parental care varies with 
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brood size and how brood size influences nestling growth rate in the White-rumped Swallow. 

If adult survival is greater, and food is more limiting in this subtropical latitude, then we 

predict that parental care to enlarged broods will increase, albeit insufficiently to maintain 

constant parental care per offspring. 

 

METHODS 

Study Area 

We carried out this study near 2 adjacent reservoirs in southern Brazil (S 25.51°, W 49.03°, 

898 – 918 m and S 25.51°, W 49.08°, 893 – 900 m). During the breeding season of October 

2012 to January 2013, average daily temperature was 20.2°C (SD = 2.9, temperature range = 

9.8 – 34.2°C, n = 122 days). Monthly precipitation ranged from 69.4 mm in November to 

254.6 mm in December (data for the city of Curitiba, ~20 km from study areas, INMET 

2013). Vegetation around the reservoirs includes open grassy areas, trees, and marshes, with 

both native and exotic plants. 

Study Species 

The White-rumped Swallow (Hirundinidae) is a South American migrant that nests in natural 

cavities and artificial nest boxes. Argentinian birds have a lifespan of less than 3 years (Bulit 

and Massoni 2011). In Argentina, clutch size averaged 4.92 (SE = 0.05, n = 106), incubation 

lasts 14.8 days (SE = 0.2, n = 82) and the nestling stage lasts 23.3 days (SE = 0.2, n = 44, 

Massoni et al. 2007). Only females incubate eggs, but both sexes feed nestlings (Bulit et al. 

2008). In previous years, we observed that breeding pairs arrived in our study area and began 

to nest in the last half of October, and usually left the area by mid January, after the 

completion of only one successful nest. 

Adults were captured in nest boxes (see below) after egg-laying and before hatching 

by the use of a trap door. Measurements of adult birds followed Golondrinas de las Americas 
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protocol (weight to 1.0 g precision and flattened wing length to 1.0 mm, GDLA 2010). We 

banded birds with both a numbered metal band and, on the other leg, a PIT-tag (a passive 

integrated transponder with a unique code Cyntag 2x12 EM4102 12KhZ, see below) attached 

to a plastic band. 

Nest Boxes 

Nest boxes (17 x 13 x 25 cm, GDLA 2011) have been available on trees and posts near water 

since 2005 at one reservoir and 2010 in the other. During this study 121 nests boxes were 

available. Distances between boxes vary from 5 to 78 m, usually greater than 15 m. Nest box 

height varies from 1.5 to 2 m. 

Once birds were observed in the study area, we checked boxes weekly. Once 

construction began, nests were checked every 4 days to determine the date of laying of the 

first egg. Nest were checked daily near estimated hatching date and hatching is synchronous 

in 58% of the nests of this species (Massoni et al. 2007). Hatching date was the first day on 

which half or more of the eggs in a clutch had hatched, and we considered it day zero of the 

nestling period. 

PIT-tagging 

We placed a circular antenna around the external entrance hole of the nest box with the data-

logger and power supply underneath the nest box, before or on the day of brood size 

manipulation. Data-loggers recorded date, time and PIT-tag identification code at each visit 

by a tagged bird, with intervals greater than 15 s, between 0400 and 2100 hours. They were 

programmed with 500 ms poll interval (during which a tag may be read) and 500 ms pause 

interval (of no reading attempts). Each register was considered to be one visit, because 

arrivals and departures cannot be discerned due to the 15 s lag. 

Brood Manipulation 

Brood manipulation included control nests (in which we handled offspring but preserved 
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original clutch size) and enlarged or reduced broods (~50% larger or smaller than the original 

clutch size). Three-day-old nestlings were randomly exchanged between broods hatched on 

the same date (± 1 d). Control and reduced broods also contained cross-fostered nestlings (i.e. 

foreign nestlings) depending on the availability of other similar-aged nests for the exchange. 

We clipped a claw on unique combinations of toes to identify each nestling until 12 

days of age, when they were banded. Nestlings were weighed on a digital balance to the 

nearest 0.01 g and wing length was measured to 1.0 mm at 3, 6, 9, and 12 days of age. We did 

not open nests boxes after nestlings reached 12 days of age to avoid causing premature 

fledging. After 18 days, we checked nests daily through the entrance hole with a mirror and a 

flashlight to determine fledging date (when all nestlings had left the nest). 

Statistical Analysis 

Nestling growth and nest productivity. Daily growth was the difference between 

measurements (weight and wing length) every 3 days, divided by 3 and calculated for each 

individual. We used mean growth rate per brood at each period and mean nestling size per 

brood at age 12 days to compare treatments using analysis of variance (ANOVA). Nestling 

period length was compared among treatments using ANOVA. We used correlations between 

weight or wing length at age 12 and number of days until fledging to test the prediction that 

smaller nestlings remained in the nest longer to compensate for slower growth. Nest 

productivity (the number of fledglings) and fledging success (nest productivity divided by 

manipulated brood size) were correlated with brood size. 

Parental care. Parental care was estimated as the number of visits of the tagged 

parent per hour recorded at nest boxes. We considered each visit to be a feeding trip  

(McCarty 2002). We divided the nestling period (from manipulation to the age when none of 

the broods had fledged) in 5 visitation periods of approximately equal length (ages 3-6, 7-9, 

10-12, 13-15, and 16-18 days). Note that the first 3 visitation periods correspond to the 
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periods of growth. Parental care (total feeding rate) and parental care per nestling (total 

feeding rate divided by the number of nestlings) were compared among treatments using 

ANOVA. A level of significance of 0.05 was adopted in all analyses. 

 

RESULTS 

A total of 28 nests were used in the experiment. One nest in each treatment was abandoned 

(nestlings last seen alive at ages 3, 6, and 6 days) and excluded from analysis (Figure 1). All 

nests hatched near others in time, with one exception at the end of the breeding season, that 

we excluded. Treatments had similar temporal distributions in the breeding season based on 

hatching date (ANOVA, F2,21 = 0.2, P = 0.86). 

Final sample size per treatment was 4 controls, 13 reduced, and 7 enlarged broods 

(Figure 1). Two control broods and 8 reduced broods included cross-fostered nestlings. 

Reduced broods without foreign nestlings were result of natural clutch reduction (partial 

hatching or predation). Experimental manipulation in reduced broods was 1 to 3 fewer 

nestlings and in enlarged broods was 2 additional nestlings (but in one nest, one nestling died 

early). We assumed that there were no effects due to the location (reservoir) of the nests. 

Nestling Growth and Nest Productivity 

Two nestlings died prior to age 12 and were excluded from analysis of growth. Mean nestling 

weight and wing length per brood were greater in reduced broods at age 12 days (Table 1). 

The relationship between daily growth rate and brood size treatment varied by age (Table 1 

and Figure 2). At periods 3-6 and 6-9, weight gain and wing growth rates were greatest in 

reduced broods. At period 9-12, growth rate was similar among all treatments. Wing growth 

rate tended to increase with age, while weight gain rate remained relatively constant or 

slowed. 

To better understand nestling size variation and nestling competition within broods, 
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we compared treatments based on samples containing only the smallest or only the largest 

nestlings from each brood. Nestling difference from the brood median over time was 

compared using repeated measures ANOVA (Table 2 and Figure 3). At the beginning of the 

nestling period, the smallest and largest nestlings were similar in size among all treatments. 

Differences increased with time in control and enlarged broods, but remained almost constant 

in reduced broods. 

Reduced broods fledged ~3 days earlier than control and enlarged broods (Table 1). 

Since we recorded fledging date per brood, and not individual, the nestling period may 

sometimes be overestimated. Irrespective of treatment, length of the nestling period is shorter 

when weight is greater at age 12 days (reduced: r = -0.40, n  = 35; control: r = - 0.53, n = 20; 

enlarged: r = - 0.47, n = 48; all P < 0.02). However, wing length was correlated with nestling 

period only in enlarged broods (r = -0.55, n = 48, P < 0.001). Fledging success was not 

correlated with manipulated brood size (r = 0.03, n = 24, P = 0.91) and nest productivity 

increased with manipulated brood size (r = 0.90, n = 24, P < 0.001). 

Parental Care 

All females and only 5 males from monitored nests were captured, therefore only female 

parental care was used in analysis. Records within one hour after our intervention at the nest 

box (nestling measurements and replacement of batteries from the PIT-tag readers), and 

sequences of 5 or more intervals of 15 s (because this suggests that the tagged parent was 

perched at the entrance hole) were excluded. Ten nestlings died before fledging and to 

compute parental care per nestling (which depends on how many nestlings are alive at the 

time) we estimated that they died in the middle of the interval between nest checks. This 

partial death sometimes caused a nest to change treatments, but it was always after age 20 

days. The different sample sizes of nests in treatments were amplified due to the large number 

of hours in which parental care was recorded. So, to balance sample sizes, we randomly 



31 

 

sampled recording hours (without repetition) until an equal number of hours was reached in 

all treatments at each age period. We then compared the complete sample and the sub-sample 

with t-tests to see if the latter was representative of the former (all P > 0.15). 

Total feeding rate peaked at ages 7-9 days in reduced broods, and 13-15 days in 

control and enlarged broods (Figure 4A). Control nests were visited less often than enlarged 

broods, except at ages 10-12 days (Table 3). Nests with reduced broods were visited more 

often than controls at ages 7-9 only. Feeding rate per nestling was greatest in the reduced 

treatment at all ages and was always similar among the control and the enlarged treatments. 

Feeding rate per nestling declined at the end of the period in reduced broods, but remained 

constant in control and enlarged broods (Figure 4B). 

 

DISCUSSION 

Adult White-rumped Swallows seem to favor their own survival over that of their young. 

They can easily rear fewer young to better fledging condition, but in control broods (their 

original clutch size) offspring body condition is compromised, in spite of their ability to 

increase parental care when needed, as seen in enlarged broods. 

Offspring Quality and Quantity 

Nestlings in control and enlarged broods were smaller than those in reduced broods, and so 

White-rumped Swallows seem to invest more in quantity than in quality of offspring. So, 

females are laying more eggs than they can rear at their ideal growth rates. 

Reduced broods declined in weight gain near age 12, perhaps due to weight recession, 

common in aerial foraging species (Ricklefs 1968). Weight recession is primarily due to water 

loss, whereas dry mass and lipid content continue to accumulate, so acquired differences in 

weight during the nestling period are likely to be preserved after fledging (Ricklefs 1968, 

Wright et al. 2006). Even though control and enlarged broods might catch up with those from 
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reduced broods by postponing fledging, inferred from the inverse relationship we found 

between fledging date and nestling size, this longer time spent at the nest translates into 

migrating at a later date, which may be a secondary problem (Naef-Daenzer et al. 2001). In 

addition, similar results in the Tree Swallow led to the suggestion that the extra time at the 

nest may permit wing to reach the same size among treatments, but not weight (De Steven 

1980). Therefore, survival of nestlings from reduced broods should be greater than that of 

enlarged and control broods (Naef-Daenzer et al. 2001, Schwagmeyer and Mock 2008). This 

trend was different from similar studies in which nestling size of Tree Swallows was 

independent of brood size, or controls were similar in size to reduced broods (Murphy et al. 

2000, De Steven 1980, Wheelwright et al. 1991, Wiggins 1990). 

Comparisons of the smallest and largest nestlings among treatments suggest that 

provisioning was limited in control and enlarged broods. Also, the disparity of size between 

nestlings increased over time, implicating strong sibling competition when food is limited. 

Despite these potential costs for first year survival of young, fledging success was similar 

among treatments and nest productivity increased with brood size, so adults can raise broods 

larger than they lay, same as Tree Swallows (De Steven 1980, Wheelwright et al. 1991, 

Murphy et al. 2000). 

Parental Care 

As expected of a short-lived species, females increased total feeding rate when feeding more 

young, unlike other species in which feeding rate by females is maximum to natural-sized 

broods and any additional care is provided by males (Charnov and Krebs 1974, Leffelaar and 

Robertson 1986, Lombardo 1991, Low et al. 2011). In Tree Swallows, parental response to 

brood size seems to be dependent on food availability (Ardia 2007). So, total feeding rate in 

some studies have the same pattern we observed here (reduced = control < enlarged) but 

differs slightly in other studies, with greater feeding rates in control and enlarged broods or a 
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direct relationship between feeding rate and brood size (Leffelaar and Robertson 1986, 

Murphy et al. 2000, Ardia 2007). 

Here, females usually invested the same care in reduced broods that they expected 

with their original clutch and ended up with fewer fledglings of greater quality, suggesting 

that this is the maximum amount of care without costs to the adult. Total feeding rate was 

occasionally greater in reduced than in control broods, when theory predicts equal or lower 

rates (Sanz and Tinbergen 1999). This trend comes exclusively from a control female 

responsible for one fifth of the sample with extremely low feeding rate (maximum number of 

visits per hour was lower than mean from other control females). If, contrary to appearance, 

she represents a normal individual in the population, a biological explanation for the higher 

rates in reduced broods would be that perhaps nestlings with few nest mates lose more heat 

(due to reduced insulating quality of siblings) and so require more food (Royama 1966). Yet, 

here reduced broods were visited more often at ages 7-9 days, when they should be capable of 

thermoregulating (Dunn 1979). 

From the nestling perspective, each nestling in enlarged broods received the same 

amount of care as nestlings from control broods, indicating that the increase in female 

reproductive effort resulted in more fledglings of adequate quality, same as observed in other 

short-lived species (e.g., the Great tit Parus major, Sanz and Tinbergen 1999). In contrast, 

feeding rate per nestling declines with brood size in Tree Swallows (Leffelaar and Robertson 

1986, Murphy et al. 2000, Shutler et al. 2006). Thus, White-rumped swallows invested more 

in young from enlarged broods than Tree Swallows, despite the higher effort to find food and 

the potential costs for future reproduction for the female (but see Murphy et al. 2000). 

Parental care normally peaks around the middle of the nestling period and gradually 

declines until fledging (Leffelaar and Robertson 1986, Lombardo 1991, Low et al. 2011). 

Feeding rate per nestling varied little over time in control and enlarged broods, but declined as 
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expected near the end of the period in reduced broods. Because provisioning should be a 

consequence of demand by the young, the constant feeding rate over time in control and 

enlarged broods suggests that demand was constant and females were working at their 

maximum rate. 

The lack of differential survival of parents or fledglings for enlarged broods in Tree 

Swallows led to the suggestion that reproduction is cost free (Murphy et al. 2000, Shutler et 

al. 2006, De Steven 1980, Wheelwright et al. 1991, Wiggins 1990). If true, why don’t they 

raise more young? Explanations may depend upon 1) costs of egg formation and incubation 

(Monaghan and Nager 1997, but see Shutler et al. 2006), 2) elevated post-fledging care 

(Morehouse and Brewer 1968), 3) bet-hedging due to environmental unpredictability (Stearns 

2000); or 4) timing in the breeding season (i.e. parents that start incubation earlier win an 

advantage on the nestling and post-fledging period, however, lower food supplies at the 

beginning of the breeding season restrain the number of eggs; Murphy et al. 2000, Shutler et 

al. 2006). Here, we can rule out the fourth hypothesis because clutch and egg size were 

constant over time (personal observation), in contrast to places with strong seasonal effects on 

food (Liljesthröm et al. 2012, Massoni et al. 2007, Winkler and Allen 1996). Nevertheless, 

unpredictably cold and rainy days are common. Thus, we suggest that the third option, bet-

hedging, is likely. The first and second hypotheses remain to be tested and may act in concert 

with bet-hedging. 

In conclusion, adult White-rumped Swallows seem to favor their own survival at the 

cost of offspring quality, but to confirm this, further studies will need to investigate return 

rates of offspring from broods of different sizes to examine costs for first-year survival. 

Though provision rate was lower than possible in control broods, increasing parental care 

appears to be costly and may only be worth the effort when greater numbers of young fledge. 

So, the reproductive value of any brood is determined by a combination of numbers and 
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survival probability, which suggests that more young of lower survival probability can yield 

greater future reproductive success than fewer young of greater survival probability. 
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Figure 1. Nesting sequence of the experimentally manipulated nests of the White-rumped 

Swallow during the breeding season of 2012-2013 in southern Brazil. Bars indicate the 

number of nests that hatched during that week in each brood-size treatment or those that were 

abandoned or excluded from analyses (left y-axis). Circles indicate broods that fledged at 

least one fledging (right y-axis). 

 

Figure 2. Daily growth rate of A) weight and B) wing length was estimated in time intervals 

of 3 days for each nestling and averaged within broods. Nestlings were part of a brood 

manipulation experiment with White-rumped Swallows. Symbols are mean daily growth for 

treatments and whiskers are 95% confidence intervals. 

 

Figure 3. Comparison in weight and wing-length between smallest and largest nest-mates in 

the brood manipulation experiment in the White-rumped Swallow. Individual weight and 

wing length were subtracted from the median of the brood at nestling age 3, 6, 9, and 12 days 

(mean and 95% confidence intervals). 

 

Figure 4. Comparison of female care in the White-rumped Swallow between experimental 

brood size manipulation treatments (means, 95% confidence interval). A) is total feeding rate, 

and B) is feeding rate per nestling. For ANOVA results and sample sizes (equalized among 

treatments at each nestling age) refer to Table 3. 
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Table 1. Effects of brood size manipulation in White-rumped Swallows on mean nestling size 

at age 12 days, on mean and nestling growth per brood in 3 growth periods, and on length of 

the nestling period. Brood size treatments are reduced (n = 13 nests), control (n = 4), and 

enlarged (n = 7). Values are means (SE in parenthesis), F is the f-statistic, P is the p-value or 

* when <0.001, and r² is the coefficient of determination. 

Variable Reduced Control Enlarged F P r² 

Weight at age 12 days (g) 23.2 (0.6) 19.1 (1.6) 17.8 (1.0) 12.3 * 0.54 

Wing length at age 12 days (mm)
L
 48.9 (1.0) 42.6 (1.1) 39.8 (1.1) 11.3 * 0.52 

Weight growth (g day
-1

)  

 Age 3-6 days 2.2 (0.1) 1.4 (0.1) 1.6 (0.2) 8.8 0.002 0.46 

 Age 6-9 days 2.2 (0.1) 1.5 (0.3) 1.3 (0.2) 10.4 * 0.50 

 Age 9-12 days 1.3 (0.2) 1.6 (0.4) 1.2 (0.3) 0.3 0.72  

Wing length growth (mm day
-1

)  

 Age 3-6 days 3.0 (0.2) 2.1 (0.1) 2.2 (0.3) 5.3 0.01 0.34 

 Age 6-9 days 4.4 (0.1) 3.6 (0.4) 3.4 (0.2) 11.9 * 0.53 

 Age 9-12 days 5.4 (0.2) 5.3 (0.4) 4.5 (0.4) 2.3 0.12  

Nestling period (days) 22.9 (0.4) 26.3 (0.3) 26.7 (0.4) 28.4 * 0.73 

L
Based on the natural logarithm to normalize residuals. 
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Table 2. Simplified repeated measures ANOVA table for Figure 3 contrasting the difference 

in size from the smallest and largest nestling from each brood to the brood median in reduced, 

control, and enlarged broods of the White-rumped Swallow measured at ages 3, 6, 9, and 12 

days. df are the numerator and denominator degrees of freedom, F is the f-statistic and P is 

the p-value or * when <0.001. 

Variable Nestling Effects 

Age
a
 Age * treatment

a
 Treatment 

  df F P df F P df F P 

Weight Smallest 1.8, 38.1 32.8 * 3.6, 38.1 12.1 * 2, 21 28.0 * 

Largest 1.5, 31.2 4.0 0.04 1.7, 31.2 1.6 0.21 2, 21 6.4 0.007 

Wing 

length 

Smallest 2.1, 43.8 40.0 * 4.2, 43.8 6.5 * 2, 21 15.4 * 

Largest 2.3, 47.3 22.0 * 4.5, 47.3 4.6 0.002 2, 21 5.0 0.02
 

a
Greenhouse-Geisser correction was used due to violation of sphericity. 
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Table 3. Simplified ANOVA table from analysis shown in Figure 4 comparing total feeding 

rate and feeding rate per nestling among control, reduced, and enlarged broods of the White-

rumped Swallow at 5 age periods. All P < 0.001 except total feeding rate at 3-6 days, when P 

= 0.31, and at 10-12 days, when P = 0.74. df are the denominator degrees of freedom. 

Numerator degrees of freedom always equals 2. Variables were square-root transformed to 

obtain normality of residuals. 

Variable Age period (in days) df F r² 

Total feeding 

rate 

3-6 282 1.2  

7-9 300 13.1 0.08 

10-12 246 0.3  

13-15 306 15.3 0.09 

16-18 312 19.3 0.11 

Feeding rate per 

nestling 

3-6 282 50.7 0.26 

7-9 300 89.2 0.37 

10-12 246 50.0 0.29 

13-15 306 57.1 0.27 

16-18 312 32.0 0.17 
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3 STRANGERS IN THE NEST 

 

Capítulo submetido ao periódico Acta Ethologica. 

 

 

 

 

Se cuidar dos próprios filhotes deve trazer contribuições maiores à aptidão de 

um indivíduo, por que visitar outros ninhos? Na foto, um adulto de andorinha-

de-sobre-branco (Tachycineta leucorrhoa) alimentando um ninhego com 22 dias 

de idade. O equipamento que registra a taxa de visitação está afixado abaixo da 

caixa-ninho e conectado à antena ao redor da entrada. 

Crédito da imagem: F. MARQUES-SANTOS, 2013. 
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ABSTRACT 

White-rumped Swallows (Hirundinidae, Aves) visit nests that are not their own. Using birds 

tagged with passive-integrated transponders (PIT-tags) breeding in nest boxes in southern 

Brazil, we found that: 1) nest boxes are often visited by apparently unrelated birds (54% of 

nests were visited at least once), 2) adults visit nests of other pairs while tending their own, 3) 

visitors tend to have small broods, 4) visitors do not appear to select nests to visit based on the 

number of nestlings they contain, 5) parental care is more intense in the visited nests, and 6) 

visited nest boxes are more distant from failed than from successful visitor's nests. These 

patterns do not suggest a clear explanation for nest visiting, and we offer that inspecting other 

nests occurs when time is available (small visitor brood size) and may be prospecting for 

future nest-site availability. 

KEYWORDS: nest intruder, non-parental visit, nest site inspection, prospective behavior, 

Tachycineta leucorrhoa 
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INTRODUCTION 

During the breeding season, birds are often seen visiting conspecific nests of others and 

several explanations for this behavior have been suggested. Visitors may be helpers that 

benefit from both inclusive fitness and improving their own parental skills (Cockburn 1998, 

Lombardo 1986). An adult without a mate or territory may search for breeding opportunities 

through cuckoldry or nest parasitism (Lenda et al. 2012). Subordinate birds without nests or 

territories may search for vacancies throughout the breeding season and occupy breeding 

territories as they become available (Stutchbury and Robertson 1987). Recently fledged 

young may attempt to receive food from other breeders (Czechowski and Zduniak 2005). 

Competition for nest sites, common in non-excavating cavity nesters, may possibly result in 

infanticide and active nest usurpation (Holroyd 1975; Lombardo 1987b; Waltman and 

Beissinger 1992). Additionally, as site quality influences reproductive success, visitors at 

nests might simply be examining potential nest sites for the future, perhaps to understand 

availability or identify better breeding locations for the next breeding season (Eadie and 

Gauthier 1985; Lombardo 1987a). Though many birds search for breeding sites immediately 

before nesting, some are known to search later in the breeding season, while having active 

nests (Eadie and Gauthier 1985). Breeders that prospect in the late season have the advantage 

of using public information (in this case, information on reproductive performance of 

conspecifics) to access site quality (Valone and Templeton 2002). 

The above hypotheses have been offered for this behavior in swallows, sometimes 

without clearly testing the predictions (Czechowski and Zduniak 2005; Lombardo 1987a; 

Petrie and Møller 1991, Skutch 1961; Stutchbury 1991; Stutchbury and Robertson 1987). 

Here, we describe visit behavior to nests of other individuals in the White-rumped Swallow 

(Tachycineta leucorrhoa, Hirundinidae, Aves). 
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METHODS 

The White-rumped Swallow is migratory and nests in secondary cavities or boxes we provide 

at two neighboring reservoirs in southern Brazil (25° 30’ 24” S, 49° 1’ 37” W and 25° 30’ 22” 

S, 49° 4’ 42” W). In the breeding season of Oct. 2012 to Jan. 2013, 121 nest boxes (17 x 13 x 

25 cm; GDLA 2011) are available for nesting (79 in one area, 42 in the other). We recorded 

for every nest built inside boxes the laying, hatching and fledging dates. This study was 

concurrent with another that involved brood size manipulation, carried out at nestling age of 

three days. Modal clutch size is five, and experimental brood sizes resulted in two to seven 

nestlings per nest (chapter 2). 

Nesting adults, usually females (sexed by the presence of a brood patch), were 

captured in the boxes. Captured birds were banded with a numbered metal band and a plastic 

band with a PIT-tag (uniquely coded passive integrated transponder Cyntag 2x12 EM4102 

12KhZ). To enter boxes, birds passed through circular antennas constructed of magnetic wire 

(connected to the data-logger) at the entrance, and consequently their PIT-tag code, the time, 

and the date were logged. Data-loggers were programmed with 500 ms poll interval (during 

which a tag may be read) and 500 ms pause interval (of no reading attempts), and to record 

PIT-tags with a 15 s minimum lag, and so do not distinguish between arrivals and departures. 

Monitoring equipment was mounted at most three days after hatching and removed after 

fledging.  

Since the term “visitor” may imply visiting one's own nest or that of a different pair, 

we will avoid confusion by calling the visitor to a nest of another pair, the “inspector” and we 

will call the visit an “inspection.” We may use the term “visit” when a bird arrives at or enters 

its own nest. In the following breeding season (Oct. 2013 – Jan. 2014), returning adults and 

the boxes they occupied were identified. 
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RESULTS 

We recorded visits during the nestling period at 26 nest boxes, in 4261 recording hours with 

33 females and 5 males tagged. Twelve females and one male inspected (n = 71 inspections) 

active nests of other breeding pairs (each bird inspected from 1 to 8 nests, Fig. 1 and 2a). 

Boxes were inspected by the same bird up to seven times (Fig. 2a). When a box was inspected 

more than once by the same bird, it was on the same day (n = 28 revisits), or the next day (n = 

6) or three days later (n = 3). The interval between inspections on the same day ranged from 

15 s – 6.5 h (median = 73 s). Fourteen of the 26 monitored nest boxes (54%) were inspected 

at least once (Fig. 2a). Most inspectors had their own nests with nestlings when they inspected 

(n = 49 visits) and eight inspections were after the inspector's nest failed (n = 2 birds), and 14 

were after the inspector's success (n = 4 birds, Fig. 2b). 

Inspections began around sunrise and declined around 15:00 h, while parental visits 

were almost constant during daylight hours (Fig. 3). The shortest time interval between 

leaving its own nest and inspecting another was 25 s, in a straight-line distance of 71 m. The 

shortest interval for an inspector to return to its own box was 7 s (also 71 m away). The 

duration of the nestling period varied with brood size, from 19 – 28 d (chapter 2). The age of 

nestlings in boxes being inspected ranged from 7 – 23 d (median = 18, n = 43 visits) and the 

age of the inspector's nestlings on the inspection date ranged from 13 - 23 d (median = 20, n = 

18 visitors once a day; Fig. 4a). Inspections were distributed over more than one month, 

different birds inspected on the same day and a female that performed most inspections 

tended to concentrate them in few days (Fig. 4b). Inspectors with fledged young inspected 

other nests from 1 - 12 days after fledging (median = 10, n = 14 visits) and inspectors whose 

nest failed inspected from 5 – 10 days after failure (median = 6, n = 8 visits). 

Inspector brood size ranged from 2 - 5 (median = 3, n = 10 active inspector broods, 

Fig. 5), though one inspector successfully fledged seven young (Fig. 1). One female with two 
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nestlings was responsible for 41% of all inspections and only when included in the analyses, 

was inspector’s brood size inversely correlated with the number of nests inspected (including 

birds that did not inspect: rs = -0.37, n = 31, p = 0.04), or with the number of inspections (rs = 

-0.34, n = 31, p = 0.05). Inspected boxes had 2 - 7 nestlings (median = 7, n = 34 broods 

visited by a new bird, disregarding repeat inspections, Fig. 5). No preference for any 

particular brood size was noted, because inspectors did not consistently visit any to the 

exclusion of others, nor did they return preferentially to any box after their first inspection 

(Fig. 6). 

The female of an inspected nest box was more attentive of her nest (estimated as the 

number of entries in her own box during the hour prior to the inspection, mean = 12.3 entries 

hr
-1

, SE = 1.1, n = 63 hours) than the inspecting female (mean = 6.3 entries hr
-1

, SE = 1.1, n = 

39 hours, t-test entries h
-1

, t100 = 3.42, p < 0.001). Recorded number of entries into boxes was 

not normally distributed and so was log10 transformed to meet the assumptions of the tests. 

Yet, the number of visits per nestling was similar (visited mean = 2.4 visits hr
-1

 nestling
-1

, SE 

= 1.2, n = 63 hours, inspector mean = 2.5 entries hr
-1

 nestling
-1

, SE = 1.2, n = 39 hours, t-test 

entries per nestling hour, t100 = 0.29, p = 0.77), and so, inspectors did not neglect their own 

nests during that time. 

Distance between an inspector's own and the inspected nest box averaged 5118 m 

when the inspector's nest attempt failed (range = 4855 – 5327 m, n = 4 visits, disregarding 

repeats) and 121 m when successful (range = 20 – 274 m, n = 31 visits; Fig. 1). With only 

successful nests, the distance was similar during (mean = 119, range = 20 – 274 m, n = 24 

visits) or after (mean = 130, range = 73 – 198 m, n = 7 visits) the inspector nestling period. 

The availability of nest boxes was not limited during this study. In four years of study 

with this population, nest boxes were reused in the same season only five times. Three times, 

the same female that used the box, that previously failed; and once probably by the same 
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female, because laying began again three days after predation while laying. The last was at a 

box occupied 11 days after failure by a female with unknown previous attempts. Of the 121 

nest boxes available at the study sites, 56 were occupied in 2012 or 2013, and so a surplus of 

65 suggests that boxes are not limiting. Also, 19 adequate boxes were not used in 2012 (if 

only these 56 are considered adequate by the swallows), also suggesting that boxes are not 

limiting. 

Only nine females (plus two found dead in nest boxes at the beginning of the 2013 

season) and three males returned to our study areas (Table 1), corresponding to a return rate of 

37%. Of these, only four females and one male inspected in 2012. Only one female nested in 

an inspected box (that contained a brood of two), though another two females and one male 

nested in monitored boxes. Another three females nested in boxes not being monitored in 

2012 and we do not know if they were visited during that season. 

 

DISCUSSION 

A surprisingly large number of White-rumped Swallow nest boxes were inspected by others 

(54%), and this underestimates the true visit rate because we only counted visits by marked 

birds during the nestling period. Swallows caring for their own broods inspected others, 

sometimes repeatedly, and this is the first study to our knowledge to register this behavior in 

this species. 

Inspectors are unlikely helpers, because when raising their own broods 

simultaneously, fitness returns from parental care would be higher if invested in their own 

broods. Considering that, there is a considerable rate of extrapair mating in this species (58% 

of offspring are extrapair; Ferretti et al. 2011), males might be caring for their young in other 

nests, but the same does not apply to females. 

If inspectors were floaters and trying to get a breeding opportunity, they should visit 
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nests during egg-laying (when cuckoldry or egg dumping are possible) and not visit nests 

repeatedly during the nestling period when there are no more chances to breed. Moreover, all 

the registries of inspections were by breeding birds, and by definition, not floaters. Likewise, 

inspection is unlikely a search for nest box vacancies because boxes were inspected when 

many were still vacant. 

Birds with small broods were more likely to inspect others, although this trend comes 

only from one female, with two young, that alone accounts for 41% of all inspections. 

Nonetheless, only one inspector had seven young, and inspected another box only once, after 

its young had fledged. Considering that 31% of all nest boxes had seven nestlings, we would 

expect more inspections from this group of females if inspections were not influenced by their 

brood size. Thus, parents with fewer nestlings apparently had reduced parental demands and 

consequently had free time for other activities. This is supported by the observation that 

female inspectors, though providing the same care to each nestling, entered their own nests at 

a lower rate than did the female owners of the nests being inspected. 

Inspections began around the middle of the nestling period, after nestlings can 

thermoregulate (4-6 d after hatching, Dunn 1979). Also, the time required to inspect and 

return from neighboring nests (less than one minute) is so brief that inspection probably does 

not engender a cost for the nestlings. Apparently, therefore, parents begin inspecting as the 

nestling demand for care declines (from the middle of the nestling period onwards, Lombardo 

1991). 

In the Tree Swallow (Tachycineta bicolor), conspecific inspectors were not helpers 

nor did they pose any threats to the nest being inspected, since encounters with parents were 

usually non-aggressive (Lombardo 1986, 1987b). So perhaps they are checking potential nest 

sites for the future (Lombardo 1987a). Prospecting is especially likely for migratory birds or 

those that nest in secondary cavities, if breeding seasons are short and nest sites are limited 



55 

 

(Lombardo 1987a). If nest box location is associated with nesting area quality, we expect 

birds whose nest failed to examine nests farther from that failed nest than those with 

successful nests (Greenwood and Harvey 1982), which is indeed what happened. However, 

birds with successful nests also probably remained nearby because they were caring for their 

fledglings. Also, failed breeders did not inspect other boxes immediately after nest failure 

while successful birds inspected immediately.  

On the other hand, if public information is used to access site quality, individuals 

should be more attracted to nests with higher parent visit rate or more nestlings, and nest in 

them in the following season (Pärt and Doligez 2003). Indeed, more nests with broods of 

seven were inspected by naive birds, yet they were also more available than other brood sizes 

and their location, some in the center of boxes distribution, might have privileged inspection 

by being in foraging routes. Also, if greater broods sizes were actively selected, we would 

expect that once having been inspected by a bird they would receive more repeat visits than 

boxes with less nestlings, which was not the case. On the contrary, boxes with both small and 

large broods were inspected repeatedly and independently. Also, returning birds should prefer 

boxes with larger broods in the previous season, but only one returning bird in 2013 nested in 

an inspected box, which had a small brood in 2012. Some returning birds nested in boxes not 

monitored in 2012 and so we do not know whether they were visited. Others nested in 

monitored nests that were not visited and so inspection does not result in future use. 

In conclusion, we found that inspector breeding condition (brood size and nest 

success) was associated with the intensity, and perhaps distance, of nest-box inspection. We 

found no support for the idea that visitors are helpers, floaters or are searching for box 

vacancies, and found limited support for the hypothesis that they are checking, not selectively, 

potential nest sites in anticipation of future breeding opportunities. 
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Table 1 Number of banded White-rumped Swallows (Tachycineta leucorrhoa) that nested 

in southern Brazil in 2012 and 2013. The box chosen in 2013 by a bird that nested in 2012 

can be: 1) the same, 2) a monitored box used by a different individual that it inspected, 3) a 

monitored box used by a different individual that it did not inspect, and 4) an unmonitored 

box. 

Status Female Male 

Nested in 2012 but not in 2013 24 2 

Nested in 2012 and 2013 9 3 

Inspected in 2012 4 1 

Same nest 1 0 

Different monitored and inspected box 1 0 

Different monitored but not inspected box 0 1 

Not monitored 2 0 

Did not inspect in 2012 5 2 

Same nest 2 2 

Different monitored but not inspected box 2 0 

Not monitored 1 0 
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Figure 1 Maps of the two study areas, approximately 5 km from each other (datum WGS 84). 

Circles indicate White-rumped Swallows (Tachycineta leucorrhoa) nests that were monitored 

with passive integrated transponder (PIT) equipment and numbers indicate brood sizes. 

Absences of a number are boxes with nestlings that died prior to three days of age, when data 

loggers were usually installed. Filled circles indicate successful and open circles failed nests. 

Arrows indicate the direction the bird moved from its own to an inspected box. Dashed 

arrows indicate movement between study areas. 

Figure 2 Histograms of inspection patterns by White-rumped Swallows (Tachycineta 

leucorrhoa). A) The x-axis is the frequency of different nests inspected by an individual (n = 

13), the number of inspections of the same nest by an individual (n = 71), or the number of 

different birds that inspected the same nest (n = 34). B) The number of inspections (n = 71) 

divided among birds based on the status of their own nest (active, after success, or after 

failure). 

Figure 3 Frequency of inspections and of parental visits to their own nest, by time of day at 

nest boxes of White-rumped Swallows (Tachycineta leucorrhoa, n = 71). Frequency was 

controlled by the number of inspectors or parents, and by the number of days with records. 

Figure 4 Histograms of inspections based A) on nestling age (own nestlings and those in the 

inspected nest) and B) on day of the year  In panel A repeated inspections from a bird to a 

nest were excluded if on the same day. In panel B, repeated inspections are represented and 

we draw attention to the female that performed most of the inspections. 

Figure 5 Brood size of all monitored nests, inspected nests (the first time they were ever 

inspected and inspections by any new bird), and active nests of inspectors of White-rumped 

Swallows. 

Figure 6 Sequence of inspections with respect to brood size in the inspected nest (y-axis). 

Each panel indicates the number of young of the inspector and each line is a different 
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inspector. Arrows indicate fledging from the inspector nest. Black circles indicate inspections 

to a previously not inspected nest and open circles indicate repeat inspections. 
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Figure 1 
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Figure 2 
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Figure3 
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Figure 4 
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Figure 5 
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Figure 6 
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4 DOES BROOD SIZE COME WITH A COST? RESIDUAL EFFECTS OF 

EXPERIMENTALLY VARIABLE BROOD SIZE IN THE WHITE-RUMPED 

SWALLOW 

 

Capítulo elaborado de acordo com normas do periódico Journal of Field Ornithology. 

 

 

 

 

 

A migração sazonal de aves é extenuante e muitos morrem na jornada. 

Aqueles com melhores reservas energéticas tem chances maiores de 

retornarem à mesma área reprodutiva em temporada seguintes. Esses 

indivíduos são identificados pela anilha metálica numerada que carregam 

em uma das patas (seta). 

Crédito da imagem: F. MARQUES-SANTOS, 2013. 
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ABSTRACT. Clutch size in birds, if optimal, should maximize present and future 1 

reproductive success. Thus, increasing the number of nestlings in a brood should incur costs 2 

to offspring or to adult survival or physical condition, and thereby reduce future reproductive 3 

success. We investigated these predicted costs in the White-rumped Swallow (Tachycineta 4 

leucorrhoa) one year after experimentally manipulating brood size. Three fledglings returned 5 

to the study area the year following brood manipulation and were from both enlarged and 6 

reduced broods. Those from enlarged broods showed no sign of poorer body condition or 7 

diminished fecundity. Eleven females whose broods were manipulated the previous year also 8 

returned (38% from enlarged and 42% from control and reduced broods). Probability of adult 9 

return, as well as body condition and fecundity were independent of the brood size they raised 10 

the previous year. Though sample sizes were relatively small, results suggest the absence of 11 

reproductive costs associated with brood size in a given year. Costs may exist only in years of 12 

unpredictably low food availability or clutch size may be constrained by time or by energetic 13 

demands during other stages of the breeding cycle. 14 

KEY WORDS: brood size manipulation, fecundity, return rate, recruitment, reproductive 15 

costs, survival, Tachycineta leucorrhoa16 
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That greater reproductive effort leads to poorer survival is almost a paradigm in ecology 17 

(Orton 1929). This idea implies a trade-off between current and future reproduction, so that an 18 

increase in current breeding effort should produce long-term costs to fecundity and survival of 19 

adults and young (Williams 1966, Charnov and Krebs 1974, Calow 1979, Ardia 2005). Costs 20 

of reproduction have been investigated through observations (based on correlations between 21 

life-history traits) and experiments (in which traits are manipulated, Lindén and Møller 1989, 22 

Santos and Nakagawa 2012), with equivocal conclusions. 23 

 Costs of reproduction were absent in the Tree Swallow (Tachycineta bicolor, 24 

Hirundinidae), a migratory bird that nests in North America. Birds with experimentally 25 

increased effort in one year had equal or greater return rates in the subsequent year than 26 

control birds, with no consequences for fecundity (De Steven 1980, Wiggins 1990, 27 

Wheelwright et al. 1991, Murphy et al. 2000, Shutler et al. 2006). In addition, growth and 28 

recruitment of young were independent of brood size (De Steven 1980, Wheelwright et al. 29 

1991, Shutler et al. 2006). This lack of a cost is intriguing because trade-offs are the essence 30 

of life-history theory (Cody 1966, Martin 2004). 31 

 The related White-rumped Swallow (Tachycineta leucorrhoa) in South America, 32 

provides an opportunity to further investigate this enigma. Natural selection should favor 33 

current over future reproduction in species in circumstances that impose relatively greater 34 

mortality (as a result of severe climate or seasonal food shortage) or migratory species, due to 35 

lower probabilities of surviving to breed in the future (Charnov and Krebs 1974, Sillett and 36 

Holmes 2002, McNamara et al. 2004). Thus, the more tropical White-rumped Swallow, which 37 

migrates over shorter distances, should tend to favor future over current reproduction in 38 

comparison to the Tree Swallow (BirdLife International 2014, Martin 1996). Moreover, 39 

competition for food is presumably stronger during the breeding season for the White-rumped 40 

Swallow, and consequently, parental care should be more costly (Ashmole 1963, Martin 41 
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1996). 42 

 Contrary to expectations, however, we found that parental care increased in 43 

experimentally enlarged broods, resulting in nestlings within the range of average size 44 

(chapter 2). Although size is usually an indicative of offspring quality and recruitment 45 

probability, the development of the immune system can lag behind structural development, 46 

and so, to better understand reproductive costs to offspring, recruitment should be measured 47 

directly (Perrins 1965, Garnett 1981, Mauck et al. 2005). Because expected costs to rearing 48 

larger broods are greater in White-rumped Swallows in comparison to its northern relative, we 49 

predict that we will be able to detect residual effects on return rate, body condition or 50 

fecundity of either parents or offspring from increased broods. 51 

 52 

METHODS 53 

Study area 54 

This study was carried out in southern Brazil, where 121 nest boxes (17 x 13 x 25 cm, GDLA 55 

2011) were available in two neighboring reservoirs (25°30’24”S, 49°01’37”W, 908 m and 56 

25°30’22”S, 49°04’42”W, 897 m). Climate is Cfb in Köppen classification, that is, temperate 57 

with warm summers and without a dry season (Peel et al. 2007). During the breeding season 58 

(Oct. - Jan.) monthly precipitation averages 150.1 mm (SD = 80.1, min. = 2.4, max. = 473.8, 59 

N = 208) and daily temperature, 20.1°C (SD = 3.1, min. = 7.1, max. = 28.5, N = 18,385; data 60 

for the city of Curitiba, about 20 km from reservoirs, INMET 2014). The area includes open 61 

grassy areas, marshes and trees. 62 

Study species 63 

We studied the White-rumped Swallow (Hirundinidae), a South American migrant that nests 64 

in natural cavities or artificial nest boxes in the tropics and subtropics. In Argentina, its 65 

lifespan is of less than three years (Bulit and Massoni 2011) and clutch size averages 4.9 eggs 66 
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(Massoni et al. 2007). 67 

We captured adults, especially females, in the nest boxes by use of a trap door after 68 

clutch completion (GLDA 2011). Birds were measured (weight to 1.0 g, flattened wing length 69 

to 1.0 mm) and banded with a numbered metal band and a plastic band with a passive 70 

integrated transponder (Cyntag 2x12 EM4102 12KhZ), which was used to monitor nest 71 

visitation rate (chapter 2). 72 

Reproduction monitoring and brood manipulation experiment 73 

During the breeding season of 2012, we monitored reproduction and experimentally 74 

manipulated brood size (see below). In 2013, we monitored reproduction and identified 75 

returning females. We determined dates of laying and hatching, recorded clutch sizes and 76 

weighed eggs with an electronic scale to the nearest 0.01 g. Nestlings were weighed (to 0.01 77 

g) and wing length was measured (to 1.0 mm) when we banded them at 12 days of age. Nest 78 

boxes were checked weekly after birds arrived in the study areas; every four days after nest 79 

construction began, in order to determine date of laying of the first egg of a clutch; and daily 80 

near the estimated hatching date. Hatching date was the day when half or more of the eggs 81 

hatched and was the day zero of the nestling period. 82 

 Brood size manipulation consisted of adding or subtracting ~50% of nestlings 83 

from broods, while control broods maintained original clutch size. Control and reduced 84 

broods contained, when possible, foreign nestlings to control for manipulation effects, should 85 

they occur. Nestlings were randomly exchanged at three days of age among nests with the 86 

same hatching date (± 1 d). 87 

Statistical analysis 88 

With one sample t-tests, we compared body condition (weight and wing length) at age 12 89 

days of nestlings that returned to those that did not, and body condition of these first-year 90 

females in 2013 to the population of older females. We also compared reproductive effort of 91 
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first-year females to that of the population. We expected that first-year females from enlarged 92 

broods were lighter, had shorter wings, smaller clutches and lighter eggs than the older female 93 

average; we expected the opposite for first-year females from reduced broods. 94 

 Fisher’s exact test was used to compare the number of older females that returned 95 

versus did not return in relation to brood size treatment in 2012 (one-sided: reduced + control 96 

> enlarged). To check for residual effects of brood size manipulation on subsequent older 97 

female body condition and fecundity, we compared the differences between years in weight, 98 

clutch size, mean egg weight per clutch, and laying date among treatments (enlarged vs. 99 

reduced + control) with t-tests.  100 

 101 

RESULTS 102 

We experimentally manipulated 28 broods, three of which were abandoned. Manipulation 103 

resulted in reduced broods with 2 to 4 nestlings (n = 15), control broods with 5 nestlings (n = 104 

5), and enlarged broods with 7 nestlings (but in one nest, one nestling died early; n = 8). Only 105 

one female had two broods manipulated, none of which was successful (for analysis we 106 

considered the treatment of her second nest, because it lasted longer).  107 

We banded 27 females and 101 fledglings in 2012. Three females born in nest boxes 108 

in 2012 returned to nest in 2013 (3% of banded fledglings). One was from reduced and two 109 

from enlarged brood treatments. The return rate of older females whose broods were 110 

manipulated was 41% (N = 11). Two of the returning older females were found dead in nest 111 

boxes prior to the beginning of nest construction. In 2012, one raised a reduced brood with 112 

fledging success (number of fledglings per number of nestlings) of 75%, and the other an 113 

enlarged brood with 100% fledging success. The proportion of returning older females was 114 

similar when we compared the combined sample of 19 birds that raised control and reduced 115 

broods (42% returned) with the eight that raised enlarged broods (38% returned, Fisher’s 116 
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exact test P = 0.59). 117 

All first-year females were of average or above average size as nestlings (Table 1 118 

and Fig. 1). Contrary to expectations, only one of the first-year females that came from an 119 

enlarged brood had weight and wing length smaller than average for females (Table 1 and 120 

Fig. 1). In addition, the first-year female from a reduced brood did not have better body 121 

condition than average females. Treatment in 2012 also had no effect on weight of older 122 

females that returned in 2013 (t7 = 1.2, P = 0.29, Fig. 2A). 123 

Reproductive effort was apparently similar among first-year females. We had 124 

predicted that effort (either egg size, clutch size, or both) from first-year females from the 125 

enlarged treatment would be smaller than average in relation to all other females. Although 126 

one had a small clutch size, her eggs were particularly heavy (Table 1, Fig. 3). The first-year 127 

female from a reduced brood had clutch and egg sizes smaller than expected. She laid her 128 

eggs between the dates of the other two first-year females, and only the first-year female with 129 

better body condition and a 5-egg clutch started laying prior to the median laying date of the 130 

sample. For returning older females, clutch size (t7 = 0.1, P = 0.90 Fig. 2B), mean egg weight 131 

per clutch (t7 = 0.2, P = 0.84, Fig. 2C), and the outset of laying in 2013 (t6 = 0.1, P = 0.92, 132 

Fig. 2D) were independent of brood size treatment in 2012. 133 

 134 

DISCUSSION 135 

White-rumped Swallows are enigmatic in that there is no evidence of a cost to rearing 136 

enlarged brood sizes. Although the number of returning females was not large, we suggest 137 

that the lack of evidence indicates a true absence of reproductive costs, because results are 138 

consistent with other studies with Tree Swallows. Here, condition of nestlings did not 139 

influence body condition or fecundity of recruits. Thus, though nestlings from enlarged 140 

broods were on average in poorer body condition than nestlings from reduced broods (chapter 141 
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2), that difference disappeared over the course of the year. The critical period in which 142 

condition is most likely to influence survival is prior to the first migration (Naef-Daenzer et 143 

al. 2001). So, we expected to have more returns of birds from the reduced treatment, but the 144 

only three females that were recruited in monitored nest boxes showed no such tendency. No 145 

effect of brood size on recruitment was found in the Tree Swallow either (De Steven 1980, 146 

Wheelwright et al. 1991, Shutler et al. 2006). 147 

 Older females return rate, body condition and fecundity were also independent of 148 

brood size in 2012. Though one could argue that our sample size was small, these results were 149 

similar to other studies with Tree Swallows that did not find costs to adult survival (return 150 

rate) or fecundity (clutch size and breeding date; De Steven 1980, Wiggins 1990, 151 

Wheelwright et al. 1991, Shutler et al. 2006). Because one of these studies increased brood 152 

sizes from the same females for three consecutive seasons, and another pooled 14 years of 153 

data that also measured incubation costs, the lack of evidence for reproductive costs is not the 154 

consequence of small effect and sample sizes, and so we believe that our results simply agree 155 

with theirs. So far, only one study with Tree Swallows found different adult return rates 156 

among brood size treatments, but not in the direction that would indicate a cost (Murphy et al. 157 

2000). Return rates are consequences not only of survival, but also of site fidelity and the 158 

probability of encounter (Bulit and Massoni 2011). Hence, the greater return rate for females 159 

with enlarged broods in that study perhaps was due, not to greater survival, but to their 160 

perceived success, as unsuccessful females disperse more (Bulit and Massoni 2011). 161 

 This absence of measurable costs in short- and long-term studies with Tree 162 

Swallows suggests that years with extreme conditions and detectable reproductive costs are 163 

unlikely to drive clutch size evolution (Shutler et al. 2006). White-rumped Swallows may 164 

provide a useful system to further investigate this idea, because rainfall in this region, that 165 

strongly influences food supply for aerial foragers, is variable and unpredictable both within- 166 



77 

 

and between-years (Williams 1961, Marques et al. 2004, pers. obs.). Within-year 167 

unpredictability should favor bet-hedging strategies, which will result in suboptimal 168 

individual clutch size in any year (Stearns 2000). Also, evidence shows that the accuracy of 169 

individual optimization is low, because females cannot predict food availability during the 170 

brood rearing period and clutch size is a direct consequence of food intake during laying, not 171 

of their physiological condition (Winkler and Allen 1995, Winkler and Allen 1996, Török et 172 

al. 2004, Dunn et al. 2011). So, different clutch sizes of females laying near in time are not 173 

based on their ability to predict environmental conditions and estimate own reproductive 174 

residual value. Hence, we would expect little adjustment in clutch size of individual females. 175 

Consequently, between-year variation in food abundance should cause fluctuating selection 176 

and maintain an adaptive variability of clutch sizes (Török et al. 2004). 177 

Alternatively, individual clutch sizes may indeed be optimal, but the consequence of 178 

other constraints (e.g., calcium for egg laying, time). In Tree Swallows time instead of 179 

reproductive costs are believed to constrain clutch sizes. It is suggested that breeding early 180 

improves offspring recruitment chances, but limits clutch size and can incur a starvation risk 181 

to parents, due to low food abundance at the beginning of the season (Murphy et al. 2000, 182 

Shutler et al. 2006). Here, in both years of study, dead adults (in nest boxes) were found prior 183 

to the beginning of nest construction (one male in 2012, two females and one of undetermined 184 

sex in 2013). This would be evidence for the existence of this possible time constraint, 185 

because it suggests that food availability was a problem when birds arrived from migration. 186 

Still, clutch and egg size were constant over the breeding season in our study (unpubl. data), 187 

in contrast to places with strong seasonal variation in food abundance (Winkler and Allen 188 

1996, Massoni et al. 2007, Liljesthröm et al. 2012). 189 

Evidence does not support the idea of reproductive costs in the White-rumped 190 

Swallow. Future studies with Tachycineta should focus on optimization based on constraints 191 
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other than effort during the nestling period, evaluate yearly variation in breeding success and 192 

look for alternative processes to clutch size optimization by which clutch sizes might evolve. 193 
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Table 1. Results of t-tests contrasting body condition and fecundity of first-year females 

that were recruited in our study to other nestlings that were not recruited and to older 

females. 

Variable (sample) 

First-year female (bar 

pattern in Fig. 1 and 3) 

t df P-value 

Alternative 

hypothesis
a
 

Weight (nestlings)
b
 Enlarged (black) 5.6 94 

 

< 0.001 = 

Enlarged (gray) 5.2 < 0.001 = 

Reduced (hatched) 16.8 < 0.001 = 

Wing length 

(nestlings)
b
 

Enlarged (black) 3.5 94 < 0.001 = 

Enlarged (gray) 1.4 0.16 = 

Reduced (hatched) 6.9 < 0.001 = 

Weight (adults)
c
 Enlarged (black) 1.3 52 0.11 > 

Enlarged (gray) 16.0 < 0.001 > 

Reduced (hatched) 10.4 1.0 < 

Wing length (adults) Enlarged (black) 4.6 52 1.0 > 

Enlarged (gray) 19.1 < 0.001 > 

Reduced (hatched) 7.3 1.0 < 

Clutch size Enlarged (black) 2.3 40 0.99 > 

Enlarged (gray) 18.6 < 0.001 > 

Reduced (hatched) 8.2 1.0 < 

Egg weight Enlarged (black) 3.4 34 1.0 > 

Enlarged (gray) 7.3 1.0 > 

Reduced (hatched) 3.2 1.0 < 
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a
Alternative hypotheses: > mean of the sample is greater than the value of the young 

female; < mean is less than the tested value; = mean is equal to the tested value. 

b
Original variable was squared to fulfill the normality assumption. 

c
Original variable was square-rooted to fulfill the normality assumption. 
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Figure 1. Body condition of nestlings from 2012 (brood size treatment of origin represented in 

bar pattern) that returned to breed in our study areas in the following year. At the left, size at 

age 12 days in comparison to other nestlings that fledged (N = 101). At the right, size at 

maturity in comparison to other females captured in 2012 and 2013 (if any of these older 

females were recaptured between years, we only represented their size in 2013; N = 56). 

 

Figure 2. Comparison of female weight (A), clutch size (B), mean egg weight per clutch (C), 

and date of laying in relation to the first clutch of the season (D) among years from female 

White-rumped Swallows that returned to nest in our study areas in the year after an 

experimental brood size manipulation. Lines are individual females and line patterns represent 

brood size treatment in 2012. In (A) some lines were nudged to prevent overlap. In (D) we 

excluded a female with two breeding attempts at a season; also note the y-axis break. The 

variation on these variables between years was independent of brood size treatment in 2012 

(see Results). 

 

Figure 3. Breeding effort of first-year females in 2013 that were born in manipulated broods 

(brood size treatment of origin represented in bar pattern). (A) Clutch size (N = 44) and (B) 

mean egg weight (N = 38) per clutch in comparison to all clutches from 2013. 
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5 CONSIDERAÇÕES FINAIS 

 

No segundo capítulo, vimos que fêmeas foram capazes de intensificar o cuidado 

parental em ninhadas aumentadas de modo que cada filhote recebesse em média a mesma 

atenção que em ninhadas controle. Assim, os tamanhos que os filhotes atingiram na idade 12 

dias foram também similares entre esses tratamentos. Esses resultados indicam que, caso 

existam custos reprodutivos em ninhadas maiores que o natural, esses custos devem ser 

absorvidos pelos adultos. 

 No terceiro capítulo, vimos que adultos com ninhadas aumentadas não visitaram 

ninhadas alheias em igual intensidade àqueles que criaram ninhadas reduzidas e controle. 

Dentre as hipóteses disponíveis para esse comportamento de visitação, nossas evidências 

apontam para a exploração de futuros locais para ninho. Se isso for verdade, adultos com 

ninhadas aumentadas não tiveram oportunidade equivalente aos seus competidores de se 

preparar para a temporada reprodutiva seguinte, o que em um ambiente natural (ou seja, em 

que cavidades naturais existem em número reduzido e possuem qualidade variável) pode 

trazer prejuízos reprodutivos futuros. 

 No quarto capítulo, verificamos que o maior esforço com cuidado de filhotes pelas 

fêmeas de ninhadas aumentas em 2012 não diminuiu a taxa retorno dessas fêmeas à nossa 

área de estudo, nem gerou efeitos residuais na condição corporal ou fecundidade delas em 

2013. Desse modo, as ninhadas da andorinha-de-sobre-branco parecem não ser ótimas se 

considerarmos o esforço reprodutivo empregado durante o período de criação de filhotes 

(ninhegos e fledglings - estes últimos avaliados indiretamente). Contudo, conforme já 

discutido nos capítulos anteriores, o gargalo energético pode ainda encontrar-se em fases do 

ciclo reprodutivo não avaliadas aqui (como postura e incubação); ou a otimização reprodutiva 

pode estar relacionada a limitações de tempo, e não de recursos. É importante também avaliar 

o impacto de substratos naturais de ninhos no sucesso reprodutivo de um adulto, de modo a 

verificar se adultos que não exibiram o comportamento de visitação a outros ninhos teriam 

menor sucesso reprodutivo na temporada seguinte que os demais. Uma última alternativa é 

que ninhadas de um indivíduo não são ótimas, e outros fatores evolutivos, como diluição de 

risco (bet-hedging) ou seleção flutuante causados por imprevisibilidade e variabilidade 

ambiental gerem os tamanhos de ninhada observados. 


