UNIVERSIDADE FEDERAL DO PARANÁ

WILLIAM THOMAZ WENDLING

SISTEMA COMPUTACIONAL E MODELAGEM PARA SIMULAÇÃO DINÂMICA
DA PRODUÇÃO FLORESTAL

CURITIBA 2007

WILLIAM THOMAZ WENDLING

SISTEMA COMPUTACIONAL E MODELAGEM PARA SIMULAÇÃO DINÂMICA DA PRODUÇÃO FLORESTAL

Tese apresentada ao Programa de Pós-Graduação em Engenharia Florestal, Setor de Ciências Agrárias, Universidade Federal do Paraná, como requisito parcial à obtenção do título de Doutor em Ciências Florestais, Área de Concentração em Manejo Florestal.

Orientador: Prof. Dr. Roberto Tuyoshi Hosokawa

Co-orientadores:

Profa. Dra. Neida Maria Patias Volpi Prof. Dr. Dartagnan B. Emerenciano

CURITIBA 2007

Wendling, William Thomaz

Sistema computacional e modelagem para simulação dinâmica da produção florestal / William Thomaz Wendling. — Curitiba, 2007. 191f.

Orientador: Roberto Tuyoshi Hosokawa Tese (Doutorado em Ciências Florestais) – Setor de Ciências Agrárias, Universidade Federal do Paraná.

1. Manejo florestal. 2. Florestas – Modelos matemáticos. 3. Florestas – Simulação por computador. 4. Teses. I. Hosokawa, Roberto Tuyoshi. II. Título.

CDD 634.92 CDU 634.0.6

Universidade Federal do Paraná Setor de Ciências Agrárias - Centro de Ciências Florestais e da Madeira Programa de Pós-Graduação em Engenharia Florestal

PARECER

Defesa nº. 723

A banca examinadora, instituída pelo colegiado do Programa de Pós-Graduação em Engenharia Florestal, do Setor de Ciências Agrárias, da Universidade Federal do Paraná, após arguir o(a) doutorando(a) William Thomaz Wendling em relação ao seu trabalho de tese intitulado "SISTEMA COMPUTACIONAL E MODELAGEM PARA SIMULAÇÃO DINÂMICA DA PRODUÇÃO FLORESTAL", é de parecer favorável à APROVAÇÃO do(a) acadêmico(a), habilitando-o(a) ao título de Doutor em Engenharia Florestal, área de concentração em MANEJO FLORESTAL.

> Dr. Humberto Angelo Universidade de Brasilia Primeiro examinador

Sylvio Pellico Netto Universidade Católica do Paraná Segundo examinador

Dr. Celso Carnieri Universidade Federal do Paraná erceiro examinador

Dr. Nelson Yoshihiro Nakajima Universidade Federal do Paraná Quarto examinador

Dr. Neida Maria Patias Volpi Universidade Federal do Paraná Orientador e presidente da banca examinadora

Curitiba, 14 de dezembro de 2007.

Coordenador do Curso de Pós-Graduação em Engenharia Florestal

Antonio Carlos Batista

Vice-coordenador do curso

Graciela Ines Bolzon de Muniz

BIOGRAFIA

O autor nasceu em Curitiba, em 21 de outubro de 1950, onde se formou em Engenharia Florestal em 1975 na UFPR. Em 1978 defendeu dissertação em mestrado em Ciências Florestais, área de concentração Manejo Florestal, na UFPR, quando apresentou pacotes de programas para computador, também para modelagem de dados florestais.

De 1978 a 1980 trabalhou no Instituto de Pesquisa Experimental Florestal (FVA - Forstlichen Versuchs- und Forschungsanstalt), em Freiburg, República Federal da Alemanha, pelo convênio entre a Universidade Federal do Paraná e a Universidade Albert-Ludwigs daquela cidade.

É professor do Departamento de Ciências Florestais (DECIF-UFPR), desde 1977, onde lecionou as disciplinas de Ordenamento Florestal, atual Manejo Florestal, até 1987. Desde então leciona as disciplinas de Técnicas de Análise de Dados e Técnicas de Processamento de Dados. Lecionou também essas disciplinas para o curso de pós-graduação em Engenharia Florestal, de 1982. a 2002.

É responsável pelo Laboratório de Manejo Florestal Prof. Altair P. Barusso – Centro de Processamento de Dados, do DECIF, e é programador em linguagens de computação, tais como BASIC, FORTRAN, Clipper, FoxPro e C++.

Endereços na Internet:

william@floresta.ufpr.br wendling@ufpr.br

Ao meu filho Thiago Luiz

AGRADECIMENTOS

Ao Prof. Dr. Roberto Hosokawa, pela dedicação e competência em me orientar nesse trabalho. À Profa. Dra. Neida Volpi pela atenção e dedicação na co-orientação em assuntos de cálculos de matemática. Ao professor Dr. Dartagnan Baggio Emerenciano, pela co-orientação experiente em assuntos de dados de campo.

Aos professores Dr. Carlos Sanquetta, Dr. Nelson Nakajima e Dr. Roberto Rochadelli, pelas valiosas sugestões competentes.

Aos colegas e amigos, Dr. José Renato Soares Nunes, M.Sc Ana Paula Dalla Corte, M.Sc. Rozane Eisfeld, Dr. Carlos Rozas e Dr. Eggon Wildhauer, pelas valiosas colaborações.

Aos professores das disciplinas cursadas, para obtenção de créditos, neste Programa de Pós-Graduação em Engenharia Florestal e no Curso de Pós-Graduação em Cálculo Numérico, no CESEC-UFPR.

Aos amigos professores Dr. Ivan Crespo, Dr. Carlos Batista, Dr. Júlio Arce, Dr. Afonso Figueiredo, Dr. Nilton de Sousa e M.Sc. Diego Tyszka, pelos votos de estímulo.

À bibliotecária Tânia Baggio, pela ajuda e apoio prestados.

À servidora Vilma Kalinovski, pelo apoio fundamental e nas horas difíceis.

À International Paper do Brasil, pela cessão dos dados de campo usados na aplicação dos pacotes deste trabalho.

A todos, os meus agradecimentos do fundo do coração.

RESUMO

Propõe-se uma metodologia para organizar, sistematizar e automatizar o processamento das várias seqüências de cálculos nas diversas fases da modelagem de dados, com precisão, para viabilizar o funcionamento de um simulador dinâmico da produção em povoamentos florestais, baseada na construção de um sistema computadorizado em cinco pacotes:

- (1) pacote **Alturas** —ajuste de funções para relação hipsométrica (RH) nas parcelas de dados de campo, em árvores cujas alturas foram medidas—; além de escolher a melhor função que retrata a curva das alturas de cada parcela, para estimar as alturas não medidas no campo, constrói a função hipsométrica genérica (FHG) para estimar as alturas não cobertas pela RH e para estimar as alturas dos centros de classe da distribuição diamétrica no simulador **Dínamo**, nas diversas idades de intervenção;
- (2) pacote **Cubagem** —montagem de bancos de dados com funções de forma por classe de idade, por classe de DAP e por classe de altura—; as funções de forma, assim distribuídas, reportam a sua variabilidade entre os limites mínimos e máximos de classes para essas variáveis, compondo mecanismo com precisão para distribuição da produção volumétrica em sortimentos de produtos florestais;
- (3) pacote **Parcelas** –processamento de inventário florestal das parcelas de campo, aplicando os modelos ajustados por **Alturas** e **Cubagem**–; além de gerar as estimativas das médias de elementos dendrométricos dos povoamentos, faz estratégico cálculo de teste de aderência para a função de distribuição de freqüências Weibull, escolhendo a melhor apresentação para o seu parâmetro *a*, por parcela, como subsídio ao pacote **Atributos**;
- (4) pacote **Atributos** —classificação de sítio nos dados do inventário e ajuste de modelos para projeção de estimativas de parâmetros dos povoamentos e de suas distribuições de freqüências, necessárias ao simulador **Dínamo**, processando informações do pacote **Parcelas**—; nesses cálculos, tem-se: (a) ajuste de 10 opções de apresentação do modelo de crescimento em variações do modelo de Richards; (b) ajuste e escolha da melhor função de sobrevivência dentre 4 modelos, por classe de sítio; (c) ajuste de sistema de modelos para projeção da função Weibull, em função de parâmetros estimados do povoamento, idade, N, h_{dom} e G; (d) levantamento da idade de culminação em IMA_G máximo por classe de sítio, em garantia de que somente povoamentos em estágio de "povoamento em densidade completa" sejam utilizados em ajustes dos modelos; (e) pesquisa para escolha da melhor opção do parâmetro a para a função Weibull, por classe de sítio;
- (5) pacote **Dínamo** —simulação dinâmica de tabela de produção florestal, utilizando informações dos pacotes anteriores—; compreende três focos de abrangências para o Manejo Florestal: (a) geral em evolução; (b) sortimento em produtos industriais; (c) estrutural em classes sociais. Com esse nível de detalhamento, pode-se saber, por exemplo, quantas toras se obtém para as diversas finalidades industriais e, ainda, quantas árvores cortar e em quais classes diamétricas, das classes sociais gerencialmente selecionadas, nas diversas épocas de desbaste. **Dínamo** leva em conta o crescimento dinâmico dos limites das classes sociais do povoamento e a mortalidade natural entre esses períodos.

Palavras-chave: Manejo florestal. Florestas - Modelos matemáticos. Florestas - Simulação por computador.

ABSTRACT

A methodology is proposed to organize, systemize and computerize the process of data modelling, with precision, to enable a dynamic simulator of forest stand yield, based on a computer system of five program packages:

- (1) **Alturas** package –fitting hypsometric functions (IF) on stand data samples, by trees from which heights were measured–, it selects the best function for height stand curve, to estimate the heights that were not measured in the forest area, and makes the fitting of a generic hypsometric function (FHG) to estimate the heights, which are in outside areas of that best function fitting (IF) and to estimate the heights from each diameter class center of the diametric distribution using the **Dínamo** simulator for various thinning ages;
- (2) **Cubagem** package –construction of database systems with taper functions for age class, DBH class and height class–; the stem form functions with such distribution are in according with the variability between the limits of each class, and are essential precise instrument for the calculus of volume distribution in wood assortment for multiple forest products;
- (3) **Parcelas** package –process the forest inventory on stand data samples, through the **Alturas** and **Cubagem** fitted models–; it estimates the average stand parameters and makes the goodness-of-fit test for the Weibull frequency distribution function, to choose the best result for its *a* parameter, by each stand plot, as input to the **Atributos** package;
- (4) **Atributos** package —stand site index classification on stand data samples and fitting of models for averaged stand parameters and their frequency distribution projections, through the **Parcelas** package reports, in what way to serve **Dínamo** package—; it calculates: (a) the fitting of 10 options of yield growth model changes for the Richards models appearance; (b) the fitting of 4 models and choice of the best survive function, by each stand site index class; (c) the fitting of a system models for Weibull function projection, by estimated averaged stand parameters, such as age, N (number of trees/ ha), h_{dom} (mean dominant height), G (basal area); (d) the search of the culmination age for the maximum basal area AMI (annual mean increment), by each stand site index class, to fit models only for stands by full stocked density; (e) the choice of the best appearance for the Weibull function *a* parameter, by each stand site index class:
- (5) **Dínamo** package —dynamic simulation of forest stand yield tables, through the preceding package reports—; it consists of three Forest Management general goals: (a) general development; (b) wood assortment for multiple industry products; (c) structured by standing social classes. By these goals details, it is possible know, for example, how many timber woods for multiple industry products can be obtained and, also, how many trees to cut on which diameter class from management selected standing social classes, by various thinning ages. **Dínamo** considers the dynamic development for the limits of each standing social class and looks the natural mortality between these periods.

Key words: Forest management. Forest - Mathematical models. Forest - Computer simulator.

LISTA DE FIGURAS

FIGURA 1 - SIMBOLOGIA PARA FLUXOGRAMA	38
FIGURA 2 - ORGANOGRAMA DA METODOLOGIA	. 39
FIGURA 3 - FLUXOGRAMA DA SUBROTINA RegLin	43
FIGURA 4 - FLUXOGRAMA DA SUBROTINA RegNLin	. 46
FIGURA 5 - FLUXOGRAMA DO PACOTE Alturas	51
FIGURA 6 - FLUXOGRAMA DO PACOTE Cubagem	57
FIGURA 7 - FLUXOGRAMA DO PACOTE Parcelas	. 66
FIGURA 8 - FLUXOGRAMA DO PACOTE Atributos	74
FIGURA 9 - FLUXOGRAMA DO PACOTE Dínamo	87
LISTA DE GRÁFICOS	
GRÁFICO 1 - RESÍDUOS DA MELHOR FUNÇÃO DE CRESCIMENTO: MODELO Logística PARA k=0,30	157
GRÁFICO 2 - APLICAÇÃO DA MELHOR FUNÇÃO DE CRESCIMENTO, EM CLASSIFICAÇÃO DE SÍTIO PARA IDADE DE REFERÊNCIA EM 20 ANOS	157
GRÁFICO 3 - RESÍDUOS DA MELHOR FUNÇÃO DE SOBREVIVÊNCIA PARA SÍTIO I : MODELO Lenhart	159
GRÁFICO 4 - RESÍDUOS DA MELHOR FUNÇÃO DE SOBREVIVÊNCIA PARA SÍTIO II : MODELO Beverton	159
GRÁFICO 5 - RESÍDUOS DA MELHOR FUNÇÃO DE SOBREVIVÊNCIA PARA SÍTIO III : MODELO Lenhart	160
GRÁFICO 6 - ESTIMATIVAS DE V _{CC} (m³) EM ESTOQUE POR Dínamo EM COMPARAÇÃO ÀS MÉDIAS DE DADOS DO INVENTÁRIO DE CAMPO	177
GRÁFICO 7 - ESTIMATIVAS DE V _{CC} (m³) EM ESTOQUE POR Dínamo E SISPINUS EM COMPARAÇÃO ÀS MÉDIAS DE DADOS DO INVENTÁRIO DE CAMPO	178

LISTA DE QUADROS

QUADRO 1 -	MODELOS DE FUNÇÃO PARA RELAÇÃO HIPSOMÉTRICA	. 52
QUADRO 2 -	MODELOS DE FUNÇÃO PARA VOLUME E MODELO DIAMÉTRICO	. 61
QUADRO 3 -	MÉDIAS DOS ELEMENTOS DENDROMÉTRICOS RELACIONADOS AOS DIÂMETROS, POR PARCELA	67
QUADRO 4 -	MÉDIAS DOS ELEMENTOS DENDROMÉTRICOS RELACIONADOS ÁS ALTURAS, POR PARCELA	. 72
QUADRO 5 -	MODELOS DE SOBREVIVÊNCIA	. 80
QUADRO 6 -	MODELOS AUXILIARES PARA PROJEÇÃO DA DISTRIBUIÇÃO WEIBULL	. 84
QUADRO 7 -	COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO PARA RELAÇÃO HIPSOMÉTRICA (trecho do banco)	102
QUADRO 8 -	- ANÁLISE DE CORRELAÇÃO SIMPLES PARA APRESENTAÇÕES DE VARIÁVEL PARA COMPOSIÇÃO DAS REGRESSÕES MULTIPLAS PARA 'FHG'	103
QUADRO 9 -	- ANÁLISE ESTATÍSTICA, COEFICIENTES E VARIÁVEIS INDEPENDENTES DAS REGRESSÕES MULTIPLAS PARA 'FHG', NA MEDIÇÃO 1	104
QUADRO 10	- ANÁLISE ESTATÍSTICA, COEFICIENTES E VARIÁVEIS INDEPENDENTES DAS REGRESSÕES MULTIPLAS PARA 'FHG', NA MEDIÇÃO 2	105
QUADRO 11	- ANÁLISE ESTATÍSTICA, COEFICIENTES E VARIÁVEIS INDEPENDENTES DAS REGRESSÕES MULTIPLAS PARA 'FHG', NA MEDIÇÃO 3	106
QUADRO 12	- ANÁLISE ESTATÍSTICA PARA A FHG E PARA A RH INDIVIDUAL, POR MEDIÇÃO	107
QUADRO 13	- FREQUÊNCIAS DE ÁRVORES SECCIONADAS POR CLASSE DE DIÂMETRO / CLASSE DE ALTURA PARA OS BANCOS ffcc10.dbf E ffsc10.dbf	109

QUADRO 14 -	MODELOS DE FUNÇÃO DE FORMA PARA OS BANCO ffcc10.dbf	111
QUADRO 15 -	COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffsc10.dbf	123
QUADRO 16 -	COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS 13 MODELOS DE FUNÇÃO VOLUMÉTRICA E 1 DIAMÉTRICA, COM CASCA	135
QUADRO 17 -	COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS 13 MODELOS DE FUNÇÃO VOLUMÉTRICA E 1 DIAMÉTRICA, SEM CASCA	139
QUADRO 18 -	MODELOS HIPSOMÉTRICOS, DIAMÉTRICOS E VOLUMÉTRICOS USADOS NA CONSTRUÇÃO DOS BANCOS DE FUNÇÃO DE FORMA COM CASCA	143
QUADRO 19 -	ANÁLISE ESTATÍSTICA PARA A FUNÇÃO DE FORMA INTEGRADA E PARA O MODELO VOLUMÉTRICO	144
QUADRO 20 -	PARÂMETROS DE POVOAMENTOS ESTIMADOS PELO INVENTÁRIO FLORESTAL NA MEDIÇÃO 1 (trecho do banco)	147
QUADRO 21 -	FREQUÊNCIAS E PERCENTÍS DE POVOAMENTOS ESTIMADOS PELO INVENTÁRIO FLORESTAL NA MEDIÇÃO 1 (trecho do banco)	151
QUADRO 22 -	PAREAMENTO DAS PARCELAS PERMANENTES DO INVENTÁRIO FLORESTAL (trecho do banco)	154
QUADRO 23 -	COMPARAÇÃO DAS OPÇÕES DE MODELOS DE CRESCIMENTO PARA h _{dom} = f(idade)	156
QUADRO 24 -	COMPARAÇÃO DAS OPÇÕES DE MODELOS DE SOBREVIVÊNCIA POR CLASSE DE SÍTIO	158
QUADRO 25 -	RELATÓRIO FINAL DO PACOTE Atributos COM ANÁLISE ESTATÍSTICA, PARÂMETROS, COEFICIENTES DOS MODELOS E OUTRAS INFORMAÇÕES POR CLASSE DE SÍTIO	161

COMPARAÇÃO ÀS MÉDIAS DE DADOS DO INVENTÁRIO DE CAMPO	176
QUADRO 27 - ESTIMATIVAS DE V _{CC} (m³) EM ESTOQUE POR Dínamo E SISPINUS EM COMPARAÇÃO ÀS MÉDIAS DE DADOS DO INVENTÁRIO DE CAMPO	178
LISTA DE TABELAS	
TABELA 1 - CLASSES DE IDADE PARA BANCOS DE DADOS DE FUNÇÕES DE FORMA	59
TABELA 2 - CLASSES SOCIAIS DO POVOAMENTO FLORESTAL	88
TABELA 3 - BITOLAS INDUSTRIAIS PARA O SORTIMENTO	89
TABELA 4 - CRITÉRIOS PARA CLASSIFICAÇÃO DOS TIPOS DE DESBASTE	97
TABELA 5 - RELATÓRIO DA SIMULAÇÃO DE TABELA DE PRODUÇÃO FLORESTAL PELO PACOTE Dínamo PARA CLASSE DE SÍTIO I	166
TABELA 6 - RELATÓRIO DA SIMULAÇÃO DE TABELA DE PRODUÇÃO FLORESTAL PELO PACOTE Dínamo PARA CLASSE DE SÍTIO II	168
TABELA 7 - RELATÓRIO DA SIMULAÇÃO DE TABELA DE PRODUÇÃO FLORESTAL PELO PACOTE Dínamo PARA CLASSE DE SÍTIO III	170

LISTA DE SÍMBOLOS

 $ln x = log_e x$ - logarítimo neperiano ou natural de uma variável x

Sy.x - desvio padrão de estimativa da variável Y em relação às variáveis $X_1 \dots X_k$

CV% - coeficiente de variação para a média

R² - coeficiente de determinação múltipla

- F calculado

SQR - soma dos quadrados dos resíduos

 a_0, a_1, \dots, a_k - coeficientes estimados de modelos lineares

 b_0, b_1, \dots, b_k - idem

F

 $\textbf{\textit{c}}_0,\,\textbf{\textit{c}}_1,\,\ldots\,,\,\textbf{\textit{c}}_k\quad\text{- idem}\quad$

 $\theta_1, \theta_2, ..., \theta_p$ - parâmetros estimados de modelos não-lineares

Theta1, ... - idem

idade_{in} - idade para escopo inicial na aplicação do modelo de sobrevivência

 $N_{in} = N_{inicial}$ - total do n° de árvores plantadas por hectare, na idade_{in}

N - total do nº de árvores existentes por hectare

DAP=d=d_{1,3} - diâmetro à altura do peito (1,3m do solo) em centímetros (cm)

d_{cc} - vetor de diâmetros d_i com casca (cm), a diversas alturas h_i da árvore

d_{sc} - vetor de diâmetros d_i sem casca (cm), a diversas alturas h_i da árvore

 $d_{0,9ht} = d_{0,1}$ - diâmetro de referência medido a 10% da altura total h_t

 $d_{min},\,d_{max}$ - limites inferior e superior na distribuição de frequências em DAP (cm)

d_{minh}, d_{maxh} - limites inf. e sup. na distr. de freq. em DAP, mas com h medidas (cm)

fd - vetor da distribuição de freqüências em DAP entre d_{min} e d_{max}

d_m - média aritmética de DAPs (cm)

d_g - diâmetro médio: DAP da árvore com área transversal média (cm)

d_{dom} - média de DAPs das 100 árvores com maiores DAPs por hectare (cm)

S_d - desvio padrão de DAPs em relação a d_m (cm)

CV%_d - coef.de variação: desvio padrão de DAPs em relação a d_m em %

dp₁ e dp₂ - DAPs percentis, nas posições a 24% e a 93% na distribuição fd (cm)

h=h_t - altura total da árvore em metros (m)

h_{min} e h_{max} - limites inferior e superior na distribuição de freqüências em altura (m)

fh - vetor da distribuição de freqüências em altura entre h_{min} e h_{max}

h_m - média aritmética de alturas (m)

h_g - altura da árvore com área transversal média (m)

h_{dom} - média de alturas das 100 árvores com maiores DAPs por hectare (m)

 $\text{CV}\%_{\text{h}}$ - coef.de Variação: desvio padrão de alturas em relação a h_{m} em %

RH - relação hipsométrica, curva das alturas do povoamento, h=f(DAP)

FHG - função hipsométrica genérica

g - área tranversal a 1,3 m do solo (m²)

G - área basal por hectare: soma das áreas transversais do hectare (m²)

v - volume individual de árvore (m³)

V_{CC} - volume com casca individual (m³)

V_{SC} - volume sem casca individual (m³)

V_{CC} - volume com casca por hectare (m³)

V_{SC} - volume sem casca por hectare (m³)

a , b , c - parâmetros da função Weibull

Weib_pdmin - valor percentual de d_{min} para estimar parâmetro a da função Weibull

K-S - teste de aderência Kolmogorov-Smirnov, para distribuição calculada

id. IMAGmax - idade em que o povoamento atinge a culminação em IMA_G (anos)

sítio - capacidade produtiva do local, situado pelo povoamento florestal

IS - índice de sítio do povoamento florestal

h_{dom}Ref - h_{dom} calculado na idade de referência para classificação de IS

SUMÁRIO

1 INTRODUÇÃO	23
1.1 OBJETIVOS	24
2 REVISÃO DE LITERATURA	25
2.1 PLANEJAMENTO DA PRODUÇÃO	25
2.2 O POVOAMENTO FLORESTAL E A REGULAÇÃO DA PRODUÇÃO	25
2.3 A UTOPIA DA FLORESTA NORMAL	26
2.4 A PRODUÇÃO DE POVOAMENTOS E O SÍTIO	28
2.5 TABELA DE PRODUÇÃO	28
2.6 FUNÇÃO DE CRESCIMENTO	29
2.7 DEFINIÇÃO DOS DESBASTES	30
2.8 SIMULAÇÃO DA PRODUÇÃO FLORESTAL	32
2.9 SIMULAÇÃO DA PRODUÇÃO FLORESTAL POR COMPUTADOR	33
3 METODOLOGIA	37
3.1 MATERIAL	37
3.1.1 Organização da metodologia	39
3.1.2 Dados de campo	40
3.2 EXECUÇÃO DA METODOLOGIA	41
3.2.1 Sub-rotinas matemáticas	42
3.2.1.1 Sub-rotina <i>RegLin</i>	42
3.2.1.2 Sub-rotina <i>RegNLin</i>	45
3.2.2 Pacote Alturas	50
3.2.2.1 Ajuste de modelos de função para relação hipsométrica (RH)	52
3.2.2.2 Ajuste da função hipsométrica genérica (FHG)	53
3.2.2.3 Avaliação da FHG	55
3.2.3 Pacote Cubagem	56
3.2.3.1 Montagem dos bancos de dados para funções de forma	58
3.2.3.2 Ajuste de modelos de função para volume	60
3.2.3.3 Avaliação estatística dos bancos de dados de funções de forma	62
3.2.3.4 Considerações teóricas sobre a função de forma	63
3.2.4. Pacote Parcelas	65

	aos diâmetros	67
3.2.4.2	Ajuste de modelo probabilístico de distribuição de frequências	
	em DAP	68
3.2.4.3	Cálculo das médias dos elementos dendrométricos relacionados	
	às alturas	
3.2.4.4	Cálculo dos volumes por bancos de dados de funções de forma	72
3.2.5 P	acote Atributos	73
3.2.5.1	Ajuste de modelos de crescimento em altura dominante (h_{dom})	75
3.2.5.2	Classificação de índice de sítio nas parcelas do inventário	78
3.2.5.3	Ajuste de modelos de sobrevivência	79
3.2.5.4	Ajuste de modelo para produção em área basal	80
3.2.5.5	Cálculo da idade de culminação em IMA _G	81
3.2.5.6	Ajuste de modelos auxiliares para projeção da distribuição Weibull	82
3.2.5.7	Escolha da melhor opção em % d_{min} para parâmetro a de Weibull	84
3.2.6 P	acote Dínamo	85
3.2.6.1	Criação do cenário: entrada de informações por teclado	88
3.2.6.2	Cálculo da distribuição de freqüências em DAP por idade de	
	intervenção	89
3.2.6.3	Cálculo dos totais em N, G, V _{CC} e V _{SC} para estoque, corte e	
	remanescente, por idade de intervenção	93
3.2.6.4	Cálculo do sortimento e número de toras para estoque, corte e	
	remanescente, por idade de intervenção	95
3.2.6.5	Cálculo do tipo de desbaste por idade de intervenção	97
3.2.6.6	Apresentação do relatório final	98
	ULTADOS	
4.1 EX	ECUÇÃO DO PACOTE Alturas	101
	ECUÇÃO DO PACOTE Cubagem	
4.3 EX	ECUÇÃO DO PACOTE Parcelas 1	145
4.4 EX	ECUÇÃO DO PACOTE Atributos	155
45 FX	FCUCÃO DO PACOTE D ínamo	164

5 DISCUSSÃO	173
5.1 AVALIAÇÃO DO SIMULADOR Dínamo	175
6 CONCLUSÕES	181
REFERÊNCIAS	185
DOCUMENTOS CONSULTADOS	189

1 INTRODUÇÃO

No Brasil há uma crescente demanda interna e externa por produtos de origem de florestas, tais como celulose e papel, carvão vegetal, toras para movelaria e construção civil, etc e, agora, álcool de celulose. Do total da solicitação de produtos florestais –cerca de 390 milhões de m³/ano–, a metade é atendida pelas florestas plantadas, o que equivale a 184 milhões de m³/ano, compostos de 73% de eucaliptos e 27% de pínus.

Para atender ao mercado decorrente, portanto é natural que as políticas públicas e econômicas visem implementar as florestas plantadas, paralelamente ao esforço de se reduzir o corte de matas nativas. Segundo a Sociedade Brasileira de Silvicultura, em notícias de jornais, em 2006 foram plantados mais 131 mil hectares de florestas em todo o país, além de replantio de outros 500 mil hectares. E isso vem acontecendo em todas as regiões. Minas Gerais é o líder produtor, com 1,2 milhão de hectares de eucaliptos e pínus, seguido por São Paulo, com 970 mil hectares, Paraná, com 808 mil, Santa Catarina, com 600 mil, Bahia, com 594 mil, e Rio Grande do Sul, com 370 mil hectares.

Esses povoamentos florestais, inexoravelmente em determinadas épocas na trajetória de suas rotações, entram em fase de decisões do Manejo Florestal e, como bem define Burger (1976, p. 5), "O Ordenamento Florestal é basicamente o planejamento da produção e visa os objetivos específicos da empresa florestal. Este planejamento da produção exige três passos: 1) definição dos objetivos da empresa; 2) planejamento da produção de cada povoamento florestal; 3) planejamento da produção da empresa".

Na elaboração de um Plano de Ordenamento Florestal, deve-se planejar a produção da empresa florestal que vise não somente a produção momentânea, mas também uma estrutura de empresa que permita em longo prazo uma produção e um manejo equilibrados. Para se atender a esse objetivo, torna-se fundamental o desenvolvimento de técnicas de construção de tabelas de produção florestal, baseadas em simuladores que possibilitem a determinação da tendência de desenvolvimento futuro de povoamentos florestais, dentro de intervalos admissíveis de confiança.

Para os fundamentos do Manejo Florestal, a elaboração de um Plano de Ordenamento Florestal, o mais preciso possível, é de importância vital para a estabilidade de uma empresa florestal, pois viabiliza tanto o equilíbrio do fluxo de madeira, quanto o volume de investimento e a receita da empresa.

1.1 OBJETIVOS

Este trabalho visa propor uma metodologia, com base na construção de um sistema computadorizado, para organizar, sistematizar e automatizar o processamento das várias seqüências de cálculos nas diversas fases da modelagem de dados, com precisão, para fornecer subsídios para o funcionamento de um simulador dinâmico da produção em povoamentos florestais, tendo como objetivos:

- ajustar funções para relação hipsométrica em parcelas de dados de campo e ajustar a função hipsométrica genérica (FHG);
- montar bancos de dados com funções de forma por classe de idade, por classe de DAP e por classe de altura;
- 3) processar inventário florestal em parcelas de dados de campo;
- 4) classificar sítio nos dados do inventário e ajustar modelos para projeção de estimativas de parâmetros dos povoamentos e da sua distribuição de freqüências, para o simulador da produção florestal;
- 5) construir o simulador dinâmico de tabela de produção florestal.

2 REVISÃO DE LITERATURA

2.1 PLANEJAMENTO DA PRODUÇÃO

Na elaboração de um Plano de Ordenamento, em um plano de produção em médio prazo para uma empresa, deve-se entender bem o funcionamento da produção florestal, as maneiras de sua mensuração e como ela é influenciada pelos diversos fatores. O Plano de Ordenamento deve tratar da solução de quatro problemas: 1) o planejamento do manejo adequado para cada povoamento; 2) a prognose da produção; 3) a obtenção de uma produção equilibrada da empresa no período do plano; 4) a obtenção de uma estrutura da empresa que evite no futuro desequilíbrios da produção e do volume de trabalho (BURGER, 1976, p. 6).

Planejar a produção de uma floresta significa definir os objetivos pretendidos, ou os "Retornos de Investimentos", e prever, em termos de longo prazo, a produção total, incluindo todos os cortes a se realizar no povoamento, quais sejam: desbastes, cortes seletivos, cortes para regeneração, corte final, etc. Trata-se do ordenamento de uma floresta, tanto em otimização da produção madeireira, da produção financeira, quanto da produção de benefícios indiretos –sociais e ecológicos– a um custo mínimo, sejam eles de produção, custos sociais ou custos ecológicos (HOSOKAWA, 1982, p. 7).

2.2 O POVOAMENTO FLORESTAL E A REGULAÇÃO DA PRODUÇÃO

O Manejo Florestal visa, primordialmente, a melhor produção em povoamentos florestais. O povoamento florestal é, em primeiro lugar, uma unidade biológica, dentro da qual as condições ecológicas são semelhantes. Partindo-se dessa teoria, dever-se-ia considerar, por exemplo, um grupo de árvores numa baixada alagadiça ou um talhão em sítio melhor, definidos como povoamentos próprios. Porém, por razões práticas, geralmente se negligencia tais pequenas diferenças. A unidade que se considera como povoamento deve ter no mínimo 1 ha e, na maioria dos casos, o povoamento coincide com o talhão.

É preciso caracterizar detalhadamente os povoamentos para: a) a comparação da produção de povoamentos realizada até a presente data; b) a análise do potencial futuro de um povoamento; c) a determinação das medidas de decisão adequadas para conduzir a produção futura dos povoamentos. Pode-se, então, diferenciá-los por cinco características mais importantes: 1) área do povoamento; 2) tipo de povoamento (puro ou misto, equiâneo ou dissetâneo, regime de manejo); 3) densidade do povoamento; 4) médias dos elementos dendrométricos; 5) freqüência e correlação dos elementos dendrométricos (BURGER, 1976, p. 26).

A regulação dos povoamentos florestais é o principal objetivo do Manejo Florestal. Trata-se de se obter um planejamento em curto, médio e longo prazos que indique quais de suas árvores, em que quantidades e quando as intervenções por desbastes e corte final devem acontecer.

O planejamento de cortes, décadas no futuro, requer projeções de custos, rendimentos e produções para esses intervalos de tempo. A floresta regulada é a meta praticamente utópica, mas necessária a se perseguir para se obter o ideal da produção florestal sustentada (LEUCHNER, 1984, p. 131-132).

2.3 A UTOPIA DA FLORESTA NORMAL

A 'floresta normal' é um modelo conceitual para regulação florestal desenvolvido na Alemanha e na França já nos primórdios períodos do Manejo Florestal, dois séculos atrás. O modelo é prescrito em cortes razoavelmente pequenos, em blocos uniformes de árvores equiâneas. O objetivo de manejo é o da máxima produção de madeira (MEYER *et al.*, 1961, p. 48-49).

Desde aquela época, a floresta normal é definida como aquela que possui (1) incremento normal, (2) distribuição normal em classes de idade e (3) níveis de estoque de cultivo também em distribuição normal. Incremento normal é genericamente considerado como aquele máximo atingível para uma particular espécie e sítio. Entretanto, para satisfazer esse modelo, requer-se sempre mais do que uma mera regulação. Na teoria, distribuição normal em classes de idade só ocorre quando a floresta tiver uma série de povoamentos de igual produtividade, mas não necessariamente de mesmas dimensões, com variação em idade por

intervalos iguais, desde as mais jovens até as mais velhas classes. A mais velha classe de idade é a igual à idade da rotação. Esta distribuição por idade dá origem às colheitas uniformes e periódicas de madeira. E, finalmente, estoque de cultivo normal é automaticamente obtido quando há incremento normal e distribuição normal em classes de idade, ou seja, as duas primeiras condições (LEUCHNER, 1984, p. 132).

Uma floresta normal e uma floresta regulada não são a mesma coisa. A diferença é que toda floresta normal é regulada, mas nem toda floresta regulada é normal. Uma floresta normal define um conceito máximo –máximo incremento– e diz respeito a uma floresta homogênea. Uma floresta regulada pode ser uma floresta homogênea ou heterogênea e não necessita produzir máximo incremento.

Uma floresta normal não existe em qualquer lugar, com todas aquelas condições plenas, por causa da diversidade na natureza. Por exemplo, algumas variações genéticas no estoque em crescimento têm que ser consideradas, assim como inerentes variações na qualidade de sítio. Poder-se-ia compensar essas diferenças através de retificação do tamanho dos povoamentos, mas desde que hipoteticamente essas variações pudessem ser conhecidas e as suas influências na produção ser prognosticadas. A razão para as florestas normais não existirem é a constatação, mais prática, de que a maior parte das florestas sofrem mudanças de tamanho em seus replantios, todo tempo. E novos tratos com a questão da terra são adicionados e áreas são alienadas. Cada uma dessas mudanças deve ser incorporada nos planos de manejo. E, ainda, estoque normal é difícil de se definir em uma base de trabalho: há falta de registros de todos os espaçamentos e existência de levantamentos precários, tanto no passado como no presente.

Contudo, o conceito de floresta normal deve permanecer como de grande valor. É o modelo normativo para planos de manejo de povoamentos equiâneos e incorporam princípios de manejo que florestais se empenham em efetivar. A idéia de um constante fluxo anual de madeira, ou de um constante fluxo anual em pequenos múltiplos, é básica para todo plano de manejo. A idéia de maximização do incremento, em povoamentos florestais, é a primeira aproximação de um objetivo de manejo usado em muitos modelos (LEUCHNER, 1984, p. 134).

2.4 A PRODUÇÃO DE POVOAMENTOS E O SÍTIO

Entende-se por sítio, ao conjunto de fatores ecológicos que influem no desenvolvimento de povoamentos, num determinado local. Esses fatores ecológicos abrangem situações climáticas (precipitação, temperatura), edáficos e biológicos (ocorrência de fungos nocivos, plantas concorrentes). No Manejo, define-se geralmente a qualidade de sítio pela sua capacidade produtiva, que é tanto melhor quanto maior for a produção volumétrica de madeira.

O principal objetivo da classificação de sítio é ordenar os povoamentos da mesma espécie, e sujeitos ao mesmo tratamento, em grupos, de maneira que, dentro de um grupo, o desenvolvimento dos povoamentos durante a rotação seja igual, ou pelo menos muito semelhante. Ao se saber, então, a que grupo pertence um povoamento jovem, sabe-se o seu desenvolvimento até o fim da rotação (BURGER, 1976, p. 96-97).

2.5 TABELA DE PRODUÇÃO

A tabela de produção descreve o desenvolvimento de povoamentos em função de espécie, sítio, tratamento e idade. As tabelas de produção são os principais instrumentos para o planejamento da produção florestal (BURGER, 1976, p. 107-108).

Os métodos de se calcular as futuras produções desejáveis dependem do estoque em crescimento, na sua estrutura de organização silvicultural e na extensão do conhecimento do seu volume, incremento, rotações usadas e o estado dos povoamentos. Os vários métodos de cálculo da produção podem ser classificados pelas variáveis usadas: 1) área, a) controlada pelos tratos silviculturais, b) controlada pela rotação e classes de idade, c) controlada pelo desenvolvimento; 2) volume, controlado pela rotação ou idade de exploração; 3) volume e incremento, controlados pela rotação ou idade de exploração; 4) número de árvores, controlado pela dimensão de fuste e incremento (OSMASTON, 1968, p. 170).

As tabelas de produção, provenientes de funções de crescimento e de produção, são de extrema importância ao Manejo Florestal. Elas propiciam dados de

produção florestal, sobre os quais as análises do Manejo preferencialmente se baseam. Muitas tabelas de produção buscam representar uma floresta normal e primórdias tabelas se assumem como "normais" ou próximas de máximo estoque e portanto são chamadas "tabelas de produção normais". No entanto, essas tabelas, fundamentalmente construídas para povoamentos de regeneração natural, são de limitada abrangência de uso, porque muitos povoamentos não possuem estoque "normal", mas algo menos. E, nos USA por exemplo, hoje, muitos povoamentos são de regeneração artificial. Como fato adicional, essas tabelas têm a tendência de mostrar, nas classes de idade jovens, o quão denso pode ser o estoque, refletindo em grandes estoques, mas de reduzidas produções. Com isso, elas realmente não são "normais". Esses fatores trazem dificuldades aos florestais, para tomar decisões nos povoamentos.

Construídas com dados realistas, as tabelas de produção são ferramentas estratégicas ao Manejo Florestal, para prognosticar produções, como um padrão para estoque e como medida da qualidade de sítio, assim como para cálculos financeiros e para comparação entre povoamentos distintos, tanto no quesito de estoque quanto no da produção (LEUCHNER, 1984, p. 136-137).

2.6 FUNÇÃO DE CRESCIMENTO

A função de crescimento é a principal a ser ajustada na modelagem florestal, tanto para classificação de sítio como para tabela de produção. Richards (1959, citado por Scolforo, 1990, p. 13), ao estudar o crescimento de plantas, utilizou uma função de crescimento de animais, desenvolvida por Von Bertalanffy em 1941 e 1957, e propôs uma série de considerações, que possibilitaram a generalização desta função de crescimento. Posteriormente Chapman em 1960, em estudos do crescimento de peixes, chegou às mesmas conclusões de Richards. Esse modelo foi introduzido no meio florestal por Turnbull em 1963. A partir de então, uma série de trabalhos foi desenvolvida com esta função, tanto para estudos de crescimento e produção, como para classificação de sítios, como pode ser observado em trabalhos desenvolvidos por Pienaar (1965) e Pienaar e Turnbull (1973) e muitos outros.

Emerenciano (1981, p.64), em trabalho com funções de crescimento em *Pinus elliottii*, recomenda que a utilização desses modelos em prognose deve ser feita quando os dados compreendem a fase adulta da árvore, ou seja, no período após o ponto de culminação de ICAh, uma vez que, nesta fase, tem-se a tendência do crescimento praticamente definida. Lembra que a utilização de modelos de crescimento em prognose está sujeita a riscos de grandes erros, quando não se tem o crescimento futuro para comparação e devidas avaliações. Assim, para esses casos, recomenda a utilização do método empírico de Backman, o qual, por tomar como base o ponto de culminação do ICAh, para referenciá-lo à altura teórica final, define a tendência do crescimento, não incorrendo em erros tais como os que ocorrem nos modelos usuais de crescimento, que assumem aos dados a tendência segundo a função matemática ajustada.

2.7 DEFINIÇÃO DOS DESBASTES

Em 1902, a IUFRO –International Union of Forest Research Organization–, órgão que abrange as instituições de pesquisa florestal de quase todos os países do mundo, definiu 5 graus de desbaste. Após distinguir 5 classes de árvores, indicou quais as que deveriam ser cortadas para um determinado grau de desbaste. As 5 classes de árvores são:

classe 1: árvores dominantes, com copas normais e fustes bons;

classe 2: árvores dominantes, com copas deformadas e defeitos nos fustes;

classe 3: árvores co-dominantes, com copas livres;

classe 4: árvores dominadas, capazes de sobreviver;

classe 5: árvores dominadas, sem condições de sobreviver ou já mortas.

Os 5 graus de desbaste são:

grau A: corte da classe 5 e doentes de outras classes;

grau B: corte das classes 5 e 4 e parte da classe 2;

grau C: corte sucessivo de todas as árvores das classes 2 a 5 e parte da 1;

grau D: corte das classes 5 e 2 e parte da classe 1;

grau E: tal como grau D, porém mais forte.

A aplicação destes graus, porém, é muito subjetiva: dois engenheiros podem executar desbaste de grau C de maneira distinta (BURGER, 1976, p. 114-115).

Segundo Johnston, Grayson e Bradley (1977, p. 414), para definir os desbastes de forma mais exata, utiliza-se as denominações:

Tipo de desbaste – tipo de árvores removidas em desbaste;

Peso de desbaste – volume retirado em um único desbaste;

Ciclo de desbaste ou periodicidade de desbaste – intervalo médio entre desbastes;

Nível da existência – número de árvores, área basal ou volume por unidade de área;

Intensidade de desbaste – volume médio anual retirado em desbaste, o que corresponde ao peso do desbaste dividido pelo número de anos do ciclo de desbaste.

Burger (1976, p. 115-117) afirma que, para definir os desbastes de maneira mais precisa, deve-se considerar o tipo e a intensidade de desbaste separadamente, em vez de combinar as duas características como no sistema de graus. O tipo de desbaste indica quais árvores são cortadas e a intensidade indica quantas árvores são cortadas (peso de desbaste) e os intervalos (ciclo de desbaste). Conforme a dimensão das árvores a se cortar, define-se 3 tipos de desbaste: baixo, neutro e alto.

No desbaste baixo, corta-se principalmente árvores dominadas. O resultado é um povoamento com uma só camada de dominantes e co-dominantes. É o tipo mais usado em coníferas.

No desbaste alto, corta-se primordialmente árvores co-dominantes. O resultado é um povoamento com duas camadas. O objetivo desse tipo é o de fornecer árvores dominantes de boa qualidade, através da eliminação da concorrência de outras também dominantes ou co-dominantes.

No desbaste neutro, corta-se árvores igualmente de todas as classes. Um desbaste sistemático é um desbaste neutro.

Pode-se fazer a definição dos tipos, ao se dividir a média dos volumes das árvores destinadas a desbaste, as do corte, pela média dos volumes antes do desbaste, as do estoque. Se o resultado dessa relação for menor do que 1, então o desbaste pode ser classificado como baixo. Se for maior do que 1, então será alto. Se estiver em torno de 1, então será neutro.

O peso de desbaste indica a quantidade cortada e pode ser expresso como porcentagem do volume, número de árvores ou área basal absoluta cortada no desbaste.

2.8 SIMULAÇÃO DA PRODUÇÃO FLORESTAL

Hosokawa (1980, p. 4-13) comenta que todos os métodos para manutenção da persistência de produção conduzem, em longo prazo, à manutenção da persistência de rendas, entretanto não definem claramente a sucessão de cortes. Porém, de acordo com o princípio básico da economia, ou seja, na obtenção do máximo de benefícios com o mínimo de custos, infere-se na persistência de rendas, não apenas quanto à sua manutenção, mas também quanto à sua otimização. E isso pode ser alcançado através de uma sucessão de cortes dirigidos.

Devido à grande quantidade de variáveis que estão envolvidas na solução do problema desta natureza, um método adequado para resolvê-lo seria o da simulação, o qual permite inclusive prognosticar a situação futura (Speidel, 1972, citado por HOSOKAWA, 1980, p. 13).

Sanquetta (1996, p. 7-8) define "modelo de simulação da produção florestal" como um sistema, geralmente de equações matemáticas implementadas em computador, que pode ser usado para predizer o desenvolvimento de um povoamento florestal. Um modelo, para ser de fato um simulador da produção florestal, deve propiciar condições ao usuário de investigar as conseqüências de interferências hipotéticas, naturais ou artificiais, na floresta, objeto da modelagem.

Spiecker (1975, p. 16) declara que os resultados da simulação mostram ao planejador os efeitos essenciais de ações possíveis, sob condições propostas. Depende dos objetivos, e das restrições exigidas pelo responsável pela decisão, quais efeitos são essenciais. Os resultados devem mostrar as características daquelas conseqüências de ações, que são atingidas pelas restrições. Os resultados também têm que conter aquelas características que descrevem os efeitos, que influenciam o grau de cumprimento dos objetivos.

Nessa linha de pensamento, Volpi (1997) trabalha em sua tese com um sistema de otimização florestal, nas variáveis consideradas chaves para o

Planejamento Florestal, tais como coeficientes de produção –volumes de madeira–, os custos de manejo, os preços e as demandas dos produtos. Em processamento de dados por Programação Linear, cria vários cenários hipotéticos, através de perturbações estocásticas –por simulações normais e uniformes– e cenários sistemáticos. Para cada cenário, calcula a função-objetivo, mediante restrições de ordens técnicas e econômicas. Os resultados obtidos da resolução da Programação Linear, ou seja, as funções-objetivo, são ao final submetidos à analise de comparação de viabilidades.

2.9 SIMULAÇÃO DA PRODUÇÃO FLORESTAL POR COMPUTADOR

O emprego de computadores como ferramenta de cálculo na construção de sistemas de suporte à decisão no Manejo Florestal remonta desde a época dos equipamentos com circuitos em válvulas, os antigos grandes *mainframes*. Um registro com certeza dos mais antigos é narrado por Mitchell e Cameron (1985, p. 3), que apresentam trabalho desenvolvido para Douglas-fir por intermédio do programa TASS (Tree and Stand Simulator). Ao discorrer do histórico do simulador, contam que a primeira versão, TASS I, foi desenvolvida em 1963 pelo Serviço Florestal do Canadá, em convênio com as universidades de Yale, British Columbia e Idaho, E.U.A., baseada em dados de povoamentos de *Picea glauca* (Moench). Após 1968, o sistema foi aplicado em dados de Douglas-fir e em 1973 recebeu a implementação de sub-rotinas de computador e a facilidade para executar experimentos simulados. A partir daí, já sofisticadas técnicas de modelagem e mensuração se somam ao sistema, tais como projeção de copas de árvores individuais em relação a processos de crescimento, restrições por competição de copas, fatores ambientais e práticas silviculturais.

Ainda nesses anos 70, surge uma calculadora de mesa da Hewlett-Packard, modelo HP-9830A, precursora dos atuais micro-computadores, que executa linguagem BASIC. Esse equipamento, ainda de alto custo, adquirido através do convênio entre a Universidade Federal do Paraná e a Universidade Albert-Ludwigs de Freiburg-, R. F. da Alemanha, possibilitou a Wendling (1978) apresentar quatro extensos pacotes de programas para computador, para executar metodologia para

modelagem e inventário florestal. Esses pacotes foram auxiliares ao desenvolvimento de várias pesquisas, tais como a de Emerenciano (1990) e processamentos de inventários nacionais de florestas plantadas, em projetos do antigo IBDF (Instituto Brasileiro de Desenvolvimento Florestal), atual Ibama (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis), tais como o relatório divulgado em IBDF (1984).

O surgimento do IBM-PC, computador pessoal da IBM (Industry Bureau Machine), no início dos anos oitenta, com execução de linguagens BASIC e FORTRAN, deu início a um alastramento no desenvolvimento de programas de modelagem e simulação florestal. Como exemplo de um produto dessa época, pode-se citar o Harvest, compilado em FORTRAN e apresentado por Barber (1983) da Oregon State University, E.U.A., para povoamentos equiâneos. O programa, com as opções de controle por área, de controle por volume e de fluxos uniformes de volume, faz simulações com algoritmo baseado em informações paramétricas particulares conhecidas dos povoamentos.

Se a referência para a modelagem e solução de problemas de planejamento florestal for a dos algoritmos da Pesquisa Operacional, em modelos de Programação Linear ou Programação Inteira, Rodrigues *et al.* (2006) afirmam que "em diversas partes do mundo, os sistemas de suporte à decisão (SSDs) têm sido utilizados desde a década de 1970, a exemplo do Timber RAM (NAVON, 1971), Musyc (JOHNSON; JONES; DANIEL, 1979), Planflor (TAUBE NETTO, 1984), Forplan (IVERSON; ALSTON, 1986), Sisflor (RODRIGUES; LEITE; ALVES, 2000), dentre outros".

Nessa linha, Lopes *et al.* (2003) testam e confirmam a superioridade do programa SNAP III (Scheduling and Network Analysis Program), desenvolvido pela Oregon State University, em parceria com o USDA Forest Service, E.U.A., como ferramenta de apoio no planejamento da colheita e do transporte florestal em condições brasileiras. Ao se observar o nível crescente de oferta e especialização desses programas, pode-se até afirmar que hoje é impensável a hipótese de se trabalhar com transporte e colheita de madeira sem o uso dessas ferramentas de Programação Linear.

A Embrapa Florestas distribui o sistema Sisplan, composto pelos programas Planin e Replan –de análise de rentabilidade financeira de regimes de manejo– e o Sispinus –simulador de desbastes de florestas de pínus. Segundo Oliveira e Oliveira (2000, p. 5), "o desenvolvimento do SISPLAN se iniciou há doze anos, com dados de crescimento dos reflorestamentos de pínus da região Sul do Brasil e do sul de São Paulo. As espécies foram *Pinus elliottii* e *Pinus taeda* e, para cada uma, foram utilizadas medições de aproximadamente duzentos locais, com idades de 6 a 30 anos, feitas em média em quatro anos sucessivos ... O sistema ficou completo com o trabalho de Oliveira (1995)". Observa-se, em Oliveira (1995), que o programa Sispinus trabalha com modelos ajustados para projeção da função densidade de probabilidade SBB de Johnson, para distribuição de freqüências em diâmetros e alturas.

Ao simulador Sispinus, por ser o mais conhecido e popular da região Sul do país, cabe uma reflexão. Oliveira (1995) lhe atribui um caráter de alcance generalizado, ao pregar que os seus resultados se aplicam a qualquer local do Sul do país. Essa premissa porém carece de comprovação em confirmação científica, pois ele não apresenta uma avaliação de viabilidade do Sispinus para aplicação como substituição à devida modelagem de dados de outros locais, ou seja, de áreas outras e diversas às dos dados aos quais foram feitos os ajustes dos seus modelos embutidos. Em vez disso, o autor apenas afirma no capítulo das conclusões, em Oliveira (1995, p. 108), que "a eficácia do simulador foi comprovada por comparação com dados de campo e através de contatos mantidos com usuários do software". A afirmativa é muito vaga, por não mostrar dados de comparação, e insuficiente, pois, aos dados usados para os ajustes, por mais amplos que sejam, não se pode induzir a uma representatividade automática, se os modelos ajustados a eles forem aplicados a outras situações, em extrapolações a cenários de complexos níveis de produtividade e mortalidade relativos aos dados de diversos locais, classes de sítio, variações regionais, procedências das sementes dos plantios, variedades genéticas, etc.

Em cumprimento às normas em teorias consagradas do Manejo Florestal, o correto é se proceder a levantamentos e cálculos da modelagem dos dados, relativamente aos diferentes e específicos locais, para se embasar o funcionamento de simuladores da produção florestal. Muitos trabalhos, conduzidos por pesquisadores e engenheiros de empresas florestais, trilham nesse caminho, ao utilizar compiladores de linguagens de programação amigáveis, tais como o

Microsoft Visual BASIC, o Delphi –da Borland Software Corporation–, etc, para montar sub-rotinas de simulação, e programas estatísticos comerciais, para a modelagem. Um exemplo é o apresentado por Barra (2003, p. 28) que, em trabalho com *Populus* spp. no Chile, utiliza-se de um simulador chamado Salica, desenvolvido no Microsoft Excel. Segundo o autor, "para estruturar o simulador Salica são analisados os dados disponíveis mediante o uso do pacote estatístico Statgraphics 5.0 –da StatPoint, Inc.–, com seleção das cinco funções mais destacadas em cada item. Deste modo, dependendo dos dados que o usuário disponha, o simulador Salica oferece múltiplas opções para que a simulação seja a mais próxima da realidade".

Azevedo (2006, p.16-17), ao trabalhar com o Simflora, define-o como uma estrutura usada para simular os efeitos do manejo no crescimento e no rendimento futuro de florestas tropicais. Essa estrutura é composta de modelos de processos naturais, ou ecológicos, e de manejo florestal, ou silvicultural. A finalidade do modelo é simular a maneira com que as árvores individuais entram na floresta –em processo de recrutamento–, crescem e saem da floresta –em processo de mortalidade. Para Young e Muetzelfeldt (1998), o modelo Simflora permite avaliar os impactos de práticas alternativas de manejo em crescimento e produção e, para esse propósito, faz a representação detalhada da composição da floresta e da sua estrutura espacial.

3 METODOLOGIA

3.1 MATERIAL

A metodologia desta pesquisa se desenvolve em longas e complexas seqüências de cálculos, aplicadas em diversas organizações, tanto em conseqüentes entradas de dados, como em subseqüentes saídas de resultados. As saídas de resultados de algumas seqüências são as entradas de dados em outras. Assim, para se sistematizar, organizar e automatizar essas seqüências, o emprego de planilhas eletrônicas e pacotes estatísticos comerciais —que normalmente se faz em trabalhos correlatos—, aqui levaria a resultados práticos insuficientes, por suas inerentes limitações, e inócuos, frente ao volume de processamento dos dados.

A opção mais apropriada, como recurso em técnicas de solução para se resolver, de maneira customizada, todo o desenvolvimento dos cálculos, com as necessárias organizações e reorganizações de dados, é a da programação em linguagens para computador. Nesse intuito, o autor deste trabalho optou por uma linguagem de programação para gerenciamento de banco de dados –Visual FoxPro versão 8 da Microsoft Corporation– e outra linguagem para programar as sub-rotinas matemáticas –Visual C++ de domínio público, mas também disponível em distribuição da Microsoft Corporation e da Borland Software Corporation.

Os diversos programas desenvolvidos foram agrupados, de acordo com a lógica das seqüências de cálculos, em 'pacotes de programas'. O termo 'pacote' é muito utilizado na ciência da computação e "denota um grupo de programas afins ou apenas um programa sofisticado que encerre uma série completa de subprogramas" (WENDLING, 1978, p. 7). A narrativa deste trabalho é feita em seções nomeadas pelos respectivos pacotes, devidamente explicados por fluxogramas seqüenciais de cálculos e operações, cuja simbologia segue normas da ANSI-IBM (American National Standards Institut – Industry Bureau Machine World Trade). Os símbolos utilizados estão definidos na figura 1.

A confecção dos programas levou um tempo de 2 anos, período em que se experimentou muitas opções de modelagem. Porém, para casos de posteriores aplicações em outros dados, tais como de outras regiões, será suficiente a formatação desses de acordo com a exigência dos programas e especificidades.

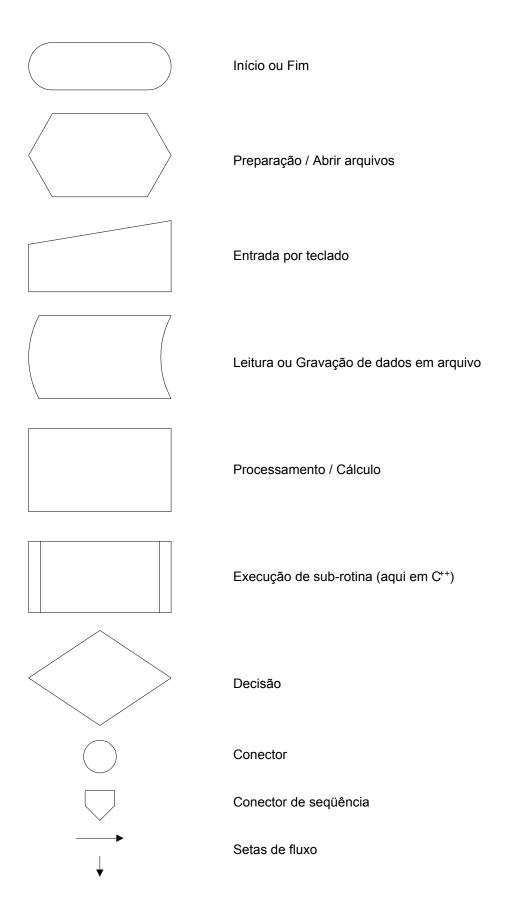


FIGURA 1 - SIMBOLOGIA PARA FLUXOGRAMA FONTE: ANSI-IBM, citado por WENDLING (1978)

3.1.1 Organização da metodologia

A metodologia está estruturada na lógica dos cálculos inclusos em cinco pacotes de programas de computação confeccionados. Esses pacotes devem ser executados na ordem seqüencial temporal, conforme o organograma da figura 2.

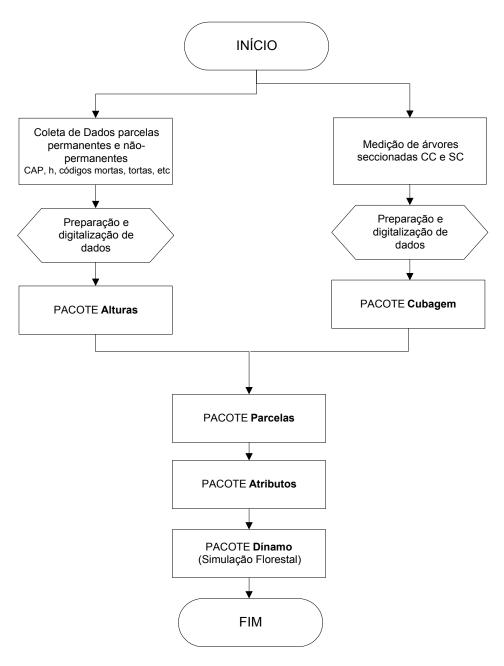


FIGURA 2 - ORGANOGRAMA DA METODOLOGIA FONTE: O autor (2007)

Os pacotes, detalhadamente relatados adiante (ver seção 3.2), podem ser explicados em linhas gerais:

- pacote Alturas –ajuste das funções para relação hipsométrica nas parcelas de dados de campo, em árvores cujas alturas foram medidas, e ajuste da função hipsométrica genérica;
- 2) pacote **Cubagem** –montagem de bancos de dados com funções de forma por classe de idade, por classe de DAP e por classe de altura;
- 3) pacote **Parcelas** –processamento do inventário florestal das parcelas de campo, com aplicação dos modelos ajustados nos pacotes anteriores;
- 4) pacote Atributos classificação de sítio nos dados do inventário e ajuste dos modelos para projeção de estimativas de parâmetros dos povoamentos, e de suas distribuições de freqüências, necessárias ao pacote Dínamo, em processamento das informações do pacote anterior;
- 5) pacote **Dínamo** –simulação dinâmica da produção florestal, com utilização das informações e dos modelos ajustados nos pacotes anteriores

As principais variáveis que constam nos fluxogramas e nos textos estão na 'lista de símbolos', após a lista de tabelas.

3.1.2 Dados de campo

Os dados utilizados são da espécie *Pinus taeda* L., coletados pela empresa INTERNATIONAL PAPER DO BRASIL, em povoamentos florestais de sua propriedade no município de Arapoti, estado do Paraná. Devido ao cunho metodológico, os dados de campo representam apenas um exemplo de aplicação.

A metodologia –composta pelo conjunto de procedimentos desenvolvidos nos pacotes de programas para computação– pode ser estendida para aplicação em outras situações, variando espécie, idade e local. Porém, a sua viabilidade está condicionada aos resultados que podem ser obtidos na execução dos programas aos dados em cada situação, mediante as suas avaliações estatísticas embutidas.

Nesses casos, devido à peculiaridade de coleta e digitalização de dados por parte de cada empresa e circunstância –não há uma padronização estadual e ainda

menos nacional—, observe-se que será necessária a formatação desses novos dados às exigências dos pacotes, possivelmente até com a confecção de outros programas de tradução. Cada caso deve ser objeto de estudo e seguir o organograma da figura 2.

Em linhas gerais, os dados utilizados neste trabalho compreendem um total de 521 parcelas, medidas em áreas de 600 m² (20 x 30m) e com idades de 3,8 a 32,2 anos. Desse total, 425 parcelas são permanentes com pelo menos duas medições e, dessas, 190 com três medições. Na seção 3.2, adiante, a descrição dos dados de campo utilizados é feita especificamente e apropriadamente em cada pacote.

Eisfeld (2004, p. 19-20) ao utilizar dados da maior gleba da empresa, cujas parcelas também compõem os dados de campo deste trabalho, descreve o perfil climático da área:

De acordo com a classificação de Koeppen, o clima da região é do tipo Cfb, ou seja, subtropical quente temperado, caracterizado por apresentar temperatura média de 18 a 22°C. O trimestre mais quente é o de dezembro a fevereiro, com temperatura média de 24 a 27°C e com precipitação de 500 a 600 mm. O trimestre mais frio é o de junho a agosto, com temperatura média de 14 a 16°C e com precipitação de 225 a 250 mm (IAPAR, 2000). A evapotranspiração média anual é de 1000 a 1200 mm/ano, sendo a maior em janeiro com 4,0 a 4,5 mm/dia e a menor em julho com 1,5 a 2,0 mm/dia. A umidade relativa média do ar é de 75 a 80% (IAPAR, 2000).

3.2 EXECUÇÃO DA METODOLOGIA

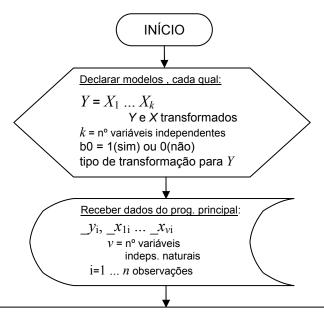
A metodologia se desenvolve em longas e complexas seqüências de cálculos. E essas seqüências seguem lógicas projetadas em algoritmos. Um algoritmo pode ser entendido como uma seqüência ordenada de passos executáveis e precisamente definidos, que manipulam um volume de informações, com objetivo de solucionar um dado problema. A descrição dos algoritmos da metodologia é feita aqui através de ferramentas auxiliares, que são os fluxogramas.

Para traduzir os algoritmos em aplicações de computação, utiliza-se as linguagens de programação. E para flexibilizar as técnicas de programação, busca-se a modulação de programas, que consiste em partilhar a tarefa de um programa

em sub-tarefas mais simples, denominadas módulos ou subprogramas ou subrotinas.

Uma sub-rotina é uma unidade de programa independente, escrita na mesma ou em outra linguagem, em instruções agrupadas que realizam uma ou algumas funções. Sua execução, associada a um identificador ou nome, é subordinada ao programa principal.

3.2.1 Sub-rotinas matemáticas


Os programas principais da metodologia —escritos em linguagem FoxPro 8, agrupados em pacotes—, demandaram o desenvolvimento de duas sub-rotinas com algoritmos matemáticos: uma para modelos lineares (*RegLin*) e outra para modelos não-lineares (*RegNLin*). Para cada modelo requisitado pelos pacotes, uma delas foi devida e previamente preparada e compilada em linguagem C⁺⁺, assumindo um nome de identificação.

3.2.1.1 Sub-rotina RegLin

Esta sub-rotina (ver figura 3) resolve, pelo método dos mínimos quadrados, modelos lineares, ou seja, que seguem o modelo linear aditivo

$$Y_{\rm i} = \beta_0 + \beta_1 X_{1\rm i} + \beta_2 X_{2\rm i} + ... + \beta_k X_{k\rm i} + \varepsilon_{\rm i} \;,\;\; {\rm i=1} \;... \; {\rm n} \; {\rm observações} \; {\rm em} \\ k \; {\rm variáveis} \; {\rm independentes}; \\ {\rm onde} \; {\rm o} \; {\rm erro} \; \; \varepsilon_{\rm i} \; \; {\rm \acute{e}} \; {\rm variável} \; {\rm aleat\acute{o}ria}, \;\; {\rm E}(\varepsilon_{\rm i}) = 0 \;,\;\; {\rm V}(\varepsilon_{\rm i}) = \sigma^2 \;,\;\; {\rm cov}(\varepsilon_{\rm i},\varepsilon_{\rm j}) = 0 \; {\rm para} \; {\rm i} \neq {\rm j} \;; \\ {\rm então} \; \;\; {\rm E}(Y_{\rm i}) = \beta_0 + \beta_1 X_{1\rm i} + \beta_2 X_{2\rm i} + ... + \beta_k X_{k\rm i} \;,\;\; {\rm V}(Y_{\rm i}) = \sigma^2 \;; \\ {\rm e} \;\;\; \varepsilon_{\rm i} \sim N(0,\sigma^2) \;. \\ \\ {\rm e} \;\;\; \varepsilon_{\rm i} \sim N(0,\sigma^2) \;. \\ \\ {\rm e} \;\;\; {\rm e} \;\;\; {\rm e} \;\;\; {\rm e} \;\; {\rm$$

No início da sub-rotina RegLin é feita a preparação dos modelos a ajustar, com definição das k variáveis independentes $X_1...X_k$, com as devidas transformações. Na apresentação da variável dependente Y, indica-se o seu tipo de transformação. Assim, RegLin pode calcular o desvio padrão de estimativa (Sy.x) corretamente,

Montar vetor de observados Y e matriz de variáveis independentes X. A primeira coluna de X é o vetor de 'uns' e as seguintes ocupadas com cada variável transformada aplicada nas linhas às i-ésimas observações.

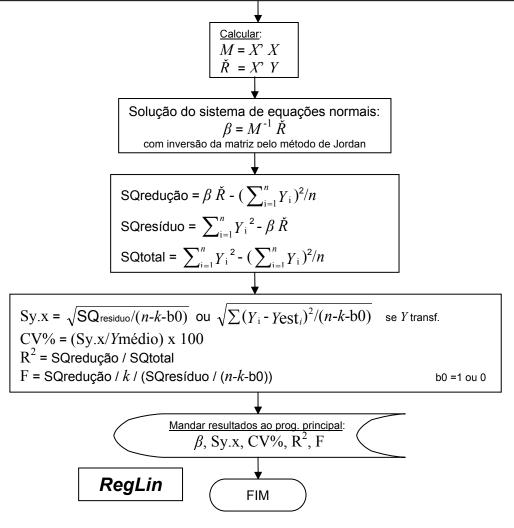


FIGURA 3 - FLUXOGRAMA DA SUBROTINA RegLin FONTE: O autor (2007)

para Y observado e estimado, Y e Yest, nas formas naturais. Também há opção para o caso do modelo não ter o coeficiente β_0 , ou seja, se a curva passa pela origem; nesse caso, a variável 'b0' na sub-rotina é definida como igual a zero. Essas opções não estão disponíveis em programas estatísticos comerciais.

Após receber os dados do programa principal, RegLin os aplica na montagem do vetor de observações Y e da matriz de variáveis independentes X:

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \dots \\ Y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1k} \\ 1 & X_{21} & X_{22} & \dots & X_{2k} \\ \dots & \dots & \dots & \dots \\ 1 & X_{n1} & X_{n2} & \dots & X_{nk} \end{bmatrix}, \text{ para calcular } \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_k \end{bmatrix} \quad \mathbf{e} \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{bmatrix},$$

onde β é o vetor de coeficientes a estimar e ε é o vetor de erros.

Para os cálculos, então RegLin prepara

M = X'X » matriz de somatórios dos coeficientes das equações normais;

 $\check{R} = X^{\circ} Y$ » vetor de somatórios dos seus termos independentes;

se no início da sub-rotina for optado b0=0, então M perde a primeira coluna e a primeira linha e \check{R} perde a primeira linha.

A solução do sistema de equações normais é obtida em

$$\beta = M^{-1} \check{R}$$

com inversão da matriz pelo método de Jordan.

E, finalmente, para avaliar cada modelo, calcula a análise de variância:

$$SQ_{\text{redução}} = \beta \, \check{R} - (\sum_{i=1}^n Y_i)^2 / n$$

$$SQ_{\text{resíduo}} = \sum_{i=1}^n Y_i^2 - \beta \, \check{R}$$

$$SQ_{\text{total}} = \sum_{i=1}^n Y_i^2 - (\sum_{i=1}^n Y_i)^2 / n$$

$$Sy.x = \sqrt{SQ_{\text{residuo}} / (n-k-b0)} \qquad \text{$^{\text{polition}}$ with descriptions of the second of t$$

Ao retornar o comando das operações ao programa principal, RegLIn lhe envia os resultados: vetor β , Sy.x, CV%, R^2 e F.

RegLin, a cada vez que for preparada para calcular um ou vários modelos para os pacotes de programas principais, recebe um nome de identificação, tais como 'hipsoms', 'fhg', 'fforma', 'volums', 'prod_G' e 'atribut'. Essas formas de apresentação são citadas na narração dos pacotes, adiante.

3.2.1.2 Sub-rotina RegNLin

Esta sub-rotina (ver figura 4) resolve, pelo método dos mínimos quadrados, modelos não-lineares, ou seja —como nos ensinam Draper e Smith (1981, p. 458-465)—, que seguem o modelo da forma

$$Y = f(\xi, \theta) + \varepsilon$$
,

onde Y =vetor de respostas

 $\xi = (\xi_1, \xi_2, \dots, \xi_k)$ ' ou $\xi = (X_1, X_2, \dots, X_k)$ ', k variáveis estimadoras ou independentes

 $\theta = (\theta_1, \theta_2, \dots, \theta_p)$, parâmetros a estimar

e ε é o vetor de erros,

pode-se, então, assumir que $E(Y) = f(\xi, \theta)$ e $E(\varepsilon) = 0$ e, também, assumir que os erros não são correlacionáveis, ou seja, $V(\varepsilon) = \sigma^2$ e $\varepsilon \sim N(0, \sigma^2)$, pois os erros são independentes.

Para u=1 ... n observações, pode-se reescrever o modelo para

$$Y_{\rm u} = f(\xi_{\rm u}, \theta) + \varepsilon_{\rm u}$$

e, após assumir a normalidade e a independência dos erros, pode-se definir a soma dos quadrados dos erros para o modelo não-linear e os dados como

$$S(\theta) = \sum_{u=1}^{n} \{Y_u - f(\xi_u, \theta)\}^2$$
.

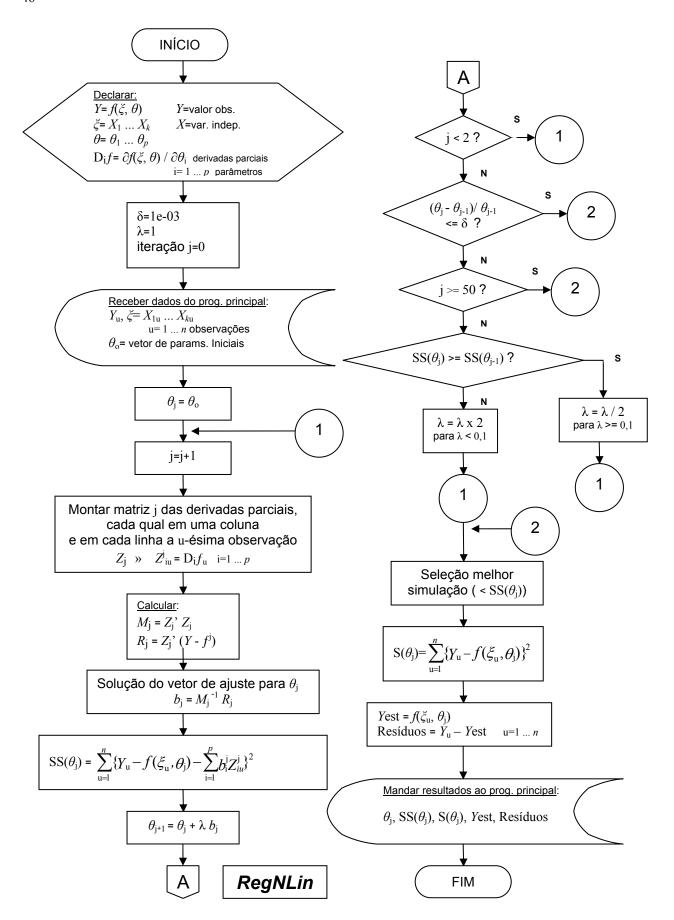


FIGURA 4 - FLUXOGRAMA DA SUBROTINA RegNLin FONTE: O autor (2007)

Desde que Y_u e ξ_u são observações fixas, a soma dos quadrados é uma função de θ . Pode-se, então, denotar $\hat{\theta}$, uma estimativa pelo método dos mínimos quadrados de θ , o qual é o valor de θ que minimiza $S(\theta)$.

Para calcular essa estimativa pelo método dos mínimos quadrados, $\hat{\theta}$, é necessário diferenciar $S(\theta) = \sum_{u=1}^n \{ y_u - f(\xi_u, \theta) \}^2$ em relação a θ . Isto fornece as p equações normais, as quais devem ser resolvidas para $\hat{\theta}$, e que terão a forma

$$\sum_{u=1}^{n} \{Y_{u} - f(\xi_{u}, \hat{\theta})\} \left[\frac{\partial f(\xi_{u}, \theta)}{\partial \theta_{i}} \right]_{\theta = \hat{\theta}} = 0, \quad i = 1 \dots p,$$

onde a expressão entre os colchetes é a derivada de $f(\xi_u, \theta)$ com respeito a θ_i , com todos os θ 's substituídos pelos $\hat{\theta}$'s correspondentes.

Para calcular a estimativa dos parâmetros θ , a sub-rotina RegNLIn usa o método da linearização pelas séries de Taylor, que processa os resultados de mínimos quadrados lineares em uma sucessão de estágios. Assume-se, primeiramente, que θ_{1o} , θ_{2o} , ..., θ_{po} sejam os valores iniciais dos parâmetros θ_1 , θ_2 ,..., θ_p . Desenvolvendo-se uma série de Taylor para $f(\xi_u, \theta)$ com centro no ponto θ_o , onde $\theta_o = (\theta_{1o}, \theta_{2o}, \dots, \theta_{po})$, e, atendo-se à primeira derivativa, pode-se ver quando θ se ajusta a θ_o , ou seja

$$f(\xi_{\rm u},\,\theta) = f(\xi_{\rm u},\,\theta_{\rm o}) + \sum_{\rm i=1}^{p} \left[\frac{\partial f(\xi_{\rm u},\theta)}{\partial\,\theta_{\rm i}} \right]_{\theta=\theta_{\rm o}} (\theta_{\rm i}\,\theta_{\rm io}) ;$$

e se considerar

$$f_{\rm u}^{\rm o} = f(\xi_{\rm u}, \theta)$$

$$\beta_i^{o} = \theta_i - \theta_{io}$$

$$Z_{iu}^{o} = \left[\frac{\partial f(\xi_{u}, \theta)}{\partial \theta_{i}}\right]_{\theta = \theta_{o}}$$

então a expressão inicial $Y_u = f(\xi_u, \theta) + \varepsilon_u$ pode ser interpretada na forma

$$Y_{\rm u}$$
 - $f_{\rm u}^{\circ}$ = $\sum_{\rm i=1}^p \beta_{\rm i}^{\circ} Z_{\rm iu}^{\circ} + \varepsilon_{\rm u}$,

que, em aproximação, possui a forma similar aos modelos lineares. Pode-se, então, proceder à estimativa dos parâmetros β_i^o , $i=1\dots p$, pelo método da teoria dos mínimos quadrados. Então, na forma matricial, tem-se

$$Z_{\rm O} = \begin{bmatrix} Z_{11}^{\rm O} & Z_{21}^{\rm O} & \cdots & Z_{P1}^{\rm O} \\ Z_{12}^{\rm O} & Z_{22}^{\rm O} & \cdots & Z_{P2}^{\rm O} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{1n}^{\rm O} & Z_{2n}^{\rm O} & \cdots & Z_{Pn}^{\rm O} \end{bmatrix} = \{Z_{iu}^{\rm O}\}, n \times p,$$

onde cada coluna é a derivada parcial de cada parâmetro resolvida para $u=1 \dots n$ e, ainda, tem-se os vetores

$$b_{O} = \begin{bmatrix} b_{1}^{O} \\ b_{2}^{O} \\ \dots \\ b_{P}^{O} \end{bmatrix} \qquad e \qquad y_{O} = \begin{bmatrix} Y_{1} - f_{1}^{O} \\ Y_{2} - f_{2}^{O} \\ \dots \\ Y_{n} - f_{n}^{O} \end{bmatrix} = Y - f^{O} ,$$

sendo que a estimativa de $\beta_0 = (\beta_1^{o}, \beta_2^{o}, ..., \beta_p^{o})$ ' é dada por

$$b_0 = (Z_0, Z_0)^{-1} Z_0, (Y - f^0)$$
.

O vetor b_o irá minimizar a soma dos quadrados

$$SS(\theta) = \sum_{u=1}^{n} \{ Y_{u} - f(\xi_{u}, \theta) - \sum_{i=1}^{p} b_{i}^{O} Z_{iu}^{O} \}^{2} ,$$

fórmula que exprime a aproximação da expansão linear do modelo. Observe-se que a fórmula de $SS(\theta)$ é diferente da definida em $S(\theta)$, na qual o apropriado modelo não-linear é empregado.

Após o ajuste de $b_{\rm o}$, o próximo passo é o de atualizar o vetor $\theta_{\rm o}$, composto por valores iniciais, alterando-o para $\theta_{\rm l}$. Refaz-se, então, os cálculos com esses parâmetros revisados, trocando-se nas fórmulas os subscritos zeros em uns. E, assim por diante, em sucessivas iterações j, ou seja

$$\theta_{j+1} = \theta_j + b_j$$

 $\theta_{j+1} = \theta_j + (Z_i, Z_j)^{-1} Z_i, (Y - f^j)$.

Esse processo interativo prossegue até a solução convergir, isto é, até que $(\theta_j - \theta_{j-1})/(\theta_{j-1} < \delta)$, onde δ é algum valor pré-fixado tal como 0,001. E em cada estágio do processo iterativo, $SS(\theta_j)$ deve ser avaliado para se checar se houve a redução do seu valor. Como critério, usa-se um peso λ para os incrementos de b_j , que é dividido pela metade se $SS(\theta_j) >= SS(\theta_{j-1})$ ou é dobrado se $SS(\theta_j) < SS(\theta_{j-1})$.

Caso não houver convergência, o processo iterativo se encerra quando j=50.

Quando, sob qualquer das hipóteses, esse processo se encerrar, RegNlin seleciona a melhor das simulações pelo critério do menor $SS(\theta_j)$ e, de posse de θ_j , calcula a soma dos quadrados dos resíduos $S(\theta_j)$, o vetor Yest, com os valores estimados, e o vetor dos resíduos $[Y_u - Y$ est $_u]$, para u=1 ... n observações. Vetores a se usar em gráficos. Em ato final, RegNLin envia esses resultados ao programa principal que a requisitou.

RegNLin, a cada vez que for preparada para calcular um dos modelos para os pacotes de programas principais, recebe um nome de identificação, tais como 'gompertz', 'logistica', 'lenhart', 'cljones', 'silva' e 'beverton'. Essas formas de apresentação são citadas na narração dos pacotes, adiante.

Como observação pertinente à eficiência desse algoritmo apresentado, em comparação de desempenho com programas estatísticos comerciais, RegNLin apresenta melhores resultados. Como exemplo, em aplicação como 'logistica' aos dados do trabalho, ajusta este modelo com $S(\theta) = 2.746,13$, ao passo que em um daqueles programas, com os mesmos dados e θ_0 , obtém-se $S(\theta) = 3800,15$, o que lhe dá uma vantagem de 27,7%. Isso se explica porque, naqueles programas, as derivadas parciais são definidas genericamente por cálculos numéricos, pois eles precisam ajustar quaisquer modelos que o usuário simular. No RegNLin, como os modelos são conhecidos e em número limitado, a derivação parcial em relação a cada parâmetro é feita em processo manual e colocada cada qual na sub-rotina.

3.2.2 Pacote Alturas

Nas parcelas de dados de campo dos levantamentos em inventários florestais, são mensuradas variáveis dendrométricas, tais como DAP (diâmetro à altura do peito, a 1,30m do solo) em centímetros e h (altura, distância do solo ao topo) em metros. Essas variáveis são as principais unidades de aferição dos levantamentos, pois fundamentam o cálculo de estimativas de parâmetros de unidades comuns de agrupamentos arbóreos, entendidos como povoamentos florestais. Através dos parâmetros estimados de povoamentos florestais, pode-se construir instrumentos de quantificação, controle e planejamento nos planos de ordenamento florestal, ou seja, do Manejo Florestal.

Por questão de lógica de economia de tempo, custo de medição e compromisso com raciocínio estatístico, nesses inventários não são medidas todas as alturas das árvores. Costuma-se medir alturas em mais ou menos metade do número de árvores. Bruchwald (1971), citado por Schmidt (1977) e Wendling (1978, p. 30-31), mostra que a medição de 20 a 30 alturas de árvores, independentemente da área, é suficiente para a obtenção da relação hipsométrica de povoamentos e que, com 30, o erro padrão fica em torno de 1%.

Para tratar da questão de estimativas da relação hipsométrica, apresenta-se o pacote **Alturas**, cujo roteiro segue o fluxograma da figura 5. Em linhas gerais, **Alturas** processa os dados das parcelas de campo do inventário florestal, com propósito de ajustar 8 modelos de função para RH (relação hipsométrica) por parcela, cujos resultados são armazenados em bancos de dados, um para cada grupo de parcelas organizado em cada evento de medição. Para as parcelas permanentes de dados deste trabalho, as medições, ou remedições, são 3, portanto são 3 bancos de dados. Para cada banco é feito um levantamento da melhor relação

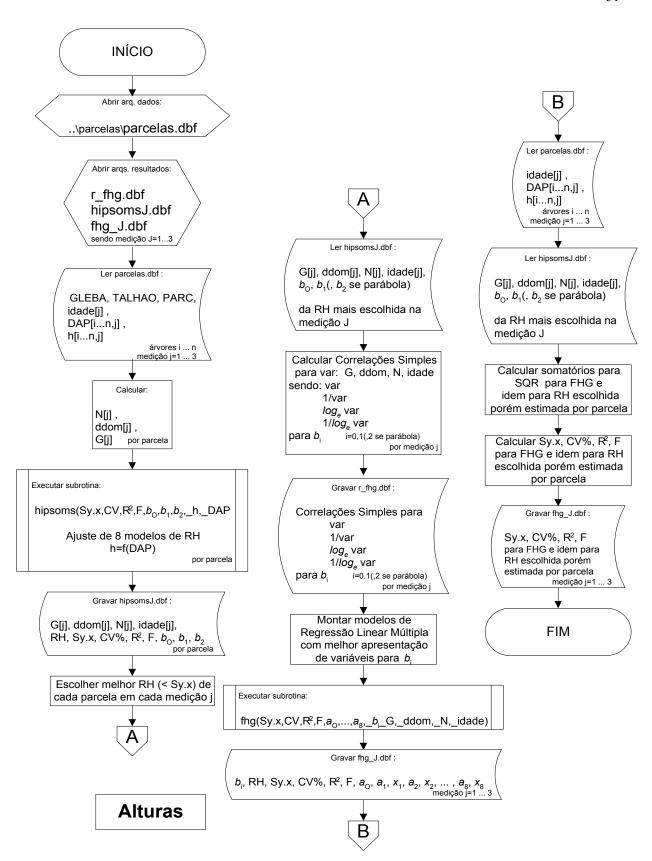


FIGURA 5 - FLUXOGRAMA DO PACOTE **Alturas** FONTE: O autor (2007)

hipsométrica (RH), isto é, aquela que foi escolhida como melhor em cada parcela, em maior freqüência no banco. Para essa RH, **Alturas** monta uma FHG (função hipsométrica genérica) em função de parâmetros estimados do povoamento, escolhendo as melhores apresentações de suas variáveis por análise de correlação simples. Essa análise é gravada em arquivo e, no final, é organizado também um banco de FHG por medição.

No início, **Alturas** abre o arquivo *parcelas.dbf* de dados de campo do inventário e faz a leitura de DAP, de todas árvores com essa variável –a que tiver DAP zerado é indicativo de falha ou morta–, e de h, de somente aquelas árvores cujas alturas foram medidas. E calcula, primeiramente, as estimativas dos parâmetros por parcela necessários para ajustar a FHG na etapa seguinte: G (área basal em m² por hectare), d_{dom} (média dos diâmetros das 100 maiores árvores em diâmetro por hectare) e N (número de árvores por hectare), além de capturar a idade (anos) da parcela.

3.2.2.1 Ajuste de modelos de função para relação hipsométrica (RH)

Os modelos de função para RH (quadro 1), ajustados em **Alturas**, são aqueles indicados como os melhores por Schmidt (1977) e usados por Wendling (1978, p. 32).

NÚMERO	FUNÇÃO	AUTOR
1	$h = b_0 + b_1/d^2$	Assman (1952)
2	$h = b_0 + b_1 ln d$	Henriksen (1950)
3	$ln h = b_0 + b_1 ln d$	Stofells (1953)
4	$ln h = b_0 + b_1/d$	Curtis (1967)
5	$h = b_0 + b_1 d^2$	_
6	$ln h = b_0 + b_1/d^2$	_
7	$h = b_0 + b_1/d$	_
8	$h = b_0 + b_1 d + b_2 d^2$	_

onde d é DAP $(d_{1,3m})$ e h é altura da árvore b_0 , b_1 e b_2 são coeficientes a estimar

QUADRO 1 - MODELOS DE FUNÇÃO PARA RELAÇÃO HIPSOMÉTRICA FONTE: WENDLING (1978)

Esses modelos são ajustados por parcela ao se executar a sub-rotina RegLin, aqui preparada para calcular essas funções e recebendo a denominação de 'hipsoms'. Os coeficientes b_0 , b_1 (e b_2 para a parábola, modelo n° 8) e a análise estatística, Sy.x, CV%, R² e F, calculados para cada um dos 8 modelos de RH por parcela, são gravados em bancos de dados hipsomsJ.dbf, J=1 ... 3, para a j-ésima medição, isto é, em 3 bancos: hipsoms1.dbf, ... hipsoms3.dbf. Também são gravados os parâmetros estimados, calculados por parcela: G, d_{dom} , N e idade.

Com os dados desses bancos, **Alturas** se põe a montar e ajustar uma função hipsométrica genérica para cada medição.

3.2.2.2 Ajuste da função hipsométrica genérica (FHG)

Originalmente a teoria da função hipsométrica genérica (FHG) –aplicada por Wendling (1978) em proposta de Schmidt (1977) para a construção de "tarifas de volume individual"— versa em técnica pela qual tabelas de volume (v) de dupla entrada, V = f(DAP,h), são transformadas em tabelas de volume de simples entrada, V = f(DAP), por intermédio de FHG. A idéia, em povoamentos equiâneos, é a de estimar os coeficientes da melhor função de RH, indiretamente através de parâmetros estimados do povoamento: G, d_{dom} , h_{dom} (altura dominante, médias das alturas das 100 maiores árvores em diâmetro do povoamento) e N, representados em variáveis transformadas. Aqui neste trabalho, no pacote **Alturas**, devido ao fato de se ter povoamentos de várias idades, propõe-se uma modificação no modelo original de FHG: ao invés daqueles parâmetros estimados, emprega-se G, d_{dom} , N e idade. Isto é, elimina-se a variável h_{dom} , por se crer dependente, e redundante na representatividade, com d_{dom} , e se acrescenta a variável idade. Busca-se assim, além da manutenção da construção de família de curvas para o povoamento, da teoria original, a sua aplicação em cenários de prognose ou projeção de alturas.

Pela teoria do Manejo Florestal, assume-se por notoriedade que esses parâmetros estimados são os indicados para expressar grau de ocupação na área (N), produção em dimensão de indivíduos (G), qualidade de produção do local (d_{dom}), além do fator temporal (idade).

Como primeiro passo para o ajuste de FHG, **Alturas** –ao mesmo tempo em que grava os valores calculados em *hipsomsJ.dbf*, *J*=1 ... 3– escolhe, entre os 8 modelos ajustados, aquele que melhor se apresenta para os dados de cada parcela, por critério de menor Sy.x . Critério esse adotado para comparar ajustes de modelos lineares e descrito na seção 3.2.1.1. E, então, faz o levantamento do número do modelo de RH mais freqüentemente escolhido, dentre todas as parcelas de cada medição J. Esse modelo, o mais popular, será aquele utilizado para a construção da FHG para a medição J.

Usando, agora como entrada, os bancos gravados, *hipsomsJ.dbf*, $J=1 \dots 3$, **Alturas** passa à leitura dos dados de G, d_{dom}, N, idade das parcelas, assim como os valores dos coeficientes b_i daquele modelo mais popular, quer ele seja o melhor para determinadas parcelas, ou não. Inicia, então, o processo de composição das regressões múltiplas, que têm nos coeficientes b_i , do modelo de RH escolhido, as variáveis dependentes e nos parâmetros estimados de povoamento -G, d_{dom}, N e idade— as variáveis independentes:

$$b_i = f(G, d_{dom}, N, idade)$$
,

onde $i = 0 \dots k$,

sendo k = 2, para a parábola (modelo nº 8) e

k = 1, para os outros modelos.

Primeiramente, **Alturas** analisa para cada b_i , por comparação, as principais apresentações de variável dos parâmetros estimados de povoamento, que são:

G	d_{dom}	N	idade
1/G	$1/d_{dom}$	1/N	1/idade
<i>log</i> e G	$log_e d_{dom}$	log_e N	<i>log</i> _e idade
1/	1/	1/ log _e N	1/ <i>log</i> e idade

e escolhe 4 dessas variáveis, uma de cada coluna de parâmetros, por critério da maior correlação simples (r) entre essas variáveis e aquele coeficiente b_i , para $i=0 \dots k$. Um relatório dessa análise é gravado em um arquivo, $r_f hg.dbf$.

Essas 4 variáveis escolhidas são automaticamente usadas para compor o grupo de variáveis independentes, onde cada uma entra duas vezes –na primeira e

na segunda potência— sendo b_i , i=0 ... k, a variável dependente. Define-se, portanto, uma regressão múltipla para cada b_i , na qual em cada eixo de abscissa se tem uma parábola para cada uma daquelas variáveis escolhidas. O uso dessas parábolas se justifica pelo seu bom ajuste.

Finalizando, **Alturas**, através da sub-rotina RegLin –preparada e recebendo a denominação de 'fhg'-, procede ao ajuste desses modelos montados. Os coeficientes a_0 , a_1 ... a_8 , com as variáveis x_1 ... x_8 da montagem, e a análise estatística, Sy.x, CV%, R² e F, calculados para cada um dos modelos para b_i , i=0 ... k, são gravados em um banco de dados para FHG, por medição, fhq J.dbf, J=1 ... 3.

3.2.2.3 Avaliação da FHG

Ao encerrar, **Alturas** faz a análise estatística, para avaliação do ajuste da FHG para cada medição. O modelo de FHG, cujos coeficientes do modelo da RH são estimados indiretamente através de parâmetros estimados do povoamento, precisa ser confrontado, por comparação de ajuste, com o modelo da RH individual. Esta possui o mesmo modelo, porém os seus coeficientes são os originais, calculados para cada parcela e gravados em *hipsomsJ.dbf*, *J*=1 ... 3. Além desses arquivos, **Alturas** faz a releitura de *parcelas.dbf*, dados de campo do inventário, para o processamento das duas somas dos quadrados dos resíduos, uma para FHG e outra para a RH individual. Com esses resíduos, calcula a análise estatística, Sy.x, CV%, R² e F, para a FHG e igualmente para a RH individual. O relatório é gravado também em *fhg J.dbf*, *J*=1 ... 3.

Os bancos de dados gravados por **Alturas**, *hipsomsJ.dbf* e *fhg_J.dbf*, *J*=1 ... 3, são utilizados nos pacotes **Parcelas** e **Dínamo**, descritos adiante neste capítulo.

3.2.3 Pacote Cubagem

A aferição do volume de troncos de árvores, quer em termos de volume total como na distribuição desse volume em classes de aproveitamento industrial, sempre ocupou o principal objetivo nos trabalhos dos manejadores florestais. Machado (1987, p. 49) afirma que "o estudo da forma dos fustes é de grande importância, pois além de afetar o volume, influi também na qualidade e na quantidade dos diversos produtos madeiráveis da árvore, tais como tábuas, vigas, ripas, etc. A forma expressa o afilamento do tronco, da base para o ápice e afeta o dimensionamento desses produtos, quando se visa obter o máximo rendimento de madeira serrada ou laminada".

Para tratar da questão de estimativas da forma dos fustes, apresenta-se o pacote **Cubagem**, cujo roteiro segue o fluxograma da figura 6. Em linhas gerais, **Cubagem** processa os dados das amostras de campo de árvores seccionadas do inventário florestal, com propósito de estudar a forma das árvores e as maneiras de sua representação. Após a leitura dos dados, **Cubagem** promove o ajuste de polinomiais que expressam a forma e as grava organizadamente em bancos de dados discriminados por classes de idade e, dentro dessas, por classes de DAP e, ainda, por classes de altura. Ainda promove o ajuste de 13 funções de volume, v = f(DAP, h), também por classes de idade, que são gravadas também em um banco de dados. Todos os bancos são duplos, retratando funções para com e sem casca.

No início, **Cubagem** abre o arquivo *cubadas.dbf*, de dados de campo de árvores seccionadas do inventário, e faz a leitura das medições de idade, h_t (altura total em metros) e vetores de diâmetros com e sem casca em centímetros $d_{cc}[i...17]$, nos quais os iésimos valores compreendem:

4 secções absolutas, i= 0,1 0,3 0,7 1,3m, em alturas fixas, e 13 secções relativas, i=0,0 0,05 0,1 0,15 0,25 0,35 0,45 0,55 0,65 0,75 0,85 0,95 1, em porcentagens de h_i em relação à h_t ,

para cada árvore e especificamente para os dados deste trabalho, cujo critério de seccionamento é o adotado pela empresa que os assim coletou.

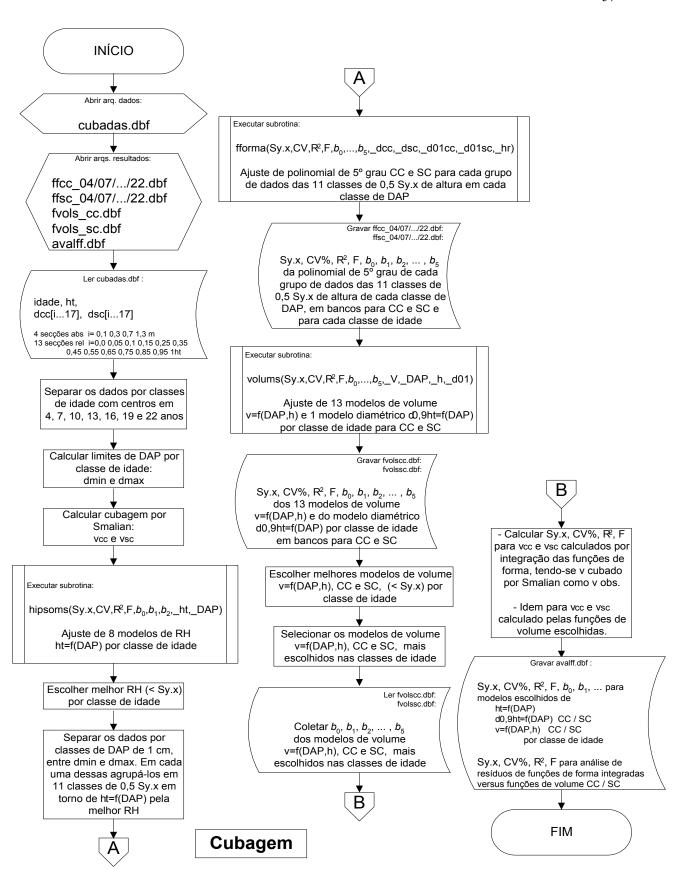


FIGURA 6 - FLUXOGRAMA DO PACOTE **Cubagem** FONTE: O autor (2007)

Nos levantamentos em inventários, de modo geral, dependendo dos critérios adotados pelos engenheiros, outras composições de secções de árvores são possíveis. No país não há uma padronização. Para cada caso, **Cubagem** deve ser adaptado para ler e calcular as secções de acordo com o princípio proposto por Hohenadl (1936).

3.2.3.1 Montagem dos bancos de dados para funções de forma

O arquivo *cubadas.dbf* retrata dados em ampla abrangência: são 3.404 árvores amostradas em idades que variam de 3 a 24 anos. Observa-se corriqueiramente em muitos trabalhos, em flagrantes de concepção teórica equivocada, que dados de árvores seccionadas, de variadas idades, são agrupados somente por classes de altura. Porém em contraposição, Prodan (1965, p. 186-191) nos ensina, em seu clássico *Holzmesslehre*, que o crescimento em volume de uma árvore depende do crescimento em área transversal —que é função direta de DAP—, do crescimento em altura e, claro, do desenvolvimento do fator de forma; que variam independentemente. E, ainda, que o crescimento em volume culmina mais tarde do que o em área transversal, e este mais tarde do que o em altura. Também mostra que a conicidade diminui com o aumento da idade.

Portanto, em cumprimento às normas em teorias consagradas do Manejo Florestal, a principal proposta do pacote **Cubagem** será não apenas o de ajustar as funções de forma das árvores, mas, principalmente, organizá-las em bancos de dados por classes de idade e, dentro dessas, por classes de DAP e, ainda, para cada uma dessas, por classes de altura. As funções de forma, assim distribuídas separadamente por idade, DAP e altura, permitem reportar a sua variabilidade entre os limites mínimos e máximos de classes para essas variáveis.

Para essa empreitada, **Cubagem**, primeiramente, separa os dados por classes de idade, definidas pelos seus centros, conforme tabela 1. Essas classes foram determinadas após testes de agrupamentos e são aquelas que refletem as épocas de decisões do povoamento florestal.

TABELA 1 - CLASSES DE IDADE PARA BANCOS DE DADOS DE FUNÇÕES DE FORMA

CLASSE	IDADES
4	< = 5,9
7	6 – 8,9
10	9 – 11,9
13	12 - 14,9
16	15 – 17,9
19	18 – 20,9
22	> = 21

FONTE: O autor (2007)

Para cada classe de idade é feito um ajuste de 8 modelos de RH, $h_t = f(DAP)$, acionando-se a sub-rotina RegLIn usada no pacote anterior, **Alturas**, configurada como 'hipsoms'. Os coeficientes b_0 , b_1 (e b_2 para a parábola, modelo n° 8) e a análise estatística, Sy.x, CV%, R² e F, para aqueles mesmos modelos de RH, mas agora por classe de idade, são calculados. **Cubagem** escolhe, então, a melhor RH por classe de idade, por critério de menor Sy.x.

Após calcular os limites, inferior e superior em DAP, d_{min} e d_{max} , para os dados da classe de idade, **Cubagem** agora separa os dados por classes de DAP de 1 cm, entre esses limites. Em cada uma dessas classes de DAP, os dados são então agrupados em 11 classes de 0,5 unidade de Sy.x na curva da RH escolhida, $h_t = f(DAP)$, e distribuídos de maneira que um grupo pega a classe central da curva, 5 grupos as classes abaixo dessa e outros 5 grupos as classes acima dessa classe central. Essas classes foram determinadas após testes de agrupamentos.

A sub-rotina *RegLIn*, agora configurada como '*fforma*', é acionada para o ajuste de polinomial de 5° grau, para cada grupo de dados, nas 11 classes de 0,5 Sy.x de altura, em cada classe de DAP. Os ajustes são duplos, um para os dados com casca (CC) e outro para os sem casca (SC). Essa polinomial, indicada por Hosokawa (1980, p. 22) que cita Prodan (1965), Schopfer (1966) e Peters (1971), representa o perfil da árvore e expressa a sua forma, em diferentes alturas relacionadas aos respectivos diâmetros, e é uma função do tipo

$$y = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + b_5 x^5$$

para
$$y = \frac{d_i}{d_{0,9ht}}$$

 $x = \frac{h_i}{h_t}$

onde $d_{0.9ht}$ = diâmetro de referência, $d_{0.1}$, medido a 10% da altura total h_t

 d_i = diâmetro medido à altura h_i ,

tal como proposto por Hohenadl (1936) e nos demonstra Prodan (1965, p. 34-36).

Os coeficientes b_0 , b_1 , ... b_5 e a análise estatística, Sy.x, CV%, R² e F, calculados para a polinomial de 5º grau, de cada um dos grupos de dados, são gravados em bancos de dados $ffcc_04/07/.../22.dbf$ e $ffsc_04/07/.../22.dbf$, isto é, um banco para cada classe de idade, e dobrado, um para CC e outro para SC. Cada banco está organizado de acordo com as classes de DAP de 1 cm, entre d_{min} e d_{max} , e, para cada uma dessas, com as 11 classes de altura.

3.2.3.2 Ajuste de modelos de função para volume

Cubagem agora passa a montar um banco de funções para volume CC e SC, como opção às funções de forma na aplicação. Mas, oportunamente, também para se fazer a avaliação do uso do banco de funções de forma, através da comparação por confronto de eficiência, entre essas e a melhor das funções de volume.

Antes de tudo, **Cubagem** faz o cálculo da cubagem CC e SC por Smalian de cada árvore, utilizando-se de todas as secções, relativas e absolutas, ordenadas ao longo da árvore, ou seja

$$v_{\textit{smalian}} = \frac{\pi}{400000} \left\{ \sum_{s=1}^{n-2} \left[\frac{(d_s^2 + d_{s+1}^2)}{2} (h_{s+1} - h_s) \right] + \frac{d_{n-1}^2 (h_t - h_{n-1})}{3} \right\}$$

onde $n = n^{\circ}$ de secções

 d_s = diâmetro em cm, medido na altura h_s em m

 $(h_t - h_{n-1})$ = (altura total – penúltima altura) = comprimento da ponta

v_{smalian} = volume total da árvore em m³

Cubagem, então, executa a sub-rotina RegLin, configurada como 'volums', e ajusta 13 modelos de volume, v = f(DAP, h), e 1 modelo diamétrico, $d_{0,9ht} = f(DAP, h)$, por classe de idade, dando como entrada as variáveis $v_{smalian}$, DAP, h_t (que corresponde a h) e $d_{0,1}$ (que corresponde a $d_{0,9ht}$). Os modelos são os do quadro 2 e os de volume são aqueles indicados como os melhores por Loetsch, Zöhler e Haller (1973, p. 154), usados por Wendling (1978, p. 29). O modelo 3, que não possuía a constante, foi modificado, acrescentando-se b_0 , para torná-lo mais flexível. O modelo 14 é o diamétrico, $d_{0,9ht} = f(DAP)$, que será usado para estimar o diâmetro de referência a partir de DAP, na aplicação das funções de forma; e é simples, equação da reta, pois existe altíssima correlação entre $d_{0,9ht}$ e DAP.

NÚMERO	FUNÇÃO	AUTOR
1	$V = b_0 + b_1 d + b_2 d^2 + b_3 dh + b_4 d^2 h + b_5 h$	Meyer
2	$V = b_0 + b_1 d + b_2 d^2 + b_3 dh + b_4 d^2 h$	Meyer
3	$V = b_0 + b_1 d^2 + b_2 d^2 h + b_3 d h^2 + b_4 h^2$	Näslund (modificada)
4	$V = b_0 + b_1 d^2 + b_2 d^2 h + b_3 h$	Stoate
5	$V = d^2(b_0 + b_1 h)$	Ogaya
6	$V = b_0 + b_1 d^2 h$	Spurr (1952)
7	$V = b_0 + b_1 d + b_2 d^2$	Hohenadl - Krenn
8	$V = b_0 + b_1 d^2$	Kopezky e Gehrhardt
9	$ln V = b_0 + b_1 ln d + b_2 ln^2 d + b_3 ln h + b_4 ln^2 h$	Forest Research Institute Baden-Württemberg (RFA)
10	$ln\mathbf{v} = \mathbf{b}_0 + \mathbf{b}_1 ln\mathbf{d} + \mathbf{b}_2 ln\mathbf{h}$	Schumacher e Hall
11	$ln V = b_0 + b_1 ln(d^2 h)$	Spurr (1952)
12	$ln\mathbf{v} = \mathbf{b}_0 + \mathbf{b}_1 ln\mathbf{d} + \mathbf{b}_2/\mathbf{d}$	Brenac
13	$ln\mathbf{v} = b_0 + b_1 ln\mathbf{d}$	Husch (1963)
14	$\mathbf{d}_{0,9ht} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{d}$	(diamétrica)

onde v (volume em m³), d (DAP em cm), h (= h_t , altura em m), d_{09ht} (diâmetro em cm a 10% de h_t) b_0 , b_1 , b_2 b_3 , b_4 e b_5 são coeficientes a estimar

QUADRO 2 - MODELOS DE FUNÇÃO PARA VOLUME E MODELO DIAMÉTRICO FONTE: WENDLING (1978)

A sub-rotina *volums* é executada duas vezes para cada classe de idade, uma vez para CC e outra para SC. Os coeficientes b_0 , b_1 , ... b_5 e a análise estatística, Sy.x, CV%, R² e F, calculados para cada um dos modelos, são gravados em bancos de dados *fvolscc.dbf* e *fvolssc.dbf*, isto é, um banco para CC e outro para SC.

3.2.3.3 Avaliação estatística dos bancos de dados de funções de forma

Cubagem, no final, faz a avaliação estatística quanto à validade do uso dos bancos de funções de forma, por comparação entre essas e a melhor das funções de volume. Como primeiro passo, **Cubagem**, ao gravar os dados em *fvolscc.dbf* e *fvolssc.dbf*, escolhe os melhores modelos de volume, CC e SC, por critério de menor Sy.x, por classe de idade. Em seguida, escolhe os modelos de volume mais escolhidos nas classes de idade, um CC e outro SC.

Conhecedor dos dois modelos mais populares, **Cubagem** percorre os bancos *fvolscc.dbf* e *fvolssc.dbf* e faz a coleta dos coeficientes, b_0 , b_1 , ..., desses modelos, um conjunto para cada idade. Faz uma coleta para CC e outra para SC.

De posse desses modelos de função de volume, e mais o diamétrico, $d_{0,9ht} = f(DAP)$, armados com os respectivos coeficientes por classe de idade, e lendo os bancos de dados $ffcc_04/07/.../22.dbf$ e $ffsc_04/07/.../22.dbf$ das funções de forma, **Cubagem** parte para o processamento das duas somas dos quadrados dos resíduos, uma para volume estimado pelas funções de forma, por integração, e outra para volume estimado pelo modelo de função de volume. Em ambas as somas dos quadrados dos resíduos, o volume observado é aquele cubado por Smalian. Os valores de DAP e h_t por árvore são lidos do arquivo original de dados cubagem.dbf. Com esses resíduos, calcula a análise estatística, Sy.x, CV%, R^2 e F, para as funções de forma, integradas, e igualmente para o modelo de função de volume. Faz um cálculo para CC e outro para SC. O relatório completo é gravado em avalff.dbf, conforme o final do roteiro da figura 6, com a avaliação estatística e os modelos volumétricos, diamétricos e hipsométricos auxiliares utilizados.

3.2.3.4 Considerações teóricas sobre a função de forma

Para a avaliação estatística descrita na seção anterior, aparece o cálculo do volume estimado por integração das funções de forma. Para se esclarecer esse processo, a função de forma representada na polinomial de 5º grau

$$y = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + b_5 x^5$$

para $y = \frac{d_i}{d_{0.9ht}}$ que é o quociente de forma verdadeiro e

$$x = \frac{\mathbf{h}_i}{\mathbf{h}_t}$$
 que é a altura relativa, para qualquer posição do tronco,

ajustada e armazenada nos bancos de funções de forma, pode ser usada para o cálculo do volume relativo, v_r , para um determinado trecho do tronco compreendido entre o seu início, ou posição zero, e uma específica altura h_i , ou posição l, quando calculada a sua integral, conforme Prodan (1965, p. 53-59), ou seja

$$v_{r} = \int_{0}^{l} y^{2} dx$$

$$v_{r} = \int_{0}^{l} (b_{0} + b_{1}x + b_{2}x^{2} + b_{3}x^{3} + b_{4}x^{4} + b_{5}x^{5})^{2} dx$$

$$v_{r} = b_{0}^{2}x + b_{0}b_{1}x^{2} + (2b_{0}b_{2} + b_{1}^{2})\frac{x^{3}}{3} + (b_{0}b_{3} + b_{1}b_{2})\frac{x^{4}}{2} + (2b_{0}b_{4} + 2b_{1}b_{3} + b_{2}^{2})\frac{x^{5}}{5} + (b_{0}b_{5} + b_{1}b_{4} + b_{2}b_{3})\frac{x^{6}}{3} + (2b_{1}b_{5} + 2b_{2}b_{4} + b_{3}^{2})\frac{x^{7}}{7} + (b_{2}b_{5} + b_{3}b_{4})\frac{x^{8}}{4} + (2b_{3}b_{5} + b_{4}^{2})\frac{x^{9}}{9} + b_{4}b_{5}\frac{x^{10}}{5} + b_{5}^{2}\frac{x^{11}}{11}$$

que multiplicado pelo volume do cilindro, com base em $d_{0,9ht}$, fornece o volume (v) da tora, como demonstrado por Hradetzky (1972, p. 75-81),

$$v = \frac{\pi}{40000} d_{0,9ht}^2 h_t v_r ,$$

em qualquer posição do tronco a partir do solo, pois h_i corresponde a qualquer altura do tronco. Quando $h_i = h_t$, isto é, x = 1, tem-se o volume total da árvore.

Ao se variar x, pode-se calcular os volumes de secções do tronco, ou seja, procede-se ao sortimento em toras, de acordo com as bitolas industriais.

Como se vê, o volume do cilindro com base a 10% de altura é calculado e feito o desconto pela função de forma. O diâmetro medido no campo é o DAP, então

para se ter o diâmetro da base daquele cilindro, aplica-se a função diamétrica ajustada $d_{0.9ht} = b_0 + b_1 DAP$.

Com esse raciocínio, pode-se definir o fator de forma de Hohenadl, ou fator de forma verdadeiro

$$f_{0,9} = \frac{V}{V_{0,9}}$$

que é a relação entre o volume da árvore e o volume do cilindro com o diâmetro a um décimo da altura da árvore, ou seja, em $d_{0.9ht}$.

Observa-se que muitos trabalhos, em deslizes por erros de concepção teórica ou pela comodidade em não ajustar essa simples função auxiliar de $d_{0.9ht}=f(\mathrm{DAP})$, mostram ajustes de funções de forma, nas quais a base do cilindro é o do DAP, ou $d_{1,3\mathrm{m}}$, denominado fator de forma falso $f_{1,3}$, ao invés do fator de forma verdadeiro $f_{0,9}$. Prodan (1965, p. 186-202) nos ensina que $f_{1,3}$ é mais fácil de medir do que $f_{0,9}$. Porém $f_{1,3}$ não descreve bem a forma das árvores, pois duas árvores com a mesma conicidade e alturas diferentes têm fatores de forma $f_{1,3}$ diferentes, enquanto $f_{0,9}$ para as duas é igual. Somente para o caso de duas árvores com 13 m de altura, $f_{1,3}$ e $f_{0,9}$ são iguais, pois $d_{1,3\mathrm{m}}$ e $d_{0,9ht}$ estão na mesma altura. Para árvores com mais de 13 m de altura, $d_{0,9ht}$ está mais alto do que $d_{1,3\mathrm{m}}$, portanto o cilindro com base em $d_{0,9ht}$ é menor do que o outro e, conseqüentemente, $f_{0,9}$ é maior do que $f_{1,3}$; e vice-versa para árvores com menos de 13m de altura.

Os bancos de dados gravados por **Cubagem**, *ffcc_04/07/.../22.dbf* e *ffsc_04/07/.../22.dbf*, e mais o arquivo *avalff.dbf*, são utilizados nos pacotes **Parcelas** e **Dínamo**, descritos adiante neste capítulo.

3.2.4 Pacote Parcelas

A aferição dos indicadores de caracterização detalhada de povoamentos florestais, que possibilitem a análise do seu desenvolvimento, é feita através de cálculos das médias de seus elementos dendrométricos, ou estimativas de seus parâmetros. Segundo Péllico Netto (1979, p. 114-115) "... as empresas florestais têm interesse em uma confiável produtividade em estoque, por uma precisa diagnose dos potenciais de crescimento de diferentes locais de plantio, através da qual se estabeleçam a ordenação e o planejamento do fornecimento de matéria-prima para as diferentes indústrias. Isso só é possível através da realização de inventários florestais periódicos nestas florestas plantadas, cujo planejamento sob as suas condições é muito complexo e exige a análise por comportamento em amostragem avançada".

Para tratar da questão de estimativas de parâmetros ou cálculo das médias de elementos dendrométricos dos povoamentos florestais em estudo, apresenta-se o pacote **Parcelas**, cujo roteiro segue o fluxograma da figura 7. Em linhas gerais, **Parcelas** processa os dados da amostragem, ou parcelas de campo, do inventário florestal, com propósito de calcular as estimativas de parâmetros por parcela, cujos resultados são armazenados em bancos de dados, um para cada grupo de parcelas, organizado em cada evento de medição. Neste trabalho as parcelas permanentes de dados, em medições ou remedições, compreendem 3 eventos, portanto são 3 bancos de dados. Adicionalmente, paralelamente a cada um desses bancos, é montado um outro banco com as freqüências dos diâmetros e das alturas por parcela, gerando-se outros 3 bancos. Finalizando, os resultados dos 3 bancos de parâmetros estimados, mas somente os das parcelas permanentes, são reunidos em um único, cujos dados são dispostos de maneira pareada, para posterior ajuste de modelos de sobrevivência no pacote **Atributos**.

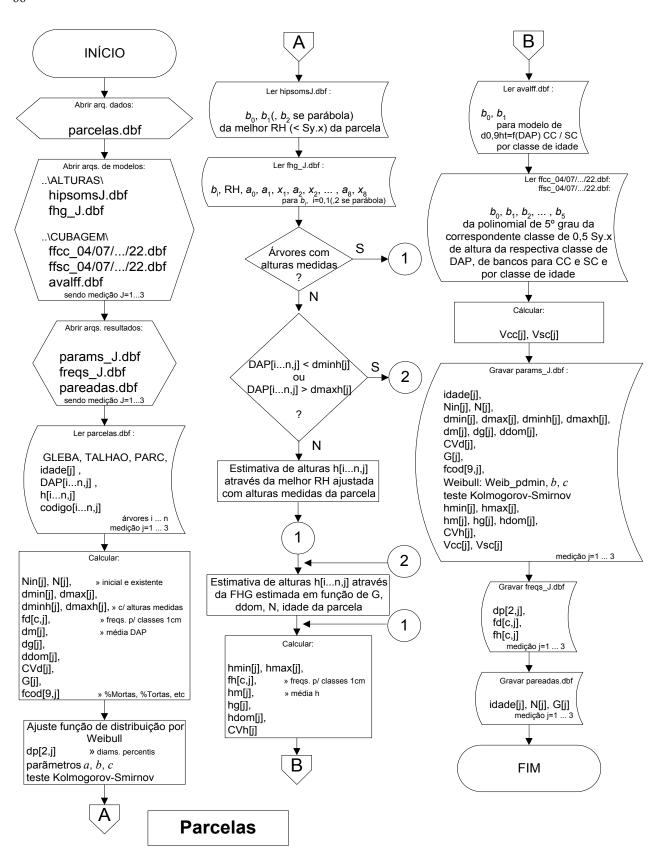


FIGURA 7 - FLUXOGRAMA DO PACOTE **Parcelas** FONTE: O autor (2007)

No início, **Parcelas** abre o arquivo *parcelas.dbf* de dados de campo do inventário e faz a leitura de DAP, de todas árvores com essa variável —a que tiver DAP zerado é indicativo de falha ou morta—, e de h, de somente aquelas árvores cujas alturas foram medidas. Além de DAP (em cm) e h (em m), também são lidos a idade (em valores contínuos: em anos e décimos de anos) e os valores dos códigos conforme o estado sanitário de cada árvore (morta, torta, quebrada, bifurcada abaixo ou acima do DAP, etc).

3.2.4.1 Cálculo das médias dos elementos dendrométricos relacionados aos diâmetros

Feita a leitura dos dados de campo, **Parcelas** calcula, por parcela, as estimativas de parâmetros ou médias dos elementos dendrométricos relacionados aos diâmetros (DAP), mostrados no quadro 3.

ELEMENTO DENDROMÉTRICO	DEFINIÇÃO
N _{in} ou N _{inicial}	Contagem do nº de árv. plantadas /ha (com DAP medido ou zerado)
N	Total do nº de árvores existentes /ha (com DAP medido)
d_{min} e d_{max}	Limites, inferior e superior, na distribuição de freqüências em DAP
d_{minh} e d_{maxh}	Limites, inf. e sup., na distr. de freq. em DAP (as com medição em h)
fd	Vetor da distribuição de freqüências em DAP entre d _{min} e d _{max}
d _m	Média aritmética em DAP
d_{g}	Diâmetro médio: DAP da árvore com área transversal média
d _{dom}	Média em DAP das 100 árvores com maiores DAP por hectare
CV% _d	Coef.de Variação: desvio padrão em DAP em relação a d _m em %
G	Área basal por hectare: soma das áreas transversais do hectare
Freqüências códigos sanitários	Freqüências para calcular %mortas, %tortas, etc
$dp_1 e dp_2$	DAP percentis 1 e 2, nas posições a 24% e a 93% na distribuição fd

QUADRO 3 - MÉDIAS DOS ELEMENTOS DENDROMÉTRICOS RELACIONADOS AOS DIÂMETROS, POR PARCELA

FONTE: O autor (2007)

No vetor fd, distribuição de freqüências em DAP entre d_{min} e d_{max} , **Parcelas** calcula, por interpolação, o parâmetro d_{dom} com precisão. Com isso, dispensa-se os valores levantados, subjetivamente, no campo para essa variável. Isso é importante, pois esse parâmetro é fundamental para a elaboração das tabelas de produção.

3.2.4.2 Ajuste de modelo probabilístico de distribuição de freqüências em DAP

Parcelas conduz agora um estudo de ajuste de um modelo probabilístico de distribuição de freqüências em DAP, com o propósito de fornecer subsídios ao pacote **Dínamo**, onde o modelo será peça fundamental no simulador de cenários em tabelas de produção florestal.

Na literatura matemática e florestal, vários modelos, definidos como funções densidade de probabilidade, já foram empregados para descrever a estrutura da distribuição diamétrica, das populações florestais, caracterizada como variável aleatória em ocorrência de distribuição contínua. Os principais modelos são os de Weibull, Beta, Gamma, Log-normal, Normal e SB / SBB de Johnson.

Neste trabalho se opta pelo modelo de Weibull, devido a sua flexibilidade para assumir diferentes formas e assimetrias, ante ao seu emprego em variadas apresentações de dados, condição oportuna para um pacote de programas para computador, no qual se objetiva o propósito de se ajustar, sempre, dados diversos em diferentes locais. É notório que essa versatilidade conduziu Weibull a se tornar o mais popular dos modelos de distribuição para dados florestais. Scolforo (1998, p. 203) apresenta um histórico:

A função de distribuição Weibull foi proposta por Fisher e Tippet em 1928 e desenvolvida independentemente por Waloddi Weibull, físico sueco, em 1951 no estudo de resistência dos materiais. Provavelmente após a segunda guerra mundial, o trabalho de Weibull se destacou e a distribuição passou a ser chamada pelo seu nome. Segundo Johnson e Kotz (1970), na literatura russa se reconhece pela importância também outro autor, onde a distribuição é chamada de Weibull-Gnedenko. No meio florestal foi aplicada primeiramente por Bailey e Dell (1973). A partir de então, vários estudos foram realizados com aplicação da distribuição Weibull, como por exemplo: Strub et al. (1981), Campos e Turnbull (1981), Finger (1982), Cao et al. (1982,1984), Gadow (1983), Amateis et al. (1984), Burk e Burkhart (1984), Mactague (1985), Shiver (1985), Knoebell et al. (1986), Glade (1986), Matney et al. (1987), Swindel et al. (1987), Silva e Bailey (1987), Reynolds Jr. et al. (1988), Lenhart (1988), Bailey e Burgan (1989), Bravo e Winter (1989), Borders e Patterson (1990), Jorge et al. (1990), Leite (1990), Leite et al. (1990), Scolforo (1990, 1994), Brooks Jr. et al. (1992), Nepal e Somers (1992), Maestri et al. (1994), Cunha Neto (1994) e Thiersch (1997), dentre outros.

É conhecido que o modelo da função de distribuição Weibull com três parâmetros tem a função densidade de probabilidade (fdp) expressa como

$$f(x) = \begin{cases} \frac{c}{b} \left(\frac{x-a}{b}\right)^{c-1} e^{-\left(\frac{x-a}{b}\right)^{c}}, & a \le x < \infty, \ a \ge 0, \ b > 0, \ c > 0 \\ 0 \longrightarrow \text{para outros casos} \end{cases}$$

onde a = parâmetro de locação, no início da curva

b = parâmetro de escala da curva

c = parâmetro de forma, que define o tipo de curva

x = variável da distribuição, diâmetro

a média:
$$E(x) = a + b\Gamma\left(1 + \frac{1}{c}\right)$$
 e a variância: $V(x) = b^2\Gamma\left(1 + \frac{2}{c}\right) - \Gamma^2\left(1 + \frac{1}{c}\right)$ em que Γ = função gama.

Para se estimar os parâmetros da fdp de Weibull, existem os métodos: da máxima verossimilhança, dos momentos e dos percentis. Se o objetivo for o de estimar a função para uma dada população, para a qual se conheça a verdadeira distribuição —caso do vetor fd do quadro 3, para as parcelas deste trabalho—, qualquer método desses pode ser utilizado, pois eles são equivalentes quanto à eficiência. Porém o objetivo deste trabalho é o de subsidiar um modelo de distribuição para o simulador do pacote **Dínamo**, onde a distribuição será estimada em cenários de prognose ou projeção e não se conhece a verdadeira distribuição fd. Então, o método deve ser aquele que gere menor dependência de funções auxiliares com projeções heterodoxas, tais como funções para projetar erro ou CV em diâmetro, ou d_g, ou d_m, ou, ainda conseqüentemente, 'soluções' tipo d_g - d_m, como se vê em muitos trabalhos, cujas validações estatísticas deveriam ser reavaliadas.

O método, diga-se menos 'burocrático', para estimar os parâmetros da fdp de Weibull naqueles cenários de simulação, é o dos percentis, pois necessita apenas de funções auxiliares para estimar os dois diâmetros percentis, dp₁ e dp₂ do quadro 3, com segurança similar às funções para estimar d_{min} e d_{max} , que também devem ser usadas –assim como em quaisquer das outras hipóteses de método a empregar.

Como demonstrado por Scolforo (1998, p. 206,210-212,283-285) os parâmetros a,b e c se relacionam nas fórmulas

$$a = x - \frac{b}{nc} \Gamma \left(1 + \frac{1}{c} \right)$$

$$c = \frac{ln[-ln(1-p1)/-ln(1-p2)]}{ln[(x_{p1}-a)/(x_{p2}-a)]}$$

$$b = \frac{x_{p1}-a}{(-ln(1-p1))^{\frac{1}{c}}}$$

onde x = diâmetro da parcela

n = número de árvores da parcela

 Γ = função gama

p1 e p2 = percentis de n

 x_{p1} e x_{p2} = dp₁ e dp₂ = diâmetros para p1 e p2

A aplicação de todas as fórmulas, representadas acima, simultaneamente para se estimar os parâmetros a, b e c, é inviável, pois em todas elas entra, como variável independente, pelo menos um dos demais parâmetros. Então como solução, deve-se começar a estimar b e c, simulando-se separadamente o parâmetro a, vinculando-o a um percentual do diâmetro mínimo, que podem ser $0.0d_{\min}$, $0.1d_{\min}$, $0.2d_{\min}$, $0.3d_{\min}$, $0.4d_{\min}$, $0.5d_{\min}$, $0.6d_{\min}$, $0.7d_{\min}$, $0.8d_{\min}$, $0.9d_{\min}$, $1.0d_{\min}$. O pacote **Parcelas** segue esse raciocínio. Para cada valor de a, calcula os valores correspondentes para b e c, em cada parcela, juntamente com o teste de aderência Kolmogorov-Smirnov para cada distribuição ajustada. Os valores calculados para a melhor distribuição, escolhida pelo teste por parcela, são gravados, para que o próximo pacote, **Atributos**, faça um levantamento de qual é a melhor proposta de a por classe de sítio, informação a ser utilizada pelo pacote **Dínamo**.

O teste de aderência Kolmogorov-Smirnov compara a freqüência acumulativa estimada com a freqüência acumulativa observada, em cada classe de diâmetro entre d_{min} e d_{max} . O ponto de maior divergência entre as duas distribuições é o valor D de Kolmogorov-Smirnov. Esse valor é comparado com o valor tabelar que, segundo Haldar e Mahadevan (2000, p. 282), é calculado por

$$d_{1\%}^{n} = \frac{1,63}{\sqrt{n-1}}$$
, ou $d_{1\%}^{n} = \frac{1,63}{\sqrt{n}}$ para n >= 50,

onde $P(D >= d) = \alpha$, para $\alpha = 0.01$. Se o valor D for menor do que o tabelar d, estipulado para o número total de árvores da parcela, n, verifica-se que o valor de maior divergência não é significativo, o que indica que neste caso há aderência dos dados à distribuição Weibull, com 99% de probabilidade de certeza de acerto.

Glade (1986, p. 32) cita, em recomendação de Bailey (1973), como ideais os percentis de 0.24n e 0.93n, para p1 e p2; valores esses adotados em **Parcelas**.

3.2.4.3 Cálculo das médias dos elementos dendrométricos relacionados às alturas

Após os cálculos das estimativas de parâmetros relacionados aos diâmetros, **Parcelas** passa a se ocupar com cálculos relacionados às alturas, tal como se pode acompanhar pelo roteiro da figura 7.

Primeiramente, **Parcelas** faz a leitura dos coeficientes do melhor modelo de RH, dentre os ajustados para cada parcela por **Alturas** e gravados em *hipsomsJ.dbf*, *J*=1... 3, na j-ésima medição. E são lidos os coeficientes e a composição das variáveis da FHG, para a j-ésima medição correspondente, em *fhg_J.dbf*, *J*=1 ... 3, conforme organizado por **Alturas**.

De posse desses modelos, da melhor RH da parcela e da FHG da medição, **Parcelas** caminha para estimar as alturas das árvores, aquelas não medidas no campo. Segue por duas opções: se o DAP da árvore se encontrar dentro dos limites nos quais a RH foi ajustada, então a altura é estimada pela melhor RH da parcela. Caso o DAP esteja fora desses limites, ou seja, DAP < d_{minh} ou DAP > d_{maxh}, a estimativa da altura é feita pela FHG, cujos coeficientes do modelo de RH são estimados indiretamente em função de G, d_{dom}, N e idade da parcela, conforme raciocínio em **Alturas**. As variáveis calculadas d_{minh} e d_{maxh} (quadro 3) balizam o alcance da validade das estimativas a se obter pelo modelo de RH, ajustado em **Alturas**, pois, por serem lineares, esses modelos são mais volúveis à tendência de distorcer resultados em áreas de extrapolação.

Com todas as árvores munidas de alturas, medidas ou estimadas, **Parcelas** calcula então, por parcela, as estimativas de parâmetros ou médias dos elementos dendrométricos relacionados às alturas (h), mostrados no quadro 4.

ELEMENTO DENDROMÉTRICO	DEFINIÇÃO
h_{min} e h_{max}	Limites, inferior e superior, na distribuição de freqüências em altura
fh	Vetor da distribuição de freqüências em altura entre h _{min} e h _{max}
h _m	Média aritmética em alturas
h _q	Altura da árvore com área transversal média
h _{dom}	Média em alturas das 100 árvores com maiores DAP por hectare
CV% _h	Coef.de Variação: desvio padrão em alturas em relação a h _m em %

QUADRO 4 - MÉDIAS DOS ELEMENTOS DENDROMÉTRICOS RELACIONADOS ÀS ALTURAS, POR PARCELA

FONTE: O autor (2007)

3.2.4.4 Cálculo dos volumes por bancos de dados de funções de forma

Na última etapa dos seus objetivos, **Parcelas** passa ao cálculo de volume das parcelas. Antes, procura o arquivo *avalff.dbf* e faz a leitura dos coeficientes das funções de $d_{0,9ht} = f(DAP)$, para CC e SC, ajustadas para a classe de idade da parcela. E consulta o banco de dados das funções de forma para essa classe de idade, dentre $ffcc_04/07/.../22.dbf$ e $ffsc_04/07/.../22.dbf$, para CC e SC, arquivos esses previamente preparados por **Cubagem**.

De posse desses modelos de função diamétrica e lendo os bancos de dados das funções de forma, **Parcelas** parte para o processamento dos volumes CC e SC estimados pelas funções de forma, por integração, após coletar os específicos coeficientes b_0 , b_1 , b_2 , ..., b_5 da polinomial de 5° grau, da correspondente classe de 0.5 Sy.x de altura da respectiva classe de DAP, de bancos para CC e SC e por classe de idade. Nessa polinomial, na variável independente, apresentada em múltiplos graus, $x = \frac{h_i}{h_t}$, tem-se que h_i corresponde a qualquer altura do tronco. Ao se assumir $h_i = h_t$, isto é, x = 1, tem-se o volume total da árvore ao se fazer a integral da polinomial e multiplicá-la pelo volume do respectivo cilindro com base de referência em $d_{0.9ht}$. A variável para altura total h_t , de **Cubagem**, aqui em **Parcelas** equivale à variável h para altura da árvore.

Finalizando, os volumes somados por parcela são extrapolados, em correspondência de área ao hectare, como V_{CC} e V_{SC} , e gravados nos bancos de dados para o inventário, $params_J.dbf$, J=1 ... 3, isto é, para a j-ésima medição, juntamente com os dados calculados e expostos nos quadros 3 e 4, à exceção de fd, dp₁ e dp₂, e fh, que serão gravados em bancos de dados próprios para freqüências, $freqs_J.dbf$, J=1...3.

No final do roteiro de **Parcelas**, os resultados dos 3 bancos de parâmetros estimados, mas somente os das parcelas permanentes —as que têm medições e remedições *J*=1 ... 3— são reunidos em um único, *pareadas.dbf*, cujos dados são dispostos de maneira pareada, para posterior ajuste de modelos de sobrevivência no pacote **Atributos**.

Os principais parâmetros estimados, calculados e gravados por **Parcelas** nos bancos de dados, *params_J.dbf* e *freqs_J.dbf*, *J*=1 ... 3, e *pareadas.dbf*, são utilizados no pacote **Atributos**, descrito adiante neste capítulo. Os demais parâmetros estimados, apesar de não serem utilizados diretamente nesta metodologia, têm valor específico para avaliação ao próprio inventário e são úteis a outras pesquisas.

3.2.5 Pacote Atributos

"O Ordenamento Florestal é basicamente o planejamento da produção florestal ...", e continua Burger (1976, p. 5,108) "... as tabelas de produção são os principais instrumentos para o planejamento da produção florestal. Uma tabela de produção florestal descreve o desenvolvimento de povoamentos em função de espécie, sítio, tratamento e idade". Para construí-las, é necessário estudar e estabelecer relações entre parâmetros estimados do povoamento e idade, e as suas inter-relações.

Para tratar da questão das relações entre parâmetros estimados dos povoamentos florestais em estudo, apresenta-se o pacote **Atributos**, cujo roteiro segue o fluxograma da figura 8. Em linhas gerais, **Atributos** processa os dados gravados por **Parcelas**, *params_J.dbf* e *freqs_J.dbf*, *J*=1 ... 3, e *pareadas.dbf*, e promove ajuste de modelos de crescimento em altura dominante, h_{dom}, e faz a

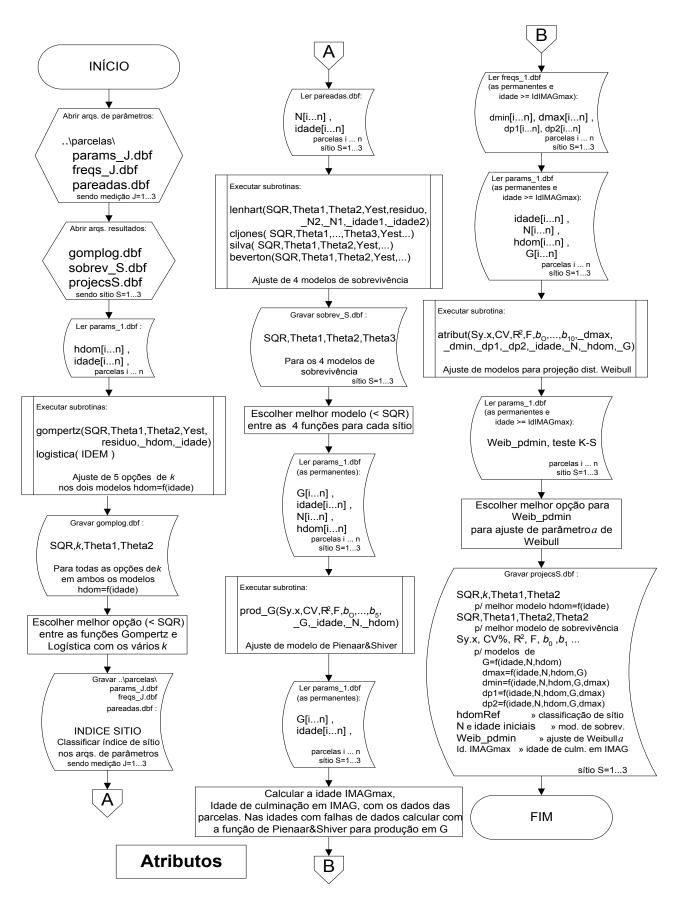


FIGURA 8 - FLUXOGRAMA DO PACOTE **Atributos** FONTE: O autor (2007)

classificação de índice de sítio nas parcelas do inventário. Após discriminar os povoamentos em classes de sítio, para cada uma faz ajuste de modelos de sobrevivência e de modelo para produção em área basal, G. Calcula, ainda, a idade de culminação em IMA_G e ajusta, para os povoamentos que tenham atingido essa idade, modelos auxiliares para projeção da distribuição Weibull, sempre para cada sítio. Após isso, percorre os dados gravados por **Parcelas** e levanta a escolha da melhor opção em %d_{min}, para cálculo de parâmetro *a* de Weibull por classe de sítio. No final, grava relatório em arquivo para utilização no pacote **Dínamo**, o simulador para tabela de produção florestal.

3.2.5.1 Ajuste de modelos de crescimento em altura dominante (h_{dom})

No início, **Atributos** abre o arquivo *params_1.dbf* –de dados gravados por **Parcelas** para as parcelas temporárias do inventário e para as parcelas em primeira medição, se parcelas permanentes– e faz a leitura dos parâmetros estimados h_{dom} e idade. A coleta serve ao propósito de ajuste de modelos de crescimento em h_{dom}, no transcorrer do período de rotação dos povoamentos florestais.

A altura dominante, h_{dom}, é a média aritmética em alturas das 100 árvores com maiores DAP por hectare e representa, então, a classe dominante em posição sociológica das árvores do povoamento florestal. Ela é o parâmetro indicado para retratar a classificação do sítio, pois é pouco influenciada pelos desbastes. Também é indicada para ancorar a construção de tabelas de produção, pois existe boa correlação entre a altura dominante e a produção total em volume do povoamento, conforme assegura a lei de Eichhorn –citada por Hosokawa (1980, p. 15).

Para descrever comportamento de variáveis ao longo do tempo, os modelos de funções de crescimento precisam ter as características classicamente conhecidas como típicas: a forma de S, que parte da origem, ou do ponto zero, sobe paulatinamente e depois de maneira mais íngreme até encontrar um ponto de inflexão; após então, a inclinação da curva diminui até atingir assintoticamente o seu valor final. Funções com essas características particularizadas são mais bem retratadas por modelos não-lineares.

Bertalanffy (1941, p. 510-532, 1957, p. 218-231), citado em Draper e Smith (1981, p. 512-513), lançou o seu conhecido modelo de quatro parâmetros

$$Y = (\theta_1^{1-m} - \theta_2 e^{-kt})^{1/(1-m)}$$
,

onde Y é a variável dependente em estudo, t é a variável tempo,

 θ_1 e θ_2 são parâmetros a estimar e os parâmetros k e m são constantes a estabelecer, mas com limites já impostos a m.

Mais tarde, Richards (1959, p. 290-300) considerou nesse modelo os limites para m em outros níveis. Nesses níveis, quando m = 0 o modelo se transforma na Função Monomolecular

$$Y = \theta_1 - \theta_2 e^{-kt}$$

que não possui ponto de inflexão e a torna não interessante, mas quando m tende a 1 a curva assume a forma do modelo de Gompertz

$$Y = \theta_1 e^{-\theta_2} e^{-kt}$$

e quando m = 2 a curva se converte na forma do modelo clássico da Logística

$$Y = \frac{\theta_1}{1 + \theta_2 e^{-kt}} .$$

"Posteriormente Chapman em 1960, ao estudar o crescimento de peixes chegou às mesmas conclusões de Richards. Este modelo foi introduzido no meio florestal por Turnbull em 1963. A partir de então, uma série de trabalhos foi desenvolvida com esta função, tanto para estudos de crescimento e produção, como para classificação de sítios, como pode ser observado em trabalhos desenvolvidos por Pienaar (1965) e Pienaar e Turnbull (1973)" e muitos outros, como atesta Scolforo (1998, p. 151-171), que apresenta uma completa interpretação dos parâmetros e das constantes desse modelo de Von Bertalanffy, que passou a ser conhecido como modelo de Chapman-Richards.

Em contraponto, em muitos trabalhos –por confusão na compreensão teórica ou pela comodidade no uso de programas prontos de estatística—, o modelo de Chapman-Richards é ajustado simploriamente como de quatro parâmetros a estimar: θ_1 , θ_2 , k e m. O pacote **Atributos**, em discordância a essa interpretação apressada, refaz a concepção de Von Bertalanffy, que impôs limites à constante m e de

Richards que lhe deu classificação em valores 0, 1 e 2. Assim, **Atributos** utiliza o modelo nas formas em que m tende a 1, como modelo de Gompertz, e m = 2, como modelo da Logística. E não utiliza o da forma em que m = 0, pois o modelo da Função Monomolecular não possui ponto de inflexão.

Quanto à constante k, Draper e Smith (1981, p. 505-512) demonstram que em todos esses modelos de crescimento, incluídas as variações do modelo de Chapman-Richards, essa constante expressa a medida relativa da taxa de crescimento, que é função do tamanho do organismo em estudo, ou seja, reflete o peso da variável em crescimento. Assim posto, **Atributos** ajusta 5 opções para o modelo de Gompertz, isto é, para k = 0,1, 0,15, 0,2, 0,25 e 0,3. E ajusta outras 5 opções para o modelo da Logística, isto é, para k = 0,2, 0,25, 0,3, 0,35 e 0,4. Esses valores foram definidos após variada simulação e foram fixados no programa.

Resumindo, em **Atributos** a interpretação dos quatro parâmetros do modelo de Chapman-Richards declara θ_1 e θ_2 como parâmetros a estimar e os parâmetros k e m como constantes a estabelecer.

Atributos executa a sub-rotina RegNLin, configurada como 'gompertz', 5 vezes, uma para cada opção de k. E configurada como 'logistica', outras 5 vezes, uma para cada respectiva opção de k. Portanto, são 10 ajustes de modelos de função de crescimento, nos quais $Y = h_{dom}$ e t = idade. Os valores dos resultados para SQR (soma dos quadrados dos resíduos) e dos parâmetros θ_1 e θ_2 para os 10 ajustes são gravados no banco de dados gomplog.dbf, com os respectivos valores estipulados para k. Também são gravados os resíduos e Yest, em arquivos auxiliares, para a confecção de gráficos de análise de resíduos.

A seguir **Atributos** seleciona a melhor opção entre os 10 ajustes de modelos de função de crescimento, pelo critério de menor SQR, para os dados em processamento. Critério esse adotado para comparar ajustes de modelos não-lineares e descrito na seção 3.2.1.2. Observe-se que, no final do roteiro da figura 8, a função selecionada tem os seus parâmetros gravados em *projecsS.dbf*, S= sítio 1 ... 3, bancos de dados com o relatório a ser utilizado pelo pacote **Dínamo**.

3.2.5.2 Classificação de índice de sítio nas parcelas do inventário

Na sequência, após a seleção da função de crescimento, **Atributos** a utiliza para determinar a curva mestra, a qual representa a curva média em um conjunto de curvas monomorfas, para classificação de índice de sítio dos povoamentos do inventário.

Em Burger (1976, p. 96-97), "entende-se por sítio, ao conjunto de fatores ecológicos que influem no desenvolvimento de povoamentos num determinado local. Esses fatores ecológicos abrangem fatores climáticos ..., edáficos e biológicos ..." e "... no manejo se define geralmente a qualidade do sítio pela sua capacidade produtiva, que é tanto melhor quanto maior for a produção volumétrica de madeira."

Para se construir as curvas monomorfas, no sistema de índices de sítios, parte-se da função de crescimento $h_{dom} = f(idade)$, selecionada na etapa anterior, como curva mestra e se constrói outras curvas mais baixas e mais altas, cujas distâncias dessa curva mestra são sempre certas porcentagens de sua altura, tendose como base de referência a altura de uma dada idade, chamada idade de referência. Em **Atributos**, fixou-se para essa idade os 20 anos, por ser próxima da idade de rotação final. A altura estimada pela função nessa idade, $h_{dom}Ref$, representa o centro de classe do IS, índice de sítio 2, cuja amplitude é de \pm 0,5 unidade de Sy.x, da curva da função, em torno de $h_{dom}Ref$. Ao se acrescentar 1 Sy.x em $h_{dom}Ref$, tem-se o centro de classe do IS 1. Ao se diminuir 1 Sy.x em $h_{dom}Ref$, tem-se o centro de classe do IS 3. Para o restante das 3 curvas, que passam pelos centros dos índices de sítio, aplica-se as mesmas porcentagens verificadas entre as alturas da idade de referência, desde a idade 1 até a idade da rotação final. As 3 curvas têm amplitude de \pm 0,5 Sy.x . Para essas curvas, calculou-se

$$Sy.x = \sqrt{\frac{SQR}{n-p}}$$

onde SQR = soma dos quadrados dos resíduos,

 $n = n^{\circ}$ de observações e $p = n^{\circ}$ de parâmetros estimados.

Aplicando esse raciocínio, **Atributos** percorre os bancos de dados gerados por **Parcelas** –*params_J.dbf* e *freqs_J.dbf*, *J*=1 ... 3, e *pareadas.dbf*–, e grava o IS correspondente em termos relativos: I, II e III; e absolutos: altura do centro de classe

para o IS na idade de referência, em metros. Com isso, os povoamentos são discriminados em classes de sítio.

O valor para h_{dom} Ref $-h_{dom}$ calculado na idade de referência para classificação de IS— é, então, gravado no final do roteiro da figura 8, em *projecsS.dbf*, S= sítio 1 ... 3, bancos de dados com o relatório a ser utilizado pelo pacote **Dínamo**.

3.2.5.3 Ajuste de modelos de sobrevivência

"A mortalidade é um componente importante de modelos de simulação da produção, tanto de florestas naturais como artificiais. Em que pese a sua importância, muitos simuladores evitam a inclusão desse problema complicado que é a mortalidade...", afirma Sanquetta (1996, p. 24).

Na seqüência, a partir deste ponto até o final, **Atributos** passa a ler dados para processamento, separadamente por grupo de parcelas de cada sítio. Para ajustar os modelos de sobrevivência, assim faz a leitura das variáveis N e idade, gravadas no banco de dados *pareadas.dbf* por **Parcelas**. Há que se esclarecer, ainda, que nesse arquivo estes dados estão dispostos aos pares, tais como N₁, idade₁, N₂, idade₂, para medição 1 e medição 2, ou seja, a medição e a remedição. Se a parcela tiver 3 medições, então os seus dados geram 2 registros de dados: no primeiro, N₁, idade₁, N₂, idade₂, que correspondem às duas primeiras medições, e no segundo, N₁, idade₁, N₂, idade₂, que correspondem às medições 2 e 3.

Atributos executa quatro versões da sub-rotina *RegNLin*, configuradas como '*lenhart*', '*cljones*', '*silva*' e '*beverton*', para os modelos do quadro 5, que são os melhores modelos usados por Sanquetta (1990), exceto o primeiro, e também indicados por Scolforo (1998, p. 86). Dentre os vários modelos existentes, esses foram escolhidos por se configurarem diversamente entre si.

Os valores dos resultados para SQR (soma dos quadrados dos resíduos) e dos parâmetros θ_1 , θ_2 (e θ_3 para o segundo), para os 4 modelos ajustados, são gravados no banco de dados *sobrev_S.dbf*, S= sítio 1 ... 3. Também são gravados os resíduos e Yest, em arquivos auxiliares, para a confecção de gráficos de análise de resíduos.

NÚMERO	FUNÇÃO	AUTOR
1	$N_2 = N_1 e^{\theta_1(I_2 - I_1) + \theta_2 ln(I_2/I_1)}$	Lenhart
2	$\mathbf{N}_2 = \left[\mathbf{N}_1^{\theta_1} + \theta_2 \left(\mathbf{I}_2^{\theta_3} - \mathbf{I}_1^{\theta_3} \right) \right]^{\theta_1^{-1}}$	Clutter e Jones (1980)
3	$N_2 = N_1 e^{\theta_2(\theta_1^{l_2} - \theta_1^{l_1})}$	Silva (1986)
4	$N_2 = N_1 (\theta_1 + \theta_2 N_1)^{l_1 - l_2}$	Beverton

onde N_2 e N_1 são números de árvores por ha nas idades I_2 e I_1 θ_1 , θ_2 e θ_3 são parâmetros a estimar

QUADRO 5 - MODELOS DE SOBREVIVÊNCIA FONTE: SANQUETTA (1990) e SCOLFORO (1998)

Atributos então seleciona a melhor opção entre os 4 ajustes de modelos de sobrevivência, pelo critério de menor SQR, para os dados em processamento para cada sítio. Observe-se que, no final do roteiro da figura 8, a função selecionada tem os seus parâmetros e SQR gravados em *projecsS.dbf*, *S*= sítio 1 ... 3, bancos de dados com o relatório a ser utilizado pelo pacote **Dínamo**. Também são gravados aí os valores para N e idade, iniciais, para cada sítio, que são os limites inferiores para os dados, nos quais a função foi ajustada, que balizarão, no **Dínamo**, o escopo inicial na aplicação do modelo de sobrevivência na tabela de produção.

3.2.5.4 Ajuste de modelo para produção em área basal

Após ajustar modelos para estimar h_{dom} e N ao longo do tempo, agora **Atributos** se pauta a ajustar modelo para estimar G (área basal em m^2 por hectare), também com a idade.

Pela teoria do Manejo Florestal, sabe-se que determinados parâmetros estimados são os indicados para expressar qualidade de produção do local (h_{dom} ou d_{dom}) e grau de ocupação na área (N). Para G, somatório das áreas transversais das árvores por hectare, cabe o papel de retratar a produção em dimensão de indivíduos. Também à área basal cumpre a função de mostrar a situação dos povoamentos amostrados, pois G é altamente influenciado pelo tratamento do povoamento e especialmente pelo desbaste. Esses parâmetros estimados do

povoamento, h_{dom}, N, G e mais a variável temporal idade, são as variáveis do povoamento necessárias para ancorar as projeções dos atributos do povoamento florestal, na simulação de cenários de tabela de produção florestal, no pacote **Dínamo**.

Atributos abre o arquivo *params*_1.*dbf* –de dados gravados por **Parcelas** para as parcelas temporárias do inventário e para as parcelas em primeira medição, se parcelas permanentes– e faz a leitura dos parâmetros estimados G, idade, N e h_{dom}, porém desta vez somente para os dados das parcelas permanentes e, tal como acontece na seção anterior, separadamente por grupo de parcelas de cada sítio.

Com esses dados, providencia o ajuste do modelo de Pienaar e Shiver (1986, p.626-633), que se apresentou muito melhor do que outros experimentados:

$$lnG = b_0 + b_1 \frac{1}{idade} + b_2 lnN + b_3 ln h_{dom} + b_4 \frac{lnN}{idade} + b_5 \frac{ln h_{dom}}{idade}$$

Esse modelo é ajustado ao se executar a sub-rotina RegLin, aqui preparada para essa função e recebendo a denominação de ' $prod_G$ '. Os coeficientes b_0 , b_1 ... b_5 e a análise estatística, Sy.x, CV%, R² e F, calculados para esse modelo, são gravados, no final do roteiro da figura 8, em projecsS.dbf, S= sítio 1 ... 3, bancos de dados com o relatório a ser utilizado pelo pacote **Dínamo**.

3.2.5.5 Cálculo da idade de culminação em IMA_G

Para se ajustar os modelos que viabilizem seguramente as projeções dos atributos do povoamento florestal –modelos que serão utilizados no pacote **Dínamo**, o simulador para tabela de produção florestal–, é necessário assegurar que eles sejam ajustados com dados de povoamentos que tenham atingido, em seu desenvolvimento, o estágio de "povoamento em densidade completa".

Esse estágio começa no ponto onde a curva de crescimento em área basal, após o atingir o máximo, prossegue em desenvolvimento assintótico. É o ponto da tangente máxima, ou seja, a tangente que partindo da origem toca a curva de produção. Este ponto pode ser determinado analiticamente, no ponto de encontro das curvas de ICA –incremento corrente anual, obtida pela primeira derivação da curva de crescimento— e de IMA –incremento médio anual, obtida pela divisão da

curva de crescimento, em cada ano, pela idade. Esse ponto é o da idade em que o povoamento atinge a culminação em IMA_G, isto é, o IMA_G máximo.

Para o levantamento do início desse estágio de "povoamento em densidade completa", **Atributos** abre o arquivo *params_1.dbf* —de dados gravados por **Parcelas** para as parcelas temporárias do inventário e para as parcelas em primeira medição, se parcelas permanentes— e faz a leitura das variáveis G, idade, porém, outra vez, somente para os dados das parcelas permanentes e, tal como na seção anterior, separadamente por grupo de parcelas de cada sítio.

Para determinar a idade do IMA_G máximo, **Atributos** ordena –classifica em ordem crescente– os dados das parcelas do inventário, desde a primeira idade até a última, e calcula para cada classe de um ano o correspondente IMA_G . Para aqueles anos em que não houver parcelas medidas, **Atributos** preenche com estimativa pela função para produção em G, de Pienaar e Shiver, ajustada na seção anterior.

As idades de culminação em IMA_G , para cada sítio, são gravadas, no final do roteiro da figura 8, em *projecsS.dbf*, S= sítio 1 ... 3, bancos de dados com o relatório a ser utilizado pelo pacote **Dínamo**.

3.2.5.6 Ajuste de modelos auxiliares para projeção da distribuição Weibull

Para viabilizar a projeção da função de distribuição em diâmetros no pacote **Dínamo**, na simulação de cenários de tabela de produção florestal, **Atributos** prepara agora o cálculo de um sistema de equações auxiliares que permitam o ajuste da função de Weibull em diversas idades. Recorde-se que o método de ajuste dessa função é o dos percentis –cujas vantagens sobre outros métodos de ajuste são explanadas na seção 3.2.4.2–, que necessita da estimativa de algumas variáveis representativas de alguns pontos de sua curva de distribuição de freqüências. Além dos pontos de início e fim, d_{min} e d_{máx}, o método dos percentis necessita da estimativa de dois outros pontos: dp₁ e dp₂, que são os DAP percentis, os diâmetros das árvores dispostas nas posições a 24% e a 93% na sua distribuição de freqüências. As variáveis escolhidas, para ancorar as funções que estimem esses pontos, são baseadas em idade, N, h_{dom} e G, ou seja, aqueles parâmetros estimados

do povoamento florestal que atendem a conveniências em representatividade, esclarecidas na seção 3.2.5.4.

Para a escolha dos modelos, no processo da construção de **Atributos**, experimentou-se vários citados na literatura, os quais apresentaram ajustes não satisfatórios. Partiu-se, então, para uma composição de um sistema de equações assemelhadas, isto é, que não apresentem ajustes demasiadamente diversos entre si, como ocorriam com aqueles modelos conhecidos. A primeira equação parte do princípio que

$$d_{max} = f(idade, N, h_{dom}, G)$$

e às outras equações se acrescenta d_{máx}, também compondo as variáveis independentes –para que as estimativas fiquem mais estáveis–, definindo-lhes a configuração em

$$d_{min} = f(idade, N, h_{dom}, G, d_{máx}),$$

 $dp_1 = f(idade, N, h_{dom}, G, d_{máx}),$
 $dp_2 = f(idade, N, h_{dom}, G, d_{máx}).$

Para montar os modelos lineares, esses parâmetros do povoamento (idade, N, h_{dom} , G, e ainda $d_{máx}$ nos 3 últimos) são usados por **Atributos** para compor os grupos de variáveis independentes, onde cada um entra duas vezes –na primeira e na segunda potência– e cada modelo tem, respectivamente, $d_{máx}$, d_{min} , dp_1 e dp_2 como variável dependente Y. Define-se, portanto, uma regressão múltipla para cada Y, na qual em cada eixo de abscissa se tem uma parábola, para cada um daqueles parâmetros do povoamento. O uso dessas parábolas se justifica pelo seu bom ajuste.

Os modelos finais, então, são os definidos conforme o quadro 6. Para os seus ajustes, primeiramente **Atributos** abre os arquivos *freqs_1.dbf* e *params_1.dbf* –ambos de dados gravados por **Parcelas**– e faz a leitura dos parâmetros estimados, d_{máx}, d_{min}, dp₁ e dp₂, do primeiro arquivo, e idade, N, h_{dom} e G, do segundo arquivo, porém, novamente, somente para os dados das parcelas permanentes e, tal como na seção anterior, separadamente por grupo de parcelas de cada sítio e, ainda, somente para aquelas parcelas cujas idades sejam igual ou superior à idade do IMA_G máximo, calculada na seção anterior para cada sítio.

NÚMERO	FUNÇÃO
1	$d_{máx} = b_0 + b_1 i dade + b_2 i dade^2 + b_3 N + b_4 N^2 + b_5 h_{dom} + b_6 h_{dom}^2 + b_7 G + b_8 G^2$
2	$d_{min} = b_0 + b_1 i dade + b_2 i dade^2 + b_3 N + b_4 N^2 + b_5 h_{dom} + b_6 h_{dom}^2 + b_7 G + b_8 G^2 + b_9 d_{máx} + b_{10} d_{máx}^2$
3	$dp_1 = b_0 + b_1 i dade + b_2 i dade^2 + b_3 N + b_4 N^2 + b_5 h_{dom} + b_6 h_{dom}^2 + b_7 G + b_8 G^2 + b_9 d_{max} + b_{10} d_{max}^2$
4	$dp_2 = b_0 + b_1 idade + b_2 idade^2 + b_3 N + b_4 N^2 + b_5 h_{dom} + b_6 h_{dom}^2 + b_7 G + b_8 G^2 + b_9 d_{max} + b_{10} d_{max}^2$

onde $d_{m\acute{a}x}$, d_{min} são DAP (diâmetros a altura do peito, em cm) mínimo e máximo dp_1 e dp_2 são DAP percentis a 24% e a 93% na distribuição de freqüências Idade do povoamento em anos, em decimais N é o número de árvores por hectare do povoamento h_{dom} é a média das alturas das 100 árvores de maior diâmetro do povoamento, em m G é a área basal do povoamento, em m2 b_0 , b_1 ... b_{10} são coeficientes a estimar

QUADRO 6 - MODELOS AUXILIARES PARA PROJEÇÃO DA DISTRIBUIÇÃO WEIBULL FONTE: O autor (2007)

Com esses dados na memória, os modelos do quadro 6 são ajustados por **Atributos** ao executar a sub-rotina *RegLin*, aqui preparada para essas funções e recebendo a denominação de 'atribut'. Os coeficientes b_0 , b_1 ... b_{10} e a análise estatística, Sy.x, CV%, R² e F, calculados para esses modelos, são gravados, no final do roteiro da figura 8, em *projecsS.dbf*, S= sítio 1 ... 3, bancos de dados com o relatório a ser utilizado pelo pacote **Dínamo**.

3.2.5.7 Escolha da melhor opção em % d_{min} para parâmetro a de Weibull

No pacote **Parcelas**, na seção 3.2.4.2, no ajuste da função de distribuição Weibull, faz-se a estimativa dos parâmetros b e c, simulando-se separadamente o parâmetro a, vinculando-o a um percentual do diâmetro mínimo, tais como $0.0d_{\min}$, $0.1d_{\min}$, $0.2d_{\min}$, $0.3d_{\min}$, $0.4d_{\min}$, $0.5d_{\min}$, $0.6d_{\min}$, $0.7d_{\min}$, $0.8d_{\min}$, $0.9d_{\min}$, $1.0d_{\min}$. Para cada valor de a, calcula-se os valores correspondentes para b e c, em cada parcela, juntamente com o teste de aderência Kolmogorov-Smirnov (K-S), para cada distribuição ajustada. A melhor distribuição por parcela é escolhida pelo teste e os seus valores calculados são gravados. Cabe agora a **Atributos** fazer o

levantamento da melhor proposta de a por classe de sítio, para que o pacote **Dínamo** a utilize.

Para tal empreitada, **Atributos** abre o arquivo *params_1.dbf* –de dados gravados por **Parcelas**– e faz a leitura do parâmetro *a*, vinculado ao percentual do diâmetro mínimo, calculado naquela ocasião para a melhor distribuição ajustada para cada parcela. E, tal como na seção anterior, somente são lidos os dados das parcelas permanentes e separadamente por grupo de parcelas de cada sítio e, ainda, somente para aquelas parcelas cujas idades sejam igual ou superior à idade do IMA_G máximo, calculada para cada sítio.

Com os dados lidos, **Atributos** faz a seleção do valor de *a* por classe de sítio, sob critério de maior freqüência em aderência. Esse valor é então gravado, no final do roteiro da figura 8, em *projecsS.dbf*, *S*= sítio 1 ... 3, bancos de dados com o relatório a ser utilizado pelo pacote **Dínamo**.

Com essas gravações, que se somam às demais feitas nas seções anteriores, completam-se os bancos de dados *projecsS.dbf*, *S*= sítio 1 ... 3. Encerrase, com isso, toda a computação da modelagem necessária para funcionar o pacote **Dínamo**, o simulador para tabela de produção florestal.

3.2.6 Pacote **Dínamo**

Hosokawa (1980, p. 13) afirma

"De acordo com o princípio básico da economia, ou seja, obter o máximo de benefícios, com o mínimo de custos, infere na persistência de rendas, não apenas quanto à sua manutenção, mas também quanto à sua otimização. E isso pode ser alcançado através de uma sucessão de cortes dirigidos.

Devido à grande quantidade de variáveis que estão envolvidas na solução do problema desta natureza, um método adequado para resolvê-lo seria a simulação, o qual permite inclusive prognosticar a situação futura."

O pacote **Dínamo**, objetivo final desta metodologia, é o simulador para tabela de produção florestal. E as tabelas de produção são os principais instrumentos para o planejamento florestal, que é estratégia fundamental para o Ordenamento Florestal, a mais importante das funções do Manejo Florestal.

O nome fantasia "Dínamo" remete à idéia central da concepção do simulador: tal qual um "gerador que transforma energia dinâmica em elétrica", um dínamo, esse simulador é carregado com os modelos ajustados aos dados, através de seus programas básicos de modelagem. Dessa maneira, a sua proposta nasce para se contrapor à idéia simplista de simuladores ditos genéricos à espécie, com modelos pré-ajustados, fixados e extrapolados indiscriminadamente. O nome também se reporta ao seu caracter *dinâmico*, por analisar o comportamento do povoamento, com as devidas considerações às migrações em suas classes sociais.

De acordo com o roteiro apresentado por Sanquetta (1996, p. 8-12), para classificação dos modelos de simulador da produção florestal, o simulador **Dínamo** pode ser definido como: *empírico* –compreende método com ênfase na qualidade de ajuste de dados e das predições—, *dinâmico* –porta funções que podem acomodar variações no regime de manejo e, para tal, leva em conta a evolução, separadamente, de todas as classes sociais do povoamento—, *determinístico* – produz estimativas médias das tendências de desenvolvimento do povoamento—, *para classes do povoamento* –utiliza modelo probabilístico de distribuição de freqüências em DAP—, *não espacial* –a distribuição espacial específica e particular das árvores não é levada em conta.

Em linhas gerais, o simulador **Dínamo** –cujo roteiro segue o fluxograma da figura 9–, a cada vez que for executado, abre espaço no início para o agente do manejo criar um cenário de regimes de desbastes, em várias épocas até a idade de corte final. O simulador, então, chama todas as informações previamente gravadas em banco de dados pelos pacotes da modelagem, faz as projeções por distribuição de probabilidade de freqüências para cada idade de intervenção e classe de IS, levando em conta o crescimento dinâmico dos limites das classes sociais do povoamento, bem como a mortalidade natural entre esses períodos, e calcula os totais em N, G, V_{CC} e V_{SC}, assim como o sortimento de acordo com bitolas industriais, para cada uma dessas idades. No final, apresenta um relatório detalhado, com esses resultados para estoque, corte e remanescente por idade de intervenção e por classe de IS, e pormenorizado, com valores de freqüências por classe social, que indicam ao agente, por exemplo, quantas árvores cortar e em quais classes.

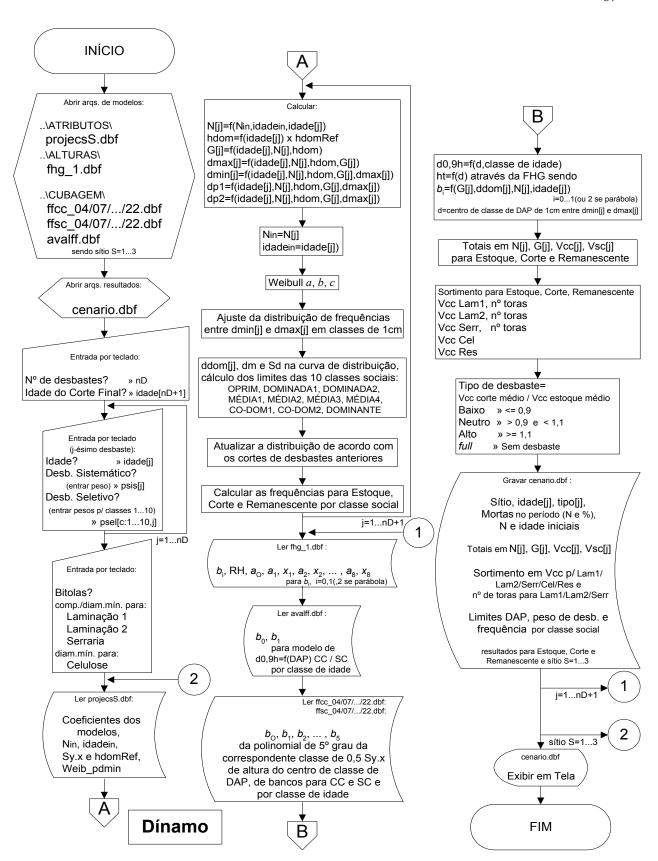


FIGURA 9 - FLUXOGRAMA DO PACOTE **Dínamo** FONTE: O autor (2007)

3.2.6.1 Criação do cenário: entrada de informações por teclado

O **Dínamo** exibe, inicialmente, algumas telas para entrada de informações. Na primeira, o agente do manejo digita a idade do corte final, ou seja, a idade da rotação, que é assumida em 25 anos por *default* (termo usado em informática para denotar 'padrão do sistema'), caso o usuário a omita. Ainda deve definir o valor do número de (épocas) de desbastes durante a rotação.

Na segunda tela, surgem tantos grupos de campos vazios quanto for o número de desbastes apontado na tela anterior. São campos a preencher, do primeiro ao último desbaste. Para cada época de desbaste j, preenche-se com o valor da idadej em que ocorre e, à correspondente pergunta, responde-se se haverá desbaste sistemático nesse j-ésimo desbaste. Caso positivo, deve-se preencher o campo com o peso do desbaste, por exemplo: 33,3 (%), para corte a cada terceira linha de árvores, 25 (%), para cada quarta linha, etc. Ainda para cada época de desbaste j, deve-se responder a outra pergunta: também haverá desbaste seletivo? Caso positivo, deve-se preencher os campos com os pesos de desbaste para cada uma das 10 classes sociais do povoamento: oprimida, dominada 1, dominada 2, média 1, média 2, média 3, média 4, co-dominante 1, co-dominante 2 e dominante. Cada uma dessas classes tem a largura na distribuição de 0,5 unidade de desvio padrão em relação à média dos diâmetros, conforme a tabela 2.

TABELA 2 - CLASSES SOCIAIS DO POVOAMENTO FLORESTAL

NÚMERO	CLASSE	DISTÂNCIA EM RELAÇÃO A d _m
1	OPRIMIDA	< - 2,0 S _d
2	DOMINADA 1	- 2,0 S _d
3	DOMINADA 2	- 1,5 S _d
4	MÉDIA 1	- 1,0 S _d
5	MÉDIA 2	- 0,5 S _d
6	MÉDIA 3	+ 0,5 S _d
7	MÉDIA 4	+ 1,0 S _d
8	CO-DOMINANTE 1	+ 1,5 S _d
9	CO-DOMINANTE 2	+ 2,0 S _d
10	DOMINANTE	> + 2,0 S _d

onde d_m é média em DAP, em cm

 S_d é desvio padrão em relação a d_m , em cm

FONTE: O autor (2007)

Na terceira tela, aparece o grupo de campos para o sortimento, a se preencher com os valores das bitolas industriais, para comprimentos e diâmetros mínimos para laminação 1 (ou especial), laminação 2 e serraria e, ainda, diâmetro mínimo para celulose. Caso o usuário os omita, os valores *default* são assumidos conforme os da tabela 3.

TABELA 3 - BITOLAS INDUSTRIAIS PARA O SORTIMENTO

NÚMERO	CLASSE	COMPRIMENTO MÍNIMO (m)	DIÂMETRO MÍNIMO (cm)
1	LAMINAÇÃO 1	2,55	35
2	LAMINAÇÃO 2	2,55	25
3	SERRARIA	2,55	18
4	CELULOSE	-	8

FONTE: O autor (2007)

Definido o cenário, os cálculos são executados pelo programa uma vez para cada IS, ou seja, para sítio S=1 ... 3, até o final do roteiro do fluxograma da figura 9.

3.2.6.2 Cálculo da distribuição de freqüências em DAP por idade de intervenção

Primeiramente, **Dínamo** precisa ler as informações gravadas em *projecsS.dbf*, *S*= sítio 1 ... 3, –bancos de dados com o relatório preparado por **Atributos**—, para os parâmetros do melhor modelo de crescimento e do melhor modelo de sobrevivência; e para os coeficientes do modelo de produção em área basal e dos modelos auxiliares para projeção da função de distribuição Weibull. Além dessas informações, também faz a leitura dos valores para N_{in}, idade_{in} —N e idade, iniciais, que balizarão o escopo inicial na aplicação do modelo de sobrevivência— e, também, para Sy.x da função de crescimento e h_{dom}Ref —h_{dom} calculado na idade de referência, 20 anos, para classificação de IS— e, ainda, para Weib_pdmin —valor do percentual de d_{min} para estimar parâmetro *a* de Weibull, calculado sob critério de maior freqüência em aderência por K-S. As informações lidas, sempre, são valores ajustados para cada IS.

Com essas informações na memória, **Dínamo** procede ao cálculo das estimativas dos parâmetros do povoamento e da sua distribuição de freqüências em DAP, para a j-ésima idade de intervenção. A primeira equação a ser calculada é a do modelo de sobrevivência, no qual $N_j = f(N_{in}, idade_{in}, idade_{j})$, selecionado como o melhor para o IS em **Atributos**, dentre aqueles do quadro 5, onde

$$N_2 = N_j$$
 e $I_2 = idade_j$,
 $N_1 = N_{in}$ e $I_1 = idade_{in}$.

NÚMERO	FUNÇÃO	AUTOR
1	$N_2 = N_1 e^{\theta_1(I_2 - I_1) + \theta_2 ln(I_2 / I_1)}$	Lenhart
2	$N_{2} = \left[N_{1}^{\theta_{1}} + \theta_{2} \left(I_{2}^{\theta_{3}} - I_{1}^{\theta_{3}}\right)\right]^{\theta_{1}^{-1}}$	Clutter e Jones (1980)
3	$N_2 = N_1 e^{\theta_2(\theta_1^{l_2} - \theta_1^{l_1})}$	Silva (1986)
4	$N_2 = N_1 (\theta_1 + \theta_2 N_1)^{I_1 - I_2}$	Beverton

onde N_2 e N_1 são números de árvores por ha nas idades I_2 e I_1 θ_1 , θ_2 e θ_3 são parâmetros a estimar

QUADRO 5 - MODELOS DE SOBREVIVÊNCIA FONTE: SANQUETTA (1990) e SCOLFORO (1998)

Para a segunda idade de intervenção em diante, faz-se $N_{in} = N_{j-1}$ e idade_{in} = idade_{i-1}, ou seja, 'N e idade iniciais' serão os do desbaste anterior.

A segunda equação a ser calculada é a do modelo de crescimento, no qual $h_{dom} = f(idade_j)$, selecionado como o melhor em **Atributos**, dentre 10 ajustes: 5 opções para o modelo de Gompertz, isto é, para k = 0.1, 0.15, 0.2, 0.25 e 0.3 e outras 5 opções para o modelo da Logística, isto é, para k = 0.2, 0.25, 0.3, 0.35 e 0.4. O modelo de Gompertz possui a forma

$$Y = \theta_1 e^{-\theta_2} e^{-kt}$$

e o modelo da Logística

$$Y = \frac{\theta_1}{1 + \theta_2 e^{-kt}} ,$$

onde $Y = h_{dom}$, $t = idade_j$, k = constante e θ_1 e θ_2 são parâmetros estimados. Ao valor calculado para h_{dom} , aplica-se percentual em relação à hdomRef $-h_{dom}$ calculado na

idade de referência para classificação de IS. A h_{dom} Ref representa o centro de classe do IS, índice de sítio, 2, cuja amplitude é de ± 0.5 Sy.x, da curva da função, em torno de h_{dom} Ref. Ao se acrescentar 1 Sy.x em h_{dom} Ref, tem-se o centro de classe do IS 1. Ao se diminuir 1 Sy.x em h_{dom} Ref, tem-se o centro de classe do IS 3. Para o restante das 3 curvas, que passam pelos centros dos índices de sítio, aplica-se as mesmas porcentagens verificadas entre as alturas da idade de referência, desde a idade 1 até a idade da rotação final. As 3 curvas têm amplitude de ± 0.5 Sy.x .

Após essas estimativas de parâmetros do povoamento, N_j e h_{dom} , calculadas para a j-ésima idade de intervenção, a próxima equação a se calcular é a da produção em área basal, $G_i = f(idade_i, N_i, h_{dom})$, que é o modelo de Pienaar e Shiver:

$$lnG_{j} = b_0 + b_1 \frac{1}{idade_{j}} + b_2 lnN_{j} + b_3 lnN_{dom} + b_4 \frac{lnN_{j}}{idade_{j}} + b_5 \frac{lnN_{dom}}{idade_{j}}.$$

Com mais essa estimativa de parâmetro, passa-se ao cálculo dos modelos auxiliares para projeção da função de distribuição Weibull. O primeiro é a equação $d_{\text{máx j}} = f(\text{idade}_j, N_j, h_{\text{dom}}, G_j)$, que se apresenta como

$$d_{m\acute{a}x\,j} = b_0 + b_1 i dade_j + b_2 i dade_j^2 + b_3 N_j + b_4 N_j^2 + b_5 h_{dom} + b_6 h_{dom}^2 + b_7 G_j + b_8 G_j^2 .$$

As demais têm $d_{máx j}$ também compondo as variáveis independentes –para que as estimativas se tornem mais estáveis– e ficam com a configuração em

$$d_{\min j} = f(idade_j, N_j, h_{dom}, G_j, d_{máx_j}),$$

 $dp_{1j} = f(idade_j, N_j, h_{dom}, G_j, d_{máx_j}),$
 $dp_{2j} = f(idade_j, N_j, h_{dom}, G_j, d_{máx_j}),$

que se apresentam como

$$\begin{split} & d_{min\,j} = b_0 + b_1 i dade_j + b_2 i dade_j^2 + b_3 N_j + b_4 N_j^2 + b_5 h_{dom} + b_6 h_{dom}^2 + b_7 G_j + b_8 G_j^2 + b_9 d_{m\acute{a}x\,j} + b_{10} d_{m\acute{a}x\,j}^2 \\ & dp_{1\,\,j} = b_0 + b_1 i dade_j + b_2 i dade_j^2 + b_3 N_j + b_4 N_j^2 + b_5 h_{dom} + b_6 h_{dom}^2 + b_7 G_j + b_8 G_j^2 + b_9 d_{m\acute{a}x\,j} + b_{10} d_{m\acute{a}x\,j}^2 \\ & dp_{2\,\,j} = b_0 + b_1 i dade_j + b_2 i dade_j^2 + b_3 N_j + b_4 N_j^2 + b_5 h_{dom} + b_6 h_{dom}^2 + b_7 G_j + b_8 G_j^2 + b_9 d_{m\acute{a}x\,j} + b_{10} d_{m\acute{a}x\,j}^2 \\ & + b_8 d_{m\acute{a}x\,j} + b_{10} d_{m\acute{a}x\,j}^2 + b_8 d_{m\acute{a}x\,j} + b_{10} d_{m\acute{a}x\,j}^2 + b_8 d_{m\acute{a}x\,j} + b_{10} d_{m\acute{a}x\,j}^2 \\ & + b_8 d_{m\acute{a}x\,j} + b_{10} d_{m\acute{a}x\,j}^2 + b_8 d_{m\acute{a}x\,j} + b_{10} d_{m\acute{a}x\,j}^2 + b_8 d_{m\acute{$$

Findo o cálculo dessas estimativas de parâmetros do povoamento, viabilizam-se projeções do ajuste do modelo da função de distribuição Weibull com três parâmetros, que tem a função densidade de probabilidade (fdp) expressa como

$$f(x) = \begin{cases} \frac{c}{b} \left(\frac{x - a}{b} \right)^{c - 1} e^{-\left(\frac{x - a}{b} \right)^{c}}, & a \le x < \infty, & a \ge 0, & b > 0, & c > 0 \\ 0 \longrightarrow \text{ para outros casos} \end{cases}$$

onde a = parâmetro de locação, no início da curva

b = parâmetro de escala da curva

c = parâmetro de forma, que define o tipo de curva

x = variável da distribuição, diâmetro

a média: $E(x) = a + b\Gamma\left(1 + \frac{1}{c}\right)$ e a variância: $V(x) = b^2\Gamma\left(1 + \frac{2}{c}\right) - \Gamma^2\left(1 + \frac{1}{c}\right)$ em que Γ = função gama .

Deve-se começar a estimar b e c, estimando-se separadamente o parâmetro a, vinculando-o a um percentual do diâmetro mínimo, valor esse de acordo com Weib_pdmin, que pode ser uma das opções pesquisadas em **Parcelas** e **Atributos**: $0.0d_{\min}$, $0.1d_{\min}$, $0.2d_{\min}$, $0.3d_{\min}$, $0.4d_{\min}$, $0.5d_{\min}$, $0.6d_{\min}$, $0.7d_{\min}$, $0.8d_{\min}$, $0.9d_{\min}$, $1.0d_{\min}$. Aqui d_{\min} será d_{\min} , ou seja, d_{\min} da j-ésima idade de intervenção. Então

$$c = \frac{ln[-ln(1-p1)/-ln(1-p2)]}{ln[(x_{p1}-a)/(x_{p2}-a)]}$$

$$b = \frac{x_{p1} - a}{\left(-\ln(1 - p1)\right)^{\frac{1}{c}}}$$

onde p1 e p2 = percentis de N_j

 x_{p1} e x_{p2} = dp_{1 j} e dp_{2 j}, diâmetros para p1 e p2.

Seguindo essa lógica, **Dínamo** monta uma matriz de freqüências, em que cada linha corresponde a j-ésima idade de intervenção, com o respectivo ajuste da distribuição de freqüências entre d_{min j} e d_{máx j}, em classes de DAP de 1cm, distribuídas em suas colunas. A seguir, calcula numericamente na curva de distribuição –em cada linha da matriz que corresponde a cada idade de intervenção o diâmetro médio aritmético e o desvio padrão diamétrico, para viabilizar o cálculo dos limites por idade para cada uma das 10 classes sociais do povoamento: oprimida, dominada 1, dominada 2, média 1, média 2, média 3, média 4, codominante 1, co-dominante 2 e dominante. Cada uma dessas classes tem a largura, na sua distribuição, de 0,5 unidade de desvio padrão em relação à média dos

diâmetros. Ainda calcula, também para cada curva, para uso adiante, o valor para $d_{\text{dom i}}$.

Promove, então, para cada idade de intervenção, a atualização da matriz de distribuição, de acordo com os cortes de desbastes de idades anteriores. Com isso, viabiliza-se o cálculo das freqüências para estoque, corte e remanescente por classe social, para a j-ésima idade de intervenção.

3.2.6.3 Cálculo dos totais em N, G, V_{CC} e V_{SC} para estoque, corte e remanescente, por idade de intervenção

Dínamo se põe agora a trabalhar com essa matriz de freqüências, calculada e atualizada, na seção anterior, particularmente em cada linha correspondente à jésima idade de intervenção, de acordo com o cenário escolhido pelo usuário, nas telas do início. Para calcular N_j para estoque e N_j para corte, basta somar os valores das freqüências na linha correspondente da matriz, ou seja, soma-se os valores para estoque e para corte das suas colunas entre d_{min j} e d_{máx j}, em classes de DAP de 1cm. Para N_j remanescente, simplesmente se calcula a diferença entre N_j para estoque e N_j para corte. Para calcular G_j para estoque, G_j para corte e G_j para remanescente, procede-se similarmente, com a diferença de que, agora, soma-se as áreas basais calculadas por classe, obtidas em cada qual pelo produto da área transversal do seu centro de classe pela sua freqüência.

Para os cálculos de $V_{CC\ j}$ e $V_{SC\ j}$ o procedimento não é tão direto. São necessárias as leituras de bancos de dados com o modelo de FHG, para estimar as alturas dos centros de classes, e outros com os modelos das funções de forma, similarmente ao que ocorreu no pacote **Parcelas**, com a diferença de que lá os dados eram as árvores das parcelas e aqui são as classes diamétricas.

Então, antes, **Dínamo** lê os coeficientes e a composição das variáveis da FHG no arquivo $fhg_1.dbf$ –ajustada no pacote **Alturas** para os dados das parcelas permanentes da primeira medição ou única se parcelas temporárias. Depois, procura o arquivo *avalff.dbf* e faz a leitura dos coeficientes das funções de $d_{0,9ht} = f(DAP)$, para CC e SC, ajustadas para a classe de idade que corresponde à j-ésima idade de intervenção. E consulta o banco de dados das funções de forma para essa classe

de idade, dentre *ffcc_04/07/.../22.dbf* e *ffsc_04/07/.../22.dbf*, para CC e SC, arquivos esses previamente preparados por **Cubagem**.

De posse desses modelos de função diamétrica e lendo os bancos de dados das funções de forma, **Dínamo** parte para o processamento dos volumes CC e SC estimados pelas funções de forma, por integração, após coletar os específicos coeficientes b_0 , b_1 , b_2 , ..., b_5 da polinomial de 5° grau da correspondente classe de 0,5 Sy.x de altura h_t do centro classe de DAP, de bancos para CC e SC e para a respectiva classe de idade.

Recorde-se que, tal como relatado em Cubagem, nessa polinomial,

$$y = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + b_4 x^4 + b_5 x^5$$
,

para $y = \frac{d_i}{d_{0.9ht}}$ que é o quociente de forma verdadeiro e

 $x = \frac{\mathbf{h}_i}{\mathbf{h}_t}$ que é a altura relativa, para qualquer posição do tronco,

onde $d_{0,9ht}$ = diâmetro de referência, $d_{0,1}$, medido a 10% da altura total h_t d_i = diâmetro medido à altura h_i ,

na variável independente, apresentada em múltiplos graus, $x = \frac{\mathbf{h}_i}{\mathbf{h}_t}$, tem-se que \mathbf{h}_i corresponde a qualquer altura do tronco. Quando $\mathbf{h}_i = \mathbf{h}_t$, isto é, x = 1, tem-se o volume total da árvore ou, agora no **Dínamo**, do centro de classe de DAP, ao se fazer a integral da polinomial e multiplicá-la pelo volume do respectivo cilindro com base de referência em $\mathbf{d}_{0,9ht}$. Ou seja, o volume relativo, \mathbf{v}_r , para um determinado trecho do tronco compreendido entre o seu início, ou posição zero, e uma específica altura \mathbf{h}_i , ou posição l, é calculado pela integral da polinomial,

$$v_{r} = \int_{0}^{l} y^{2} dx$$

$$v_{r} = \int_{0}^{l} (b_{0} + b_{1}x + b_{2}x^{2} + b_{3}x^{3} + b_{4}x^{4} + b_{5}x^{5})^{2} dx$$

$$v_{r} = b_{0}^{2}x + b_{0}b_{1}x^{2} + (2b_{0}b_{2} + b_{1}^{2})\frac{x^{3}}{3} + (b_{0}b_{3} + b_{1}b_{2})\frac{x^{4}}{2} + (2b_{0}b_{4} + 2b_{1}b_{3} + b_{2}^{2})\frac{x^{5}}{5} + (b_{0}b_{5} + b_{1}b_{4} + b_{2}b_{3})\frac{x^{6}}{3} + (2b_{1}b_{5} + 2b_{2}b_{4} + b_{3}^{2})\frac{x^{7}}{7} + (b_{2}b_{5} + b_{3}b_{4})\frac{x^{8}}{4} + (2b_{3}b_{5} + b_{4}^{2})\frac{x^{9}}{9} + b_{4}b_{5}\frac{x^{10}}{5} + b_{5}^{2}\frac{x^{11}}{11}$$

que multiplicado pelo volume do cilindro com base em $d_{\it 0,9ht}$ nos dá o volume (v) da tora,

$$v = \frac{\pi}{40000} d_{0,9ht}^2 h_t v_r$$

em qualquer posição do tronco a partir do solo, pois h_i corresponde a qualquer altura do tronco. Então, ao se atribuir x = 1, tem-se o volume total do centro de classe de DAP para CC ou SC, dependendo do banco de dados das funções de forma e diamétrica de onde os coeficientes foram lidos, se para CC ou SC.

Observe-se que a estimativa da altura h_t do centro de classe de DAP – necessária para a leitura da correta polinomial do banco de dados e também para o cálculo do sortimento adiante— é feita pela FHG, cujos coeficientes do modelo de RH são estimados indiretamente em função de G_j , $d_{dom\ j}$, N_j e idade $_j$, calculados na seção anterior, conforme raciocínio em **Alturas**. E, ainda, que a estimativa da função diamétrica, $d_{0.9ht} = b_0 + b_1 DAP$, faz-se em função do centro de classe de DAP.

Então, para se calcular $V_{CC\,j}$ para estoque e $V_{CC\,j}$ para corte, soma-se os respectivos volumes CC calculados por classe, obtidos em cada qual pelo produto do volume CC do seu centro de classe pela sua freqüência, na linha correspondente à j-ésima idade de intervenção da matriz de freqüências, ou seja, soma-se os valores calculados para estoque e para corte das suas colunas entre $d_{min\,j}$ e $d_{máx\,j}$, em classes de DAP de 1cm. Para $V_{CC\,j}$ remanescente, calcula-se simplesmente a diferença entre $V_{CC\,j}$ para estoque e $V_{CC\,j}$ para corte. Operação similar se faz para $V_{SC\,j}$.

3.2.6.4 Cálculo do sortimento e número de toras para estoque, corte e remanescente, por idade de intervenção

Para se calcular o sortimento –próximo passo no roteiro da figura 9– o raciocínio é similar ao mostrado na seção anterior para calcular V_{CC} e V_{SC} . A diferença fica no detalhamento do tronco da árvore, representada nos centros de classe de DAP. Ao se variar $x=\frac{h_i}{h_t}$, pode-se calcular os volumes de secções do

tronco, ou seja, procede-se ao sortimento em toras, de acordo com as bitolas industriais. Assim, em suma, o volume de cada tora pode ser calculado pela fórmula

$$V_{t} = \frac{\pi}{40000} d_{0,9ht}^{2} h_{t} \left(\int_{0}^{l_{f}} y^{2} dx - \int_{0}^{l_{i}} y^{2} dx \right)$$

onde l_i = específica altura no início da tora

 l_f = específica altura no final da tora

 v_t = volume da tora.

Para cada classe de DAP, com a estimativa da altura h_t do seu centro feita pela FHG, realiza-se o cálculo dos volumes CC e SC, para estoque, corte e remanescente, das múltiplas secções no tronco da árvore, representada nesse seu centro de classe. Essas secções devem seguir o figurino projetado na criação do cenário, no início do programa, quando da entrada de informações por teclado para bitolas industriais. Essas bitolas versam sobre diâmetros mínimos, a se conseguir nas pontas finas das toras obtidas das múltiplas secções, e facilmente calculados pela polinomial na variável dependente $y = \frac{d_i}{d_{0.9ht}}$. Essas toras devem ainda se enquadrar no figurino do comprimento mínimo.

Começa-se pelo 'manequim' mais rígido, o da laminação 1 (ou especial): calcula-se, desde a altura zero, ou posição do tronco a partir do solo, até a altura final h_f da árvore, quantas toras cabem com aquele requisito de bitola. Para essas toras, calcula-se os seus volumes e seu número de freqüência. Se houver resultados de enquadramento positivo, passa-se ao manequim da laminação 2, a partir de onde se parou no sortimento anterior. Caso não tenha havido enquadramento, começa-se novamente esse novo sortimento desde a altura zero. Para essas toras, calcula-se os seus volumes e o seu número de freqüência. Procede-se da mesma maneira para

O **Dínamo** executa esses cálculos de acordo com a matriz de freqüências – organizada na seção 3.2.6.2. Por essa matriz, nas linhas correspondentes às j-ésimas idades de intervenção, e em cada coluna correspondente a cada classe de

o manequim da serraria. No próximo, o da celulose, faz-se o mesmo, porém com a

diferença de nesse não haver comprimento mínimo e não ser contado o número de

toras. No final, o que sobrar fica como produto de resíduo, em volume.

DAP de 1cm, esses produtos industriais são totalizados em seus volumes e número de toras. Os resultados de cada árvore, representada no seu centro de classe, são multiplicados pela sua freqüência e depois somados entre $d_{min\ j}$ e $d_{máx\ j}$. Os valores são obtidos para volumes CC e SC, para estoque, corte e remanescente, similarmente ao que se faz na secção anterior.

3.2.6.5 Cálculo do tipo de desbaste por idade de intervenção

O Manejo Florestal necessita de ferramentas de decisão, baseadas na definição detalhada dos regimes de desbastes em tabelas de produção. Os regimes de desbastes são explicados pelo tipo e pela intensidade dos desbastes. O tipo de desbaste indica quais árvores são cortadas. E a intensidade aponta quantas árvores são cortadas —ou o peso de desbaste em porcentagem— e em que intervalos —ou ciclo de desbaste. O **Dínamo**, em seu relatório final, fornece a tabela de produção com detalhamento da intensidade dos desbastes distribuída em 10 classes sociais do povoamento, nas j-ésimas idades de intervenção. Resta calcular agora, nesse ponto do roteiro do fluxograma da figura 9, o tipo de desbaste nessas idades.

Calculados os volumes, **Dínamo** usa o critério clássico do Manejo Florestal para classificar o tipo de desbaste em baixo, neutro e alto, conforme a dimensão das árvores cortadas. Ele o faz, dividindo a média dos volumes CC das árvores destinadas a desbaste, as do corte, pela média dos volumes CC do estoque. Ou seja,

Tipo de desbaste = V_{CC} corte médio / V_{CC} estoque médio , relação que fornece os critérios da tabela 4.

TABELA 4 - CRITÉRIOS PARA CLASSIFICAÇÃO DOS TIPOS DE DESBASTE

TIPO DE	V _{CC} corte médio /
DESBASTE	V _{CC} estoque médio
Baixo	<= 0,9
Neutro	> 0,9 e < 1,1
Alto	>= 1,1
full	zero (sem desbaste)

FONTE: O autor (2007)

Para se interpretar o que significa essa classificação no regime de desbaste, pode-se afirmar que no desbaste baixo são cortadas principalmente árvores dominadas. No desbaste neutro, corta-se árvores de todas as classes, tal como nos desbastes sistemáticos. Já no desbaste alto, corta-se principalmente árvores codominantes. Salvaguardem-se as exceções. A opção *full*, para o **Dínamo** particularmente, indica que, nessa j-ésima idade de intervenção, o usuário nas telas iniciais opta por não fazer desbaste, mas indica a idade de intervenção para que o programa calcule os valores de estoque.

3.2.6.6 Apresentação do relatório final

No final, para o cenário proposto pelo usuário, o pacote de simulação florestal **Dínamo** apresenta um relatório detalhado na formulação de tabela de produção, com os resultados para estoque, corte e remanescente, nas j-ésimas idades de intervenção, em três versões, para sítio *S*=1 ... 3. O relatório compreende três focos de abrangências para o Manejo Florestal:

- a) geral em evolução, onde são listados:
 - índice de sítio, idadei, tipoi de desbaste;
 - N e porcentagem de mortas, no período entre as idades de intervenção;
 - N e idade, iniciais, que são os limites inferiores para os dados, nos quais a função de sobrevivência foi ajustada, para a sua validação;
 - o nome do modelo de sobrevivência escolhido para o sítio;
 - totais em N_i, G_i(m²), V_{CC i}(m³) e V_{SC i}(m³);
- b) sortimento em produtos industriais, onde são listados:
 - V_{CC i}(m³) para Lam1 /Lam2 /Serr /Cel /Res;
 - número de toras para Lam1 /Lam2 /Serr;
- c) estrutural em classes sociais, onde são listados:
 - limites, inferior e superior de DAP(cm), peso de desbaste e freqüência /ha por classe social: oprimida, dominada 1, dominada 2, média 1, média 2, média 3, média 4, co-dominante 1, co-dominante 2 e dominante.

Se o usuário executar várias vezes o simulador, pode propor vários cenários a comparar e analisar, em cada qual, os resultados nas j-ésimas idades de intervenção, para sítios *S*=1 ... 3.

Além da especificidade dos ajustes dos modelos aos dados e das várias opções de modelos ajustados e escolhidos automaticamente nos pacotes da modelagem, esse pacote final, que compõe o simulador **Dínamo**, oferece ao Manejo Florestal um relatório detalhado que o ajudará na tomada de decisões.

O ponto principal talvez seja o foco de abrangência estrutural em classes sociais, o que define esse simulador como *dinâmico* –pois porta funções que podem acomodar variações no regime de manejo e leva em conta a evolução, separadamente, de todas as classes sociais do povoamento.

Com o detalhamento do tipo e da intensidade dos desbastes, distribuída em 10 classes sociais do povoamento e nas j-ésimas idades de intervenção, pode-se sugerir quais árvores devem ser cortadas e pela intensidade se aponta quantas árvores devem ser cortadas e em que intervalos.

4 RESULTADOS

Os resultados das seqüências de cálculos, descritas no capítulo 3, Metodologia, são apresentados aqui conforme o roteiro da figura 2, o 'organograma da metodologia', explicado na seção 3.1.1. Nesse organograma, após a coleta dos dados de campo e a sua digitalização, a metodologia se desenvolve em cinco pacotes de processamento de dados. Os quatro primeiros, **Alturas**, **Cubagem**, **Parcelas** e **Atributos**, executados nessa seqüência, compreendem a modelagem de funções e demais cálculos necessários ao quinto e último, o **Dínamo**, que executa o simulador de tabela da produção florestal, objetivo final do trabalho.

Os resultados dos pacotes são mostrados em inúmeros quadros, tabelas e gráficos, e objetivam apenas exemplificar a execução do trabalho, caracterizado como 'metodológico', conforme argumentação no capítulo Metodologia. Isto significa que, se aos pacotes de programas forem fornecidos outros dados de campo, os resultados inerentes obtidos poderão ser diferentes, mas analogamente compatíveis. Os pacotes fazem processamento com análises próprias de análise estatística, o que pode lhes levar a escolhas de outros modelos como ideais, em processos automatizados, com resultados diversos de acordo com os dados coletados.

Há quadros muitos extensos e, se listados na íntegra, alguns atingiriam centenas de páginas. Como o objetivo aqui é o de exemplificar, esses quadros são apresentados na forma de 'trechos de bancos', suficientemente para compreensão.

4.1 EXECUÇÃO DO PACOTE **Alturas**

O pacote **Alturas** realiza o ajuste das funções hipsométricas nas parcelas de dados de campo, em árvores cujas alturas foram medidas, e procede ao ajuste da função hipsométrica genérica (FHG) por evento de medição, conforme narrativa da seção 3.2.2 e conseqüentes subseções.

Após a leitura dos dados das parcelas de campo do inventário florestal, **Alturas** promove o ajuste de 8 modelos de função para RH, por parcela, e monta um banco para cada um dos 3 eventos de medição, em *hipsomsJ.dbf*, *J*=1 ... 3. No quadro 7 consta um trecho do banco para a medição 1.

GLEBA	TALHÃO	PARC	IDADE	N	G	d _{dom}	RH	Sy.x	CV%	R ²	F	<i>b</i> ₀	<i>b</i> ₁	<i>b</i> ₂
SNGL01	8	3	20,0	1000	54,39	36,3	1	1,79718	6,4	0,34416161	8,92102011	30,77431256043760	-1633,115916608680000	
SNGL01	8	3	20,0	1000	54,39	36,3	2	1,94018	6,9	0,23564036	5,24083942	13,10935291652540	4,599274832976780	
SNGL01	8	3	20,0	1000	54,39	36,3	3	1,95782	7,0	0,23393422	5,19130582	2,75920780278022	0,176049908020445	
SNGL01	8	3	20,0	1000	54,39	36,3	4	1,88142	6,7	0,29232472	7,02231726	3,52746266988889	-4,926209048955340	
SNGL01	8	3	20,0	1000	54,39	36,3	5	2,07572	7,4	0,12511003	2,43101488	26,43001218319480	0,002172658076011	
SNGL01	8	3	20,0	1000	54,39	36,3	6	1,81203	6,5	0,34007922	8,76066806	3,43513249470349	-62,366338991974700	
SNGL01	8	3	20,0	1000	54,39	36,3	7	1,86320	6,7	0,29509020	7,11656062	33,18548750288150	-128,834759836527000	
SNGL01	8	3	20,0	1000	54,39	36,3	8	1,83170	6,5	0,35880253	4,47665565	10,04659804874150	1,192094394098370	-0,018355834137669
SNGL01	9	2	20,0	1450	56,55	31,0	1	0,95414	4,2	0,47515218	19,01159779	24,82068027913870	-778,189599120007000	
SNGL01	9	2	20,0	1450	56,55	31,0	2	0,89157	3,9	0,54173055	24,82456925	9,50915790495946	4,392943700406020	
SNGL01	9	2	20,0	1450	56,55	31,0	3	0,89127	3,9	0,53123019	23,79810758	2,54193300089855	0,192786066360100	
SNGL01	9	2	20,0	1450	56,55	31,0	4	0,90491	3,9	0,51257866	22,08387459	3,31371801296590	-3,793937332934320	
SNGL01	9	2	20,0	1450	56,55	31,0	5	0,93533	4,1	0,49564054	20,63697095	20,77562688448670	0,004388483460970	
SNGL01	9	2	20,0	1450	56,55	31,0	6	0,94401	4,1	0,46841673	18,50462945	3,21410719689833	-34,241718500849800	
SNGL01	9	2	20,0	1450	56,55	31,0	7	0,91135	4,0	0,52117656	22,85750208	27,08939233417340	-86,324095996385900	
SNGL01	9	2	20,0	1450	56,55	31,0	8	0,90131	3,9	0,55397243	12,42013854	15,08708945170200	0,522847894047459	-0,007128832131855
SNGL01	11	5	20,0	1400	58,61	30,5	1	0,99446	4,2	0,69144400	53,78166679	26,90929695422250	-1564,734153473210000	
SNGL01	11	5	20,0	1400	58,61	30,5	2	0,93718	4,0	0,72596250	63,57925199	0,91502245207357	7,274780982439090	
SNGL01	11	5	20,0	1400	58,61	30,5	3	0,94295	4,0	0,72195787	62,31785273	2,18230863503811	0,313083147952796	
SNGL01	11	5	20,0	1400	58,61	30,5	4	0,93709	4,0	0,72057393	61,89033809	3,46176263131455	-6,719151500564290	
SNGL01	11	5	20,0	1400	58,61	30,5	5	1,01899	4,3	0,67603308	50,08163702	19,88469370169730	0,006712412116016	
SNGL01	11	5	20,0	1400	58,61	30,5	6	0,97168	4,1	0,69408517	54,45320722	3,30171801707710	-67,656475655714500	
SNGL01	11	5	20,0	1400	58,61	30,5	7	0,94538	4,0	0,72114613	62,06658047	30,62728787132060	-155,756386512877000	
SNGL01	11	5	20,0	1400	58,61	30,5	8	0,94571	4,0	0,73257784	31,50316817	9,75536540968096	0,899025852235582	-0,012466768873839
SNGL01	12	4	20,0	1333	57,56	32,3	1	1,39683	5,7	0,40918737	13,85167956	27,89291258439640	-1587,098025002720000	
SNGL01	12	4	20,0	1333	57,56	32,3	2	1,48970	6,0	0,32801634	9,76262871	6,09479375743103	5,938902504823090	
SNGL01	12	4	20,0	1333	57,56	32,3	3	1,50391	6,1	0,33483384	10,06767542	2,43422374973579	0,245813567150321	
SNGL01	12	4	20,0	1333	57,56	32,3	4	1,45222	5,9	0,38121131	12,32121143	3,46148548341456	-5,816612021618310	
SNGL01	12	4	20,0	1333	57,56	32,3	5	1,59862	6,5	0,22616179	5,84519593	22,14688408466770	0,004598779468443	
SNGL01	12	4	20,0	1333	57,56	32,3	6	1,40725	5,7	0,41939967	14,44710381	3,33672617018804	-65,824778136464300	
SNGL01	12	4	20,0	1333	57,56	32,3	7	1,43932	5,8	0,37269794	11,88256732	30,90738133108500	-140,388969183528000	
SNGL01	12	4	20,0	1333	57,56	32,3	8	1,23248	5,0	0,56303732	12,24098764	-10,61870306545090	2,852320365117970	-0,055843596563790

QUADRO 7 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO PARA RELAÇÃO HIPSOMÉTRICA (trecho do banco 1) FONTE: O autor (2007)

A apresentação na íntegra dos 3 bancos demandaria algo em torno de 300 páginas. Desses bancos, a análise estatística e os coeficientes do melhor modelo por parcela são usados pelo pacote **Parcelas**, no processamento das parcelas do inventário florestal, para aquelas árvores cujas alturas não foram medidas.

Na seqüência, **Alturas** se utiliza desses bancos para fazer a montagem do modelo de FHG, um por evento de medição. O relatório dessa análise, gravado em arquivo, r_f fig.dbf, é o que aparece no quadro 8. Nesse quadro, pode-se ver que, na medição 1, o modelo de função para RH, escolhido por **Alturas**, é o de número 3 (Stofells) e, nas demais, o modelo é o de número 1 (Assman). Para esses modelos, os seus coeficientes b_j entram como variáveis dependentes em FHG e o quadro 8 mostra um asterisco, colocado por **Alturas** para apontar a melhor apresentação de variável independente para x_1 , x_3 , x_5 e x_7 . Para as variáveis pares, x_2 , x_4 , x_6 e x_8 , **Alturas** emprega as apresentações das variáveis ímpares elevadas ao quadrado.

MEDIÇÃO	RH	b _i	TRNSF 1	X ₁	_G	X 3	_d _{dom}	X ₅	_N	X ₇	_idade
1	3	0	_var	*	0,85067842		0,90768242	*	-0,64309112		0,88914992
			1/_var		-0,72376735		-0,89503244		0,52004450		-0,91089710
			log(_var)		0,83621842	*	0,91015660		-0,59945410	*	0,91477104
			1/log(_var)		-0,77625601		-0,90217068		0,58031242		-0,90986242
		1	_var	*	-0,69241311		-0,73896099	*	0,51902478		-0,72277057
			1/_var		0,60230933		0,73674050		-0,44000435	*	0,74990599
			log(_var)		-0,68780182	*	-0,74490310		0,49317429		-0,74711232
			1/log(_var)		0,64292192		0,74106193		-0,48082276		0,74920023
2	1	0	_var	*	0,80288001	*	0,93097250	*	-0,69459002		0,91298484
			1/_var		-0,66881891		-0,91217637		0,50814013	*	-0,93472544
			log(_var)		0,76238784		0,92846836		-0,62009261		0,93425717
			1/log(_var)		-0,71514563		-0,91978827		0,59138261		-0,93448567
		1	_var	*	-0,65940414	*	-0,81995935	*	0,64748032		-0,77351928
			1/_var		0,53423830		0,77344143		-0,48568706		0,77767025
			log(_var)		-0,61784631		-0,80176968		0,58630776	*	-0,78449455
			1/log(_var)		0,57502665		0,78543579		-0,56118131		0,77852300
3	1	0	_var	*	0,72386977		0,91906058	*	-0,70721937		0,91927719
			1/_var		-0,60020301		-0,91935720		0,48545309		-0,93248098
			log(_var)		0,68269910	*	0,92703864		-0,61840193	*	0,93413651
			1/log(_var)		-0,64166156		-0,92391704		0,58343508		-0,93308217
		1	_var	*	-0,48110557	*	-0,75354616	*	0,65599613	*	-0,72840335
			1/_var		0,39907673		0,71996241		-0,51734775		0,70727160
			log(_var)		-0,45330060		-0,74197062		0,60874159		-0,72188702
			1/log(_var)		0,42631238		0,72977588		-0,58649133		0,71053532

 $^{^{1}}$ A função $\log(x)$, usada em linguagens de computação, denota $\log_{\,\mathrm{e}}\,x$, logarítimo natural

QUADRO 8 - ANÁLISE DE CORRELAÇÃO SIMPLES PARA APRESENTAÇÕES DE VARIÁVEL PARA COMPOSIÇÃO DAS REGRESSÕES MÚLTIPLAS PARA 'FHG' FONTE: O autor (2007) Servindo-se das conclusões dessa análise, **Alturas** faz o ajuste dos modelos escolhidos como ideais para FHG, um para cada j-ésima medição, e os grava em *fhg_J.dbf*, *J*=1 ... 3, respectivamente mostrados nos quadros 9, 10 e 11.

RH	b _i	Sy.x	CV%	R^2	F	a ₀	a ₁	$\boldsymbol{x_1}^{-1}$
3	0	0,28798		0,87584811	451,49758912		0,017825554141429	_G
						'	•	. –
							a ₂	X 2
							a ₂ 0,000128070222803	_G**2
							a ₃ 3,041036402949430	X 3
							3,041036402949430	log(_ddom)
							<u>-</u>	
							a ₄ -0,551061827434637	X ₄
							-0,551061827434637	log(_ddom)**2
							•	
							a ₅ -0,002525370821730	X 5
							-0,002525370821730	_N
							1 _	
							a ₆ 0,000000768801623	X 6
							0,000000768801623	_N^^2
							و ا	ı
							a ₇ 1,42575378506217	log(idade)
							1,42373370300217	log(_ldade)
							<i>a</i> 。	l x。
							a ₈ -0,187618247052399	log(idade)**2
							.,	300
	1	0,09578	25,0	0,59726387	94,91298656	1,12121089731496	a ₁	<i>X</i> ₁
							-0,004733693909326	
							-	_
							a ₂ -0,000007220245178	X 2
							-0,000007220245178	_G**2
							•	
							a ₃ -0,870400938600326	<i>X</i> 3
							-0,870400938600326	log(_ddom)
							_	1
							a ₄ 0,159812164763135	X 4
							0,159812164763135	log(_aaom)***2
							a₋	l _{v-} ∣
							a ₅ 0,000649721731867	X ₅
							3,000010721701007	ı <u>-</u> '`
							a ₆	<i>X</i> 6
							-0,000000219408870	_N**2
						'	,	'
							a 7	x ₇
							1,43342408718211	1/_idade
						'	•	-
							a ₈	<i>x</i> ₈
							-2,132353526362060	(1/_idade)**2

A função log(x), usada em linguagens de computação, denota *log* _e x, logarítimo natural

QUADRO 9 - ANÁLISE ESTATÍSTICA, COEFICIENTES E VARIÁVEIS INDEPENDENTES DAS REGRESSÕES MULTIPLAS PARA 'FHG', NA MEDIÇÃO 1

FONTE: O autor (2007)

RH	b,	Sy.x	CV%	R ²	F	2	a .	v 1
1	0	2,07405	10,3			a ₀ 41,147262510449	a ₁ 0,219140396188318	
'	U	2,07403	10,3	0,93901662	800,09131893	41,147202310449	0,219140390186318	_6
							a ₂	X ₂
							0,001604452739165	_G**2
							a 3	<i>X</i> ₃
							-0,503276609675915	_ddom
							a ₄	X ₄
							0,004622319780931	_ddom**2
							a 5	X 5
							-0,013295551554328	_N
							a ₆	x 6
							0,000001818367856	_N**2
							a ₇	X 7
							-141,711708835224	1/_idade
							a ₈	<i>x</i> ₈
							339,067886687538	
	1	492,9686	45,3	0,72651825	138,14066159	-1470,11939357221	a ₁	X ₁
							-28,6246528432611	_G
							a ₂	X ₂
							-0,069886021040332	_G**2
							a 3	X 3
							305,734644423952	_ddom
							a ₄	X ₄
							-5,375955200894620	_ddom**2
							a ₅	X 5
							1,112949102436280	_N
							a ₆	x 6
							0,000006820402348	_N**2
							a ₇	X ₇
							-2934,910619707310	log(_idade)
							a ₈	<i>X</i> 8
1							535,727020957390	log(idade)**2

 $^{^{1}}$ A função $\log(x)$, usada em linguagens de computação, denota $\log_{\,\mathrm{e}}\,x$, logarítimo natural

QUADRO 10 - ANÁLISE ESTATÍSTICA, COEFICIENTES E VARIÁVEIS INDEPENDENTES DAS REGRESSÕES MULTIPLAS PARA 'FHG', NA MEDIÇÃO 2

FONTE: O autor (2007)

RH	b _i	Sy.x	CV%	R ²	F	a ₀	a ₁	x ₁ 1
1	0	2,22149	9,7		291,94705867		0,065661082570841	_G
							•	
							a ₂	X 2
							0,001998561409636	_G**2
							1 _	1
							a ₃	
						Į.	8,69642310558992	log(_ddofff)
							a ₄	X ₄
							-0,979436933685065	log(ddom)**2
								,
							a 5	<i>X</i> 5
							-0,007552384296498	_N
						1	Ī	1
							a 6	<i>X</i> 6
							0,000000404343962	_N**2
							a 7	X 7
							38,4020551901630	
						'		30_1111/
							a ₈	x 8
							-6,208516184215110	log(_idade)**2
	1	695,3293	50,1	0,60960965	35,32981241	-5557,22756527969	a ₁	<i>x</i> ₁
							-52,38553348640740	_G
							۔ و	l v.
							a ₂ 0,192664680596863	X ₂ G**2
							0,1020010000000	
							a 3	<i>x</i> ₃
							249,524166034265	_ddom
							•	1
							a ₄	X 4
							-3,791887175371130	_ddom**2
							a 5	l _{v-}
							3,673148511554820	N
							0,0.0.1001.001.00	
							a ₆	<i>x</i> ₆
							-0,000945801815857	
							•	1
							a ₇	X 7
							-32,3912330278326	_idade
						ĺ	a ₈	l v
							-0,561873482995907	X ₈ _idade**2
							-0,501075462995907	_iuaue z

 1 A função $\log(x)$, usada em linguagens de computação, denota $\log_{\,\mathrm{e}}\,x$, logarítimo natural

QUADRO 11 - ANÁLISE ESTATÍSTICA, COEFICIENTES E VARIÁVEIS INDEPENDENTES DAS REGRESSÕES MULTIPLAS PARA 'FHG', NA MEDIÇÃO 3 FONTE: O autor (2007)

Nesses quadros, observa-se pela análise estatística da regressão algo que à primeira vista aparenta como distúrbio de ajuste, mas que pode ser explicado. Nos quadros 10 e 11, os C.V.% para a variável dependente b_1 aparecem com valores altos, de 45,3 e 50,1. Acontece que nos dados lidos em bancos de entrada,

hipsomsJ.dbf, J=1 ... 3, nos casos das medições 2 e 3, nota-se a ocorrência de muitos valores de b₁ expressos em negativos e positivos, pois são originalmente coeficientes de função de RH. As distâncias estatísticas entre valores negativos e positivos são preservadas para cálculo do desvio padrão de estimativa, porém ao se calcular o C.V.%, onde ele é relacionado com a média, essa aparece em valores diminuídos, por se tratar de média de valores negativos e positivos, que somados se anulam. Então, nesses casos, o C.V.% aparece como aumentado, por ter origem em divisão pela média calculada nesses termos. Por essa distorção aparente, esse valor de C.V.% deve ser ignorado, haja vista a avaliação estatística da FHG completa, a seguir no quadro 12, apresentar-se satisfatória.

MEDIÇÃO	MODELO	Sy.x	CV%	R^2	F
1	FHG	1,67761	11,8	0,97060054	429218,02913841
	RH individual	0,88019	6,2	0,98497804	852465,89618230
2	FHG	2,26185	13,9	0,94864438	184092,61115162
	RH individual	0,97761	6,0	0,98177415	536839,60633610
3	FHG	2,11330	11,5	0,97198168	140324,75080696
	RH individual	1,03173	5,6	0,98011447	199369,22191926

QUADRO 12 - ANÁLISE ESTATÍSTICA PARA A FHG E PARA A RH INDIVIDUAL, POR MEDICÃO

FONTE: O autor (2007)

Nesse quadro 12, os cálculos são feitos com base nos resíduos, ou seja, desvios para as estimativas das alturas das árvores de todas as parcelas, sob duas hipóteses: 1) com o modelo da FHG, onde os coeficientes da função de RH são estimados indiretamente para cada parcela, em função de parâmetros estimados do povoamento; e 2) com o modelo da RH individual, onde os seus coeficientes são aqueles originalmente calculados por parcela e armazenados em *hipsomsJ.dbf*, *J*=1 ... 3.

Pode-se notar que os valores de C.V.% da FHG estão bem próximos aos da RH individual e são suficientes para avalizar o uso da FHG, nos casos em que a RH individual é inviável, tais como em eventos ocasionais no pacote **Parcelas**, ou como opção mais viável no pacote **Dínamo**, onde o modelo da FHG da medição 1 – mostrado no quadro 9–, é empregado como meio de estimativa das alturas dos centros de classes diamétricas.

4.2 EXECUÇÃO DO PACOTE Cubagem

Cubagem processa os dados das amostras de campo de árvores seccionadas do inventário florestal e promove o ajuste das polinomiais que expressam as suas formas e as grava organizadamente em bancos de dados discriminados por classes de idade e, dentro dessas, por classes de DAP e, ainda, por classes de altura, conforme narrativa da seção 3.2.3 e conseqüentes subseções.

Os coeficientes b_0 , b_1 , ... b_5 para a polinomial de 5° grau e a análise estatística, Sy.x, CV%, R² e F, calculados para cada um dos grupos de dados, são gravados em bancos de dados $ffcc_04/07/.../22.dbf$ e $ffsc_04/07/.../22.dbf$, isto é, um banco para cada classe de idade, dobrado, um para CC e outro para SC. Cada banco está organizado de acordo com as classes de DAP de 1 cm, entre d_{min} e d_{max} , e, para cada uma dessas, com as 11 classes de altura.

No quadro 13, ilustra-se as freqüências de árvores seccionadas nessas classes, agrupadas por **Cubagem** para as idades com centro de classe em 10 anos, para o ajuste das polinomiais.

						DEA					
CLASSE						em rela					
DAP (cm)	<-2,25	-2,25	-1,75	-1,25	-0,75	± 0,25	+0,75	+1,25	+1,75	+2,25	>+2,25
3					1						
4											
5					2	1	1		1		
6											
7											
8				2		1	2				
9							1	2			
10					2	1	2				
11		1		1	1		3				
12			1	3	3	5	4	1			
13			2	1	3	4					
14				2	3	2	2				
15			2	6	9	6	4	4	2		
16	1	1	2	6	8	11	7	6	2		
17	1	1	4	10	6	15	9	2	2		
18		1	5	3	4	11	8	9	5	5	2
19	1	2	4	13	6	10	15	17	5	2	2
20	1	1	1	7	5	13	8	13	2		
21		2	2	5	3	7	6	4	4	3	
22		1	1	4	9	7	8	4	1		
23	2	1		2	7	14	5	7	2	4	1
24		2	4	1	5	3	2				
25	1	3	4	2		3	6	1	2	1	
26		1	4	3	5	7	1	2	3	2	
27	1		1	3	4	4	2	1	1		
28		1	1	4	1	2	1	3			
29			1		3			1	1		
30				1	4	1		1			
31	1				4	2	2	1	2	1	
32			1		3	3	1			1	
33		2			2	3	2	2			
34				1	2		1	1			
35								1			
36						1					1
37							1			1	

QUADRO 13 - FREQUÊNCIAS DE ÁRVORES SECCIONADAS POR CLASSE DE DIÂMETRO / CLASSE DE ALTURA PARA OS BANCOS ffcc10.dbf E ffsc10.dbf FONTE: O autor (2007)

Nos quadros 14 e 15, adiante, tem-se a impressão dos bancos *ffcc_10.dbf* e *ffsc_10.dbf*, isto é, respectivamente os bancos com os coeficientes e a análise estatística das polinomiais para CC e SC, para a classe de idade de 10 anos.

Por se tratar de longas listagens, optou-se por mostrar apenas esses bancos para 10 anos, pois as listagens também dos bancos para classes de 4, 7, 13, 16, 19 e 22 anos somariam 161 páginas.

Exibe-se apenas os bancos para uma idade, porém de maneira completa. Cada um dos bancos mostrados a seguir totaliza 11 páginas, sem contar a página com as freqüências, mostrada no quadro 13. A opção por exibir esses bancos na íntegra, para CC e SC, é fundamental para demonstrar como esses bancos estão organizados, inteiramente do começo ao fim, para uma classe de idade.

Após calcular os limites, inferior e superior em DAP, d_{min} e d_{max} , para os dados da classe de idade, **Cubagem** separa os dados por classes de DAP de 1 cm, entre esses limites. Em cada uma dessas classes de DAP, os dados são então agrupados em 11 classes de 0,5 unidade de Sy.x na curva da RH escolhida, $h_t = f(DAP)$; distribuídos de maneira que um grupo pega a classe central da curva e 5 grupos as classes abaixo dessa e outros 5 grupos as classes acima dessa classe central. Cada página, impressa nos quadros 14 e 15, respectivamente para CC e SC, lista as funções polinomiais ajustadas no grupo de dados para cada classe de 0,5 unidade de Sy.x na curva da RH, no caso sempre para a classe de idade de 10 anos.

Portanto, a primeira página compreende o banco de consulta para a classe de RH mais inferior, a última a mais superior e a sexta página a classe em torno da média.

DAP_				CLAS	SE DE ALTU	R A PARA <-2,25	Sy.x EM RELAÇ	ÃO À MÉDIA		
(cm)	Sy.x	CV%	R ²	F	a ₀	a ₁	a ₂	a ₃	a 4	a ₅
3 5										
8										
9										
10										
11										
12 13										
14										
15										
	0,03265		0,99629232	376,19564015	1,23535217244192	-2,91724974873432	11,1453071589021	-22,5196703131514	17,8258026307958	-4,73894159157498
17 18	0,02532	3,9	0,99760623	583,45424576	1,22737247047488	-2,68230361056225	8,0259643436475	-15,7223195191181	13,6401953244385	-4,47702328448212
	0,01498	2.3	0,99919930	1747,05154114	1,24959753693207	-3,71395203785641	15,9727825533300	-35,6534362217062	33,4606040664839	-11,30161676263370
	0,02119		0,99838665	866,35863769	1,29420957690951	-4,30558135181604	15,8814087391765	-30,6403056984745	25,7744767772710	-7,99523992987633
21										
22	0,05613	0.7	0,98537415	269,48856344	1,33688859357722	-4,55647636999151	17,7510389194976	-36,3645416238941	32,4229767128345	-10,57961934116790
24	0,00013	0,7	0,96557415	209,46630344	1,33066639337722	-4,55047050999151	17,7510369194976	-30,3043410236941	32,4229707120343	-10,57901934110790
	0,02916	4,3	0,99608069	355,80580707	1,20178705742318	-3,63250983134412	18,8317412367141	-48,5653718449830	53,3395520514823	-21,14910243692060
26										
	0,02118	3,4	0,99851879	943,77596405	1,32270373465086	-4,68785750048368	18,9297327721369	-41,6865887890671	40,4366923525558	-14,31078554576740
28 29										
30										
	0,02197	3,8	0,99842116	885,32396006	1,31216082291985	-4,74144811383837	17,6413413170666	-36,4056283269237	33,2286714683796	-11,02304179258860
32										
33 34										
35										
36										
37										

QUADRO 14 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffcc10.dbf

DAP				CLAS	SE DE ALTU	R A PARA -2,25	Sy.x EM RELAÇÃ	O À MÉDIA		
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a 3	a 4	a 5
3										
5										
8										
9 10										
11	0.06275	10.0	0.98795891	114,86854933	1,41293330752699	-6,13499260554249	23,2213640119889	-49,6042769166088	49,1792739661104	-18,0606607259960
12	0,06275	10,9	0,96793691	114,00004933	1,41293330752699	-0,13499200554249	23,2213040119009	-49,0042709100000	49,1792739001104	-16,0000007259900
13										
14										
15										
16	0,01926	32	0,99879109	1156,65647170	1,35180340880572	-5,18058851942885	21,2481928482566	-48,1206007665132	48,6058516502525	-17,8928992130968
17	0,04078	,		280,42409527	1,48840969538222	-7,28256906193541	32,6308514641059	-71,1727552540396	68,7390300665356	-24,4030937123643
18	0,03886	,	-	294,93995724	1,40392212536804	-5,83830917971545	24,1501432719615	-53,3356854612175	52,8842032170432	-19,2599464282629
19	0,04694		0,98905601	361,49739134	1,29548116149714	-4,21055200952764	16,7124926096876	-35,5115657082169	32,9622203162325	-11,2387252027620
20	0,02372	3,7	0,99818301	769,10414456	1,36729293529698	-5,03497930566754	20,4689701623046	-44,7308127532487	43,4045949005230	-15,4661544794689
21	0,04084	6,3	0,99184342	486,40112259	1,28451086706667	-4,48991786958413	20,7240317762480	-47,1066784922586	45,2143537571100	-15,6180203289914
22	0,01711	2,7	0,99903909	1455,54449499	1,36480901032521	-5,57169330967894	24,2377867143441	-52,9312856928663	50,4471326260354	-17,5379915571611
23	0,01738	2,9	0,99888155	1250,34483756	1,23055103027028	-3,43392248264490	12,8116921089695	-28,5980392980163	27,9833018792887	-9,9788493609667
24	0,02959	4,8	0,99535237	856,65507426	1,24895003328088	-4,05701325959717	16,3543307402778	-35,2728502134159	33,0541107702883	-11,3173833384898
25	0,04740	7,3	0,98828511	556,78604627	1,31167864180470	-4,70183735922819	20,7233933213701	-44,4656766463012	40,2635433345822	-13,1186293693808
26	0,01330	2,1	0,99945030	2545,44462155	1,35332764229404	-5,26089483718237	22,7116345712747	-48,2049652533023	43,3922583197272	-13,9774964015123
27										
28	0,03116	5,1	0,99664013	415,28347202	1,34775067990086	-5,64167068900053	23,1531140024526	-48,6450745393813	45,6157819087275	-15,8317940828819
29										
30										
31										
32	0.0040=		0.00500004	044 00400545	1 00051007755505	5 07400400070044	10.0510101511150	07.040004000004	00 0004440040040	44 0040050044004
33	0,03107	5,0	0,99562881	911,08409545	1,36851697755595	-5,07196490279011	18,9546401541156	-37,8439949889034	33,6021442348646	-11,0040958011904
34 35										
36										
36 37										
31										

QUADRO 14 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffcc10.dbf

DAP				CLAS	SE DE ALTU	R A PARA -1,75	Sy.x EM RELAÇÃ	O À MÉDIA	-	
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a 4	a ₅
3										
5										
8 9										
10										
11										
	0,04408	6.2	0,99326522	206,47631186	1,42896013947679	-6,45787523500666	28,8123104887745	-60,4207353820020	55,9759536147394	-19,325370306389
	0,04590		0,99051279	417,61993294	1,37898172985057	-6,00917164197346	26,4137938220583	-61,0072605893619	62,2289857381401	-22,993990751409
14	,	,	•	,	•	•	,	,	•	•
15	0,04268	6,7	0,99024883	406,20693495	1,26312901302398	-3,69828473750499	13,8065566301538	-30,2347752980240	29,8177528194792	-10,942072474790
16	0,04506	6,8	0,98928285	369,23345443	1,31649375476769	-4,13757756405107	14,2305352008625	-26,9750458385751	23,3750088766028	-7,787760208959
17	0,03745	5,7	0,99183741	1117,89126353	1,30663674109634	-4,34163192748837	18,1541792174648	-40,1828879578424	38,9463324453463	-13,867985219761
18	0,04416	6,8	0,98879618	1041,41212409	1,32573176131272	-4,87619062170824	21,2373736913978	-46,7094296676332	44,4675719627739	-15,430276493010
19	0,04126	6,7	0,99036056	945,21234020	1,29977408655817	-4,59015992343154	18,5659982732768	-40,2140872324234	38,1839157009562	-13,232727443584
	0,02281		0,99811265	740,38481592	1,29938975394351	-4,69562682137666	20,8152509350384	-45,5182671264192	42,8212667358675	-14,705814990109
	0,04712		0,98894469	357,81677424	1,32545115682978	-4,99140039991289	21,1027704179323	-44,6477287583657	41,1933472378841	-13,975021442327
	0,03068	4,7	0,99618996	366,04937900	1,25794388762082	-3,90276965033535	14,0685996366901	-26,9488314265363	23,1903778677588	-7,654356770794
23										
	0,02955		0,99510716	1871,10025683	1,33803389572396	-5,02872072575564	21,0928361715723	-44,7133419072197	41,3429795560514	-14,021021915601
	0,05814		0,98197122	501,09532464	1,36979680233669	-5,91407608317547	25,6975445849202	-57,0919957079167	56,0990756885694	-20,159428303415
	0,03928		0,99155299	1079,94399634	1,34483486900652	-5,48855771117837	24,8850391546475	-56,1233215817337	54,9209312457933	-19,535346435432
	0,03773 0,02775		0,99521643 0,99763860	291,26932096 591,46740416	1,32099744745741 1,37525464532981	-5,02773467161000 -5,56318218739136	21,4260464587469 24,8263025181031	-46,1703290645709 -58,4630824831983	43,0298248673170 60,1688552499435	-14,572205348567 -22,347685776747
	0,02773		0,99703860	160,89386722	1,39139799616164	-6,73643454777857	32,6952609086019	-74,1171134995529	73,1378446805683	-26,385896230915
30	0,03047	7,7	0,99137300	100,09300722	1,59159799010104	-0,73043434777037	32,0932009000019	-74,1171134993329	73,1370440003003	-20,000090200910
31										
	0,01585	2.5	0.99911590	1582,13251641	1,26981716033711	-4,20926298590120	17,9727801952585	-39,7327420058463	37,5534005507979	-12,848352327371
33	.,	_,•	.,		,	,	,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,:::::::::::::::::::::::::::::::::::::
34										
35										
36										
37										

QUADRO 14 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffcc10.dbf

DAP				CLAS	SE DE ALTU	R A PARA -1,25	Sy.X EM RELAÇA	O A MEDIA		
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a 4	a 5
3 5										
8	0,07356	11,7	0,97485609	155,08421409	1,39351586717338	-5,22809141575021	19,4926962803929	-42,9760665628346	44,5149268316236	-17,181344787504
9										
10										
11	0,02912	4,4	0,99691580	452,52553525	1,36571325019802	-4,84944633231020	17,7333204117658	-35,9332387443137	34,1074847298077	-12,406076171573
12	0,03632	5,6	0,99286386	918,27003774	1,35062158636043	-5,28729479515050	22,3917614830679	-47,9481581323198	45,0566350897934	-15,542462212108
13	0,04674	7,1	0,99277729	192,43284568	1,38820441818736	-6,56166362307203	33,3978068849901	-78,8014272833570	79,5805378489894	-28,991206680631
14	0,04358	6,9	0,99059488	421,30005902	1,29154129108427	-4,28696151146027	18,4393616174238	-42,9759927837549	43,3942169357433	-15,843458749352
15	0,03933	6,1	0,99040485	1486,35731267	1,30324604428915	-4,44244909579242	17,8492600693498	-37,7635723232961	35,2828482747572	-12,215622167106
16	0,04687	7,1	0,98699794	1093,11711037	1,38495795019256	-5,87487437505728	25,6689027185912	-56,3029875667234	55,0756512299631	-19,947041453644
17	0,03828	5,9	0,99084143	2683,04462792	1,32447400255334	-5,07907755880546	22,5167100967210	-50,1878419995810	48,8492679524679	-17,416007712345
18	0,04660	7,0	0,98815683	550,68339706	1,36990462654743	-5,84551857186534	26,6019281970820	-58,6239404661791	56,6813961981533	-20,182155648552
19	0,04115	6,3	0,98950892	3074,80027466	1,35074050495398	-5,39730874876977	23,8547226203227	-52,2204022685036	50,0626454132434	-17,643679795732
20	0,04032	6,2	0,99066461	1804,02909439	1,39149663817607	-5,98666669100021	26,5077983607043	-58,0910252347748	56,0582286717690	-19,873048717137
21	0,04729	7,2	0,98715364	906,74820525	1,37094525767312	-5,77053781923723	25,5431630438779	-55,7446703058412	53,5006326159637	-18,892705438518
22	0,03651	5,6	0,99190648	1127,51267258	1,27934563298561	-4,18151035034497	17,2320210220659	-36,7131446531966	34,1277975422344	-11,737659333331
23	0,03028	4,8	0,99514628	820,11123794	1,25827257746635	-4,03423332952752	17,1918141732167	-39,5425944584567	39,5554627347228	-14,420532716121
24	0,01715	2,7	0,99898764	1381,50227698	1,28654342801293	-4,23361326863118	18,8216762312858	-45,5762998682912	47,6461412968419	-17,947028056300
25	0,03540	5,7	0,99399159	661,73287852	1,33323025035930	-4,97633134430407	20,8161172092186	-46,7668929498031	46,4393573150846	-16,837331277578
26	0,05381	7,9	0,98562811	452,62993161	1,44355799778400	-7,16234732239945	34,5445966591323	-76,8329580545141	74,0459230647902	-26,032997189751
27	0,03170	5,2	0,99451951	1197,67016316	1,30285073056720	-4,89504285283692	21,2318777964610	-47,6786713878063	46,5039576397975	-16,450906067158
28 29	0,04264	6,5	0,98975434	888,74132075	1,33780676672956	-5,14584729223452	22,1359498331457	-46,8974713796560	43,1108672654736	-14,532665025202
30 31 32	0,02639	4,2	0,99788969	662,01060508	1,40618276823067	-6,39442845026235	29,9576597202722	-68,4325997039086	67,5690128468886	-24,106076296986
33 34 35 36 37	0,03328	5,1	0,99641793	389,43533364	1,45202094364426	-7,45077806836002	33,4621792915604	-71,1710310289090	67,0098082408585	-23,312091261332

QUADRO 14 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffcc10.dbf

DAP				CLAS	SE DE ALTU	R A PARA -0,75	Sy.x EM RELAÇÃ	O À MÉDIA		
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a 4	a 5
3	0,03932	6,1	0,99311810	202,03204298	1,23152647948873	-3,77405620538456	14,9943335160624	-32,9083396230926	32,5328890903911	-12,0274544929561
5	0,05245	8,2	0,98629387	287,84009663	1,36161833706532	-5,10311084065006	20,6240457578478	-45,8955822590105	46,2422283573832	-17,1944316772187
8										
9										
10	0,03386	5,5	0,99453202	727,53024347	1,40712875990699	-5,92479504634775	22,9437931712036	-49,7175572423802	50,2824122071906	-18,9775358259339
11	0,02315	3,6	0,99806068	720,50066950	1,31474733319215	-4,79002005222037	20,6416438923624	-46,4002233709725	45,8059419436322	-16,5502701932000
12	0,03807	5,8	0,99160223	779,32249361	1,34118828891945	-4,85662926631857	18,2521105667165	-36,2284337447854	32,8923467438216	-11,3891995639005
13	0,03881	6,2	0,99150402	770,23801815	1,31276142822087	-4,47191014622671	17,0770634414093	-36,5329159268512	35,4394369008514	-12,8109709409709
14	0,05836	8,5	0,98266584	374,15093224	1,45351907133933	-7,04476314433850	32,2017236458177	-69,2708172848688	65,6088677303414	-22,9414549928787
15	0,05243	7,9	0,98299228	1283,08962789	1,35964914317835	-5,57293650110887	24,6086674951948	-53,9839330143404	52,2523738656746	-18,6508184559079
16	0,05128	7,9	0,98387136	1195,63017770	1,36993978471803	-5,87695287459973	25,8669714772531	-56,8544225415898	55,5172964630983	-20,0140278471462
17	0,07095	10,5	0,96756262	429,53224700	1,30706275759542	-4,67505848271889	20,5455406989531	-45,9987169037413	45,5629574025297	-16,7268204340980
18	0,04412	6,8	0,98862869	799,85438656	1,35526987799177	-5,72209678118156	26,0508774170703	-58,5119532005992	57,7924773358026	-20,9549339144741
19	0,03788	5,8	0,99192566	1769,03037145	1,39851947833891	-6,22865594323911	28,4875542868740	-63,5874275319001	62,1352829485513	-22,1975987649766
20	0,04733	7,0	0,98774854	951,35044098	1,42787078104989	-6,68620004710305	32,0540306526818	-73,2586505040526	73,0923457639146	-26,6249662362788
21	0,04021	6,0	0,99142205	762,81446573	1,37601518620713	-5,83663461752166	26,3826309036521	-57,5706879569479	54,8088662878217	-19,1557821524002
22	0,03981	6,1	0,99050079	2314,83665391	1,36185030094677	-5,80747393694832	27,2257796864887	-61,6675713780423	60,6257913504741	-21,7334740733767
23	0,04837	7,4	0,98666589	1257,92537597	1,39015636366826	-6,27223221137092	29,0491567137633	-64,6326249800877	62,6583769156968	-22,1899252778584
	0,05440	8,3	0,98278103	673,49097922	1,34320081071208	-5,50817130281348	25,3680583716031	-57,1726217730247	56,0542331382203	-20,0796215756836
25										
26	0,04659	7,0	0,98764355	943,16663230	1,36189588992225	-5,42882337051105	23,8193131000443	-51,4810922103970	48,6227648152998	-16,8878613738397
27	0,03358	5,3	0,99374796	1462,31809005	1,34827292001381	-5,46153199968762	24,0081582554848	-52,8243315561194	50,7480548671919	-17,8118622878391
28	0,02941	4,4	0,99733642	524,20711659	1,44557393401125	-6,88351520581954	33,9140239656080	-79,0509914599570	79,7418373251421	-29,1697437285565
29	0,03485	5,4	0,99363030	1029,55435354	1,33327063301592	-5,21269931482334	23,3793452985173	-51,7691763681577	49,3879257234184	-17,1149557061235
30	0,03976	6,1	0,99159705	1085,65272517	1,34335284046472	-5,26252279433470	24,3828191917891	-55,2543329669642	53,5124228197419	-18,7140336102183
31	0,05258	8,2	0,98534551	618,59344376	1,36987181019532	-5,56384885688817	24,2771186792069	-53,1498334613206	50,8746059795084	-17,8043942395015
32	0,03769	5,8	0,99253734	877,80309830	1,35237235607297	-5,26338551909816	23,3192443586067	-51,7254359270664	49,9905134025721	-17,6696912567604
33	0,03493	5,3	0,99382989	644,28679745	1,32583444494162	-5,00935752644045	21,7334272538464	-46,4659231127370	43,2444762664017	-14,8245007342720
34	0,01595	2,5	0,99872381	3130,32306150	1,24966718417168	-3,42072181425646	14,0357767122768	-33,0353996098092	33,3664576193004	-12,1969857260228
35										
36										
37										

QUADRO 14 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffcc10.dbf

DAP				CLAS	SE DE ALTU	R A PARA ±0,25	Sy.x EM RELAÇÂ	O À MÉDIA		
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a 4	a ₅
3 5	0.00470	5 0	0.00000040	254 40002222	4.05004070004455	2.44707020550054	40 4407755075000	45 5400000000077	0.00000004047000	4 0245070020025
	0,03179	5,0	0,99606618	354,48863222	1,25391976861455	-3,44797836556654	10,1127755375800	-15,5402002029077	9,29292324317066	-1,63150766388935
8 9	0,03313	5,3	0,99622776	369,73223075	1,33065104369513	-4,38459896096787	17,5826578728883	-42,8200906032943	47,0453128239314	-18,7429510519596
_	0,02523	4,2	0,99761189	584,83582528	1,26622251296865	-3,86528821142496	13,0945244462309	-27,6924599567064	27,3274302062091	-10,1139564438253
11										
12	0,05201	8,1	0,98341685	699,76561506	1,32176229318242	-4,85743095957400	20,5555350305367	-46,4036203326286	46,7283225759747	-17,3253820183908
13	0,04423	6,7	0,98869656	804,71166179	1,36721662335160	-5,57067401029735	23,4528889217654	-48,8850880985810	45,1037252965688	-15,4514492643174
14	0,04160	6,5	0,99058544	420,87394020	1,27656312238259	-3,85847614388171	13,0586100989567	-24,5843606814778	20,8297618322685	-6,6988847254579
15	0,04890	7,6	0,98561535	986,66679104	1,33753465515498	-5,16670605175454	22,5764910489615	-51,4723653676737	51,9727028570414	-19,2390067333562
16	0,04794	7,2	0,98569566	1888,10416454	1,35894921687294	-5,50026078118094	24,4429589179199	-53,0866601857487	50,5364497945483	-17,7398468875671
17	0,15239	22,4	0,86472932	241,63970403	1,41945566650087	-7,00857427060327	34,0926636649728	-78,7739376059689	80,1401373791522	-29,8299937175033
18	0,05141	7,6	0,98398631	1683,63599354	1,39302372804068	-6,27233506010770	29,7416264686598	-67,1065143769810	66,0932707210231	-23,8419803823599
19	0,04848	7,2	0,98520326	1651,24530532	1,34427900923918	-5,38582767343746	24,5777491546759	-54,3664089385383	52,4788293084566	-18,6413739778981
20	0,04285	6,4	0,98808988	2704,56604446	1,33016744262167	-5,20230055231309	23,6976948771680	-52,8899931137275	51,5264916448286	-18,4528286640634
21	0,05082	7,7	0,98457568	1085,15526958	1,37107554985300	-5,75537916382086	24,9615454664763	-52,5927293208369	48,7621585231245	-16,7431457187703
22	0,05720	8,5	0,98178566	916,33081243	1,43807434819983	-6,95518693722942	32,5791336669462	-72,2675183390747	70,2810187420618	-25,0751279824198
23	0,04075	6,1	0,98948453	3312,24862626	1,33231851866560	-5,07257379405905	22,4317515769944	-49,3049811032578	47,3727715371060	-16,7552343580355
24	0,02826	4,3	0,99544570	1442,57837050	1,30997707693179	-4,77857937994781	21,1199400734603	-47,1870450438800	46,0498369154665	-16,5075847080752
25	0,03969	5,9	0,99147509	767,60176407	1,32298979589724	-4,71628857278346	21,0826273316233	-46,4371786825613	43,9307714028691	-15,1716899483872
26	0,04777	7,1	0,98660955	1252,56207100	1,39018742330599	-6,21297544454932	28,3178876686433	-61,1007354386129	57,5320141684133	-19,9202691622740
27	0,06661	9,7	0,97662365	384,36013939	1,42719494641066	-6,85939723039950	32,4640677473653	-70,6806209284077	66,7886785669616	-23,1407043232084
28	0,02247	3,5	0,99736546	1514,28457015	1,29317889487723	-4,77660146061202	21,9353040775295	-50,1760506402497	49,5505734779835	-17,8185265228730
29										
30	0,01167	1,8	0,99949962	2796,44151555	1,24757596410060	-3,92810508735124	18,1673928338805	-43,1642880048239	43,4693305279834	-15,7843661401620
31	0,02788	4,2	0,99634057	1089,06537281	1,33365289085094	-4,98310121718395	22,4763615851698	-49,7060721273737	47,1184680653095	-16,2445314079777
32	0,03515	5,9	0,99293259	927,26500785	1,22464033184310	-3,69664727499196	14,1759373692584	-30,9742682374635	29,3956715263775	-10,1212797373391
33	0,05901	9,1	0,98308195	383,51602229	1,41535865726330	-6,36147474041627	28,6678310982461	-63,2578703602848	61,0355116214850	-21,4961045080617
34										
35 36	0,03115	5,0	0,99672251	425,75547351	1,34954129145948	-5,38324341335919	23,0479369845797	-51,0633281819500	50,0011688819649	-17,9501173616372
37										

AP					SE DE ALTU	R A PARA +0,75	Sy.x EM RELAÇA	O A MEDIA		
cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a ₄	a ₅
3										
5	0,01901	2,8	0,99867634	1056,26849234	1,40815062290910	-6,05772003896117	27,8732927046276	-63,9682078173500	65,3583160113485	-24,580179208576
8	0,04514	7,0	0,98845092	342,34810619	1,31762694219153	-4,54391963566763	15,6519846989649	-30,7934973723749	29,1037107581141	-10,709114263005
9	0,02515	4,0	0,99763076	589,50558507	1,30146516395721	-3,76106220293741	11,2587712127042	-22,0084630198725	21,2070301131752	-7,9702690138801
10	0,04070	6,5	0,99165757	475,47653405	1,38918069865524	-5,82183184913628	23,0240006143722	-48,9792013783080	48,0118309740573	-17,595191548929
11	0,03937	6,1	0,99081316	711,81924877	1,35286544900500	-5,51794823741488	23,4444855818710	-52,0188642079010	52,3206405469172	-19,563306746911
12	0,04600	7,2	0,98725835	712,84191000	1,33654549299041	-5,17167389722885	21,0327005585459	-44,6257416124935	42,6292729502747	-15,182488246960
13										
14	0,04874	7,3	0,98907882	362,26110420	1,49566205938053	-7,54691203207812	33,8629275048060	-75,8436627894770	76,7187400945476	-28,677638687877
15	0,05155	7,7	0,98409501	569,23453370	1,35078923664962	-5,23330828277266	22,1950141925663	-47,5632102165764	45,6245899304776	-16,366275068918
16	0,05276	7,7	0,98346643	1011,21074405	1,40689082560400	-6,36008793653741	29,2462842749810	-64,2984340954426	62,2612334777513	-22,24801867440
17	0,03532	5,3	0,99193381	2730,02709422	1,34282506440208	-5,23315108169276	22,4653143492178	-48,0094155340339	45,4638690701249	-16,01714234894
18	0,04683	6,8	0,98625871	1406,75841493	1,36988264320551	-5,70504969549460	26,3041762671000	-58,6109027066631	57,4468884972375	-20,79748668639
19	0,05112	7,5	0,98360535	2267,83101157	1,39174755279526	-6,29583517021205	29,6434010251687	-66,0238070584891	64,3767790878700	-23,08311315248
20	0,03578	5,3	0,99183037	2379,52873317	1,31702467657289	-4,90573892288716	22,5004805955468	-50,5972068201263	49,4449730161723	-17,75350265959
21	0,03785	5,6	0,99124240	1629,88621661	1,34141361066598	-5,31319282110393	24,0167420955749	-52,7721523357067	50,6250664397302	-17,89320926126
22	0,05186	7,7	0,98345054	1164,72877582	1,35114835366984	-5,37905137574534	24,0057865346025	-52,6179930780454	50,6942217494870	-18,05279064510
23	0,04747	7,0	0,98720913	910,73276909	1,40886180779597	-6,48278787395133	29,8574293408783	-65,2049403816054	62,4703178155250	-22,04609603596
24	0,04158	6,3	0,99144141	463,36651728	1,35622189352777	-5,61085887309559	25,9459847178095	-58,4561889286487	57,4146656978773	-20,64634981338
25	0,04107	6,2	0,99008880	1438,50164101	1,37604215113050	-6,15354476398283	28,5090688057607	-62,6614037157523	60,0123949301269	-21,080596328072
26	0,02359	3,6	0,99794967	681,41839110	1,28986655529833	-4,59491522867620	20,9871058457356	-48,0382947508624	47,4853217165218	-17,119559811009
27	0,03048	4,8	0,99546701	878,42129985	1,29004886888696	-4,28808480661109	18,4540286345782	-41,2396783733383	39,5344957407360	-13,74816739872
28	0,01902	2,9	0,99880294	1168,12981808	1,39116271195341	-6,16486913480571	29,1736831066682	-66,0135244610901	64,7164770813833	-23,09398322061
29										
30										
31	0,06723	9,9	0,98187478	216,68695031	1,57510941053994	-9,06967540977962	43,0618680034040	-95,1444572073123	92,7070249703210	-33,13540109402
	0,03109		0,99669176	421,78470399	1,34306113399421	-5,21907295964751	22,7949920324772	-50,5802582274627	49,0545481128465	-17,37901307619
	0,04423		0,99101567	441,21917437	1,40060476248162	-6,04315603987674	27,4053430077347	-60,4372416142869	58,2958080388634	-20,62779517135
	0,03193	5,1	0,99655831	405,37718784	1,36328458054805	-5,56416358610408	20,9538646741875	-38,5182752037108	30,4929873921391	-8,713074639857
35										
36										
37	0,03383	5,1	0,99696363	459,6756709	1,52842049185968	-8,68966124252131	44,6358804420779	-102,698007856441	100,782032153525	-35,56431040230

DAP				CLAS	SE DE ALTU	R A PARA +1,25	Sy.x EM RELAÇÂ	ÀO À MÉDIA		
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a 4	a 5
3										
5 8										
_	0,04788	7,3	0,98816807	334,06820510	1,38444822399781	-5,69075835951071	23,4319346883075	-50,4841262795307	49,5776377270012	-18,192542747763
10	0,04766	7,3	0,90010007	334,00020310	1,30444022399701	-5,09073033931071	23,4319340003075	-50,4641202195501	49,3770377270012	-10,192342747703
11										
	0,02727	42	0,99695223	457,95208125	1,21690911337057	-3,48706397264072	14,3120157359535	-31,1090628659985	29,2294640494801	-10,138393218094
13	0,02727	.,_	0,00000220	101,00200120	1,21000011001001	0,10700007201072	11,012010100000	01,100002000000	20,220 10 10 10 10 10 1	10,100000210001
14										
	0,05320	7.8	0.98473695	593,56292735	1,44829098404108	-6,93947875452386	32,3072843554618	-71,5194459645499	69,8470622933018	-25,139354170984
	0,04554		0,98687710	1082,91836946	1,36797395009330	-5,92520162282539	27,4274241425682	-60,6875046399291	59,2332334968450	-21,407974741414
	0,03997		0,99173431	479,92839295	1,35366791608213	-5,69504651224383	26,2186245439697	-57,4526042099132	54,9546469663255	-19,368790972130
18	0,04928	7,3	0,98467808	1426,70413947	1,39004392615680	-6,17376426725581	27,3985742942950	-58,6117927180966	55,7834569972546	-19,780776135075
19	0,04689	6,9	0,98540878	2903,97564328	1,35351876233515	-5,56154310483634	25,0645204947086	-54,6629829875018	52,6134185948831	-18,799800429498
20	0,04499	6,7	0,98740885	2556,51914111	1,38751166449934	-6,09270272608318	26,8913350956336	-56,7138149971833	52,6910502230894	-18,159113729860
21	0,03503	5,3	0,99247792	1213,86687857	1,27870488043067	-4,60112797097940	21,4165747133956	-48,1410075307394	46,3498512170626	-16,295213095281
22	0,04335	6,4	0,98923049	845,06337434	1,38892473908996	-6,13003383819295	27,4625116259612	-58,2937211127500	54,3557624870227	-18,778151500773
	0,04736	7,1	0,98674977	1265,99595987	1,39788325511966	-6,50795446126585	30,1741043434849	-65,9223897020237	63,0591901600200	-22,200974861492
24										
	0,02550		0,99749609	557,72540079	1,24538130288897	-3,90997532513392	15,8100632451278	-33,3829121890958	30,5424057319469	-10,293458682344
26	0,05296	7,7	0,98618548	285,55037125	1,37399194318917	-5,80663050331645	27,1292086891880	-59,8142322709718	57,4222657534774	-20,306122207306
	0,05433	,	0,99087473	152,02014674	1,49120182703219	-8,02397281831781	39,9576755195958	-90,8207670985830	89,6090892447246	-32,208433324793
	0,03948		0,99143580	764,04896140	1,32745955781825	-4,93275989025664	21,2507143212878	-45,2679769792921	41,9457520988507	-14,320406925407
	0,06231	9,2	0,98776245	113,00191980	1,48096767475233	-7,53746593801020	33,9087302888929	-71,2017150146857	66,0408117644110	-22,696718877748
	0,03744		0,99508328	283,34222615	1,31922732129345	-5,26984052977286	26,1737579450727	-61,0164696321080	60,7516031468767	-21,967683836606
	0,03608	5,5	0,99581146	332,84546221	1,39002736787824	-6,28775030536780	29,2654520495980	-64,7486148317548	61,9500077449483	-21,570150985831
32										
	0,03298	- ,	0,99515145	820,98989321	1,40703343414412	-6,21952020405581	27,2082995765740	-58,4983199519665	54,9651817546837	-18,858324799173
	0,02683	,	0,99754789	569,53784604	1,30307204477882	-4,70048993072805	22,3240353230448	-51,3496419958974	49,8862704821876	-17,452797937949
	0,03040	4,8	0,99697146	460,86701118	1,34702746291349	-5,31878256150980	23,3345770290416	-51,2511259561579	48,7905484536931	-16,900251087139
36										
37										

QUADRO 14 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffcc10.dbf

DAP				CLAS	SE DE ALTU	R A PARA +1,75	Sy.x EM RELAÇÂ	ÁO À MÉDIA		
cm) 3	Sy.x	CV%	R^2	F	a ₀	a ₁	a 2	a 3	a 4	a 5
	0,02568	3,5	0,99685438	443,66381221	1,29950570843686	-5,25001338393167	27,4750550535609	-66,3429457438469	70,1471582045051	-27,28878521392
8										
9										
10										
11										
12										
13										
14	0.04000	0.5	0.00055440	440.00005400	4 0050000005050	F 707 10070 100 107	04 000500050400	40.74.477.4070000	45 0000000005040	45 4000404005
	0,04339	6,5	0,99055119	419,33385120	1,38532628065859	-5,78749870486467	24,2295663850163	-49,7147748702809	45,3683623335018	-15,46901648251
	0,04752		0,98857574	346,13204140	1,40807438512956	-6,39023906623606	28,7855312611700	-60,4581848233065	56,0358211075072	-19,37680129553
	0,04708 0,05172		0,98765851 0,98379790	320,11032996 716,50100737	1,29721453746642 1,38139282309943	-4,73721538953987	20,8493907249612	-45,6235281386834	44,0181244133127	-15,79273455672
	0,05172		0,98379790	658,05819164	1,38139282309943	-6,04477626874245 -5,92322623990048	26,4387615220475 26,6540226974721	-57,2800805330734 -58,2210891800059	55,6349635500882 56,5912798615390	-20,12649694910 -20,47140771572
	0,03349		0,96236433	658,23208234	1,30215469343746	-4,97391509756676	22,1324190051855	-47,0372697853017	43,4581043551152	-14,8703714750°
	0,03517		0,96046358	223,49687182	1,42643818797175	-6,90364204648381	31,8110614788711	-69,3387477009309	66,7951868045347	-23,79023542167
	0,03340	5,1	0,90040338	318,00267671	1,26971225647110	-4,54336776880063	20,3169450953046	-45,4451390682261	44,3731855138758	-15,96395765012
	0,03340	,	0,99697741	1319,36482220	1,32494270469243	-4,95693585126446	22,6014414967012	-49,6365750634649	47,0482786436041	-16,37565010291
24	0,02400	0,0	0,00007741	1010,00402220	1,02404270400240	-4,55055555120440	22,0014414007012	-43,000070004040	77,0402700430041	-10,0700001020
	0,02832	4,2	0.99593931	981,05289223	1,35027573618251	-5,61290168757500	26,4081903438163	-59,9490669500191	59,2941775047147	-21,49270897110
	0,06275		0.98075490	336,34444067	1,42194635724354	-6,84410811036173	32,9347199225831	-73,8968007064613	71,6001023736353	-25,21419997959
	0,04448	,	0,99374583	222,45079872	1,40681706083434	-6,15544073631599	29,5230315189819	-67,3799568699869	66,3845134827788	-23,77963639335
28	-,	-,-	-,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,		,	,	
	0,03510	5,5	0,99572857	326,35952505	1,29888557546162	-4,31795624822484	16,6010600491899	-32,7548656536382	27,6435033920024	-8,459503334945
30		•	•	·		•	·	•		
31	0,05738	8,5	0,98509402	264,34860735	1,44624373885032	-6,95864522716647	32,8301113114466	-73,6332834469794	72,3368385786234	-26,01980202735
32										
33										
34										
35										
36										
37										

QUADRO 14 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffcc10.dbf

DAP				CLAS	SE DE ALTU	R A PARA +2,25	Sy.x EM RELAÇÂ	Ó À MÉDIA		
(cm) 3 5 8	Sy.x	CV%	R ²	F	a ₀	a ₁	a ₂	a 3	a ₄	a 5
9 10 11										
12 13 14										
15 16 17										
	0,04967 0,03208		0,98515417 0,99462043	783,03661141 739,55440986	1,37162975954012 1,31496641296766	-5,77192667113695 -4,83442550718587	26,4689161074893 21,6793575852316	-58,2794419371057 -47,7411889691175	56,4477848236783 45,6957364808477	-20,2313079620980 -16,1051211331196
	0,03919	5,5	0,99134069	755,58498208	1,39155912016165	-6,52111485975956	32,4669011027144	-72,6865149175646	70,5686330949829	-25,2203630118165
24	0,03742		0,99191230	1128,32873507	1,38124305198099	-6,07167916634034	28,0483943616254	-61,0025158025600	58,0053490060090	-20,3566516623504
	0,04583 0,05918		0,99318950 0,98354622	204,16482597 239,10530256	1,47431182086264 1,42684892442082	-7,26823477923403 -7,01015152035211	31,6805275783463 33,9581693150612	-64,8056873659406 -75,1295402474243	58,7583178034910 72,2309597503408	-19,8345052336171 -25,4829912030927
32 33 34	0,05700 0,03981		0,98989778 0,99488506	137,18340580 272,30772441	1,46103917362052 1,40309960866438	-7,43360415737038 -6,87383635275773	34,8974500406347 33,4278961242162	-75,6982255749680 -76,6029579840251	71,5545170154036 75,9853840515279	-24,7857765984117 -27,3427164346485
35 36 37	0,02558	4,0	0,99786444	654,16700251	1,39427246152708	-6,17354098494979	27,0987688840123	-58,5442723223932	55,6096568871107	-19,3841449049632

DAP				CLAS	SEDEALTU	JRA PARA >+2,2	25 Sy.x EM RELA	ÇÃO À MÉDIA		
(cm) 3 5 8 9 10 11 12 13 14 15 16	Sy.x	CV%	R ²	F	a ₀	a ₁	a ₂	a 3	a 4	a 5
			0,99305038 0,99216855	571,57119784 506,76083161		-6,34584128470714 -5,55242869509447	30,4684996218093 24,5365408435482		67,3859213645046 52,0302131217831	-24,3606358955385 -18,8017009696977
	0,04465	6,4	0,99311190	201,84903847	1,44394004073308	-7,26303308274759	34,1669593898223	-74,1387584123513	70,8476005248230	-25,0531860658538
	0,02376	3,7	0,99822725	788,33585159	1,34813287145737	-5,07845190921352	22,1694184933157	-48,8883361323896	46,2805605749781	-15,8293812019801

QUADRO 14 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffcc10.dbf FONTE: O autor (2007)

Tal como comentado no parágrafo anterior, tem-se no quadro 15, adiante, a impressão do banco *ffsc_10.dbf*, isto é, o banco com os coeficientes e a análise estatística das polinomiais para SC para a classe de idade de 10 anos.

A listagem é similar à do quadro 14, anterior para CC, porém com os valores processados para SC.

A exibição desses bancos na íntegra, para CC e SC, demonstra como esses bancos estão organizados, do começo ao fim, para uma classe de idade. A estrutura dos dois bancos é a mesma, pois para cada árvore seccionada foram medidos valores para CC e SC.

AP_				<u>CLAS</u>	SSE DE ALTU	JRA PARA <-2,2	25 Sy.x EM RELA	ÇAO A MEDIA		
cm) 3 5	Sy.x	CV%	R²	F	a ₀	a ₁	a ₂	a 3	a ₄	a ₅
8 9										
10 11										
12										
13 14										
15										
16	0,23111	36,5	0,83078113	6,87330946	1,32275682740110	-4,21441983082036	2,46645315197929	27,5572201531176	-54,8175765059786	27,76327606302
17 18	0,12294	19,8	0,94045354	22,11105419	1,21521624493845	-2,69394613011627	1,75481930178102	11,1568565460947	-22,6378202550258	11,23373757290
19	0,16175	26,9	0,90483941	13,31197187	1,25364369451817	-3,88963039576583	6,84862767876256	4,27557058096863	-20,7801275081365	12,33954089869
20 21 22	0,09760	16,0	0,96431673	37,83408286	1,29678621460372	-4,48634237877058	10,2474790350970	-4,76995543131488	-9,9390370722431	7,67926233246
23 24	0,11908	19,1	0,93273172	55,46339458	1,34148865952706	-4,53992753718671	9,55133889344324	-2,17347246070494	-13,3714464975382	9,226598120323
25 26	0,06664	9,9	0,97826502	63,01229134	1,18528886344379	-3,38905162297555	14,4069159655427	-32,2201751102402	32,2623487625096	-12,20705018172
27 28 29 30	0,14823	25,9	0,92526558	17,33300243	1,32671591523549	-4,85351850967538	9,63065816353628	-1,65066946057413	-13,3435826363565	8,92374548293
31 32 33 34 35 36	0,05626	9,9	0,98907363	126,73049995	1,28850762272736	-4,60146953343166	14,700431322708	-24,9920835696793	18,1407267248396	-4,517376699581

QUADRO 15 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffsc10.dbf

DAP .					SEDEALTU	JRA PARA -2,25	Sy.x EM RELAÇ	AO A MEDIA		
(cm) 3	Sy.x	CV%	R ²	F	a ₀	a ₁	a ₂	a 3	a 4	a ₅
5 8 9 10										
11 12 13 14	0,17546	32,2	0,91012346	14,17692207	1,44899258481994	-6,75219263546841	16,9871992644402	-16,7905288829642	2,3013666044535	2,841420263750
15	0.40540	00.0	0.00004050	44 00005070	4 00004000740400	5 0000004 400 4055	40 4007057004070	4 70000074 40000	40.0040044000500	0.0077054000007
16	0,18519	,	0,89261050	11,63665670	1,38861860740428	-5,86938044004955	12,4637357094379	-4,7089997149233	-12,0949041302592	8,8677854068337
17	0,10452		0,96403162	37,52308690	1,42844951162594	-6,66567024548135	24,4585072550798	-42,1974338585605	31,7254685888219	-8,7336985933907
18	0,11369	,	0,95823634	32,12196453	1,39703558705696	-5,76896329184808	15,8206541438385	-19,5216417838491	8,05431690026307	0,04253098336994
19	0,11978		0,92732865	51,04232483	1,30900010329979	-4,38806889536272	8,34557336814396	1,35860545851392	-17,2069702683584	10,6180588527258
20	0,13886	,	0,93944731	21,72036119	1,43452475529595	-6,07225488927520	16,8457851989915	-19,0563569196456	4,92736989936020	1,9548537127484
21	0,13554		0,91060537	40,74542149	1,32739372048643	-5,16835689201138	14,8984429144275	-15,0448457395032	-1,05009520792737	5,07588240104269
22	0,14203	,	0,93423131	19,88672623	1,39044024708095	-6,01767391118392	18,2741974838008	-23,7714634503754	9,80686863819210	0,353425706714910
23	0,07231	-	0,97960168	67,23312144	1,21294851321490	-3,25797777506124	8,21454655814886	-10,8361657962414	4,65551463082374	0,03698195258948
24	0,09752	,	0,94627373	70,45146656	1,21934303895666	-3,62243784323254	8,13687789909454	-5,02740815425204	-5,86159194747597	5,18551514267164
25	0,09923	,	0,94681935	117,50527954	1,30704895969098	-4,72417237077661	15,0238222385287	-19,7140725265599	6,47340072606311	1,66505582983882
26 27	0,08896	14,3	0,97411983	52,69546155	1,31544247544078	-4,49258745904762	13,8579637112407	-18,7361645478849	6,71515523398193	1,37155463212366
28 29 30 31 32	0,10108	17,1	0,96361715	37,07965786	1,35746806662158	-5,98614979187789	19,1727879351537	-27,9636271367853	16,1467001965611	-2,7107275485905 ²
33 34 35 36 37	0,09853	16,5	0,95460417	84,11382316	1,36251933737682	-5,00823682447082	11,8718877283708	-9,22793767858456	-4,12210804890128	5,1480308180216

QUADRO 15 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffsc10.dbf

DAP				CLAS	SE DE ALTU	JRA PARA -1,75	Sy.x EM RELAÇ	ÃO À MÉDIA		
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a 4	a 5
3										
5										
8										
9										
10										
11										
12	,	,	0,94974772	26,45942927	1,40872528665484	-6,05013041546863	19,2223996727989	-23,4883545317789	7,59887871715909	1,3405812189957
13	0,13758	24,7	0,91205369	41,48229176	1,35701008294625	-5,62179468499482	14,4379243527910	-14,8591918828969	1,92966452351538	2,7964555667931
14										
15	0,08499		0,96034867	96,87931794	1,27822434171383	-3,96834610059022	11,7436441220670	-16,7978302625306	9,24233322224608	-1,474852283434
16	0,10525	,	0,93851932	61,06110270	1,29455780902389	-3,81406572612786	7,0626417719850	1,27522108765697	-14,2199137658826	8,443692662278
17	0,10653		0,93253910	127,17528927	1,31273579546521	-4,40474225089087	9,99050211130452	-5,18803431476044	-8,35819329111109	6,6842084738182
18	0,10942		0,92891441	154,19708129	1,31431874816112	-4,74233542784600	13,5485480315128	-15,2778462409769	2,42746965614060	2,7655851847976
19	0,09259	•	0,94947988	172,90567249	1,29404450968566	-4,57283650227282	12,1245459755609	-13,1427500144855	1,75951425726088	2,5686126904784
20	0,06408		0,98406442	86,45371623	1,25591044480138	-4,28220850196225	16,2944373548234	-29,3241282384879	21,5769645783293	-5,4931591146741
21	0,06766		0,97633406	165,01922103	1,31918309369977	-4,93041839242027	17,5961292681422	-29,6088099515691	20,5468081112267	-4,9057581530796
22	0,17729	27,9	0,87743979	10,02295618	1,29584809586017	-4,77455027834798	8,78592639328235	6,21110638064419	-26,1808133628001	14,704011144771
23										
	0,08711		0,95627881	201,22429399	1,33501892951047	-5,04528188226049	14,9406416685033	-18,4437996690467	5,73815328717682	1,5037382819427
25	0,09786	•	0,94725301	165,21754815	1,36073035604013	-5,79992531667358	18,8932460191927	-29,8667499733819	20,1037263245634	-4,6730925680076
26	0,11527	•	0,92701985	116,86166201	1,37559015231020	-6,10805783363002	20,3596898453051	-30,0687929687192	16,9141554400703	-2,4445011801635
27	0,15084		0,92400141	17,02139522	1,34251546514958	-5,47189470084356	15,1495958276163	-14,9645468317030	-0,9709583468175	4,9457780416232
28	0,07437		0,98223536	77,40828320	1,35987395932328	-5,27061387962726	17,6266017053903	-31,1969543205777	24,5777229304912	-7,0860030687854
29	0,06045	9,2	0,98712914	107,37288995	1,38505526914532	-6,77068750222360	30,8597704147614	-65,3878403124908	60,8825082014554	-20,980246664064
30										
31										
32	0,09363	15,1	0,96862055	43,21518026	1,31473981180278	-5,07525253551057	17,0367065718874	-26,0469388398596	15,083322451137	-2,2912582908484
33										
34										
35										
36										
37										

QUADRO 15 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffsc10.dbf

DAP_				CLAS	SEDEALTU	JRA PARA -1,25	Sy.x EM RELAÇ	ÃO À MÉDIA		
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a 4	a 5
3 5										
8	0,10541	17,8	0,94483602	68,51108645	1,34188944865568	-3,77328002779222	2,17001817345953	12,6721917632203	-22,4685554049792	10,09264070582
9										
10										
11	0,21031	33,6	0,83521493	7,09591543	1,33171319055320	-5,01559424735114	7,35294143107603	11,4411776527049	-31,1961769226545	16,13989272729
12	0,14815	24,1	0,88262380	49,62945551	1,32648666874602	-4,99210900625303	12,2715816422351	-7,61026784796558	-8,65634842549479	7,7055404844268
13	0,17119	27,7	0,90035709	12,65017135	1,36558803466403	-6,28785307414887	21,5620238794126	-31,7759559332444	17,3422457308843	-2,1637304786272
14	0,12636	21,2	0,91666250	43,99759288	1,27435026318507	-4,15059400309337	9,06326329393414	-4,59514532859975	-7,83933463669382	6,2911109083233
15	0,11551	18,4	0,91528836	155,58843491	1,28490894695595	-4,10126601886895	8,4635442084309	-1,45001469400449	-12,3094298111318	8,1456668433256
16	0,11585	18,2	0,91806748	161,35439712	1,37990446308716	-5,89244479222315	17,6114752373341	-21,5474149356159	7,91345069560338	0,5646902679582
17	0,10481	16,7	0,92799943	319,64171553	1,30382361497310	-4,88243288408944	14,6334285553130	-18,0487175936286	5,75450823242863	1,2685630500200
18	0,10035	15,5	0,94327278	109,74626397	1,37231986529089	-6,02080058569731	20,9718134490776	-32,3923759294921	20,2169616638202	-4,1278073285684
19	0,10395	16,5	0,92988803	432,37056892	1,32562989462076	-5,11256355469117	15,0543984560445	-17,7743207677376	4,69265499076573	1,8421329668526
20	0,10612	16,8	0,93529767	245,74169496	1,41524209597051	-6,48585773322201	21,9950086963181	-33,5765218721608	20,8123581788349	-4,1337589168851
21	0,11294	18,2	0,92473991	144,98959328	1,37126041534298	-5,90463700625446	17,5611453561359	-20,7640762062983	5,95068657277806	1,8183676874323
22	0,11339	18,2	0,91887458	104,20464953	1,27182873291083	-4,32833844219999	10,4020325578367	-6,04747079121807	-7,86480542353820	6,5951842078957
23	0,09612	16,0	0,94820143	73,22221729	1,23202820291700	-3,66045783668118	8,46629148913598	-6,64052781118152	-3,21821128518058	3,8492666580550
24	0,07711	12,3	0,97901979	65,32956952	1,32096923438563	-4,89694134978071	17,6723975606655	-32,3817948358919	26,0110201279021	-7,715587750868
25	0,09780	16,4	0,95138249	78,27489622	1,32273266072654	-4,88947618461475	13,5756468516174	-17,3086804079212	7,46193517114443	-0,1352842329797
26	0,07615	11,5	0,96902552	206,47869113	1,40536263944838	-6,84246787741608	29,4354922086276	-57,406569967552	48,3216801434973	-14,893816383695
27	0,06758	11,2	0,97401176	247,36104891	1,29460051117437	-4,88802173011083	17,6597416106215	-32,0035733776312	24,9009473232145	-6,9372486632291
28	0,10527	16,7	0,93447875	131,21246617	1,31477573310659	-4,75669727305194	12,516905317163	-10,2883845704709	-4,58998626322136	5,8368780733235
29										
30	0,11558	19,1	0,95916309	32,88270498	1,42766711952242	-6,62833299344254	23,6996445156537	-40,30634943521	29,219807896119	-7,391653725273
31										
32										
33										
34	0,14802	24,0	0,92964436	18,49890585	1,49217306978662	-8,28734310850632	27,2886225110196	-36,4198969520584	17,017921507213	-1,0721597955616
35	,	,-	,	, -	, .	,	,	,	,	,
36										
37										

QUADRO 15 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffsc10.dbf

DAP				CLAS	SEDEALTU	R A PARA -0,75	Sy.x EM RELAÇ	ÃO À MÉDIA		
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a 3	a 4	a 5
3	0,06376	10,1	0,97872883	64,41679151	1,08426429959596	-2,06469758698131	6,11000244335264	-10,7853307781551	8,38390421374788	-2,69875763453819
5	0,14013	22,7	0,89844144	35,38614137	1,32773745239723	-4,82347536574388	11,7982868242616	-10,2008740240744	-1,59817668102186	3,54620941244684
8										
9										
10	0,11092	18,8	0,93933637	61,93737143	1,40622459767069	-5,99498237679699	15,1954818914819	-15,9837278760824	4,51335201261099	0,89821549690169
11	0,18942	31,9	0,86853994	9,24962138	1,28781120065549	-4,53381428377929	7,61009974076478	5,89456918153155	-23,4059520714472	13,1974181945988
12	0,11242	17,8	0,92363596	79,82812338	1,3159279455690	-4,52184146224249	8,0877112268372	3,6555341216590	-19,6155838299382	11,1108944011393
13	0,12973	21,2	0,90564141	63,34593401	1,3324668523454	-4,90353655223907	11,0773235884844	-5,96554220752659	-7,95869749634584	6,45295129532314
14	0,13052	19,6	0,91254922	68,87102800	1,45500055591734	-7,08079771664915	23,2709852873649	-30,2313535996545	12,2137732701376	0,40564744226322
15	0,08930	13,9	0,94725870	398,72246934	1,31553256048663	-4,93852336294276	16,2403600349189	-24,6842526596592	15,0141521978366	-2,91965958921719
16	0,10818	17,5	0,92364893	237,10889383	1,32703767775433	-5,25035985662384	15,1279638072428	-17,9055947418637	5,6295121485964	1,10183762439555
17	0,11638	17,7	0,90917884	144,15334881	1,28071046970097	-4,33970093922653	12,7295292827384	-15,5281379681109	5,2006702327053	0,68969070340972
18	0,09322	14,8	0,94691547	164,10849840	1,33861990765072	-5,44882505202463	18,3403297796685	-28,8091384206127	18,9659744523887	-4,35921714082906
19	0,06742	10,6	0,97271782	513,41697813	1,36158122363534	-5,67027311798165	21,1543939572166	-38,0932345748624	29,8353333933737	-8,56710706520789
20	0,08900	13,4	0,95365791	242,82817664	1,38131661420142	-5,97254437762171	23,8289140188990	-44,9771585471462	37,2083469028730	-11,4474345415565
21	0,09071	13,9	0,95490903	139,77077370	1,37466895954418	-5,85655150284810	21,0643140811334	-34,4539799058075	23,3154010152939	-5,4230496119726
22	0,08361	13,1	0,95598505	482,17407355	1,34186868737203	-5,59505564669189	20,8318204445604	-36,2006841700931	26,6599349785501	-7,01664730734773
23	0,09117	14,5	0,94972289	321,12608660	1,35966940318152	-5,89503615076728	21,3739058903465	-36,0272166944196	25,6420911493442	-6,43327808453977
24	0,09152	14,6	0,94823489	216,15274050	1,31394457685573	-5,12618461513261	17,4161982919067	-27,4875135520487	17,5613675236309	-3,6549923639759
25										
26	0,06598	10,1	0,97392706	440,77644159	1,33368441598504	-5,00415238534628	18,4955233548189	-32,7894608759088	24,7242846329609	-6,74366125755841
27	0,06446	10,3	0,97517973	361,46474364	1,29569561047759	-4,81045543065056	17,8739110596798	-32,8167792389867	25,8263402322081	-7,35151865709667
28	0,15882	25,2	0,91928519	15,94501955	1,44663207398709	-7,08233072553048	24,1517362377671	-36,2883025640767	21,8615891327026	-4,05947111873865
29	0,08611	13,9	0,95821496	151,35126860	1,29622307999176	-4,84052965831688	16,5609033192668	-26,1449042034182	15,9119320954596	-2,76245332017242
30	0,09567	15,1	0,95021847	175,60752492	1,34332254881270	-5,27439669027103	18,9615808163016	-31,6562480346474	21,1591671223141	-4,50757295986841
31	0,07610	12,1	0,96776538	276,20744320	1,34459004818610	-5,31417274094133	19,9631415172407	-36,7306590839143	29,1492356080852	-8,39769315514786
32	0,07259	11,4	0,97058785	217,79704429	1,33314046823075	-5,14370435358205	18,1346087161382	-30,5653538908627	21,6208297291086	-5,36121825893133
33	0,09218	14,2	0,95558083	86,05122472	1,33784317115096	-5,19702215395545	16,3850870154565	-21,2660435302168	8,12882855408679	0,63582281499112
34	0,07553	12,3	0,96985174	128,67761516	1,21623269162640	-2,78677174308074	5,62974236950685	-4,16975602078673	-2,93986463993860	3,06256874263999
35										
36										
37										

DAP				CLAS	SEDEALTU	JRA PARA ±0,2	5 Sy.x EM RELAÇ	ÃO À MÉDIA		
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a ₄	a 5
5	0,10345	16,3	0,95982463	33,44722246	1,27970921963424	-3,76363692391305	6,42580026771247	4,78663723886347	-20,7377779728922	12,053320786020
8 9	0,10055	16,0	0,96527566	38,91753994	1,36145007994505	-4,97444058921064	17,1569565141489	-33,7568062397767	31,5680242554008	-11,338863457191
10 11	0,04515	7,7	0,99198620	173,29860377	1,23758699313622	-3,45193817688482	8,29598331346642	-11,0821617877954	6,10576223661701	-1,087454541397
12	0,08933	13,9	0,94877553	218,55867703	1,29914377497513	-4,54385442497437	15,7409124941423	-28,2771793276479	22,9682930517956	-7,161284731560
13	0,10669	16,7	0,93199355	126,08130079	1,35233694467649	-5,39929216356790	15,4442489955636	-16,4104984949917	1,83655481768801	3,211559533190
14	0,09732	15,8	0,94401970	67,45370461	1,23304216546730	-3,17986723738476	2,3327774763948	13,9767478160538	-28,4179242448881	14,100501434024
15	0,10415	16,7	0,93116471	194,79499271	1,33099005729953	-5,28363058599825	16,6594611666951	-24,2899881598787	14,2767424067278	-2,664166981470
16	0,11692	18,1	0,91167747	282,82661321	1,33125240065166	-5,22506161077262	15,4906040901823	-17,3053839305903	2,87435746620758	2,868916080453
17	0,21697	32,5	0,73597062	105,36588216	1,40823727349594	-7,14822749379936	29,2849433661613	-55,7443205971576	47,8012448622175	-15,53565337684
18	0,08828	13,5	0,94900898	509,94945425	1,33592719570562	-5,47277644645259	21,0125510530451	-38,0435855177529	29,9008103171800	-8,711276907954
19	0,09424	14,6	0,94048919	391,93108203	1,29676225011367	-4,66109975977678	14,7512680839536	-20,1677721516498	9,21055674172384	-0,405133666210
20	0,09113	14,2	0,94190567	528,55637183	1,27761699552930	-4,45471457052372	14,1640637429827	-20,1953130025394	10,4725482343201	-1,236511245251
21	0,10347	16,1	0,93336503	238,12129786	1,34613364955795	-5,49466824481805	17,3922338715347	-22,4923813188397	8,67181378671375	0,59937441286
22	0,08387	12,9	0,95842520	391,90156511	1,39873909410491	-6,37268124587717	24,6147345312529	-44,3850313422917	34,8389363033857	-10,07993713895
23	0,08725	13,7	0,94889380	653,56171018	1,29832333682276	-4,67266101051927	14,6635276035249	-20,4094589496562	9,90458284600754	-0,763158626847
24	0,09000	14,2	0,95047367	126,66242662	1,26778069854228	-4,10790645140036	11,6209272873038	-13,8616608686497	3,82492207733594	1,282852061211
25	0,08431	12,9	0,95875899	153,43483043	1,26764825676570	-3,88460449450985	12,2008692008930	-16,8555974928640	6,90859390817786	0,391329559361
26	0,07845	12,1	0,96149905	424,54750653	1,35736776552223	-5,80511018306856	21,0228046809334	-34,2308190792791	22,8040724916427	-5,126454512557
27	0,10307	15,6	0,94112659	147,06749766	1,39035178999427	-6,42380361459208	25,0400595098781	-43,3602631934591	31,3496987991093	-7,98006103913
28	0.06676	10,7	0.97460957	153,53966660	1,21758402844996	-3,64746457996648	12,9797802405846	-23,8750494381347	18,6113493468801	-5,26651079409
29	•	•	•	,	,	,	•	•	•	,
30	0.06173	9,8	0,98498946	91,86780360	1,19958188641534	-3,20313388027966	11,3495472790018	-21,1084196129195	16,0874558877585	-4,306295761207
31	0,07543	11,9	0,97113413	134,57194881	1,27180529071653	-3,93124618647380	11,8235275351780	-15,8331329290413	5,86132903549878	0,819764133060
32	0.06562	,	0,97394108	246,67221884	1,19171547344451	-3,28436453876815	8,22395367764602	-9,87732457626407	2,38748696257971	1,374745444583
33 34 35	0,10315	,	0,94784515	119,94620382	1,41989097555298	-6,41131459053235	24,4036819504708	-44,5091983396596	35,386410405903	-10,272619080
36 37	0,05175	8,3	0,99049181	145,84152887	1,33446700436469	-5,53109293963189	22,4564945676174	-45,3098578612298	40,2996360437427	-13,24140159144

DAP				CLAS	SEDEALTU	JRA PARA +0,7	5 Sy.x EM RELAÇ	ÃO À MÉDIA		
(cm)	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a 4	a 5
3										
5	0,08630	12,9	0,97042203	45,93253175	1,35920315851203	-5,87444843983234	23,3415569266308	-44,6267991637796	38,4896360291750	-12,6537739213381
8	0,13611	22,7	0,89543897	34,25517157	1,30084806515081	-4,22034419093392	3,28677016507026	17,3652697224461	-33,7611870964465	16,0772527665267
9	0,16648	27,7	0,89641070	12,11490881	1,30039126676996	-3,83032094956593	2,57494107172533	15,6195115877599	-29,8007428845958	14,1888750348007
10	0,13221	21,8	0,90807762	39,51497379	1,34720518276763	-5,31219739938296	13,8799671160268	-14,8739623786204	3,71145354251348	1,2975688071201
11	0,11954	18,8	0,91355001	69,74470828	1,33348615913816	-5,07592575876265	14,0789856762094	-16,5169645627611	6,05314598397671	0,16410093785089
12	0,12975	21,3	0,89680747	79,95374219	1,32122079521385	-4,98415059922217	10,9068367021391	-3,75468614781857	-11,5563854920983	8,11067886465934
13										
14	0,08664	13,6	0,95966128	95,16030034	1,35966481667097	-5,17517539650452	15,9189360633536	-24,7933193134886	17,7998865643458	-5,07730039168745
15	0,10126	15,6	0,93358006	129,31263868	1,29487242516539	-4,53881265671111	13,0344786008954	-15,2332807834682	4,40942600725975	1,0582880531983
16	0,08898	13,5	0,94859354	313,69773946	1,33131486624588	-5,14219836928077	17,6296607604217	-27,3722133263254	17,1473426097945	-3,56927675032056
17	0,09485	14,7	0,93909021	342,27347629	1,30608062546053	-4,65574562904043	13,1371057851683	-14,2687354591216	2,15069481020327	2,36016851683416
18	0,09192	13,8	0,94320712	325,51365056	1,31480800645112	-4,92231772231343	17,0450354615568	-26,9993080699059	17,6381095835968	-4,0529153205388
19	0,11035	16,7	0,92055328	437,99059005	1,36930268009486	-6,04392382827722	21,5211481729566	-33,5838247527935	21,2295574317977	-4,46196505503212
20	0,06382	9,7	0,97205526	681,78419471	1,26788468463702	-4,23478906642662	15,3713316916218	-26,5235899865037	19,0500369051296	-4,9131228586575
21	0,08398	12,8	0,95548162	309,06183892	1,32583396241832	-5,17228000649743	18,7011203364636	-30,9006569761695	21,0506931386335	-4,98807491949992
22	0,09170	14,2	0,94482508	335,63382266	1,30749474816074	-4,79753649356757	15,6371499457745	-23,0748771636936	13,1417234217296	-2,19744549533788
23	0,08785	13,5	0,95326046	240,66286109	1,35672975859338	-5,77005983411731	21,3911205568638	-36,4554733254444	26,3449713101144	-6,84930509060359
24	0,06765	10,4	0,97630993	164,84707635	1,33279655673310	-5,31515057093793	21,0390870644278	-40,0927658211185	33,2838582416443	-10,2347330386437
25	0,07566	11,7	0,96416156	387,40335971	1,33971752227255	-5,79346385430108	22,8420147214947	-41,4078373104130	32,0890309492024	-9,05496909210524
26	0,03897	6,1	0,99395897	230,34895624	1,21899526948305	-3,52252280074844	13,7667093635609	-28,0337217712040	24,4253352147206	-7,8404603860872
27	0,04724	7,5	0,98863126	347,84206731	1,26680573870171	-3,98497921969396	14,4686296205072	-26,7784665576873	20,6353511990237	-5,5972318249187
28	0,06995	10,3	0,98440385	88,36578823	1,44064947909210	-6,79774607383478	30,3559504628483	-63,1571851868575	57,1563988595517	-18,9815975076762
29										
30										
31	0,09888	14,8	0,95928322	94,23960543	1,55044816039014	-8,72972156241144	37,4677318392186	-74,4422634980364	65,7375827913529	-21,577410805581
32	0,04848	7,6	0,99163580	165,97997761	1,30791115195179	-4,53923891084764	17,3446140141568	-34,4556313730390	29,9484817444426	-9,58680444638958
33	0,07435	11,5	0,97322881	145,41433842	1,37279966331188	-5,63457537017893	20,6782080695593	-35,9461192198468	26,6877007969269	-7,151507429867
34	0,05206	8,6	0,99016448	140,94122814	1,30869739475652	-4,72570063803095	12,7488603050114	-12,8568244115995	-0,4666321399709	4,01742112566353
35										
36										
37	0,11923	18,5	0,96133193	34,80559310	1,5416086777345	-8,95949516860491	39,2051483130726	-76,8756484251898	64,8118637160223	-19,7081388734732

m) 3 5	Sy.x	CV%	R ²	F	a ₀	a ₁	a ₂	a 3	a ₄	a ₅
8 9 10	0,13051	20,5	0,90927383	40,08871423	1,3547710869169	-5,12845371612593	12,3570157892536	-8,84876928343874	-4,66927448068599	4,9863274973249
11 12 13	0,07111	11,0	0,97833867	63,23130911	1,19303170472885	-3,11676666014864	9,35447965991807	-13,2632062161428	6,18175755375705	-0,3193768493674
14 15 16	0,08242	,	0,96061647	224,40019887	1,39676853080288	-6,33659493272352	24,9833564779401	-46,0301835578466	37,3786691611458	-11,377386906775
17	0,08389	12,5	0,95231976 0,96293719	287,61184200 103,92489556	1,31471743389567 1,35292768621561	-5,11209672477616 -5,71968361857739	18,0986154170477 22,1110859936088	-29,4316572811148 -38,4871392690474	20,2359492777395 28,2144395581199	-5,0823574161295 -7,4480523300990
18 19	0,08789	12,8	0,94913631	414,26064548 797,73131080	1,36219864156836 1,30331575705484	-5,82532333852441 -4,81657482835953	21,0422719449197 16,3546587678174	-34,8544011136473 -25,0446112937643	24,8558443642832 15,3929329995880	-6,5620063617898 -3,1679067269233
20 21	0,07726	12,5	0,95930367 0,95715571	768,45517566 205,53104632	1,31548727639031 1,23602162656370	-5,03970877450251 -3,92262568940077	16,5461620653095 12,4601620057474	-23,4695971417459 -16,7916222329549	11,8961202231512 6,46857983186055	-1,2289433137830 0,5749215016385
22 23 24	0,08694 0,06801	,	0,95484389 0,97080070	194,53768251 565,20554270	1,36511203599016 1,35099393424247	-5,95833719234860 -5,84044675263999	22,1179330049799 22,7702656386318	-36,2650669527683 -41,5145003771358	24,4415855875486 32,8593309004863	-5,6821605322184 -9,6159593261836
25 26	0,04217 0,07950	•	0,99285316	194,49084916	1,21264194779485	-3,39644966923378	11,0177836667571	-17,7811158544427	11,0287293879519	-2,06548985780
27	0,05895	8,7	0,96752296 0,98874407	119,16391578 122,97884542	1,33758490841765 1,46297031205791	-5,19188348139096 -7,50976625341490	20,7845760058789 34,3407221938523	-38,8659171621475 -72,0332016382308	31,2501732358650 66,0341274338788	-9,305149168800 -22,282289386443
28 29	0,10509	13,8	0,93738899 0,97259433	98,81276115 49,68429495	1,30556351308484 1,45597094499908	-4,56748395829549 -7,17344859926424	13,2594612631819 26,1551608064128	-14,7522237761077 -42,3031532638124	1,89790288001677 28,6621234304111	2,8791724804359 -6,7860506917659
30 31 32	0,10291 0,08167		0,96085058 0,97773365	34,36043270 61,47513293	1,32323891336135 1,37056342260346	-5,41768439664770 -6,04022896255310	19,9058876322706 24,6378793157746	-33,1468952322575 -47,2007188150455	22,7639263004311 38,8400326708106	-5,4181158614173 -11,59870135864
33 34	0,04735 0,08842	•	0,98976351 0,97211945	386,75897893 48,81422316	1,39731194457122 1,29078843070627	-6,11212928392035 -4,66510394260444	24,8849845448166 18,0056913215048	-48,8363182261637 -33,2716213206076	41,5559547702505 25,5073769540576	-12,878944012883 -6,843145021344
35 36	0,08642		0,96852237	43,07603039	1,34959616682517	-5,20209556279724	14,9362500209681	-17,8926634991839	5,02680160285308	1,8054399306984

cm)	Sy.x	CV/0/	R^2	F	2	2	2	2	2	2
3 3	Sy.x	C V 70	K	Г	a ₀	a ₁	a ₂	a ₃	a 4	a ₅
5	0,16251	23,6	0,87082568	9,43806686	1,25783008072619	-5,03226349013539	17,5094309056876	-26,5527385386158	17,6676464397533	-4,7920370208012
8										
9										
10										
11 12										
13										
14										
15	0,07865	12.0	0,96673860	116,25949097	1,34099173429484	-5,16078909618386	16,5636717194920	-23,4581646401711	12,3602498077671	-1,6217463151606
16	0,06956		0,97288989	143,54648546	1,31953784269501	-5,16313224894202	18,9221102792071	-30,8453847443961	20,6815793748683	-4,9009866974574
17	0,09274		0,94872201	74,00618293	1,22693362563717	-3,56653042127982	9,30793114565858	-9,03568022806939	-0,59938119556318	2,693855382758
18	0,10859		0,92714377	150,16279874	1,36829709512800	-5,93297885984679	20,2181362410501	-31,4251136868915	20,773918544859	-4,983625873643
19	0,08974	13,2	0,94917764	220,38122484	1,38815738895276	-6,17787500079407	22,9972733575959	-39,1326164789279	29,200940840521	-8,254103783092
20	0,07644	11,7	0,96520388	110,95530275	1,23395755783769	-3,91905615596351	11,8278374667497	-13,7917394025498	2,45457042301131	2,220564068247
21	0,10850	16,7	0,93041085	123,00453999	1,37134357020428	-6,18461618896503	22,8746997473681	-38,5393364520496	27,9586666521427	-7,4668563600662
22	0,11817	18,6	0,94010182	21,97299588	1,22819872660632	-4,40358695787017	14,6468632035230	-20,6452869429049	9,86931668880424	-0,665260676314
23	0,07511	11,4	0,96974798	128,22255581	1,30492130157903	-4,72960058955664	16,3817127324764	-25,4486080828282	15,2134789600531	-2,704203600169
24										
25	0,08949		0,95842107	92,20257265	1,34890239387776	-5,73698971680460	22,6424206052506	-42,0044034219645	34,0871952695524	-10,3279551633
26	0,11108	,	0,93531258	95,42912197	1,38155456071929	-6,22841127757692	22,5476871217943	-36,3734364695046	23,6177453717173	-4,921989766906
27 28	0,07990	11,8	0,97896551	65,15735087	1,39445019791469	-5,98786968771628	25,1961807701336	-49,5325104901676	41,9922166526303	-13,051453701125
29 30	0,09202	14,7	0,96889002	43,60161831	1,28132326008846	-4,18275923093528	10,8267461445375	-8,89631096888842	-4,62082165679021	5,622124058741
31	0,06186	9,4	0,98067165	202,94999242	1,36824153888683	-5,87300108079625	24,3757821280596	-48,4474881233618	42,3213237559248	-13,7309712784
32										
33										
34										
35 36										
37										

QUADRO 15 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS MODELOS DE FUNÇÃO DE FORMA PARA O BANCO ffsc10.dbf

AP_				<u>CLAS</u>	SE DE ALTU	JR A PARA +2,2	<u>5 Sy.x EM REL</u> AÇ	AO A MEDIA		
m) 3	Sy.x	CV%	R^2	F	a ₀	a ₁	a ₂	a ₃	a 4	a ₅
5										
8 9										
10										
11										
12										
13 14										
15										
16										
17	0.00040	40.0	0.05000000	224 50455047	4 22204404400470	E 00044E74700074	40.0704004705000	20 0704405204072	40.0044750407400	4 272025000055
	0,08846	•	0,95008282 0,96485374	224,59155817 109,81013384	1,33394494409172 1,26376734020069	-5,23314571783271 -3,96517554058459	18,2781331725982 11,7010133364165	-28,9704405261072 -13,9516855427864	18,9841759137489 3,24882643556338	-4,373025086055 1,727984768398
20	0,07500	12,0	0,50405574	100,01010004	1,20070704020000	-0,30317334030433	11,7010100004100	-10,0010000427004	3,24002040300000	1,727304700030
	0,06417	9,1	0,97511343	258,60328180	1,33729149280664	-5,76497420964142	25,1651512044736	-48,8019772429397	40,8458990938088	-12,77317975773
22		40.0	0.05044000	0.47 00000407	4 000 4000 500000	F 40507070740007	0.4.000.400.000.000	00 0500 100005051	00 00005 4757 40 4	7 00 100 150000
23 24	0,08096	12,0	0,95944999	217,68028187	1,33046895682999	-5,46537278712207	21,2024096832265	-36,8560428605851	26,889654757404	-7,084904588202
	0,07191	10,8	0,98200961	76,41928427	1,42263901198432	-6,45036317886842	23,0057482807405	-36,6804713757519	24,2473229541792	-5,528727194876
	0,08661	12,7	0,96326124	104,87682949	1,40578040942296	-6,83953937388878	29,3265588698031	-55,7992989575177	45,6587977158269	-13,74647438921
27										
28 29										
30										
	0,07634	11,4	0,98042532	70,12095004	1,41531484760129	-6,46540803277162	24,570167726395	-41,0105059126362	27,9023588869822	-6,397203301376
32	0,06681	10,8	0,98417120	87,04631291	1,34103877396356	-6,10347808919482	25,9063197298619	-52,3172423152827	46,0214289291288	-14,83927234786
33 34										
3 5										
36										
37	0,08162	13,3	0,97723664	60,10232697	1,3650687152307	-5,50409608784286	17,594505159026	-26,17351764056	15,2672943490397	-2,530980164963

DAP_				CLA	SSEDEALT	URA PARA >+2	,25 Sy.x EM RELA	AÇÃO À MÉDIA		
3 5 8 9	Sy.x	CV%	R²	F	a ₀	a ₁	a ₂	a ₃	a ₄	a ₅
10 11 12 13 14										
15 16 17	0.08882	13.4	0.95684454	88.68818534	1.32759792961006	-5,45169789959004	20.3734341231647	-34.6736084849799	25.0333329104978	-6,59228253963
						-4,83582651567917				-0,913602489008
	0,10228	15,5	0,95976816	33,39830240	1,36160105729311	-5,93949789790235	20,8459561138879	-32,0568040570287	20,0524183849411	-4,241515419898
30 31 32 33 34 35										
	0,10112	16,1	0,96772265	41,97405931	1,38504635734742	-5,84965049183915	21,3429123791256	-36,1830976429155	25,0308293404195	-5,71000999788

Nos quadros 16 e 17, seguintes, listam-se os arquivos *fvolscc.dbf* e *fvolssc.dbf*, respectivamente os bancos de dados para os modelos ajustados de função para volume CC e SC. Eles são usados para se fazer a avaliação do uso dos bancos de funções de forma, através da comparação por confronto de eficiência, entre essas e o melhor dos modelos de função de volume, para CC e SC, ajustados por classe de idade.

Neles também se incluem os modelos ajustados de função diamétrica, $d_{0.9ht} = f(DAP)$, para CC e SC, auxiliares usadas na aplicação das funções de forma.

Para todos os modelos constam os coeficientes e a análise estatística.

IDADE	FUNÇÃO	Sy.x	CV%	R ²	F	<i>b</i> ₀	<i>b</i> ₁	b ₂	b 3	<i>b</i> ₄	<i>b</i> ₅
4	1	0,00237	8,7	0,99338526	23908,21987534	0,004208996266377	0,000755398889721	-0,000065174764540	0,000374204005050	0,000022929883411	-0,002487625613474
4	2	0,00246	9,0	0,99287183	27753,25535443	-0,000925944967609	0,000468648614548	-0,000007037172906	0,000123513065128	0,000026550545266	
4	3	0,00238	8,8	0,99328148	29457,61401547	0,001690332246967	0,000155489371798	0,000002261416516	0,000039663937789	-0,000175361926140	
4	4	0,00257	9,5	0,99216186	33670,64758906	-0,002388707723932	0,000052495889460	0,000026852207745	0,001222121171490		
4	5	0,00309	11,4	0,98863571	34797,98198662	0,000133302099000	0,000022493010307				
4	6	0,00315	11,6	0,98821576	67087,34963328	0,004122109907600	0,000034650634185				
4	7	0,00487	17,9	0,97186641	13800,60596744	0,003264022097497	-0,001696211636595	0,000436239029712			
4	8	0,00519	19,1	0,96796694	24174,20615793	-0,003926041127064	0,000354579421295				
4	9	0,00254	9,3	0,99215497	25198,95396498	-7,615492096107800	1,650769348436590	0,021817295582821	-0,619211218900091	0,363685281337212	
4	10	0,00439	16,1	0,98845893	34216,03446265	-8,627680971959330	1,550038381921180	0,804738253396806			
4	11	0,00440	16,2	0,98845173	68474,41919259	-8,622071556688820	0,782812777843503				
4	12	0,00515	18,9	0,98398184	24540,95712256	-9,190324201936810	2,391279544565760	1,430361886098600			
4	13	0,00643	23,6	0,97883131	36991,66108816	-8,381442865499030	2,102033052489420				
4	14	0,70540	7,1	0,96264004	20613,29535956	2,410291883881530	0,890361836957778				
7	1	0,00863	7,2	0,99097599	15703,62518590	0,004674972815920	0,000979192264683	-0,000100423111356	0,000299799131743	0,000030206097708	-0,002436345937841
7	2	0,00868	7,2	0,99085821	19401,39187755	-0,008236290281605	0,001600683388604	-0,000092785360832	0,000101564350891	0,000033404692350	
7	3	0,00846	7,1	0,99131771	20437,66998743	0,003513583715320	0,000106689513772	0,000014628583595	0,000027711905456	-0,000170987383437	
7	4	0,00887	7,4	0,99044523	24774,71383820	-0,009213140337778	0,000002596409834	0,000032129799489	0,002093065417562		
7	5	0,01025	8,5	0,98720247	27731,85141616	0,000063128807473	0,000030842130162				
7	6	0,00947	7,9	0,98906910	65057,85937286	0,008373375449428	0,000033968745550				
7	7	0,02169	18,1	0,94278620	5915,70988746	0,017471076718941	-0,005033044849334	0,000672043607729			
7	8	0,02243	18,7	0,93869700	11009,62892715	-0,021183866638466	0,000523825816735				
7	9	0,00897	7,5	0,99506814	36115,57222322	-7,788008586483100	2,104363986792120	-0,050229145938033	-0,949724056019477	0,408975690929765	
7	10	0,01015	8,5	0,99229173	46214,34127756	-9,423391842305640	1,822916651663660	0,885304491550102			
7	11	0,01005	8,4	0,99228093	92426,96227086	-9,434037449772970	0,904854353963525				
7	12	0,02170	18,1	0,97110835	12066,73731350	-9,276599921756650	2,505785172236070	1,453067134194270			
7	13	0,02162	18,0	0,97065794	23785,06522826	-8,796391848207420	2,367081800217330				
7	14	0,60978	3,8	0,98330261	42341,62384909	1,570357112570660	0,923415460490755				
10	1	0,01969	7,5	0,98548909	8597,86570041	0,057434811330779	-0,003374582738850	0,000006391580273	0,000932526162065	0,000015996545595	-0,009674215437290
10	2	0,02004	7,6	0,98494372	10368,67547777	-0,030793374135229	0,002248893985342	-0,000065247457533	0,000225178242879	0,000027801434969	
10	3	0,01988	7,6	0,98518784	10542,16901866	0,002144124488392	0,000213597392373	0,000007704188075	0,000031739550460	-0,000246689529951	
10	4	0,02060	7,8	0,98406003	13067,31791536	-0,039875284201038	0,000050934231493	0,000028572885668	0,004577439705938		
10	5	0,02421	9,2	0,97792760	14111,28064558	0,000085930862572	0,000030129975391				

QUADRO 16 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS 13 MODELOS DE FUNÇÃO VOLUMÉTRICA E 1 DIAMÉTRICA, COM CASCA

IDADE	FUNÇÃO	Sy.x	CV%	R ²	F	b 0	b ₁	b ₂	b ₃	<i>b</i> ₄	<i>b</i> ₅
10	6	0,02205	8,4	0,98168807	34149,05861475	0,021289450166671	0,000033002323688				
10	7	0,04407	16,8	0,92694945	4035,15031426	-0,031367807793760	0,000638865166759	0,000633387346545			
10	8	0,04404	16,7	0,92693089	8080,77335925	-0,024798730869623	0,000647831549254				
10	9	0,02075	7,9	0,99035389	16272,99535045	-8,542345136149370	2,297056588769010	-0,074646390908356	-0,430938177083590	0,269602298384598	
10	10	0,02066	7,9	0,98997961	31417,26255663	-9,804003413648270	1,848836909557780	1,015233995380150			
10	11	0,02133	8,1	0,98980398	61838,36592018	-9,735276855762740	0,945018603026981				
10	12	0,04603	17,5	0,95483490	6722,83437324	-8,140858925548960	2,248852222171690	-1,628638162854030			
10	13	0,04736	18,0	0,95440811	13334,78561112	-8,567402502212380	2,362770045386860				
10	14	0,58381	2,9	0,98699951	48361,17717684	1,330092126886480	0,911032408718649				
13	1	0,03336	8,2	0,98109687	5148,60755603	0,065664822765427	-0,004320196459886	0,000082793920146	0,000817435338806	0,000017482959335	-0,008991953820320
13	2	0,03366	8,3	0,98071625	6318,99910220	-0,062855194683607	0,006569181415841	-0,000134675675476	0,000080510266347	0,000031778478425	
13	3	0,03352	8,3	0,98088020	6374,24445743	0,003438512056334	0,000247115129307	0,000010898650582	0,000025598032159	-0,000240171434718	
13	4	0,03457	8,5	0,97961878	7978,75144088	-0,049736246066310	0,000101007670034	0,000028031372891	0,004338447290356		
13	5	0,03715	9,2	0,97637940	10333,97744221	0,000103732431884	0,000030314745911				
13	6	0,03548	8,8	0,97845462	22706,83499479	0,025671963151057	0,000033681421311				
13	7	0,06027	14,9	0,93794328	3771,01623447	-0,066631233806334	0,003705898487541	0,000680925045848			
13	8	0,06040	14,9	0,93754693	7506,01132780	-0,025118262594543	0,000757440303846				
13	9	0,03414	8,4	0,98901386	11185,45210280	-9,154572966949670	2,453965871236050	-0,085923322577571	-0,099116595021769	0,183573988101443	
13	10	0,03552	8,8	0,98852851	21500,06945880	-9,804510348417890	1,943716184753880	0,918069954792884			
13	11	0,03496	8,6	0,98845804	42820,16462164	-9,859811397039800	0,960679751102315				
13	12	0,06151	15,2	0,95959714	5925,80389163	-6,723916711718400	1,926009195923990	-7,192053566831410			
13	13	0,06807	16,8	0,95695506	11115,76745570	-8,362824259094790	2,344344358205440				
13	14	0,66418	3,0	0,98754872	39656,49779109	1,076683276607980	0,908610062689533				
16	1	0,04779	8,7	0,98234835	4173,89370103	0,064423886448367	-0,002624386214507	0,000052752998956	0,000881945160241	0,000017905944800	-0,011061706113104
16	2	0,04800	8,7	0,98214595	5170,91175876	-0,127029387260990	0,010851976175481	-0,000166313609316	0,000112936697099	0,000030303086287	
16	3	0,04802	8,7	0,98213654	5168,14004102	0,006968091617779	0,000338060781016	0,000006452889842	0,000030462952339	-0,000330041675172	
16	4	0,04974	9,0	0,98078106	6413,02126524	-0,105872200255291	0,000176912119527	0,000025278460184	0,007329576630553		
16	5	0,05432	9,9	0,97695401	8033,18807999	0,000166420407599	0,000028290641500				
16	6	0,05159	9,4	0,97921286	17853,43471565	0,043943824631104	0,000033527441264				
16	7	0,08871	16,1	0,93870617	2894,50803200	-0,060328545643046	0,001824157805191	0,000815132278753			
16	8	0,08862	16,1	0,93865972	5799,64906207	-0,036752422558086	0,000847618991816				
16	9	0,04848	8,8	0,98259371	5306,34649940	#######################################	2,666792392147720	-0,117301720820024	0,813293224244262	0,023541664007553	
16	10	0,05273	9,6	0,98212193	10382,60844060	-9,891188736614820	1,924296921780140	0,976801510881813			l

16 10 0,05273 9,6 0,98212193 10382,60844060 -9,891188736614820 1,924296921780140 0,970001510001515

QUADRO 16 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS 13 MODELOS DE FUNÇÃO VOLUMÉTRICA E 1 DIAMÉTRICA, COM CASCA continuação

IDADE	FUNÇÃO	Sy.x	CV%	R ²	F	b 0	<i>b</i> ₁	b ₂	b 3	<i>b</i> ₄	b ₅
16	11	0,05274	9,6	0,98211670	20813,95412598	-9,871404422713080	0,964750835146157				
16	12	0,08888	16,2	0,95203551	3751,41510335	-5,893881800868480	1,747832684854640	-11,244782351570800			
16	13	0,09359	17,0	0,94890615	7038,72227371	-8,037894458871400	2,267812112057740				
16	14	0,72705	3,0	0,98840632	32311,24612847	1,160924687938060	0,906472494402937				
19	1	0,07740	10,1	0,97561103	1520,08167566	0,845518647371591	-0,031630390792714	0,000169484388726	0,004076896377398	-0,000017648032140	-0,073213286452287
19	2	0,08289	10,8	0,97188236	1650,47264964	-0,627303790121232	0,057045279594085	-0,001086414250374	-0,000239609685437	0,000042219820906	
19	3	0,07950	10,4	0,97413341	1798,26021651	0,109649401792396	0,000876382489353	-0,000041497420320	0,000099678565474	-0,001546759115311	
19	4	0,10389	13,6	0,95559878	1377,40192688	-0,441824035465629	0,000417732089406	0,000012069788087	0,026024027031776		
19	5	0,12864	16,8	0,93121776	1313,24778329	0,000388368399619	0,000019507283970				
19	6	0,11638	15,2	0,94369672	3251,62522815	0,124665633949927	0,000030643391616				
19	7	0,12725	16,7	0,93303896	1344,63673687	-0,578754199443381	0,039691048011510	0,000265667067595			
19	8	0,14410	18,9	0,91368836	2053,66881620	0,013950324731448	0,000873692601554				
19	9	0,08140	10,7	0,98678714	3566,15160493	#######################################	4,741952085915720	-0,426682165977581	2,738211259573290	-0,296133993198055	
19	10	0,13790	18,0	0,97938757	4585,14036992	-9,857417931449840	1,943356855081620	0,953786136477874			
19	11	0,13686	17,9	0,97938183	9215,17521326	-9,881203319719540	0,968380877340652				
19	12	0,13400	17,5	0,96392174	2578,24053685	-3,967208520336840	1,342624247344750	-24,136707756788300			
19	13	0,19487	25,5	0,95549213	4164,78064475	-8,109412497567560	2,315538507878090				
19	14	1,27111	4,8	0,96989846	6250,85429289	2,462882974448860	0,859149353715150				
22	1	0,08130	8,4	0,97966690	1512,88004161	-0,488234651569655	0,053294164525482	-0,000914767949388	-0,000802438961617	0,000050951108444	0,001126378649019
22	2	0,08104	8,4	0,97966661	1903,11806962	-0,462192003398855	0,051743320450186	-0,000892509921392	-0,000736679607235	0,000050025985559	
22	3	0,08204	8,5	0,97916289	1856,15680672	0,124379675006480	0,000413922402340	0,000005053368356	0,000036254717876	-0,000707528054424	
22	4	0,08399	8,7	0,97802325	2358,64041376	-0,002780759474660	0,000196020766371	0,000026861607329	0,002733729223790		
22	5	0,08713	9,0	0,97604902	3280,53007574	0,000303029647991	0,000025079006138				
22	6	0,08490	8,8	0,97726266	6919,86087741	0,092867046866764	0,000033172892466				
22	7	0,13139	13,6	0,94587875	1398,16260148	-0,327701579779131	0,014762466608635	0,000862761515448			
22	8	0,13195	13,7	0,94507315	2770,17123589	-0,091538992638551	0,001079677796383				
22	9	0,08543	8,8	0,98286028	2265,08816346	#######################################	3,809192663669360	-0,271293156165143	0,897752405031497	-0,031522790830422	
22	10	0,08468	8,8	0,98152957	4251,24620295	-9,121677886043190	1,943873423508770	0,729190127497034			
22	11	0,08377	8,7	0,97977746	7800,41507024	-9,345991211650430	0,916057257199689				
22	12	0,13147	13,6	0,96087477	1964,71645989	-3,557914096209060	1,298442213120120	-29,489255826233600			
22	13	0,14176	14,7	0,95594952	3493,89847171	-7,982105716971480	2,301917401959510				
22	14	0,87821	3,1	0,98168718	8630,65780223	2,525044587034690	0,854222392473426				

QUADRO 16 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS 13 MODELOS DE FUNÇÃO VOLUMÉTRICA E 1 DIAMÉTRICA, COM CASCA FONTE: O autor (2007) conclusão Em seqüência ao comentado no parágrafo anterior, tem-se no quadro 17, adiante, a impressão do arquivo *fvolssc.dbf*, banco de dados para os modelos ajustados de função para volume SC, usado para se fazer a avaliação do uso do banco de funções de forma para SC, através da comparação por confronto de eficiência, entre essas e o melhor dos modelos de função de volume, também para SC, ajustado por classe de idade.

No quadro também está presente o modelo ajustados de função diamétrica, $d_{0.9ht} = f(DAP)$, para SC, auxiliar usada na aplicação das funções de forma SC.

Para todos os modelos constam os coeficientes e a análise estatística. E a listagem é similar à do quadro 16, anterior para CC, porém com os valores processados para SC.

IDADE	FUNÇÃO	Sy.x	CV%	R ²	F	<i>b</i> ₀	<i>b</i> ₁	b ₂	b ₃	<i>b</i> ₄	b ₅
4	1	0,00304	16,0	0,98020045	7881,38270762	0,001401460923975	0,001140378469241	-0,000109083895055	0,000132017526064	0,000026962348918	-0,001379799197116
4	2	0,00306	16,1	0,97991423	9720,70938016	-0,001446711949594	0,000981328089107	-0,000076836999934	-0,000007031998010	0,000028970603815	
4	3	0,00306	16,1	0,97994153	9734,20466064	0,001738228414035	0,000056716429830	0,000010860828973	0,000022652225338	-0,000122291429611	
4	4	0,00310	16,3	0,97943311	12667,41397561	-0,000175205574954	0,000002570672254	0,000024265251161	0,000481308313017		
4	5	0,00324	17,0	0,97746888	17353,23130275	0,000053400976136	0,000020919347874				
4	6	0,00314	16,5	0,97873123	36813,83627155	0,001944495707431	0,000025617682599				
4	7	0,00453	23,8	0,95589481	8658,39074039	0,004377704538293	-0,001943452711243	0,000354053970375			
4	8	0,00498	26,2	0,94661911	14186,63804339	-0,003860387670432	0,000260491596463				
4	9	0,00308	16,2	0,98902842	17961,29656092	-8,036201145416720	1,507791796117090	0,057626201540359	-0,506483122774625	0,353301246404499	
4	10	0,00490	25,8	0,98419477	24876,95025011	-9,135005892281150	1,515776211090150	0,912815039640805			
4	11	0,00494	26,0	0,98400724	49222,60398343	-9,105763734599400	0,798516457262789				
4	12	0,00485	25,5	0,97901853	18641,11281762	-9,797134308619340	2,478550709628830	1,664761855434440			
4	13	0,00614	32,3	0,97234345	28126,24896352	-8,855697873852970	2,141904066910820				
4	14	0,68998	8,2	0,95764173	18086,51125777	1,532067821845700	0,815773200229708				
7	1	0,01071	12,3	0,97674582	6006,43060220	0,017108180685874	-0,002943597158744	0,000057117204048	0,000376553040957	0,000016619619643	-0,002035565655773
7	2	0,01073	12,3	0,97660812	7473,22748480	0,006320827656175	-0,002424341675531	0,000063498540299	0,000210927993457	0,000019292043661	
7	3	0,01070	12,3	0,97672483	7511,59839383	-0,001230237083785	0,000036439895190	0,000017458654413	0,000012902843166	-0,000056764496978	
7	4	0,01081	12,4	0,97621877	9810,94762058	-0,007838074979487	-0,000017819753916	0,000026129868492	0,001287754071649		
7	5	0,01109	12,7	0,97489288	13959,15279307	0,000000962033275	0,000026303393745				
7	6	0,01104	12,7	0,97512056	28180,35941213	0,001682500163777	0,000026064199426				
7	7	0,01874	21,5	0,92846568	4659,57013014	0,017270993076547	-0,004954955268312	0,000547060367954			
7	8	0,01958	22,4	0,92182892	8478,77369251	-0,020784204317616	0,000401142231651				
7	9	0,01189	13,6	0,98737462	13998,79299155	-8,250619985838960	1,791901881560070	0,016617141751453	-0,701792549410129	0,386287443119954	
7	10	0,01162	13,3	0,98388168	21913,79405208	#######################################	1,848664286516930	1,019904967323830			
7	11	0,01172	13,4	0,98375160	43531,51846472	#######################################	0,948464751681016				
7	12	0,01886	21,6	0,95897065	8390,83657189	#######################################	2,692793750451300	2,275720143694790			
7	13	0,01884	21,6	0,95797376	16389,35759071	-9,441021877854260	2,475563554906110				
7	14	0,76695	5,5	0,97038477	23559,04756592	0,469772330631258	0,866325031945317				
10	1	0,02262	11,4	0,96973414	4056,33108738	0,077346575780098	-0,007909080559646	0,000100821511276	0,001036630111105	0,000006584083020	-0,009584911288897
10	2	0,02292	11,5	0,96888854	4936,08410372	-0,010067161938821	-0,002337515001074	0,000029843784281	0,000335811827729	0,000018279999672	
10	3	0,02290	11,5	0,96894475	4945,30629116	-0,006026282309698	0,000114548982285	0,000009407598278	0,000022654484858	-0,000147358245298	
10	4	0,02325	11,7	0,96793902	6390,33715371	-0,039782237050005	-0,000008303061369	0,000024710645710	0,003971606916282		
10	5	0,02507	12,6	0,96261411	8200,75793975	-0,000004669497941	0,000027091104481				

QUADRO 17 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS 13 MODELOS DE FUNÇÃO VOLUMÉTRICA E 1 DIAMÉTRICA, SEM CASCA

IDADE	FUNÇÃO	Sy.x	CV%	R^2	F	<i>b</i> ₀	b 1	<i>b</i> ₂	b ₃	b 4	b ₅
10	6	0,02462	12,4	0,96394190	17028,93166359	0,008523194562229	0,000026020101081				
10	7	0,04095	20,6	0,90034938	2873,14925930	-0,025703585221585	-0,000085836161317	0,000509947585283			
10	8	0,04092	20,6	0,90034885	5755,29960744	-0,026586188274464	0,000508006902056				
10	9	0,02453	12,3	0,97940299	7536,78774626	-9,054249238088230	2,075498719570530	-0,035225068621685	-0,263453992683935	0,277759662002609	
10	10	0,02344	11,8	0,97887745	14736,99728781	-10,65662908549960	1,851591626382770	1,214555556618450			
10	11	0,02482	12,5	0,97728425	27405,20952063	#######################################	0,991296645793891				
10	12	0,04304	21,6	0,93337663	4455,09986886	-8,883472854114700	2,387967162115770	-1,121689244220980			
10	13	0,04371	22,0	0,93319497	8898,21093637	-9,177245499904100	2,466425594405940				
10	14	0,79049	4,5	0,97329738	23218,34347944	0,339031256654835	0,854726523074604				
13	1	0,03493	11,2	0,96708889	2914,98001989	0,064567794485470	-0,006729030607179	0,000133624651597	0,000726791687942	0,000011765643183	-0,006907209809278
13	2	0,03508	11,3	0,96673215	3610,58780158	-0,034155435521001	0,001635694032515	-0,000033425597338	0,000160719375863	0,000022746810531	
13	3	0,03509	11,3	0,96671032	3608,13878617	-0,006410495226355	0,000139112410862	0,000013130583062	0,000014924103525	-0,000110284700764	
13	4	0,03544	11,4	0,96598380	4714,02850410	-0,043232742074164	0,000046654011139	0,000023489221829	0,003413308958259		
13	5	0,03662	11,7	0,96354278	6607,35286978	0,000032189273713	0,000025825225123				
13	6	0,03602	11,6	0,96472069	13672,61066062	0,013208849812555	0,000026536244868				
13	7	0,05418	17,4	0,92032773	2882,07921014	-0,048382847349657	0,001995542943547	0,000554184349779			
13	8	0,05419	17,4	0,92014518	5761,36307028	-0,026029046497884	0,000595386094426				
13	9	0,03569	11,4	0,98013376	6130,08154368	-9,858757507543480	2,549153876297160	-0,097126434298161	-0,047658290981417	0,194334274538505	
13	10	0,03639	11,7	0,97961385	11989,20673551	#######################################	1,972117813750580	1,031148478869620			
13	11	0,03665	11,8	0,97956815	23971,59193578	#######################################	0,995429497610616				
13	12	0,05520	,	0,94601513	4372,16574328	-7,011676471972350	1,945476014131990	-8,194010268863620			
13	13	0,06074	19,5	0,94284962	8248,84866880	-8,878907457967170	2,422091292884960				
13	14	0,85092	4,3	0,97664010	20904,20208537	0,329808319863730	0,845161971541319				
16	1	0,05254	12,2	0,96846889	2303,60331942	0,137025029564370	-0,008580834125638	0,000040786112112	0,001202584998154	0,000010702337416	-0,015690724348289
16	2	0,05297	12,3	0,96786700	2831,34210981	-0,134546146946178	0,010535013404301	-0,000269953816174	0,000111767750497	0,000028287339928	
16	3	0,05261	12,2	0,96830449	2871,72051365	0,004521395036555	0,000234067237029	0,000002928493010	0,000033818141047	-0,000398176989244	
16	4	0,05459	12,6	0,96578351	3547,02574663	-0,108449028009574	0,000058216874623	0,000023696513300	0,006861465309702		
16	5	0,05722	13,3	0,96220220	4824,02006618	0,000018595473787	0,000027388556439				
16	6	0,05624	13,0	0,96349184	10002,23774585	0,018776392693854	0,000027355947025				
16	7	0,08782	,	0,91121586	1939,75829522	-0,072760463806624	0,002239171473597	0,000647030046493			
16	8	0,08775	20,3	0,91111242	3884,81253970	-0,043820543082892	0,000686907803206				
16	9	0,05456	,	0,97126826	3177,64286301	#######################################	2,605335324024050	-0,102432510668450	1,507481527947670	-0,054458908765810	
16	10	0,05873	13,6	0,97081905	6287,82891597	#######################################	1,957648933592980	1,207081901935080			

IDADE	FUNÇÃO	Sy.x	CV%	R ²	F	<i>b</i> ₀	<i>b</i> ₁	b ₂	b ₃	b ₄	<i>b</i> 5
16	11	0,06032	14,0	0,96969713	12128,06555412	#######################################	1,019362871651110				
16	12	0,08818	20,4	0,92963212	2496,88465838	-6,199359351457810	1,783185514694870	-12,952817525021600			
16	13	0,09380	21,7	0,92595992	4739,84848377	-8,669038520176550	2,382147631234780				
16	14	0,94795	4,4	0,97841487	17179,39094105	-0,070920979477478	0,861796619501442				
19	1	0,07851	12,8	0,96257976	977,49296484	0,519530235508000	-0,009774655624199	-0,000272532679190	0,002814767450214	-0,000000786119528	-0,054647490641699
19	2	0,08148	13,3	0,95948182	1130,73313119	-0,579806432327530	0,056414189357717	-0,001209954183576	-0,000407137153498	0,000043900140270	
19	3	0,08002	13,1	0,96091824	1174,04730408	0,112458074419521	0,000634381196560	-0,000033463310066	0,000087198515689	-0,001388320927834	
19	4	0,09889	16,2	0,93999996	1002,66579909	-0,359096775367803	0,000241250934220	0,000013062807855	0,021465244406181		
19	5	0,11783	19,3	0,91393197	1030,01549388	0,000233845570574	0,000018713217814				
19	6	0,10834	17,7	0,92724312	2472,41439302	0,092686163059414	0,000024873574176				
19	7	0,12051	19,7	0,91044388	981,03659715	-0,497937651703815	0,033718881871744	0,000189424998492			
19	8	0,13344	21,8	0,88961747	1563,52438761	0,005584800757088	0,000705963164695				
19	9	0,08381	13,7	0,97575680	1921,87476211	-20,82398415098570	5,015963549247310	-0,466498890549588	4,566570890863650	-0,569567377732710	
19	10	0,12860	21,0	0,96635358	2771,56193106	#######################################	1,956848742946180	1,096093602525280			
19	11	0,13200	21,6	0,96612400	5532,76872698	#######################################	1,000110817051600				
19	12	0,12596	20,6	0,94743532	1739,33320765	-3,819565007953540	1,267993951365660	-27,700539805351500			
19	13	0,18040	29,5	0,93716688	2893,54369796	-8,573373493739920	2,384560902942500				
19	14	1,46561	6,1	0,95559110	4174,49297840	1,468697428870650	0,809535412046818				
22	1	0,09226	12,1	0,95904902	735,37030956	-0,411041376250978	0,053220303467981	-0,001075992031571	-0,000731152969763	0,000048366670898	-0,003118463334090
22	2	0,09197	12,0	0,95904561	924,98734273	-0,483142390875514	0,057513931006127	-0,001137615042862	-0,000913212648981	0,000050927942634	
22	3	0,09232	12,1	0,95873055	917,62445618	0,168906689552983	0,000305612903616	-0,000001056911789	0,000042867377036	-0,000889484241809	
22	4	0,09478	12,4	0,95622895	1157,84596932	0,054907412511199	0,000049153320316	0,000024710639336	0,000392204093071		
22	5	0,09728	12,7	0,95331289	1643,74485370	0,000204956545258	0,000021035917314				
22	6	0,09429	12,3	0,95613387	3509,25824894	0,072873902672838	0,000026237499341				
22	7	0,12846	16,8	0,91909198	908,77707143	-0,269080629874594	0,012440806601459	0,000668168791253			
22	8	0,12876	16,9	0,91819716	1807,14698021	-0,070058803034625	0,000850971135290				
22	9	0,09611	12,6	0,96664832	1144,84809747	#######################################	3,898570672710770	-0,286479930958421	-0,086622550443280	0,122692036562512	
22	10	0,09536	12,5	0,96540896	2232,73831355	-9,346906481695610	1,924415427839570	0,745909384115080			
22	11	0,09387	12,3	0,96402929	4314,86285098	-9,546779933386800	0,912416559380747				
22	12	0,12856	16,8	0,94372758	1341,65524236	-3,765787277252680	1,289183558973940	-29,430777789679200			
22	13	0,13457	17,6	0,93886209	2472,39075982	-8,181205599670970	2,290668827853400				
22	14	1,13251	4,4	0,96389698	4298,46006879	2,222747770822990	0,777410600192946				

QUADRO 17 - COEFICIENTES E ANÁLISE ESTATÍSTICA PARA OS 13 MODELOS DE FUNÇÃO VOLUMÉTRICA E 1 DIAMÉTRICA, SEM CASCA FONTE: O autor (2007)

No quadro 18, seguinte, mostra-se um resumo com a listagem dos coeficientes e a análise estatística dos modelos hipsométricos e volumétricos selecionados por **Cubagem**, como os melhores por classe de idade, e ainda os diamétricos, também ajustados por classe de idade.

Os hipsométricos são auxiliares no processo de montagem dos bancos de função de forma.

Esses modelos compõem o relatório gravado em avalff.dbf.

IDADE	MODELO F	=UN(ÇÃO	Sy.x	CV%	R^2	F	b ₀	b 1	b ₂	b ₃	b 4	b 5
4	hipsométrico		8	0,85861	14,8	0,85342832	2326,12878467	0,884558125550711	0,660628037387351	-0,007634123559627			
	diamétrico	СС		0,70540	7,1	0,96264004	20613,29535956	2,410291883881530	0,890361836957778				
	volumétrico	СС	1	0,00237	8,7	0,99338526	23908,21987534	0,004208996266377	0,000755398889721	-0,000065174764540	0,000374204005050	0,000022929883411	-0,002487625613474
	diamétrico	sc		0,68998	8,2	0,95764173	18086,51125777	1,532067821845700	0,815773200229708				
	volumétrico	sc	1	0,00304	16,0	0,98020045	7881,38270762	0,001401460923975	0,001140378469241	-0,000109083895055	0,000132017526064	0,000026962348918	-0,001379799197116
7	hipsométrico		8	1,56454	14,3	0,65754587	689,31557839	2,104888426204630	0,734648389699103	-0,009732509866406			
	diamétrico	СС		0,60978	3,8	0,98330261	42341,62384909	1,570357112570660	0,923415460490755				
	volumétrico	СС	1	0,00863	7,2	0,99097599	15703,62518590	0,004674972815920	0,000979192264683	-0,000100423111356	0,000299799131743	0,000030206097708	-0,00243634593784
	diamétrico	sc		0,76695	5,5	0,97038477	23559,04756592	0,469772330631258	0,866325031945317				
	volumétrico	sc	1	0,01071	12,3	0,97674582	6006,43060220	0,017108180685874	-0,002943597158744	0,000057117204048	0,000376553040957	0,000016619619643	-0,002035565655773
10	hipsométrico		8	2,02119	13,0	0,51611876	339,18605170	2,399689065661500	0,952774851188366	-0,014091429133354			
	diamétrico	СС		0,58381	2,9	0,98699951	48361,17717684	1,330092126886480	0,911032408718649				
	volumétrico	СС	1	0,01969	7,5	0,98548909	8597,86570041	0,057434811330779	-0,003374582738850	0,000006391580273	0,000932526162065	0,000015996545595	-0,009674215437290
	diamétrico	sc		0,79049	4,5	0,97329738	23218,34347944	0,339031256654835	0,854726523074604				
	volumétrico	sc	1	0,02262	11,4	0,96973414	4056,33108738	0,077346575780098	-0,007909080559646	0,000100821511276	0,001036630111105	0,000006584083020	-0,009584911288897
13	hipsométrico		4	2,38942	12,7	0,51404492	528,90168961	3,281298504064860	-7,530178663447880				
	diamétrico	СС		0,66418	3,0	0,98754872	39656,49779109	1,076683276607980	0,908610062689533				
	volumétrico	СС	1	0,03336	8,2	0,98109687	5148,60755603	0,065664822765427	-0,004320196459886	0,000082793920146	0,000817435338806	0,000017482959335	-0,008991953820320
	diamétrico	sc		0,85092	4,3	0,97664010	20904,20208537	0,329808319863730	0,845161971541319				
	volumétrico	sc	1	0,03493	11,2	0,96708889	2914,98001989	0,064567794485470	-0,006729030607179	0,000133624651597	0,000726791687942	0,000011765643183	-0,006907209809278
16	hipsométrico		4	2,61058	12,6	0,42459915	279,67125990	3,348844952024210	-7,639514247591250				
	diamétrico	СС		0,72705	3,0	0,98840632	32311,24612847	1,160924687938060	0,906472494402937				
	volumétrico	СС	1	0,04779	8,7	0,98234835	4173,89370103	0,064423886448367	-0,002624386214507	0,000052752998956	0,000881945160241	0,000017905944800	-0,011061706113104
	diamétrico	sc		0,94795	4,4	0,97841487	17179,39094105	-0,070920979477478	0,861796619501442				
	volumétrico	sc	1	0,05254	12,2	0,96846889	2303,60331942	0,137025029564370	-0,008580834125638	0,000040786112112	0,001202584998154	0,000010702337416	-0,015690724348289
19	hipsométrico		8	2,58493	11,3	0,50766343	99,50412715	8,385764237105370	0,723720664145944	-0,006793782534488			
	diamétrico	СС		1,27111	4,8	0,96989846	6250,85429289	2,462882974448860	0,859149353715150				
	volumétrico	СС	1	0,07740	10,1	0,97561103	1520,08167566	0,845518647371591	-0,031630390792714	0,000169484388726	0,004076896377398	-0,000017648032140	-0,073213286452287
	diamétrico	sc		1,46561	6,1	0,95559110	4174,49297840	1,468697428870650	0,809535412046818				
	volumétrico	sc	1	0,07851	12,8	0,96257976	977,49296484	0,519530235508000	-0,009774655624199	-0,000272532679190	0,002814767450214	-0,000000786119528	-0,054647490641699
22	hipsométrico		8	3,15262	12,4	0,47931674	73,64427161	-0,960679998622254	1,335661715858690	-0,014406145342054			
	diamétrico	СС		0,87821	3,1	0,98168718	8630,65780223	2,525044587034690	0,854222392473426				
	volumétrico	СС	1	0,08130	8,4	0,97966690	1512,88004161	-0,488234651569655	0,053294164525482	-0,000914767949388	-0,000802438961617	0,000050951108444	0,001126378649019
	diamétrico	sc		1,13251	4,4	0,96389698	4298,46006879	2,222747770822990	0,777410600192946				
	volumétrico		1	0,09226		0,95904902		-0,411041376250978	0,053220303467981	-0.001075992031571	-0.000731152969763	0,000048366670898	-0.003118463334090

QUADRO 18 - MODELOS HIPSOMÉTRICOS, DIAMÉTRICOS E VOLUMÉTRICOS USADOS NA CONSTRUÇÃO DOS BANCOS DE FUNÇÃO DE FORMA FONTE: O autor (2007)

No quadro 19 é mostrado o relatório final de **Cubagem**, também gravado em *avalff.dbf*, com a avaliação do uso dos bancos de funções de forma, através da comparação por confronto de eficiência em estimativas de volume, ou seja, entre a obtida por meio dessas funções e a obtida por meio do melhor modelo de função de volume, ajustado por classe de idade.

Os cálculos são feitos com base nos resíduos, ou seja, desvios para as estimativas dos volumes CC e SC das árvores, sob duas hipóteses: 1) com os modelos da função de forma CC e SC, onde os volumes são calculados por integração da polinomial, em que $h_i = h_t$, isto é, x = 1; e 2) com os melhores modelos de função de volume, CC e SC, por critério de menor Sy.x, por classe de idade. Em ambas as somas dos quadrados dos resíduos, o volume observado é aquele cubado por Smalian.

MODELO	DADOS	FUNÇÃO	Sy.x	CV%	R^2	F
fforma integrada	CC		0,03838	13,1	0,98826867	57250,77121258
volumétrico	cc	1	0,03383	11,6	0,99039683	70088,67619590
fforma integrada	sc		0,03817	16,9	0,98197277	37018,91501608
volumétrico	sc	1	0,03664	16,2	0,98286932	38991,89825785

QUADRO 19 - ANÁLISE ESTATÍSTICA PARA A FUNÇÃO DE FORMA INTEGRADA E PARA O MODELO VOLUMÉTRICO

FONTE: O autor (2007)

Os valores da análise estatística, desse quadro, mostram que ambas as opções de hipótese são equivalentes, com uma pequena vantagem para a do modelo volumétrico, pois esse é mais flexível. Porém, o importante é que aponta o uso dos bancos de funções de forma como plenamente viável, condição oportuna para aplicação em cálculos de sortimento, cuja precisão é o seu principal objetivo.

4.3 EXECUÇÃO DO PACOTE Parcelas

Parcelas processa os dados das parcelas de campo do inventário florestal e gera as estimativas de parâmetros, ou cálculo das médias de elementos dendrométricos, dos povoamentos florestais, conforme narrativa da seção 3.2.4 e conseqüentes subseções.

Devido à questão de espaço, os seus relatórios são apresentados aqui como 'trechos de bancos'. Se esses bancos de dados fossem listados integralmente, totalizariam 190 páginas.

O relatório principal do inventário florestal, gravado por **Parcelas** nos bancos de dados para o inventário, *params_J.dbf*, *J*=1 ... 3, isto é, para a j-ésima medição, é apresentado parcialmente, e somente para a medição 1, no quadro 20.

Nesse quadro 20, no elenco de parâmetros estimados por parcela, é interessante observar a contabilização na coluna 'ALTURAS ESTIMADAS por FHG (%)'. Ela se refere às árvores que, durante o processamento, não têm alturas estimadas pela RH da parcela —cujo número da função está registrado na coluna 'Melhor RH'—, pois possuem DAP fora das áreas cobertas pela regressão, na ocasião do seu ajuste em **Alturas**. Para as estimativas das alturas dessas árvores, **Parcelas** utiliza a FHG da medição corrente.

Esse fato se explica por falhas comuns na coleta dos dados em parcelas de campo, ao não se tomar medições de alturas em árvores representativas, em toda a extensão da amplitude de cada específica distribuição diamétrica, mormente nos seus extremos. E é muito freqüente, tal como se pode notar pelos valores que aparecem naquela coluna. Somente neste trecho de banco, há registros de parcelas com valores altos, tais como 25,4%.

Outro destaque pode ser o da coluna 'Kolmogorov-Smirnov aderência', onde está registrada a apuração do sucesso, ou não, do modelo de distribuição Weibull, especificamente para cada parcela.

Nesse relatório, observa-se que as colunas 'ÍNDICE' e 'SÍTIO' já estão com os valores da classificação de sítio. Essa classificação é feita pelo pacote **Atributos**, adiante na seção 4.4, que reabre os seus arquivos e preenche essas colunas, após os cálculos posteriores necessários.

				DATA	ESPAÇAN	IENTO(m)	<u></u>		IDADE	L		ALTURAS	ESTIMADAS
GLEBATA	LHÃO	PARC	PERMANENTE	PLANTIO	dentro	entre	ÍNDICE	SÍTIO	(anos)	N	N _{inicial}	total (N)	por FHG (%)
SNGL01	8	3	não	1/6/1981	2,5	1,8	ı	27,9	20,0	1000	2167	683	2,4
SNGL01	9	2	não	1/6/1981	2,5	1,8	II	25,6	20,0	1450	2167	1067	1,6
SNGL01	11	5	não	1/6/1981	2,5	1,8	II	25,6	20,0	1400	2183	967	1,7
SNGL01	12	4	não	1/6/1981	2,5	1,8	III	23,3	20,0	1333	1917	967	10,3
SNGL01	14	23	sim	1/6/1981	2,5	1,8	III	23,3	20,0	1583	2150	1100	1,5
SNGL01	19	7	não	1/6/1981	2,5	1,8	II	25,6	20,0	1400	2083	1050	12,7
SNGL01	20	6	não	1/6/1981	2,5	1,8	II	25,6	20,0	1550	2233	1133	4,4
SNGL01	24	21	sim	1/6/1981	2,5	1,8	III	23,3	20,0	1533	2167	1100	7,6
SNGL01	25	22	sim	1/6/1981	2,5	1,8	II	25,6	20,0	1500	2183	1133	10,3
SNGL01	28	8	não	1/6/1981	2,5	1,8	ı	27,9	20,0	1433	2233	1017	4,9
SNGL01	30	9	não	1/6/1981	2,5	1,8	II	25,6	20,0	1433	2167	1033	9,7
SNGL01	32	17	sim	1/6/1981	2,5	1,8	II	25,6	20,0	1350	2233	1017	4,9
SNGL01	35	14	sim	1/6/1981	2,5	1,8	II	25,6	20,0	1433	2183	1050	1,6
SNGL01	35	16	sim	1/6/1981	2,5	1,8	II	25,6	20,0	1400	2167	1000	6,7
SNGL01	36	15	sim	1/6/1981	2,5	1,8	Ш	23,3	20,0	1367	2333	983	3,4
SNGL01	37	10	sim	1/6/1981	2,5	1,8	ı	27,9	20,0	1367	2050	1033	3,2
SNGL01	40	20	sim	1/6/1981	2,5	1,8	II	25,6	20,0	1000	2133	783	4,3
SNGL01	44	19	sim	1/6/1981	2,5	1,8	Ш	23,3	20,0	1467	2133	1017	8,2
SNGL01	45	11	sim	1/6/1981	2,5	1,8	Ш	23,3	20,0	1417	2133	1000	1,7
SNGL01	47	13	sim	1/6/1981	2,5	1,8	II	25,6	20,0	1267	2117	933	5,4
SNGL01	48	18	não	1/6/1981	2,5	1,8	II	25,6	20,9	1233	2267	933	16,1
SNGL01	49	12	sim	1/6/1981	2,5	1,8	II	25,6	20,0	1333	2067	983	25,4
SNGL01	51	18	não	1/6/1981	2,5	1,8	II	25,6	20,0	1233	2267	850	5,9
SNGL02	65	3	sim	1/6/1982	2,5	1,8	ı	27,9	19,0	1267	2067	967	3,4
SNGL02	68	26	sim	1/6/1982	2,5	1,8	ı	27,9	19,0	1433	2050	1050	9,5
SNGL02	68	27	sim	1/6/1982	2,5	1,8	ı	27,9	19,0	1233	2033	850	11,8
SNGL02	72	5	sim	1/6/1982	2,5	1,8	- 1	27,9	19,0	1250	2067	883	5,7
SNGL02	76	4	sim	1/6/1982	2,5	1,8	II	25,6	19,0	1050	2067	783	8,5
SNGL02	81	24	sim	1/6/1982	2,5	1,8	III	23,3	19,0	1650	2000	1183	2,8
SNGL02	82	25	sim	1/6/1982	2,5	1,8	ı	27,9	20,0	1100	2033	817	8,2
SNGL02	83	25	não	1/6/1982	2,5	1,8	III	23,3	20,0	1533	2033	1150	2,9
SNGL02	84	34	sim	1/6/1982	2,5	1,8	II	25,6	19,0	1533	2083	1050	4,8

QUADRO 20 - PARÂMETROS DE POVOAMENTOS ESTIMADOS PELO INVENTÁRIO FLORESTAL NA MEDIÇÃO 1 (trecho do banco)

			G	V _{cc}	V _{sc}	d _{min}	d _m d _g	d _{dom}	d _{max}	CV _d	h _{min}	h _m h _g	h _{dom}	h _{max}	CV _h	d _{minh}	d _{maxh}	Melhor
GLEBA	TALHÃO	PARC	(m ²)	(m ³)	(m ³)	(cm)	(cm)(cm)	(cm)	(cm)	(%)	(m)	(m) (m)	(m)	(m)	(%)	(cm)	(cm)	RH
SNGL01	8	3	54,39	769,59	605,01	12,1	25,7 26,3	36,3	41,4	22,5	20,3	27,9 28,4	29,5	30,0	6,6	16,6	41,4	1
SNGL01	9	2	56,55	669,50	525,35	13,1	21,9 22,3	31,0	35,7	19,4	19,7	23,0 23,1	24,6	25,4	4,1	13,1	31,8	3
SNGL01	11	5	58,61	700,61	547,31	12,4	22,7 23,1	30,5	31,8	19,3	19,7	23,5 23,8	25,6	26,6	6,4	14,3	31,8	4
SNGL01	12	4	57,56	719,16	564,16	15,3	23,0 23,4	32,3	36,6	18,8	20,7	24,6 25,6	23,2	27,7	6,1	16,6	30,9	8
SNGL01	14	23	55,50	602,16	470,46	12,1	20,7 21,1	29,3	30,6	20,8	17,1	20,9 21,2	22,7	23,3	6,3	12,1	29,6	7
SNGL01	19	7	54,54	686,90	541,72	12,4	21,8 22,3	30,8	31,8	20,4	18,3	24,4 25,1	26,7	27,4	5,6	14,3	28,3	7
SNGL01	20	6	56,85	677,89	528,34	13,4	21,2 21,6	28,3	29,3	18,7	18,9	23,1 23,2	25,6	26,0	5,6	14,0	28,6	5
SNGL01	24	21	60,34	683,77	536,34	10,5	22,0 22,4	29,2	30,2	19,1	18,6	22,1 22,4	23,3	24,5	5,2	15,6	29,3	1
SNGL01	25	22	62,11	727,39	570,14	12,1	22,4 23,0	32,3	33,7	22,5	20,2	22,8 22,5	26,2	26,1	5,7	15,9	31,8	8
SNGL01	28	8	61,62	765,21	600,27	12,4	22,9 23,4	32,0	38,8	21,5	19,0	24,2 24,8	26,8	27,9	7,9	14,0	30,6	7
SNGL01	30	9	57,09	674,33	531,91	11,5	22,0 22,5	30,5	31,8	21,3	18,6	23,0 23,4	24,6	25,6	5,8	12,7	28,6	7
SNGL01	32	17	54,27	646,10	503,93	12,4	22,1 22,6	31,2	35,0	21,5	18,4	23,3 23,9	25,1	26,4	7,2	13,7	35,0	1
SNGL01	35	14	57,35	665,13	520,33	14,6	22,1 22,6	32,0	35,3	20,8	19,1	22,4 22,8	24,6	25,8	6,1	14,6	32,1	7
SNGL01	35	16	60,21	718,71	562,26	14,0	23,0 23,4	31,8	34,7	19,2	18,7	23,1 23,4	25,8	26,3	6,7	15,3	33,1	2
SNGL01	36	15	54,04	604,21	471,46	12,1	22,0 22,4	30,7	35,3	19,6	19,8	22,2 22,3	23,2	24,6	3,8	12,1	29,3	4
SNGL01	37	10	63,00	844,44	662,86	13,7	23,9 24,2	31,2	32,1	17,0	23,3	26,5 26,7	27,4	28,6	3,4	13,7	31,2	6
SNGL01	40	20	51,71	674,46	528,45	16,6	25,3 25,7	32,0	35,3	16,8	21,6	25,8 26,0	26,7	27,9	4,1	17,8	35,3	2
SNGL01	44	19	62,37	697,43	545,52	13,4	22,8 23,3	31,7	33,7	21,0	16,7	21,9 22,1	23,7	26,4	7,0	14,6	31,8	4
SNGL01	45	11	53,81	591,66	463,95	13,1	21,5 22,0	31,0	33,1	20,8	18,2	21,2 21,5	22,4	23,2	4,8	14,0	33,1	1
SNGL01	47	13	54,59	655,16	514,58	12,1	22,9 23,4	33,5	37,2	22,6	18,6	23,4 23,8	26,1	27,3	7,1	15,6	37,2	2
SNGL01	48	18	54,38	681,44	535,81	14,0	23,2 23,7	32,2	34,7	20,4	19,8	24,3 25,0	26,3	26,8	6,9	17,5	32,1	1
SNGL01	49	12	71,44	920,70	722,04	15,3	25,8 26,1	34,0	37,2	17,0	21,2	25,7 25,4	24,6	32,0	7,3	21,6	32,8	8
SNGL01	51	18	53,54	636,51	501,05	14,0	23,1 23,5	31,7	34,1	20,1	17,8	23,3 23,6	25,9	25,9	7,1	14,0	31,2	2
SNGL02	65	3	67,90	996,71	783,89	16,6	25,8 26,1	34,3	36,9	16,3	25,6	29,4 29,5	30,8	32,6	3,7	18,8	36,9	5
SNGL02	68	26	61,39	778,18	609,62	13,1	22,9 23,4	32,5	35,3	20,9	20,2	24,7 25,3	26,9	27,3	6,8	15,9	35,3	1
SNGL02	68	27	55,68	698,65	548,45	12,7	23,3 24,0	33,8	36,3	23,6	18,7	24,5 25,1	27,0	27,9	6,9	12,7	30,6	7
SNGL02	72	5	55,95	698,08	547,65	14,0	23,3 23,9	31,7	33,4	22,0	19,3	24,5 25,5	26,6	27,8	9,6	14,6	32,8	8
SNGL02	76	4	58,95	762,67	601,05	16,9	26,4 26,7	33,8	36,6	17,2	21,9	25,7 26,3	25,3	28,5	4,8	17,8	33,1	8
SNGL02	81	24	45,60	439,97	338,89	10,5	18,3 18,8	27,2	29,0	23,0	14,2	18,5 18,7	20,6	21,7	7,0	12,1	29,0	3
SNGL02	82	25	56,19	735,77	579,09	15,6	25,1 25,5	34,2	36,0	18,4	19,7	25,8 26,8	27,6	28,8	8,3	17,8	36,0	8
SNGL02	83	25	57,51	647,19	505,57	13,4	21,4 21,9	29,2	33,4	20,5	16,8	22,0 22,5	23,7	24,2	6,8	13,7	29,3	1
SNGL02	84	34	57,37	674,31	528,31	11,5	21,4 21,8	31,2	35,3	20,9	18,1	22,9 23,3	24,4	24,7	5,6	11,5	29,6	6

QUADRO 20 - PARÂMETROS DE POVOAMENTOS ESTIMADOS PELO INVENTÁRIO FLORESTAL NA MEDIÇÃO 1 (trecho do banco)

continuação

			Weib_pdmin	FUNÇÃO	WEIBULL	Kolmogorov-Smirnov	FALHAS	MORTAS	TORTAS	QUEBRS	BIFabaixo	BIFacima
GLEBAT	ALHÃ	O PARC	(%)	b	С	aderência	(%)	(%)	(%)	(%)	(%)	(%)
SNGL01	8	3	0,9	16,593782009	2,874216461	sim	30,8	23,1	14,6	0,0	0,0	10,0
SNGL01	9	2	1,0	9,870922663	2,272579962	sim	16,2	16,9	3,8	0,0	0,0	3,1
SNGL01	11	5	1,0	11,258700506	2,364381385	sim	8,4	27,5	7,6	0,0	0,0	9,2
SNGL01	12	4	0,9	10,351068794	2,309151862	sim	10,4	20,0	7,0	0,0	0,9	9,6
SNGL01	14	23	1,0	9,819600987	2,155649288	sim	2,3	24,0	0,8	0,0	0,0	9,3
SNGL01	19	7	1,0	10,686662507	2,250422711	sim	8,0	24,8	4,8	0,0	0,0	9,6
SNGL01	20	6	0,0	22,299436514	5,391025045	sim	11,2	19,4	13,4	0,0	0,0	6,0
SNGL01	24	21	0,7	16,140570981	3,628486371	sim	9,2	20,0	3,8	0,0	0,0	6,9
SNGL01	25	22	0,5	17,817168198	3,231383606	sim	6,9	23,7	6,1	0,0	0,8	5,3
SNGL01	28	8	0,1	23,324353996	4,984845930	sim	14,2	21,6	3,7	0,0	0,0	6,0
SNGL01	30	9	0,0	23,672286580	5,480306405	sim	13,1	20,8	12,3	0,0	0,0	6,9
SNGL01	32	17	0,6	16,169976420	3,669703646	sim	19,4	20,1	8,2	0,0	0,0	3,7
SNGL01	35	14	1,0	8,637413304	1,638314696	sim	5,3	27,5	9,9	0,0	0,8	9,2
SNGL01	35	16	0,7	14,576832672	3,123818757	sim	6,9	28,5	6,2	0,0	0,0	4,6
SNGL01	36	15	1,0	11,056791247	2,631740050	sim	19,3	22,1	4,3	0,0	0,0	10,0
SNGL01	37	10	0,6	16,762884896	3,757263020	sim	7,3	26,0	5,7	0,0	0,0	8,1
SNGL01	40	20	0,0	26,682767202	6,607007193	sim	25,8	27,3	10,9	0,0	0,8	6,3
SNGL01	44	19	0,2	21,784778886	4,454255951	sim	23,4	7,8	6,3	0,0	0,0	7,8
SNGL01	45	11	0,9	11,019490510	2,189514481	sim	10,9	22,7	3,1	0,0	0,0	3,1
SNGL01	47	13	0,7	15,787801222	3,059839266	sim	11,8	28,3	3,9	0,0	0,0	5,5
SNGL01	48	18	0,0	24,358523222	5,315063709	sim	8,1	37,5	9,6	0,0	0,0	8,1
SNGL01	49	12	0,0	27,367428554	6,488247702	sim	8,1	27,4	2,4	0,0	0,0	16,9
SNGL01	51	18	0,7	14,475977083	2,876606953	sim	8,8	36,8	7,4	0,0	0,0	6,6
SNGL02	65	3	0,9	12,191376065	2,834014883	sim	8,1	30,6	14,5	0,0	0,0	16,1
SNGL02	68	26	0,5	17,928007769	3,646025496	sim	14,6	15,4	8,9	0,0	0,0	8,1
SNGL02	68	27	0,5	18,469711124	3,275719406	sim	13,9	25,4	4,9	0,0	0,0	16,4
SNGL02	72	5	0,0	24,372158686	4,765089022	sim	4,0	35,5	11,3	0,0	0,8	8,1
SNGL02	76	4	0,0	28,149081860	6,450446513	sim	19,4	29,8	8,1	0,0	0,0	10,5
SNGL02	81	24	0,4	15,108673135	3,115093685	sim	8,3	9,2	5,8	0,0	0,0	8,3
SNGL02	82	25	1,0	11,035817112	2,199952031	sim	15,6	30,3	5,7	0,0	0,0	11,5
SNGL02	83	25	0,0	22,469765635	4,818911039	sim	6,6	18,0	3,3	0,0	1,6	0,8
SNGL02	84	34	1,0	11,404283151	2,577189686	sim	7,2	19,2	6,4	0,0	1,6	8,8

QUADRO 20 - PARÂMETROS DE POVOAMENTOS ESTIMADOS PELO INVENTÁRIO FLORESTAL NA MEDIÇÃO 1 (trecho do banco) FONTE: O autor (2007)

O relatório complementar do inventário florestal, gravado em bancos de dados próprios para freqüências, *freqs_J.dbf*, *J*=1...3, é apresentado parcialmente, e somente para a medição 1, no quadro 21.

Nesse relatório, também aparecem os valores dos diâmetros percentis, dp_1 e dp_2 , além dos valores dos limites, inferior e superior em DAP, d_{min} e $d_{máx}$, que são requisitados pelo pacote **Atributos**, adiante quando do ajuste de modelos para projeção da distribuição de Weibull.

			dp₁	dp ₂	d _{min}	d _{max}						CL	- A	s s	ES	D	E	D A	Ρ	(1 c	m)	EN	ITR	Ec	l _{min}	E	d _{ma}	ıx						
GLEBA	TALHÃO	PARC			(cm)	(cm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	28	30
SNGL01	8	3	21,5	34,2	12,1	41,4	17					50	33	67	33	33	83	17	33	100	133	100	17	50		67	50	17	33		33	17		17
SNGL01	9	2	18,7	28,3	13,1	35,7	17		50	33	117	83	150	167	117	133	117	100	67	117	17	67	50		17	17				17				
SNGL01	11	5	18,9	29,4	12,4	31,8	17		17	17	50		150	150	100	117	117	33	100	133	83	100	50	67	67	17	17							
SNGL01	12	4	19,7	29,6	15,3	36,6	17	33	67	50	117	117	117	150	117	67	100	117	50	100	17	33	17		33				17					
SNGL01	14	23	17,5	27,6	12,1	30,6	17	33	50	50	83	133	133	233	67	217	67	100	50	83	67	83	33	50	17	17								
SNGL01	19	7	18,4	28,9	12,4	31,8	17		50	33	17	100	117	150	150	100	33	133	117	83	67	67	50	33	17	33	33							
SNGL01	20	6	17,5	26,7	13,4	29,3	17	33	50	167	100	33	100	150	150	83	117	183	133	100	67		67											
SNGL01	24	21	18,7	28,5	10,5	30,2	17		17		33	83	67	100	183	50	117	117	150	183	67	100	67	67	100	17								
SNGL01	25	22	18,0	30,2	12,1	33,7	17	17		33	100	117	117	117	167	33	83	33	67	83	167	117	33	67	33	33	33		33					
SNGL01	28	8	19,2	29,6	12,4	38,8	17		67	50	33	33	67	83	117	117	50	117	117	100	117	100	100	33	67	17	17						17	
SNGL01	30	9	18,7	28,3	11,5	31,8	33	33	17	33	50	33	100	133	83	150	133	133	50	67	83	83	117	33	17	17	33							
SNGL01	32	17	18,8	28,5	12,4	35,0	33	17	33	33	50	50	17	200	133	83	100	17	117	100	83	133	50	33	17		33			17				
SNGL01	35	14	18,5	30,3	14,6	35,3	33	117	67	100	200	100	117	117	117	50	67	83	50	67	17	33	50	33			17							
SNGL01	35	16	19,4	29,7	14,0	34,7	33	33		83	67	117	67	117	100	150	133	117	133	33	17	83	50	17	17	17		17						
SNGL01	36	15	18,9	28,1	12,1	35,3	17		17	17	50	67	67	183	100	133	167	117	67	67	67	83	67	50					17	17				
SNGL01	37	10	20,1	30,0	13,7	32,1	17			17	67	150	100	67	150	50	117	83	150	100	117	67	33	50	33									
SNGL01	40	20	21,9	30,9	16,6	35,3	33	33	33	67	33	67	67	50	67	133	67	67	100	83	50	33			17									
SNGL01	44	19	19,0	29,8	13,4	33,7	33	17	50	67	50	50	133	50	100	133	100	167	100	67	83	50	83	67	17	17	17	17						
SNGL01	45	11	17,9	29,0	13,1	33,1	17	17	50	83	100	133	83	133	167	117	100	67	67	67	33	50	50	17	33	17	17							
SNGL01	47	13	18,8	30,2	12,1	37,2	17		17	17	83	33	83	117	100	83	83	100	33	83	183	17	33	50	50	17	17			17	17	17		
SNGL01	48	18	19,1	29,3	14,0	34,7	33	17	50	17	50	167	67	33	150	67	150	17	100	67	33	133			50	17	0	17						
SNGL01	49	12	22,4	31,8	15,3	37,2	17		17		67	17	83	117	133	67	167	83	100	83	83	50	133	50	33				33					
SNGL01	51	18	19,0	30,1	14,0	34,1	33	17	17	50	50	183	67	83	83	67	117	33	117	100	83	33	17	33	33		17							
SNGL02	65	3	22,7	32,2	16,6	36,9	17		50	33	83	67	183	100	83	117	67	133	67	117	33	33	33		17	17	17							
SNGL02	68	26	19,1	30,0	13,1	35,3	17	33	17	50	100	33	117	100	117	150	117	83	33	117	117	50	50	50		33	33		17					
SNGL02	68	27	18,8	31,2	12,7	36,3	33		17	50	50	117	67	50	167	83	67	50	17	83	117		67	67	50	17	17		17	33				
SNGL02	72	5	18,6	29,9	14,0	33,4	33	50	50	83	67	83	67	33	33	67	100	50	117	117	100	83	50	17		50								
SNGL02	76	4	23,0	32,8	16,9	36,6	17	17	50	33	67	33	50	100	83	100	83	67	83	33	50	83	67	17			17							
SNGL02	81	24	14,2	24,9	10,5	29,0	33	83	150	150	67	133	67	167	167	83	183	117	33	83	33	50		33	17									
SNGL02	82	25	21,7	32,8	15,6	36,0	17	33	50	50		83	83	50	117	67	167	117	67	33	17	33	17	50		33	17							
SNGL02	83	25	17,2	27,5	13,4	33,4	17	50	33	167	117	33	133	67	183	100	67	83	150	150	67	67	33				17							
SNGL02	84	34	18,4	28,2	11,5	35,3	33	33		17	100	50	133	233	83	133	150	117	100	83	83	33	50	33	17		33			17				

QUADRO 21 - FREQUÊNCIAS E PERCENTÍS DE POVOAMENTOS ESTIMADOS PELO INVENTÁRIO FLORESTAL NA MEDIÇÃO 1 (trecho do banco) continua

			h _{min}	h _{max}			CLASS	ES D	EALT	URA	(1 m) E	NTRE h	ı _{min} E	h _{max}		
GLEBA	TALHÃO	PARC	(m)	(m)	1	2	3	4	5	6	7	8	9	10	11	12
SNGL01	8	3	20,3	30,0	17		17		17	50	50	183	233	317	117	
SNGL01	9	2	19,7	25,4	17	50	333	633	350	67						
SNGL01	11	5	19,7	26,6	50	100	233	233	367	333	67	17				
SNGL01	12	4	20,7	27,7	67	117	100	133	550	317	17	33				
SNGL01	14	23	17,1	23,3	17	83	133	317	517	333	183					
SNGL01	19	7	18,3	27,4	17				67	233	383	400	233	67		
SNGL01	20	6	18,9	26,0	17	17	33	400	500	367	133	83				
SNGL01	24	21	18,6	24,5	50	83	283	467	550	83	17					
SNGL01	25	22	20,2	26,1	33	117	667	283	200	117	83					
SNGL01	28	8	19,0	27,9	17	50	117	100	100	283	300	400	50	17		
SNGL01	30	9	18,6	25,6	33	67	83	183	483	517	50	17				
SNGL01	32	17	18,4	26,4	33	50	33	50	67	400	383	283	50			
SNGL01	35	14	19,1	25,8	17	117	217	367	367	300	33	17				
SNGL01	35	16	18,7	26,3	17		200	250	333	300	200	100				
SNGL01	36	15	19,8	24,6	33	250	617	367	83	17						
SNGL01	37	10	23,3	28,6	33		150	417	683	50	33					
SNGL01	40	20	21,6	27,9	33		17	250	533	100	67					
SNGL01	44	19	16,7	26,4	17		83	133	283	483	317	100	17	33		
SNGL01	45	11	18,2	23,2	17	50	233	483	550	83						
SNGL01	47	13	18,6	27,3	17	50	83	167	333	317	183	83	33			
SNGL01	48	18	19,8	26,8	50	83	17	183	183	333	350	33				
SNGL01	49	12	21,2	32,0	17		67	233	350	383	50	133	50		17	33
SNGL01	51	18	17,8	25,9	17		50	83	250	233	267	250	83			
SNGL02	65	3	25,6	32,6	33	17	83	567	417	117	17	17				
SNGL02	68	26	20,2	27,3	33	83	17	183	200	350	383	183				
SNGL02	68	27	18,7	27,9	17	17	33	83	150	283	217	383	33	17		
SNGL02	72	5	19,3	27,8	17	100	67	83	117	117	133	317	283	17		
SNGL02	76	4	21,9	28,5	17	50	83	167	583	100	50					
SNGL02	81	24	14,2	21,7	33		17	317	367	550	300	50	17			
SNGL02	82	25	19,7	28,8	33	17	100		100	150	150	283	250	17		
SNGL02	83	25	16,8	24,2	17	17	50	167	217	383	467	217				
SNGL02	84	34	18,1	24,7	17	67		67	250	550	533	50				

QUADRO 21 - FREQUÊNCIAS E PERCENTÍS DE POVOAMENTOS ESTIMADOS PELO INVENTÁRIO FLORESTAL NA MEDIÇÃO 1 (trecho do banco) FONTE: O autor (2007)

Os resultados dos 3 bancos de parâmetros estimados, *params_J.dbf*, *J*=1 ... 3, mas somente os das parcelas permanentes –as que têm medições e remedições *J*=1 ... 3– são reunidos em um único, *pareadas.dbf*, cujos dados são dispostos de maneira pareada, para posterior ajuste de modelos de sobrevivência no pacote **Atributos**. Esse banco é apresentado, parcialmente, no quadro 22.

No quadro 22, assim como acontece no quadro 20, observa-se que as colunas 'ÍNDICE' e 'SÍTIO' já estão com os valores da classificação de sítio. Essa classificação é feita pelo pacote **Atributos**, adiante, que reabre o arquivo e preenche essas colunas.

					IDADE ₁		G₁	IDADE ₂		G ₂
GLEBA	TALHÃO	PARC	ÍNDICE	SÍTIO	(anos)	N_1	(m²)	(anos)	N_2	(m ²)
SNGL01	14	23	III	23,3	20,0	1583	55,50	20,9	1517,0	53,69
SNGL01	24	21	III	23,3	20,0	1533	60,34	20,9	1517,0	60,11
SNGL01	25	22	II	25,6	20,0	1500	62,11	20,9	1467,0	60,11
SNGL01	32	17	II	25,6	20,0	1350	54,27	20,9	1350,0	56,37
SNGL01	35	14	II	25,6	20,0	1433	57,35	20,9	1433,0	58,38
SNGL01	35	16	II	25,6	20,0	1400	60,21	20,9	1367,0	60,58
SNGL01	36	15	III	23,3	20,0	1367	54,04	20,9	1350,0	54,62
SNGL01	37	10	1	27,9	20,0	1367	63,00	20,9	1350,0	63,45
SNGL01	40	20	ii	25,6	20,0	1000	51,71	20,9	933,0	50,23
SNGL01	44	19	III	23,3	20,0	1467	62,37	20,9	1450,0	61,93
SNGL01	45	11	III	23,3	20,0	1417	53,81	20,9	1367,0	55,13
SNGL01	47	13	II	25,6	20,0	1267	54,59	20,9	1283,0	55,04
SNGL01	49	12	 II	25,6	20,0	1333	71,44	20,9	1300,0	71,69
SNGL02	65	3	ı. I	27,9	19,0	1267	67,90	20,0	1183,0	65,78
SNGL02	65	3	i	27,9	20,0	1183	65,78	20,8	1117,0	63,99
SNGL02	68	26	i	27,9	19,0	1433	61,39	20,0	1383,0	60,93
SNGL02	68	26	i	27,9	20,0	1383	60,93	20,8	1333,0	61,57
SNGL02	68	20 27	' 	27,9	19,0	1233	55,68	20,8	1233,0	56,94
SNGL02 SNGL02	68	27 27		25,6	20,0	1233	56,94	20,0	1233,0	57,15
SNGL02 SNGL02	72	5	" 			1250	55,95		1217,0	56,21
	72 72	5 5	l l	27,9	19,0		56,21	20,0	,	
SNGL02				25,6	20,0	1233	′	20,8	1217,0	56,37
SNGL02	76 70	4	II	25,6	19,0	1050	58,95	20,0	1050,0	60,07
SNGL02	76	4	l 	27,9	20,0	1050	60,07	20,8	1033,0	60,00
SNGL02	81	24		23,3	19,0	1650	45,60	20,0	1550,0	43,97
SNGL02	81	24	III	23,3	20,0	1550	43,97	20,8	1517,0	44,35
SNGL02	82	25	l	27,9	20,0	1100	56,19	20,8	1067,0	56,75
SNGL02	82	25	l 	27,9	20,8	1067	56,75	20,8	983,0	53,07
SNGL02	84	34	II	25,6	19,0	1533	57,37	20,0	1467,0	56,29
SNGL02	84	34	l 	27,9	20,0	1467	56,29	20,8	1467,0	56,61
SNGL02	85	36	III 	23,3	19,0	1417	56,16	20,0	1350,0	55,56
SNGL02	85	36	II 	25,6	20,0	1350	55,56	20,8	1300,0	55,27
SNGL02	87 8 7	6	II	25,6	20,0	1467	59,35	21,0	1417,0	60,44
SNGL02	87	6	l 	27,9	21,0	1417	60,44	21,8	1417,0	61,44
SNGL02	89	7	II	25,6	20,0	1133	51,18	21,0	1083,0	51,22
SNGL02	89	7	l 	27,9	21,0	1083	51,22	21,8	1033,0	50,59
SNGL02	89	8	II 	25,6	20,0	1450	55,40	21,0	1417,0	54,41
SNGL02	89	8	II	25,6	21,0	1417	54,41	21,8	1367,0	54,53
SNGL02	90	18	l	27,9	20,0	1300	58,48	21,0	1233,0	56,54
SNGL02	90	18	l 	27,9	21,0	1233	56,54	21,8	1217,0	57,77
SNGL02	93	23	II 	25,6	19,0	1450	57,54	20,0	1400,0	57,89
SNGL02	93	23	II	25,6	20,0	1400	57,89	20,8	1400,0	58,48
SNGL02	94	33	III	23,3	19,0	1217	54,49	20,0	1217,0	55,30
SNGL02	94	33	II	25,6	20,0	1217	55,30	20,8	1217,0	55,76
SNGL02	96	30	1	27,9	19,0	1250	62,52	20,0	1217,0	62,89
SNGL02	96	30	I	27,9	20,0	1217	62,89	20,8	1183,0	61,39
SNGL02	99	35	II	25,6	18,0	1350	57,91	19,0	1317,0	57,22
SNGL02	99	35	II	25,6	19,0	1317	57,22	19,8	1283,0	58,33
SNGL02	100	39	I	27,9	18,0	1133	56,32	19,0	1050,0	55,26
SNGL02	100	39	I	27,9	19,0	1050	55,26	19,8	1050,0	55,57
SNGL02	101	9	III	23,3	20,0	1683	56,85	21,0	1667,0	58,38
SNGL02	101	9	Ш	23,3	21,0	1667	58,38	21,8	1600,0	57,04
SNGL02	102	17	I	27,9	20,0	1317	58,09	21,8	1233,0	58,23

QUADRO 22 - PAREAMENTO DAS PARCELAS PERMANENTES DO INVENTÁRIO FLORESTAL (trecho do banco)

FONTE: O autor (2007)

4.4 EXECUÇÃO DO PACOTE **Atributos**

Para tratar das relações entre parâmetros estimados dos povoamentos florestais, **Atributos** processa os dados gravados por **Parcelas**, *params_J.dbf* e *freqs_J.dbf*, *J*=1 ... 3, e *pareadas.dbf*, conforme narrativa da seção 3.2.5 e conseqüentes subseções.

Primeiramente Atributos promove ajuste de modelos de crescimento em altura dominante, h_{dom}, para os modelos de Gompertz e da Logística, cada qual com cinco opções pré-fixadas para k. Os valores calculados para os parâmetros dos modelos, θ_1 e θ_2 , e SQR, soma dos quadrados dos resíduos, são gravados no arquivo gomplog.dbf, mostrado no quadro 23. Atributos faz, então, a escolha da melhor opção dentre as 10, por critério de menor SQR, e indica o resultado na coluna 'AVALIAÇÃO', deste quadro. No caso, para os dados, a função escolhida é a 8.

FUNÇÃO	MODELO	k	0 1	$\boldsymbol{\theta}_{2}$	SQR	AVALIAÇÃO
1	Gompertz	0,10	31,9881319550026	4,24219466513357	30288,97589170	
2		0,15	28,6853847035389	1,58655497811917	8617,62939897	
3		0,20	27,00	3,03	2829,58265575	
4		0,25	26,19	3,87	2938,95675323	
5		0,30	25,77	5,00	3188,75015232	
6	Logistica	0,20	28,05	5,50	2949,98697238	
7		0,25	26,79	6,87	2764,76355714	
8		0,30	26,1877881390552	8,82692209422989	2746,13152846	melhor
9		0,35	25,8664035026870	11,4839326184393	2821,81790138	
10		0,40	25,6801879541475	15,0467052018161	2954,68686264	

QUADRO 23 - COMPARAÇÃO DAS OPÇÕES DE MODELOS DE CRESCIMENTO PARA $h_{dom} = f(idade)$ FONTE: O autor (2007)

Os valores dos resíduos, também gravados, para a melhor função, a 8, são plotados no gráfico 1.

Definida a função de crescimento, Atributos faz a classificação de índice de sítio nas parcelas do inventário -como mostrado nos quadros 20 e 22 da seção 4.3-, seguindo os critérios traçados no gráfico 2, adiante, em curvas monomorfas proporcionais à curva mestra, definida pela função de crescimento selecionada, e em relação à idade de referência aos 20 anos. As curvas representam os centros de classe para as respectivas classes de sítio.

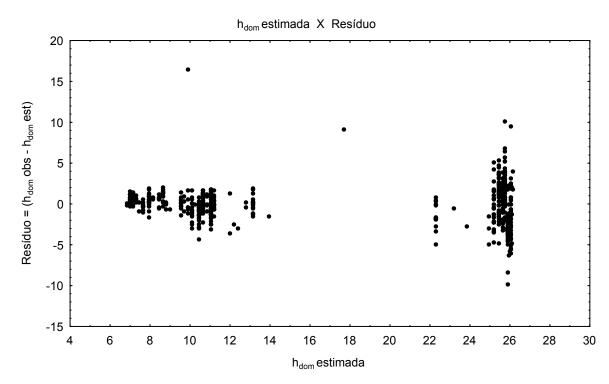


GRÁFICO 1 - RESÍDUOS DA MELHOR FUNÇÃO DE CRESCIMENTO: MODELO Logística PARA k=0,30 FONTE: O autor (2007)

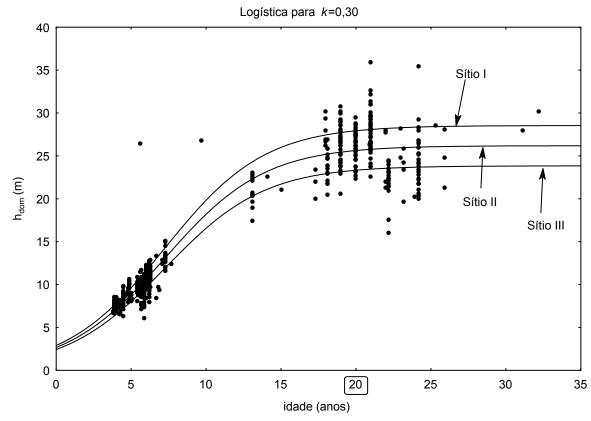


GRÁFICO 2 - APLICAÇÃO DA MELHOR FUNÇÃO DE CRESCIMENTO, EM CLASSIFICAÇÃO DE SÍTIO PARA IDADE DE REFERÊNCIA EM 20 ANOS FONTE: O autor (2007)

Separados os povoamentos em classes de sítio, para cada sítio **Atributos** procede ao ajuste de modelos de sobrevivência, ao processar o arquivo *pareadas.dbf*, cujos dados são dispostos de maneira pareada. Esse banco é apresentado, parcialmente, no quadro 22 da seção 4.3.

Os valores dos resultados para SQR e dos parâmetros θ_1 , θ_2 (e θ_3 para o segundo modelo) para os ajustes dos 4 modelos são gravados no banco de dados sobrev_S.dbf, S= sítio 1 ... 3, mostrado no quadro 24. **Atributos** faz, então, a escolha da melhor opção dentre os 4 modelos, por sítio, segundo critério de menor SQR, e indica os resultados na coluna 'AVALIAÇÃO', deste quadro. Para os dados, os escolhidos são o modelo de Lenhart para os sítios I e III e o modelo de Beverton para o sítio II.

ÍNDICE	SÍTIO	MODELO	θ_1	θ_2	0 ₃	SQR	AVALIAÇÃO
I	27,9	Lenhart	-0,031943381869324	0,095762067939856		997663,53354	melhor
		Clutter&Jones	0,0007	-0,000004	1,400827	1001812,41033	
		Silva	0,99	312,0		348721023,237	
		Beverton	1,03220456097111	-0,000007092756298		1007360,5936	
II	25,6	Lenhart	-0,031866	0,115346		1613639,24381	
		Clutter&Jones	0,0007	-0,000004	1,400827	1615317,15974	
		Silva	0,99	312,0		483237506,897	
		Beverton	1,04228485435875	-0,000012093234746		1610184,94164	melhor
III	23,3	Lenhart	-0,030046509785704	0,162056678704832		813384,44838	melhor
		Clutter&Jones	0,0007	-0,000004	1,400827	855505,402928	
		Silva	0,898279801613262	4,006098295153		9813377,92796	
		Beverton	1,024145	-0,000003		867332,863498	

QUADRO 24 - COMPARAÇÃO DAS OPÇÕES DE MODELOS DE SOBREVIVÊNCIA POR CLASSE DE SÍTIO

FONTE: O autor (2007)

Os valores dos resíduos, também gravados, para as melhores opções de modelos de sobrevivência por classe de sítio, são plotados no gráfico 3, para o sítio I, e adiante, no gráfico 4, para o sítio II, e no gráfico 5, para o sítio III.

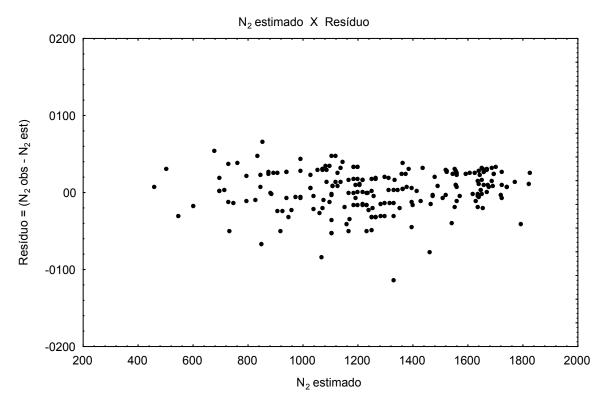


GRÁFICO 3 - RESÍDUOS DA MELHOR FUNÇÃO DE SOBREVIVÊNCIA PARA SÍTIO I : MODELO Lenhart FONTE: O autor (2007)

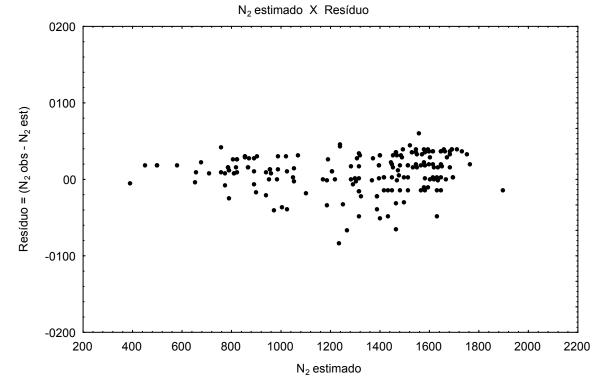


GRÁFICO 4 - RESÍDUOS DA MELHOR FUNÇÃO DE SOBREVIVÊNCIA PARA SÍTIO II : MODELO Beverton

FONTE: O autor (2007)

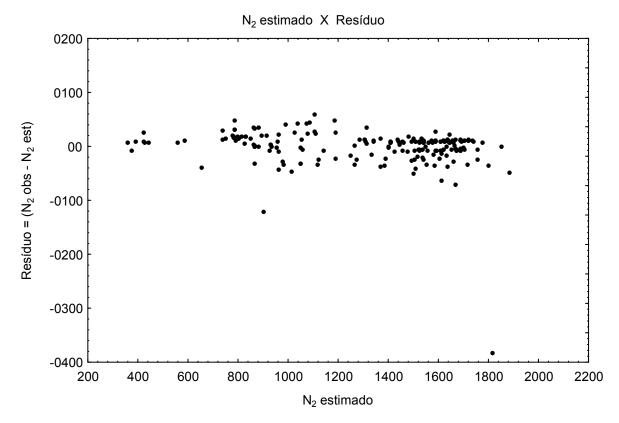


GRÁFICO 5 - RESÍDUOS DA MELHOR FUNÇÃO DE SOBREVIVÊNCIA PARA SÍTIO III : MODELO Lenhart
FONTE: O autor (2007)

Também para cada classe de sítio, **Atributos** faz ajuste de modelo para produção em área basal, G, de Pienaar e Shiver. Calcula, para cada sítio, a idade de culminação em IMA_G e ajusta, para os povoamentos que tenham atingido essa idade, modelos auxiliares para projeção da distribuição Weibull. Após isso, percorre os dados gravados por **Parcelas** e levanta a escolha da melhor opção em $%d_{min}$ para parâmetro a de Weibull, por classe de sítio.

Todos esses resultados e ainda os dos modelos já selecionados para crescimento e sobrevivência, com análise estatística, parâmetros e coeficientes dos modelos respectivos, são gravados em *projecsS.dbf*, *S*= sítio 1 ... 3, bancos de dados com o relatório a ser utilizado pelo pacote **Dínamo**, o simulador da produção florestal, apresentado adiante na seção 4.5. Esse relatório é listado no quadro 25.

ÍNDIC	E SÍTIO F	-UNÇÃ(OMODELO	SQR	k			0 1	θ2	$\boldsymbol{\theta}_3$		
1	27,9	8	Logistica	2746,13152846	0,30			26,1877881390552	8,82692209422989			
		1	Lenhart	997663,53354				-0,031943381869324	0,095762067939856			
				Sy.x	CV%	R ²	F	b ₀	b 1	b ₂	b ₃	b ₄
			Pienaar&Shiver	4,13637	8,5	0,94206770	426,05206516	0,85159365430809	-20,8432682565107	0,324804316682446	0,279988719833909	1,32892248236112
			dmax	2,46381	7,3	0,90305430	128,08197186	27,8858318405364	0,706038572113357	-0,016276393971040	-0,027991316687311	0,00000638447124
			dmin	1,42068	11,5	0,91990855	124,04585439	25,9341220162114	1,10717306772889	-0,023380809888064	-0,025768944440937	0,000007648433615
			dp1	0,65122	3,4	0,97285646	387,08479780	32,1005772068929	-0,355883842921038	0,009972286534645	-0,021347811722733	0,000004574588559
			dp2	0,94721	3,2	0,97930731	511,12348639	35,3913269388394	0,525280130048714	-0,017034032245619	-0,034532537933970	0,000008936275299
							b ₅	<i>b</i> ₆	b ₇	<i>b</i> ₈	b ₉	b 10
			Pienaar&Shiver				3,51681392322461					
			dmax				-0,187870667493826	0,000862704312283	0,801813865275562	-0,004664542467557		
			dmin				-0,267488454140960	0,003842356937019	0,418772740428580	-0,001889656637714	-0,813384898328422	0,008977224189197
			dp1				-0,158337340217372	0,004455083347242	0,414300996452255	-0,001692269350203	-0,252407408280760	0,001724859709626
			dp2				-0,219594457559424	0,002535864533684	0,283976791793123	-0,000429753536381	0,440757106997353	-0,00430851603128
			Syx, hdomRef =>	2,30026	25,6							
			N, IdadeIn =>	1645	5							
			Weib_pdmin =>	0,0								
		lo	dadeIMAGmax =>	6								
	_											

QUADRO 25 - RELATÓRIO FINAL DO PACOTE **Atributos** COM ANÁLISE ESTATÍSTICA, PARÂMETROS, COEFICIENTES DOS MODELOS E OUTRAS INFORMAÇÕES POR CLASSE DE SÍTIO

continua

INDIC	E SÍTIO	FUNÇÃ	O MODELO	SQR	k			θ ₁	θ ₂	$\boldsymbol{\theta}_3$		
П	25,6	8	Logistica	2746,13152846	0,30			26,1877881390552	8,82692209422989			
		4	Beverton	1610184,94164				1,04228485435875	-0,000012093234746			
				Sy.x	CV	R^2	F	b 0	b 1	b ₂	b 3	b 4
			Pienaar&Shiver	3,98033	10,0	0,93212510	343,32461441	1,98058469331067	-28,7866977082303	0,429846508663616	-0,218116083222981	2,45577243810839
			dmax	2,44065	7,0	0,79518853	30,57499305	21,1626807434295	0,111893118673976	0,000982389496436	-0,040935756848505	0,000012092238005
			dmin	1,40164	10,7	0,82931825	29,63902908	-0,907404818732175	-1,23386836589213	0,034639236055618	-0,008344476463784	0,000001017617459
			dp1	0,81807	4,3	0,91722444	67,59325072	27,8979628491579	-0,728685935823364	0,019351757844291	-0,016981071046374	0,000003487616831
			dp2	0,84378	2,8	0,96720419	179,89940924	32,7983712724671	0,872531831486299	-0,017680459296393	-0,030198125705413	0,000007774086306
							b 5	b 6	b 7	b 8	b ₉	b 10
			Pienaar&Shiver				1,44674410946572					
			dmax				######################################	-0,020490501836158	1,22456722435299	-0,008473590506362		
			dmin				1,57147039236974	-0,027630136920383	-0,306298028847664	0,004108239866418	0,965838959305074	-0,014234565805012
							#######################################	0,002433696708266	0,151468262776234	0,000432699165478	0,102325093980653	-0,002728324954987
			dp1									
			dp1 dp2				-0,65623689787981	0,005413450116826	0,749538702140171	-0,004705351432431	-0,173008487305196	0,004094907299191
			•				-0,65623689787981	0,005413450116826	0,749538702140171	-0,004705351432431	-0,173008487305196	0,004094907299191
			•				-0,65623689787981	0,005413450116826	0,749538702140171	-0,004705351432431	-0,173008487305196	0,004094907299191
			•	2,30026	25,6		-0,65623689787981	0,005413450116826	0,749538702140171	-0,004705351432431	-0,173008487305196	0,004094907299191
			dp2		25,6 4		-0,65623689787981	0,005413450116826	0,749538702140171	-0,004705351432431	-0,173008487305196	0,004094907299191
			dp2 Syx, hdomRef =>	1581	-		-0,65623689787981	0,005413450116826	0,749538702140171	-0,004705351432431	-0,173008487305196	0,004094907299191

QUADRO 25 - RELATÓRIO FINAL DO PACOTE **Atributos** COM ANÁLISE ESTATÍSTICA, PARÂMETROS, COEFICIENTES DOS MODELOS E OUTRAS INFORMAÇÕES POR CLASSE DE SÍTIO

continuação

INDICE	SÍTIO F	FUNÇÃ	O MODELO	SQR	k			$\boldsymbol{\theta}_1$	$\boldsymbol{\theta}_{2}$	$\boldsymbol{\theta}_{3}$		
III	23,3	8	Logistica	2746,13152846	0,30			26,1877881390552	8,82692209422989			
		1	Lenhart	813384,44838				-0,030046509785704	0,162056678704832			
				Sy.x	cv	R^2	F	b 0	b ₁	b ₂	b 3	b ₄
			Pienaar&Shiver	4,34606	12,3	0,89889905	268,51133506	-0,781207465381613	-70,3396749509702	0,195746854310926	1,013196158905770	8,57114815210343
			dmax	2,53113	7,3	0,65943565	17,91079895	17,7812447015876	#######################################	0,010096888456486	-0,025527696460797	0,00000487491574
			dmin	1,37770	10,2	0,75322574	21,97646420	11,8612288523218	0,330634374554791	-0,011625936411038	-0,029189466513004	0,000007744954482
			dp1	0,69750	3,7	0,87982490	52,71257580	33,1522711090365	#######################################	-0,000100442753331	-0,024154456942408	0,000005422325497
			dp2	0,87739	2,9	0,91441219	76,92412551	23,5944668532029	0,087803546455916	0,000216689950427	-0,026688656051312	0,000006666629576
							b ₅	b 6	b 7	b ₈	b ₉	b 10
			Pienaar&Shiver				3,927133829990450	~ 6	~ /	~ 8		~ 10
			dmax				0,830175880150307	-0,029114296369127	1,05593195322671	-0,00660444372071		
			dmin				2,3910900277483	<i>'</i>	,	*	-0,743575512068219	0.008970437767111
			dp1				0,231364883840001				-0,493715792390958	
			dp2				,	,	•	ŕ	0,538483174301291	•
	Г		Syx, hdomRef =>	2,30026	25,6							
			N, Idadeln =>	1684	4							
			Weib pdmin =>	0,0								
		lo	dadelMAGmax =>	8								
	L	lo	dadeIMAGmax =>	8								

QUADRO 25 - RELATÓRIO FINAL DO PACOTE **Atributos** COM ANÁLISE ESTATÍSTICA, PARÂMETROS, COEFICIENTES DOS MODELOS E OUTRAS INFORMAÇÕES POR CLASSE DE SÍTIO FONTE: O autor (2007)

conclusão

4.5 EXECUÇÃO DO PACOTE Dínamo

O pacote **Dínamo**, objetivo final deste trabalho, é o simulador para tabela de produção florestal, conforme narrativa da seção 3.2.6 e conseqüentes subseções.

Para funcionar, **Dínamo** necessita das informações provenientes da modelagem, presentes no relatório gravado por **Atributos** –nos bancos de dados *projecsS.dbf*, *S*= sítio 1 ... 3, (quadro 25, seção 4.4)–, do modelo de FHG para a medição 1 –no banco *fhg_1.dbf*, preparado por **Alturas** (quadro 9, seção 4.1)–, e dos modelos de função de forma –nos bancos *ffcc_04/07/.../22.dbf*, *ffsc_04/07/.../22.dbf* e *avalff.dbf*, preparados por **Cubagem** (quadros 13, 14, 15 e 18, seção 4.2).

Ao se executar o programa, surgem no início algumas telas para o usuário responder e definir o cenário para a simulação da tabela de produção florestal. A título de exemplo, esse cenário poderia ser o seguinte: idade do corte ou rotação final = 25 anos e número de épocas de desbaste = 3. Na primeira época, aos 8 anos, faz-se desbaste sistemático com peso de 25% (corte a cada quarta linha de árvores); na segunda, aos 12 anos, faz-se desbaste seletivo em que se corta toda a classe oprimida; na terceira, aos 16 anos, faz-se desbaste seletivo em que se corta toda a classe dominada 1, 75% da classe dominada 2, 50% da classe média 1, 25% da classe média 2 e 25% da classe média 3. Essas classes são as da tabela 2 da seção 3.2.6.1. Na definição das bitolas industriais para o sortimento, omite-se o preenchimento da tela e se assume os valores *default* do programa, definidos na tabela 3 da seção 3.2.6.1.

Os resultados da simulação aparecem nas tabelas 5, 6 e 7, adiante, respectivamente para os sítios I, II e III.

Esses relatórios, da simulação da tabela de produção, abrangem três objetivos do Manejo Florestal:

- a) geral em evolução,
- b) sortimento em produtos industriais e
- c) estrutural em classes sociais.

Com esse nível de detalhamento, pode-se saber pelo relatório, por exemplo, quantas toras se obtém para as diversas finalidades industriais e ainda, para tal propósito, quantas árvores cortar e em quais classes de DAP, para as classes sociais previamente selecionadas pela gerência florestal, nas diversas épocas de desbaste. **Dínamo** leva em conta o crescimento dinâmico dos limites das classes sociais do povoamento e a mortalidade natural entre esses períodos.

Observe-se que, no início da tabela, constam os valores de N inicial e de idade de partida do modelo de sobrevivência, calculados pelo pacote **Atributos**.

TABELA 5 - RELATÓRIO DA SIMULAÇÃO DE TABELA DE PRODUÇÃO FLORESTAL PELO PACOTE Dínamo PARA CLASSE DE SÍTIO I

continua IDADE **TOTAIS** N V_{cc} SORTIMENTO ESTOQUE CORTE REMANESCENTE G V_{sc} V_{cc} (m³) Nº TORAS ÍNDICESÍTIO (m²)(ha) V_{CC} (m³) N° TORAS Nº TORAS (anos) (m^3) (m³) V_{cc} (m³) 27.9 Estoque 1563 46,71 324,58 235,42 LAMINAÇÃO 1 0.00 0,00 0.00 Corte 81,58 59,16 LAMINAÇÃO 2 0,90 3,62 20 2,71 15 11,74 SERRARIA 34,97 243,00 176,26 120,54 30,26 851 Remanescente 1136 90,28 1169 285 CELULOSE 185,49 46,64 138,85 RESIDUO N, %Mortas => 82 4,96 14,93 3,77 11,16 de 5 a 8 anos N. Idade In.=> 1645 5.00 p/ Mod.Sobrev. Lenhart 440,74 334,34 LAMINAÇÃO 1 12 Estoque 1038 43,57 0.00 0 0,00 0 0.00 0 0,00 LAMINAÇÃO 2 Corte 0 0,00 0,00 56,82 294 0,00 0 56,82 294 SERRARIA 43,57 440,74 334,34 212,91 2045 212,91 2045 Remanescente 1038 0,00 CELULOSE 159,55 0,00 159,55 RESÍDUO N, %Mortas => 133 8,51 11,46 0,00 11,46 de 8 a 12 anos LAMINAÇÃO 1 42,86 503,16 16 Estoque 902 385.25 4.52 13 0.00 4.52 13 0 LAMINAÇÃO 2 Corte 281 7,73 85,77 63,22 107,06 565 0.00 0 107,06 565 SERRARIA Remanescente 35,13 417,40 322,03 229,33 2187 29,39 295 199,94 1892 621 CELULOSE 152,37 52,35 100,03 136 9.54 RESIDUO 9,88 5,85 N. %Mortas => 4.03 de 12 a 16 anos 235,36 LAMINAÇAO 1 Estoque 22,83 299,41 17 6,20 0,00 6,20 17 0,00 LAMINAÇÃO 2 Corte 0,00 0,00 96,52 510 0.00 0 96,52 510 0 22,83 299,41 235,36 SERRARIA 1279 Remanescente 347 138,10 1279 0,00 138,10 CELULOSE 55,75 0,00 55,75 RESIDUO 2,84 0,00 2,84 N, %Mortas => 281 21,71 de 16 a 25 anos

TABELA 5 - RELATÓRIO DA SIMULAÇÃO DE TABELA DE PRODUÇÃO FLORESTAL PELO PACOTE **Dínamo** PARA CLASSE DE SÍTIO I

								conclusão
	IDADE	CLASSES	CLASSES	ESTOQUE		CORT	E	REMANESCENTE
ÍNDICE SÍTIO	(anos)	SOCIAIS	DAP(cm)	N	N	PESO	TIPO	N
I 27,9	8	OPRIMIDA	< 10.4	45	12	25,0	neutro	33
		DOMINADA 1	10.5 12.4	65	17	25,0		48
		DOMINADA 2	12.5 14.4	118	30	25,0		88
		MÉDIA 1	14.5 16.4	187	47	25,0		140
		MÉDIA 2	16.5 18.4	254	64	25,0		190
		MÉDIA 3	18.5 20.4	291	73	25,0		218
		MÉDIA 4	20.5 22.4	269	67	25,0		202
		CO-DOMINANTE 1	22.5 24.4	192	48	25,0		144
		CO-DOMINANTE 2	24.5 26.4	99	25	25,0		74
		DOMINANTE	26.5>	43	11	25,0		32
	12	OPRIMIDA	< 11.4	31	0	0,0	full	31
		DOMINADA 1	11.5 14.4	58	0	0,0		58
		DOMINADA 2	14.5 16.4	66	0	0,0		66
		MÉDIA 1	16.5 19.4	148	0	0,0		148
		MÉDIA 2	19.5 21.4	127	0	0,0		127
		MÉDIA 3	21.5 24.4	214	0	0,0		214
		MÉDIA 4	24.5 26.4	138	0	0,0		138
		CO-DOMINANTE 1	26.5 29.4	158	0	0,0		158
		CO-DOMINANTE 2	29.5 32.4	75	0	0,0		75
		DOMINANTE	32.5>	23	0	0,0		23
	16	OPRIMIDA	< 12.4	0	0	100,0	baixo	0
		DOMINADA 1	12.5 15.4	87	87	100,0		0
		DOMINADA 2	15.5 18.4	93	70	75,0		23
		MÉDIA 1	18.5 20.4	86	44	50,0		42
		MÉDIA 2	20.5 23.4	153	38	25,0		115
		MÉDIA 3	23.5 26.4	165	42	25,0		123
		MÉDIA 4	26.5 28.4	103	0	0,0		103
		CO-DOMINANTE 1	28.5 31.4	125	0	0,0		125
		CO-DOMINANTE 2	31.5 34.4	66	0	0,0		66
		DOMINANTE	34.5>	24	0	0,0		24
	25	OPRIMIDA	< 15.4	0	0	0,0	full	0
		DOMINADA 1	15.5 18.4	0	0	0,0		0
		DOMINADA 2	18.5 20.4	5	0	0,0		5
		MÉDIA 1	20.5 23.4	30	0	0,0		30
		MÉDIA 2	23.5 25.4	55	0	0,0		55
		MÉDIA 3	25.5 28.4	80	0	0,0		80
		MÉDIA 4	28.5 30.4	57	0	0,0		57
		CO-DOMINANTE 1	30.5 33.4	76	0	0,0		76
		CO-DOMINANTE 2	33.5 35.4	27	0	0,0		27
		DOMINANTE	35.5>	17	0	0,0		17

FONTE: O autor (2007)

TABELA 6 - RELATÓRIO DA SIMULAÇÃO DE TABELA DE PRODUÇÃO FLORESTAL PELO PACOTE Dínamo PARA CLASSE DE SÍTIO II

continua **IDADE TOTAIS** N V_{cc} V_{sc} SORTIMENTO ESTOQUE CORTE REMANESCENTE G ÍNDICESÍTIO (m²)(m³)(m³)V_{CC} (m³) N° TORAS Nº TORAS (anos) (ha) V_{cc} (m³) V_{cc} (m³) Nº TORAS 25.6 Estoque 1442 37,42 235,71 169.44 LAMINAÇAO 1 0.00 0.00 0.00 0 Corte 9,46 59,62 42,87 LAMINAÇÃO 2 0,00 0 0,00 0 0,00 0 364 SERRARIA 27,96 176,09 126,57 311 Remanescente 1078 45,40 418 11,62 107 33,78 CELULOSE 177,38 44,74 132,65 RESIDUO N, %Mortas => 138 8,75 12,93 3,26 9,66 de 4 a 8 anos N. Idade In.=> 1581 4,00 p/ Mod.Sobrev. Beverton 204,42 LAMINAÇAO 1 12 Estoque 941 31,75 271,74 0,00 0 0,00 0 0,00 0 LAMINAÇÃO 2 Corte 0.00 0,00 0,00 8,15 43 0,00 0 8,15 43 SERRARIA Remanescente 31,75 271,74 941 204.42 107,66 1054 0.00 107,66 1054 CELULOSE 146,23 0,00 146,23 RESIDUO N, %Mortas => 135 9,35 9,71 0,00 9,71 de 8 a 12 anos 262,78 LAMINAÇÃO 1 16 Estoque 815 33,98 346,18 0,00 0 0,00 0,00 0 0 LAMINAÇÃO 2 Corte 244 6,05 56,71 41,35 42,07 223 0.00 0 42,07 223 SERRARIA Remanescente 27,94 289,47 221,43 171,43 13,45 157,98 571 1664 140 1524 CELULOSE 124,55 40,08 84,48 RESIDUO N, %Mortas => 130 9,92 8,13 3,19 4,94 de 12 a 16 anos 248,15 LAMINAÇAO 1 Estoque 13 332 25,63 316,93 4,75 0,00 0 4,75 13 0,00 LAMINAÇÃO 2 0.00 Corte 0 0.00 145.63 751 0.00 0 145.63 751 248,15 SERRARIA Remanescente 332 25,63 316,93 122,71 1128 0,00 122,71 1128 CELULOSE 41,57 0,00 41,57 RESIDUO N. %Mortas => 260 22.03 2,28 0.00 2.28 de 16 a 25 anos

TABELA 6 - RELATÓRIO DA SIMULAÇÃO DE TABELA DE PRODUÇÃO FLORESTAL PELO PACOTE **Dínamo** PARA CLASSE DE SÍTIO II

								conclusão
	IDADE	CLASSES	CLASSES	ESTOQUE		CORT	Έ	REMANESCENTE
ÍNDICE SÍTIO	(anos)	SOCIAIS	DAP(cm)	N	N	PESO	TIPO	N
II 25,6	8	OPRIMIDA	< 10.4	48	12	25,0	neutro	36
		DOMINADA 1	10.5 11.4	31	8	25,0		23
		DOMINADA 2	11.5 13.4	107	27	25,0		80
		MÉDIA 1	13.5 15.4	186	47	25,0		139
		MÉDIA 2	15.5 17.4	268	67	25,0		201
		MÉDIA 3	17.5 19.4	309	78	25,0		231
		MÉDIA 4	19.5 20.4	144	36	25,0		108
		CO-DOMINANTE 1	20.5 22.4	216	55	25,0		161
		CO-DOMINANTE 2	22.5 24.4	102	26	25,0		76
		DOMINANTE	24.5>	31	8	25,0		23
	12	OPRIMIDA	< 11.4	0	0	0,0	full	0
		DOMINADA 1	11.5 13.4	75	0	0,0		75
		DOMINADA 2	13.5 15.4	72	0	0,0		72
		MÉDIA 1	15.5 17.4	107	0	0,0		107
		MÉDIA 2	17.5 19.4	143	0	0,0		143
		MÉDIA 3	19.5 22.4	240	0	0,0		240
		MÉDIA 4	22.5 24.4	139	0	0,0		139
		CO-DOMINANTE 1	24.5 26.4	96	0	0,0		96
		CO-DOMINANTE 2	26.5 28.4	49	0	0,0		49
		DOMINANTE	28.5>	20	0	0,0		20
	16	OPRIMIDA	< 12.4	0	0	100,0	baixo	0
		DOMINADA 1	12.5 14.4	68	68	100,0		0
		DOMINADA 2	14.5 17.4	87	66	75,0		21
		MÉDIA 1	17.5 19.4	83	42	50,0		41
		MÉDIA 2	19.5 21.4	99	25	25,0		74
		MÉDIA 3	21.5 24.4	169	43	25,0		126
		MÉDIA 4	24.5 26.4	114	0	0,0		114
		CO-DOMINANTE 1	26.5 28.4	96	0	0,0		96
		CO-DOMINANTE 2	28.5 31.4	78	0	0,0		78
		DOMINANTE	31.5>	21	0	0,0		21
	25	OPRIMIDA	< 14.4	0	0	0,0	full	0
		DOMINADA 1	14.5 17.4	1	0	0,0		1
		DOMINADA 2	17.5 20.4	0	0	0,0		0
		MÉDIA 1	20.5 22.4	0	0	0,0		0
		MÉDIA 2	22.5 25.4	19	0	0,0		19
		MÉDIA 3	25.5 28.4	49	0	0,0		49
		MÉDIA 4	28.5 31.4	112	0	0,0		112
		CO-DOMINANTE 1		69	0	0,0		69
		CO-DOMINANTE 2		60	0	0,0		60
		DOMINANTE	36.5>	22	0			22
					<u> </u>	٠,٠		

FONTE: O autor (2007)

TABELA 7 - RELATÓRIO DA SIMULAÇÃO DE TABELA DE PRODUÇÃO FLORESTAL PELO PACOTE **Dínamo** PARA CLASSE DE SÍTIO III

continua **TOTAIS IDADE** N V_{cc} V_{sc} SORTIMENTO ESTOQUE CORTE REMANESCENTE G ÍNDICESÍTIO (m²)(m³)(m³)V_{CC} (m³) N° TORAS Nº TORAS (anos) (ha) V_{cc} (m³) V_{cc} (m³) Nº TORAS LAMINAÇAO 1 23.3 Estoque 1672 40,13 247,31 176.91 0.00 0.00 0.00 0 Corte 10,10 62,25 44,53 LAMINAÇÃO 2 0,00 0 0,00 0 0,00 0 422 SERRARIA 30,03 185,07 132,38 Remanescente 1250 46,51 428 11,63 107 34,88 321 CELULOSE 185,66 46,79 138,87 RESIDUO N, %Mortas => 13 0,78 15,15 3,82 11,32 de 4 a 8 anos N. Idade In.=> 1684 4,00 p/ Mod.Sobrev. Lenhart 250,86 LAMINAÇAO 1 12 Estoque 1162 37,05 334,24 0,00 0 0,00 0 0,00 0 LAMINAÇÃO 2 Corte 0 0.00 0,00 0,00 5,43 28 0,00 5,43 28 0 SERRARIA Remanescente 37,05 334,24 250.86 1162 132,59 1301 0.00 132,59 1301 CELULOSE 183,02 0,00 183,02 RESIDUO N, %Mortas => 89 5,30 13,20 0,00 13,20 de 8 a 12 anos LAMINAÇÃO 1 16 Estoque 1045 36,60 380,39 285,43 0,00 0 0,00 0,00 0 0 LAMINAÇÃO 2 Corte 375 8,73 85,62 62,17 14.44 75 0.00 0 14,44 75 SERRARIA 223,27 Remanescente 27,87 294,77 167,92 153,48 670 1642 14,44 150 1492 CELULOSE 186,15 120,20 65,95 RESIDUO N, %Mortas => 112 7,09 5,24 6,65 11,88 de 12 a 16 anos 215,26 LAMINAÇAO 1 Estoque 23,83 273,94 0,00 455 0,00 0 0,00 0 0 0,00 LAMINAÇÃO 2 0.00 Corte 0 0.00 60.61 321 0.00 0 60.61 321 SERRARIA Remanescente 455 23,83 273,94 215,26 137,74 1321 0,00 137,74 1321 CELULOSE 71,83 0,00 71,83 RESIDUO N. %Mortas => 264 17.97 3,77 0.00 3.77 de 16 a 25 anos

TABELA 7 - RELATÓRIO DA SIMULAÇÃO DE TABELA DE PRODUÇÃO FLORESTAL PELO PACOTE **Dínamo** PARA CLASSE DE SÍTIO III

									conclusão
		IDADE	CLASSES	CLASSES	ESTOQUE		CORT	`E	REMANESCENTE
ÍNDICE	SÍTIO	(anos)	SOCIAIS	DAP(cm)	N	N	PESO	TIPO	N
III	23,3	8	OPRIMIDA	< 8.4	44	12	25,0	neutro	32
			DOMINADA 1	8.5 10.4	69	17	25,0		52
			DOMINADA 2	10.5 12.4	130	33	25,0		97
			MÉDIA 1	12.5 14.4	208	53	25,0		155
			MÉDIA 2	14.5 16.4	279	70	25,0		209
			MÉDIA 3	16.5 18.4	314	79	25,0		235
			MÉDIA 4	18.5 20.4	284	72	25,0		212
			CO-DOMINANTE 1	20.5 22.4	199	50	25,0		149
			CO-DOMINANTE 2	22.5 24.4	101	25	25,0		76
			DOMINANTE	24.5>	44	11	25,0		33
		12	OPRIMIDA	< 11.4	0	0	0,0	full	0
			DOMINADA 1	11.5 13.4	115	0	0,0		115
			DOMINADA 2	13.5 15.4	100	0	0,0		100
			MÉDIA 1	15.5 18.4	233	0	0,0		233
			MÉDIA 2	18.5 20.4	195	0	0,0		195
			MÉDIA 3	20.5 22.4	197	0	0,0		197
			MÉDIA 4	22.5 24.4	163	0	0,0		163
			CO-DOMINANTE 1	24.5 27.4	131	0	0,0		131
			CO-DOMINANTE 2	27.5 29.4	25	0	0,0		25
			DOMINANTE	29.5>	3	0	0,0		3
		16	OPRIMIDA	< 11.4	0	0	100,0	baixo	0
			DOMINADA 1	11.5 14.4	115	115	100,0		0
			DOMINADA 2	14.5 16.4	93	70	75,0		23
			MÉDIA 1	16.5 19.4	207	104	50,0		103
			MÉDIA 2	19.5 21.4	169	43	25,0		126
			MÉDIA 3	21.5 23.4	169	43	25,0		126
			MÉDIA 4	23.5 26.4	192	0	0,0		192
			CO-DOMINANTE 1	26.5 28.4	66	0	0,0		66
			CO-DOMINANTE 2	28.5 30.4	27	0	0,0		27
			DOMINANTE	30.5>	7	0	0,0		7
		25	OPRIMIDA	< 10.4	0	0	0,0	full	0
			DOMINADA 1	10.5 13.4	0	0	0,0		0
			DOMINADA 2	13.5 16.4	7	0	0,0		7
			MÉDIA 1	16.5 19.4	38	0	0,0		38
			MÉDIA 2	19.5 21.4	52	0	0,0		52
			MÉDIA 3	21.5 24.4	111	0	0,0		111
			MÉDIA 4	24.5 27.4	102	0	0,0		102
			CO-DOMINANTE 1	27.5 30.4	76	0	0,0		76
			CO-DOMINANTE 2	30.5 33.4	45	0	0,0		45
			DOMINANTE	33.5>	24	0	0,0		24

FONTE: O autor (2007)

5 DISCUSSÃO

Na concepção da metodologia, o simulador **Dínamo**, para funcionar, precisa dos modelos ajustados aos dados pelos pacotes básicos de modelagem. Esses programas geram resultados específicos aos dados de campo, inerentes a espécie e a influências relativas à região, ao clima e aos demais fatores da qualidade produtiva dos locais. Além disso, a precisão das tabelas de produção geradas é sempre diretamente proporcional à qualidade da coleta dos dados, a se processar. Portanto, se aos programas forem fornecidos outros dados, variando-se espécie ou locais, os resultados intrínsecos a se obter devem ser diferentes, não só pelos dados em si, mas sobretudo devido aos cálculos próprios de análise estatística, que podem levar a escolhas de outros modelos considerados como ideais por esses programas, em processos automatizados. Porém, esses resultados podem ser considerados como analogamente compatíveis, devido ao andamento padronizado seguido pela metodologia.

Uma comprovação da especificidade inerente aos dados, pode-se constatar ao se observar as tabelas de produção, tabelas 5, 6 e 7 da seção 4.5. Elas indicam índices de mortalidade relativamente altos, para os períodos entre as idades de intervenção. Esses valores refletem a realidade dos plantios de pínus, pois essas espécies exóticas são plantadas em espaçamentos menores do que aqueles de suas regiões de origem. Assim, é fundamental, a um programa de simulação, ter-se acoplados modelos de sobrevivência. Nesta metodologia se ajusta 4 modelos de sobrevivência por sítio e se escolhe o melhor em cada, cujos nomes selecionados – quando do ajuste em **Atributos**— também aparecem nos relatórios daquelas tabelas.

No pacote **Dínamo**, onde o modelo da FHG é empregado como meio de estimativa das alturas dos centros de classes diamétricas, em função dos parâmetros estimados do povoamento –G, d_{dom}, N, idade–, e a função de distribuição Weibull é projetada por modelos estimados em função também desses parâmetros –G, h_{dom}, N, idade–, aqui h_{dom} ao invés de d_{dom}, torna-se evidente a idéia da importância dessas 'âncoras' para as estimativas. Pela teoria do Manejo Florestal, sabe-se que esses parâmetros estimados são os indicados para expressar qualidade de produção do local (h_{dom} ou d_{dom}) e grau de ocupação na área (N). Para G, somatório das áreas transversais das árvores por hectare, cabe o papel de

retratar a produção em dimensão de indivíduos. Portanto, a maneira precisa como se calcula esses parâmetros, no pacote **Parcelas**, é fundamental para o sucesso do simulador. Por exemplo, o cálculo de d_{dom} , nesse pacote, descrito na seção 3.2.4.1, por interpolação na distribuição de freqüências observadas em DAP, entre d_{min} e d_{max} , e que leva à dispensa dos valores levantados, subjetivamente, no campo para essa variável, é um grande trunfo da metodologia. Fosse esse parâmetro estimado erroneamente, toda a cadeia de modelos, na qual se baseia o pacote **Dínamo**, não vingaria.

No quadro 20 da seção 4.3, pode-se notar que o emprego da FHG –para estimar as alturas não cobertas pela função hipsométrica–, é muito freqüente. Com isso, no pacote **Parcelas**, a aplicação da função FHG se mostra como ferramenta útil e flexível para as estimativas das alturas dessas árvores, pois o emprego da função de RH da parcela, nesses casos, geraria distorções, tais como estimativas de alturas absurdas e irreais, o que comprometeria a precisão do inventário florestal.

Igualmente importante é a organização em bancos de dados das funções de forma das árvores. Trata-se de outra excelente ferramenta, e também flexível devido à discriminação por classes de idade e, dentro dessas, por classes de DAP e, ainda, para cada uma dessas, por classes de altura. As funções de forma, distribuídas separadamente por idade, DAP e altura, reportam a sua variabilidade entre os limites mínimos e máximos de classes para essas variáveis. Nos quadros 14 e 15 da seção 4.2, pode-se constatar, pela análise estatística de cada função de forma calculada, que esses modelos se ajustam perfeitamente, em todas as classes.

Registre-se a necessidade, todavia, como objetivo de nova pesquisa, em aprimoramento a esta, testar-se a hipótese de se trocar essas funções de 5º grau por funções tipo *spline*. Porém, sempre seguindo a metodologia da organização em bancos de dados por classes de idade, DAP e altura. Os programas, construídos com a estrutura em módulos, permitem trocas de sub-rotinas.

No pacote **Atributos**, ajusta-se 5 opções de modelo de crescimento para a função de Gompertz e outras 5 opções para a função da logística, para variações pré-fixadas da constante k em ambas as funções. Para casos de se processar os pacotes em outros dados, de outras espécies ou regiões, é possível que esses valores, tidos como ideais em opções para a constante k, necessitem de alteração. O pacote **Atributos** prevê essa possibilidade e aceita facilmente a entrada de outros

valores. A pesquisa do comportamento dos modelos, para cada conjunto de dados, é sempre importante.

Nas tabelas 5, 6 e 7 da seção 4.5, tabelas de produção simuladas pelo **Dínamo**, pode-se observar na coluna 'CORTE / TIPO' a definição do tipo de desbaste para a idade de intervenção. Conforme os critérios explicados na seção 3.2.6.5, essa informação possibilita ao usuário do programa, o agente do Manejo Florestal, balancear as diversas tentativas, ou 'jogadas', de simulação, entre estoque, corte e remanescente para o povoamento florestal.

Os relatórios, de Parcelas, Atributos e Dínamo, apresentam sempre informação para 'ÍNDICE de SÍTIO', em termos relativos: I, II e III; e absolutos: altura do centro de classe para os IS na idade de referência, em metros. Por meio dessa classificação de sítio, nesses termos, é possível a comparação de resultados entre vários locais e diversas regiões. O ideal seria a possibilidade de se executar os pacotes nas várias regiões e se construir, com isso, tabelas de produção regionais, semelhantes às praticadas em países com tradição em ciências florestais, tais como a Alemanha. Observe-se, entretanto, que a classificação de sítio nesta metodologia é feita por meio de curvas monomorfas, devido às características dos dados de campo coletados. A referida comparação, então, deve ser feita respeitando-se casos de possíveis similaridades nas funções de crescimento desses locais, pois a classificação por meio dessas curvas é totalmente dependente dessas funções, usadas como curvas mestras. A comparação plena somente seria possível, se a classificação de sítio fosse baseada na construção de curvas polimorfas, viáveis por meio de medição de dados de campo mais detalhados.

5.1 AVALIAÇÃO DO SIMULADOR Dínamo

Além das avaliações próprias feitas na execução dos pacotes, mostradas no capítulo 4, Resultados, há ainda a necessidade de se fazer a avaliação geral do comportamento do simulador **Dínamo**. Essa avaliação pode ser feita agora pela comparação aos resultados de campo, obtidos pelo pacote **Parcelas** ao processar os dados das parcelas do inventário. Para esse propósito, basta tomar apenas a produção volumétrica, pois de acordo com a tendência da curva dessa produção,

pode-se esperar que as outras variáveis apresentem afinidade similar no confronto com as estimativas do **Dínamo**.

Em consulta ao banco de dados com resultados do inventário, calcula-se, então, as médias de V_{cc} (volume com casca por hectare) para algumas idades próximas das épocas de intervenção, em parcelas permanentes, ou seja, não desbastadas, para evitar a interferência desse fator imponderável. Direciona-se, ainda, os cálculos para os dados das parcelas classificadas no sítio II, pois retratam pontos em torno do centro de classe da curva de crescimento considerada como mestra. Os resultados desses cálculos estão expostos no quadro 26, na coluna 'Dados do inventário'.

Similarmente, executa-se o **Dínamo** para essas mesmas idades de intervenção, no sítio II e sem desbaste, ou seja, em *full*. Os resultados desses cálculos também estão expostos no quadro 26, na coluna 'Dínamo'.

IDADE	IDADE Dados do inventário	
(anos)	(médias em m³/ha)	(m³/ha)
7	207,7	191,2
12	368,8	381,9
18	519,1	544,6
25	626,6	629,8

QUADRO 26 - ESTIMATIVAS DE V_{CC} (m³) EM ESTOQUE POR **Dínamo** EM COMPARAÇÃO ÀS MÉDIAS DE DADOS DO INVENTÁRIO DE CAMPO FONTE: O autor (2007)

O quadro 26 está representado no gráfico 6, em curvas de tendências. É notório ver que a curva, descrita pelo simulador **Dínamo**, segue tendência em afinidade à da curva dos dados do inventário de campo, o que assinala a confirmação do sucesso do simulador.

Observe-se que não se trata de um ajuste em regressão, diretamente aos dados de campo, mas, sim, que as duas curvas são obtidas por meios diversos. A dos dados do inventário de campo, através do processamento do pacote **Parcelas**, e a do **Dínamo**, por meio de todas aquelas séries de modelos ajustados pelo pacote **Atributos**, além das funções ajustadas pelos pacotes **Alturas** e **Cubagem**. Pode-se sugerir que o resultado é óbvio, pois os modelos foram ajustados aos mesmos dados. Porém, acontece que o propósito inicial do trabalho é esse mesmo: construir um simulador alimentado pelas informações da modelagem aos dados.

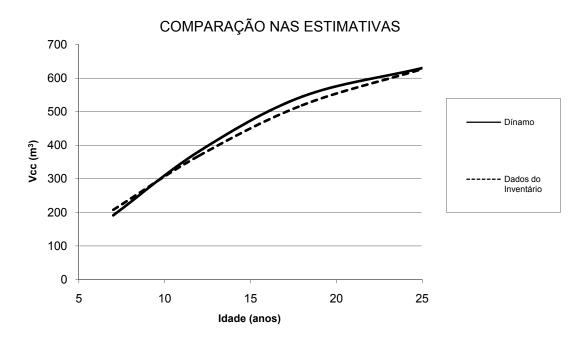


GRÁFICO 6 - ESTIMATIVAS DE V_{CC} (m³) EM ESTOQUE POR **Dínamo** EM COMPARAÇÃO ÀS MÉDIAS DE DADOS DO INVENTÁRIO DE CAMPO FONTE: O autor (2007)

Devido ao fato do Sispinus, produto da Embrapa Florestas, ser o simulador da produção florestal para *Pinus* sp. mais popular e conhecido na região Sul do Brasil, torna-se necessário fazer também a comparação com os resultados da simulação desse programa. Considera-se, com isso, a hipótese de alguém da empresa, onde os dados de campo foram coletados, ter feito o uso desse simulador, o Sispinus versão 2.1 de 1997.

Na entrada do programa, procede-se às modificações permitidas para se adequar às condições dos dados, sob duas configurações para execução de acordo com o modelo de crescimento a ser adotado: 1) com o modelo da logística, o mesmo usado pelo **Dínamo**, a função 8 na seleção do quadro 23 da seção 4.4, empregada como curva mestra, a curva do sítio II; e 2) com o modelo embutido no programa, a função denominada 'curva Embrapa'. Para ambos os casos, também se procede a modificações do N_{inicial} –para 1581, tal qual os dados—, e do índice de sítio –para 23,98 m aos 15 anos, idade de referência adotada pelo programa, que é a correspondência de 25,6 m aos 20 anos, idade de referência empregada por **Dínamo**, para se adequar ao sítio II dos dados.

Os resultados dos cálculos, dessas duas execuções do programa, estão expostos no quadro 27, nas colunas 'Sispinus (logística)' e 'Sispinus (eq.Embrapa)', respectivamente, em acréscimo às colunas já analisadas no quadro 26.

IDADE	Dados do inventário	Dínamo	Sispinus (m³/ha)		
(anos)	(médias em m³/ha)	(m³/ha)	(logística)	(eq.Embrapa)	
7	207,7	191,2	92,5	146,1	
12	368,8	381,9	343,2	449,3	
18	519,1	544,6	481,9	812,4	
25	626,6	629,8	474,1	1095,4	

QUADRO 27 - ESTIMATIVAS DE V_{CC} (m³) EM ESTOQUE POR **Dínamo** E SISPINUS EM COMPARAÇÃO ÀS MÉDIAS DE DADOS DO INVENTÁRIO DE CAMPO FONTE: O autor (2007)

O quadro 27 está representado no gráfico 7, em curvas de tendências. Ao se analisar as curvas das duas configurações do Sispinus, pode-se ver que a

COMPARAÇÃO EM SIMULAÇÃO

1200 1000 Sispinus 800 (eq.Embrapa) Dínamo 600 Dados do Inventário Sispinus (logística) 400 200 0 5 10 15 20 25 Idade (anos)

GRÁFICO 7 - ESTIMATIVAS DE V_{CC} (m³) EM ESTOQUE POR **Dínamo** E SISPINUS EM COMPARAÇÃO ÀS MÉDIAS DE DADOS DO INVENTÁRIO DE CAMPO FONTE: O autor (2007)

primeira faz um ajuste razoável aos 12 e aos 18 anos, idades próximas da sua idade de referência de 15 anos, mas ruim para o início e para o final da curva. E a

segunda, que é aquela opção que infelizmente as pessoas usam, apresenta tendência, pode-se dizer, em otimismo surrealista.

A proposta do Sispinus, definida já pretensiosamente pela própria nominação, nasce do princípio simplista da generalização. Nessa simplificação, entende-se que os seus modelos, previamente ajustados e embutidos, respondem a todas as tendências da espécie -conforme pode ser comprovado ao se ler o trabalho de Oliveira (1995, p.26-110), que apresentou o simulador. O seu modelo de função de distribuição de freqüências em diâmetros e alturas, o SBB de Johnson, é interessante, porém os modelos para a sua projeção para as diversas idades de intervenção são fixados no programa e sempre aqueles pré-ajustados. Assim, não importa onde, nem a que dados de pínus se reportem, a toda vez que o programa for executado, tem-se mais do que uma função de distribuição de probabilidade de freqüências, tem-se, de fato, sempre a mesmíssima distribuição de freqüências. O programa também não possui função de sobrevivência, apenas considera uma mortalidade de 5%, default, antes da primeira época de intervenção. Os seus modelos de função de volume e de função de forma, apesar da opção de se trocar, são únicos para as diversas idades de intervenção. A sua opção para desbaste seletivo é na realidade mais uma opção para desbaste sistemático, pois ele não trata a estrutura do povoamento em classes sociais. Se o usuário opta por desbaste seletivo de 20%, por exemplo, e ele retira de todas as classes sociais, então isso é desbaste sistemático.

O simulador **Dínamo** leva em conta o crescimento dinâmico dos limites das classes sociais do povoamento e a mortalidade natural entre os períodos. Com esse nível de detalhamento estrutural, pode-se saber, por exemplo, quantas toras se obtém para as diversas finalidades industriais e, ainda, quantas árvores cortar e em quais classes de DAP, para as classes sociais previamente selecionadas pela gerência florestal, nas diversas épocas de desbaste.

6 CONCLUSÕES

A proposta central do trabalho, em formular uma metodologia –baseada na construção de um sistema computadorizado, para organizar, sistematizar e automatizar o processamento das várias seqüências de cálculos nas diversas fases da modelagem de dados, com precisão, para fornecer subsídios para o funcionamento de um simulador dinâmico da produção em povoamentos florestais—, materializada na descrição dos cinco pacotes de programas de computador, Alturas, Cubagem, Parcelas, Atributos e Dínamo, mostra-se viável de acordo com os resultados apresentados a cada pacote e na avaliação geral, mostrada no quadro 26 da seção 5.1.

Essa proposta é uma solução para a questão fundamental do Manejo Florestal. A de que o conjunto de séries complexas de cálculos inerentes à modelagem para cenários diversos, em também complexos níveis de produtividade relativos aos diversos locais, classes de sítio, variações regionais, procedências das sementes dos plantios, variedades genéticas, etc, não pode ficar à mercê de soluções simplistas de simuladores ditos generalizados —ver quadro 27 da seção 5.1. Como conclusão central, pode-se, então, afirmar: é imprescindível conduzir os cálculos da modelagem nos diferentes locais ou regiões, onde se queira construir tabelas de produção florestal. E para tal propósito, são apresentados esses cinco pacotes, para organizá-los, sistematizá-los e automatizá-los.

Paralelamente à afirmativa, de que não é correto extrapolar a aplicação de resultados de modelos ajustados, para outros locais e regiões, tal como pressuposto em simuladores generalizados, também não se recomenda fazer o mesmo com os resultados apresentados nas tabelas de produção geradas pelo **Dínamo**. Esses valores apresentados são válidos para a região de Arapoti, palco dos dados ajustados. A extrapolação só seria confiável na hipótese de se respeitar à correspondência em índices de sítio, taxas de mortalidade, questões regionais, etc.

A metodologia –composta pelo conjunto de procedimentos desenvolvidos nos pacotes de programas para computação– pode ser estendida para aplicação em outras situações, variando espécie, idade e local. Porém, a sua viabilidade está condicionada aos resultados que podem ser obtidos na execução dos programas aos dados em cada situação, mediante as suas avaliações estatísticas embutidas.

Nesses termos, a aplicação da metodologia em povoamentos de quaisquer espécies de coníferas, tais como *Pinus* sp. e *Araucaria angustifolia*, ou em povoamentos de espécies folhosas, tais como *Eucalyptus* sp., está condicionada a esses resultados próprios, e inerentes aos seus dados, e sujeita a eventuais alterações.

Os cincos objetivos da proposta inicial se resumem, respectivamente, nos cinco pacotes, cujo conjunto de finalidades cumpre o papel estratégico à proposta central, o de se viabilizar o funcionamento de um simulador dinâmico da produção em povoamentos florestais. Porém devido ao caráter metodológico e sistematizado do trabalho, cada pacote deve ser analisado independentemente, para possibilitar a sua aplicabilidade aos dados em estudo.

O pacote **Alturas**, além de escolher a melhor função que retrata a curva das alturas de cada parcela de campo, para estimar as alturas não medidas no campo, constrói a FHG, constituindo ferramenta original para estimar as alturas não cobertas pela função hipsométrica e, ainda, estimar as alturas dos centros de classe da distribuição diamétrica no simulador **Dínamo**, nas diversas idades de intervenção.

No quadro 20 da seção 4.3, pode-se notar que o emprego da FHG –para estimar as alturas não cobertas pela função hipsométrica—, é muito freqüente. É comum nos levantamentos não se fazer plenamente a medição das alturas das árvores, nas áreas inferior e superior nas amplitudes de distribuição diamétrica das parcelas. O uso da função hipsométrica da parcela, aplicada nessas áreas, geraria distorções graves. E o uso de uma função para relação hipsométrica, única ajustada generalizadamente para os dados misturados de todas as parcelas, como se vê em muitos trabalhos, é ainda mais grave. A proposta da FHG vem suprir essa lacuna dos levantamentos e, ainda, serve para estimar as alturas dos centros de classe das distribuições diamétricas do simulador **Dínamo**, adequando-se às varias idades de intervenção. Vale lembrar que as curvas das alturas do povoamento não são continuação, uma de cada outra, mas, sim, seguem níveis de curvas, mais baixos ou mais altos, de acordo com as idades e classes de sítio. A FHG cumpre bem o papel de fornecer essas famílias de curvas.

O pacote **Cubagem**, ao fazer, em proposta original, a montagem de bancos de dados com funções de forma, distribuídas separadamente por classe de idade, por classe de DAP e por classe de altura, reporta a variabilidade das funções, entre os limites mínimos e máximos de classes para essas variáveis, e compõe

mecanismo importante para a aferição, com precisão, da produção volumétrica, detalhadamente em sortimentos de produtos florestais.

O uso de bancos de dados com funções de forma, organizadas dessa maneira, permite que se possa fazer ambos os cálculos, do volume total e dos volumes das seções por sortimento em produtos florestais, por hectare, apenas com o emprego dessas funções. Evita-se, com isso, erros recorrentes em inventários florestais, que costumam usar modelos de função de volume, para o volume total, apenas sob a justificativa tática do fato de que a função de forma, por si isoladamente, não possui entrada de altura das árvores. Então, ao se usar funções de volume e funções de forma, separadamente, gera-se uma distorção: o valor do volume total por hectare não confere com a soma dos seus valores para sortimento. Explica-se isso pelo fato de ambos os modelos, de volume e de forma, apresentarem erros divergentes, tal como se observa no quadro 19 da seção 4.2.

O pacote **Parcelas**, em processamento de inventário florestal das parcelas de campo, com aplicação dos modelos ajustados por **Alturas** e **Cubagem**, além de gerar as estimativas de parâmetros ou cálculo das médias de elementos dendrométricos dos povoamentos florestais, com precisão, faz estratégico cálculo de teste de aderência para a função de distribuição de freqüências Weibull. Ao escolher a melhor apresentação para o seu parâmetro a, por parcela, fornece subsídio para o pacote **Atributos** escolher a melhor opção desse parâmetro por classe de sítio. É proposta fundamental, para o sucesso do simulador **Dínamo**, e original ao se considerar o papel organizado e sistematizado.

Pela teoria do Manejo Florestal, os parâmetros estimados do povoamento, h_{dom} ou d_{dom}, são os indicados para expressar qualidade de produção do local, assim como N para grau de ocupação na área e a G cabe o papel de retratar a produção em dimensão de indivíduos. Portanto, a maneira precisa como se calcula esses parâmetros, no pacote **Parcelas**, é fundamental para o sucesso na aplicação dos modelos. Por exemplo, o cálculo de d_{dom}, nesse pacote, por interpolação na distribuição de freqüências observadas em DAP, entre d_{min} e d_{max}, com dispensa dos valores levantados no campo para essa variável, sujeitos a erros por subjetividade, é um grande trunfo da metodologia. Se esse parâmetro fosse estimado tendenciosamente, toda a cadeia de modelos, com variáveis nele baseadas, estaria comprometida em erros por distorção, que levariam o pacote **Dínamo** ao fracasso.

O pacote **Atributos**, com as informações do pacote **Parcelas**, também em proposta original, faz a organização sistematizada dos processamentos estratégicos para o simulador da produção florestal, ou seja: a) ajuste de 10 opções de apresentação do modelo de crescimento em variações do modelo de Richards; b) classificação de sítio nos dados do inventário; c) ajuste e escolha da melhor função de sobrevivência dentre 4 modelos, por classe de sítio; d) ajuste do sistema de modelos para projeção da função de distribuição de freqüências Weibull, em função de parâmetros estimados do povoamento, idade, N, h_{dom} e G; e) levantamento da idade de culminação em IMA_G máximo por classe de sítio, em garantia de que os povoamentos, depositários dos dados utilizados para os ajustes dos modelos, sejam os que se encontrem em estágio de "povoamento em densidade completa"; f) pesquisa para escolha da melhor opção do parâmetro *a* para a função Weibull, por classe de sítio.

A mortalidade para os períodos entre as idades de intervenção –tal como se observa nas tabelas 5, 6 e 7 da seção 4.5, correspondentes aos três índices de sítio da simulação da produção florestal— apresenta-se em níveis relativamente altos e variáveis de acordo com os sítios. Reforça-se, com isso, a importância estratégica do simulador possuir função de sobrevivência e do pacote **Atributos** fazer a pesquisa do melhor modelo de sobrevivência por classe de sítio.

O pacote **Dínamo**, objetivo principal do trabalho, com as informações e os modelos ajustados nos pacotes anteriores, faz a simulação dinâmica de tabela de produção florestal, em três focos de abrangências para o Manejo Florestal: a) geral em evolução; b) sortimento em produtos industriais; e c) estrutural em classes sociais. Com esse nível de detalhamento, pode-se saber, por exemplo, quantas toras se obtém para as diversas finalidades industriais e, ainda, quantas árvores cortar e em quais classes diamétricas, das classes sociais intencionalmente selecionadas pelo agente do Manejo Florestal, nas diversas épocas de desbaste. **Dínamo** leva em conta o crescimento dinâmico dos limites das classes sociais do povoamento e a mortalidade natural entre esses períodos. O simulador definido como *dinâmico*, nesses moldes, é uma proposta original.

Uma proposta alvissareira seria a possibilidade de se executar os pacotes nas várias regiões e se organizar bancos de modelos. Poder-se-ia construir, com isso, tabelas de produção regionais, tais como existem em países como a Alemanha.

REFERÊNCIAS

- AZEVEDO, C. P. **Dinâmica de florestas submetidas a manejo na Amazônia Oriental:** experimentação e simulação. 236 f. Tese (Doutorado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2006.
- BAILEY, R. L. Weibull model for *Pinus radiata* diameter distribution. In: IUFRO Conference of the Advisory Group of Forest Statisticians, 1973. **Statistics in Forest Research**. Vancouver, 1973. p. 51-59.
- BARBER, R. L. **A user's manual for HARVEST:** an online interactive harvest-scheduling simulator for even-aged forests. Corvallis: Oregon State University, Forest Research Laboratory, 1983. 30 p.
- BARRA, O. S. V. **Sistema de simulação de crescimento e produção de** *Populus* **spp., no Chile (Sistema Salica)**. 135 f. Tese (Doutorado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2003.
- BERTALANFFY, L. von. Quantitative laws in metabolism and growth. **Quarterly Review of Biology**, Chicago, v. 32, n. 3, p. 218-231, 1957.
- BERTALANFFY, L. von. Stoffwechseltypen und Wachstumstypen. **Biologische Zentralblatte**, [S. I.], n. 61, p. 510-532, 1941.
- BURGER, D. **Ordenamento florestal:** a produção florestal. Curitiba: UFPR. Setor de Ciências Agrárias, 1976.
- DRAPER, N. R.; SMITH, H. **Applied regression analysis**. 2. ed. New York: J. Wiley & Sons, 1981.
- EISFELD, R. de L. Modelagem do crescimento e da produção de *Pinus taeda* L. por meio de função probabilística e processo de difusão. 67 f. Dissertação (Mestrado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2004.
- EMERENCIANO, D. B. Avaliação de métodos de prognose da altura, aplicados em *Pinus elliottii* da Floresta Nacional de Capão Bonito SP. 128 f. Dissertação (Mestrado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1981.
- EMERENCIANO, D. B. Avaliação da produção e economicidade do primeiro desbaste em um ensaio de *Pinus elliottii* e *Pinus taeda*. 182 f. Tese (Doutorado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1990.

- GLADE, J. E. **Prognose de volume por classes diamétricas para** *Eucalyptus grandis* **Hill Ex-maiden**. 128 f. Dissertação (Mestrado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1986.
- HALDAR, A.; MAHADEVAN, S. Probability, reliability and statistical methods in engineering design. New York: J. Wiley & Sons, 2000.
- HOHENADL, W. Die Bestandesmessung. Berlin: Parey Verlag, 1936.
- HOSOKAWA, R. T. Contribuição para definir a sucessão de cortes dos povoamentos objetivando a persistência de rendas nas empresas florestais. 70 f. Tese (Professor Titular em Manejo Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1980.
- HOSOKAWA, R. T. Funções de forma e o planejamento da produção florestal. In: SEMINÁRIO SOBRE ATUALIDADES E PERSPECTIVAS FLORESTAIS: O uso de funções de forma de tronco em estudo de volumetria de espécies florestais, 5., 1982, Curitiba. **Anais**... Curitiba: EMBRAPA/CNPF, 1982. p. 7-14.
- HRADETZKY, J. **Modell eines integrierten Ertragstafel-Systems in modular Form**. 172 f. Tese (Doutorado) Albert-Ludwigs Universität zu Freiburg im Breisgau, Freiburg, 1972.
- INSTITUTO BRASILEIRO DE DESENVOLVIMENTO FLORESTAL. Inventário florestal nacional: florestas plantadas, Paraná, Santa Catarina. Brasília, DF, 1984. 284 p.
- IVERSON, D.C.; ALSTON, R.M. The genesis of FORPLAN a historical and analytical review of Forest Service planning models. Washington: USDA Forest Service, 1986. 25 p. (General Technical Report. INT, n. 214).
- JOHNSON, K.N.; JONES, D.; DANIEL, B. A user's guide to multiple use sustained yield scheduling calculation (MUSYC). Fort Collins: Department of Agriculture, Forest Service, Timber Management, 1979. 242 p.
- JOHNSTON, D. R.; GRAYSON, A. J.; BRADLEY, R. T. **Planeamento florestal**. Lisboa: Fundação Calouste Gulbenkian, 1977.
- LEUSCHNER, W. A. Introduction to forest resource management. New York: J. Wiley & Sons, 1984.
- LOETSCH, F.; ZÖHLER, F.; HALLER, K. E. **Forest inventory**. München: BLV Verlagsgesellschaft, 1973. v. 2.
- LOPES, E. da S. *et al.* Planejamento de colheita e transporte de madeira usando o programa SNAP III (Scheduling and Network Analysis Program) em uma plantação de pínus no sudeste do Brasil. **Revista Árvore**, Viçosa, MG, v. 27, n. 6, 2003.

- MACHADO, S. do A. Volumetria de árvores e de povoamentos florestais. CURSO DE ATUALIZAÇÃO EM MANEJO FLORESTAL, 1987, Curitiba. [Palestras...]. Curitiba: APEF, 1987. p. 30-55.
- MEYER, H. A.; RECKNAGEL, A. B.; STEVENSON, D. D.; BARTOO, R. A. Forest management. 2. ed. New York: The Ronald Press Company, 1961.
- MITCHEL, K. J.; CAMERON, I. R. **Managed stand yield tables for Coastal Douglas-fir:** initial density and precommercial thinning. Victoria, British Columbia: Information Services Branch Ministry of Forests Parliament Buildings, 1985.
- NAVON, D.I. **Timber RAM ... a long-range planning method for commercial timber lands under multiple-use management**. Berkeley: Forest Service,1971. 22 p. (Research Paper PNW, n. 70).
- OLIVEIRA, E. B. Um sistema computadorizado de prognose do crescimento e produção de *Pinus taeda* L., com critérios quantitativos para a avaliação técnica e econômica de regimes de manejo. 134 f. Tese (Doutorado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1995.
- OLIVEIRA, E. B.; OLIVEIRA, Y. M. M. Sisplan: Sistema para manejo e análise econômica de florestas de *Pinus*. In: CONGRESSO E FEIRA DE AGROINFORMÁTICA, 2000, Ponta Grossa PR. **Anais**... Ponta Grossa: Universidade Estadual de Ponta Grossa, 2000. p. S5. Disponível em: http://www.infoagro2000.deinfo.uepg.br. Acesso em: 20/10/2007.
- OSMASTON, F. C. **The management of forests**. Great Britain: Aberdeen University Press, 1968.
- PÉLLICO NETTO, S. **Die Forstinventuren in Brasilien. Neue Entwicklungen und ihr Beitrag für eine geregelte Forstwirtschaft**. 232 f. Tese (Doutorado) Albert-Ludwigs Universität zu Freiburg im Breisgau, Freiburg, 1979.
- PETERS, R. **Konstruktion eines Massentafelmodells**. Tese (Doutorado) Albert-Ludwigs Universität zu Freiburg im Breisgau, Freiburg, 1971.
- PIENAAR, L. V. **Quantitative theory of forest growth**. Ph.D Thesis, University of Washington, Washington, DC, 1965.
- PIENAAR, L. V.; SHIVER, B. D. Basal area prediction and projection equations for pine plantations. **Forest Science**, Lawrence, v. 32, n. 3, 1986.
- PIENAAR, L. V.; TURNBULL, K. J. The Chapman-Richards generalization of Von Bertalanffy's growth model for basal area growth and yield in even-aged stands. **Forest Science**, Lawrence, v. 19, n. 1, p. 2-22, 1973.
- PRODAN, M. Holzmesslehre. Frankfurt: J. D. Sauerländer's Verlag, 1965.

- RICHARDS, F. J. A flexible growth function for empirical use. **Journal Of Experimental Botany**, London, v. 10, n. 29, 1959.
- RODRIGUES, F. L. *et al.* A forest regulation model and its implications in the formulation and solution of problems with covering constraint. **Revista Árvore**, Viçosa, MG, v. 30, n. 5, 2006.
- RODRIGUES, F.L.; LEITE, H.G.; ALVES, J.M. *Sysflor* um sistema de suporte à decisão em planejamento florestal. In: SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL, 32., 2000, Viçosa, MG. **Anais...** Viçosa, MG: Universidade Federal de Viçosa, 2000. p. 974-995.
- SANQUETTA, C. R. Fundamentos biométricos dos modelos de simulação florestal. **FUPEF.** Série didática, Curitiba, n. 8, set. 1996.
- SANQUETTA, C. R. **Predição da sobrevivência em reflorestamento de** *Pinus elliottii Engelm*. 81 f. Dissertação (Mestrado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1990.
- SCHMIDT, P. B. **Determinação indireta da relação hipsométrica para povoamentos de** *Pinus taeda* **L**. 104 f. Dissertação (Mestrado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1977.
- SCHOPFER, W. Automatisierung der Massen, Sorten und Wertberechnung stehender Waldbestände. Schriftenreihe der Landesforstverwaltung Baden-Württemberg, 1966. Bd 21.
- SCOLFORO, J. R. S. Modelagem do crescimento e da produção de florestas plantadas e nativas. Lavras: UFLA/FAEPE, 1998.
- SCOLFORO, J. R. S. Sistema integrado para predição e análise presente e futura do crescimento e produção, com otimização de remuneração de capitais, para *Pinus caribea var. hondurensis*. 290 f. Tese (Doutorado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1990.
- SPEIDEL, G. Planung im Forstbetrieb. Hamburg: Verlag Paul Parey, 1972.
- SPIECKER, H. **Métodos da pesquisa operacional, com aplicação em manejo florestal**. Curitiba: UFPR. Setor de Ciências Agrárias, 1975.
- SPURR, S. H. **Forest inventory**. 2. ed. New York: The Ronald Press Company, 1952.
- TAUBE NETTO, M. Um modelo de programação linear para planejamento de florestas de eucalipto. **Pesquisa Operacional**, Rio de Janeiro, v. 4, n. 1, p. 19-39, 1984.

- VOLPI, N. M. P. **O** impacto de perturbações estocásticas em um modelo de planejamento florestal. 250 f. Tese (Doutorado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1997.
- WENDLING, W. T. **Metodologia para elaboração de tarifas de volume individual**. 143 f. Dissertação (Mestrado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1978.
- YOUNG, A. C.; MUETZELFELDT, R. T. The SYMFOR tropical modelling framework. **Commonwealth Forestry Review**, Oxford, GB, 77, 11-18, 1998.

DOCUMENTOS CONSULTADOS

- ABREU, P. S. **Metodologia para regulação da produção dos desbastes**. 195 f. Dissertação (Mestrado em Ciências Florestais) Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1980.
- BOLFARINE, H.; SANDOVAL, M. C. **Introdução à inferência estatística**. Rio de Janeiro: Sociedade Brasileira de Matemática, 2001.
- BADEMER, H.; ANDREAS, B.; JUNG, W.; RICHTER, K. **Optimale Versuchs-planung**. Zürich: Verlag Harri Deutsch, 1976.
- BARE, B. B. A aplicação de simulação no Manejo Florestal. In: SIMPÓSIO FLORESTAL DE MINAS GERAIS, 4., 1970, Viçosa, MG. **Anais**... Viçosa, MG: UFV, 1970.
- BATES, D. M.; WATTS, D. G. **Nonlinear regression analysis and its applications**. New York: J. Wiley & Sons, 1988.
- BOLDRINI, J. L. et al. Algebra linear. 3. ed. São Paulo: Harbra, 1980.
- CHURCHMAN, C. W. et al. Operation Research. Eine Einführung in die Unternehmerforschung. 3. ed. München: Aufl. Wien, 1960.
- CLUTTER, J. L. Compatible growth and yield models for loblolly pine. **Forest Science**, Lawrence, v. 9, n. 3, p. 354-71, 1963.
- CLUTTER, J. L.; FORSTON, J. C.; PIENAAR, L. V.; BRISTER, G. H.; BAYLEY, R. L. **Timber management:** a quantitative approach. New York: J. Wiley & Sons, 1983.
- FREESE, F. **Elementary statistical methods for foresters**, Washington, D.C.: Forest Service, 1967. 87 p.
- FREESE, F. Linear regression methods for forest research, Madison: U.S. Forest Service, 1964. 138 p. (Research Paper FPL, n. 17).

FRIEDL, R. A. **Dinâmica e prognose da forma dos fustes em povoamentos plantados de** *Araucaria angustifolia (Bert.) O. Ktze.* 167 f. Dissertação (Mestrado em Ciências Florestais) – Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1989.

GEHMACHER, E. **Methoden der Prognostik (Eine Einführung in die Probleme der Zukunfts - Forshung und Langfristplanung)**. München: Verlag Rombach, 1971.

GUIDORIZZI, H. L. Um curso de cálculo. 5. ed. São Paulo: LTC, 2001. v. 1-4.

HOSOKAWA, R. T.; MENDES, J. B. Planejamento florestal: técnicas para manutenção da contribuição do setor florestal à economia nacional. **Revista Floresta**, Curitiba, v. 15, n. 1-2, p. 4-7, 1984.

HOSOKAWA, R. T.; MOURA, J. B.; CUNHA, U. S. Introdução ao manejo e economia de florestas. Curitiba: Editora UFPR, 1998.

HUBBARD, J. R. Programação em C++. 2. ed. Porto Alegre: Bookman, 2003.

JAMES, B. R. **Probabilidade:** um curso em nível intermediário. 2. ed. Rio de Janeiro: IMPA, 2002.

LEITHOLD, L. **O cálculo com geometria analítica**. 3. ed. São Paulo: Harbra, 1994. v. 1-2.

MICROSOFT CORPORATION. Microsoft FoxPro language reference. Relational database management system for MS-DOS and Windows. Redmond, Wa, 1989-1993. Manual de software.

MICROSOFT CORPORATION. Microsoft FoxPro library construction kit for construction libraries for MS-DOS, Windows and Apple MacIntosh, version 2.5. Redmond, Wa, 1989-1993. Manual de software.

MEIER, R. C. *et al.* **Simulation in business and economic**. New Jersey: Englewood Clifs, 1969.

MULLER-MERBACH, H. Operation Research. Methoden und Modelle der Optimalplanung. 2. ed. Aufl. München, 1971.

PERKINS, W. C. **Simulation:** An introduction to Management Science. Reading: Addisen Wesley, 1977.

PRODAN, M. **Forstliche Biometrie.** München: Bayerischer Landwirtschaftsverlag, 1968.

SAVITCH, W. J. C++ absoluto. São Paulo: Addison Wesley, 2004.

SCHILDT, H. C avançado: Guia do usuário. São Paulo: McGraw-Hill, 1987.

SCHNEEWEISS, H. Ökonometrie. 3. ed. Wien: Physica-Verlag Würzburg, 1978.

SHAMBLIN, J. E. et. al. Pesquisa operacional. São Paulo: Atlas, 1979.

SILVA, E. Q. da **Nova função densidade de probabilidade aplicável à ciência florestal**. 98 f. Tese (Doutorado em Ciências Florestais) — Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2003.

SIMEK, J. Grundzüge einer naturgemässen Wachstumsfunktion der Waldbestände. Wien: Mitt. d. F. B. -Versuchsanstalt Wien, 1966. v. 1.

STEEL, R. G. S.; TORRIE, J. H. **Principles and procedures of statistics**. New York: McGraw-Hill Book, 1960.

STERBA, H. **Ertragskundliche Hypothesen über den Standort**. Wien: Institute für Forstliche Standortslehre der Hochschule für Bodenkultur, 1975.

STRAND, L. **Problem bei Zuwachsprognosen**. Wien: Mitt. d. F. B. -Versuchsanstalt Wien, 1966.

THOMASIUS, H. Allgemeine Betrachtungen über Wachstumskurven und Wachstumsfunktionen. **Wiessenschaftliche Zeitung der Technische Universität Dresden**, n. 13, 1964.

THOMASIUS, H. Kritik der Wachstumsfunktionen von B. Backmann. Wiessenschaftliche Zeitung der Technische Universität Dresden, n. 14, H. 4, p. 1019-1031, 1965.

VALE, A. B. Jogo simulado em Manejo Florestal. In: SIMPÓSIO FLORESTAL DE MINAS GERAIS, 4., 1970, Viçosa, MG. **Anais**... Viçosa, MG: UFV, 1970.

WIMMENAUER Zur mathematischen Interpretation der Zuwachskurven. **Allgemeine Forst -und Jagdzeitung**, 1909. p. 238.

WINGERT, F. Eine Verallgemeinerung der logistischen Wachstumsfunktion. **Biometrische Zeitschrift**, Berlin, v. 3, p. 35, 1971.